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C. Proofs

C.1. Proof of Theorem 2.1

Proof In order to apply the identification method in Hu and Schennach (2008), we first

rewrite the integral equation in Equation (2.3) as follows

fX1,X2|X3 (X1, X2|X3)=
∫
X ∗

fX1|X∗(X1|x∗) fX2|X∗(X2|x∗) fX∗|X3(x∗|X3)dx∗.(C.1)

This equation is equivalent to the one in Theorem 1 of Hu and Schennach (2008) if we in-

terpret the measurements X2, X1, and X3 as the dependent variable Y , a mismeasured

covariate X , and an instrumental variable Z respectively. within the context of the mea-

surement error model.
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Denote L2(X)= {h(·) :
∫
X |h(x)|2dx <∞}. Given x2, define operators as follows1:

L fX1,X2|X3
: L2(X3)→ L2(X1) with(C.2)

[L fX1,X2|X3
h](x1)=

∫
fX1,X2|X3(x1, x2|x3)h(x3)dx3,

L fX1|X∗ : L2(X ∗)→ L2(X1) with(C.3)

[L fX2|X∗ h](x1)=
∫

fX1|X∗(x1|x∗)h(x∗)dx∗,

∆ fX2|X∗ : L2(X ∗)→ L2(X ∗) with(C.4)

[∆ fX2|X∗ h](x∗)= fX2|X∗(x2|x∗)h(x∗),

L fX∗|X3
: L2(X3)→ L2(X ∗) with(C.5)

[L fX∗|X3
h](x∗)=

∫
fX∗|X3(x∗|x3)h(x3)dx3,

L fX1|X3
: L2(X3)→ L2(X1) with(C.6)

[L fX1|X3
h](x1)=

∫
fX1|X3(x1|x3)h(x3)dx3.

For an arbitrary h ∈ L2(X3), using the definition of operators in Equations (C.2)–(C.5) and

an interchange of integrations, we rewrite Equation (C.1) as an operator equivalence rela-

1The requirement for the operators defined in Equations (C.2)–(C.5) to be well-defined in these L2−spaces
is that their kernel functions are in L2−spaces. Given x2, assume f (x1, x2|x3) ∈ L2(X1×X3), f (x1|x∗) ∈ L2(X1×
X ∗), f (x2|x∗) ∈ L2(X ∗), and f (x∗|x3) ∈ L2(X ∗×X3). Then, for h ∈ L2(X3), by Cauchy-Schwarz inequality, we
have ∫

X1

∣∣∣[L fX1 ,X2 |X3
h](x1)

∣∣∣2 dx1 =
∫
X1

∣∣∣∣∫
X3

f (x1, x2|x3)h(x3)dx3

∣∣∣∣2 dx1

≤
∫
X1

(∫
X3

| f (x1, x2|x3)|2 dx3 ·
∫
X3

|h(x3)|2 dx3

)
dx1

=
∫
X1

∫
X3

| f (x1, x2|x3)|2 dx3dx1 ·
∫
X3

|h(x3)|2 dx3 <∞

Therefore, [L fX1 ,X2 |X3
h](x1) ∈ L2(X1) and L fX1 ,X2 |X3

from L2(X3) to L2(X1) is well-defined and the support of
f (·, x1|·) can be unbounded. We can apply similar arguments to the operators L fX1 |X∗ , ∆ fX2 |X∗ , and L fX∗|X3

in Equations (C.2)–(C.5) to show the operators are well-defined in the corresponding L2−spaces and their
supports can be unbounded.
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tionship as follows,

[
L fX1,X2|X3

h
]

(x1)(C.7)

=
∫

fX1,X2|X3(x1, x2|x3)h(x3)dx3

=
∫
X3

(∫
X ∗

fX1|X∗(x1|x∗) fX2|X∗(x2|x∗) fX∗|X3(x∗|x3)dx∗
)

h(x3)dx3

=
∫
X ∗

fX1|X∗(x1|x∗) fX2|X∗(x2|x∗)
(∫

X3

fX∗|X3(x∗|x3)h(x3)dx3

)
dx∗

=
∫
X ∗

fX1|X∗(x1|x∗) fX2|X∗(x2|x∗)[L fX∗|X3
h](x∗)dx∗

=
∫
X ∗

fX1|X∗(x1|x∗)[∆ fX2|X∗ L fX∗|X3
h](x∗)dx∗

= [L fX1|X∗∆ fX2|X∗ L fX∗|X3
h](x2).

