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1. Introduction

A thorough grasp of the quality and performance variations among individuals (such as

students and employees), institutions (like hospitals and universities), and countries is cru-

cial for numerous economic applications. However, this is inherently challenging because

analysts typically have access only to a set of proxy measures, rather than directly observ-

ing true quality and performance metrics. For instance, in educational research, although

comparing latent cognitive skills among children would provide an accurate assessment of

their cognitive development, researchers can only measure their performance through test

scores. In finance, assessing borrowers’ creditworthiness is crucial for setting appropriate

interest rates and making lending decisions. Since true underlying creditworthiness cannot

be directly observed, researchers must rely on data such as the borrower’s past payment

histories, outstanding debt balances, employment status, and other tangible variables. At

a macro level, policymaking depends on understanding the true state of the economy and

its global standing. However, true economic growth is imperfectly measured by official GDP

statistics and alternative economic indicators, such as satellite-recorded luminosity, CO2

emissions, and Google search volume indices. To what extent can researchers rely on a set

of imperfectly measured proxies to rank an unobservable latent variable?

In this paper, we introduce a novel and easy-to-implement method for ranking the val-

ues of a latent variable using a linear index model with multiple measurements. Our pri-

mary motivation is to develop a quantitative measure based on a series of observed data

that can reveal relative positions, such as those of a country, in a specific area. We con-

sider a case where there are K measurements of a scalar latent variable X∗ ∈ X ∗. Let

X = (X1, X2, · · · , XK ) ∈ X denote the vector of the K measurements observable to econome-

tricians. A linear index is defined as a linear combination of these measurements, i.e.,

(1.1) Xβ=β1X1 +β2X2 +·· ·+βK XK ,

where β = (β1,β2, · · · ,βK )T with βk > 0 for k = 1,2, · · · ,K and
∑K

k=1βk = 1. The linear index

transforms the measurement vector into a single scalar, making comparisons across obser-

vations straightforward. The optimal linear rank index is denoted by Xβ0, such that for any
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two random draws i and j,

(1.2) β0 = argmax
β

Pr
(
X iβ> X jβ|X∗

i > X∗
j

)
.

Intuitively, the proposed optimal linear rank index aims to maximize the true positive rate,

which is the probability that X∗
i is correctly ranked above X∗

j based on observable informa-

tion when X∗
i > X∗

j in the data generating process. This objective ensures that the ranking

of the true latent variable of interest, based on the ordering labels assigned by our proposed

estimator, is preserved as accurately as possible. We show in the paper that it is equivalent

to constructing β0 by maximizing the rank correlation between the latent variable and the

linear combination of the measurements. β0 effectively maximizes the degree of similar-

ity between two rankings. This single index condenses multi-dimensional data, making it

easier to interpret and aiding in the task of ranking entities on complex issues.

We provide a two-step nonparametric identification strategy for β0. We combine the

identification results for general nonlinear models with measurement errors (Hu and Schen-

nach, 2008) with the methods in generalized linear regression models (Han, 1987). In the

first step, we demonstrate that the conditional distribution of the latent variable X∗ given

the measurement Xk (i.e., fX∗|Xk ) can be recovered from a dataset containing at least three

measurements of the latent variable. This result relies on the assumption that observ-

able measurements are independent conditional on the latent variable. We also consider a

special case where the measurement error structure is specified through a nonparametric

regression model, i.e. Xk = gk(X∗)+ εk. Under additivity, certain technical assumptions,

such as injectivity, required for the general nonlinear model can be relaxed. In the second

step, we show that the population parameter β0 attains a unique maximum for the objective

function in Equation (1.2), which is closely related to the objective function of the maximum

rank correlation estimator studied in Han (1987) and Sherman (1993), and can be con-

structed using the joint distribution of the latent variable and its measurements identified

in the first step.

Our identification approach is constructive and provides a corresponding two-step sieve-

based rank estimator for β0. We first estimate fXk|X∗ for k = 1, · · · ,K using a sieve MLE and

construct a consistent estimator for fX∗|X . An estimator for β0 can then be constructed as

the unique maximizer of the sample analogue of the population objective function. Since
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the proposed estimator is a variant of a maximum rank correlation estimator, we follow

Sherman (1993) to provide a set of conditions that allow us to establish consistency and

asymptotic normality of the optimal linear rank index estimator.

In the numerical simulation exercises, we compare the performance of our proposed op-

timal linear rank estimator with that of the infeasible estimator (which assumes the joint

distribution of X∗ and its measurements is known), the principal component analysis (PCA)

estimator, and the independent component analysis (ICA) estimator under different data-

generating processes. Both PCA and ICA are commonly used dimensionality reduction algo-

rithms. PCA transforms a set of correlated variables into a smaller number of uncorrelated

variables while retaining as much variation as possible from the original dataset. This ap-

proach is useful for identifying latent variables (factors) underlying the observed data. ICA

is an extension of the PCA technique. This algorithm assumes that each sample of data

is a mixture of independent components and it extracts these components by maximizing

the non-Gaussianity of these random variables. Although these estimators are not designed

to maximize the probability of correctly ranking the latent factor based on observables,

they are often used empirically to construct indexes for comparing latent variables, such

as air and water quality (Mahapatra, Sahu, Patel, and Panda, 2012), socioeconomic status

(Kolenikov and Angeles, 2009), stock market volatility (Li, Ma, Zhang, and Xiao, 2019),

and eco-efficiency (Jollands, Lermit, and Patterson, 2004).1 Policymakers have also been

utilizing these tools to construct composite indicators to “compare and rank country perfor-

mance in areas such as industrial competitiveness, sustainable development, globalisation

and innovation” ( Nardo, Saisana, Saltelli, Tarantola, Hoffman, and Giovannini, 2005).

We find that our optimal linear rank index estimator performs well in finite samples.

The bias of the proposed linear rank index estimator is small and comparable to that of the

infeasible estimator. The standard deviation of the linear rank index estimator decreases

as the sample size increases.. In all simulation designs, the ranking of the latent variable

across observations is largely preserved with the ordering labels assigned by our proposed

1Numerous empirical examples exist where PCA and ICA are used to construct rank indices. Relevant
studies in environmental studies include Khatun (2009), Hao, Li, Li, Zhang, and Liu (2013), and Tripathi and
Singal (2019). Filmer and Pritchett (2001), Vyas and Kumaranayake (2006), Krishnan (2010), and Friesen,
Seliske, and Papadopoulos (2016) use PCA to create composite indexes of socioeconomic status. Agasisti and
Pérez-Esparrells (2010), Muzamhindo, Kong, and Famba (2017), and Yi (2019) use PCA to rank educational
institutions. Back and Weigend (1997) provides an example where they use ICA to extract features to rank
stocks based on their underlying risk factors.
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estimator, correctly predicting about 85% of the ranking orders of the latent variable. The

percentage of correct predictions using ICA and PCA estimators is much lower in all simu-

lations.

We then apply our method to real data to assess GDP growth across countries using

multiple measurements including the official GDP growth rate, satellite-recorded luminos-

ity, carbon dioxide emissions, and the Google search volume index. Our estimation results

show that when accounting for the nonlinearity in the relationship between true economic

growth and its measurements, luminosity growth is as informative about underlying eco-

nomic growth as the official GDP data. Additionally, at a quarterly frequency, we find that

the Google search volume index plays a more significant role in predicting economic growth

than other measures, particularly in emerging markets and developing economies. The

GDP growth index constructed using our estimator complements official data by revealing

unrecorded economic activities, such as those during the demonetization period and the

pandemic period in India.

This paper is closely related to the literature on identifying and estimating the latent

variable distribution in nonlinear models with nonclassical measurement errors (Hu and

Schennach, 2008; Li, 2002; Schennach, 2004; Chen, Hu, and Lewbel, 2009; Schennach and

Hu, 2013; and Hu, Schennach, and Shiu, 2021). The construction of our optimal linear rank

index estimator relies on recovering the joint distribution of the latent variable and its mea-

surements. The linear rank index defined in Equation (1.2) is related to the maximum rank

correlation (MRC) estimator proposed by Han (1987) for the generalized regression model,

where the rank correlation between yi and x′iβ is maximized. Sherman (1993) shows that

the MRC estimator is
p

n-consistent and asymptotically normal. Chen (2002) proposes a

rank-based estimator for the transformation function in the generalized regression model,

given a
p

n-consistent estimator for β0. Shin (2010) proposes a local rank correlation es-

timator for estimating transformation models with varying coefficients. Drawing insights

from these various strands of literature, our paper develops a simple linear index model to

rank the values of a latent variable using multiple imperfect measurements.

