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Summary: This paper develops a closed-form non-parametric estimator of the conditional dis- 
tribution function for a binary outcome variable given an unobserved latent variable. This type 
of function is commonly used in models that involve measurement error and dynamic models 
with agent-specific unobserved heterogeneity. This paper presents a consistent extremum sieve 
estimator with the following advantages: (i) it has a closed-form expression for all the sieve 
coefficients, (ii) it is computationally straightforward, equi v alent to computing eigenvalues and 
eigenvectors of matrices without the use of iterative optimization algorithms. While as flexible 
as the sieve maximum likelihood estimator previously proposed for this model, our estimator 
pro v es computationally simpler. The finite sample properties of the estimator are investigated 
through a Monte Carlo study, and the developed estimator is applied to a probit model to assess 
the targeting performance of a social welfare program. 
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1. INTRODUCTION 

 sample includes three observed variables ( y , x , z) that are associated with the latent scalar
ariable x ∗. The variable y is binary, and the probability mass/density function f xyz ( x, y, z) of
 y , x , z) satisfies 

f xyz ( x , y , z) = 

∫ 
f x | x ∗( x | x ∗) f y | x ∗( y | x ∗) f z| x ∗( z| x ∗) f x ∗( x ∗) dx ∗. (1.1)

u and Schennach ( 2008 )—henceforth HS ( 2008 )—moti v ated model ( 1.1 ) and provided suffi-

ient conditions for the identification of 
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α0 = ( f x | x ∗( x | x ∗) , f z| x ∗( z| x ∗) , f x ∗( x ∗)) , 

after normalizing f y | x ∗( y | x ∗) to be kno wn. HS ( 2008 ) also proposed a sie ve maximum likelihood
estimator (MLE) for α0 . The primary contribution of this paper is to propose a no v el closed-form
non-parametric estimator for α0 , which exhibits the following advantages: (i) it is as flexible as
the semi-parametric sieve MLE proposed in HS ( 2008 ), (ii) it provides a closed-form expression
for all the sieve coefficients, and (iii) it can be computed using eigenvalues and eigenvectors of
matrices without iterative optimization algorithms. The sieve MLE can be considered a benchmark
estimator, but its computation can be challenging. Nonetheless, our estimator is as flexible as
the sieve MLE, which makes it a valuable tool for empirical applications where computational
efficiency is a priority. As a trade-off, our closed-form estimator provides a computationally
conv enient alternativ e at the cost of some loss in accurac y. 

The observables ( y , x , z ) may include proxies of the latent variable x ∗ or dependent variables
in some user-specific models with x ∗ being an explanatory variable. We provide a closed-form
non-parametric estimator for the distribution of an observable conditional on the latent variable.
Such a conditional distribution may be the model of the dependent variable itself or the conditional
distribution associating a proxy with the latent variable. 

HS ( 2008 ) demonstrated the non-parametric identification of all the distributions associated
with the latent variable in measurement error models. Hence, we assume all identification assump-
tions in HS ( 2008 ) in this paper. Based on their identification results, we propose an alternative
consistent extreme-v alue sie ve estimator for their non-parametric framework, in addition to the
siev e MLE pro vided in that paper. By utilizing linear sieve parameters, as proposed in HS ( 2008 )
for regularization, the problem of continuous data with finite sample sizes can be reduced to
analogous matrices of discrete data. Thus, the proposed extremum sieve estimator can be consid-
ered as a particular case of the estimator in HS ( 2008 ), where continuous data can be discretized,
and we apply the matrix manipulation estimator on the discretized data, with the fineness of the
discretizing grid increasing with the sample size. 

Our estimator is useful for many interesting empirical applications. In a dynamic panel data
model, the observables y , x , z are the dependent variables in three different periods and the latent
variable x ∗ may be the random effect; e.g., Shiu and Hu ( 2013 ) considered the identification
and estimation of non-linear dynamic panel data models in this framework. In auction models,
the observables are the bids from different bidders, and the latent variable is the unobserved
heterogeneity. See, e.g., Krasnokutskaya ( 2011 ) and Hu et al. ( 2013 ) for detailed discussion.
Such a framework may also be considered a continuous mixture model, where the latent variable
may be the continuous type in the mixture model. One may also apply our estimator to the
estimation of the production function using panel data, where the observables are outputs in
different periods, and the latent variable is the productivity. 

The latent variable model in ( 1.1 ) is relevant to the non-classical measurement error problem
where the latent variable might be correlated with an observed variable. There is a vast literature
studying measurement errors in non-linear models, including Hausman et al. ( 1991 ), Lewbel
( 2000 ), Bound et al. ( 2001 ), Newey ( 2001 ), Li ( 2002 ), Carroll et al. ( 2004 ), Schennach ( 2004 ;
2007 ), Mahajan ( 2006 ), Lewbel ( 2007 ), HS ( 2008 ), Chen et al. ( 2011 ), Hu and Ridder ( 2012 ),
and Hu and Sasaki ( 2015 ). 

We organize the paper as follows. Section 2 describes the proposed eigen-decomposition
estimator and its consistency. Section 3 provides an empirical illustration. Section 4 briefly
concludes the paper. All technical proofs are included in the Appendix of the main text and
Online Appendix . The Monte Carlo study is provided in the Online Appendix . 
© The Author(s) 2024. 
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2. AN EIGEN-DECOMPOSITION ESTIMATOR: A SIMPLE CLOSED-FORM 

APPR OA CH 

he model considers a dichotomous 0–1 variable, 1 denoted y, and such models have been studied
reviously by HS ( 2008 ), who provided the identification result and proposed a sieve MLE
stimator. In this paper, we assume that all identification assumptions hold and sho w ho w to
onstruct a consistent non-iterative estimator. 

SSUMPTION 2.1 (NORMALIZATION). Assume that the latent variable x ∗ is normalized to
atisfy 

x ∗ ≡ Pr ( y = 1 | x ∗) . 

Assumption 2.1 implies that the conditional probability mass function f y | x ∗( y | x ∗) =
 x ∗) 1 ( y= 1) ( 1 − x ∗) 1 ( y= 0) is known. The normalization condition that Pr ( y = 1 | x ∗) is monotonic
n x ∗ can be found in several empirical applications. For example, let us consider estimating the
mpact of family earnings on college attendance, where people with higher family earnings are

ore likely to attend college. Ho we ver, family earnings are susceptible to measurement error
roblems due to confidential information or pri v acy issues. The instrumental variable z can be
he predicted earnings in the regression of reported income on demographic variables, such as
arents’ education, parents’ occupations, race, age, and region. It is reasonable to assume that
ariables x and z do not affect y once the true family earnings x ∗ are known. 

Another example is the estimation of the effect of health on labour force participation. The
onotonicity condition holds in this case because healthier people are more likely to join the
orkforce. When a self-reported health status represents the health status, the variable is not an
bjective indicator of health, which leads to a measurement error problem. We may use smoking
s an instrumental variable for the health measure, in which case x and z do not provide any more
nformation about the dependent variable y than x already provides. 

Based on the identification results in HS ( 2008 ), our model implies the following two equa-
ions that link probability mass/density functions observed in (or estimable from) the data to
atent probability density functions, which are the objects of interest: 

f xyz ( x, y = 1 , z) = 

∫ 
f x | x ∗( x | x ∗) x ∗f z| x ∗( z| x ∗) f x ∗( x ∗) dx ∗, (2.1)

f xz ( x, z) = 

∫ 
f x | x ∗( x| x ∗) f z| x ∗( z| x ∗) f x ∗( x ∗) dx ∗. (2.2)

n the preceding equations, we can observe or directly estimate the probability mass/density
unctions of the left-hand sides from the data. The goal is to reco v er estimates of the unknown
ensities on the right-hand sides of these equations, which we denote by α0 = ( f x | x ∗, f z| x ∗, f x ∗) T .
e propose a closed-form, non-iterative procedure for estimating the unknown densities in α0 . 
When the parameter function spaces for densities are large, such as L 

1 or L 

2 , an estimator
ased on the spaces could yield an inconsistent estimator. In this paper, our approximation
nalysis follows smoothness restrictions in Ai and Chen ( 2003 ) and Hu and Schennach ( 2008 )
nd introduces weighted H ̈older spaces. Given a d × 1 vector of non-ne gativ e inte gers, κ =
 κ1 , . . . , κd ) ′ , let [ κ] = κ1 + · · · + κd . Let D 

