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Abstract

This paper seeks to illuminate official measures of real GDP per capita us-

ing satellite-recorded nighttime lights in a measurement error model framework.

Using recently developed results, we identify and estimate the nonlinear re-

lationship between nighttime lights and true GDP per capita, as well as the

nonparametric distribution of errors in official measures. We obtain three key

results: (i) elasticities of nighttime lights to real GDP are between 0 and 2.3

depending on countries’ income levels; (ii) GDP per capita measures are less

precise for low and middle income countries, and nighttime lights can play a

bigger role in improving such measures; (iii) our new measures of GDP, based

on the optimal combination of nighttime lights and official data, imply that some

countries’ real GDP growth may systematically differ from official data.

Keywords: Nighttime lights, measurement error, GDP per capita, elasticity

1 Introduction

Real Gross Domestic Product (GDP) is at the heart of macroeconomic analysis and

policy-making. It is the basis for measuring national economic development and com-

paring living standards across countries, and it often serves as a reference point for
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other economic variables. Measures of real GDP, however, can be quite uncertain.

Lack of statistical capacity, mismeasurement of the economy, and the existence of

informal economy, among others, can all subject real GDP measures to substantial re-

vision. This problem becomes more acute for low and middle income countries where

the data collection and compilation process is less sophisticated. Understanding the

uncertainty of these measures and constructing more accurate measures are therefore

of great importance to assess economic performance, facilitate cross-country compar-

isons, and inform policy decisions.

This paper attempts to use satellite-recorded nighttime lights to illuminate official

measures of real GDP. Mostly generated by human activity, nighttime lights are visible

from outer space and recorded by satellites. They have been shown to be correlated

with economic activity.1 Their global coverage makes them attractive as an alternative

measure of real GDP and they are increasingly used in the economics literature. How-

ever, despite their economic relevance, nighttime lights may not have a straightforward

relationship with real GDP. Meanwhile, like official measures of real GDP, they are

subject to measurement errors as well, which further complicates the estimation of the

functional relationship.

To illustrate such issues, Figure 1 compares satellite images of nighttime lights for

mainland China, the lower 48 states of the United States, and Africa between 1992

and 2013. While all of them became brighter at night in 2013, China’s transformation

was most visible. Variation in nighttime lights may thus contain useful information

on China’s real economic growth. In contrast, the United States was already bright

enough in 1992. The small change in the intensity of lights over this period may not

correspond well to economic growth, most of which likely happened on the scientific

and technological frontier rather than on infrastructure development. While the latter

was captured by satellite, the former was certainly not. Most countries in Africa,

despite their fast growth, started from low levels of income and inadequate access

to electricity. As a result, they were still mostly dark in 2013 and the information

contained in nighttime lights may or may not be sufficient for accurately assessing

economic growth.

Figure 1 highlights that the relationship between nighttime lights and real GDP

may be nonlinear, that the relative accuracy of nighttime lights to real GDP may

change, and that the extent to which nighttime lights are useful as proxy for real

economic activity may differ over time and across countries.

1See, for example, Elvidge et al. [1997], Ghosh et al. [2010], Chen and Nordhaus [2011], Henderson

et al. [2012], Pinkovskiy and Sala-i Martin [2016], among others.
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Figure 1: Examples of Satellite Images of Nighttime Lights

(a) China (mainland) 1992 (b) China (mainland) 2013

(c) United States (lower 48) 1992 (d) United States (lower 48) 2013

(e) Africa 1992 (f) Africa 2013

In this paper, we address the aforementioned issues by uncovering the distribution

of measurement errors in both official GDP measures and nighttime lights as well as

their functional relationship simultaneously. We provide a statistical framework based

on nonclassical and nonlinear measurement error models, in which the error in official

GDP per capita may depend on the country’s statistical capacity and the relationship
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between nighttime lights and true GDP per capita can be nonlinear and vary with

geographic location. Using variation across geographic locations and different levels of

statistical capacity, we establish identification of the distribution function of nighttime

lights conditional on real GDP under fairly weak and reasonable statistical assumptions

based on recently developed results for measurement error models.

Given our nonparametric identification results, estimates of nighttime lights’ elas-

ticity with respect to real GDP at different levels of income are naturally obtained.

Such elasticities can be useful in imputing changes of economic activities in regions

where official data are not available. With the estimated distributions of measurement

errors, we assess the relative uncertainty of nighttime lights and real GDP and the ex-

tent to which nighttime lights can be useful to improve real GDP measures. We then

construct new real GDP measures by optimally combining official measures, informa-

tion in nighttime lights, statistical capacity and geographic location. We focus on two

new measures. One is an optimal linear combination of official data and prediction

by nighttime lights, for which we provide an estimate of the optimal weight on night-

time lights for each observation of real GDP figure. We show that this optimal linear

measure performs very well across countries. The other measure is the semiparametric

conditional mean that is based on the full conditional distribution of true GDP given

all the observables.

To our best knowledge, this is the first paper to estimate the distribution of mea-

surement errors in official GDP and nighttime lights directly from data. The error

distributions are crucial for both understanding the uncertainty in official GDP mea-

sures and constructing more precise measures. Intuitively, we can use nighttime lights

to infer the accuracy of the official GDP. This is because nighttime lights reflect real

economic activities, and therefore, are correlated with the true GDP. In the meantime,

nighttime lights are independent of the measurement error in the official GDP. After

we identify how much nighttime lights a given amount of GDP may produce, i.e., the

production function of nighttime lights, we may infer the distribution of the true GDP

from the observed joint distribution of nighttime lights and the official GDP. Com-

paring the distribution of the true GDP with the observed distribution of the official

GDP, we may pin down the signal-to-noise ratio of the official GDP. Therefore, we

can provide better measures of the true GDP using additional information, such as

nighttime lights.

We conduct our analysis using two nighttime lights datasets. The first one spans

from 1992 to 2013 and the second from 2013 to 2017. Recorded by different satellite

systems, the two datasets are not only useful in extending the analysis of nighttime
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lights and real GDP to more recent date, but they also serve a purpose of validating

the robustness of our identification and estimation strategy.

There are four main findings in this paper. First, the relationship between night-

time lights and real GDP is nonlinear. In our baseline specification, we estimate

that the elasticity of nighttime lights with respect to real GDP per capita can be as

high as 2.3 for low income countries but is close to 0 for high income countries. The

elasticity steadily decreases as real GDP per capita increases, reflecting different de-

veloping mode at different stages of economic development. Intuitively, countries at

early stages of development tend to build more infrastructure that generates lights at

night, such as buildings and roads; countries at more advanced stages tend to focus

more on technological innovation, which is less associated with lights at night.

Second, we find, perhaps not surprisingly, that measurement errors in real GDP per

capita (and hence real GDP) are bigger for countries whose income is lower. There is

a sharp distinction between high income countries and the rest of the countries. While

high income countries have measurement errors of real GDP concentrated at zero, low

and middle income countries have fat tails in the distribution of measurement errors.

In other words, there is greater uncertainty in the latter countries’ GDP measures and

the measurement error can be substantial at times. The distinction between those with

high and low statistical capacity among low and middle income countries, however, is

blurred.

Third, nighttime lights are most useful for assessing and augmenting measures of

real GDP in low and middle income countries. We find that the optimal weight of

our new measure of real GDP on light-predicted GDP reaches 70% for middle income

countries, but it declines for countries at either end of the income spectrum. For

countries with extremely low levels of real GDP per capita, it is rather dark at night

and as such the uncertainty in light-predicted GDP can be quite high. In contrast, for

countries with high levels of real GDP per capita, nighttime lights are bright enough

to reach the saturation level of satellite sensors and hence may not adequately reflect

variations in economic activities. More fundamentally, limited access to electricity for

low income countries and post-industrialization of high income countries are likely to

disassociate their economic development from nighttime lights.

Finally, comparing our new measures with official measures of real GDP, we find

that there are two types of discrepancies. First, some countries have systematically

different real GDP measures than our new measures. Most notably for China, our

new measure implies that annual real GDP growth is lower than official measures by

1.9 percentage points on average in the 1990s and 2000s, and 3.4 percentage points in
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the wake of the 2008 global financial crisis. We also find that official GDP growth is

smoother than our new measure after 2008.

Second, countries disrupted by conflicts and political instability often underesti-

mated the deterioration of the economy during downturns and its recovery afterwards.

It is likely that periods of economic disruption made it difficult to track the economy

accurately and the emergence of informal economy in subsequent restoration did not

enter national accounts. For example, conflicts might simply disrupt tax registration

of firms that would otherwise have been recorded.

The rest of the paper is organized as follows. Section 2 briefly reviews related litera-

ture. Section 3 and Section 4 describe our data and statistical framework , respectively.

We present our results in Section 5. Section 6 concludes. Additional information on

data is in Appendix A. Mathematical proofs of identification and asymptotic properties

are provided in Appendix B. Robustness checks, including simulations and different

estimates, are discussed in Appendix C.

2 Related Literature

This paper is closely related to several strands of literature.

First, we contribute to the growing literature on understanding economic growth

through the lens of satellite-recorded nighttime lights. Since the seminal work of

Henderson et al. [2012], nighttime lights have been increasingly used as a proxy for

economic activity. For instance, Pinkovskiy and Sala-i Martin [2016] assess the relative

quality of GDP per capita and survey means by comparing them to nighttime lights;

Storeygard [2016] investigates the role of transport costs on the economic activity of

cities proxied by nighttime lights; Alesina et al. [2016] use nighttime lights to study

ethnic inequality; Henderson et al. [2018] studies the spatial distribution of economic

activity proxied by nighttime lights. While most of the literature use nighttime lights

directly as an alternative measure of real economic activity, we show that the relation-

ship between nighttime lights and real GDP may differ for countries at different stages

of development.

From a statistical perspective, Henderson et al. [2012] and Pinkovskiy and Sala-i

Martin [2016] construct new measures of real GDP growth and real GDP per capita,

respectively, through the combination of nighttime lights and official or survey-based

GDP measures. While they obtain constant weights on nighttime lights, we take a

step forward and show that the information content on real GDP from nighttime lights

differ for each observation. For each country at each point in time, our optimal linear
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measure uses a different optimal weight on light-predicted GDP, and this can only

be achieved when we uncover the entire distribution of measurement errors in both

nighttime lights and official measures of real GDP.

Second, this paper is related to the measurement error literature on identification

and estimation of measurement error models. Our statistical framework is based on

recently developed results for nonclassical measurement error models. Since Hu and

Schennach [2008], we have been able to generally identify and estimate nonlinear mod-

els with nonclassical measurement errors in a continuous variable. When there are only

two continuous measurements for a continuous latent variable as in the current paper,

nonparametric identification requires additional data information or extra restrictions.

Carroll et al. [2010] use a secondary survey sample to achieve nonparametric identifi-

cation, which can be interpreted as identification with two continuous measurements

and two discrete instruments. Schennach and Hu [2013] impose additivity and inde-

pendence to show identification is feasible with two continuous measurements only.2

Our method relies on the latter two papers with official GDP and nighttime lights

as two continuous measurements and statistical capacity and geographic location be-

ing two discrete instruments. For high income countries, our identification of error

distributions relies on additivity and independence assumptions.

Third, we contribute to the literature on improving the measurement of the econ-

omy from a measurement-error perspective. Aruoba et al. [2016] improves historical

United States’ GDP growth at relatively high frequency and find the persistence of

aggregate output dynamics to be stronger than previously thought. Feng and Hu

[2013] show that the official US unemployment rate substantially underestimates the

true level of unemployment. This paper aims to improve annual real GDP estimates

in a measurement error model setting for low and middle income countries.

Finally, we make a contribution to the burgeoning literature on bringing satellite

data to economic analysis. Donaldson and Storeygard [2016] provide a comprehensive

review of applications of satellite data in economics. While many applications focus

on converting satellite images to physical quantities relevant for economics, such as

nighttime lights, greenness, or temperature, we focus on examining the relationship

between such quantities and economic variables of interest from an econometric per-

spective. Our method can be applied broadly to a wide range of remote sensing data,

as they inevitably contain measurement errors and their relationship with economic

variables of interest may not be simple and linear.

2See Hu [2017] for a short survey of the recent developments in this literature.
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3 Data and Stylized Facts

3.1 Nighttime Lights

The National Oceanic and Atmospheric Administration (NOAA) provides average-

radiance cloud-free composites of nighttime lights data, which we use in this paper.

As of now, there are three sets of nighttime lights data available that cover different

time periods: DMSP/OLS annual composites between 1992 and 2013, VIIRS monthly

composites from April 2012 onward, and VIIRS annual composites in 2015 and 2016.

Annual and monthly composites were processed to different extents by scientists at

NOOA. For annual composites, observations affected by sunlight, moonlight, glare,

aurora, and other temporal lights have been removed. However, monthly composites

have not been filtered to screen out those lights.

Figure 2: Nighttime Lights in 2010

We focus primarily on DMSP/OLS data in this paper, but also extend our analysis

using annual averages of VIIRS monthly composites.3 Given the very limited sample

size of VIIRS annual composites, we only use it for cross-checks. Figure 2 provides an

example of the DMSP/OLS nighttime lights image in 2010.

To relate nighttime lights data to economic variables, such as GDP, it is important

to understand the numeric pixel values of satellite images. Table 1 presents the sensor

ranges of DMSP/OLS and VIIRS as well as their mapping to numeric pixel values.