Thus, we express Equation (C.1) as the operator equivalence relationships:

L fX1,X2|X3
= L fX1|X∗∆ fX2|X∗ L fX∗|X3

.(C.8)

Integrating out X2 in Equation (C.1) yields

fX1|X3 (X1|X3)=
∫
X ∗

fX1|X∗(X1|x∗) fX∗|X3(x∗|X3)dx∗.(C.9)

This is equivalent to the following operator relationship:

L fX1|X3
= L fX1|X∗ L fX∗|X3

.(C.10)

Since L fX1|X∗ is injective by Assumption 2.3, Equation (C.10) can be written as

L fX∗|X3
= L−1

fX1|X∗ L fX1|X3
.(C.11)
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The expression in Equation (C.11) for L fX∗|X3
can be substituted into Equation (C.8) to yield

L fX1,X2|X3
= L fX1|X∗∆ fX2|X∗ L−1

fX1|X∗ L fX1|X3
.(C.12)

By Hu and Schennach (2008), the injectivity L fX3|X1
in Assumption 2.3 implies the inverse

L−1
fX1|X3

exists and can be applied from the right on each side of Equation (C.12) to yield2

L fX1,X2|X3
L−1

fX1|X3
= L fX1|X∗∆ fX2|X∗ L−1

fX1|X∗ .(C.13)

Equation (C.13) implies that the known operator L fX1,X2|X3
L−1

fX1|X3
admits a spectral decom-

position that takes the form of an eigenvalue-eigenfunction decomposition where the eigen-

values are given by the multiple operator ∆ fX2|X∗ and the eigenfunctions are given by the

kernel of the integral operator L fX1|X∗ . To establish uniqueness of the decomposition in

Equation (C.13), we need to impose conditions on the eigenvalues fX2|X∗ and the eigenfunc-

tions fX1|X∗ which is analogous to standard matrix diagonalization. Assumption 2.4 ensures

that the eigenvalues are distinct, and Assumption 2.5 imposes a location normalization to

pin down the values of the unobserved X∗ relative to the observed variables. Therefore, the

conditional densities fX1|X∗ and fX2|X∗ are identified.

Next, under Assumption 2.1, consider

fX1,X2,X3,··· ,XK =
∫
X ∗

fX1|X∗ fX2,X3,··· ,XK ,X∗dx∗.(C.14)

Following the previous derivation, we obtain the following linear operator relationship, for

2See Assumption 3 and Lemma 1 in Hu and Schennach (2008).
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each given (x3, · · · , xK )

L fX1,X2,x3,··· ,xK
= L fX1|X∗ L fX2,x3,··· ,xK ,X∗ ,(C.15)

where

L fX1,X2,x3,··· ,xK
: L2(X1)→ L2(X2) with(C.16)

[L fX1,X2,x3,··· ,xK
h](x1)=

∫
fX1,X2,X3,··· ,XK (x1, x2, x3, · · · , xK )h(x2)dx2,

L fX2,x3,··· ,xK ,X∗ : L2(X2)→ L2(X ∗) with(C.17)

[L fX2,x3,··· ,xK ,X∗ h](x∗)=
∫

fX2,X3,··· ,XK ,X∗(x2, x3, · · · , xK , x∗)h(x2)dx2,

The injectivity of LX1|X∗ in Assumption 2.3 implies that

L fX2,x3,··· ,xK ,X∗ = L−1
fX1|X∗ L fX1,X2,x3,··· ,xK

.