κ denote the differential operator defined by D 

κ =
 

[ κ] / ( ∂ ξκ1 · · · ∂ ξκd ) . Set γ = m + p, where m denotes the largest integer satisfying γ > m . The
1 d 

1 Under certain additional assumptions, it is possible to transform the binary outcome y into a discrete variable with 
ore than two values. For further details, we refer the reader to the Online Appendix . 
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H ̈older space � 

γ ( ν) of order γ > 0 is a collection of functions that are m times continuously
differentiable on ν and the m th deri v ati ves are H ̈older continuous with exponent p. The H ̈older
space becomes a Banach space with the H ̈older norm, i.e., for all g ∈ � 

γ ( ν) , 

‖ g ‖ � 

γ = sup 

ξ∈ ν
| g ( ξ ) | + max 

κ1 + ···+ κd = m 

sup 

ξ �= ξ ′ ∈ ν

| D 

κg( ξ ) − D 

κg( ξ ′ ) | 
‖ ξ − ξ ′ ‖ p E 

. (2.3) 

The weighted H ̈older norm is defined as ‖ g‖ � 

γ,ω ≡ ‖ ̃  g ‖ � 

γ for ˜ g ( ξ ) ≡ g( ξ ) ω ( ξ ) with ω ( ξ ) =
(1 + ‖ ξ‖ 2 E 

) −ς/ 2 , ς > γ > 0 . The corresponding weighted H ̈older space is � 

γ,ω ( ν) and a weighted
H ̈older ball is defined as � 

γ,ω 
c ( ν) ≡ { g ∈ � 

γ,ω ( ν) : ‖ g‖ � 

γ,ω ≤ c < ∞} . 
Let Y , X , X 

∗, and Z denote the supports of the distributions of the random variables y , x , x ∗,
and z, respectively. In particular, X 

∗ = [0 , 1] . 2 Set some positive constants γi for i = 1 , 2 , 3 . The
three unknown densities f x | x ∗, f z| x ∗, f x ∗ are assumed to be in the spaces 

F 1 = 

{
f 1 ( ·|·) ∈ � 

γ1 ,ω 
c ( X × X 

∗) : f 1 ( ·) ≥ 0 and 

∫ 
f 1 ( x | x ∗) dx = 1 for all x ∗ ∈ X 

∗
}
, 

F 2 = 

{
f 2 ( ·|·) ∈ � 

γ2 ,ω 
c ( Z × X 

∗) : f 2 ( ·) ≥ 0 and 

∫ 
f 2 ( z| x ∗) dz = 1 for all x ∗ ∈ X 

∗
}
, 

F 3 = 

{
f 3 ( ·) ∈ � 

γ3 ,ω 
c ( X 

∗) : f 3 ( ·) ≥ 0 and 

∫ 
f 3 ( x 

∗) dx ∗ = 1 

}
. 

Let α = ( f 1 , f 2 , f 3 ) T ∈ A = F 1 × F 2 × F 3 . We introduce a strong norm ‖ · ‖ s for α that will
be used to show the consistency of the sieve estimator. For α ≡ ( f 1 , f 2 , f 3 ) T , 

‖ α‖ s = 

3 ∑ 

i= 1 

‖ f i ‖ � 

γi ,ω . 

First, we use a truncated serial expansion to approximate all the functions in ( 2.1 ) and ( 2.2 ).
We specify the series used in this paper: an orthonormal Fourier series ψ 0 ( w) = 1 and ψ k ( w) =√ 

2 cos ( kπw) for k ≥ 1 and a polynomial series ϕ i ( w) = w 

i for i ≥ 0 . Let K be associated with
the number of terms in the truncated series, and let A 

K ≡ F 

K 

1 × F 

K 

2 × F 

K 

3 be a sequence of
sieve spaces to approximate the function space A with 

F 

K 

1 = 

⎧ ⎨ ⎩ 

f 

K ( x | x ∗) = 

K ∑ 

k= 0 

K ∑ 

j= 0 

e kj ψ k ( x ) ϕ j ( x 
∗) ∈ F 1 

⎫ ⎬ ⎭ 

, 

F 

K 

2 = 

⎧ ⎨ ⎩ 

f 

K ( z| x ∗) = 

K ∑ 

k= 0 

K ∑ 

j= 0 

h kj ψ k ( z) ψ j ( x 
∗) ∈ F 2 

⎫ ⎬ ⎭ 

, 

F 

K 

3 = 

{ 

f 

K ( x ∗) = 

K+ 1 ∑ 

k= 0 

q k ψ k ( x 
∗) ∈ F 3 

} 

. 

While the orders of the sieve for f ( x | x ∗) and f ( z| x ∗) are the same, the basis functions for each
of them are different. We use a tensor product of linear univariate sieves to approximate f ( x | x ∗)
2 Under Assumption 2.1, the normalization condition Pr ( y = 1 | x ∗) = x ∗ implies that the values of x ∗ must be between 
0 and 1. 

© The Author(s) 2024. 
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nd f ( z| x ∗) . The uni v ariate sie ve for x ∗ in f ( x | x ∗) is a po wer series, while the uni v ariate sie ve
or x ∗ in f ( z| x ∗) is a Fourier series. 

Next, assume that the probability mass/density functions of observables f xyz ( x, y = 1 , z) and
 xz ( x, z) are in the space 

H = 

{
f 4 ( ·, ·) ∈ � 

γ4 ,ω 
c ( X × Z) : f 4 ( ·) ≥ 0 and 

∫ ∫ 
f 4 ( x , z) dx dz = 1 

}
, 

here γ4 is a positive constant. We approximate f xyz ( x, y = 1 , z) and f xz ( x, z) by the truncated
erial expansions 

f xyz ( x, y = 1 , z) ≈ f 

K ( x, y = 1 , z ) = 

K ∑ 

k= 0 

K ∑ 

j= 0 

a kj ψ k ( x) ψ j ( z ) , (2.4)

f xz ( x, z) ≈ f 

K ( x, z) ≡
K ∑ 

k= 0 

K ∑ 

j= 0 

b kj ψ k ( x) ψ j ( z) , (2.5)

here ψ k ( ·) is a known orthonormal basis function, and a kj and b kj are serial coefficients.
he product of the uni v ariate orthonormal bases ψ k ( ·) ψ j ( ·) is an orthonormal basis function for
ulti v ariate functions. Thus, we can find the serial coefficients relative to this orthonormal basis

y taking the inner product of the functions with each basis function. 
Let H 

K be a sequence of sieve spaces to approximate the function space H with 

H 

K = 

⎧ ⎨ ⎩ 

f 

K ( x, z) = 

K ∑ 

k= 0 

K ∑ 

j= 0 

c kj ψ k ( x) ψ j ( z) ∈ H 

⎫ ⎬ ⎭ 

. 

or simplicity, we denote the norms of both spaces A and H as ‖ · ‖ s . 
SSUMPTION 2.2. Suppose that 

( i ) α0 ∈ A , and A is compact under ‖ · ‖ s ; 
( ii ) for any α ∈ A , there exists � K 

α ∈ A 

K such that ‖ � K 

α − α‖ s = o(1) ; 
( iii ) there exist f 

K ( x, y = 1 , z) , f 

K ( x, z) ∈ H 

K such that ‖ f 

K ( ·, y = 1 , ·) − f xyz ( ·, y =
1 , ·) ‖ s = o(1) and ‖ f 

K ( ·, ·) − f xz ( ·, ·) ‖ s = o(1) ; 
( iv ) the convergence of the sieve approximations in (ii) and (iii) depends on K , and K → ∞

and K/n → 0 as the sample size n → ∞ . 

Conditions (ii) and (iii) of Assumption 2.2 are satisfied for the parameter spaces A and H
ontaining bounded and smooth functions and are commonly imposed conditions in series ap-
roximations. 3 Assumption 2.2(iv) restricts the number of terms used in the series approximations
hat is allowed to grow with the sample size at a controlled rate. Denote the corresponding co-
fficient matrices as A = [ a k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } and B = [ b k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } . 4 Then, the
atrix representations of f 

K ( x, y = 1 , z) and f 

K ( x, z) in ( 2.4 ) and ( 2.5 ) can be expressed as
 

ψ ( x) T A 

−→ 

ψ ( z) and 

−→ 

ψ ( x) T B 

−→ 

ψ ( z) , respectively. We assume that f 

K ( x, z) converges to the true
unction f xz ( x, z) as K goes to infinity concerning its corresponding H ̈older norm. Since the joint
istribution of ( x , y , z) is observed in the sample, the sieve coefficients a kj and b kj may also be
stimated directly from the sample. Similarly, we may define f 

K ( x, z) , f 

K ( x | x ∗) , f 

K ( z| x ∗) , and
3 See Gallant and Nychka ( 1987 ) for detailed discussions. 
4 The definition of the sieve coefficients a kj and b kj can be found in ( A.2 ) and ( A.3 ) in the Appendix. 
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f 

K+ 1 ( x ∗) 5 as the truncated serial expansion of the functions f xz ( x , z) , f x | x ∗( x | x ∗) , f z| x ∗( z| x ∗) ,
and f x ∗( x ∗) . 

