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a b s t r a c t

This paper considers the widely admitted ill-posed inverse problem for measurement error models:
estimating the distribution of a latent variable X∗ from an observed sample of X , a contaminated
measurement of X∗. We show that the inverse problem is well-posed for self-reporting data under
the assumption that the probability of truthful reporting is nonzero, which is supported by empirical
evidences. Comparing with ill-posedness, well-posedness generally can be translated into faster rates of
convergence for the nonparametric estimators of the latent distribution. Therefore, our optimistic result
on well-posedness is of importance in economic applications, and it suggests that researchers should
not ignore the point mass at zero in the measurement error distribution when they model measurement
errorswith self-reporteddata.Wealso analyze the implications of our results on the estimation of classical
measurement errormodels. Then by both aMonte Carlo study and an empirical application, we show that
failing to account for thenonzero probability of truthful reporting can lead to significant bias on estimation
of the latent distribution.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Empirical studies in microeconomics usually involve survey
samples, where personal information is reported by the intervie-
wees themselves, and therefore, the corresponding variables in the
samples are subject to measurement errors. The measurement er-
ror problem can be summarized as estimating the distribution of a
latent variable X∗, fX∗(·), from an observed sample of X , a contam-
inated measurement of X∗, as follows1:

fX (x) =


fX |X∗(x|x∗)fX∗(x∗)dx∗, (1)

where both X∗ and X have continuous support.

✩ We are grateful to an associate editor, two anonymous referees, Chris Bollinger,
Arthur Lewbel, Tong Li, Susanne Schennach, Stephen Shore, Richard Spady, Tiemen
Woutersen, and seminar participants at the ESWC 2010 for helpful comments or
discussions. We also thank Han Hong for sharing the dataset and Wendy Chi for
proofreading the draft. All errors remain our own.
∗ Corresponding author.
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1 The measurement error problem may also involve in estimating interested

parameters that appear in an equation with X∗ , and the estimation may (e.g., Li
(2002)) or may not involve estimating fX∗ . In this paper, we focus on the
nonparametric estimation of fX∗ . As we argue in the paper, estimating fX∗

generalizes many other interesting problems in economic applications.

0304-4076/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2012.01.036
The conditional density fX |X∗ describes the behavior of the
measurement errors defined as X−X∗. We focus on the estimation
of the true model fX∗ given the measurement error structure fX |X∗

and a sample of X . A straightforward estimator is to solve for fX∗

from Eq. (1) with fX replaced by its sample counterpart. In fact,
Eq. (1) is a Fredholm integral equation of the first kind, which is
notoriously ill-posed.2

The ill-posed inverse problems have been widely studied in
statistics literature, and the main efforts in solving the prob-
lems were put into various regularization methods pioneered
by Tikhonov (1963). In econometrics literature, economists also fo-
cus on constructing estimators and deriving optimal convergence
rates of the estimators based on various regularization methods in
a general setting, such as Eq. (1). (e.g., see Blundell et al. (2007),
Chen and Reiss (2011), and Hall and Horowitz (2005))

In this paper, however, we show that the widely admitted
ill-posed problem above is actually well-posed for self-reporting
data, under the condition that interviewees report truthfully with

2 According to Hadamard (1923), a well-posed problem has the following three
properties. (1) A solution exists. (2) The solution is unique. (3) The solution depends
continuously on the data. If any of the three conditions is violated, then the problem
is ill-posed.
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a nonzero probability. The property of truthful-reporting can be
observed from validation studies by Bollinger (1998) and Chen
et al. (2008). Based on this property, we prove that the inverse
problem Eq. (1) is in fact a Fredholm integral equation of the
second kind, which is generally well-posed. We further employ the
existing results in the literature to show that comparing with the
case of ill-posedness, well-posedness can generally be translated
into faster rates of convergence for the estimators of fX∗(·). Hence
the property of positive truth-reporting probability may help us
gain great advantage in estimating theunknowndistribution fX∗(·).
Therefore, we advocate that it is best for economists to exploit the
property of self-reporting data while solving the inverse problems
in measurement error models with a generally ill-posed setup,
such as Eq. (1).

To further implore the implications of our results on well-
posedness, we analyze the well-known classical measurement
error case, where the error structure fX |X∗(x|x∗) is reduced to
fϵ(x − x∗). In this case, estimating the unknown density fX∗(·) is
a deconvolution problem. We provide sufficient conditions under
which a general deconvolution problem is well-posed, andwe also
present the convergence rate of the deconvolution estimatorfX∗(·).
In general, this rate is faster than the existing ones in the literature
(e.g., see Fan (1991)).

This paper points out that if self-reported errors satisfy that
there is a nonzero probability of being zero, then the inverse
problems in measurement error models are well-posed. In both
general and classical measurement error cases, we show that for
well-posed inverse problems, the achievable rates of convergence
for estimating fX∗ may be much faster than that available in the
literature. These results imply that the estimation of the latent
model fX∗ from the observed sample of X may not be as technically
challenging as previously thought. In this sense, our findings in this
paper are important in economic applications. The importance of
our findings is also due to the fact that the theoretical framework
Eq. (1) generalizes many other interesting problems in economics.
For instance, estimating the nonparametric structural function
from an instrumental variable model in Newey and Powell (2003)
is equivalent to estimating fX∗ . The estimation of consumption
based asset pricing Euler equations in Lewbel and Linton (2010)
can also be described in the same framework as ours.3

We organize the rest of the paper as follows. In Section 2, we
present a general setup of the inverse problem in measurement
error models. In Section 3, we show the well-posedness of
measurement error models for self-reporting data, and discuss the
rates of convergence forfX∗ when the problem is well-posed. In
Section 4, we analyze the well-posedness in the case of classical
measurement errors and present the convergence rate for the
deconvolution estimator. In Section 5, we provide Monte Carlo
evidence on the improvement that the property can make in
estimating fX∗ . In Section 6, we present an empirical illustration,
using the data-set that matches self-reported earning from the
CPS to employer-reported social security earnings (SSR) from1978.
Section 7 concludes. Proofs are in the Appendix.