Since fX1,X2,x3,··· ,xK is observable and fX1|X∗ is identified from the spectral decomposition,

fX2,X3,··· ,XK ,X∗ is also identified. The identification of the joint density fX2,X3,··· ,XK ,X∗ implies

the identification of the conditional densities of the observable measurements given the

latent variable X∗, fXk|X∗(Xk|X∗), for k = 2, · · · ,K and the density of the latent variable

fX∗(X∗). Q.E.D.

C.2. Proof of Theorem 2.2

Proof After discussing the assumptions preceding Theorem 2.2, what remains to be shown

is that Assumptions 2.7 and 2.8 imply Assumption 2.3, specifically the injectivity of L fX1|X∗

and L fX3|X1
. Injectivity can be expressed in terms of completeness of the kernel families.
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Definition C.1. The family { fU |V : v ∈ V } is complete over L2(V ) if for any function h ∈ L2(V ),∫
fU |V (u|v)h(v)dv = 0 for all u ∈U implies h(v)= 0 for almost any v ∈ V .

Hu and Shiu (2022) generalize Theorem 2.1 of Mattner (1993) to show a sufficient con-

dition for completeness under additive independence:

Lemma C.1. Let fE be a pdf of a variable E. Consider X = D +E, where D ∈ R and E is

independent of D. If the characteristic function of X or E is nonvanishing everywhere, then

the nonparametric family of conditional density functions
{

f (X |D) = fE(X −D) : X ∈ X
}

is

complete in L2(D).

First, we show that Assumptions 2.7 and 2.8 imply that L fX1|X∗ is injective. That is,

[L fX1|X∗ h](x1) =
∫

fX1|X∗(x1|x∗)h(x∗)dx∗ = 0

for all x1 implies h(x∗)= 0 for all x∗. We have

[L fX1|X∗ h](x1) =
∫

fX1|X∗(x1|x∗)h(x∗)dx∗

=
∫

fε1(x1 − g1(x∗))h(x∗)dx∗

=
∫

fε1(x1 − z)h(g−1
1 (z))dg−1

1 (z)

=
∫

fε1(x1 − z)

(
h(g−1

1 (z))
1

g′
1(g−1

1 (z))

)
dz

= 0

We then have h(g−1
1 (z)) = 0 for all z, since the family

{
fε1(x1 − z) : x1 ∈X

}
is complete. This

conclusion follows from applying Lemma C.1 under Assumption 2.7. The monotonicity of g1

in Assumption 2.8 implies that h(x∗)= 0 for all x∗. Therefore, L fX1|X∗ is injective. Similarly,

L fX3|X∗ is injective.
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Next, we show that L fX3|X1
is injective under Assumptions 2.7 and 2.8. Specifically, we

need to show that

[L fX3|X1
h](x3) =

∫
fX3|X1(x3|x1)h(x1)dx1 = 0

for all x3 implies h(x1)= 0 for all x1. Consider

∫
fX3|X1(x3|x1)h(x1)dx1

=
∫ ∫

fX3|X1 X∗(x3|x1, x∗) fX1|X∗(x1|x∗) fX∗(x∗)dx∗h(x1) f −1
X1

(x1)dx1

=
∫ ∫

fX3|X∗(x3|x∗) fX∗(x∗) fX1|X∗(x1|x∗)dx∗h(x1) f −1
X1

(x1)dx1

=
∫ ∫

fε3(x3 − g3(x∗)) fX∗(x∗) fε1(x1 − g1(x∗))h(x1) f −1
X1

(x1)dx1dx∗

=
∫

fε3(x3 − g3(x∗))
(
fX∗(x∗)

∫
fε1(x1 − g1(x∗))h(x1) f −1

X1
(x1)dx1

)
dx∗

= L fX3|X∗

(
fX∗(·)

∫
fε1(x1 − g1(·))h(x1) f −1

X1
(x1)dx1

)
.