The rest of the paper is organized as follows. We present the main identification results

in Section 2. The estimation procedure for the optimal linear rank index is described in

Section 3. We discuss the Monte Carlo simulation exercises in Section 4 and the empirical

illustration of our approach is presented in Section 5. Section 6 concludes. The technical
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details and asymptotic properties of the proposed estimator are provided in Appendix B.

The proofs are provided in Appendix C.

2. Identification

In this section, we provide the identification results for the optimal linear rank index pa-

rameter β0 defined in Equation (1.2). The true positive rate can be represented as

Pr
(
X iβ> X jβ|X∗

i > X∗
j

)
=

E[1(X iβ> X jβ)1(X∗
i > X∗

j )]

Pr
(
X∗

i > X∗
j

) ,

where 1(·) denotes an indicator function. Since the linear coefficient β only enters the nu-

merator, it is equivalent to define β0 as

β0 = argmax
β

Q0(β),(2.1)

where

Q0(β)≡ E[1(X iβ> X jβ)1(X∗
i > X∗

j )]

= EX i ,X j

[∫
1(X iβ> X jβ)1(x∗i > x∗j ) fX∗|X (x∗i |X i) fX∗|X (x∗j |X j)dx∗i dx∗j

]
.(2.2)

The objective function in Equation (2.1) measures the rank correlation between the latent

variable and the linear index. Equation (2.2) holds because i and j are randomly drawn

from an i.i.d. sample. Evaluating Q0(β) requires the distribution of the latent variable

conditional on the vector of observable measurements, i.e., fX∗|X .

In the rest of this section, we first discuss the identification of the conditional density

distribution fX∗|X . In the second step, we show that β0 attains a unique maximum of Q0(β)

under certain normalization and regularity conditions. The two-step strategy yields the

identification of the optimal linear rank index parameter β0.

2.1. Identification of fX∗|X

Identifying the joint distribution of X∗ and X from the observed distribution of X is feasible

only if the joint distribution admits a certain structure. We follow Hu and Schennach (2008)
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to provide a set of sufficient conditions to nonparametrically identify fX∗|X for general non-

linear models given at least three measurements of the latent variable.

Assumption 2.1 (Conditional Independence). The measurements X1, X2, · · · , XK with K ≥ 3

are independent conditional on X∗.

Assumption 2.2 (Bounded Densities). The joint distribution of X and X∗ admits a bounded

density on X ×X ∗. All marginal and conditional densities are also bounded.

Define an integral operator L fU |V as

(L fU |V h)(u) =
∫

fU |V (u|v)h(v)dv,

where fU |V is the density function of random variable U conditional on V .

Assumption 2.3 (Invertibility). The operators L fX1|X∗ and L fX3|X1
are injective.

Assumption 2.4 (Distinct Eigenvalues). The set
{
x2 : fX2|X∗(x2|x∗) ̸= fX2|X∗(x2|x̃∗)

}
has pos-

itive probability (under the marginal of X2) whenever x∗ ̸= x̃∗ ∈X ∗.

Assumption 2.5 (Normalization). There exists a known functional M such that for any

x∗ ∈X ∗, M
[
fX1|X∗(·|x∗)

]= x∗.

Assumption 2.1 requires that the measurements are independent conditional on the la-

tent variable. This restriction significantly reduces the number of unknown parameters in

the joint distribution of X∗ and X . Consider the joint distribution of any three measure-

ments, i.e., X1, X2, and X3. By the law of total probability and Assumption 2.1,

fX1,X2,X3 (X1, X2, X3)=
∫
X ∗

fX1|X∗(X1|x∗) fX2|X∗(X2|x∗) fX3|X∗(X3|x∗) fX∗(x∗)dx∗.(2.3)

Assumption 2.2 ensures that all the related densities are bounded. Based on Equation (2.3),

we show that the identification of the conditional density fX1|X∗ and the latent variable

density fX∗ relies on the spectral decomposition2 of a linear operator generated from the

observed density fX1,X2,X3 . Notice that under the conditional independence assumption,

identification of fX1|X∗ implies the identification of fX2,··· ,Xk,X∗ because

fX1,X2,··· ,Xk = L fX1|X∗ fX2,··· ,Xk,X∗ ,(2.4)

2A spectral decomposition is the operator analog of the eigenvalue–eigenvector decomposition for matrices,
in the finite-dimensional case.
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and Assumption 2.3 ensures the invertibility of L fX1|X∗ . Therefore, we can identify the whole

joint distribution fX1,X2,··· ,Xk,X∗ = fX1|X∗ fX2,··· ,Xk,X∗ . Once the joint distribution of all mea-

surements and the latent variable is identified, it is straightforward to identify the condi-

tional densities fXk|X∗ for all k and the density of the latent variable fX∗ .

Assumption 2.3 provides a high-level invertibility condition necessary for achieving the

desired spectral decomposition representation. Intuitively, it requires that the measure-

ment “transmits" information about the latent variable, meaning the distribution of the

measurements changes uniquely with the value of X∗. Assumption 2.4 further ensures that

the spectral decomposition has distinct eigenvalues. When the eigenvalues are the same

for multiple values of X∗ , the corresponding eigenfunctions are only determined up to an

arbitrary linear combination, implying that they are not identified. Assumption 2.4 can be

relaxed by replacing fX2|X∗ with fX2,X4,X5,··· ,Xk|X∗ . Finally, Assumption 2.5 imposes a loca-

tion normalization to pin down the values of the unobserved X∗ relative to the observed

variables.

Theorem 2.1 (General Nonlinear Models). Under Assumptions 2.1, 2.2, 2.3, 2.4, and 2.5, the

joint density of K observable measurements fX1,X2,··· ,XK (X1, X2, · · · , XK ) uniquely determines

the conditional densities fX1|X∗(X1|X∗), fX2|X∗(X2|X∗), · · · , fXK |X∗(XK |X∗), and the density

of the latent variable fX∗(X∗).

Proof See Online Appendix C.1. Q.E.D.

The nonparametric identification results in Theorem 2.1 requires high-level assump-

tions that may not be empirically verified. Therefore, we also consider identifying a popular

subclass of the model that imposes an additive structure on the relationship between the la-

tent variable and its measurements. Under additivity, we are able to replace some technical

assumptions (e.g., injectivity) with lower-level testable conditions, which are more appeal-

ing to applied researchers. From a practitioner’s perspective, the estimation procedure for

a flexibly specified additive model is also computationally much simpler (discussed in more

detail in Section 3).

Assumption 2.6 (Additivity). Xk = gk(X∗)+εk for k = 1, · · · ,K , with εk ⊥ X∗ and E[εk]= 0.

Assumption 2.7 (Invertibility). (i) the range of the functions g1 and g3 is the whole real

line; (ii) the characteristic functions of the measurements X1 and X3 do not vanish on the

real line; (iii) ε1 and ε3 have the support of the whole real line.
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Assumption 2.8 (Monotonicity). The functions g1, g2, and g3 are strictly monotonic.

Assumption 2.6 specifies the measurement error structure through a nonparametric re-

gression model, where gk(·) is an unknown function and εk represents an additive random

shock which has zero mean and is independent of the latent variable. Under additivity,

Assumptions 2.7 and 2.8 provide the sufficient conditions for the high-level invertibility as-

sumption for L fX1|X∗ and L fX3|X1
in Theorem 2.1 (i.e., Assumption 2.3). The condition that

the characteristic functions of X1 and X3 do not equal to zero on the real line is testable from

the data.3 Examples of distributions satisfying this condition include normal, Chi-squared,

Cauchy, Gamma, Exponential distributions, as well as any asymmetric distributions with

bounded supports.