3Unless noted otherwise, this is the data we use when we refer to VIIRS data.
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Table 1: Numeric Pixel Values of Satellite Images

DMSP/OLS VIIRS

Radiance range (watts/cm2/sr) (10−10, 10−5) (3× 10−9, 0.02)

Numeric value of pixels 0, 1, · · · , 63 (−1, 2× 107)

Formula DN
R

= DNmax

Rsat
Radiance×109

Notes: DN and R are digital numbers of pixels and radiance, respectively.

Rsat is the saturation radiance and DNmax = 63 is the maximum digital

number of DMSP/OLS satellite image pixels. See, for example, Hsu et al.

[2015], Shi et al. [2014].

One of the limitations of DMSP/OLS data is that it is top-coded, with the max-

imum pixel value corresponding to the saturation radiance of the satellite sensors.

Despite such top coding, variation in nighttime lights still contain ample information

on economic activities for most countries. As shown in Appendix A, while top coding

might be a concern for high income city states, such as Singapore, where almost all

nighttime lights reach saturation radiance, saturated pixels only account for a very

small fraction of all pixels with positive values for most countries. For example, they

account for less than 2.4% in the United States, 1.1% in China, and 0% in Sierra

Leone.

By comparison, VIIRS has a radiance range that is orders-of-magnitude wider and

as such can be viewed as virtually not top-coded.4 However, because VIIRS monthly

composites have not been filtered to screen out temporal lights, its data can be quite

noisy that background lights sometimes overwhelm artificial lights in low-lit areas.

The Database of Global Administrative Areas (known as GADM) provides admin-

istrative shape files for all countries in the world. For each country, we clip nighttime

lights at each point in time to their country borders and aggregate the numeric pixel

values of all pixels within their borders. We further divide the sum of nighttime lights

by population and define the logarithm of total nighttime lights per capita as night

light intensity, which is the variable extensively used in this paper when we refer to

nighttime lights.

Appendix A provides more details on DMSP/OLS and VIIRS as well as information

on statistical distributions of nighttime lights data.

4For example, the brightest pixel of the United States in 2016 VIIRS annual composites has a

numeric value of 4006.38 (nano watts/cm2/sr) while the largest value the sensors can pick up is of

the order of 107.
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3.2 GDP, Population, Statistical Capacity, and Country Location

We obtain GDP per capita (PPP, constant 2011 international dollars) and population

data from the World Bank. We focus on levels of GDP per capita rather than growth

rates for two reasons. First, conceptually both nighttime lights and GDP are direct

measures of economic activity. To the extent that their relationship could be nonlinear

in levels, the relationship in growth rates can be even more complex. Second, measure-

ment error of GDP exists in levels and would be differenced in growth rates, making

it difficult to tackle when directly working with growth rates. In fact, it is known that

a first-difference estimator would make the measurement error problem worse because

the first-difference reduces the true signal and enhances the noise.

The World Bank also provides statistical capacity ratings for low and middle in-

come countries. While the ratings change over time, the change is small for most

countries. For this reason we group countries into three categories. One category is

high income countries. The other two are low and middle income countries, which

we divide into those below the median of statistical capacity rating and those above.

Such discretization has the additional benefit of reducing the measurement errors in

statistical capacity itself.

DMSP/OLS and VIIRS satellites are polar orbiting – their orbits are perpendicular

to the direction of Earth’s rotation. As such a natural characterization of a country’s

location that could account for measurement errors in nighttime lights is its latitude.

To obtain a country’s latitude, we use the latitude of the centroid of its largest contigu-

ous block.5 Since countries differ substantially in their geographic coverage, we further

discretize country locations into binary values based on whether their centroid’s lat-

itude is between the Northern and Southern Tropic or outside.6 Such classification

also takes into account the number of countries in each geographical subarea. An

alternative classification is to group countries by Northern and Southern Hemisphere,

but the Souther Hemisphere contains substantially fewer countries.

5For instance, the United States has a few separate bodies of landmass, such as Alaska, Hawaii,

and the lower 48 states. We use the centroid of the lower 48 states as the location of the United

States. Appendix D.2 provides an illustration.
6Countries between the tropics generally receive more sunshine than those outside, which might

affect background noise in nighttime lights. As an extreme example, the sun sets late in summer

for countries closer to the arctic circle. For VIIRS monthly composites, nighttime lights are zero for

Nordic countries during the summer months. While this is less concerning when we use the annual

average of monthly data, differentiating measurement errors for countries at different locations can

nevertheless be helpful.
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3.3 Summary Statistics

In total we have an unbalanced panel of 182 countries and 3870 observations based on

DMSP/OLS nighttime lights data. The majority of countries have data spanning from

1992 to 2013. A similar panel is constructed for VIIRS nighttime lights data, where

there are 184 countries and 920 observations. The discrepancy between the number of

countries in the two datasets arises from the availability of statistical capacity ratings.7

Tables 2 and 3 present the summary statistics based on nighttime lights data from

DMSP/OLS and VIIRS, respectively. As can be seen from the table, richer countries

tend to be brighter at night.

Table 2: Summary Statistics (DMSP/OLS)

Location Statistical Capacity Night lights per 1000 people real GDP per capita # of countries # of obs

Between Tropics Low 66 9490 12 228

Between Tropics High 58 9680 36 786

Between Tropics (High income) 186 40214 34 729

Outside Tropics Low 17 5311 57 1192

Outside Tropics High 21 6614 37 812

Outside Tropics (High income) 78 62074 6 123

Total - 63 15097 182 3870

Table 3: Summary Statistics (VIIRS)

Location Statistical Capacity Night lights per 1000 people real GDP per capita # of countries # of obs

Between Tropics Low 101 9250 10 50

Between Tropics High 63 12074 30 150

Between Tropics (High income) 172 40720 45 225

Outside Tropics Low 28 5169 51 255

Outside Tropics High 24 8881 35 175

Outside Tropics (High income) 81 46064 13 65

Total - 76 18807 184 920

7The two countries are Barbados and the Czech Republic.
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3.4 Stylized Facts

3.4.1 Correlations

Nighttime lights directly reflects some economic activities at night, such as traffic

flows, nearly all types of consumption, and factories working around the clock. It also

reflects less productive activities, such as lights from street lamps and skyscrapers.

Obviously, the relationship between nighttime lights and economic activity is complex.

We abstract from exact channels through which economic activities produce lights at

night. Instead, our use of nighttime lights as a measure of true GDP is predicated on

the high correlation between them.

Table 4 presents the correlations between real GDP per capita and night light

intensity for the three sets of nighttime lights data currently available. The overall

correlation is very high (> 0.85) for annual composites of both DMSP/OLS and VI-

IRS data and slightly less (0.66) for annual averages of VIIRS monthly composites.

The correlation is decreasing in general as countries’ income level rises. VIIRS annual

composites are ideal data for revealing the correlations because background noise has

been removed and there is essentially no top-coding. Notably, by comparison, top cod-

ing in DMSP/OLS annual composites makes the correlation for high income countries

weaker,8 while background noise in VIIRS monthly composites makes it negative for

low income countries.9

Table 4: Correlation between GDP per capita and Night Light Intensity

DMSP/OLS 1992-2013 (A) VIIRS 2015-2016 (A) VIIRS 2013-2017 (M)

Low income 0.70 0.47 -0.02

Lower middle income 0.66 0.42 0.29

Upper middle income 0.40 0.50 0.42

High income 0.09 0.20 0.15

All countries 0.85 0.87 0.66

Notes: In parentheses, A indicates annual data and M annual average of monthly data. Variables are in

logarithms.

8Another contributing factor is the overpass time of the satellites. While DMSP/OLS’s overpass

time is between 7-9pm local time, that of VIIRS is after midnight. See Appendix A for more details.
9The negative correlation arises mainly because of a few countries with very low GDP per capita,

where background noise overwhelms artificial lights. For example, excluding the Central African

Republic, which has the lowest GDP per capita in the sample, the overall correlation is 0.12.
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3.4.2 Nonlinearity

As shown in Table 4, the fact that the correlation between nighttime lights and GDP

is decreasing with income levels suggests that their relationship could be nonlinear.

Figure 3 contrasts night light intensity and real GDP per capita graphically. The non-

linearity is visible in annual data. For annual averages of VIIRS monthly composites,

it is noticeable that night light intensity is noisy at low levels of real GDP per capita

as a result of background noise.

Figure 3: Nighttime Lights vs. GDP (1992-2017)

(a) DMSP/OLS 1992-2013 (b) VIIRS 2013-2017

Notes: Each dot/square represents a country-year observation. On right, blue dots are annual averages of

VIIRS monthly composites (2013-2017) and red squares are VIIRS annual composites (2015-2016).

Table 5: Nonlinear Relationship between Night Light Intensity and GDP per capita

DMSP/OLS 1992-2013 (A) VIIRS 2015-2016 (A) VIIRS 2013-2017 (M)

(1) (2) (3) (4) (5) (6)

Night Light Intensity

(log) GDP per capita 4.163*** 1.956*** 3.974*** 2.654 0.721* 5.136***

(0.143) (0.137) (0.505) (2.110) (0.398) (1.517)

(log) GDP per capita squared -0.171*** -0.0928*** -0.151*** -0.0958 0.00155 -0.254***

(0.00800) (0.00780) (0.0277) (0.115) (0.0218) (0.0822)

country FE - Yes - Yes - Yes

year FE - Yes - Yes - Yes

Obs 3870 3870 367 366 920 920

Adjusted R2 0.751 0.983 0.771 0.998 0.431 0.950

Notes: FE is fixed effects. Standard errors are in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Clustered

standard errors (not shown in the table) at the country level do not change the level of significance of the

second order term of GDP in any of the above regressions.

Before delving into our statistical framework, it is useful to examine the data with
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some simple regressions. Table 5 presents the results from ordinary least squares

regressions of night light intensity on real GDP per capita with and without fixed

effects. For DMSP/OLS data (columns (1) and (2)), the statistical significance of the

second order term of GDP indicates that the relationship between night light intensity

and real GDP per capita is nonlinear. The nonlinearity holds with and without country

and year fixed effects, which suggests that as a country becomes richer, the elasticity

of night light intensity with respect to real GDP per capita decreases, a point that we

will confirm in our formal statistical framework.

For VIIRS annual composites, column (3) suggests that the relationship is also

nonlinear. Note that VIIRS annual composites are not top-coded. The nonlinearity

therefore does not come from concavity imposed by top coding, which might be a

concern for DMSP/OLS data. Column (4) shows that such nonlinearity is driven

by country fixed effects. Not surprisingly, with only two years of observations for

VIIRS annual composites, variations in nighttime lights almost entirely come from

discrepancies between countries rather than within countries. From column (1) to (4),

R2 is high (> 0.75) without fixed effects and very high (> 0.98) with fixed effects. This

implies that night lights are useful for cross-country comparisons while fixed effects are

important to account for some level shifts, i.e., countries might differ systematically

in their habits of using lights at night.

For annual averages of VIIRS monthly composites, the relatively low R2 in column

(5) stems directly from the contamination of background light noise of a few low income

countries. Controlling for fixed effects, the nonlinearity is visible.

Taken together, there is strong evidence that the relationship between night light

intensity and real GDP per capita is nonlinear. The nonlinearity exists both between

and within countries – the latter only emerges with enough time span for a country’s

income level to rise substantially.

4 Statistical Framework

In this section, we present a statistical framework to analyze the nighttime lights data

in relation to GDP. Under fairly weak assumptions, the nonlinear relationship between

nighttime lights and GDP and the distribution of measurement errors in each of them

are identified. Elasticities of nighttime lights with respect to GDP per capita are

naturally obtained. We then construct a more accurate and robust measure of GDP

per capita by optimally combining national accounts data and prediction by nighttime

lights.
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4.1 Baseline Setup

Let y∗i,t denote the true real GDP per capita in logarithm for country i in year t. It

is measured as yi,t with error. Let si,t stand for the statistical capacity of country i

at time t. Let zi,t denote nighttime lights per capita in logarithm. It is related to the

true real GDP per capita but also contains measurement error. Let li stand for the

latitude of the country.

Our baseline specification assumes that official GDP contains an additive measure-

ment error, whose distribution varies with statistical capacity,

yi,t = y∗i,t + εyi,t(si). (1)

Meanwhile, nighttime lights are related to the true latent GDP through an unknown

production function m(·) and an additive error term that differ by geographic location,

zi,t = m(y∗i,t) + εzi,t(li) (2)

The additive nature of measurement errors are not necessary for identification, but are

assumed for the purpose of estimation.

The specification of the production function m(·) is informed by the data. As

suggested by Figure 3, a quadratic function form is sufficient.10 The distributions of

the error terms εyi,t and εzi,t are allowed to be nonparametric.

A Heuristic Example

A special case of Equations (1) and (2) is when the night light production function is

linear and error distributions are the same for all countries:

yi,t = y∗i,t + εyi,t,

zi,t = βy∗i,t + εzi,t.
(3)

Under the assumption that measurement errors are classical, β cannot be identified

from second moments. To see this, we take variances and covariances of the above

equations,

var(y) = var(y∗) + var(εy),

var(z) = β2var(y∗) + var(εz),

cov(y, z) = βvar(y∗).

10We consider higher order polynomials in the Appendix.
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Because there are only three equations but four unknowns (var(εy), var(εz), var(y∗),

and β), the system cannot be identified. The literature has dealt with identification in

this case by either assuming additional relationship between var(εy) and var(εz) (Hen-

derson et al. [2012]) or adding auxiliary data (Pinkovskiy and Sala-i Martin [2016]).