2. A general setup

We are interested in the nonparametric estimation of the
distribution of a latent variable X∗, fX∗(·), given the known
measurement error structure fX |X∗ and a sample of X . The random
sample {Xi}i=1,...,n contains the contaminatedmeasurements of the
true values X∗

i in each observation i. The estimation of fX∗(·) is
based on solving Eq. (1).Without loss of generality, we assume that

3 Also see Carrasco et al. (2007) for more interesting examples.
the supports ofX and X∗ are the real lineR and the inverse problem
is defined on the Lp (1 ≤ p ≤ ∞) space over the real line, i.e., Lp(R),
with fX , fX∗ ∈ Lp unless we specify the space otherwise.

For simplicity, we alternatively express the inverse problem as
an operator equation:
fX = LX |X∗ fX∗ , (2)
where the operator LX |X∗ : Lp(R) → Lp(R) is defined as

(LX |X∗h)(x) =


fX |X∗(x|x∗)h(x∗)dx∗, ∀h ∈ Lp(R).

The well-posedness of the inverse problem (2) is then defined as
follows.

Definition 1 (Carrasco et al., 2007, p. 5670).The equation LX |X∗ fX∗ =

fX (fX∗ , fX ∈ Lp) is well-posed if LX |X∗ is bijective and the inverse op-
erator L−1

X |X∗ : Lp(R) → Lp(R) is continuous. Otherwise, the equa-
tion is ill-posed.

In this paper, we intend to focus on the estimation, instead of
identification, of the latent model fX∗(·). Hence we make the
following assumption.

Condition 1. The density of measurement error fX |X∗ is known and
the operator LX |X∗ : Lp(R) → Lp(R) is injective.4

This assumption guarantees that the left inverse of LX |X∗ exists
and fX∗ is uniquely identified from Eq. (2).5 Therefore, we can
identify and estimate fX∗ as follows:
fX∗ = L−1

X |X∗ fX .

As in many empirical applications, however, we only observe a
random sample of X instead of the density fX itself. We have to
replace fX by its estimator based on the random sample {Xi}. LetfX denote an estimator of fX , then the latent model fX∗ can be
estimated asfX∗ = L−1

X |X∗
fX

= fX∗ + L−1
X |X∗(fX − fX ).

Since the injectivity of LX |X∗ is assumed above, we still need
its surjectivity and the continuity of L−1

X |X∗ to assure the well-
posedness of the problem (2).

In economic applications, the main concern for well-posedness
of this inverse problem is the continuous dependence of the
estimatorfX∗ on the data of X , i.e., whether the bias infX∗ , L−1

X |X∗(fX −

fX ), is dependent on the estimation error infX continuously. Notice
that whether the problem is well-posed or not is completely
determined by the operator LX |X∗ : if the inverse L−1

X |X∗ is not
continuous, then the problem becomes ill-posed and a small
estimation error infX might cause a huge bias infX∗ . Actually, when
the problem is ill-posed on the space Lp, it may still be well-posed
on some subsets of Lp if some prior information of fX∗ is available.
In this case, the problem is conditionally well-posed.6 It is beyond
the scope of this paper to discuss conditional well-posedness, and
we only focus on ill/well-posedness of the problem (2).

4 We assume that fX |X∗ is known here, and more properties of fX |X∗ will be
specified when they are needed.
5 Given an operator F : Υ → Ψ , if there exists an operator G : Ψ → Υ such that

GF is the identity operator I on Υ , then G is said to be a left inverse of F . G exists if
and only if F is injective. See Naylor and Sell (2000), pp. 32–33 for details.
6 A rigorous definition of conditionally well-posed is as follows (Petrov and

Sizikov, 2005, p. 157): An operator equation LX |X∗ fX∗ = fX with fX∗ , fX ∈ Lp(R)

is conditionally well-posed if

(i) It is known a priori that a solution of the problem above exists and belongs to
a specific set Υ ⊂ Lp(R).

(ii) The operator LX |X∗ is a one-to-one mapping of Υ onto LX |X∗ Υ ≡ Ψ .
(iii) The operator L−1

X |X∗ is continuous on Ψ ⊂ Lp(R).
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Fig. 1. Histograms of measurement error in earnings, by quartile of true (Social Security) earnings. The figure was excerpted from Chen et al. (2008), p. 50. The link of the
paper is: http://cowles.econ.yale.edu/P/cd/d16a/d1644.pdf.
3. Measurement error models for self-reporting data

In this section, we show the well-posedness of measurement
error models for self-reporting data and discuss the convergence
rate for the nonparametric estimator of the latent distribution,fX∗ .
We first present a property observed in validation studies that
individuals report the true values with a nonzero probability. As
a consequence, the problem (2) becomes a Fredholm equation of
the second kind and is well-posed. Next, we discuss the rates of
convergence forfX∗ in both well-posed and ill-posed problems.
By comparing the rates in two scenarios, we try to emphasize the
importance of well-posedness in economic applications.

3.1. A property of self-reporting errors

This subsection discusses the properties of the operator LX |X∗

in measurement error models for self-reporting data. We show
why and how self-reporting errors are essentially distinct from the
traditional measurement errors.

The traditional measurement error models describe the errors
generated from measuring a true value, such as, height or
temperature, using certain measurement equipment, e.g., a ruler
or a thermometer. Such errors are generally assumed to be
independent of the true values, which makes perfect sense
because the errors are mainly caused by the equipment or
measuring methods. However, most measurement errors in
economic variables are not caused by measurement but by
misreporting. This is due to the fact that most of economic
studies are based on self-reported survey data, such as Current
Population Survey (CPS) and Panel Study of Income Dynamics
(PSID). Therefore, it is essential for economists to take into
account the properties of the self-reporting errors before using the
traditional measurement error models.