Assumption 2.8 requires that at least three of the gk functions are strictly monotonic,

which implies that the measurements are informative about the true latent variable. For ex-

ample, in cognitive skill assessment, typical measurements include test scores in grammar,

numeracy, reading, spelling, and writing. Assuming these tests reflect underlying cognitive

abilities to some extent, the average test scores increase with cognitive skill level.4 The

monotonicity of g1 implies that the inverse g−1
1 exists. Under this assumption, we can use

g1 to rescale the measurement error equations and obtain

Xk = gk(g−1
1 (g1(X∗)))+εk

for k = 2, · · · ,K . It is clear from this equation that the scale of the latent variable and the

levels of the gk functions cannot be jointly identified. We therefore, without loss of gener-

ality, normalize g1(X∗) to X∗, i.e., X1 = X∗+ε1. Under this normalization, the conditional

mean function of X1 given X∗ is E(X1|x∗) = x∗, which strictly increases in x∗. By defining

M as the conditional mean function, we have M
[
fX1|X∗(·|x∗)

] = E(X1|x∗) = x∗, as required

by Assumption 2.5. Moreover, Assumption 2.4 is satisfied under the additive model because

3 Hu and Shiu (2022) develops a test for the non-vanishing property of the characteristic functions. Their
test applies to cases where the first zero point of the squared modulus of a characteristic function is finite
and is an isolated point. For example, the characteristic function of a random variable X ∼ U(−1,1) falls
into this category because φX (t) = sin(t)

t equals zero at t = nπ for n = ±1,±2,±3, · · · . More discussions on the
non-vanishing property of characteristic functions can be found in Hu and Shiu (2022) and Ushakov (2011).

4While the monotonicity assumption is intuitive and likely to hold in many empirical contexts, it cannot be
directly tested from the data because of the latent variable X∗. Empirically, we need to carefully consider the
relationship between the observed measurements Xk and the latent variable X∗, and choose an appropriate
measurement for normalization.
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g2 is strictly monotonic by Assumption 2.8.

Theorem 2.2 (Additive Models). Under Assumptions 2.1, 2.2, 2.6, 2.7, and 2.8, the observed

joint density fX1,X2,··· ,XK (X1, X2, · · · , XK ) uniquely determines gk(X∗) for k = 2, · · · ,K , the den-

sity of εk for k = 1, · · · ,K , and the density of the latent variable fX∗(X∗).

Proof See Online Appendix C.2. Q.E.D.

Theorem 2.2 provides identification results for the nonparametric gk functions, the er-

ror term distribution fεk , and the density of the latent variable fX∗ under an additive mea-

surement error structure. Although the additive structure might seem restrictive in some

cases, the empirically testable conditions it provides are appealing to applied researchers.

The additive structure is commonly used in many measurement error models. In classical

measurement error models, Xk = X∗+ εk, where εk ⊥ X∗. This implies that gk(X∗) = X∗.

In general, when gk(X∗) ̸= X∗ our additive structure represents a nonclassical measure-

ment error model. To see this, note that Xk = X∗+ (gk(X∗)− X∗+εk). The new error term

(gk(X∗)− X∗+εk) is correlated with the true latent variable X∗. Since the variance of the

error term depends on X∗, this specification allows for heteroskedasticity.5

To summarize, Theorem 2.1 or 2.2 shows that the joint distribution of X and X∗ is

uniquely determined by the observed distribution of X . The conditional density of the latent

variable given the measurements is also identified using the Bayes’ rule:

fX∗|X (X∗|X )= fX ,X∗(X , X∗)∫
X ∗ fX ,X∗(X , x∗)dx∗

,(2.5)

with which we can evaluate the objective function Q0(β) for a given β in Equation (2.2).

2.2. Identification of β0

To show that β0 is the unique maximum of the objective function Q0(β), we invoke the

following assumptions.

Assumption 2.9. The optimal linear rank index parameter β0 = (β01,β02, · · · ,β0K )′, satisfies

β0k > 0 for k = 1,2, · · · ,K , and
∑K

k=1β0k = 1.
5The identification of a general nonparametric additive model with heteroskedasticity, i.e., Xk = gk(X∗)+

δk(X∗)εk, requires stronger assumptions. For this type of models to be identifiable, it is crucial that the
associated linear operator, L fXk |X∗ , is injective (see Assumption 2.3 we impose for the general nonlinear
models).
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Assumption 2.10. (i) The support X is not contained in a proper linear subspace of RK ; (ii)

for some k, the k-th component of X has an everywhere positive Lebesgue density conditional

on almost every value of X−k = (X1, · · · , Xk−1, Xk+1, · · · , XK ).

Assumption 2.9 restricts β0 to the unit interval for normalization purposes. Note that

for any positive constant c, we have E[1(X i cβ> X j cβ)1(X∗
i > X∗

j )]= E[1(X iβ> X jβ)1(X∗
i >

X∗
j )]. Thus for identification, we normalize the optimal linear rank index parameter by

restricting
∑K

k=1β0k = 1. The assumption that β0k is strictly positive implies that the k-th

measurement is informative about the ranking of the latent variable. Assumption 2.10, the

key full-rank assumption for identifying β0 is borrowed from Han (1987), which essentially

requires that there should be no collinearity among the observable measurements. We state

our main identification results for the optimal linear index parameter β0 in the following

theorem.

Theorem 2.3 (Identification). Suppose all assumptions of Theorem 2.1 or Theorem 2.2 hold.

Under Assumptions 2.9 and 2.10, the optimal linear rank index parameter β0 is identified.

Showing that β0 uniquely maximizes E[1(X iβ > X jβ)1(X∗
i > X∗

j )] under Assumptions

2.9 and 2.10 is a direct application of Han (1987) (see part 1 of his proof for the main theo-

rem). We therefore omit the proof of Theorem 2.3.

3. Estimation

Based on the identification results in Section 2, we propose a two-step sieve-based esti-

mator for the optimal linear rank index parameter β0. We first estimate the conditional

densities fXk|X∗(Xk|X∗) for k = 1,2, · · · ,K and the latent variable density fX∗(X∗) using a

sieve maximum likelihood estimator. Using the estimated sieve ML densities, we construct

an estimator for the conditional density fX∗|X (X∗|X ). In the second step, we plug the esti-

mates of fX∗|X (X∗|X ) into the objective function in Equation (2.2) and estimate β0 using a

maximum rank correlation estimator.

We focus on describing the estimation procedure for the additive model (see Assumption

2.6) for the following reasons. First, the primary goal of our estimation is to recover the

optimal linear rank index parameter β0, so the conditional density functions fXk|X∗(Xk|X∗)

are considered as nuisance parameters. With nonparametric functions gk and a flexible

11



distribution of the error terms, the additive model provides a good approximation for the

relationship between the latent variable and its measurements. Second, with the additive

structure, the two-dimensional conditional density function fXk|X∗(Xk|X∗) can be replaced

by fεk (Xk − gk(X∗)), which represents the one-dimensional density function of the error

term evaluated at Xk − gk(X∗). This greatly simplifies the first-step sieve ML estimator,

making our estimation procedure more computationally tractable and appealing to applied

researchers.

Under the additive model, the likelihood function takes the following form

fX (X1, X2, · · · , XK )=
∫
X ∗

K∏
k=1

fεk (Xk − gk(x∗)) fX∗(x∗)dx∗,

where g1(X∗) = X∗ and ( fε1 , · · · , fεK , fX∗ , g2, · · · , gK ) are identified under the conditions in

Theorem 2.2. Our sieve maximum likelihood estimation relies on regularity restrictions on

the function space that contains the true parameters of interest

α0 = (
√

f 0
ε1 , · · · ,

√
f 0
εK ,

√
f 0

X∗ , g0
2, · · · , g0

K ).

Under the identification assumptions, we need the unknown functions of interest to be

smooth enough so that they can be well approximated by truncated sieve series, such as

polynomials. We provide the technical details on constructing function spaces and sieve

spaces that satisfy the density and monotonicity restrictions in Appendix B.1. The step-

by-step estimation procedure is described below. To simplify notation, we use fk to denote

the density function of εk for k = 1,2, · · · ,K and fK+1 to denote the density function of X∗

hereafter.