In fact, Schennach and Hu [2013] shows that the system (3) can be identified

with higher moments. In other words, β and the distributions of y∗, εy and εz can be

uniquely estimated from the joint distribution of y and z.

In our baseline specification (equations (1) and (2)), we relax the assumptions in

the linear special case (3) substantially. First, we allow the night light production

function to be nonlinear, which is suggested by evidence in Section 3.4.2. Second, we

allow the error terms to vary with a country’s statistical capacity and location, which

is more realistic.

4.2 Nonparametric Identification

We obtain nonparametric identification in a more general setting than our baseline

specification, where the error terms need not be additive.

Let f(·|·) be a generic conditional probability density function. We make the

following assumptions.

Assumption 1

f(zi,t|y∗i,t, yi,t, si, li) = f(zi,t|y∗i,t, li). (4)

This assumption implies that the nighttime lights are related to the true real GDP

per capita and the geographic location of a country, but have nothing to do with how

its GDP is measured or its statistical capacity.

Assumption 2

f(yi,t|y∗i,t, si, li) = f(yi,t|y∗i,t, si). (5)

This assumption implies that statistical capacity captures how accurate GDP is mea-

sured regardless of the location of the country.

With economic Assumptions 1 and 2 and four additional technical assumptions in

Appendix B.1, we have the following nonparametric identification result:

Theorem 1 Suppose Assumptions 1–6 hold. Then, the distribution function f(z, y, s, l)

uniquely determines the joint distribution function f(z, y, y∗, s, l) satisfying

f(z, y, y∗, s, l) = f(z|y∗, l)f(y|y∗, s)f(y∗, s, l). (6)
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Proof : See Appendix B.2.

This theorem presents a set of sufficient conditions under which all the distribu-

tions containing the latent true GDP can be uniquely determined by the observed

joint distribution of GDP and nighttime lights from countries with different statistical

capacity and at different locations:

f(zi,t, yi,t, si, li) =

∫
f(zi,t, yi,t, y

∗
i,t, si, li)dy

∗

=

∫
f(zi,t|y∗i,t, li)f(yi,t|y∗i,t, si)f(y∗i,t, si, li)dy

∗
i,t

Such a nonparametric identification result implies that consistent estimation is

possible for parametric, semiparametric, or nonparametric specifications. In order to

focus on the relationship between the nighttime lights and the latent true GDP and

also to take the sample size into account, we adopt the baseline specification to simplify

the measurement error structure.

4.3 Sieve Maximum Likelihood Estimation

Given the general nonparametric identification, we provide a semiparametric estimator

as suggested in Carroll et al. [2010]. We develop our estimator based on an i.i.d sample,

which can be extended to account for covariates and time series data. We assume that

there is a random sample {zi, yi, si, li}ni=1.

The specification of the production function m(·) is informed by the data (Figure 3)

and assumed to be a quadratic function. The error terms εyi,t and εzi,t are allowed to have

a general density function. Therefore, in this empirical study, we adopt a parametric

specification of function m(·; θ) and leave other elements nonparametrically specified in

the baseline specification in equations (1) and (2). Let the true value of the unknowns

be α0 ≡ (θT0 , fy∗|s,l, fεy |s, fεz |l)
T , where fA|B denotes the distribution of A conditional

on B. We then introduce a sieve MLE estimator α̂ for α0, and establish the asymptotic

normality of θ̂. These results can also be extended to the case where the function m

is misspecified.

In the sieve MLE estimator, we use finite dimensional parametric representations

to approximate the nonparametric densities in α0, where the dimension may increase

with the sample size. Let A be the parameter space. The log-joint likelihood for

α ≡ (θT , f1, f2, f3)T ∈ A is given by:

n∑
i=1

log f(zi, yi, si, li) =
n∑
i=1

`(Di;α),
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in which Di = (zi, yi, si, li) and

`(Di;α) ≡ `(zi, yi, si, li; θ, f1, f2, f3)

= log{
∫
f1(y∗|si, li)f2(yi − y∗|si)f3(zi −m(y∗; θ)|li)dy∗}+ log f(si, li).

Let E[·] denote the expectation with respect to the underlying true data generating

process for Di. Then

α0 = arg sup
α∈A

E [`(Di;α)] .

We then use a sequence of finite-dimentional sieve spaces An to approximate the

functional space A. The semiparametric sieve MLE α̂n ∈ A is defined as:

α̂n = arg max
α∈An

n∑
i=1

`(Di;α).

Under assumptions presented in Appendix B.4, we show the consistency of estimator

α̂n for α0 and the convergence rate of the nonparametric components. Furthermore,

we show in Appendix B.5 that the sieve MLE θ̂n is asymptotically normally distributed

around the true value θ0. When the parametric model E[z|y∗, l] = m(y∗; θ) is mis-

specified, the estimator θ̂n is still asymptotically normally distributed, but around a

pseudo true value. In fact, the estimator θ̂n is semiparametrically efficient for θ0.

4.4 Constructing Better Measures of GDP

With the conditional distribution of nighttime lights and official real GDP per capita

at hand, we construct new and more accurate measures of real GDP per capita that

optimally combine the information in these two measures.

First, we estimate the optimal linear combination of official data and prediction

by nighttime lights. As a convex combination of two GDP measures, it is very robust

across countries.

We then take a step further and provide a measure based on the semiparametric

conditional mean, which makes full use of the observed information through conditional

distributions. However, it requires more data so that it may not be robust in the area

where observations are sparse.

4.4.1 Optimal Linear Measure

The optimal linear measure is based on a linear combination of official real GDP per

capita and prediction by nighttime lights:

ŷ∗i,t = λi,tŷi,t + (1− λi,t)yi,t, (7)
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where ŷi,t is nighttime light-predicted GDP per capita, yi,t is official GDP per capita,

and λi,t is the weight.

Obtaining prediction by nighttime lights is necessary for converting night light

intensity into measures of real GDP per capita. The weight λi,t determines the extent

to which the new GDP measure depends on the prediction by nighttime lights.

Crucially, to obtain the optimal weight λ∗i,t, we need information on measurement

errors in both ŷi,t and yi,t, which in turn rely on distributions of measurement errors

in nighttime lights and official GDP per capita identified previously.

Prediction by Nighttime Lights

We regress official real GDP per capita on nighttime lights with country and year

fixed effects,

yi,t = β1zi,t + β2z
2
i,t + δiD

c
i + γtD

y
t + ηi,t, (8)

where Dc and Dy are country and year dummies, respectively. The nighttime light-

predicted real GDP per capita is defined as

ŷi,t = β̂1zi,t + β̂2z
2
i,t + δ̂iD

c
i + γ̂tD

y
t . (9)

The predictive model in equation (9), despite its parsimony, takes several important

factors into account. The second order term is intended to capture the nonlinearity

between night light intensity and real GDP per capita. Country fixed effects allow for

countries’ different habits of using lights at night. Year fixed effects take account of

factors such as satellite sensor decay over time.

Optimal Linear Combination

To obtain the optimal linear combination, we minimize the conditional mean

squared error of our new measure, i.e.,

λi,t = arg min
λ

E
[
(ŷ∗i,t − y∗i,t)2|zi,t, si, li

]
, (10)

where y∗i,t is the true GDP. By equations (1) and (2), this conditional mean squared

error can be decomposed into two parts:

E
[
(ŷ∗i,t − y∗i,t)2|zi,t, si, li

]
= E

[
(λ(ŷi,t − y∗i,t) + (1− λ)(yi,t − y∗i,t))2|zi,t, si, li

]
= λ2E

[(
ŷi,t − y∗i,t

)2 |zi,t, si, li
]

+ (1− λ)2E
[
(εy)2 |si

]
. (11)
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The first term in equation (11) captures the uncertainty in nighttime light-predicted

GDP per capita,11 whereas the second term captures the uncertainty in official GDP

per capita.

The optimal weight then depends on the relative uncertainty in these two measures

of GDP per capita and equals,

λi,t =
E
[
(εy)2 |si

]
E
[(
ŷi,t − y∗i,t

)2 |zi,t, si, li
]

+ E
[
(εy)2 |si

] . (12)

Notice that λi,t is always in [0, 1], which makes the optimal linear measure always

between official GDP per capita and prediction by nighttime lights. In addition, λi,t

is country and time dependent.

4.4.2 Semiparametric Conditional Mean

Given that we have identified the distribution of the true GDP joint with all the

observables in the semiparametric specification, a natural measure of the true GDP

is the conditional mean of the distribution, i.e., E[y∗i,t|yi,t, zi,t, si,t, li]. Notice that the

conditional mean may also be considered as a minimizer of the mean squared error

conditional on all the observables, particularly including yi,t, which makes it different

from the previous optimal linear measure. Under our nonparametric identification and

semiparametric specification, it follows that

E[y∗i,t|yi,t, zi,t, si, li] =

∫
y∗f(y∗|si, li)f(yi,t − y∗|si)f(zi,t −m(y∗; θ)|li)dy∗∫
f(y∗|si, li)f(yi,t − y∗|si)f(zi,t −m(y∗; θ)|li)dy∗

.

Compared to the optimal linear measure, while the the semiparametric conditional

mean E[y∗i,t|yi,t, zi,t, si, li] has the clear advantage of making full use of the information

in the conditional distributions, its nonparametric feature makes it less robust than the

previous optimal linear measure because it requires a large sample size to perform well.

In the sparse area of the empirical distribution of (yi,t, zi,t, si, li), the semiparametric

conditional mean can be volatile, whereas the optimal linear measure remains robust;

in the area where the density f(y∗i,t|yi,t, zi,t, si, li) takes a relatively larger value, it is

stable and close to the optimal linear measure. This implies, for example, for extremely

11Note that

E
[(
ŷi,t − y∗i,t

)2 |zi,t, si,t, li] =

∫ (
ŷ(zi,t)− y∗i,t

)2
fεz (zi,t −m(y∗))f(y∗|si, li) dy∗∫

fεz (zi,t −m(y∗))f(y∗|si, li) dy∗

is a function of zi,t. And we treat the country and year dummies as exogenous variables given

(zi,t, si,t, li).
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low or high income countries where observations are few, it is likely to be quite off,

and for middle income countries, it is close to the optimal linear measure. For this

reason, we make the optimal linear measure our choice of new measure for the true

real GDP per capita.

5 Results

5.1 Nighttime Lights’ Elasticity of Real GDP per capita

Table 6 displays the estimated nighttime light production function for DMSP/OLS

data. The estimates are quite precise with each parameter statistically significant at

the 0.01 level. Notably, the parameter estimate on the quadratic term is non-zero,

confirming the nonlinear relationship indicated in Section 3.4.2.

Table 6: Estimated Light Production Function (DMSP/OLS)

m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.398 1.234 -0.244

Standard Error (0.176) (0.139) (0.049)

Notes: Standard errors are based on 400 sample bootstraps. Night

light intensity and log real GDP per capita are re-centered at zero for

estimation. The center corresponds to real GDP per capita of $7,503

(2011 international dollars).

With a quadratic light production function m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2, the elas-

ticity of night light intensity with respect to real GDP per capita can be conveniently

calculated as its derivative, θ1+θ2y
∗.12 Table 7 presents point estimates of a set of elas-

ticities at various income levels. Most low income countries have elasticities around

2 whereas most high income countries have elasticities below 0.5. For countries or

subnational regions where GDP information is not available, these elasticities can be

useful to impute GDP from nighttime lights.

Table 8 presents the results for VIIRS data. The estimates are much less precise

due to the limited number of observations. In particular, the quadratic term is not

statistically significant for the full sample. This is mainly driven by a few countries with

12For the purpose of estimation, we have re-centered the GDP data at zero. As such the elasticity

of real GDP per capita follows θ1 + θ2(y∗ − log(7503)), where y∗ is the logarithm of real GDP per

capita in 2011 international dollars.
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Table 7: Nighttime Lights’ Elasticities (DMSP/OLS)

Real GDP per capita 500 1,000 2,000 3,000 5,000 10,000 20,000 30,000 50,000

Night Light Elasticity 2.34 2.04 1.74 1.56 1.34 1.04 0.74 0.56 0.34

Notes: Real GDP per capita is in 2011 international dollars.

extremely low income whose background noise overwhelms nighttime lights, as shown

in the comparison between monthly and annual composites in Figure 3b. In fact, if we

exclude five countries with lowest average income between 2013-2017, the quadratic

term turns statistically significant.13 The elasticity of VIIRS night light intensity

with respect to real GDP per capita, if one ignores the quadratic term, is close to

unity. With the quadratic term, Table 9 presents point estimates of elasticities. There

is considerable uncertainty in these estimates because of the sample size. Notably,

excluding the five countries, elasticity estimates become higher for low income countries

and lower for high income countries.

Table 8: Estimated Light Production Function (VIIRS)

m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.267 0.959 -0.164

Standard Error (0.170) (0.248) (0.157)

Excl. 5 countries with lowest income

Point Estimate 0.347 0.832 -0.349

Standard Error (0.182) (0.277) (0.173)

Notes: Standard errors are based on 400 sample bootstraps. Night

light intensity and log real GDP per capita are re-centered at zero for

estimation. The center corresponds to real GDP per capita of $10,365

(2011 international dollars). Excluding 5 low income countries, (the

Central African Republic, Burundi, Congo, Niger, and Liberia), the

center corresponds to real GDP per capita of $11,145.