Self-reporting errors have been studied thoroughly in the
literature. In a validation study by Chen et al. (2008), they provide
an important empirical evidence on the exact distribution of self-
reporting errors for earnings. The authors use the data set that
matches self-reported earning from the CPS to employer-reported
social security earnings (SSR) from 1978 (the CPS/SSR Exact Match
File). By quartile of Social Security Earnings, the four sub-figures
in Fig. 1 show histograms of percentage of the ratio between self-
reported and social security earnings. An observation from the
figure is that there are mass points where self-reported earnings
equal social security earnings, i.e., the probability of reporting
truthfully is strictly positive.7

In fact, Bollinger (1998) provides estimates of the probability
of reporting truthfully in CPS. The paper utilizes the same CPS/SSR
exact match file above to show that 11.7% of the men and 12.7%
of the women report their earnings correctly. In addition, he finds
that the probability of reporting truthfully does not varymuchwith
the true income.

Similar observations also apply to the discrete variables. Bound
et al. (2001) provides the discrete version of fX |X∗ in different
economic data, where the misclassification probability matrices
corresponding to fX |X∗ are all strictly diagonally dominant, i.e., the
probability of telling the truth ismuch larger than that of reporting
any other values. For instance, when employees are asked to report
their occupation classification, self-reported data are agree with
company reported ones for 70% of the current occupations, and for
60% of the occupations more than four years ago.

Employing the CPS/SSR data set we discussed above, we plot
histogram of social security earnings X∗ for those X∗ that are
exactly equal to X , the self-reported earnings in Fig. 2. The
histogram shows that people report truthfully almost at every
earning level, which implies that they report truthfully not just
because their earning levels are easy to remember.

These validation studies suggest that there is a nonzero
probability that people report the truth even for a continuous
variable, i.e., the distribution of self-reporting errors has a mass
point at zero. This observation may be explained by the following
reporting process shown in Fig. 3: if an interviewee remembers
the true value, she first decides whether to intentionally misreport
the truth or not. Empirical evidences above suggest that she
would report the truth with a nonzero probability; if she does not
remember the true value, she provides an estimate of the true

7 We would like to emphasize that by truthful reporting, we mean X∗ is equal
to X exactly. Due to the discrete nature of the histograms, this point may not be
illustrated clearly by the figure. However, this property can be directly observed
from the CPS/SSR data.

http://cowles.econ.yale.edu/P/cd/d16a/d1644.pdf
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Fig. 2. Histogram of X∗ given X∗
= X .

Fig. 3. Illustration of self-reporting.

value, which may be considered as unintentional misreporting.8
Admittedly, we cannot distinguish intentional misreporting from
unintentional misreporting without further information. The
example on self-reported occupations we discussed above can
be rationalized by our conjecture: as time goes, the probability
of remembering the occupations decreases, which leads to the
decreasing agreement rate between self-reported occupations and
company reported ones.9

Based on these observations from the validation studies, it is
natural to make the following assumption in measurement error
models for self-reporting data.

Condition 2. The probability of telling the truth conditional on the
true values is bounded away from zero, i.e.

λ(x∗) ≡ Pr(X = X∗
|X∗

= x∗) ≥ c > 0 for any x∗.

Consequently, the self-reporting error distribution may be written as:

fX |X∗(x|x∗) = λ(x∗) × δ(x − x∗) + [1 − λ(x∗)] × g(x|x∗), (3)

8 This conjecturemay help us justify whether the self-reported data on a variable
has the property. For instance, validation data are also available in biostatistics
according to Carroll et al. (2006). However, the existence of validation data in
biostatistics generally does not imply that the error distribution has a point mass.
This is because the variables biostatisticianmainly focus on are different fromwage
we analyzed in the sense that in biostatistics the interviewees hardly know the
exact value they need to report. For example, a person hardly knows his weight
as accurate as measured by weight scales (true values). Consequently, there is no
way for interviewees report the true value with positive probability.
9 However, we do have the risk that the nonzero point mass is an untestable

assumption inmany existing surveys forwhich validation samples are not available,
especially for a continuous X∗ . In fact, validation samples are rare in the literature,
for example, the 1978 SSR validation sample we discussed in the paper has been
used for about thirty years (recently the data set was used by Chen et al. (2005)).
where δ(·) is a Dirac delta function and g(x|x∗) is the conditional
density corresponding to misreporting errors.10

3.2. Well-posedness with self-reporting errors

Given the property of the self-reporting error in economic data,
the correspondingmodels ofmeasurement error in Eq. (3) becomes

fX (x) =


fX |X∗(x|x∗)fX∗(x∗)dx∗

= λ(x)fX∗(x) +


g(x|x∗)[1 − λ(x∗)]fX∗(x∗)dx∗,

which is a Fredholm equation of the second kind. We may also
describe it as an operator equation,
fX = LX |X∗ fX∗

= [Dλ + Lg(I − Dλ)]fX∗ , (4)
where I is an identity operator defined on Lp, Dλ : Lp(R) → Lp(R)
is the multiplication operator defined as
(Dλh)(z) = λ(z)h(z), 0 < λ(z) ≤ 1, (5)
and the operator Lg : Lp(R) → Lp(R) is defined as

(Lgh)(x) =


g(x|x∗)h(x∗)dx∗. (6)

Since λ(z) ≥ c > 0, the operator Eq. (4) can be written as

D−1
λ fX = [I + D−1

λ Lg(I − Dλ)]fX∗ , (7)
where the only unknown is still fX∗ . Moreover, Eq. (7) belongs to
Fredholm equations of the second kind. Since it is known that
Fredholm equations of the second kind are well-posed under
certain conditions, our goal here is to apply the existing results to
show thewell-posedness of problem (2) under Condition 2. For this
purpose, we need to assume the compactness of the operator Lg .

Condition 3. Operator Lg : Lp(R) → Lp(R) defined in Eq. (6) is
compact.

The compactness of operator Lg may correspond to different
properties of the density g(·|·) in Lp space for different p. For
example, in L2 space, an integral operator is a Hilbert–Schmidt
operator and consequently is compact if the kernel of the operator
is square integrable (see e.g. Pedersen (1999), pp. 92–94.).11
Therefore if we assume ∥g(·|·)∥2 < ∞, then the operator Lg is
compact, i.e., in L2(R) space a sufficient condition for compactness
of the operator Lg is that the error density g(·|·) is square
integrable.

Now we are ready to present the main result on the well-
posedness of problem (2).