By replacing the functions in ( 2.1 ) and ( 2.2 ) with their serial approximations, we obtain 

f 

K ( x, y = 1 , z) = 

∫ 
f 

K ( x | x ∗) x ∗f 

K ( z| x ∗) f 

K+ 1 ( x ∗) dx ∗, (2.6) 

f 

K ( x, z) = 

∫ 
f 

K ( x | x ∗) f 

K ( z| x ∗) f 

K+ 1 ( x ∗) dx ∗. (2.7) 

Equations ( 2.6 ) and ( 2.7 ) hold at all values of x and z, and x and z are continuous variables.
This implies an infinite number of restrictions on a finite number of unknown serial coefficients.
Our key contribution is a proposed closed-form estimator for all the unknown densities on the
right-hand sides (RHSs). Specifically, we provide a closed-form estimator for the unknown serial
coefficients in the approximations of these unknown functions, which means expressing the serial
coefficients in terms of statistics of the data sample without using any optimization algorithms. 

For an estimator in the sieve space A 

K , each component of the estimator can be written in
a matrix expression. Denote by E = [ e k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } , H = [ h k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } , and−→ 

q = [ q 1 , q 2 , . . . , q K 

, q K+ 1 ] T the coefficient matrices. It follows that 

f 

K ( x | x ∗) = 

−→ 

ψ K 

( x ) T E 

−→ ϕ K 

( x ∗) , (2.8) 

f 

K ( z| x ∗) = 

−→ 

ψ K 

( z) T H 

−→ 

ψ K 

( x ∗) , (2.9) 

f 

K ( x ∗) = [1 , 
−→ 

q T ] 
−→ 

ψ K+ 1 ( x 
∗) , (2.10) 

where 
−→ 

ψ K 

( x) = [ ψ 0 ( x) , ψ 1 ( x) , . . . , ψ K 

( x) ] T and 

−→ ϕ K 

( x) = [ ϕ 0 ( x) , ϕ 1 ( x) , . . . , ϕ K 

( x) ] T . Our
deri v ation for the estimator relies on the trick of using power series to absorb x ∗ ≡ Pr ( y = 1 | x ∗)
into x ∗. Thus, we use ϕ instead of ψ to specify the sieve approximation of f 

K ( x | x ∗) in x ∗. 
According to HS ( 2008 ), parameter ( f y | x ∗, f x | x ∗, f z| x ∗, f x ∗ ) is identified and a sieve MLE is

defined as 

̂ αsv = arg max 

α= ( f 1 ,f 2 ,f 3 ,f 4 ) T ∈ A 

n 

1 

n 

n ∑ 

i= 1 

ln f 0 ( x i , y i , z i ; α) , 

where 

f 0 ( x , y , z) = 

∫ 
f 1 ( x | x ∗) f 2 ( y | x ∗) f 3 ( z| x ∗) f 4 ( x 

∗) dx ∗, 

and f 0 ( x i , y i , z i ; α) is an empirical likelihood function with the densities in ( f y | x ∗, f x | x ∗, f z| x ∗, f x ∗)
replaced by their sieve approximations ( f 1 , f 2 , f 3 , f 4 ) . 

Ai and Chen ( 2003 ) and HS ( 2008 ) provided the consistency of the sieve MLE. Compared to
the sieve MLE method, the most significant limitation of our approach is that we cannot handle
the case where x ∗ is multi v ariate. Ho we ver, it is essential to recognize that, when considering x ∗

as a multi v ariate v ariable, both z and x in ( 2.1 ) and ( 2.2 ) must also be multi v ariate, which imposes
higher data requirements. Moreo v er, it is not that straightforward to extend the proposed method to
a multi v ariate case of x ∗ because the proposed method combines the uni v ariate po wer series sie ve
for x ∗ of f ( x | x ∗) with the normalization condition, Pr ( y = 1 | x ∗) = x ∗. In a multi v ariate case of
x ∗, there are at least two sets of sieve coefficients and there may not exist a relation equation for
5 In the Appendix, we start with a sieve of order M for f x ∗ ( x ∗) . Later we take M = K + 1 and require Assumption 
A.2 to solve for its corresponding sieve coefficients. 

© The Author(s) 2024. 

025



Simple closed-form estimation of a binary latent variable model 7 

t  

s  

r
 

t  

f  

t
 

n  

a  

c  

v  

c  

 

i  

m

 

w

T  

i  

b  

t

 

 

T  

s  

c
 

m  

d

©

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utae016/7733082 by Johns H

opkins U
niversity user on 18 M

ay 
he closed-form solution. Therefore, this paper specifically focuses on the scenario where x ∗ is
calar, and the exploration of extending the method to handle multi v ariate x ∗ constitutes a future
esearch direction. 

Assumption 2.1 is an additional assumption compared to the sieve MLE method. This assump-
ion is crucial because the trick in our paper relies on using the power series ϕ( ·) for the basis
unctions of the x ∗ part of f 

K 

x | x ∗( x | x ∗) and the normalization x ∗ ≡ P ( y = 1 | x ∗) . These are the
w o k ey assumptions that enable us to obtain a closed-form estimation. 

While our method imposes additional assumptions compared to the sieve MLE method, it is
oteworthy that the estimation of sieve coefficients within the framework of sieve MLE presents
 formidable challenge. Sieve MLE computational complexity is equi v alent to parametric MLE,
haracterized by numerous parameters. In particular, most optimization algorithms require initial
alues of these sieve coefficients, which may be arbitrary. In contrast, here, we provide a simple
losed-form estimator for these sieve coefficients that do not involve any optimization algorithm.

Substituting the siev e e xpressions ( 2.8 ), ( 2.9 ), and ( 2.10 ) into the sieve approximation of the
dentification equations ( 2.6 ) and ( 2.7 ), we can obtain the matrix representation of the coefficient

atrices as 6 

A = EC q H 

T , 

B = EC q0 H 

T , 
(2.11)

here C q and C q0 are functions of −→ 

q and are defined as 

C q = 

[ ∫ 1 

0 
ϕ k−1 ( x 

∗) · x ∗ ·
[ 

K+ 1 ∑ 

l= 0 

q l ψ l ( x 
∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 
, 

C q0 = 

[ ∫ 1 

0 
ϕ k−1 ( x 

∗) ·
[ 

K+ 1 ∑ 

l= 0 

q l ψ l ( x 
∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 
. 

hus, we have transformed the sieve population problem into a finite-dimensional sieve problem
nvolving matrices. The estimated coefficient matrices ̂  A and ̂

 B for A and B in ( 2.12 ) and ( 2.13 )
elow are defined as follows: ̂  A = [ ̂  a k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } and ̂

 B = [ ̂  b k−1 ,j−1 ] k,j∈{ 1 , 2 , ... ,K+ 1 } with
he estimated coefficients ̂  a kj and ̂

 b kj satisfying 

̂ a kj = 

1 

N 

N ∑ 

i= 1 

[ 1 ( y i = 1) ψ k ( x i ) ψ j ( z i )] , (2.12)

̂ b kj = 

1 

N 

N ∑ 

i= 1 

[ ψ k ( x i ) ψ j ( z i )] . (2.13)

herefore, matrices A and B are available. For notational simplicity, we suppress ̂  A and 

̂ B and
till use A and B. The proposed eigen-decomposition estimator (EDE) ̂  αede of α0 is to solve the
oefficient matrices E, H , and 

−→ 

q without any optimization algorithm. 
Next, we present an informal step-by-step construction for the existence of the coefficient
atrices E, H , and 

−→ 

q from the estimated coefficients ̂ a kj and 

̂ b kj . A detailed and rigorous
eri v ation with assumptions for the coefficient matrices is provided in the Appendix. 
6 The deri v ation is provided in the Appendix. 