Step 1: Construct a sieve MLE of α0:

α̂n ≡
(�√ f1, · · · , �√ fK , à√ fK+1, ĝ2, · · · , ĝK

)
= argmax

α∈An
L̂n(α),(3.1)

where An is a finite dimensional sieve space that becomes dense in the func-

tion space covering the true unknown functions of interest. L̂n(α) is the sam-

ple analog of the log likelihood function using an i.i.d. sample
{

x1i, · · · , xK i

}n

i=1
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and is given by

L̂n(α)= 1
n

n∑
i=1

ln
∫
X ∗

K∏
k=1

fk(xki − gk(x∗)) fK+1(x∗)dx∗.(3.2)

Step 2: With the estimated densities f̂k =
(�√ fk

)2
for k = 1, · · · ,K ,K + 1 and ĝk for

k = 2,3, · · · ,K (note that ĝ1(X∗)= X∗), we construct:

f̂X∗|X (X∗|X )=
∏K

k=1 f̂k(Xk − ĝk(X∗)) f̂K+1(X∗)∫
X ∗

∏K
k=1 f̂k(Xk − ĝk(x∗)) f̂K+1(x∗)dx∗

.(3.3)

Step 3: Construct the sample analogue of the objective function Q0(β) in Equation

(2.2) based on the analogy principle. Let xi = (x1i, x2i, · · · , xK i).

Q̂n(β; f̂X∗|X )=

∑
i ̸= j

∫
1(xiβ> x jβ)1(x∗i > x∗j ) f̂X∗|X (x∗i |xi) f̂X∗|X (x∗j |x j)dx∗i dx∗j

n(n−1)
.

(3.4)

Step 4: The estimator of the optimal linear rank index parameter β0 is defined as

β̂n ≡ argmax
β

Q̂n(β; f̂X∗|X ).(3.5)

A few remarks about our estimation procedure are in order. First, the sieve MLE in Step

1 can be further simplified by imposing parametric assumptions on the g functions when

appropriate. For example, consider the case where gk(X∗) = γk X∗ for k = 1, · · · ,K . Under

Assumptions 2.1 and 2.6, for any two different measurements Xk and X l with k ̸= l, we have

Cov(Xk, X l)= γkγlV ar(X∗).(3.6)

By normalizing γ1 = 1 (so that g1(X∗) = X∗ as before), we can easily construct consistent

estimators for γ’s given an i.i.d. sample of measurements
{

x1i, · · · , xK i

}n

i=1
. Let µk ≡ 1

n

n∑
i=1

xki
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be the sample mean of xki for k = 1,2, · · · ,K .

γ̂k =

n∑
i=1

(
xki −µk

)(
xl i −µl

)
n∑

i=1

(
x1i −µ1

)(
xl i −µl

) , for k = 2, · · · ,K , with l ̸= k.(3.7)

Plugging the estimators γ̂k into the sample log-likelihood function in (3.2) significantly re-

duces the computational burden in the Step 1 sieve MLE.

Second, it is possible to estimate (β0,α0) jointly using a sieve ML estimator. Instead of

plugging the Step 2 estimated conditional density f̂X∗|X (X∗|X ) into the sample analogue of

the objective function Q0(β), we can construct it directly as a function of (β,α).

Q̂n(β,α)= 1
n(n−1)

∑
i ̸= j

∫
1(xiβ> x jβ)1(x∗i > x∗j ) fX∗|X (x∗i |xi;α) fX∗|X (x∗j |x j;α)dx∗i dx∗j .

The key difference is that fX∗|X (x∗|X ;α) is now a function of an infinite dimensional un-

known parameter α. This sample objective function Q̂n(β,α) depends on the unknown pa-

rameter (β,α) nonlinearly and pointwise nonsmoothly. This type of sieve estimators has

been considered in Chen and Pouzo (2012) and Chen and Pouzo (2009). The desired theo-

retical properties of these sieve estimators are generally much more challenging to obtain.

Chen and Liao (2014), Chen and Pouzo (2015), and Hahn and Liao (2018) provide examples

of ill-posed inverse problems in which the finite dimensional functionals fail to be root-n

estimable.

3.1. Asymptotic Properties

We now briefly discuss the asymptotic properties of the proposed optimal linear rank index

estimator in Equation (3.5). The technical assumptions and main theorems are presented

in Appendices B.2–B.5. First, the estimator α̂n is a direct application of the general sieve

MLE and it is consistent following Shen (1997), Ai and Chen (2003), Hu and Schennach

(2008), and Chen and Pouzo (2012). Theorem B.1 provides the convergence rate of the sieve

MLE under additional assumptions following Ai and Chen (2003). Under the assumption

that the likelihood function is continuous in a neighborhood of α0, Corollary B.1 shows that

the estimator f̂X∗|X (X∗|X ) in Equation (3.3) is consistent under a sup norm.

We then use the consistency of α̂n as the foundation for achieving the consistency of

14



β̂n. To control the ill-posed inverse problem in the first step, we follow the treatment in

Ai and Chen (2003) and Hu and Schennach (2008) to impose restrictions on the conditional

density f̂X∗|X and the relation between the conditional density and its sieve approximation.

Note that β0 is assumed to be in the interior of a parameter space Θ = [0,1]K . Given the

definition of the objective function, Q0(β) is continuous at β, and therefore the consistency

of β̂n follows.

With the consistency of β̂n in Theorem B.2, we consider estimators close to the popula-

tion parameter β0, and follow the general method in Sherman (1993) to establish that the

proposed optimal linear rank index estimator β̂n is
p

n−consistent for β0 and asymptotically

normally distributed. The key challenge we face is that the estimated conditional density

f̂X∗|X (X∗|X ) enters the sample objective function. We describe our approach to decompose

the sample objective function and represent it as a quadratic approximation in Section B.5.

The asymptotic normality result is stated in Theorem B.3. To make inference, we suggest

a bootstrap procedure for β̂n. More detailed discussions on the consistency of the bootstrap

procedure can be found in Chen, Linton, and Van Keilegom (2003).

4. Monte Carlo Simulation

In this section, we use a Monte Carlo method to investigate the finite sample properties

of the proposed optimal linear rank index estimator. We consider two scenarios within the

additive model (see Assumption 2.6). In the first case, gk(·) is a linear function and we es-

timate the distribution of εk nonparametrically. We consider an alternative scenario where

gk(·) is a nonlinear function with normally distributed εk. In this case, we estimate gk(·)
nonparametrically. For expository purposes, this section presents a simple model with K = 3.

4.1. Models with Linear gk

We generate the random variable X∗ using a normal distribution N(0,1). To construct the

contaminated variables X1, X2 and X3, we set Xk = γk X∗+εk for k = 1,2,3. We consider five

specifications for the vector of coefficients (γ1,γ2,γ3) and the corresponding measurement

errors (ε1,ε2,ε3). The details are presented in Table 1.

For DGPs 1–5, we estimate the linear coefficients in g functions and estimate the dis-

tribution of εk and the latent variable X∗ nonparametrically. We use Hermite orthogonal
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Table 1: DGPs for the model with linear gk

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
(γ1,γ2,γ3) (1,1,1) (1,0.6,0.8) (1,1,1) (1,0.8,1) (1,1,1)

ε1 N(0,1) N(0,0.22) N(0,0.52) N(0,1) N(0,0.52)

ε2 N(0,0.82) 1
2 S(1.5,0,1,0)

e1 + e2, with
e1 ∼ N(0,1)
e2 ∼U(0,5)

0.8N(−5,1)
+0.2N(5,52)

N(0,0.52)

ε3 N(0,22) N(0,1) N(0,0.52) N(0,0.52) N(0,22)

Note: In DGP II, S(ὰ, β̀, c,µ) represents a skewed centered stable distribution with a stability parameter ὰ, a
skewness parameter β̀, a scale parameter c, and a location parameter µ. In DGP IV, 0.8N(−5,1)+0.2N(5,52)
represents a bimodally distributed random variable that follows N(−5,1) with probability 0.8 and N(5,52)
with probability 0.2.

series as the sieve basis functions for
√

f1(ε1),
√

f2(ε2),
√

f3(ε3), and
√

f4(x∗).6 For compar-

ison, we also consider three alternative estimators. The first is the infeasible estimator of

β0, which assumes that the joint distribution of the latent variable and its measurements is

known to the econometrician. Therefore, by maximizing the rank correlation between Xβ

and X∗, we obtain:

β̂inf. = argmax
β

1
n(n−1)

∑
i ̸= j

1(X iβ> X jβ)1(X∗
i > X∗

j ).(4.1)

We also compare the performance of our estimator to the principal component analysis

(PCA) estimator and the independent component analysis (ICA) estimator. Both PCA and

ICA are widely used dimensionality reduction algorithms. PCA transforms a set of corre-

lated variables into a smaller number of uncorrelated variables, retaining as much variation

from the original dataset as possible. This approach is useful for identifying latent variables

(factors) underlying the observed data. ICA extends the PCA technique. It is designed to re-

cover a small number of independent linear components from a large number of noisy linear

combinations.7 Once the latent variables are recovered, it is possible to rank the values.