Theorem 1. Under Conditions 1–3 the problem (2) is well-posed.
Proof. See Appendix. �

This theorem suggests that the observed property ofmisreport-
ing errors has a strong implication for modeling measurement er-
ror problems with survey data. Without Condition 2, the problem
(2) is ill-posed, which implies that the estimation of the latent
model fX∗ is quite technically challenging. However, Condition 2,
which is directly supported by empirical evidences, dramatically
reverses the pessimistic perspective on this inverse problem. The-
orem 1implies that the estimator of fX∗ based on Eq. (2) with self-

10 The misreporting error density g(x|x∗) is corresponding to both unintentional
and intentional misreporting in Fig. 3, and the two sources are indistinguishable
without further information.
11 Let k be a function of two variables (s, t) ∈ I × I = I2 , where I is a finite
or infinite real interval. Then a linear integral operator K on L2(I) is called
a Hilbert–Schmidt operator if the kernel k is in L2(I × I), i.e., ∥k∥2 =
I


I |k(s, t)|

2dsdt < ∞.
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reported data should perform well in general if the misreporting
errors have a nonzero probability of being equal to zero. The virtue
of honesty literally makes the inverse problem (2) well-posed.

Furthermore, the optimistic result in Theorem 1 may also have
implications on certain instrumental variable models (e.g., see
Newey and Powell (2003)). We may consider the latent variable
X∗ as the endogenous variable and X as its exogenous instruments.
Then the results in Theorem 1 imply that an instrumental variable
model may also be well-posed when Pr(X∗

= X |X∗) > 0, i.e. the
variable X∗ is exogenous with a nonzero probability.12

3.3. Rates of convergence

In economic applications, the main difficulty caused by ill-
posedness is the slow rate of convergence for the nonparametric
estimatorfX∗ . Hence, we only focus on the connection between
ill/well-posedness and the rates of convergence.13 Specifically, we
discuss the rates of convergence forfX∗ in both well-posed and
ill-posed problems. By comparing the rates in two scenarios, we
try to emphasize the importance of well-posedness in economic
applications whenever we need to nonparametrically estimate the
unknown density fX∗ .

We first analyze the rate of convergence for a well-posed
problem as in Eq. (7). For the convenience of our analysis, we
rewrite the problem as
(I − K)fX∗ = ω, (8)
where K ≡ D−1

λ Lg(Dλ − I), ω ≡ D−1
λ fX . LetKn andωn respectively

denote the estimates of K and ω, where n is the sample size. For
such a problem, Carrasco et al. (2007) give the rate of convergence
in estimating fX∗ , we restate the result in the following proposition.

Proposition 1 (Carrasco et al., 2007, p. 5729). For a well-posed
problem Eq. (8), if we have ∥Kn − K∥ = o(1) and ∥(ωn +KnfX∗) −

(ω + KfX∗)∥ = O( 1
an

), then ∥fX∗ − fX∗∥ = O( 1
an

), where an → ∞ as
n → ∞.

The results above are under L2-norm. For a linear operator K ,
the norm ∥K∥ is defined as sup∥φ∥=1 ∥Kφ∥, where φ is any vector
in a normed vector space.

Thus far, we assumed that both the probability λ(x∗), and the
error density fX |X∗ are known. If this is the case, the proposition
above shows that the convergence rate for the estimatorfX∗ is the
same as that for the estimatorfX (x), which has a rate of kernel
density estimation with uncontaminated observations. More
generally, if we estimate linear functionals of fX∗ , e.g., moments
of X∗, a parametric rate may be obtained under suitable regularity
conditions, as in Shen (1997).

In many economic applications, the error density fX |X∗ and the
probability λ(x∗) may be unknown and need to be estimated. The
impacts of estimating fX |X∗ and λ(x∗) on the statistical properties
offX∗ can be analyzed using Proposition 1: when the rates offX |X∗

andλ(x∗) are not slower than that offX , then estimating fX |X∗ and
λ(x∗) has no impact on the rate offX∗ ; otherwise, the rate offX∗ is
determined by the slower rate offX |X∗ andλ(x∗). The impacts of es-
timating error density fX |X∗ on the rate offX∗ are also addressed by
a few existing papers in different settings of the inverse problem.
For classicalmeasurement error, Li andVuong (1998) consider how
estimating unknown error density fX |X∗ affects the nonparametric
estimation offX∗ in the case where repeated measurements of X
are observed. Allowing arbitrary correlation between themeasure-

12 We thank Richard Spady for pointing this out.
13 Given that Condition 2 is satisfied, the asymptotic properties offX∗ does not
change with the probability λ(x∗). For finite samples, as we show in Monte Carlo
evidence, a larger or smaller probability λ(x∗) does affect the property of the
estimatorfX∗ .
ment error and the true data, Chen et al. (2005) analyze parametric
estimation offX∗ using auxiliary data of X∗ and X when the error
density is unknown. However, it is beyond the scope of this paper
to analyze how estimation of the error density fX |X∗ affects asymp-
totic properties of the nonparametric estimatorfX∗ in generalwhen
measurement error has a mass point at zero.

Without Condition 2, the ill-posedness of the problem Eq. (2)
leads to a notoriously slow rate of convergence for the estimatorfX∗ .14 However, there does not exist a general rate of fX∗ for
an ill-posed problem since ill-posed problems can be further
classified as mildly ill-posed and severely ill-posed ones according
to the properties of the operator LX |X∗ , and the rates in two
cases can be very different (e.g., see Chen and Reiss (2011) for
details). Nevertheless, the slow rate for ill-posed problems can be
well illustrated by the case of deconvolution: for example, if the
error distribution fX |X∗ is such that its Fourier transform decays
exponentially, then the rate for the estimatorfX∗ is of logarithmic
order.15

4. A further discussion on the classical error case

In this section,we further explore the implications of Theorem1
in a special case: the measurement error is classical, i.e., the mea-
surement error ϵ is independent of the true value X∗.

For classical measurement errors, the error density fX |X∗(x|x∗)
is reduced to fϵ(x − x∗). Furthermore, it is known that the
independence of X∗ and ϵ implies that the characteristic functions
of fX , fX∗ , and fϵ (denoted by φX (·), φX∗(·), and φϵ(·), respectively)
have the following relationship:

φX (t) = φX∗(t)φϵ(t).