Since L fX3|X∗ is injective under Assumptions 2.7 and 2.8, we have

fX∗(x∗)
∫

fε1(x1 − g1(x∗))h(x1) f −1
X1

(x1)dx1 = 0 for any x∗.

Because the range of g1 is the whole real line, we have
∫

fε1(x1−z)h(x1) f −1
X1

(x1)dx1 = 0 for any z

and this implies that

∫
f−ε1(z− x1)h(x1) f −1

X1
(x1)dx1 = 0 for any z.

The condition that the characteristic function of ε1 does not vanish on the real line (i.e.,

Assumption 2.7(iii)) implies that the characteristic function of −ε1 does not vanish on the

real line. Applying Lemma C.1 under Assumption 2.7, we have
∫

f−ε1(z−x1)h(x1) f −1
X1

(x1)dx1 =
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0 for all z implies that h(x1)= 0 for all x1. Therefore, L fX3|X1
is injective. Q.E.D.

C.3. Proof of Lemma B.1

Proof We will adopt the following two lemmas in Newey and Powell (2003) for our consis-

tency results of α̂n.3

Lemma C.2. Suppose that (i) Q(α) has a unique minimum on A at α0; (ii) Q̂n(α) and Q(α)

are continuous, and A is compact; (iii) max
α∈A

∣∣Q̂n(α)−Q(α)
∣∣ p→ 0; (iv) Â are compact subsets of

A such that for any α ∈A there exists α̂ ∈ Â such that α̂
p→α. Then α̂= argmin

α∈Â

Q̂n(α)
p→α0.

Lemma C.3. If (i) A is a compact subset of a space with norm ∥α∥s; (ii) Q̂n(α)−Q(α)
p→ 0

for all α ∈ A ; (iii) there is v > 0 and Bn = Op(1) such that for all α, α̃ ∈ A ,
∣∣Q̂n(α)− Q̂n(α̃)

∣∣ ≤
Bn∥α− α̃∥v

s , then Q(α) is continuous and sup
α∈A

∣∣Q̂n(α)−Q(α)
∣∣ p→ 0.

We show pointwise consistency of α̂n by verifying the conditions of Lemma C.2. Denote

the likelihood function as follows

L (α)= E ln
∫
X ∗

K∏
k=1

fk(Xk − gk(x∗)) fK+1(x∗)dx∗.(C.18)

Under Assumptions 2.6–2.7, the identification result in Theorem 2.2 holds and it implies

Q(α)≡−L (α) has a unique minimum on A at α0 which satisfies condition (i) of Lemma C.2.

Set Q̂n(α)≡−L̂n(α). While the continuity of Q̂n(α) and Q(α) follow from their formulas, the

compactness of A and An follow from Assumptions B.3 and B.4. We then apply Lemma C.3

to assure condition (iii) of Lemma C.2. The difference between Q̂n(α) and Q(α) is

∣∣∣Q̂n(α)−Q(α)
∣∣∣= ∣∣∣∣L̂n(α)−L (α)

∣∣∣∣.
3The result are Lemma A1 and Lemma A2 of Newey and Powell (2003).
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By the law of large number, we have L̂n(α)−L (α)
p→ 0, which implies that Q̂n(α)−Q(α)

p→ 0

for all α ∈ A . We also need to verify Hölder continuity of the sample objective function

Q̂n(α), which is equivalent to Hölder continuity of ℓ(xi;α). Set

α= (
√

f1(·− ·),
√

f2(·− g2(·)), · · · ,
√

fK (·− gK (·)),
√

fK+1(·))

ᾰ= (
√

f̆1(·− ·),
√

f̆2(·− ğ2(·)), · · · ,
√

f̆K (·− ğK (·)),
√

f̆K+1(·)).