6We choose Hermite orthogonal series as the sieve basis functions mainly because it is easier to impose
monotonicity conditions on the regression functions. The properties of the Hermite basis can be found in Walter
(1977) and Gallant and Nychka (1987). The dimensions of sieve spaces are specified as (J1,n, J′

1,n) = (4,0),
(J2,n, J′

2,n)= (4,1), (J3,n, J′
3,n)= (4,1), and J4,n = 4. So kn = 18 for linear gk models.

7The ICA algorithm assumes that each sample of data is a mixture of independent components and it
extracts these components by maximizing the non-Gaussianity of these random variables. More details of the
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For all estimators, we consider a sample size of N=500 with each estimation involving

1000 simulation replications. In Table 3, we report the mean, median, bias, and standard

deviation of the four estimators. We find that our optimal linear rank estimator performs

well in finite samples. For all DGPs, only the infeasible estimator and the proposed linear

rank index estimator are close to the population parameter of interest. The bias of our

estimator is slightly larger than that of the infeasible estimator, as we would expect. As we

increase the sample size, the standard deviation of the optimal linear rank index estimator

decreases in all five simulation designs.8

Given the simulation data {xi, x∗i }n
i=1 and an estimator β̂, we can assess how well the one

dimensional representation of the measurements xiβ̂ preserves the ranking of the latent

variable x∗i . For each estimator, we report in Tables 4 the probability that the order of the

latent variable is correctly predicted for two random draws, i and j, i.e.,

(4.2)
2

n(n−1)

∑
i ̸= j

(
1(xiβ̂> x jβ̂)= 1(x∗i > x∗j )

)
.

In all simulation designs, the ranking of the latent variable across observations is largely

preserved given ordering labels assigned by our proposed estimator, with approximately

85% of the ranking orders of the latent variable correctly predicted. As expected, the per-

centage of correct predictions using ICA and PCA estimators is much lower in all simula-

tions. Although ICA and PCA estimators are often used empirically to construct indexes for

comparing quality or performance across observations, they are not theoretically designed

to rank the values of the latent variable.

4.2. Models with Non-linear gk

We now consider a case where gk is nonlinear and nonparametrically estimated, but we

impose a normal parametric assumption on the distribution of εk and the latent variable

X∗. To simulate the data, we use three types of nonlinear functions:

h1(x;a1,a2)= a1x+a2(x+ x2 + x3

3
),

ICA estimator can be found in Hyvärinen and Oja (1999), Hyvärinen and Oja (2000), and Chen and Bickel
(2006). We greatly appreciate Professor Brian Moore for providing the codes for the Fast ICA algorithm.

8The estimation results for N = 1000 are reported in Online Appendix D.
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h2(x;a1,a2)= a1x+a2ex,

h3(x;a1,a2)= a1x3

3
−a2e−x,

where a1 and a2 are two parameters entering these nonlinear functions. Note that h1, h2,

and h3 are strictly monotone for positive values of a1 and a2. We consider four specifications

for the gk functions and the distribution of the errors (ε1,ε2,ε3). The details are provided in

Table 2.

Table 2: DGPs for the model with nonlinear gk

DGP 6 DGP 7 DGP 8 DGP 9
g1(X∗) X∗ X∗ X∗ X∗

g2(X∗) h2(X∗;0.2,0.2) h1(X∗;2,1) h1(X∗;1,0.2) h2(X∗;0.2,1)
g3(X∗) h3(X∗;0.2,0.5) h2(X∗;1.2,0.2) h3(X∗;0.2,0.2) h2(X∗;0.2,0.5)
ε1 N(0,1) N(0,1) N(0,1) N(0,1)
ε2 N(0,0.52) N(0,0.82) N(0,0.52) N(0,0.52)
ε3 N(0,22) N(0,0.22) N(0,22) N(0,1.52)

For DGPs 6–9, we estimate the nonlinear gk functions nonparametrically. Specifically

we use the polynomial series as the sieve approximations for g2(·), and g3(·).9 The distribu-

tions of the errors and the latent variable are estimated parametrically. Again we compare

our estimator with the infeasible estimator, the PCA and ICA estimators. The simulation

results for a sample size of N = 500, based on 1000 replications, are presented in Table 5. We

find that for models with nonlinear gk functions, our proposed estimator performs well. The

bias of our estimator is generally small and comparable to that of the infeasible estimator.

Our estimator also achieves a much higher probability of correctly predicting the ranking of

the latent variable compared to the PCA and ICA estimators (see Table 6).

5. Empirical Example

Timely and accurate information on the state of the economy is essential for effective macroe-

conomic policymaking. However, obtaining such information has been a long-standing chal-

lenge for many countries. While official GDP growth usually provides good guidance, its

9For nonlinear gk models, the dimensions of sieve spaces are specified as (J1,n, J′
1,n) = (2,0), (J2,n, J′

2,n) =
(2,4), (J3,n, J′

3,n)= (2,4), and J4,n = 2. As a result, kn = 16.
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quality varies across countries. Additionally, the presence of the informal economy com-

plicates the understanding of overall economic activity. Recently, the rapid rise of non-

traditional data sources has offered alternative measurements of economic activity, poten-

tially providing new insights into the state of the economy. In this section, we apply the

proposed linear rank index estimator to assess GDP growth across countries using multiple

measurements.

We consider three measurements of economic activity in addition to official GDP growth:

satellite-recorded luminosity, carbon dioxide emissions, and the Google search volume index.

Satellite-recorded luminosity, or nighttime lights, measures the brightness of a country at

night and has been widely used in the literature as a proxy for economic activity.10 Carbon

dioxide emissions, a byproduct of burning fossil fuels, gauge the energy input of economic

production. The relationship between carbon dioxide emissions and economic growth has

long been recognized in the context of the environmental Kuznets curve.11 Google Trends

provides search volume indexes (SVIs) that measure search intensity of keywords and topics

by location and over time. A growing body of literature has demonstrated that SVIs contain

valuable information about the state of the economy.12

The identifying assumptions for the optimal linear rank index are likely to hold for these

measurements. Satellite-recorded luminosity, carbon dioxide emissions, and the Google

search volume index each reflect true economic activity from distinct perspectives, mak-

ing them likely to be independent once conditioning on the true state of the economy.13

Assumption 2.2 requires that all joint and marginal probability density functions of these

measurements and true GDP growth are bounded on their supports. Regarding the mono-

tonicity assumption, since official GDP growth and carbon dioxide emissions are informative

10Chen and Nordhaus (2011), Henderson, Storeygard, and Weil (2012) pioneered the use of luminosity as
measures of economic activity. More recently, Hu and Yao (2021) estimate the relationship between luminos-
ity and GDP in a measurement error model framework. Beyer, Franco-Bedoya, and Galdo (2021) examines
the impact of COVID-19 in India using luminosity data. Gibson, Olivia, and Boe-Gibson (2020) provide an
overview of sources and uses of luminosity data in economics.

11See, for example, Nordhaus (1977), Narayan and Narayan (2010), Fei, Dong, Xue, Liang, and Yang (2011).
12Since the seminal work of Choi and Varian (2012), there has been a burgeoning body of research using

Google Trends data to nowcast GDP (e.g., Carrière-Swallow and Labbé (2013), Narita and Yin (2018), Woloszko
(2020)) and understand unemployment (e.g., Baker and Fradkin (2017) ).

13For example, measurement errors in official GDP data may not be relevant to the amount of nighttime light
recorded by satellites or the search volume registered by Google. On the contrary, the conditional independence
assumption may not be satisfied if traditional measures of economic activity such as manufacturing index are
used. This is because manufacturing is an important active component of GDP and thus measurement errors
in manufacturing and GDP can be correlated.
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about true GDP growth, Assumption 2.8 is likely to be satisfied. The large range conditions

in Assumption 2.7(i) are likely to hold given that we are using continuous measurements;

Assumption 2.7(ii) is a technical assumption, but it is empirically testable since it involves

only observable information.

We construct the measurements of economic activity following the existing literature.