Condition 1 guarantees that φϵ(t) ≠ 0 for any real t . Therefore, the
density fX∗ can be recovered from deconvolution, i.e.,

fX∗ =
1
2π


e−itxφX∗(t)dt =

1
2π


e−itx φX (t)

φϵ(t)
dt.

In empirical applications, the density fX (x) needs to be estimated
from the observed data {Xi}i=1,...,n. A popular estimator for fX is as
follows:

f̂X =
1
2π


e−itxφ̂X (t)dt (9)

φ̂X (t) = φ̂n(t)φK


t
Tn


,

where φ̂n(t) is an empirical characteristic function defined by
φ̂n(t) =

n
i=1 e

itXi/n, and φK ( t
Tn

) is the Fourier transform of the
kernel function K(·)with bandwidth 1

Tn
. The smoothing parameter

Tn depends on the sample size n. In other words, a different Tn
implies a different estimatorfX for fX . We may pick a kernel K(·)

such that φK (t) = 0 for |t| > 1. To assure φ̂X (t) uniformly
converge to φX (t) over [−Tn, Tn] at a geometric rate with respect
to the sample size n, Hu and Ridder (2010) suggest that we need

Tn = O


n
log n

γ

for γ ∈


0,

1
2


. (10)

14 If suitable regularization schemes are employed to approximate the solution of
an ill-posed problem, the rate of convergence may be fast under some additional
assumptions, please see Carrasco et al. (2007) for detailed discussions. We only
focus on the comparison of ill-posed problems and well-posed ones, hence we do
not discuss the regularization schemes and the assumptions that lead to fast rates
in this paper.
15 We will further discuss the rates of convergence in both ill-posed and well-
posed problems for deconvolution estimators in the next section.



264 Y. An, Y. Hu / Journal of Econometrics 168 (2012) 259–269
Consequently the deconvolution estimator of fX∗ , f̂X∗(x∗) is

fX∗(x∗) =
1
2π


e−itx∗ φ̂X (t)

φϵ(t)
dt

=
1
2π

 Tn

−Tn
e−itx∗

φn(t)φK (t/Tn)
φϵ(t)

dt.

It is known in the literature that the general deconvolution
problem described above is ill-posed, and the rate of convergence
for the estimatorfX∗ is very slow (e.g., see Fan (1991) for a general
analysis of the deconvolution problem). In the remaining parts of
this section, we first show that the general deconvolution problem
above is well-posed under some mild conditions corresponding
to Condition 2. Next, we present the rate of convergence for the
deconvolution estimatorfX∗ when the problem is well-posed. Our
analysis in this sectionwill be conducted on both L2 and L∞ spaces.

4.1. Well-posedness for classical measurement errors

In this subsection, we assume that λ(x∗) = λ is a constant for
simplicity.16 Our discussion can be extended to the general case
straightforwardly. Accordingly, the error distribution is

fX |X∗(x|x∗) = fϵ(x − x∗)

= λ × δ(x − x∗) + (1 − λ) × gϵ(x − x∗).

Let φϵ(t) and φϵ(t) denote the characteristic functions of fϵ and gϵ ,
respectively. The equation above then implies that

φϵ(t) = λ + (1 − λ)φϵ(t).
The ch.f. φϵ(t) is in fact bounded away from zero by a constant.
Define the space of all the bounded functions with a bounded
Fourier transform as

L∞

bc =


f ∈ L∞(R) : sup

t∈R
|φf (t)| < ∞


.

We have the following results.

Proposition 2. (i) Suppose Conditions 1 and 2 hold and the error
distribution gϵ satisfies

|φϵ(t)|dt < ∞.

Then problem (2) is well-posed with LX |X∗ : L∞

bc → L∞

bc .
(ii) Suppose Conditions 1 and 2 hold and the error distribution gϵ

satisfies
R


R

|gϵ(x − x∗)|2dxdx∗ < ∞. (11)

Then problem (2) is well-posed with LX |X∗ : L2(R) → L2(R).

Proof. See Appendix. �

This proposition is just a specific case of Theorem 1. Instead of
imposing the compactness of the operator LX |X∗ as in Theorem 1,
here we just make some less abstract assumptions on the error
distribution gϵ̃ (or its Fourier transform) to assure the well-
posedness. Even though the results in this proposition are not as
general as Theorem 1, they might be very useful in applications
since wewill show that the results permit us to obtain a consistent
estimator of fX∗ with a desirable convergence rate from the sample
{Xi} for a very general error distribution.

16 This assumption can be rationalized by the results in Bollinger (1998) that the
probability of reporting truthfully does not vary much with the true income in
CPS/SSR data. However, this assumptionmaynot be directly testable in some survey
samples where validation samples are not available.
4.2. Rates of convergence for deconvolution estimators

The deconvolution estimator has been studied thoroughly in
the literature and the convergence rates of fX∗ are established
under various circumstances. In this section,we try to associate the
existing resultswith the deconvolution problem.We illustrate how
ill-posedness and well-posedness can be translated to different
rates of convergence for fX∗ when the measurement error is
classical.

Hesse (1995) demonstrates that the best rates of convergence
forfX∗ are (log n/n)2/5 and n−4/5 under L∞-norm and L2-norm, re-
spectively, if the observations are ‘‘partially contaminated’’.17 For
self-reported data, the existence of partially contaminated obser-
vations is equivalent to the fact that the truth-telling probability
λ(x∗) > 0. Hence the rates for a well-posed problem with classi-
cal measurement errors are the same as that in Hesse (1995). To
restate the result, we first specify the conditions.18

A1. fX∗ , f
′

X∗ , and f
′′

X∗ are uniformly absolutely bounded.
A2. For any x > 0, there exists some ρ > 0 such that P(|Xi| >

x) ≤ x−ρ .
A3. The kernel function K(·) satisfies


K(u)du = 1,


uK(u)du =

0, and

u2K(u)du < ∞.

A4. The characteristic functions φK (t) and φX∗(t) are twice con-
tinuously differentiable; φK (t) = 0 for |t| > 1, and inft |φϵ(t)|
≥ λ.