The difference of ℓ(xi;α) at α and ᾰ is given by

ℓ(xi;α)−ℓ(xi; ᾰ)= d
dt
ℓ(xi; ᾱ+ t(α− ᾰ))

∣∣∣
t=0

,(C.19)

where ᾱ= (
√

f̄1(·− ·),
√

f̄2(·− ḡ2(·)), ...,
√

f̄K (·− ḡK (·)),
√

f̄K+1(·)), a mean value between α and

ᾰ. Denote ε̄k = xk − ḡk(x∗), εk = xk − gk(x∗), and ε̆k = xk − ğk(x∗). Equation (C.19) equals

d
dt
ℓ(xi; ᾱ+ t(α− ᾰ))

∣∣∣
t=0

= 1
f (xi; ᾱ)

( K∑
l=1

∫
X ∗

2
√

f̄ l(ε̄l)
(√

f l(εl)−
√

f̆ l(ε̆l)
) K∏

k=1
k ̸=l

f̄k(ε̄k) f̄K+1(x∗)dx∗

+
∫
X ∗

K∏
k=1

f̄k(ε̄k)2
√

f̄K+1(x∗)
(√

fK+1(x∗)−
√

f̆K+1(x∗)
)
dx∗

)
.

We then obtain the bound for the Hölder continuity:

∣∣∣ d
dt
ℓ(xi; ᾱ+ t(α− ᾰ))

∣∣∣
t=0

∣∣∣
≤ 1

| f (xi; ᾱ)|
( K∑

l=1

∫
X ∗

∣∣∣2√
f̄ l(ε̄l)ω−1(xl , x∗)

((√
f l(ε̄l)−

√
f̆ l(ε̄l)

)
ω(xl , x∗)

)
×

K∏
k=1
k ̸=l

f̄k(ε̄k) f̄K+1(x∗)
∣∣∣dx∗

+
∫
X ∗

∣∣∣ K∏
k=1

f̄k(ε̄k)2
√

f̄K+1(x∗)ω−1(x∗)
((√

fK+1(x∗)−
√

f̆K+1(x∗)
)
ω(x∗)

)∣∣∣dx∗
)

≤ 1
| f (xi; ᾱ)|

( K∑
l=1

∫
X ∗

∣∣∣2√
f̄ l(ε̄l)ω−1(xl , x∗)

K∏
k=1
k ̸=l

f̄k(ε̄k) f̄K+1(x∗)
∣∣∣dx∗
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+
∫
X ∗

∣∣∣ K∏
k=1

f̄k(ε̄k)2
√

f̄K+1(x∗)ω−1(x∗)
∣∣∣dx∗

)
∥α− α̃∥s

≡ h1(xi, ᾱ,ω̄)∥α− ᾰ∥s.

Assumption B.5(ii) ensures that the function h1 is dominated by a l2 integrable function

under expectation and ℓ(xi;α) is Hölder continuous. Therefore, we obtain the consistency of

α̂n. Q.E.D.

C.4. Proof of Theorem B.1

Proof We prove the results by checking the conditions in Theorem 3.1 in Ai and Chen

(2003). The assumptions in Theorem 3.1 in Ai and Chen (2003) are directly being assumed

in our single-step sieve MLE. We obtain the consistency result with a n−1/4 convergence

rate. Q.E.D.
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D. Additional Tables

Table D.1: Simulation Results for Models with Linear gk (n=1000)

Infeasible ICA PCA Linear Rank

DGP 1 (β01,β02,β03)= (0.356,0.555,0.089)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.356 0.555 0.089 0.127 0.093 0.104 0.212 0.198 0.590 0.335 0.588 0.077
Median 0.356 0.556 0.089 0.213 0.144 0.152 0.212 0.198 0.590 0.337 0.583 0.077
Bias 0.000 0.000 0.000 -0.229 -0.462 0.015 -0.144 -0.357 0.501 -0.021 0.033 -0.012
Std. Dev. 0.021 0.022 0.013 0.559 0.560 0.582 0.013 0.011 0.020 0.079 0.087 0.013