With an abuse of notation, Figure 4 superimpose the estimated light production

functions on the data. Because each graph’s horizontal axis corresponds to true GDP

per capita for the model but official GDP per capita with measurement errors for the

data, they are not directly comparable. Nevertheless, the two graphs show similar

13The five countries are the Central African Republic, Burundi, Congo, Niger, and Liberia.
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Table 9: Nighttime Lights’ Elasticities (VIIRS)

Real GDP per capita 1,500 2,000 3,000 5,000 10,000 20,000 30,000

Night Light Elasticity 1.59 1.50 1.37 1.20 0.97 0.75 0.61

Excl. 5 countries with lowest income

Night Light Elasticity 2.23 2.03 1.75 1.39 0.91 0.43 0.14

Notes: Real GDP per capita is in 2011 international dollars.

Figure 4: Estimation Results with Quadratic Light Production Function

(a) DMSP/OLS (b) VIIRS

evidence of nonlinearity in the relationship between real GDP per capita and night

light intensity.

5.2 Uncertainty in Real GDP per capita

Figure 5 compares the probability density function of measurement errors of real GDP

per capita for three groups of countries: high income, high statistical capacity, and

low statistical capacity. The latter two groups contain only low and middle income

countries.

There is a sharp distinction between high income countries and the rest. Mea-

surement errors of high income countries’ real GDP per capita are concentrated at

zero, indicating relatively high precision in official figures. In contrast, low and mid-

dle income countries’ distribution of measurement errors have fat tails, suggesting

that measurement errors are generally of bigger size. Among low and middle income

countries, both DMSP/OLS and VIIRS data suggest that those with high statistical

capacity tend to have similar measurement errors to those with low statistical capacity.
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Figure 5: Distribution of Measurement Errors of Real GDP per capita

(a) DMSP/OLS (b) VIIRS

Notes: Of low and middle income countries, high capacity and low capacity refer to those above and below

the median of statistical capacity, respectively. The spikes in the estimated probability density functions

result from the choice of base functions used to approximate the distributions of measurement errors. As

the sample size increases, these spikes will typically be smoothed out.

5.3 New Measures of Real GDP per capita

We focus on the optimal linear measure of real GDP per capita presented in equation

(7), which depends on nighttime light-predicted real GDP per capita, official GDP per

capita, as well as the optimal weights to combine them.

The high correlations between night light intensity and GDP per capita, as indi-

cated in Table 4, imply that prediction by night lights (equation (9)) would in general

be close to official GDP per capita. Table 10 compares the mean squared error of re-

gression (8) between countries with different income status. The mean squared error of

light-predicted GDP per capita for low income countries is almost twice as large as high

income countries. In other words, there is greater discrepancy between light-predicted

GDP per capita and official figures for low income countries.

The optimal weights are calculated according to equation (12). Figure 6 contrasts

the optimal weights against real GDP per capita based on DMSP/OLS data.14 There

is broadly a bell-shaped pattern. Countries with very low or high income tend to have

small weights on prediction by nighttime lights, whereas countries in the middle of the

income spectrum have comparatively high weights.

The optimal weight makes use of the relative accuracy of nighttime light-predicted

GDP and official GDP figures. Intuitively, for countries with extremely low levels of

14Optimal weights based on VIIRS data display a similar pattern.
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Table 10: Mean Squared Error by Income Status

World Bank

Country Classification

Low

Income

Lower Middle

Income

Upper Middle

Income
High Income

Mean squared error 0.02 0.02 0.07 0.01

# observations 1212 1121 673 852

Notes: This table compares the MSE of the regression yi,t = β1zi,t+β2z2i,t+δiD
c
i +γtD

y
t +ηi,t

for countries of different income groups.

Figure 6: Optimal Weights and Real GDP per capita: DMSP/OLS 1992-2013

real GDP per capita, it is rather dark at night and as such the uncertainty in nighttime

light-predicted GDP can be quite high. For example, night light intensity for Malawi

is almost zero as a result of paltry access to electricity in the country. Our optimal

weights on nighttime light-predicted GDP are below 0.05 for Malawi. In contrast, high

income countries tend to have the most accurate national accounts data. It is therefore

not surprising that we also obtain almost zero weights for high income countries such

as the United States.
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Nighttime lights can play a big role in improving real GDP per capita measures for

the majority of middle and low income countries. Figure 6 shows that for fragile states

like Sierra Leone, emerging markets such as China, Brazil, Indonesia, and Pakistan,

our optimal weights on nighttime light-predicted GDP range from 0.2 to 0.6.

5.4 Official vs. New Measures

5.4.1 Two Types of Discrepancy

Examination of official measures of real GDP per capita and our new measures for

every country in our data sets reveals that there are broadly two types of discrepancy.

The first type is systemic discrepancy. For example, panel (a) of Figure 7 shows

that based on the optimal linear measure, the Chinese economy was growing at a

slower rate than suggested by official figures over the past decades, but particularly so

after 2005. Panel (b) shows that India under the optimal linear measure also grew less

faster than official figures suggested, though the difference is much smaller compared

to China. Panel (c) and (d) show that for Brazil and South Africa, the optimal linear

measure implies slightly higher real GDP per capita in recent years.

While we focus on real GDP per capita previously, we can obtain real GDP growth

estimates by removing population from real GDP per capita. Concretely, let gt and

pt be real GDP growth and population growth, respectively, then gt = gyt + pt, where

gyt = yt−yt−1 is real GDP per capita growth. Since demographics is deterministic and

population estimates are relatively accurate, most of the measurement errors in real

official GDP per capita figures can be attributed to real GDP.

Table 11 compares real GDP growth for China, India, Brazil, and South Africa

from 1992 to 2017. Our new measure suggests that China’s real GDP growth has been

consistently lower than official figures. In particular, our new measure implies that

annual real GDP growth is lower than official measures by 1.9 percentage points on

average in the 1990s and 2000s, 3.4 percentage points in the wake of the 2008 global

financial crisis, and 1.5 percentage points more recently. Table 12 compares the implied

real GDP growth volatility for the same set of countries. For India, Brazil, and South

Africa, the volatility of the new measure of real GDP growth is similar to or less than

that of official data. However, it doubles that of official data for China after 2008. In

other words, China’s official GDP growth seems smoother than our new measure after

2008. We discuss more about China’s real GDP growth in the next section.

The second type is the discrepancy for conflict-torn economies, which stems from

periods of economic disruption and restoration. Countries disrupted by conflicts and
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Figure 7: Real GDP per capita: Selected Emerging Markets

(a) China (b) India

(c) Brazil (d) South Africa

Table 11: Real Economic Growth: Selected Emerging Markets

Real GDP Growth 1992-2008 2009-2013 2014-2017

Official
Optimal

Linear Measure
Official

Optimal

Linear Measure
Official

Optimal

Linear Measure

China 10.4 8.5 9.0 5.6 6.9 5.4

India 6.6 5.9 7.4 6.6 7.3 6.4

Brazil 3.3 3.5 3.2 3.1 -1.6 -0.8

South Africa 3.4 3.5 1.9 2.1 1.0 2.0

Notes. 1992-2013 results are based on DMSP/OLS data and 2013-2017 based on VIIRS. Growth

rates are geometric average.
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Table 12: Real Economic Growth Volatility: Selected Emerging Markets

Real GDP Growth

Standard Deviation
1992-2008 2009-2013 2014-2017

Official
Optimal

Linear Measure
Official

Optimal

Linear Measure
Official

Optimal

Linear Measure

China 1.9 2.0 1.1 2.4 0.3 0.6

India 2.0 1.9 1.8 2.2 0.5 0.5

Brazil 1.9 1.5 2.7 2.1 2.5 2.3

South Africa 1.4 1.5 2.0 1.8 0.6 0.3

Notes. 1992-2013 results are based on DMSP/OLS data and 2013-2017 based on VIIRS. Volatility is

measured as the sample standard deviation of growth rates.

political instability often underestimated the deterioration of the economy during

downturns and its recovery afterwards. For example, Figure 8 contrasts the opti-

mal linear measure against official measure for the Democratic Republic of the Congo,

Djibouti, Kenya, and Sierra Leone, respectively.

The Democratic Republic of the Congo was in a state of conflict until 2001 when

UN peacekeepers arrived. When its economic situation deteriorated between 1992-

2001, panel (a) shows that the new measures of GDP per capita were worse than

official figures suggested; to the contrary, when the economic situation improved after-

wards, the new measures suggested higher living standards. Similarly, panel (b) shows

that during the 1990s when armed conflicts routed the economy in Djibouti, the new

measure suggested worse situation than official figures; when the economy recovered,

the new measures suggested higher GDP per capita. Kenya’s economy was afflicted by

political instability before 2002 and Sierra Leone by its civil war in the 1990s. Graphs

(c) and (d) again display a similar pattern of overestimation of real GDP per capita in

the economic downturn and underestimation in the upturn. It is likely that periods of

economic disruption made it difficult to track the economy accurately and the emer-

gence of informal economy in subsequent restoration did not enter national accounts.

We leave the precise mechanisms through which conflicts affect the economy for future

research.

Appendix C.4 presents the official measures of real GDP per capita and our optimal

linear measures for a number of other countries.
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Figure 8: Real GDP per capita: Economic Disruption and Restoration

(a) Dem. Rep. of Congo (b) Djibouti

(c) Kenya (d) Sierra Leone
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Figure 9: Optimal Linear Measure and Weight for China

(a) Optimal Linear Measure (b) Optimal Weight

5.4.2 More on China’s GDP

The quality of China’s official statistics has been subject to frequent debate and skep-

ticism. On the one hand, there is evidence that China’s actual growth has been lower

than official data suggest. For instance, the seminal article by Rawski [2001] argues

that the Chinese economy might have grown at 2 percentage points less than officially

claimed during 1997-2001. More recently, Chen et al. [2019], through examination of

China’s national accounts, find that GDP growth from 2010-2016 is 1.8 percentage

points lower relative to official numbers. Martinez [2019] cast doubt on official GDP

growth statistics by comparing it to nighttime lights.

On the other hand, many contends the opposite. Holz [2014] argues that the

supposed evidence for China’s GDP data falsification is not compelling. Nakamura

et al. [2016] find that China’s official GDP series is smoother than alternative measure

based on Engel curves, but average growth rate is about the same between 1995-2011.

Fernald et al. [2013] focus on China’s economic growth in 2012 and find no evidence

that it was slower than official data indicate. Using data on trading-partner exports

to China between 2000-2014, Fernald et al. [2015] find that the information content of

Chinese GDP improves markedly after 2008. Clark et al. [2017], using forecast based

on DMSP/OLS nighttime lights data, find that China’s growth rates around 2015 were

actually higher than officially reported.

To get a sense of how our results on China reconcile with the mixed findings in the

literature, we conduct two exercises. First, Figure 9 reverses the construction of the

optimal linear measure. The left graph shows that based on simple linear regression

(9), nighttime-light predicted GDP indicates much lower growth rates than official
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data. The right graph shows that our model puts increasing weight on prediction by

nighttime lights. In other words, the lower growth rates implied in our optimal linear

measure come from information in nighttime lights. The divergence between official

data and our optimal linear measure after 2008 results from the increasing weight our

model puts on nighttime lights.

Second, Figure 10 adds three additional estimators. The first estimator, E[y∗|y, z, s, l],
which is the semiparametric conditional mean, also points to an economic slowdown

after 2005 as indicated by the optimal linear measure. Though the semiparametric

conditional mean makes full use of the information in the conditional distributions, it

can be volatile given limited data. The second estimator, E[y∗|y, s], is the expected

true value of real GDP per capita conditional only on official data. Note that it is

actually above official data after 2005. This is consistent with the findings in the lit-

erature from China’s own time series data that its GDP is similar to or even higher

than official figures. The third estimator, E[y∗|z, l], is the expected true value of real

GDP per capita conditional only on nighttime lights data. It shows that based on the

cross-country relationship between nighttime lights and GDP, China’s nighttime lights

suggest that its real GDP per capita was much lower than official data.15 This is also

consistent with the findings in the literature drawn from cross-country comparisons

that China’s GDP might have been lower than official data.

In sum, as with most cross-country studies, our new measure suggests lower growth

rates than official data for China through comparison of its nighttime lights with other

countries. In addition, our new measure implies more volatile growth rates than official

data. Restricting to China’s data alone, however, we find some evidence that nighttime

lights could also point to higher growth rates than official data in some years.

There could be many reasons for why nighttime lights suggest lower growth rates

in China. Issues in national accounts, over-investment, under-utilization of capital,

among others, can all be contributing factors. While it is beyond the scope of this

paper to explore the exact channels, we highlight that nighttime lights provide a unique

perspective on China’s growth rate puzzle. It is worth pointing out that China is not

an outlier in our data sets. In fact, Appendix D.1 shows that it is right in the middle.

15The sudden jump in 2010 was because of a change of satellites (from F16 to F18) that resulted

in an increase in the recorded nighttime lights for most countries. See https://ngdc.noaa.gov/

eog/dmsp/downloadV4composites.html. While E[y∗|z, l] increases accordingly, the optimal linear

measure and the semiparametric conditional mean discount such increase by combining information

from y.
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Figure 10: Comparison between New Measures: China

5.5 Including Covariates

So far we have only explored the relationship between nighttime lights and GDP

in a measurement error model framework. Next we extend our analysis to include

additional covariates that might influence night light intensity and true real GDP per

capita.