A5. fX∗ has square integrable continuous second derivative.
A6. |φϵ(t)| → 0 as |t| → +∞.

It is easy to check that the assumptions above all hold for
our setting of the inverse problem. Specifically, the relationship
φϵ(t) = λ + (1− λ)φϵ(t) guarantees that inft |φϵ(t)| ≥ λ holds in
A4. With these assumptions, we state the convergence rate offX∗

in the following proposition.

Proposition 3 (Hesse 1995).
(i) Under conditions A1–A4 and the choice of optimal bandwidth

1
Tn

= c( log n
n )1/5, we have

lim
n→∞

sup


n
log n

2/5

sup
x∗∈R

|fX∗ − fX∗ | < ∞, a.s.

where c is a positive constant, and fX∗ is the deconvolution
estimator of fX∗ with sample size n.

(ii) Let conditions A1, A3, A4, A5, and A6 hold, then we have

MISE(hopt) = O(n−4/5),

where

MISE(h) ≡ E


R
(fX∗(u) − fX∗(u))2du


,

and hopt is the optimal choice for the bandwidth h,

hopt = n−1/5


R
u2K(u)du

−2/5 
R
(K(u)/λ)2du

1/5

×


R
(f

′′

X∗(u))2du
−1/5

.

According to Proposition 3, both the rate (log n/n)2/5 and n−4/5 are
general and achievable for any distribution of measurement error.
Hence the result permits us to demonstrate how well-posedness

17 (Hesse, 1995) defines partially contaminated data as Pr(X = X∗) = p, Pr(X =

X∗
+ ϵ) = 1 − p and 0 < p < 1.

18 Please see Hesse (1995) for explanations of these conditions.
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can be translated into faster rates of convergence than that of ill-
posed problems in general cases. We take the rate in L∞-norm as
an illustrating example. It is known that the general deconvolution
problem is ill-posed when measurement error is super-smooth,19
and the rates of convergence are of logarithmic order for both
pointwise convergence (Carroll and Hall 1988) and inmean square
error (Fan 1991). Explicitly, when the distribution of measurement
error is standard normal, Carroll and Hall (1988) show that the
rate is (log n)−k/2, where the unknown function fX∗ has up to k-th
boundedderivatives. Apparently, the rate for awell-posedproblem
ismuch faster than that for an ill-posed one.When the distribution
ofmeasurement error is ordinary smooth, the rate (log n/n)2/5 may
be slower than the rate for a classical deconvolution estimator
(i.e., λ = 0). For instance, according to Carroll and Hall (1988),
when the distribution of measurement error is gamma with shape
parameter α, and k is defined as above, then the fastest achievable
rate for a deconvolution estimator is n−k/(2k+2α+1). When α >
(3k − 1)/2, this fastest rate is slower than (log n/n)2/5; when
k > 2 and α < (k − 2)/4, the fastest rate is faster than the rate
(log n/n)2/5.20

The analysis above illustrates that the positive truth-telling
probability in self-reported data plays a crucial role in deconvolv-
ing a density. The reason is that the positive probability leads to the
well-posedness of the deconvolution problem and consequently
results in faster rates of convergence for all super-smooth and
some ordinary smooth error distributions.

5. Simulation studies: deconvolution with normal error

In this section, we conduct a simulation study to investigate
the performance of various deconvolution estimators when the
distribution of errors has a mass point at zero.

We consider

X = X∗
+ ϵ,

where X∗ is distributed according to a truncated standard normal
on the interval [−1, 1]. In this study, we estimate the density of X∗

froma sample ofX , and the knowndensity of errors fϵ(·). Following
our discussions in previous sections, the density fϵ(x − x∗) is
assumed to be

λδ(x − x∗) + (1 − λ)g(x − x∗),

where λ ≠ 0, and g(x − x∗) is distributed according to a standard
normal. We focus on the deconvolution density estimator

f̂X∗(x∗) =
1
2π


e−itx∗ φ̂X (t)

φϵ(t)
dt,

where φ̂X (t) = φ̂n(t)φK ( t
Tn

) and φ̂n(t) =
1
n

n
i=1 e

itXi . The kernel
K is taken as the normalized sinc function:

sinc(x) =
sin(πx)

πx
,

19 According to Fan (1991), the distribution of the error ϵ is supersmooth of order
β if φϵ(t) satisfies

c0|t|−d exp(−|t|β/ρ) ≤ |φϵ(t)| ≤ c1|t|−d1 exp(−|t|β/ρ), as |t| → ∞,

for some positive constants c0, c1, β, ρ and some constants d, d1 . The distributions
of normal and Cauchy are examples of this category of distributions. Similarly, the
distribution of ϵ is ordinary smooth if φϵ(t) satisfies

c0|t|−d
≤ |φϵ(t)| ≤ c1|t|−d, as |t| → ∞,

for some positive constants c0, c1, d. The ordinary smooth distributions include
gamma, double exponential and symmetric gamma, etc.
20 Toderive the conditionα > (3k−1)/2,we consider that log n <

√
n asn → ∞.

Hence if α > (3k − 1)/2, then (n/ log n)2/5 > (
√
n)2/5 > nk/(2k+2α+1) as n → ∞.

Analogously, (n/ log n) < n as n → ∞. Consequently, if α < (k − 2)/4 and k > 2,
then (n/ log n)2/5 < n2/5 < nk/(2k+2α+1) as n → ∞.
and its ch.f. φK (t) is the rectangular function

φK (t) =


0 if |t| >

1
2

1
2

if |t| =
1
2

1 if |t| <
1
2
.

(12)

Wepresent simulation results for sample sizen = 1000 in Figs. 4–6
where Tn = 2.0, Tn = 2.2 and Tn = 2.3, respectively. In each figure,
we pick three different values of λ: 2%, 5% and 10%. In all graphs,
‘‘estimated density’’ is the deconvolution estimator f̂X∗ given we
model the error distribution correctly, while ‘‘naïve estimate’’ is
the counterpart given we model the error distribution mistakenly,
i.e, λ = 0. We also include in each plot the 5% and 95% pointwise
confidence intervals calculated using bootstrap resampling (200
times) for both ‘‘estimated density’’ and ‘‘naïve estimate’’.