DGP 2 (β01,β02,β03)= (0.953,0.017,0.030)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.950 0.019 0.031 -0.161 0.573 -0.038 0.137 0.731 0.133 0.923 0.030 0.047
Median 0.951 0.020 0.030 -0.266 0.942 -0.054 0.147 0.716 0.138 0.927 0.026 0.044
Bias -0.003 0.002 0.001 -1.114 0.556 -0.068 -0.816 0.714 0.103 -0.030 0.013 0.017
Std. Dev. 0.015 0.016 0.012 0.263 0.755 0.076 0.063 0.133 0.071 0.042 0.021 0.029

DGP 3 (β01,β02,β03)= (0.481,0.039,0.480)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.481 0.039 0.480 0.072 0.032 0.090 0.217 0.566 0.217 0.487 0.031 0.482
Median 0.481 0.039 0.480 0.078 0.142 0.088 0.217 0.566 0.217 0.482 0.031 0.485
Bias -0.003 0.002 0.001 -1.114 0.556 -0.068 -0.816 0.714 0.103 -0.030 0.013 0.017
Std. Dev. 0.021 0.009 0.021 0.404 0.814 0.400 0.008 0.014 0.008 0.114 0.004 0.114

DGP 4 (β01,β02,β03)= (0.236,0.003,0.762)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.236 0.003 0.761 -0.032 0.641 -0.046 0.046 0.919 0.035 0.271 0.006 0.723
Median 0.236 0.008 0.760 -0.071 0.986 -0.101 0.046 0.919 0.035 0.255 0.007 0.738
Bias -0.003 0.002 0.001 -1.114 0.556 -0.068 -0.816 0.714 0.103 -0.030 0.013 0.017
Std. Dev. 0.018 0.011 0.021 0.198 0.707 0.217 0.010 0.015 0.006 0.165 0.003 0.167

DGP 5 (β01,β02,β03)= (0.485,0.484,0.030)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.485 0.485 0.030 0.110 0.102 0.095 0.187 0.187 0.627 0.484 0.490 0.026
Median 0.485 0.484 0.030 0.165 0.152 0.173 0.187 0.187 0.626 0.487 0.486 0.026
Bias -0.003 0.002 0.001 -1.114 0.556 -0.068 -0.816 0.714 0.103 -0.030 0.013 0.017
Std. Dev. 0.021 0.021 0.007 0.569 0.561 0.575 0.009 0.009 0.017 0.119 0.119 0.003

Note: The population quantity β0 for each dgp is approximated by computing the mean of the infeasible
estimator with a sample size N = 5000 in 1000 repetitions.
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Table D.2: Percentage of Rankings Correctly Predicted for Models with Linear gk (n=1000)

Infeasible ICA PCA Linear Rank
DGP 1 0.830 0.562 0.721 0.827

(0.006) (0.202) (0.012) (0.007)
DGP 2 0.925 0.637 0.802 0.888

(0.003) (0.177) (0.016) (0.083)
DGP 3 0.895 0.550 0.746 0.892

(0.004) (0.192) (0.010) (0.005)
DGP 4 0.846 0.605 0.676 0.831

(0.006) (0.117) (0.012) (0.047)
DGP 5 0.895 0.566 0.714 0.892

(0.004) (0.237) (0.012) (0.005)

Note: Standard deviations are reported in parenthesis, which are computed using estimates across 1000 sim-
ulations.
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Table D.3: Simulation Results for Models with Non-linear gk (n=1000)

Infeasible ICA PCA Linear Rank

DGP 6 (β01,β02,β03)= (0.265,0.639,0.096
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.264 0.641 0.096 -0.079 0.760 0.555 0.152 0.232 0.616 0.225 0.637 0.138
Median 0.264 0.640 0.096 -0.081 0.802 0.586 0.152 0.232 0.615 0.223 0.627 0.138
Bias -0.001 0.002 0.000 -0.344 0.121 0.459 -0.113 -0.407 0.520 -0.040 -0.002 0.042
Std. Dev. 0.021 0.023 0.011 0.060 0.260 0.194 0.009 0.010 0.008 0.057 0.068 0.033