In particular, we follow Hu and Yao (2021) to construct luminosity growth by calculating

the year-on-year growth of the sum of nighttime lights within country boundaries. We fol-

low Narita and Yin (2018) to construct Google SVI growth using the names of countries as

the search topic. For all of these proxy measurements, we compute the growth rates us-

ing log differences. We focus on three samples in this application. The first two consider

annual data for a wide range of countries (Sample 1 covers the years 2000–2011, and Sam-

ple 2 covers the years 2014–2018), while Sample 3 considers quarterly data and focuses on

emerging markets and developing economies. In this application, we assume that the re-

lationship between the latent variable and its measurements remains stable over time and

across countries.14 The details of the data sources for each measurement in all samples are

provided in Table D.5 in Online Appendix.

Table 7 shows the estimated coefficients for ICA, PCA, and the optimal linear rank index

estimator with linear and nonlinear gk functions, respectively.15 The coefficients describe

how the ranking order of the latent variable, which in this example is economic growth,

can be explained by its measurements. Interestingly, the results with nonlinear gk indicate

that luminosity has a larger coefficient than official GDP growth, implying that luminos-

ity growth is informative about underlying economic growth when the nonlinearity of the

relationship between true economic growth and its measurements is taken into account.

In contrast to Gibson, Olivia, Boe-Gibson, and Li (2021), who demonstrate limited predic-

tive power of luminosity data for economic activity in low-density rural areas, our results

suggest that country-level luminosity data can be at least as useful as official data.

Based on our estimates of the optimal linear rank index (with nonlinear g functions), we

create a GDP Growth Index.16 In Figure 1, we plot the relationship between our index and

14It is possible to empirically test this assumption by estimating the linear rank index model using subsets
of time periods or countries.

15In our empirical application, the dimensions of the sieve space are specified as (J1,n, J′
1,n) = (2,0),

(J2,n, J′
2,n)= (2,4), (J3,n, J′

3,n)= (2,4), and J4,n = 2. So kn = 16.
16One caveat is that GDP growth index may not be directly comparable to official GDP growth rate. This is

because our proposed index is a linear combination of multiple measurements, but different measurements of
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Figure 1: GDP Growth Index vs. Official GDP Growth Rate: 2020Q2

the true GDP growth rate in the second quarter of 2020 (the peak of the pandemic period)

across different countries. This figure suggests that while there is a positive relationship

between our GDP growth index and the official GDP growth rate, with a correlation of 0.525,

they are clearly different. Our GDP growth index leverages various new measurements of

economic activity, potentially containing information not captured in official GDP growth

data. From this figure, we observe that during the pandemic period, for some western

African countries, such as Senegal, Burkina Faso, and Benin, the official data might have

underestimated the detrimental effects of the pandemic. Conversely, for Brazil and Chile,

their economy might have weathered the shocks better than the official data suggest.

Our GDP growth index may also offer important insights into patterns of economic

growth over time. In Figure 2, we plot the dynamic patterns of the official GDP growth

rate and our proposed index for India the years 2014 to 2020. Our GDP growth index sug-

gests that India may have experienced higher economic activity in 2017 and 2020 than what

was reported in the official data. Higher-than-official GDP growth in 2017 could be related

to the effects of India’s demonetization in late 2016, which official GDP growth was not able

to capture.17 Similarly, during the pandemic, economic activity might have shifted to the

economic activity may have different elasticities with respect to the true GDP growth.
17In a related study, Chanda and Cook (2022) use nighttime light data to show that demonetization in India

had a positive effect on India’s poorest districts in 2017.
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Figure 2: New GDP Growth Index vs. Official GDP Growth for India: 2014–2020

informal sector, which is not recorded in official data.18

In sum, the linear rank index offers a new perspective on the state of the economy.

Notably, where it differs from official data, it raises questions about economic activity that

may be overlooked by official sources and provides new insights.

6. Conclusion

This paper develops an econometric method to rank the values of a latent variable using a

set of imperfect measurements. We provide a statistical framework to describe the ordering

relationship between the latent variable and a linear combination of observable measure-

ments. We first leverage of the variation of at least three observed measurements and

provide sufficient conditions to identify the joint distribution of the latent variable and its

measurements. We then construct an estimator to maximize the rank correlation between

the latent variable and the linear combination of observables. The asymptotic properties

of the sieve-based linear rank index estimator are discussed. Our flexible model allows us

to reduce the dimensions of the observables and provides a simple but informative way to

compare the values of the latent variable across observations in the sample.

Applying our novel method to assess true GDP growth across counties, we show that

18In a recent paper, Schneider (2022) shows that the size of the shadow economy increased from 2019 to
2020 for 27 European Union countries and the United Kingdom.
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alternative measurements, such as luminosity and Google search volume indexes, can be

important complements to official GDP statistics. Our proposed method can also be easily

applied to other empirical settings, where we aim to rank cognitive skills among children,

the creditworthiness of borrowers, and the quality or performance of schools and hospitals.

In this paper, we focus on the scenario where the number of the measurements K is fi-

nite. When high-dimensional measurements are available, our framework could potentially

be extended to estimate the linear rank index by combining a penalized sieve MLE with

a penalized maximum correlation method (see Dong, Gao, and Linton, 2023; Cheng, Dong,

Gao, and Linton, 2022; Lin and Peng, 2013; Han, Ji, Ji, and Wang, 2015; Dai, Zhang, and

Sun, 2014).19 Our paper focuses on a scalar latent variable. In some applications, the la-

tent variable may be multi-dimensional, such as cognitive and non-cognitive skills, both of

which play an important role in education and labor market outcomes. Our framework may

be extended to rank multi-dimensional latent variables based on observable measurements.

We leave a thorough investigation of these directions for future research.

19Relatedly, Feng (2021) develops a general causal inference method for treatment effect models with a
large set of noisy measurements linked with the underlying latent confounders. The author combines K-
nearest neighbors matching and local principal component analysis to extract information from the latent
confounders, and then use the information to construct estimators of causal parameters of interest based on
doubly-robust score functions.
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Appendix

A. Tables

Table 3: Simulation Results for Models with Linear gk (n=500)

Infeasible ICA PCA Linear Rank

DGP 1 (β01,β02,β03)= (0.356,0.555,0.089)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.357 0.555 0.089 0.105 0.120 0.108 0.213 0.197 0.590 0.344 0.581 0.075
Median 0.357 0.556 0.089 0.152 0.215 0.156 0.213 0.198 0.589 0.341 0.579 0.075
Bias 0.001 0.000 0.000 -0.251 -0.435 0.019 -0.143 -0.358 0.501 -0.012 0.026 -0.014
Std. Dev. 0.028 0.031 0.019 0.570 0.570 0.560 0.018 0.015 0.028 0.116 0.125 0.018

DGP 2 (β01,β02,β03)= (0.953,0.017,0.030)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.946 0.023 0.031 -0.165 0.539 -0.036 0.155 0.688 0.156 0.894 0.042 0.065
Median 0.948 0.024 0.029 -0.282 0.933 -0.050 0.172 0.659 0.166 0.905 0.036 0.051
Bias -0.007 0.006 0.001 -1.118 0.522 -0.066 -0.798 0.671 0.126 -0.059 0.025 0.035
Std. Dev. 0.021 0.020 0.015 0.289 0.765 0.112 0.065 0.140 0.076 0.079 0.028 0.073

DGP 3 (β01,β02,β03)= (0.481,0.039,0.480)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.484 0.037 0.480 0.069 0.015 0.066 0.218 0.565 0.217 0.491 0.031 0.478
Median 0.483 0.039 0.479 0.072 0.081 0.063 0.218 0.565 0.218 0.490 0.031 0.475
Bias 0.003 -0.002 0.000 -0.412 -0.024 -0.414 -0.263 0.526 -0.263 0.010 -0.008 -0.002
Std. Dev. 0.032 0.018 0.033 0.446 0.772 0.443 0.011 0.020 0.011 0.148 0.006 0.148

DGP 4 (β01,β02,β03)= (0.236,0.003,0.762)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.234 0.003 0.763 -0.023 0.602 -0.038 0.046 0.919 0.035 0.310 0.007 0.684
Median 0.237 0.006 0.760 -0.060 0.983 -0.094 0.046 0.919 0.035 0.282 0.007 0.711
Bias -0.002 0.000 0.001 -0.259 0.599 -0.800 -0.190 0.916 -0.727 0.074 0.004 0.078
Std. Dev. 0.045 0.012 0.048 0.213 0.729 0.246 0.014 0.020 0.009 0.202 0.003 0.203