The graphs show that the ‘‘estimated density’’ tracks the true
density fX∗ much closer than the ‘‘naive estimate’’ does for all
the values of λ. We also observe from the graphs that for a fixed
Tn, the performance of naïve estimator is getting worse when λ
increases, which is natural since the larger λ is, the less accurate
of the approximation by λ = 0 to the true value of λ. For a given
λ, the naive estimator is more sensitive to Tn than our consistent
estimator because deconvolution with a normal is an ill-posed
problem.

6. Empirical illustration

In this section, we illustrate our method empirically by using
the data-set we analyzed in Section 3. Besides in Chen et al. (2008)
and Bollinger (1998), the data-set has also been used in Bound
and Krueger (1991) to study the extent of measurement error
in earnings, and in Chen et al. (2005) to study the problem of
parameter inference in econometric models when the data are
measuredwith error. A full description of the data-set can be found
in Bound and Krueger (1991).

For this data-set, Chen et al. (2008) argued that the error
densities are different for different income levels and low income
individuals tend to overreport their earnings. In order to reduce
bias of estimation, we divide the data into four sub-samples based
on SSR: sub-sample 1, 2, 3, 4 contain observations with SSR
below the first quartile, between the first and the second quartile,
between the second and the third quartile, and above the third
quartile, respectively. We also drop those observations with SSR
being the topcoded values $16,500 to reduce bias may caused by
the topcoding.21 Following the literature we introduced above, we
assume that the error ϵ, which is defined as ϵ = log X − log X∗ is
distributed according to the density22

fϵ(ϵ) = λδ(ϵ) + (1 − λ)
1

√
2πσ

e−
(ϵ−µ)2

2σ2 . (13)

To conduct our analysis, we employ a two-step estimation
procedure. First, we estimate parameters λ, µ, and σ for each sub-
sample: λ is estimated as the relative frequency of ϵ = 0; while µ
and σ are estimated bymaximum likelihood estimationwith those
observation ϵ = 0 dropped from the sample. The estimated results
are presented in Table 1.23

21 See Chen et al. (2008) for detailed description of the topcoding.
22 Variable X denotes self-reported earnings, and X∗ denotes SSR earnings, which
we treat as ‘‘true’’ earnings. We drop those 85 observations with X = 0 (3 of them
with X∗

= 16,500, too).
23 Standard errors of estimatedparameters are computed bybootstrap resampling
(200 times).
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Fig. 4. Simulation results: Tn = 2.0.
Fig. 5. Simulation results: Tn = 2.2.
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Fig. 6. Simulation results: Tn = 2.3.
With the estimated parameters, we employ the method of
deconvolution to estimate the density of SSR, fX∗ in the second step.
Our estimated results are presented in Fig. 7. In each of the four
subplots, we present the ‘‘true’’ density of SSR (kernel estimate
of the density), ‘‘naïve density’’, the ‘‘estimated density’’, and the
5%–95% pointwise confidence intervals of the last two, where our
estimated density uses the estimates of the parameters in the error
distribution presented in the third column of Table 1, while the
naive density estimator uses the estimates in the fourth column
of the table. The kernel function we used in the estimation is the
same as the one in the section of simulation. Because of the sample
differences, we utilize different Tn for four sub-samples: Tn =

1.9, 3.4, 5.1 and 6.6 for sub-sample 1, 2, 3, and 4, respectively.
In accordance with the distinct values of Tn, the bandwidths were
taken to be 0.4, 0.36, 0.48, and 0.18 for the estimation in four sub-
samples (in the order of 1, 2, 3, 4).

The results show that our estimates track the true kernel
densities very close and outperform the naïve estimates for all four
sub-samples. Although neither the 5%–95% confidence intervals of
our estimated densities nor that of the naive densities are able to
contain the entire true densities, our estimates have much smaller
bias than the naïve ones. The estimated results imply that failing
to account for the property we discussed in Section 3.1 can lead to
significant bias of f̂X∗ .

7. Conclusions

In this paper, we consider the widely admitted ill-posed
inverse problem for measurement error models. We show that
measurement error models for self-reporting data are well-posed
under the assumption that the probability of reporting truthfully
is nonzero, which is supported by empirical evidences. This
Table 1
Estimation results of parameters.

Data Parameters Estimates with λ ≠ 0
for our density
estimator

Estimates with
λ = 0
for naïve estimator

Sub-sample 1
µ 0.4733 (0.0148) 0.4315(0.0131)
σ 1.2467 (0.0186) 1.1979 (0.0160)
λ 0.0883 (0.0033) –

Sub-sample 2
µ 0.0229 (0.0069) 0.0248(0.0061)
σ 0.5734 (0.0145) 0.5326 (0.0100)
λ 0.0965 (0.0033) –

Sub-sample 3
µ −0.0136 (0.0041) −0.0113(0.0035)
σ 0.3334 (0.0091) 0.3124(0.0074)
λ 0.0958 (0.0031) –

Sub-sample 4
µ −0.0361 (0.0036) −0.0313(0.0028)
σ 0.2758 (0.0069) 0.2582 (0.0068)
λ 0.0940 (0.0033) –

optimistic result suggests that researchers should not ignore the
point mass at zero in the measurement error distribution when
they model measurement errors in self-reported data. In fact, this
discontinuity in the error distribution implies that in general we
may achieve much faster rate of convergence for an estimator of
the latent distribution than people thought before in the literature.
To illustrate the implications of our main results, we analyze the
well-known classical measurement errors case and provide the
conditions under which the deconvolution problem is well-posed.
When the deconvolution problem is well-posed, we also present
the convergence rate of the deconvolution estimator for the latent
distribution. Thewell-posedness of ourmeasurement errormodels
also implies that of certain instrumental variable models. We will
explore this possibility in our future research.
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Fig. 7. Estimation results: densities.
Appendix

Proof of Theorem 1. The result is an application of Theorem 3.4
in Kress (1999). The theorem states that if C : Φ → Φ is a compact
operator defined on a normed spaceΦ , and (I−C) is injective, then
the inverse operator (I − C)−1

: Φ → Φ exists and is bounded,
i.e., the problem (I − C)φ = f , for all f ∈ Φ is well-posed.