DGP 7 (β01,β02,β03)= (0.268,0.596,0.137)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.264 0.599 0.137 -0.056 0.203 0.778 0.148 0.250 0.602 0.229 0.616 0.155
Median 0.263 0.600 0.137 -0.075 0.233 0.959 0.149 0.251 0.600 0.224 0.618 0.150
Bias -0.001 0.002 0.000 -0.344 0.121 0.459 -0.113 -0.407 0.520 -0.040 -0.002 0.042
Std. Dev. 0.022 0.022 0.013 0.145 0.191 0.541 0.010 0.008 0.015 0.048 0.061 0.033

DGP 8 (β01,β02,β03)= (0.083,0.784,0.133)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.083 0.785 0.132 0.107 0.520 0.536 0.575 0.213 0.212 0.119 0.653 0.228
Median 0.083 0.785 0.132 0.105 0.965 0.246 0.577 0.213 0.209 0.116 0.646 0.232
Bias -0.001 0.002 0.000 -0.344 0.121 0.459 -0.113 -0.407 0.520 -0.040 -0.002 0.042
Std. Dev. 0.009 0.017 0.015 0.079 0.503 0.415 0.022 0.012 0.022 0.029 0.066 0.052

DGP 9 (β01,β02,β03)= (0.245,0.650,0.105)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.245 0.651 0.104 -0.060 0.843 0.431 0.231 0.267 0.502 0.197 0.662 0.140
Median 0.244 0.651 0.104 -0.063 0.886 0.451 0.233 0.265 0.501 0.197 0.655 0.136
Bias 0.000 0.001 -0.001 -0.305 0.193 0.326 -0.014 -0.383 0.397 -0.048 0.012 0.035
Std. Dev. 0.018 0.021 0.013 0.082 0.273 0.143 0.019 0.020 0.011 0.066 0.082 0.045

Note: The population quantity β0 for each dgp is approximated by computing the mean of the infeasible
estimator with a sample size N = 5000 in 1000 repetitions.
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Table D.4: Percentage of Rankings Correctly Predicted for Models with Non-linear gk
(n=1000)

Infeasible ICA PCA Linear Rank
DGP 6 0.852 0.771 0.776 0.847

(0.006) (0.093) (0.008) (0.008)
DGP 7 0.873 0.733 0.811 0.871

(0.005) (0.154) (0.007) (0.005)
DGP 8 0.880 0.809 0.793 0.872

(0.005) (0.082) (0.008) (0.008)
DGP 9 0.849 0.779 0.784 0.842

(0.006) (0.088) (0.008) (0.009)

Note: Standard deviations are reported in parenthesis, which are computed using estimates across 1000 sim-
ulations.

14



Table D.5: Measurements of Economic Activity and Input for Linear Rank Indexes

Measures Frequency Data Source Data Construction
GDP Growth Annual, Quarterly WEO, Haver Analytics
Luminosity

DMSP-OLS Annual EOG Hu and Yao (2021)
VIIRS Monthly EOG Hu and Yao (2021)

CO2 Emissions Annual Global Carbon Project Canadell (2003)
Google SVI Monthly Google Trends Narita and Yin (2018)

Samples Variable Input Country Coverage Time Coverage
Sample 1 GDP, DMSP/OLS luminosity, CO2 180 countries 2000-2011
Sample 2 GDP, VIIRS luminosity, CO2 180 countries 2014-2018
Sample 3 GDP, VIIRS luminosity, Google SVI 69 EMDEs 2014Q1-2020Q4

Note: (1). WEO—World Economic Outlook, International Monetary Fund; EOG—Earth Observation Group,
Payne Institute, Colorado School of Mines; SVI—search volume index; EMDEs–Emerging markets and de-
veloping economies. (2). DMSP/OLS (The Defense Meteorological Satellite Program Operational Line-Scan
System) and VIIRS (Visible Infrared Imaging Radiometer Suite) are two different satellite systems.
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