First, we include variables that capture certain characteristics of the economy that

affect the use of lights at night, such as its electric power generation capacity or the

size of the informal economy. Following the same notations as in equations (1) and

(2) but omitting subscripts, we assume

Z = θ0 + θ1Y
∗ + θ2(Y ∗)2 + κQ+ εZ(l) (13)

where Q is the set of variables affecting nighttime lights beyond true real GDP per

capita. Second, we add variables that are plausibly correlated with true real GDP

per capita, including statistical capacity and country locations, as well as a set of

governance-related development indicators – rule of law, control of corruption, and

political stability,

Y = Y ∗ + εY (s), (14)

Y ∗ = δ0 + δ1s+ δ2l + δwW + u, (15)
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where W is the set of development indicators.

It can be shown that θ’s are identified in this setup. Because Y ∗ is unknown, coef-

ficients in equations (13) and (15) have to be estimated through sieve MLE. Neverthe-

less, we present some constructive results from simple regressions. Table 13 explores

the nonlinear relationship between night light intensity and real GDP per capita when

additional covariates are added.16 Columns (3) and (4) show that given the same

level of income, countries with more installed power capacity are brighter at night.

Countries with a larger agriculture sector, or a larger informal sector for which the

agricultural share of the economy is a proxy, are less bright. However, the nonlinear

relationship between night light intensity and real GDP per capita holds when such

structural differences are accounted for.

Table 13: Nighttime Lights (DMSP/OLS) and Real GDP

1992-2013 with Covariates

(1) (2) (3) (4)

Night Light Intensity

(log) real GDP per capita 4.163*** 1.956*** 3.394*** 1.090***

(0.143) (0.137) (0.152) (0.152)

(log) real GDP per capita squared -0.171*** -0.0928*** -0.138*** -0.0305***

(0.00800) (0.00780) (0.00815) (0.00872)

installed capacity 0.0959*** 0.162***

(0.00567) (0.0143)

agricultural share -0.00969*** -0.00396***

(0.00180) (0.000954)

country FE - Yes - Yes

year FE - Yes - Yes

Obs 3870 3870 3616 3615

Adjusted R2 0.751 0.983 0.791 0.986

Standard errors are in parentheses.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14 presents the results from sieve MLE. Notably, the quadratic term in real

GDP per capita (θ2) remains statistically significant.

We repeat the same exercises of constructing new measures of real GDP per capita

16On the data, we use total net installed capacity of electric power plants from the United Nations.

The rest, including agricultural share and development indicators are from the World Bank.
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Table 14: Estimated Light Production Function with Covariates (DMSP/OLS)

Parameter θ1 θ2
installed

capacity

agricultural

share

statistical

capacity
latitude rule of law

control of

corruption

political

stability

Point Estimate 0.986 -0.181 0.001 -0.017 0.135 0.606 0.653 0.060 0.179

Standard Error (0.027) (0.011) (0.008) (0.002) (0.032) (0.040) (0.027) (0.024) (0.035)

Notes: Standard errors are based on 200 sample bootstraps.

but adding covariates in the predictive equation:

Ŷ = β̂1Z + β̂2Z
2 +Xβ̂

Ŷ ∗ = λŶ + (1− λ)Y

where X is the set of covariates including statistical capacity, country location, all

variables in Q and W , and a constant. We find very similar results in terms of the

optimal weights on light-predicted GDP. Our results regarding the difference between

new measures and official measures hold for countries such as China and India, as well

as conflict-disrupted economies such as Kenya and Sierra Leone. Intuitively, adding

covariates change little the predictions by nighttime lights because nighttime lights,

along with country and year fixed effects, already account for 98% variations in real

GDP per capita.17 Since the weights on light-predicted GDP only change slightly, so

does the optimal linear combination.

6 Conclusion

In this paper, we first provide a statistical framework to describe the relationship

among nighttime lights, official real GDP per capita, and true real GDP per capita.

We make use of the variation of observed nighttime lights and official GDP across

different statistical capacity and geographic location, and provide sufficient conditions

under which the joint distribution of observables and the latent true GDP is uniquely

determined by the distribution of observables. We obtain elasticity estimates of night-

time lights to real GDP between 0 and 2.3 depending on countries’ income levels. We

find that official real GDP per capita measures are less precise for low and middle

income countries, and nighttime lights can play a bigger role in improving such mea-

sures. Based on estimated distributions, we construct new measures of real GDP per

capita and real GDP growth. Comparing our new measures with official measures,

we find that there are two types of discrepancy: systemic recording difference and

17R2 for regression (8) is above 0.98.
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poor measurement due to economic disruption. In particular, we find that China’s

real GDP growth has been consistently below official figures. We expect our statisti-

cal framework and methodology will have a broad impact on measuring GDP using

additional information.
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A More Details on Nighttime Lights Data

A.1 DMSP/OLS and VIIRS

The U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational

Linescan System (OLS) has been collecting global low light imaging data since the

1970s. The National Oceanic and Atmospheric Administration (NOAA) processes the

data and hosts a digital archive from 1992 to 2013.18 DMSP satellites overpass at local

18The lights data can be downloaded here: http://ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html.
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time in the 7pm to 9pm range,19 and nighttime lights are a class of derived products

of the low light imaging data in spectral bands where electric lights emissions are

observed. NOAA provides cloud-free composites of nighttime lights based on a set of

quality criteria that remove observations affected by sunlight, moonlight, glare, aurora,

and the edges of the DMSP/OLS swaths.20 For some years, there were two satellites

collecting data and two composites were produced. In those cases, we use the average

of the two composites. Each pixel of the DMSP/OLS nighttime lights images is a 30

arc-second grid (a bit less than 1 square kilometer). It is associated with a digital

number from 0 to 63 that is increasing with brightness.

Since April 2012, nighttime lights data are produced monthly by the Visible In-

frared Imaging Radiometer Suite (VIIRS) onboard a different satellite (Suomi-NPP).21

VIIRS nighttime lights have a number of advantages compared to DMSP/OLS, in-

cluding greater radiometric accuracy, finer geographical resolution, etc. The satellite’s

overpass time is after midnight. For our analysis, we take the annual averages of

monthly data and treat them as annual data. In addition to VIIRS monthly compos-

ites, NOOA provides VIIRS annual composites for 2015 and 2016, but because of its

limited sample size, we use it only for cross-checks.

A.2 Distributions

DMSP/OLS nighttime lights are top-coded as a result of sensor saturation, often

raising concerns about their validity as a proxy for economic activity. We examine

this issue using data in 2013, which is the brightest year in the DMSP/OLS sample

– given that the world economy is growing and the world generally becomes brighter

over time.

Figure 11 presents the distributions of nighttime lights in 2013 for a selected few

countries representative of distinct country types. For each country, we count the

number of pixels at each discrete value (1, 2, · · · , 63) and calculate its share of all

pixels with positive values. For mainland China, the maximum value (63) accounts for

only 1.07% of all lit pixels. For the United States, it is 2.37%. Singapore has 81.2%

of lit pixels reach saturation while Sierra Leone has none. This example highlights

that top coding in DMSP/OLS nighttime lights makes it not suitable for studying

19See Elvidge et al. [2009] for an overview.
20A detailed description of the selection criteria can be found here: https://www.ngdc.noaa.gov/

eog/gcv4_readme.txt.
21VIIRS nighttime lights data can be downloaded here: https://www.ngdc.noaa.gov/eog/viirs/

download_dnb_composites_iframe.html.
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high-income cities or city states, which tend to have quality statistics anyway, but

may be much less of a problem if the focus is on low and middle income countries or

even advanced countries with large rural areas.

Figure 11: 2013 DMSP/OLS Nighttime Lights Distributions

(a) China (mainland) (b) United States

(c) Sierra Leone (d) Singapore

By comparison, Figure 12 presents the distributions of nighttime lights in 2016

VIIRS annual composites. As can be seen from the shapes of the distributions, they

are not top-coded. For ease of reading, we do not show values above 40 for mainland

China and the United States, which are almost zero fraction of all lit pixels. Instead,

in Table 15, we show several percentiles of the distributions as well as the maximum

numeric value of all pixels for each country. Note that the brightest pixel in the United

States has a numeric value of 4006.38, which is orders-of-magnitude lower than the

saturation value of VIIRS sensors (in the order of 107). In other words, VIIRS data

can essentially be viewed as not top-coded.
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Figure 12: 2016 VIIRS Annual Nighttime Lights Distributions

(a) China (mainland) (b) United States

(c) Sierra Leone (d) Singapore

Table 15: 2016 VIIRS Annual Nighttime Lights Distributions

Percentile China (mainland) United States Singapore Sierra Leone

1st 0.11 0.16 3.57 0.08

25th 0.35 0.40 24.11 0.24

50th 0.75 0.73 50.94 0.49

75th 2.48 2.23 70.08 1.10

99th 37.52 54.66 184.07 8.26

mean 3.41 4.23 52.30 1.16

max 1503.64 4006.38 428.23 29.56

Notes: Unit is nano Watts/cm2/sr. Note that VIIRS satellite sensors can record up to

107 nano Watts/cm2/sr, well above the max value for the selected countries in the table.
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A.3 Gas Flaring in the Data

While nighttime lights primarily reflect economic activities for a majority of countries,

it is recognized in the literature (for example, Henderson et al. [2012]) that the flaring

of natural gas might make nighttime lights incommensurate with the level of economic

development. To examine the extent to which gas flares affect our results, we use gas

flare shapefiles (polygons) provided by NOOA22 and calculate the fraction of nighttime

lights within gas flare shapefiles in a country.

As an example, Figure 13 shows a map of Nigeria where the white area is the

shapefile that contains gas flares and the green area is the rest of the country. We

obtain the fraction of nighttime lights in gas flare shapefiles (denoted by τ) by aggre-

gating the nighttime lights within the white area first and then divide the sum by the

total sum of lights in Nigeria.

Figure 13: Gas Flares in Nigeria

Table 16 ranks countries by the fraction of nighttime lights in gas flare shapefiles

in descending order. Among the highest are Equatorial Guinea, Gabon, and Nigeria.

Most of the countries with high ranks are African and Middle East oil producers. While

China and the United States produce oil, the vast majority of nighttime lights were

produced in areas outside of the gas flare shapefiles. In particular, nighttime lights

within gas flare shapefiles account for about 1 percent of total nighttime lights in China

between 1992-2013 and even less for the United States. When dropping countries with

τ ≥ 0.02 (34 countries) and reestimating our model, we find no statistically significant

difference in estimated coefficients of the nighttime light production function compared

to the full sample.

22https://ngdc.noaa.gov/eog/interest/gas_flares_countries_shapefiles.html
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Table 16: Fraction of Nighttime Lights in Gas Flare Shapefiles

ISO code τ ISO code τ ISO code τ ISO code τ

GNQ 0.75 RUS 0.17 VEN 0.08 AUS 0.01

GAB 0.69 AGO 0.16 ARE 0.06 CHN 0.01

NGA 0.57 SYR 0.15 SAU 0.05 CMR 0.01

LBY 0.36 ECU 0.15 EGY 0.04 MYS 0.00

IRQ 0.32 TKM 0.15 ARG 0.04 USA 0.00

KWT 0.31 TCD 0.14 SDN 0.03 ZAF 0.00

OMN 0.31 BOL 0.13 COL 0.03 PHL 0.00

DZA 0.30 PNG 0.13 CHL 0.03 BRA 0.00

COG 0.26 COD 0.11 PER 0.02 NOR 0.00

QAT 0.26 IRN 0.10 TUN 0.02 TTO 0.00

KAZ 0.24 UZB 0.09 CAN 0.01 · · · · · ·
YEM 0.20 IDN 0.09 AZE 0.01 · · · · · ·

Notes: τ is the ratio of the sum of nighttime lights in gas flare shapefiles to that in the whole

country in DMSP/OLS data, averaged between 1992-2013.

B Mathematical Proofs

B.1 Technical Assumptions

In Section 4.2, we provide Theorem 1 that establishes nonparametric identification. In
addition to Assumptions 1 and 2, we need four additional technical assumptions for
Theorem 1 to hold, which we elaborate in this section.

We assume the existence of a random sample from distribution f(zi,t, yi,t, si, li) for
country i in year t. We provide sufficient conditions for the identification of latent dis-
tributions: f(zi,t|y∗i,t, li), f(yi,t|y∗i,t, si), and f(y∗i,t, si, li) from the observed distribution
f(zi,t, yi,t, si, li). In principle, both s and l can also be time-varying. In this subsection,
we omit the subscript (i, t) for the simplicity of notations.

Suppose the supports of z,y,y∗,s, and l are Z ⊆ R, Y ⊆ R, Y∗ ⊆ R, S =
{s1, s2, ..., sJ} with J ≥ 2, and L = {l1, l2, ..., lK} with K ≥ 2, respectively. We
assume

Assumption 3 f(z, y, y∗, s, l) is positive, bounded on its support Z×Y×Y∗×S×L,
and is continuous in (z, y, y∗) ∈ Z × Y × Y∗.