To prove our theorem using this result, we work on Eq. (7).24

First we show that fX ∈ L2 implies D−1
λ fX ∈ L2. According to the

definition of D−1
λ , we have

(D−1
λ fX )(x) =

fX (x)
λ(x)

.

Recall thatλ(x) is bounded below, then 1/λ(x)has an upper bound,
denoted byMλ. Therefore we have

∥D−1
λ fX∥2 =


+∞

−∞

 fX (x)λ(x)

2 dx
 1

2

≤ Mλ


+∞

−∞

|fX (x)|2dx
 1

2

= Mλ∥fX (x)∥2

< ∞,

where in the last step we use the fact that fX ∈ L2. The inequality
implies that D−1

λ fX ∈ L2, and the operator D−1
λ is bounded.

24 Without loss of generality, we prove the theorem in L2 space. The proof can be
easily extended to Lp space for 1 ≤ p ≤ ∞.
Similarly, it is readily to prove ∥(I − Dλ)fX∗∥2 ≤ M1−λ∥fX∗∥2,
where M1−λ is the upper bound of 1 − λ(x). Consequently,
(I − Dλ)fX∗ ∈ L2.

Next, we prove the operator D−1
λ Lg(I − Dλ) is compact on L2

under Condition 3. The proof is a direct application of Theorem2.16
in Kress (1999). This theorem states that if two operators A : X →

Y and B : Y → Z are both bounded and linear, and one of the
operators is compact, then BA : X → Z is compact. Let X = Y =

Z = L2, A = I − Dλ, and B = Lg , then Lg is compact by assumption
and hence bounded. Moreover, we conclude that (I − Dλ) is also
bounded from the result ∥(I − Dλ)fX∗∥2 ≤ M1−λ∥fX∗∥2. Therefore,
Theorem 2.16 applies and we know that Lg(I − Dλ) is compact. If
we apply the theorem again by letting A = Lg(I−Dλ) and B = D−1

λ ,
we can show that D−1

λ Lg(I − Dλ) is compact.
To complete the proof, it remains to show that I+D−1

λ Lg(I−Dλ)

is injective. By Condition 1, LX |X∗ = Dλ(I + D−1
λ Lg(I − Dλ)) is

injective. Therefore, for any two distinct functions f1, f2 ∈ L2, we
have LX |X∗ f1 ≠ LX |X∗ f2. Because of the boundedness of the operator
D−1

λ , we can derive that D−1
λ LX |X∗ f1 ≠ D−1

λ LX |X∗ f2, or equivalently
(I + D−1

λ Lg(I − Dλ))f1 ≠ (I + D−1
λ Lg(I − Dλ))f2. The result means

I + D−1
λ Lg(I − Dλ) is injective.

Now, let the operator C in Kress’s Theorem 3.4 be −D−1
λ Lg(I −

Dλ). Then all our arguments before in this proof hold, hence
we demonstrated that C is compact and I − C is injective. This
completes our proof. �

Proof of Proposition 2. First, we specify the operator LX |X∗ and
L−1
X |X∗ in the deconvolution case

(LX |X∗ fX∗)(x) =


fϵ(x − x∗)fX∗(x∗)dx∗,
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and

(L−1
X |X∗ fX )(x∗) =

1
2π


e−itx∗ φX (t)

φϵ(t)
dt

=

 
1
2π


eit(x−x∗)

φϵ(t)
dt


fX (x)dx.

By Condition 1, the operator LX |X∗ : L∞

bc → L∞

bc is injective. Thus, in
order to prove the bijectivity of the operator, it is sufficient to show
LX |X∗ is also surjective, i.e., L−1

X |X∗ fX ∈ L∞

bc for any fX ∈ L∞

bc . Recall that

(L−1
X |X∗ fX )(x∗) =

1
2π


e−itx∗ φX (t)

φϵ(t)
dt.

Then the Fourier transform, i.e., the ch.f. of L−1
X |X∗ fX is φX (t)

φϵ (t) . Notice
that the injectivity in Condition 1 implies that the ch.f. φϵ(t) is
bounded away from zero. Therefore, φX (t)/φϵ(t) is bounded if
φX (t) is bounded for all t . Furthermore, φϵ(t) = λ + (1 − λ)φϵ(t).
Therefore we have

∥(L−1
X |X∗ fX )∥∞ = sup

x∗

 1
2π


e−itx∗ φX (t)

φϵ(t)
dt


≤ sup
x∗

1
λ

 1
2π


e−itx∗φX (t)dt


+ sup

x∗

 1
2π


e−itx∗


φX (t)

λ + (1 − λ)φϵ(t) −
φX (t)

λ


dt


≤ O(∥fX∥∞) + O

 φX (t)


1−λ
λ

φϵ(t)
λ + (1 − λ)φϵ(t)

 dt


= O(∥fX∥∞) + O


|φX (t)| |φϵ(t)|dt


.

Since |φX (t)| is always bounded in L∞

bc , we have

∥(L−1
X |X∗ fX )∥∞ = O(∥fX∥∞) + O


|φϵ(t)|dt


.

The condition


|φϵ(t)|d t < ∞ implies that L−1
X |X∗ fX ∈ L∞

bc if
fX ∈ L∞, i.e., L−1

X |X∗ : L∞

bc → L∞

bc is surjective, hence bijective since
the injectivity holds by Condition 1.

Because for any fX ∈ L∞

bc , both ∥L−1
X |X∗ fX∥∞ and ∥fX∥∞ are fi-

nite, there must exist a constant M > 0 such that ∥L−1
X |X∗ fX∥∞ <

M∥fX∥∞, i.e., L−1
X |X∗ : L∞

bc → L∞

bc is bounded and therefore continu-
ous on L∞

bc . This completes the proof of the first part.
In the second part of the proposition, Eq. (11) implies that the

operator Lg with the kernel gϵ(x − x∗) is a Hilbert–Schmidt opera-
tor, and it is compact. A direct application of Theorem 1 completes
the proof of this part. �
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