The Author(s) 2024. 
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Recall that ϕ k ( x ∗) = ( x ∗) k−1 ; then the kth row of C q is the same as the ( k + 1 )th row of C q0

for k = 1 , . . . , K . 7 That is, we can write 

C q = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 . . . 0 

0 0 0 0 1 

−d 0 −d 1 −d 2 . . . −d K 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

C q0 = G q C q0 . (2.14) 

The three matrices C q , C q0 , and G q are all unknown, and matrix G q connects C q and C q0 . Matrix
G q is unknown only up to ( d 0 , d 1 , . . . , d K 

) , where the d’s are implicitly defined in ( 2.14 ). We
impose assumptions to solve for these unknown parameters. 

Second, we show that ( d 0 , d 1 , . . . , d K 

) are functions of the eigenvalues of AB 

−1 and then that−→ 

q can be solved from ( d 0 , d 1 , . . . , d K 

) . If matrix B is invertible then we can obtain 

AB 

−1 = E ( C q C 

−1 
q0 ) E 

−1 = E G q E 

−1 . (2.15) 

Equation ( 2.15 ) means that the observed matrix AB 

−1 is similar to matrix G q , implying that they
share the same eigenvalues and have the same characteristic polynomial. 

Equation ( 2.15 ) implies that 

det ( λI − AB 

−1 ) = det ( λI − G q ) 

= λK+ 1 + d K 

λK + · · · + d 1 λ + d 0 

≡ ( λ − λ0 )( λ − λ1 ) · · · ( λ − λK 

) . 

This means that the d k are the coefficients of the characteristic polynomial det ( λI − AB 

−1 ) of
the directly estimated AB 

−1 , so that the coefficients ( d 0 , d 1 , . . . , d K 

) can be reco v ered from the
eigenvalues of AB 

−1 , ( λ0 , λ1 , . . . , λK 

) . 8 

At this point, we have recovered matrix G q and regarded it as a known matrix so that we can
use the RHS of ( 2.14 ) to solve for the serial coefficients q l in f 

K ( x ∗) . 9 After recovering 

−→ 

q in
this way, we have now estimated f 

K ( x ∗) = [1 , 
−→ 

q T ] 
−→ 

ψ K+ 1 ( x ∗) . 
Fourth, we turn to the unknown coefficient matrix E in f 

K ( x | x ∗) . Let an eigen-decomposition
of AB 

−1 be AB 

−1 = V DV 

−1 with a diagonal matrix D = diag ( λ0 , λ1 , . . . , λK 

) and a corres-
ponding eigenvector matrix V . Because AB 

−1 and G q have the same set of eigenvalues, we can
use the diagonal matrix D to obtain an eigen-decomposition of G q as G q = S q DS 

−1 
q with an

eigenvector matrix S q . 10 

We may then estimate E from 

V DV 

−1 ︸ ︷︷ ︸ 
an eigen-dcomposition of AB −1 

= AB 

−1 = E G q E 

−1 = E S q DS 

−1 
q ︸ ︷︷ ︸ 

an eigen-dcomposition of G q 

E 

−1 . 
7 The trick of using power series to absorb x ∗ into a higher order of series ϕ works because ϕ k−1 ( x ∗) · x ∗ = ϕ k ( x ∗) for 
all k. Ho we v er, this trick likely does not e xtend to series other than the power series ϕ i ( x ∗) = x ∗i for i ≥ 0 . Most other 
series involve scaling or location parameters when constructing higher-order terms. These modified series do not satisfy 
ϕ k−1 ( x ∗) · x ∗ = ϕ k ( x ∗) . 

8 The relations between the λk and d k are given in ( A.10 )–( A.12 ) of the Appendix. 
9 See the proof of Proposition 2.1 in the Appendix for details that start at ( A.13 ). 
10 The existence of the eigen-decomposition of AB 

−1 and G q is based on Theorem 1.3.9 of Horn and Johnson ( 1985 ): 
‘If an n × n matrix A has n distinct eigenvalues then the matrix A is diagonalizable, i.e. there exists an invertible matrix 
P such that P 

−1 AP is a diagonal matrix.’ Because AB 

−1 and G q have the same set of eigenvalues, Assumption A.1(ii) 
ensures that both AB 

−1 and G q have distinct eigenvalues and are diagonalizable. 

© The Author(s) 2024. 

ity user on 18 M
ay 2025



Simple closed-form estimation of a binary latent variable model 9 

G  

E  

E

 

a  

o
 

P  

A  

i

T

 

t
t

 

 

a

©

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utae016/7733082 by Johns H

opkins U
niversity user on 18 M

ay
iven the similarity of the known matrices AB 

−1 and G q , the two eigenvector matrices V and
S q are equal to each other up to the scale of the eigenvectors. 11 From this, we can reco v er the
matrix up to scale. 12 

Finally, we estimate H in f 

K ( z| x ∗) . Using ( 2.11 ), we have H = ( C 

−1 
q0 E 

−1 B) T . At this point,
ll the matrices on the right-hand side are known; in particular, C q0 is kno wn gi ven kno wledge

f the serial coefficients −→ 

q . Then f 

K ( z| x ∗) = 

−→ 

ψ K 

( z) T H 

−→ 

ψ K 

( x ∗) . 
In short, these five steps constitute our closed-form semi-parametric estimator for α as follows.

ROPOSITION 2.1. Suppose that Assumptions 2.1 and 2.2, and Assumptions A.1, A.2, A.3, and
.4 in the Appendix hold. Then the EDE ̂  αede = ( ̂  f 

K 

x | x ∗, ̂  f 

K 

z| x ∗, ̂  f 

K 

x ∗ ) T ∈ A 

K exists and is unique,

.e., there exists unique matrices ̂  E , ̂ H , and ̂

 

−→ 

q that solve the equation 

̂ f 

K 

x ,y ,z ( x , y , z) = 

∫ 1 

0 

̂ f 

K 

x | x ∗( x | x ∗) · f y | x ∗( y | x ∗) ·̂ f 

K 

z| x ∗( z| x ∗) ·̂ f 

K 

x ∗ ( x ∗) dx ∗

for any ( x , y , z) , where 

f y | x ∗( y | x ∗) = ( x ∗) 1 ( y= 1) (1 − x ∗) 1 ( y= 0) , ̂ f 

K 

x ,y ,z ( x , y , z) = 

−→ 

ψ K 

( x) T 
[
A 

1 ( y= 1) ( B − A ) 1 ( y= 0) ]−→ 

ψ K 

( z) . 

he closed-form r epr esentation for ̂  αede is ̂ f 

K 

x | x ∗( x | x ∗) = 

−→ 

ψ K 

( x ) T ̂ E 

−→ ϕ K 

( x ∗) , 

̂ f 

K 

z| x ∗( z| x ∗) = 

−→ 

ψ K 

( z) T ̂ H 

−→ 

ψ K 

( x ∗) , 

̂ f 

K 

x ∗ ( x ∗) = 

[
1 , ̂  

−→ 

q 
T 
]−→ 

ψ K+ 1 ( x 
∗) . 

Proof. See the Appendix. 
We provide a broad description of an algorithm that summarizes the five steps in the compu-

ation of the estimator and the order of the construction is −→ 

q and E first, and then use −→ 

q and E

o construct H . 
Algorithm for the EDE 

(1) Given data { x i , y i , z i } of sample size n , estimate coefficient matrices A and B using ( 2.12 )
and ( 2.13 ) and calculate the square matrix AB 

−1 . 
(2) Compute the characteristic polynomial of AB 

−1 and obtain the coefficients of the poly-
nomial, ( d 0 , d 1 , . . . , d K 

) . 
(3) Use the coefficients ( d 0 , d 1 , . . . , d K 

) to construct 

[ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } = 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 

( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

, 

−→ 

c 0 = 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 

( x ∗) k d k 

) 

· ψ 0 ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

. 
11 The relation between V and ES q can be written as ( A.14 ) in the Appendix. 
12 In the Appendix, we sho w ho w the scaling factors can be reco v ered from the condition that 

∫ 
f ( x | x ∗) dx = 1 for 

ny x ∗. 