Assumption 4 (i) for each given s,
∫
f(y|y∗, s)h(y∗)dy∗ = 0 for all y ∈ Y for all

bounded function h implies that h ≡ 0 over Y∗; (ii) for each given (s, l),
∫
f(z, y|s, l))h(y)dy =

0, i.e., E[h(y)|z, s, l] = 0, for all z ∈ Z for all bounded function h implies that h ≡ 0
over Y;
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Assumption 4 (i) is the bounded completeness of the conditional density f(y∗|y); see,
e.g., Mattner (1993). Assumption 4 (ii) is imposed on observables directly and is
directly testable under some restrictions (Freyberger [2017]). Nevertheless, comparing
with conditions for parametric identification, Assumption 4 is a high level condition
mainly because we are achieving a nonparametric identification result.

Define

κjk (y∗) ≡ f (y∗|sa, lj) f (y∗|sb, lk)
f (y∗|sb, lj) f (y∗|sa, lk)

for y∗ ∈ Y∗. (16)

Assumption 5 For any y∗1 6= y∗2, there exist j, k ∈ {1, 2, ..., K}, such that κjk (y∗1) 6=
κjk (y∗2) and supy∗∈Y∗ κ

jk (y∗) <∞.

This assumption requires that the distribution of real GDP varies with countries’
statistical capacity and geographic location, which is quite reasonable. In the data,
we observe that higher income countries have more effective statistical institutions.
In the meantime, it is well known that the GDP is highly correlated with countries’
geographic location. Appendix D.2 provides more details on the data that underpin
this assumption.

Since y∗ is not observed, we need a normalization assumption as follows:

Assumption 6 One of the followings holds for all y∗ ∈ Y∗: for some sj, (i) (mean)
E[y|y∗, sj] = y∗; or (ii) (mode) arg max

y
f (y|y∗, sj) = y∗; or (iii) (median) inf{v :∫ v

−∞ f (y|y∗) dy ≥ 0.5} = y∗.

Assumption 6 says that the reported GDP from some country with statistical capacity
sj is targeted for the true y∗. Specifically, either the mean, mode or median of the
distribution of y given y∗ and sj is equal to y∗. This condition is not required for other
countries with different statistical capacity.

Assumptions 1 and 2 are satisfied when the two error terms εyi,t and εzi,t are indepen-
dent of each other and the latent true GDP. Assumption 3 holds when the distributions
of the error terms and the latent true GDP are bounded and continuous and the func-
tion m is bounded and continuous. Assumption 4 is a high-level condition. Part (i)
requires that the characteristic function of the error term εyi,t does not varnish on the
real line. Assumption 5 requires that the distribution of latent true GDP varies with
statistical capacity and location. Assumption 6 requires that for some category fo the
statistical capacity the error term εyi,t has a zero mean, a zero mode, or a zero median.

Ideally, we should observe the statistical capacity si,t for all the countries. The
world bank, however, only provides this measure for middle and low income countries.
Therefore, we assign an additional category for the discretized statistical capacity to
represent the high income group. Since this assigned category coincides with the high
income group, the support of the true GDP conditional on this category is different
from the support of true GDP conditional on different statistical capacity and location
in the middle or low income group. That means the assigned category can’t serve as
j and k in Assumption 5.

In addition, identification of the error distribution corresponding to this assigned
category has to rely on the baseline specification (equations (1) and (2)). We use
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Theorem 1 in Schennach and Hu [2013] to show that the distributions of y∗, εy, and
εz, and function m(.) are identified under assumptions as follows: i) the errors εy and
εz are mutually independent with a zero mean and also jointly independent of y∗; ii)
the characteristic functions of y and z do not vanish on the real line; and iii) function
m(·) is monotone and continuously differentiable, and does not belong to a particular
parametric family, which includes linear functions. Given that these assumptions are
relatively mild comparing with those in the existing literature, we adopt this simple
specification instead of imputing the statistical capacity for the high income counties.

B.2 Identification

We define the integral operator Ly|y∗,sa : L2(Y∗)→ L2(Y) as:

{Ly|y∗,sah} (y) =

∫
Y∗

fy|y∗,s (y|y∗, sa)h (y∗) dy∗ for any h ∈ L2 (Y∗) , y ∈ Y .

where L2(Y) denotes the space of functions with
∫
Y |h(y)|2dy < ∞. Similarly, we

define

Ly,z|sa,lj : L2 (Z)→ L2 (Y) ,
(
Ly,z|sa,ljh

)
(y) =

∫
fy,z|s,l(y, z|sa, lj)h (z) dz,

Lz|y∗,lj : L2 (Z)→ L2 (Y∗) ,
(
Lz|y∗,ljh

)
(y∗) =

∫
fz|y∗,l(z|y∗, lj)h (z) dz,

Dy∗|sa,lj : L2 (Y∗)→ L2 (Y∗) ,
(
Dy∗|sa,ljh

)
(y∗) = fy∗|s,l(y

∗, sa, lj)h (y∗) .

Notice that the operator Dy∗|sa,lj is diagonal or multiplication operator, and the
operator Ly,z|sa,lj is observed from the data.
Proof of Theorem 1: For each value (s, l), assumptions 1 and 2 imply that

fy,z|s,l(y, z|sa, lj) =

∫
fy|y∗,s (y|y∗, sa) fz|y∗,l(z|y∗, lj)fy∗|s,l(y∗, sa, lj)dy∗, (17)

fy,z|s,l(y, z|sb, lj) =

∫
fy|y∗,s (y|y∗, sb) fz|y∗,l(z|y∗, lj)fy∗|s,l(y∗, sb, lj)dy∗. (18)

By equation (17) and the definition of the operators, we have, for any function h ∈
L2 (Z),(
Ly,z|sa,ljh

)
(y) =

∫
fy,z|s,l(y, z|sa, lj)h (z) dz

=

∫ (∫
fy|y∗,s (y|y∗, sa) fz|y∗,l(z|y∗, lj)fy∗|s,l(y∗, sa, lj)dy∗

)
h (z) dz

=

∫
fy|y∗,s (y|y∗, sa) fy∗|s,l(y∗, sa, lj)

(∫
fz|y∗,l(z|y∗, lj)h (z) dz

)
dy∗

=

∫
fy|y∗,s (y|y∗, sa) fy∗|s,l(y∗, sa, lj)

(
Lz|y∗,ljh

)
(y∗)dy∗

=

∫
fy|y∗,s (y|y∗, sa)

(
Dy∗|sa,ljLz|y∗,ljh

)
(y∗)dy∗

=
(
Ly|y∗,saDy∗|sa,ljLz|y∗,ljh

)
(y) .
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This means we have the operator equivalence

Ly,z|sa,lj = Ly|y∗,saDy∗|sa,ljLz|y∗,lj . (19)

Similarly, we have,
Ly,z|sb,lj = Ly|y∗,sbDy∗|sb,ljLz|y∗,lj . (20)

Note that the left-hand sides of equations (19) and (20) are observed.
Assumption 4 imply that all the operators involved in equations (19) and (20) are

invertible. Hence

Ly,z|sa,ljL
−1
y,z|sb,lj = Ly|y∗,saDy∗|sa,ljD

−1
y∗|sb,ljL

−1
y|y∗,sb . (21)

This equation holds for all sj and sk so that we may then eliminate Ly|y∗,sb to have

Ljky,y ≡ (Ly,z|sa,ljL
−1
y,z|sb,lj)(Ly,z|sa,lkL

−1
y,z|sb,lk)

−1 = Ly|y∗,saD
jk
y∗L

−1
y|y∗,sa , (22)

where Djk
y∗ : L2(Y∗)→ L2(Y∗) is still a diagonal operator

Djk
y∗ ≡ Dy∗|sa,ljD

−1
y∗|sb,lj(Dy∗|sa,lkD

−1
y∗|sb,lk)

−1. (23)

In fact, this diagonal operator can be defined as (Djk
y∗h)(y∗) ≡ κjk(y∗)h(y∗) with κjk

defined in equation (16). Equation (22) implies a diagonalization of an observed opera-
tor Ljky,y, where an eigenvalue of Ljky,y equals κjk(y∗) for a value of y∗ with corresponding
eigenfunction fy|y∗,s (·|y∗, sa). Notice that each eigenfunction is a conditional density,
and therefore, is automatically normalized.

Equation (22) implies that the operator Ljky,y has the same spectrum as the diagonal

operator Djk
y∗ . Since an operator is bounded by the largest element of its spectrum,

Assumption 4 guarantees that the operator Ljky,y is bounded with distinctive eigenval-
ues. Following theorem XV.4.3.5 in Dunford and Schwartz [1971], we have that the
diagonal decomposition of Ljky,y is unique up to the index of eigenvalues and eigen-
functions. Notice that Assumption 4 guarantees that, for any two different eigenfunc-
tions fy|y∗,s (·|y∗1, sa) and fy|y∗,s (·|y∗2, sa) , one can always find two subsets with lj and
lk such that the two different eigenfunctions correspond to two different eigenvalues
κjk (y∗1) and κjk (y∗2) and, therefore, are uniquely determined.

In order to fully identify each eigenfunction, we need to identify the exact value
of y∗ in each eigenfunction fy|y∗,s (·|y∗, sa). Here we use the ordering assumption in
Hu and Schennach [2008], i.e. Assumption 6, to pin down the the exact value of y∗

for each eigenfunction fy|y∗,s (·|y∗, sa). Such an identification procedure can be applied
to each subpopulation with a different value of s. Thus, we have fully identified the
conditional density fy|y∗,s.

Given fy|y∗,s, other densities containing y∗ can also be identified due to the injec-
tivitiy of operator Ly|y∗,s as follows:

fz,y∗,s,l = L−1
y|y∗,sfz,y,s,l (24)

In summary, we have shown that the density f(z, y, s, l) uniquely determines the joint
density f(z, y, y∗, s, l) satisfying f(z, y, y∗, s, l) = f(y|y∗, s)f(z, y∗, s, l).
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B.3 Sieve Maximum Likelihood Estimation

Given the general nonparametric identification, we provide a semiparametric estimator
as suggested in Carroll et al. [2010]. We develop our estimator based on an i.i.d sample,
which can be extended to for time series data. We assume that there is a random
sample {zi, yi, si, li}ni=1.

We adopt a parametric specification of function m(·; θ) and leave other elements
nonparametrically specified in the simple specification in equations (1) and (2). Let
the true value of the unknowns be α0 ≡ (θT0 , f01, f02, f03)T ≡ (θT0 , fy∗|s,l, fεy |s, fεz |l)

T ,
where fA|B denotes the distribution of A conditional on B. We then introduce a sieve

MLE estimator α̂ for α0, and establish the asymptotic normality of θ̂. These results
can also be extended to the case where the function m is misspecified.

Following Carroll et al. [2010], we consider the widely used Hölder space of func-

tions. Let ξ = (ξ1, ξ2, ξ3)T ∈ R3, a = (a1, a2, a3)T , and ∇ah(ξ) ≡ ∂a1+a2+a3h(ξ1,ξ2,ξ3)

∂ξ
a1
1 ∂ξ

a2
2 ∂ξ

a3
3

denote the (a1 + a2 + a3)th derivative. Let ‖·‖E denote the Euclidean norm. Let
V ⊆ R3 and γ be the largest integer satisfying γ > γ. The Hölder space Λγ(V) of
order γ > 0 is a space of functions h : V 7→ R, such that the first γ derivatives are con-
tinuous and bounded, and the γth derivative is Hölder continuous with the exponent
γ − γ ∈ (0, 1]. We define a Hölder ball as Λγ

c (V) ≡ {h ∈ Λγ(V) : ‖h‖Λγ ≤ c <∞}, in
which

‖h‖Λγ ≡ max
a1+a2+a3≤γ

sup
ξ
|∇ah(ξ)|+ max

a1+a2+a3=γ
sup
ξ 6=ξ′

|∇ah(ξ)−∇ah(ξ′)|
(‖ξ − ξ′‖E)γ−γ

<∞.

The space containing f01 = fy∗|s,l are assumed to be

F1 =

{
f1(·|·, ·) ∈ Λγ1

c (Y∗ × S × L) : Assumption 5 holds,

f3(·|s, l) is a positive density function for all s ∈ S, l ∈ L

}
.

Similarly, we assume f02 and f03 are in the following functional spaces

F2 =

{
f2(·|·) ∈ Λγ2

c (Ey × S) : Assumption 6 holds,

f2(·|s) is a positive density function for all s ∈ S

}
,

and

F3 = {f3(·|·) ∈ Λγ3
c (Ez ×Z) : f3(·|l) is a positive density function for all l ∈ L} ,

where Ey and Ez are supports of the error terms in equations (1) and (2), respectively.
Let A = Θ × F1 × F2 × F3 as the parameter space. The log-joint likelihood for

α ≡ (θT , f1, f2, f3)T ∈ A is given by:

n∑
i=1

log f(zi, yi, si, li) =
n∑
i=1

`(Di;α),

in which Di = (zi, yi, si, li) and

`(Di;α) ≡ `(zi, yi, si, li; θ, f1, f2, f3)

= log{
∫
f1(y∗|si, li)f2(yi − y∗|si)f3(zi −m(y∗; θ)|li)dy∗}+ log f(si, li).
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Let E[·] denote the expectation with respect to the underlying true data generating
process for Di. Then

α0 = arg sup
α∈A

E [`(Di;α)] .

We then use a sequence of finite-dimensional sieve spaces An = Θ×Fn1 ×Fn2 ×Fn3
to approximate the functional space A = Θ×F1×F2×F3. The semiparametric sieve

MLE α̂n =
(
θ̂T , f̂1, f̂2, f̂3

)T
∈ An for α0 ∈ A is defined as:

α̂n = arg max
α∈An

n∑
i=1

`(Di;α).