DGP 5 (β01,β02,β03)= (0.485,0.484,0.030)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.485 0.485 0.030 0.113 0.114 0.102 0.187 0.187 0.627 0.496 0.479 0.025
Median 0.485 0.484 0.030 0.164 0.191 0.167 0.187 0.187 0.626 0.495 0.476 0.025
Bias 0.000 0.001 0.000 -0.372 -0.370 0.072 -0.298 -0.297 0.597 0.011 -0.005 0.005
Std. Dev. 0.038 0.039 0.011 0.577 0.558 0.566 0.013 0.012 0.023 0.164 0.163 0.005

Note: The population quantity β0 for each dgp is approximated by computing the mean of the infeasible
estimator with a sample size N = 5000 in 1000 repetitions.
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Table 4: Percentage of Rankings Correctly Predicted for Models with Linear gk (n=500)

Infeasible ICA PCA Linear Rank
DGP 1 0.832 0.565 0.722 0.826

(0.008) (0.210) (0.016) (0.010)
DGP 2 0.926 0.628 0.807 0.873

(0.004) (0.179) (0.018) (0.099)
DGP 3 0.896 0.539 0.748 0.892

(0.005) (0.203) (0.015) (0.007)
DGP 4 0.847 0.601 0.677 0.806

(0.009) (0.125) (0.016) (0.089)
DGP 5 0.896 0.573 0.716 0.891

(0.006) (0.239) (0.016) (0.008)

Note: Standard deviations are reported in parenthesis, which are computed using estimates across 1000 sim-
ulations.

Table 5: Simulation Results for Models with Non-linear gk (n=500)

Infeasible ICA PCA Linear Rank

DGP 6 (β01,β02,β03)= (0.265,0.639,0.096
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.258 0.646 0.096 -0.062 0.750 0.554 0.153 0.231 0.616 0.224 0.641 0.135
Median 0.257 0.647 0.096 -0.066 0.799 0.590 0.154 0.231 0.615 0.223 0.635 0.134
Bias -0.007 0.007 0.000 -0.327 0.111 0.458 -0.112 -0.408 0.520 -0.041 0.002 0.039
Std. Dev. 0.031 0.034 0.016 0.088 0.278 0.204 0.012 0.015 0.012 0.062 0.079 0.040

DGP 7 (β01,β02,β03)= (0.268,0.596,0.137)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.259 0.603 0.138 -0.034 0.236 0.739 0.149 0.251 0.600 0.222 0.621 0.157
Median 0.258 0.604 0.137 -0.060 0.271 0.944 0.150 0.251 0.598 0.215 0.626 0.151
Bias -0.007 0.007 0.000 -0.327 0.111 0.458 -0.112 -0.408 0.520 -0.041 0.002 0.039
Std. Dev. 0.032 0.033 0.020 0.194 0.234 0.553 0.013 0.010 0.019 0.053 0.074 0.042

DGP 8 (β01,β02,β03)= (0.083,0.784,0.133)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.083 0.785 0.132 0.124 0.550 0.502 0.577 0.213 0.210 0.130 0.692 0.178
Median 0.083 0.786 0.132 0.121 0.963 0.237 0.578 0.212 0.208 0.123 0.695 0.177
Bias 0.000 0.001 -0.001 0.041 -0.234 0.369 0.494 -0.571 0.077 0.047 -0.092 0.045
Std. Dev. 0.013 0.025 0.023 0.090 0.497 0.419 0.030 0.017 0.029 0.045 0.082 0.054

DGP 9 (β01,β02,β03)= (0.245,0.650,0.105)
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.243 0.652 0.105 -0.031 0.829 0.428 0.234 0.265 0.501 0.200 0.661 0.139
Median 0.243 0.653 0.105 -0.037 0.883 0.456 0.237 0.261 0.501 0.195 0.657 0.134
Bias -0.002 0.002 0.000 -0.276 0.179 0.323 -0.011 -0.385 0.396 -0.045 0.011 0.034
Std. Dev. 0.025 0.030 0.019 0.106 0.301 0.164 0.025 0.027 0.016 0.076 0.094 0.053

Note: The population quantity β0 for each dgp is approximated by computing the mean of the infeasible
estimator with a sample size N = 5000 in 1000 repetitions.
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Table 6: Percentage of Rankings Correctly Predicted for Models with Non-linear gk (n=500)

Infeasible ICA PCA Linear Rank
DGP 6 0.853 0.772 0.777 0.848

(0.009) (0.097) (0.012) (0.010)
DGP 7 0.875 0.733 0.812 0.872

(0.007) (0.167) (0.010) (0.007)
DGP 8 0.881 0.814 0.794 0.874

(0.007) (0.086) (0.011) (0.010)
DGP 9 0.850 0.781 0.785 0.843

(0.008) (0.098) (0.012) (0.011)

Note: Standard deviations are reported in parenthesis, which are computed using estimates across 1000 sim-
ulations.
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Table 7: Estimation Results of the Linear Rank Index for GDP Growth Rate

Official GDP Luminosity CO2 emissions Google SVI
Sample 1 (N = 1,927)
ICA 0.240 0.000 -0.971

(0.258) (0.406) (0.667)
PCA 0.013 0.950 0.037

(0.004) (0.017) (0.015)
Linear Rank Index with linear gk 0.683 -0.029 0.346

(0.189) (0.019) (0.189)
Linear Rank Index with nonlinear gk 0.243 0.250 0.508

(0.096) (0.061) (0.106)
Sample 2 (N = 804)
ICA 0.981 -0.124 0.148

(0.448) (0.519) (0.458)
PCA 0.005 0.980 0.015

(0.004) (0.008) (0.006)
Linear Rank Index with linear gk 0.611 0.007 0.382

(0.251) (4.702) (4.674)
Linear Rank Index with nonlinear gk 0.205 0.317 0.478

(0.107) (0.104) (0.123)
Sample 3 (N = 1865)
ICA 0.992 0.002 0.127

(0.500) (0.459) (0.366)
PCA 0.007 0.981 0.012

(0.003) (0.014) (0.013)
Linear Rank Index with linear gk 0.921 0.010 0.069

(0.156) (0.028) (0.149)
Linear Rank Index with nonlinear gk 0.321 0.283 0.396

(0.128) (0.092) (0.119)

Note: (1). Linear Rank Index 1, Linear Rank Index 2, and Linear Rank Index 3 are referred to the estimation
results using the data on the period between 2000 and 2011, the period between 2014 and 2018 and the period
between 2014 and 2021, respectively. (2). Standard errors (calculated by 1000 repetitions) are in parentheses.
(3). Symbols ∗∗ and ∗∗∗ indicate that the test is significant at a level of 5% and 1% respectively.
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B. Estimation: Technical Details

B.1. Regularity Conditions for the Function Spaces

Our sieve maximum likelihood estimation described in Section 3 relies on regularity restric-

tions on the function spaces containing the true parameters of interest α0. We first introduce

notations for Hölder spaces. For a d×1 vector of nonnegative integers, a = (a1, · · · ,ad)′, de-

note [a] = a1 +·· ·+ad. Let Da denote the differential operator given by Da = ∂[a]

∂ξ
a1
1 ···∂ξad

d
. Let

m denote the largest integer satisfying γ> m and set γ= m+ p. The Hölder space Λγ(ν) of

order γ > 0 is a collection of functions which are m times continuously differentiable on ν

and the m−th derivative are Hölder continuous with the exponent p. For all g ∈Λγ(ν), the

Hölder norm is defined as

∥g∥Λγ = sup
ξ∈ν

|g(ξ)|+ max
a1+···+ad=m

sup
ξ ̸=ξ′∈ν

|Da g(ξ)−Da g(ξ′)|
∥ξ−ξ′∥p

E
.