The Author(s) 2024. 
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Then, −→ 

q T = −−→ 

c T 0 ([ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } ) −1 and f 

K ( x ∗) = [1 , 
−→ 

q T ] 
−→ 

ψ K+ 1 ( x ∗) . 
(4) Use the coefficients ( d 0 , d 1 , . . . , d K 

) to construct 

G q ≡

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 . . . 0 

0 0 0 0 1 

−d 0 −d 1 −d 2 . . . −d K 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Compute eigenvalues and eigenvectors of AB 

−1 and G q , and let AB 

−1 = V DV 

−1 and
G q = S q DS 

−1 
q with a diagonal matrix D = diag ( λ0 , λ1 , . . . , λK 

) . Let [ P ] ij stand for the

( i, j ) th element of matrix P . Calculate a diagonal matrix 

˜ D with [ ̃  D ] ii = [ S q ] 1 ,i / [ V ] 1 ,i .

Then, E = V ̃

 D S 

−1 
q and f 

K ( x | x ∗) = 

−→ 

ψ K 

( x ) T E 

−→ ϕ K 

( x ∗) . 
(5) Use −→ 

q to compute 

C q0 = 

[ ∫ 1 

0 
x ∗k−1 ·

[ 

M ∑ 

l= 0 

q l ψ l ( x 
∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 
. 

Then, H = ( C 

−1 
q0 E 

−1 B) T and f 

K ( z | x ∗) = 

−→ 

ψ K 

( z ) T H 

−→ 

ψ K 

( x ∗) . 

Here we summarize our consistent results for the EDE ̂  αede . 

PROPOSITION 2.2. Suppose that Assumptions 2.1 and 2.2, and Assumptions A.1, A.2, A.3, and
A.4 in the Appendix hold. Let ̂  αede be the sieve estimator for α0 in Proposition 2.1, and suppose
that Online Appendix Assumptions S2.1 –S2.3 hold; then we have ‖ ̂  αede − α0 ‖ s = o p (1) . 

The Online Appendix presents a proof of the consistent result. The conditions required for
the consistent result are general and are essentially the same as those imposed in Ai and Chen
( 2003 ), Newey and Powell ( 2003 ), and HS ( 2008 ). These conditions can be categorized into the
following classes: (i) existence conditions for the EDE ̂  αede , (ii) the existence of approximating
subspaces A 

K and H 

K for function spaces A and H, respectively, (iii) envelope conditions that
secure a H ̈older continuity property of the objective function, (iv) the compactness assumption
in Assumption 2.2(i) limits the size of the space of functions, and it is satisfied when the infinite-
dimensional parameter space A consists of bounded and smooth functions. We restrict the true
structural function to the compact set, and this assumption essentially eliminates the ill-posed
inverse problem. 

3. A MONTE CARLO STUDY 

In this section, we e v aluate the performance of the proposed EDE estimator. The simulation design
for the discrete choice model is similar to the experiments considered by Hu and Schennach
( 2008 ). We have included the data-generation process and specific results of the simulation in
the Online Appendix . For comparison, we also computed the sieve MLE proposed by Hu and
Schennach ( 2008 ). 

The estimation results for the sieve MLE in Hu and Schennach ( 2008 ) and the EDEs of degree
3 are presented in Online Appendix Figures S1 –S4 . Both the sieve MLE and the EDEs of degree
3 perform well, except for the boundary points. In Online Appendix Figures S1 –S4 , the values of
the EDEs exceed their actual values near the boundary points. The figures indicate that the EDEs
© The Author(s) 2024. 
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 xhibit o v ershoot and cause boundary bias. Thus, the EDEs perform poorly near the boundary
oints due to their boundary bias, which may restrict the EDEs to an interior subset of the support
f the variable of interest. Nevertheless, when excluding points near the boundaries, the shapes
f the EDEs closely resemble the true functions. 

We define the following integrated mean squared errors (IMSEs) to comprehensively evaluate
ur estimator ̂  αede , with each IMSE representing the performance of individual components of
 ede : 

IMSE ( x ∗) = 

⎛ ⎝ 

E[ 
∫ 

[ ̂  f 

K ( x | x ∗) − f x | x ∗( x | x ∗)] 2 dx ] 
E[ 

∫ 
[ ̂  f 

K ( z| x ∗) − f z| x ∗( z| x ∗)] 2 dx] 
E[ 

∫ 
[ ̂  f 

K ( x ∗) − f x ∗( x ∗)] 2 dx] 

⎞ ⎠ . 

he IMSEs and the sum of IMSEs for the sieve MLE and the EDEs of degrees 3 are reported in
nline Appendix Tables S1 –S2 . The sieve MLE outperforms the EDEs of degrees 3 in terms of

he IMSE. Ho we ver, while the sie v e MLE serv es as a benchmark, it is difficult to compute due to
 large number of nuisance parameters, making it harder to find a consistent estimator as an initial
alue for numerical optimization. As a trade-off, the EDEs offer a computationally convenient
ption, but sacrifice some accuracy. Therefore, the EDEs can be used as a first-step estimator for
 more efficient estimator, complementing the sieve MLE. The Monte Carlo e x ercises presented
ere illustrate the extent of this trade-off. 

4. EMPIRICAL ILLUSTRATION 

hina’s Targeted Po v erty Alleviation (TPA) is the most e xtensiv e social safety-net program in the
orld. It is essential to e v aluate it so that policymakers know the extent to which the program meets

ts intended objective of reducing poverty. An essential criterion for selecting TPA beneficiaries
s that the average disposable income of households is lower than the national po v erty line (about
442 in 2015). As a result, TPA candidates are incentivized to report lower income than their
ctual income to increase their chances of being selected as beneficiaries. In this case, there exists
 likelihood that the actual beneficiaries may not belong to the eligible impo v erished se gments,
hereby leading to the possibility of TPA displaying misdirected performance. Therefore, this
ection applies the developed estimator to a probit model to e v aluate the targeting performance
f the TPA program based on households’ income: 

y i = 1( β0 + β1 x 
∗
i + β2 w i + u i > 0) . (4.1)

ere y i is a binary variable that equals 1 if the i th household is selected as a TPA beneficiary and
 if not, x ∗i is the i th household’s actual income, w i is a covariate that equals 1 if there are village
adres among the i th household members and 0 if not, and u i is normally distributed. Then the
onditional density function is 

f ( y i | x ∗i , w i ; β) = � ( β0 + β1 x 
∗
i + β2 w i ) 

y i [1 − � ( β0 + β1 x 
∗
i + β2 w i )] 

1 −y i . 

o we ver, households’ actual income x ∗i is latent and may be measured with error, precluding
irect estimation of the probit model. To address this measurement error problem and apply our
stimator, we utilize households’ reported income x i and an instrumental variable (IV) z. The
V z used here is the predicted income in the regression of reported income on demographic
ariables, i.e., household head’s age, gender, education, household labour, family members o v er
ixty, and children under ten. 
The Author(s) 2024. 
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We use a two-step estimation to obtain the estimates of ( β0 , β1 , β2 ) in ( 4.1 ). In the first step,
we impose the normalization assumption x ∗ ≡ Pr ( y = 1 | x ∗) and use the EDE method to obtain̂ f x | x ∗( x | x ∗) and ̂

 f x ∗( x ∗) . In the second step, to estimate the parameters in the outcome equation,
consider the expression 

f ( y , x , w) = 

∫ 
f ( y | x ∗, x , w) f ( x | x ∗, w ) f ( w | x ∗) f ( x ∗) dx ∗

= 

∫ 
f ( y | x ∗, w) f ( x | x ∗) f ( w| x ∗) f ( x ∗) dx ∗, 

where we have used f ( y | x ∗, x , w) = f ( y | x ∗, w) and f ( x | x ∗, w) = f ( x | x ∗, w) . While the di-
chotomous model components f ( y | x ∗, w ) and f ( w | x ∗) are parameterized, the other com-
ponents f ( x | x ∗) and f ( x ∗) are treated as non-parametric nuisance functions. We addition-
ally parameterize f ( w| x ∗) as f ( w| x ∗; β3 , β4 ) = φ( [ w − β3 x 

∗] / β4 ) . The density functions
f ( x | x ∗) and f ( x ∗) inside the integration can be obtained from the proposed EDE proce-
dure. We can use these estimated EDE estimators for f ( x | x ∗) and f ( x ∗) along with the para-
metric choice model f ( y | x ∗, w; β0 , β1 , β2 ) , f ( w| x ∗; β3 , β4 ) to construct an MLE estimator for
β = ( β0 , β1 , β2 , β3 , β4 ) . That is, 