Let pkn(·) be a kn × 1−vector of known basis functions, such as power series, splines,
Fourier series, Legendre polynomials, Hermite polynomials, etc. We use linear sieves
to directly approximate unknown densities:

Fn1 =

f1(y∗|s, l) =

[
K∑
i=1

J∑
j=1

pk1,n(y∗)Tβ1,i,jI(l = li)I(s = sj)

]2

∈ F1


Fn2 =

f2(e|s) =

[
J∑
j=1

pk2,n(e)Tβ2,jI(s = sj)

]2

∈ F2


Fn3 =

f3(e|l) =

[
K∑
i=1

pk3,n(e)Tβ3,iI(l = li)

]2

∈ F3

 .

Below we present the asymptotic properties of the proposed estimator.

B.4 Consistency

Here we provide sufficient conditions for the consistency of the sieve estimator α̂n =(
θ̂T , f̂1, f̂2, f̂3,

)T
.

Assumption 7 (i) All the assumptions in theorem 1 hold; (ii) fy∗|s,l (·|s, l) ∈ F1 with
γ1 > 1/2 for all s ∈ S and l ∈ L; (iii) fεy |s(·|·) ∈ F2 with γ2 > 1; (iv) fεz |l(·|·) ∈ F3

with γ3 > 1.

Assumption 8 (i) {zi, yi, si, li}ni=1 is i.i.d.; (ii) m(y∗; θ) is continuous in θ ∈ Θ, and
Θ is a compact subset of Rdθ ; (iii) θ0 ∈ Θ is the unique solution of E[z|y∗, l] = m(y∗; θ)
over θ ∈ Θ.

We define a norm on A as: ‖α‖s = ‖θ‖E + ‖f1‖∞,ω1
+ ‖f2‖∞,ω2

+ ‖f3‖∞,ω3
in which

‖h‖∞,ωj ≡ supξ |h(ξ)ωj (ξ)| with ωj (ξ) =
(
1 + ‖ξ‖2

E

)−ςj/2
, ςj > 0 for j = 1, 2, 3. We

assume

48



Assumption 9 (i) −∞ < E [`(Di;α0)] <∞, E [`(Di;α)] is upper semicontinuous on
A under the metric ‖·‖s; (ii) there is a finite τ > 0 and a random variable U(Di) with
E{U(Di)} <∞ such that supα∈An:‖α−α0‖s≤δ |`(Di;α)− `(Di;α0)| ≤ δτU(Di).

Assumption 10 (i) pkj,n(·) is a kj,n×1−vector of basis functions on R for j = 1, 2, 3;
(ii) min{k1,n, k2,n, k3,n} → ∞ and max{k1,n, k2,n, k3,n}/n→ 0.

We then have

Lemma 1 Under Assumptions 7–10, we have ‖α̂n − α0‖s = op(1).

This is a direct extension from Carroll et al. [2010] , which uses theorem 3.1 in Chen
(2007).

B.5 Convergence Rates and Asymptotic Normality

The asymptotic properties of our estimator is a direct extension of that in Carroll
et al. [2010]. We list the conditions below for readers’ convenience.

B.5.1 Convergence Rates of Nonparametric Part

Given the consistency shown in Lemma 1, we focus on a shrinking || · ||s−neighborhood
around α0. Let A0s ≡ {α ∈ A : ||α − α0||s = o(1), ||α||s ≤ c0 < c} and A0sn ≡ {α ∈
An : ||α−α0||s = o(1), ||α||s ≤ c0 < c}. We assume that both A0s and A0sn are convex
parameter spaces, and that `(Di;α + τv) is twice continuously differentiable at τ = 0
for almost all Di and any direction v ∈ A0s.

Define the pathwise first and second derivatives of the sieve loglikelihood in the
direction v as

d`(Di;α)

dα
[v] ≡ d`(Di;α + τv)

dτ
|τ=0;

d2`(Di;α)

dαdαT
[v, v] ≡ d2`(Di;α + τv)

dτ 2
|τ=0.

Mimicing Ai and Chen (2007), for any α1, α2 ∈ A0s, we define a pseudo metric || · ||2
as

‖α1 − α2‖2 ≡

√
−E

(
d2`(Di;α0)

dαdαT
[α1 − α2, α1 − α2]

)
.

Our goal is to show that α̂n converges to α0 at a rate faster than n−1/4 under the
pseudo metric ‖·‖2. We make the following assumptions:

Assumption 11 (i) ςj > γj for j = 1, 2, 3; (ii) max{k−γ1/21,n , k
−γ2/2
2,n , k−γ33,n } = o(n−1/4).

Assumption 12 (i) A0s is convex at α0 and θ0 ∈ int (Θ); (ii) `(Di;α) is twice con-
tinuously pathwise differentiable with respect to α ∈ A0s, and m(y∗; θ) is twice contin-
uously differentiable at θ0.

Assumption 13 supα̃∈A0s
supα∈A0sn

∣∣∣d`(Di;α̃)
dα

[
α−α0

‖α−α0‖s

]∣∣∣ ≤ U(Di) for a random vari-

able U(Di) with E{[U(Di)]
2} <∞.
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Assumption 14 (i) supv∈A0s:||v||s=1−E
(
d2`(Di;α0)
dαdαT

[v, v]
)
≤ C < ∞; (ii) uniformly

over α̃ ∈ A0s and α ∈ A0sn, we have

−E
(
d2`(Di; α̃)

dαdαT
[α− α0, α− α0]

)
= ‖α− α0‖2

2 × {1 + o(1)}.

These assumptions are standard in the literature. As a direct application of Theorem
3.2 of Shen and Wong [1994] to the local parameter space A0s and the local sieve space
A0sn, we have

Theorem 2 Let γ ≡ min{γ1/2, γ2/2, γ3} > 1/2. Under assumptions 7–14, if k1,n =

O
(
n

1
γ1+1

)
, k2,n = O

(
n

1
γ2+1

)
, and k3,n = O

(
n

1
2γ3+1

)
, then

‖α̂n − α0‖2 = OP

(
n
−γ

2γ+1

)
= oP

(
n−1/4

)
.

B.5.2 Asymptotic Normality of Parametric Part

This section presents sufficient conditions for the asymptotic normality of the para-
metric part of the model. Define an inner product corresponding to the pseudo metric
‖·‖2:

〈v1, v2〉2 ≡ −E
[
d2`(Di;α0)

dαdαT
[v1, v2]

]
,

where
d2`(Di;α0)

dαdαT
[v1, v2] ≡ d2`(Di;α0 + τ1v1 + τ2v2)

dτ1dτ2

|τ1=τ2=0.

Let V denote the closure of the linear span of A−{α0} under the metric ‖·‖2. Then(
V, ‖·‖2

)
is a Hilbert space. We define V = Rdθ × U with U ≡ F1 ×F2 ×F3 −

{(f01, f02, f03)} and let h = (f1, f2, f3) denote all the unknown densities. The pathwise
first derivative can be written as

d`(Di;α0)

dα
[α− α0] =

d`(Di;α0)

dθT
(θ − θ0) +

d`(Di;α0)

dh
[h− h0]

=

(
d`(Di;α0)

dθT
− d`(D;α0)

dh
[µ]

)
(θ − θ0),

with h− h0 ≡ −µ× (θ − θ0), and in which

d`(Di;α0)

dh
[h− h0] =

d`(Di; θ0, h0(1− τ) + τh)

dτ
|τ=0

=
d`(Di;α0)

df1

[f1 − f01] +
d`(Di;α0)

df1a

[f1a − f01a]

+
d`(Di;α0)

df2

[f2 − f02] +
d`(Di;α0)

df2a

[f2a − f02a] .

Note that

E

(
d2`(Di;α0)

dαdαT
[α− α0, α− α0]

)
= (θ − θ0)TE

(
d2`(Di;α0)

dθdθT
− 2

d2`(Di;α0)

dθdhT
[µ] +

d2`(Di;α0)

dhdhT
[µ, µ]

)
(θ − θ0),
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with h− h0 ≡ −µ× (θ − θ0), and in which

d2`(Di;α0)

dθdhT
[h− h0] =

d(∂`(Di; θ0, h0(1− τ) + τh)/∂θ)

dτ
|τ=0,

d2`(Di;α0)

dhdhT
[h− h0, h− h0] =

d2`(Di; θ0, h0(1− τ) + τh)

dτ 2
|τ=0.

For each component θk (of θ), k = 1, ..., dθ, suppose there exists a µ∗k ∈ U that
solves:

µ∗k : inf
µk∈U

E

{
−
(
∂2`(Di;α0)

∂θk∂θk
− 2

d2`(Di;α0)

∂θkdhT
[µk] +

d2`(Di;α0)

dhdhT
[µk, µk]

)}
.

Denote µ∗ =
(
µ∗1, µ∗2, ..., µ∗dθ

)
with each µ∗k ∈ U , and

d`(Di;α0)

dh
[µ∗] =

(
d`(Di;α0)

dh

[
µ∗1
]
, ...,

d`(Di;α0)

dh

[
µ∗dθ

])
,

d2`(Di;α0)

∂θdhT
[µ∗] =

(
d2`(Di;α0)

∂θdh
[µ∗1], ...,

d2`(Di;α0)

∂θdh
[µ∗dθ ]

)
,

d2`(Di;α0)

dhdhT
[µ∗, µ∗] =


d2`(Di;α0)
dhdhT

[µ∗1, µ∗1] · · · d2`(Di;α0)
dhdhT

[µ∗1, µ∗dθ ]

· · · · · · · · ·
d2`(Di;α0)
dhdhT

[µ∗dθ , µ∗1] · · · d2`(Di;α0)
dhdhT

[µ∗dθ , µ∗dθ ]

 .

We also define

V∗ ≡ −E
(
∂2`(Di;α0)

∂θ∂θT
− 2

d2`(Di;α0)

∂θdhT
[µ∗] +

d2`(Di;α0)

dhdhT
[µ∗, µ∗]

)
. (25)

We then consider a linear functional of α, which is λT θ for any λ ∈ Rdθ with λ 6= 0.
Since

sup
α−α0 6=0

|λT (θ − θ0) |2

||α− α0||22

= sup
θ 6=θ0,µ 6=0

(θ − θ0)TλλT (θ − θ0)

(θ − θ0)TE
{
−
(
d2`(Di;α0)
dθdθT

− 2d
2`(Di;α0)
dθdhT

[µ] + d2`(Di;α0)
dhdhT

[µ, µ]
)}

(θ − θ0)

= λT (V∗)
−1λ,

the functional λT (θ − θ0) is bounded if and only if the matrix V∗ is nonsingular.
Suppose that V∗ is nonsingular. For any fixed λ 6= 0, denote υ∗ ≡ (v∗θ , v

∗
h) with

v∗θ ≡ (V∗)
−1λ and v∗h ≡ −µ∗ × v∗θ . Then the Riesz representation theorem implies:

λT (θ − θ0) = 〈υ∗, α− α0〉2 for all α ∈ A. We have:

λT (θ̂n − θ0) = 〈υ∗, α̂n − α0〉2 (26)

=
1

n+ na

∑n
i=1

d`(Di;α0)

dα
[υ∗] + op{n−1/2}.
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Denote N0 = {α ∈ A0s : ‖α− α0‖2 = o(n−1/4)} and N0n = {α ∈ A0sn :
‖α− α0‖2 = o(n−1/4)}. We provide additional sufficient for asymptotic normality

of sieve MLE θ̂n as follows:

Assumption 15 µ∗ exists (i.e., µ∗k ∈ U for k = 1, ..., dθ), and V∗ is positive-definite.

Assumption 16 There is a υ∗n ∈ An−{α0}, such that ||υ∗n − υ∗||2 = o(1) and
‖υ∗n − υ∗‖2 × ‖α̂n − α0‖2 = oP ( 1√

n
).

Assumption 17 There is a random variable U(Di) with E{[U(Di)]
2} < ∞ and a

non-negative measurable function η with limδ→0 η(δ) = 0, such that, for all α ∈ N0n,

sup
α∈N0

∣∣∣∣d2`(Di;α)

dαdαT
[α− α0, υ

∗
n]

∣∣∣∣ ≤ U(Di)× η(||α− α0||s).

Assumption 18 Uniformly over α ∈ N0 and α ∈ N0n,

E

(
d2`(Di;α)

dαdαT
[α− α0, υ

∗
n]− d2`(Di;α0)

dαdαT
[α− α0, υ

∗
n]

)
= o

(
1√
n

)
.

Assumption 19 E{
(
d`(Di;α0)

dα
[υ∗n − υ∗]

)2

} goes to zero as ‖υ∗n − υ∗‖2 goes to zero.

Recall the definitions of Fisher inner product and the Fisher norm:

〈v1, v2〉 ≡ E

{(
d`(Di;α0)

dα
[v1]

)(
d`(Di;α0)

dα
[v2]

)}
, ‖v‖ ≡

√
〈v, v〉.