( ̂  β0 , ̂  β1 , ̂  β2 , ̂  β3 , ̂  β4 ) = arg max 

β0 ,β1 ,β2 ,β3 ,β4 

1 

n 

n ∑ 

i= 1 

ln 

∫ 
f ( y i | x ∗, w i ; β0 , β1 , β2 ) ̂  f x i | x ∗( x i | x ∗) 

× f ( w i | x ∗; β3 , β4 ) ̂  f x ∗( x ∗) dx ∗, 

where ̂  f x i | x ∗ ( x i | x ∗) and ̂

 f x ∗( x ∗) dx ∗ are obtained from the proposed EDE procedure. 
Our EDE estimator builds upon the identification assumptions proposed in HS ( 2008 ) and

articulated in the Online Appendix . Online Appendix Assumption S1.1 requires that all joint
and marginal probability mass/density functions are bounded on their support. Online Appendix
Assumption S1.2(i) implies that the variables x and z do not offer any additional information
about the outcome variable y beyond what is already captured by variable x ∗, while Online
Appendix Assumption S1.2(ii) states that z does not provide any additional information about x
than x ∗ already provides. These assumptions serve as standard exclusion restrictions. Since the
z we use here is a predicted value from a regression, it is reasonable to assume that the least-
squares projection has purged the instrument from components that would affect the probability of
participating in the TPA program directly. Hence, Online Appendix Assumption S1.2 is plausibly
satisfied. Online Appendix Assumption S1.3 is a technical assumption to allow some algebra
manipulations. Online Appendix Assumption S1.4 requires that the distribution of y conditional
on x ∗ is not identical at two values of x ∗. The location restriction in Online Appendix Assumption
S1.5 is related to Online Appendix Assumption S1.4 . Online Appendix Assumption S1.5 keeps
the ordering of the eigenvalues and eigenfunctions of AB 

−1 to identify f 

K ( x | x ∗) that converges
to the true population function f ( x | x ∗) as K → ∞ . 

The data used in this application come from the 2015 China Household Finance Surv e y
(CHFS). 13 The sample size of the 2015 surv e y is 40,000 households, co v ering 29 pro vinces
(municipalities, districts), 363 counties, and 1,439 village or neighbourhood committees in China.
The data co v er various information, including household assets, liabilities and credit constraints,
13 See the third round of the China Household Finance Surv e y ( 2015 ). 

© The Author(s) 2024. 
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Table 1. Estimates of participation parameters. 

EDE estimator 

Probit IV probit K = 2 K = 3 K = 4 
(1) (2) (3) (4) (5) 

Coefficient 
β0 −0 .525 1 .933 −1 .147 −1 .213 −1 .221 

(0 .037) (0 .076) (0 .144) (0 .229) (0 .194) 
β1 −0 .071 −0 .296 0 .118 0 .077 0 .060 

(0 .003) (0 .006) (0 .384) (0 .145) (0 .223) 
β2 0 .087 0 .085 0 .111 0 .084 0 .131 

(0 .071) (0 .062) (0 .367) (0 .144) (0 .171) 
PAE 

−0 .013 −0 .120 0 .025 0 .015 0 .011 
(0 .000) (0 .006) (0 .036) (0 .023) (0 .046) 

Note: The data come from the 2015 CHFS. The standard errors are reported in parentheses, which are calculated using the 
bootstrap method with 500 replications. PAE is a partial effect at the mean. PAEs of probit and IV probit are calculated 
using ̂  β1 φ( ̂  β0 + ̂

 β1 ̄x + ̂

 β2 ̄w ) , where x̄ = 

1 
N 

∑ N 
i= 1 x i and w̄ = 

1 
N 

∑ N 
i= 1 w i . The PAE of the EDE estimator is calculated 

using ̂  β1 φ( ̂  β0 + ̂

 β1 ̄x 
∗ + ̂

 β2 ̄w ) , where x̄ ∗ = 

∫ 1 
0 x 

∗̂ f ( x ∗) dx ∗. 
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We compare the results of our EDE estimator to those of a probit model using reported income
lone (column (1) in Table 1 ), as well as a conventional IV probit estimator 15 (column (2) in
able 1 ) and the EDE estimator (columns (3)–(7) in Table 1 ). 
The results from the probit model without using IV indicate a ne gativ e and statistically sig-

ificant relationship between households’ income and the probability of being selected as TPA
eneficiaries. When using predicted income as an IV to address the endogeneity issue, the con-
entional IV estimator shows a stronger negati ve relationship. Ho we ver, our EDE estimator yields
ubstantially different results, finding that there is a positive correlation between households’ ac-
ual income and the probability of TPA beneficiary classification, but the impact is not significant.
ombining the estimates from the probit model, it becomes apparent that the probability of being

elected as TPA beneficiaries is related to the observed income of households rather than their
ctual income. Our results corroborate previous research uniformly indicating poor targeting of
esources in China’s TPA program (Golan et al., 2017 ; Han and Gao, 2019 ; Kakwani et al., 2019 ).
his result highlights the need for further impro v ements in the TPA program to ensure its ef fecti ve

argeting of intended beneficiaries. Policymakers must prioritize accuracy in measuring income
o ef fecti vely target those in need. This can be achie v ed through the inte gration of multiple data
ources and advanced statistical techniques. 
14 The specific screening process for TPA beneficiaries and descriptive statistics of the variables can be found in the 
nline Appendix materials. 
15 The conventional IV estimator for probit models makes some more parametric assumptions. First, it assumes a linear 

elationship between the endogenous variable x and the instrument variable z. Second, it assumes that the joint distribution 
f the disturbance terms is bi v ariate normal to construct the likelihood. Therefore, the conventional IV approach for probit 
odels parametrically specifies the densities f x | x ∗ ( x | x ∗) and f z| x ∗ ( z| x ∗) . In contrast, the proposed EDE estimator leaves 
 x | x ∗ ( x | x ∗) and f z| x ∗ ( z| x ∗) unspecified. 

The Author(s) 2024. 
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The empirical results could also be influenced by other factors. For example, it is possible
that linearity does not hold in the outcome equation. Because of technical limitations, we are
currently unable to include x ∗2 in the model. Besides, boundary effects could potentially lead
to bias in our parameter estimates. It is important to note, ho we ver, that boundary ef fects are
common challenges in non-parametric estimation, and they can still be a concern even when
using the sieve method. 

5. CONCLUSION 

We develop a closed-form semi-parametric estimator for non-linear models with unobserved
explanatory variables. Building upon existing identification results, we propose a consistent
extreme-v alue sie ve estimator that serves as a simpler alternative to the sieve maximum likelihood
estimator for such models. We demonstrate how to construct a consistent non-iterative estimator
defined as an optimal solution of some objective function. Our estimator is helpful for empirical
work because it has a closed form and does not require a standard iterative optimization algorithm.
Empirical applications demonstrate that our estimator performs well in practice. 
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APPENDIX: PROOF PROPOSITION 2.1 

Consider ∑ 

y 

1 ( y = 1) f xyz ( x , y , z) = 

∫ 
f x | x ∗ ·

(∑ 

y 

1 ( y = 1) f y | x ∗
)

· f z| x ∗ · f x ∗ dx ∗

= 

∫ 
f x | x ∗ · Pr ( y = 1 | x ∗) · f x ∗ · f z| x ∗ dx ∗. (A.1) 

For the EDE, we assume a normalization condition such that 

Pr ( y = 1 | x ∗) = x ∗. 

The EDE is based on sieve approximations of all the densities on the RHS of ( 1.1 ). We consider the sieve
approximations for these probability mass/density functions and probability densities in ( 2.4 ), ( 2.5 ), ( 2.8 ),
( 2.9 ), and ( 2.10 ). 

We first use a different number of terms M for f x ∗ ( x ∗) and later take M = K + 1 to solve for its
corresponding sie ve coef ficients. In f x | x ∗ ( x | x ∗) ≈ ∑ K 

k= 0 
∑ K 

j= 0 e kj ψ k ( x ) ϕ j ( x ∗) , we use a polynomial series
ϕ k ( x ∗) = ( x ∗) k for k = 0 , 1 , 2 , . . . . Note that, for simplicity, we use the linear combination of basis functions
to approximate a density itself instead of the square root of the density. This greatly simplifies the deri v ation.

From the data, we can reco v er the orthonormal coefficients a kj and b kj corresponding to the probability
mass/density functions as 

a kj = 

∫ ∫ 
( 1 ( y = 1) f xyz ( x , y , z)) ψ k ( x ) ψ j ( z) dx dz = E[ 1 ( y = 1) ψ k ( x) ψ j ( z)] , (A.2) 

b kj = 

∫ ∫ 
ψ k ( x ) ψ j ( z) f xz ( x , z) dx dz = E[ ψ k ( x ) ψ j ( z)] . (A.3) 

According to the law of large numbers, the average of the random events obtained from a large number
of trials should be close to the expected v alue. Thus, coef ficients a ij and b ij can be estimated using
sample averages to approximate the expectations above. Thus, we have expressions ( 2.12 ) and ( 2.13 ). The
approximation results are summarised as follows. 

LEMMA A.1. Define 

̂ f K 

x ,y = 1 ,z ( x, y = 1 , z) = 

K ∑ 

k= 0 

K ∑ 

j= 0 ̂
 a kj ψ k ( x ) ψ j ( z) , ̂ f K 

x,z ( x , z) = 

K ∑ 

k= 0 

K ∑ 

j= 0 ̂
 b kj ψ k ( x) ψ j ( z) . 

We have ‖ ̂  f K 

x ,y = 1 ,z − f x ,y = 1 ,z ‖ = o p (1) and ‖ ̂  f K 

x,z − f x,z ‖ = o p (1) . 

The left-hand side of ( A.1 ) can be estimated as 

LHS = 

∑ 

y 

1 ( y = 1) f xyz ( x , y , z) 

≈
K ∑ 

k= 0 

K ∑ 

j= 0 
a kj ψ k ( x) ψ j ( z) 

= 

−→ 

ψ ( x) T A 

−→ 

ψ ( z) 

≡ ̂ LHS , 
© The Author(s) 2024. 
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here A = [ a k−1 ,j−1 ] k,j and 
−→ 

ψ ( x) = [ ψ 0 ( x) , . . . , ψ K 

( x) ] T . The right-hand side of ( A.1 ) is 

RHS = 

∫ 
f x | x ∗ · Pr ( y = 1 | x ∗) · f x ∗ · f z| x ∗ dx ∗

≈
∫ ⎡ ⎣ 

K ∑ 

k= 0 

K ∑ 

j= 0 
e kj ψ k ( x ) ϕ j ( x 

∗) 

⎤ ⎦ · x ∗ ·
[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

·
⎡ ⎣ 

K ∑ 

k= 0 

K ∑ 

j= 0 
h kj ψ k ( z) ψ j ( x 

∗) 

⎤ ⎦ dx ∗

= 

∫ 
[ 
−→ 

ψ ( x ) T E 

−→ ϕ ( x ∗)] · x ∗ ·
[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· [ 
−→ 

ψ ( x ∗) T H 

T −→ 

ψ ( z)] dx ∗

= 

−→ 

ψ ( x ) T E 

[ ∫ 
−→ ϕ ( x ∗) · x ∗ ·

[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· −→ 

ψ ( x ∗) T dx ∗
] 

H 

T −→ 

ψ ( z) 

≡ −→ 

ψ ( x) T EC q H 

T −→ 

ψ ( z) 

≡ ̂ RHS , 

here 

C q = 

[ ∫ 1 

0 
x ∗k ·

[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 

s a matrix that depends on the q and the approximating basis functions. 
Equating 

̂ LHS = 

̂ RHS , 

e obtain, for any x and z, 

−→ 

ψ ( x) T A 

−→ 

ψ ( z) = 

−→ 

ψ ( x) T EC q H 

T −→ 

ψ ( z) . 

herefore, we have 

A = EC q H 

T . (A.4)

imilarly, we have 

f xz ( x, z) = 

∫ 
f x | x ∗ · f x ∗ · f z| x ∗ dx ∗. 

sing a similar argument as abo v e with matrix C q replaced by 

C q0 = 

[ ∫ 1 

0 
x ∗k−1 ·

[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 
, 

e obtain the matrix equation 

B = EC q0 H 

T . (A.5)
The Author(s) 2024. 
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Note that the kth row of C q is the same as the ( k + 1 )th row of C q0 for k = 1 , . . . , K . Therefore, the
relation between matrices C q and C q0 satisfies C q = G q C q0 because the d k , k = 0 , . . . , K , satisfy 

( −d 0 , −d 1 , −d 2 , . . . , −d K 

) C q0 

= the ( K + 1) th row of C q 

= 

( ∫ 
( x ∗) K+ 1 ·

[ 
M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 
· ψ 0 ( x 

∗) dx ∗, . . . , 
∫ 

( x ∗) K+ 1 ·
[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 
· ψ K 

( x ∗) dx ∗
) 

. (A.6) 

Because we can replace A and B with the expressions in ( A.4 ) and ( A.5 ), respectively, these equations contain
sample information and we can utilize their structures to acquire the sie ve coef ficient matrices E, H , and−→ 

q . 

ASSUMPTION A.1. Suppose that 

( i ) the matrix of sieve coefficients of f xz ( x, z) , B, is invertible; 
( ii ) AB 

−1 has distinctive eigenvalues λ0 > λ1 > · · · > λK 

. 

Intuitively, Assumption A.1(i) indicates that x contains enough information on z and vice versa. Assump-
tion A.1(i) implies that we can use ( A.4 ) and ( A.5 ) to solve for the sie ve coef ficients e kj in E and h kj in H 

from the observed ̂  a kj in A , and ̂  b kj in B through 

AB 

−1 = E ( C q C 

−1 
q0 ) E 

−1 = E G q E 

−1 . (A.7) 

The abo v e equation implies that the observed matrix AB 

−1 is similar to matrix G q , which is associated with
the unknown −→ 

q . 
Because AB 

−1 and G q have the same set of eigenvalues, Assumption A.1(ii) ensures that both AB 

−1 

and G q have distinct eigenvalues and are diagonalizable. Thus, the eigen-decompositions of AB 

−1 and G q 

exist. The assumption rules out eigenvalues with multiplicity greater than 1. Let AB 

−1 and G q have the
eigen-decompositions 

AB 

−1 = V DV 

−1 , (A.8) 

G q = S q DS −1 
q . (A.9) 

Next, we show that q l may be uniquely determined by the eigenvalues of AB 

−1 . Note that 

det ( λI − AB 

−1 ) = det ( λI − G q ) = λK+ 1 + d K 

λK + · · · + d 1 λ + d 0 . 

This is in fact the characteristic polynomial of directly estimable AB 

−1 . Therefore, coefficients d k are all
directly estimable. In other words, we have 

d 0 = ( −1) K+ 1 λ0 λ1 λ2 · · · λK 

, (A.10) 

d 1 = ( −1) K 

K ∑ 

k= 0 
λ0 λ1 · · · λk−1 λk+ 1 · · · λK 

, (A.11) 

. . . 

d K 

= ( −1) 
K ∑ 

k= 0 
λk , (A.12) 

where the λk are eigenvalues of the observed matrix AB 

−1 . Therefore, we may treat d k as known. 
© The Author(s) 2024. 
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We then solve for q l from d k as follows. The definition of d k in ( A.6 ) implies that 

LHS = ( −d 0 , −d 1 , −d 2 , . . . , −d K 

) C q0 

= ( −d 0 , −d 1 , −d 2 , . . . , −d K 

) 

[ ∫ 
( x ∗) k−1 ·

[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

k,j∈{ 1 , 2 , ... ,K+ 1 } 

= 

[ ∫ [ 

−
K ∑ 

k= 0 
( x ∗) k d k 

] 

·
[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= 

M ∑ 

l= 0 
q l 

[ ∫ ( 

−
K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 
. (A.13)

The ( K + 1 )th row of C q is 

RHS = 

[ ∫ 
( x ∗) K+ 1 ·

[ 

M ∑ 

l= 0 
q l ψ l ( x 

∗) 

] 

· ψ j−1 ( x 
∗) dx ∗

] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= 

M ∑ 

l= 0 
q l 

[ ∫ 
( x ∗) K+ 1 · ψ l ( x 

∗) · ψ j−1 ( x 
∗) dx ∗

]
·,j∈{ 1 , 2 , ... ,K+ 1 } 

. 