Under correct specification, m(y∗; θ0) = E(z|y∗, l), it can be shown that ‖v‖ = ‖v‖2

and 〈v1, v2〉 = 〈v1, v2〉2. Thus, the space V is also the closure of the linear span of
A−{α0} under the Fisher metric ‖·‖.
Suppose that θ has dθ components, and write its kth component as θk. Write µ∗ =(
µ∗1, µ∗2, ..., µ∗dθ

)
, where we compute µ∗k ≡

(
µ∗k1 , µ

∗k
2 , µ

∗k
3

)T ∈ U as the solution to

inf
µk∈U

E

{(
d`(Di;α0)

dθk
− d`(Di;α0)

dh

[
µk
])2
}

= inf
(µ1,µ2,µ3)T∈U

E


(

d`(Di;α0)
dθk

− d`(Di;α0)
df1

[µ1]

−d`(Di;α0)
df2

[µ2]− d`(Di;α0)
df3

[µ3]

)2
 .

This equation also defines d`(Di;α0)
dh

[µ∗]. Then Sθ0 ≡
d`(Di;α0)
dθT

− d`(Di;α0)
dh

[µ∗] becomes
the semiparametric efficient score for θ0, and

I∗ ≡ E
[
STθ0Sθ0

]
= V∗ (27)

becomes the semiparametric information bound for θ0.
Finally, we can show that the sieve MLE θ̂n is asymptotically normally distributed

around θ0 as follows:

Theorem 3 Suppose that Assumptions of Lemma 1, and Assumptions 11–19 hold.

Then:
√
n(θ̂n − θ0)

d→ N(0, V −1
∗ I∗V

−1
∗ ), with V∗ defined in equation (25) and I∗ given

by equation (27).
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C Estimation, Simulation, and Robustness Checks

In this section, we provide more details on estimation, conduct simulation exercises to
confirm our estimation strategy, and do a number of robustness checks with respect
to data and specification.

C.1 Estimation Details

As mentioned in Section 4.3, the nonparametric densities in the sieve MLE estimator
are approximated by finite dimensional parametric representations, where the dimen-
sion depends on the sample size. We find that Hermite orthogonal polynomials work
well as basis functions with just a few sieve terms.23 Given the sample size of our data
sets, we conduct simulation studies in the next subsection to choose the smoothing
parameters in our sieve MLE estimator. With a sample size similar to the DMSP/OLS
sample, our simulation studies show that the estimates are stable with the number of
sieve terms used for each density function being around 6. As such we choose 6 for the
DMSP/OLS sample. The VIIRS sample has much fewer observations and we reduce
the number of sieve terms to 4.

C.2 Simulations

We consider a data generating process similar to equations (1) and (2) with a quadratic
nighttime light production function. There are six equal-sized groups of countries
based on statistical capacity (si = 1, 2, 3) and location (li = 1, 2). Each group’s true
GDP distribution follows a mixture of two normal distributions. Measurement errors
in both GDP per capita and nighttime lights follow normal distributions where the
variances σ(s) and σ(l) differ for different groups. The quadratic function m(·) is
assumed to have the same coefficients as point estimates in the DMSP/OLS data. In
the simulation, we draw 400 samples with size n = 4000. Table 17 shows the parameter
details in the simulations.

Table 18 presents the simulation results with different choices of the number of
orthogonal Hermite terms. The coefficients of the quadratic production function are
accurately estimated around k = 6. For this reason, we apply k = 6 to DMSP/OLS
data and k = 4 to VIIRS data since the latter has much less observations.

To give an idea of how well orthogonal Hermite series approximate density func-
tions, Figure 14 shows an example of the approximated density functions of measure-
ment errors in GDP per capita in one of the simulations (k = 6). The approximation
is broadly in line with the true distributions.

In Section 4.4, we proposed two new measures of real GDP per capita: the optimal
linear measure and the semiparametric conditional mean. While the latter makes
full use of the information in the conditional distributions, its nonparametric feature

23Compared to Hermite polynomials, the drawback for Legendre polynomials is that they have

bounded support while Fourier series require many more sieve terms to approximate density functions

well.
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Table 17: Parameterization in Simulations

Group y∗ σ(s) σ(l)

1 0.6N(−0.8, 0.62) + 0.4N(0.8, 0.72) 0.4 1

2 0.7N(−1, 0.92) + 0.3N(0.7, 0.82) 0.4 0.8

3 0.4N(−0.1, 0.62) + 0.6N(0.2, 0.82) 0.3 1

4 0.2N(−0.4, 0.72) + 0.8N(0.6, 0.72) 0.3 0.8

5 0.3N(−0.2, 0.82) + 0.7N(1, 0.62) 0.1 1

6 0.5N(−1, 1) + 0.5N(−0, 4, 0.62) 0.1 0.8

Table 18: Simulation Results

m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2

Parameter θ0 θ1 θ2

True values 0.398 1.234 -0.244

k = 4 0.364 1.343 -0.229

(0.083) (0.075) (0.065)

k = 5 0.370 1.334 -0.234

(0.039) (0.047) (0.030)

k = 6 0.365 1.328 -0.227

(0.041) (0.111) (0.030)

k = 8 0.357 1.311 -0.221

(0.091) (0.140) (0.058)

Standard errors are based on 400 sample bootstraps.

nonetheless makes it less robust because it requires a large sample size to perform well.
In the sparse area of the empirical distribution of (yi,t, zi,t, si,t, li), the semiparametric
conditional mean can be volatile, while the optimal linear measure remains robust.
In the area where the density f(yi,t, zi,t, si,t, li) takes a relatively larger value, the
conditional mean is actually stable and also close to the optimal linear measure.

Graph (a) of Figure 15 contrasts the difference between the semiparametric con-
ditional mean and the optimal linear measure (E[y∗i,t|yi,t, zi,t, si,t, li] − ŷ∗) against the
empirical kernel density estimates of f(y, z, s, l) in the simulated data. Notice that the
the difference between the semiparametric conditional mean and the optimal linear
measure decreases as the empirical density increases. Meanwhile, we actually observe
the true value y∗i,t in the simulation. Graph (b) and (c) show scatter plots of the opti-
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Figure 14: Example of Density Function Approximation

(a) Low Capacity (b) High Capacity (c) High Income

mal linear measure and the semiparametric conditional mean against the true values,
respectively. Our new measures perform very well in terms of predicting the true value
y∗i,t. The mean squared error for the optimal linear measure is slightly smaller but very
close to that of the semiparametric conditional mean in the simulation.

For these reasons, we make the optimal linear measure our choice of the new
measure for the true GDP.

C.3 Alternative Specifications

We consider a number of alternative specifications of the model.
First, we consider cases where the nighttime lights production function m(·) could

be linear or cubic. As suggested by Table 6, the quadratic term is statistically sig-
nificantly different from zero. However, if we impose that the production function is
linear, the estimation results in high income countries having the highest measure-
ment errors. Figure 16 shows that under the linear specification, deviations from the
nighttime lights production function are wrongly attributed to measurement errors
in official GDP. While the linear specification is mis-specified, the cubic term is not
significantly different from zero and it results in unstable performance of the model.

Second, we consider more parametric specification of the error terms in equations
(1) and (2). In particular, we assume εyi,t(si) = σ(s)εyi,t and εzi,t(li) = σ(l)εzi,t. In other
words, the distribution of measurement errors is the same up to a change of variance
for all three groups of countries with different statistical capacity, and similarly for
measurement errors in nighttime lights. This specification has the advantage of having
less parameters to estimate. Using the same number of sieve terms k = 6 for the error
terms as in our baseline specification (1) and (2), we obtain similar results, as shown
in Figure 17 and Table 19. However, we find this specification to be less robust to
the choice of the number of sieve terms despite its parsimonious specification. Thus
we choose the distribution of measurement errors to be different for countries with
different statistical capacity and geographical location groups.

Third, we consider a full parametric specification where the nighttime lights pro-
duction function is quadratic and the true GDP per capita as well as all measure-
ment errors are normally distributed. Despite being computationally lightweight, the
full parametric specification is not very robust to outliers. Using the full sample
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Figure 15: Semiparametric Conditional Mean and Optimal Linear Measure

Performance in Simulations

(a) Difference between New Measures

(b) Optimal Linear Measure

vs. True Values

(c) Semiparametric Conditional Mean

vs. True Values

DMSP/OLS sample, we obtain the counterintuitive and incorrect results that high
income countries have the highest measurement error, as shown in Table 20. However,
if we remove autonomous territories such as Hong Kong and Macau and city states
such as Singapore, where nighttime lights per capita was unusually low as a result of
high population density, we obtain the more intuitive results that the variance of mea-
surement errors is much smaller for high income countries. In light of this sensitivity,
we prefer the semiparametric specification.
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Table 19: Estimated Light Production Function (DMSP/OLS)

with Parsimonious Error Structure

m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.326 1.261 -0.212

Standard Error (0.160) (0.090) (0.032)

Parameters are estimated using demeaned data. Standard

errors are based on 400 sample bootstraps.

Table 20: Full Parametric Specification (DMSP/OLS)

m(y∗) = θ0 + θ1y
∗ + θ2(y∗)2

Parameter θ0 θ1 θ2 σy1 (low capacity) σy2 (high capacity) σy3 (high income)

All Data

Point Estimate 0.336 1.352 -0.256 0.458 0.474 0.791

Standard Error (0.047) (0.034) (0.041) (0.025) (0.020) (0.056)

Excluding Hong Kong SAR, Macau SAR, and Singapore

Point Estimate 0.316 1.354 -0.268 0.458 0.471 0.050

Standard Error (0.012) (0.015) (0.008) (0.019) (0.015) (0.006)

Parameters are estimated using demeaned data. Standard errors are based on 400 sample bootstraps.
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Figure 16: Linear Specification

(a) Model vs. Data (b) Distribution of Measurement Error

Figure 17: Quadratic Specification with More Parsimonious Error Structure

(a) Model vs. Data (b) Distribution of Measurement Error

Finally, we consider combining the DMSP/OLS and VIIRS datasets by assuming
that the measurement errors in official real GDP per capita follow the same distribution
in the two datasets. We find that the estimated production functions are similar to
our baseline results and there is little change in our new measures of real GDP per
capita.

C.4 Optimal Linear Measure for More Countries

Given the high uncertainty about official data in low income countries, we present more
results comparing the optimal linear measure of real GDP per capita with official data
for a number of low income countries in Figure 18.

Note that the optimal linear measure being close to official data for some low income
countries does not necessarily mean the official data are accurate. More often than
not, it means nighttime lights for those countries do not contain much information
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Figure 18: New Measures for Low Income Countries

(a) Afganistan (b) Benin (c) Burundi

(d) Haiti (e) Madagascar (f) Mali

(g) Niger (h) Rwanda (i) Togo

either as a result of lack of electricity. As such the optimal linear measure puts low
weight on nighttime light-predicted GDP. Nevertheless, these estimates show that our
proposed optimal linear measure performs very reliably across countries.

C.5 Semiparametric Conditional Mean for Robustness Check

In Section 4.4, we discussed the use of the semiparametric conditional mean as another
new measure of real GDP per capita. Despite its clear advantage of making full use
of the information in the conditional distributions, its nonparametric feature makes it
less robust without a large sample size.

Figure 19 plots the difference between the semiparametric conditional mean and
the optimal linear measure (E[y∗i,t|yi,t, zi,t, si,t, li] − ŷ∗) against the empirical kernel
density estimates of f(y, z, s, l) in DMSP/OLS data. Consistent with the simulation
results in Appendix C.2, as the empirical density increases, the difference between
the semiparametric conditional mean and the optimal linear measure decreases. Note
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that the difference is almost zero for high income countries because their measurement
errors that are identifiable by our method are very small.

Figure 19: Semiparametric Conditional Mean and Optimal Linear Measure

D More Descriptive Details on Data

D.1 Nighttime Lights vs. Real GDP per capita

Figure 20 presents where countries are located on nighttime lights and real GDP per
capita graph. We choose selectively a few countries that together span the real GDP
per capita spectrum.

D.2 Statistical Capacity and Latitude

We use the World Bank’s Statistical Capacity Indicator24 for developing countries as
our variable s for statistical capacity. The Statistical Capacity Indicator is a composite
score assessing the capacity of a country’s statistical system, including the following
areas: methodology; data sources; and periodicity and timeliness. The scores are based
on 25 criteria in these areas and the overall Statistical Capacity score is then being
calculated as simple average of all three area scores on a scale of 0-100.

Because the indicator starts in 2004 and the change over time for each country
is small, we use the average score during our sample periods for each country. Since

24http://datatopics.worldbank.org/statisticalcapacity/
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Figure 20: Nighttime Lights vs. Real GDP per capita (1992-2013)

high income countries don’t have scores, we assign them the highest score and treat
them as a separate group. Figure 21 shows that there is a clear positive relationship
between real GDP per capita and statistical capacity. Note that high income countries
are located on the top right corner where statistical capacity is 100 by construction.

A country’s latitude is calculated as the centroid of its largest contiguous block.
We focus on contiguity because oversea territories or separate land blocks would com-
plicate the definition of the geographic center of a country. As an example, Figure 22
illustrates the centroids that we use for a few European countries. Figure 23 shows
that real GDP per capita varies with latitude. Countries at high latitude in both
the Northern and the Southern Hemispheres tend to be rich whereas countries at low
latitude tend to be poor. This is the well-known North-South Divide.

Collectively, Figure 21 and 23 indicate that Assumption 5 is fairly reasonable, i.e.,
the distribution of real GDP varies with countries’ statistical capacity and geographic
location.
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Figure 21: Real GDP per capita vs. Statistical Capacity by Location

(1992-2013)
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Figure 22: Centroids of Selected European Countries
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Figure 23: Real GDP per capita vs. Latitude by Statistical Capacity

(1992-2013)
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