herefore, we have 

RHS − LHS = 

M ∑ 

l= 0 
q l 

[ ∫ 
( x ∗) K+ 1 · ψ l ( x 

∗) · ψ j−1 ( x 
∗) dx ∗

]
·,j∈{ 1 , 2 , ... ,K+ 1 } 

−
M ∑ 

l= 0 
q l 

[ ∫ ( 

−
K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= 

M ∑ 

l= 0 
q l 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= 

M ∑ 

l= 1 
q l 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

+ q 0 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= 0 . 

ecause the density restriction of f ( x ∗) , 
∫ 

( 
∑ M 

l= 0 q l ψ l ( x ∗)) dx ∗ = 1 , with an orthogonal Fourier series ψ l

nd ψ 0 ( x ∗) = 1 , we have q 0 = 1 . Therefore, 

M ∑ 

l= 1 
q l 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

︸ ︷︷ ︸ 
defined as c lj 

·,j∈{ 1 , 2 , ... ,K+ 1 } 

= −
[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ 0 ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

︸ ︷︷ ︸ 
defined as c 0 j 

·,j∈{ 1 , 2 , ... ,K+ 1 } 
. 
The Author(s) 2024. 
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We take M = K + 1 . The equation abo v e may be written as 
−→ 

q T [ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } = −−→ 

c T 0 , 

where, for l ∈ { 0 , 1 , 2 , . . . , K + 1 } and j ∈ { 1 , 2 , . . . , K + 1 } , 

[ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } = 

[ ∫ ( 

( x ∗) K+ 1 + 

K ∑ 

k= 0 
( x ∗) k d k 

) 

· ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
] 

= 

[ ∫ 
[ det ( x ∗I − AB 

−1 )] · ψ l ( x 
∗) · ψ j−1 ( x 

∗) dx ∗
]
, 

−→ 

q = [ q 1 , q 2 , . . . , q K 

, q K+ 1 ] T , 
−→ 

c 0 = [ c 01 , c 02 , . . . , c 0 K 

, c 0 K+ 1 ] T . 

Note that [ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } and −→ 

c 0 are known because the estimators for d k are available. 

ASSUMPTION A.2. Matrix [ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } is invertible. 

This implies that, under Assumption A.2, we may solve for q l as 

−→ 

q T = −−→ 

c T 0 

(
[ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } 

)−1 
. 

With the estimated sieve coefficients −→ 

q T , we obtain the sieve estimator f K ( x ∗) . Because the matrix
[ c lj ] l,j∈{ 1 , 2 , ... ,K+ 1 } is constructed through f xyz ( x, y = 1 , z) , f xz ( x, z) , and Pr ( y = 1 | x ∗) = x ∗, the assump-
tion implies that these probability mass/density functions provide enough information to recover f K ( x ∗) ,
following appropriate manipulations. Next, matrices C q and C q0 can also be obtained by the estimated sieve
coefficients −→ 

q T . 

ASSUMPTION A.3. Matrix C q0 is invertible. 

Then, we may treat G q = C q C 

−1 
q0 as known, as well as its eigen-decomposition ( A.9 ). Combining ( A.7 )

with eigen-decompositions ( A.8 ) and ( A.9 ) yields 

V DV 

−1 ︸ ︷︷ ︸ 
an eigen-dcomposition of AB −1 

= AB 

−1 = E G q E 

−1 = E S q DS −1 
q ︸ ︷︷ ︸ 

an eigen-dcomposition of G q 

E 

−1 . 

Note that V and S q are the eigenvector matrices of the known matrices AB 

−1 and G q , respectively. 16 This
implies that the two eigenvector matrices V and ES q equal each other up to the scale of the eigenvectors
and we may then have 

ES q = V ̃

 D (A.14) 

for some unknown diagonal matrix ˜ D . In order to pin down the unknown ˜ D , we need to use the density
property that 

∫ 
f K ( x | x ∗) dx = 1 for any x ∗. This is so that the elements of the coefficient matrix E for

f K ( x | x ∗) satisfy 

f K ( x | x ∗) = 

K ∑ 

k= 0 

K ∑ 

j= 0 
e kj ψ k ( x ) ϕ j ( x 

∗) 

with 
∫ 

f K ( x | x ∗) dx = 1 for any x ∗. This restriction implies that, for any x ∗, 

K ∑ 

k= 0 

⎛ ⎝ 

K ∑ 

j= 0 
e kj 

∫ 
ψ k ( x ) dx 

⎞ ⎠ ϕ j ( x 
∗) = 1 , 
16 The relations are given in ( A.8 ) and ( A.9 ). 

© The Author(s) 2024. 
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ut ϕ 0 ( ·) = 1 and ϕ k ( ·) �= 1 for k ≥ 1 with the polynomial series abo v e. Therefore, we hav e 

1 = 

( 

K ∑ 

k= 0 
e k0 

∫ 
ψ k ( x ) dx 

) 

+ 

( 

K ∑ 

k= 0 
e k1 

∫ 
ψ k ( x ) dx 

) 

ϕ 1 ( x 
∗) + · · · + 

( 

K ∑ 

k= 0 
e kK 

∫ 
ψ k ( x ) dx 

) 

ϕ K 

( x ∗) . 

he abo v e equation holds for an y x ∗ so that the coefficients on ϕ k ( x ∗) satisfy 
K ∑ 

k= 0 
e kj 

∫ 
ψ k ( x) dx = 

{ 

1 for j = 0 , 

0 for j = 1 , . . . , K, 

r 
−→ 

d T ψ E = 

−→ 

e T 1 , 

here 
−→ 

d ψ = [ 
∫ 

ψ 0 ( x ) dx , . . . , 
∫ 

ψ K 

( x ) dx ] T = [1 , 0 , 0 , . . . , 0] T and −→ 

e 1 = [1 , 0 , 0 , . . . , 0] T . Therefore,
y ( A.14 ) we have 

−→ 

e T 1 = 

−→ 

d T ψ E = 

−→ 

d T ψ V ̃

 D S −1 
q . 

his implies that 

−→ 

e T 1 S q ︸ ︷︷ ︸ 
first row of S q 

= 

−→ 

d T ψ V ︸ ︷︷ ︸ 
first row of V 

˜ D . 

Let [ P ] ij stand for the ( i, j ) th element of matrix P . 

SSUMPTION A.4. Suppose that 
[
S q 
]

1 ,i 
�= 0 and [ V ] 1 ,i �= 0 for all i ∈ { 1 , 2 , . . . , K + 1 } . 

To solve for E, we need to establish uniqueness of representation ( A.7 ). The assumption is to help us
esolve the ordering or indexing ambiguity of the eigenvalues and eigenfunctions of AB 

−1 . This assumption

llows us to generate the ith diagonal element of the unknown diagonal matrix ̃  D as 

[ ̃  D ] ii = 

[ S q ] 1 ,i 
[ V ] 1 ,i 

. 

ssumption A.4 also guarantees that ˜ D is invertible. We then have E = V ̃

 D S −1 
q . This means that we may

stimate 

f K ( x | x ∗) = 

K ∑ 

k= 0 

K ∑ 

j= 0 
e kj ψ k ( x ) ϕ j ( x 

∗) . 

As for H in f K ( z| x ∗) , we also need the invertibility of C q0 in Assumption A.3. Matrix C q0 is related
o f K ( x ∗) and its invertibility helps us reco v er the information of f ( z| x ∗) through ( A.5 ) with the known

atrices B and E. Note that matrix E is also invertible because the diagonal matrix ̃  D is also invertible by

ssumption A.4. We then have H = ( C 

−1 
q0 E 

−1 B) T for f K ( z | x ∗) = 

−→ 

ψ K 

( z ) T H 

−→ 

ψ K 

( x ∗) . Therefore, we have
dentified matrices E, H , and −→ 

q . Applying these matrix relations to the estimated coefficients ̂  a kj and ̂  b kj 

ields the unique matrices ̂  E , ̂ H , and ̂  

−→ 

q , and these matrices give the closed-form representation for ̂  αede . 
The Author(s) 2024. 

The Author(s) 2024. Published by Oxford University Press on behalf of Royal Economic Society. All rights reserv ed. F or permissions, 
lease e-mail: journals.permissions@oup.com 

sity user on 18 M
ay 2025

mailto:journals.permissions@oup.com

	1. INTRODUCTION
	2. AN EIGEN-DECOMPOSITION ESTIMATOR: A SIMPLE CLOSED-FORM APPROACH
	3. A MONTE CARLO STUDY
	4. EMPIRICAL ILLUSTRATION
	5. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	SUPPORTING INFORMATION
	Appendix: Proof Proposition2.1