The weighted Hölder norm is defined as ∥g∥Λγ,ω ≡ ∥ g̃∥Λγ with g̃(ξ) ≡ g(ξ)ω(ξ) and the corre-

sponding weighted Hölder space is Λγ,ω(ν). Define a weighted Hölder ball as Λγ,ω
c (ν) ≡ {g ∈

Λγ,ω(ν) : ∥g∥Λγ,ω ≤ c <∞}. We define the following function spaces that satisfy the density

and monotonicity restrictions:

F =
{√

fε(·− g(·)) :
√

fε(·) ∈Λκ,ω
c (R), fε(·)≥ 0 and

∫
R

fε(ε)dε= 1,

g(·) ∈Λκ,ω
c (R), g(·) is strictly monotonic

}
,

G =
{

g(·) ∈Λκ,ω
c (R) : g(·) is strictly monotonic

}
.

We impose the following regularity conditions for the square roots of the densities and non-

parametric functions in α0.

Assumption B.1. Suppose κ> 1. (i) all the assumptions of Theorem 2.2 hold; (ii)
√

f 0
εk (·) ∈F

for k = 1, · · · ,K ; (iii)
√

f 0
X∗(·) ∈F ; (iv) g0

k(·) ∈G for k = 2, · · · ,K .

Assumption B.1 imposes stronger monotonicity conditions on g functions as required in

Theorem 2.2. This assumption is invoked primarily to ease the implementation of sieve

MLE, and is not required for achieving desired asymptotic properties of our estimator. As-

sumption B.1 implies that α0 ∈A ≡F K+1 ×G K−1. When the function space A is large, the
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direct ML estimation method based on the sample analog of the log likelihood function in

Equation (3.2) could yield an inconsistent estimator or an estimator which converges very

slowly. Thus, we replace A with a finite dimensional sieve space An ≡ F K+1
n ×G K−1

n that

becomes dense in A as the sample size n increases. Let hJn(·) = (h1n(·), · · · ,hJn(·))T denote

a vector of the Hermite orthogonal polynomial basis functions. p j represents polynomial

basis functions satisfying monotonicity. We define the seive spaces satisfying the density

and monotonicity conditions as follows.

Fn =
{√

f (·− g(·)) ∈F : there exists β f ∈RJn and
(
µ0,βg0,βg

) ∈RJ′
n such that√

f (ε)= hJn(ε)≡ (h1(ε), · · · ,hJn(ε))βT
f ,

gJ′
n(x∗)=µ0 +βg0x∗+

∫ x∗

a

(∑J′
n−2

j=1 βg j p j(x∗)
)2

dt
}
,

Gn =
{

g(·) ∈G : there exists
(
µ0,βg0,βg

) ∈RJ′
n such that

g′(·)=βg0 +
(∑J′

n−2
j=1 βg j p j(·)

)2
,βg0 > 0

}
.

In the rest of the analysis, we use Jk,n to denote the dimension of the sieve space Fn for√
f 0
εk for k = 1, · · · ,K . Let JK+1,n denote the dimension of Fn for

√
f 0

X∗ , and J′
k,n denote the

dimension of the sieve space Gn for g0
k for k = 2, · · · ,K . The total number of sieve coeffi-

cients in the sieve estimator α̂n is kn =∑K+1
k=1 Jk,n+∑K

k=2 J′
k,n. Importantly, kn represents the

number of constraints imposed during estimation, and it grows with the sample size n to

approximate the population parameter.20

With the seive spaces Fn and Gn, the corresponding sieve space for f̂X∗|X (X∗|X ) is

Hn =
{

f (x∗|x)=
∏K

k=1 fk(xk − gk(x∗)) fK+1(x∗)∫
X ∗

∏K
k=1 fk(xk − gk(x∗)) fK+1(x∗)dx∗

:
√

fk(·) ∈Fn, for k = 1, · · · ,K +1,

and gk(·) ∈Gn for k = 2,3, · · · ,K
}
.

20While it would be desirable to have a formal selection rule for kn, providing a general guideline is chal-
lenging. A practical approach for determining the tuning parameter kn is to begin with a sieve approximation
of order one or two and then gradually increase the order. The aim is to select the term so that the estimates
remain relatively stable and insensitive to minor variations in kn. This heuristic method can help balance
computational complexity with the precision of the estimates.
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B.2. Consistency of α̂n

For each observation i and α= (
√

f1, · · · ,
√

fK ,
√

fK+1, g2, · · · , gK ), the log likelihood function

is given by

ℓ(xi;α)= ln f (xi;α)= ln

(∫
X ∗

K∏
k=1

fk(xki − gk(x∗)) fK+1(x∗)dx∗
)

,

where xi is a realization of a random variable X in the sample. We define a strong norm

∥ ·∥s as

∥α∥s =
K+1∑
k=1

∥
√

fk∥∞,ω+
K∑

k=2
∥gk∥∞,ω,

where ∥g∥∞,ω ≡ supξ |g(ξ)ω(ξ)| with ω(ξ) = (1+ ∥ξ∥2
E)−ς/2 for some ς > 0, and ∥ · ∥E is the

Euclidean norm. We invoke the following assumptions to achieve the consistency of α̂n.

Assumption B.2. (i) The data {xi}n
i=1 are i.i.d.; (ii) The density function fX ,X∗(X , X∗) is

bounded and bounded away from zero.

Assumption B.3. Assumption B.1 holds for a neighborhood of α0 under the norm ∥ ·∥s.

Assumption B.4. (i) For any α ∈A , there exists Πnα ∈An such that ∥Πnα−α∥s = o(1); (ii)

Jk,n →+∞ and Jk,n/n → 0 for k = 1, · · · ,K +1 as n →+∞, and J′
k,n →+∞ and J′

k,n/n → 0 for

k = 2, · · · ,K as n →+∞.

Assumption B.5. (i) E{|ℓ(xi;α)|2} is bounded for all α; (ii) there exits a positive measurable

function h̃ with E{h̃(X )2}<∞ such that, for any

ᾱ= (
√

f̄1(·− ·),
√

f̄2(·− ḡ2(·)), · · · ,
√

f̄K (·− ḡK (·)),
√

f̄K+1(·))

and ω̄(x, x∗)≡
[
ω−1(x1, x∗), · · · , ω−1(xK , x∗),ω−1(x∗)

]T
, we have |h1(X , ᾱ,ω̄)| < h̃(X ), where

h1(X , ᾱ,ω̄)= 1
| f (xi; ᾱ)|

( K∑
l=1

∫
X ∗

∣∣∣2√
f̄ l(ε̄l)ω−1(xl , x∗)

K∏
k=1
k ̸=l

f̄k(ε̄k) f̄K+1(x∗)
∣∣∣dx∗

+
∫
X ∗

∣∣∣ K∏
k=1

f̄k(ε̄k)2
√

f̄K+1(x∗)ω−1(x∗)
∣∣∣dx∗

)
with ε̄k = xk − ḡk(x∗).

Assumption B.2(i) rules out serially dependent observations. Assumptions B.2(ii) and

B.3 are standard regularity conditions imposed for a sieve estimation. Assumption B.4(i)
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states that there exists a finite dimensional sieve approximation space An to A and As-

sumption B.4(ii) imposes that the number of sieve coefficients grows with the sample size n

to approximate the population parameter. It is also important to assume that the number

of terms in the sieve grows slower than the sample size, so that the degrees of freedom also

grow with the sample size. The function h1(X , ᾱ,ω̄) in Assumption B.5 is constructed by

the path derivatives of ℓ(xi;α). Assumption B.5 ensures that the log-likelihood function for

observation i is Hölder continuous with respect to α ∈A .

Lemma B.1. Under Assumptions B.1–B.5, ∥α̂n −α0∥s = op(1).

Proof See Online Appendix C.3. Q.E.D.

B.3. Convergence Rate of α̂n

Next, we consider n−1/4 convergence rates of α̂n under the weaker Fisher metric ∥ ·∥F intro-

duced by Ai and Chen (2003). Suppose the function space A is convex. For any v ∈ V̄ , define

the pathwise derivative as:

dℓ(xi;α)
dα

[v]≡ dℓ(xi;α+τv)
dτ

∣∣∣
τ=0

a.s. X .

For any α1,α2 ∈A , the Fisher norm is defined as:

(B.1) ∥α1 −α2∥2
F ≡E

{(
dℓ(xi;α0)

dα
[α1 −α2]

)2}
.

We invoke the following assumptions to obtain a rate faster than n−1/4.

Assumption B.6. (knn−1/2 lnn)×sup(ξ1,ξ2)∈R×X ∗ ∥(hJk,n(ξ1−gJ′
k,n(ξ2)))2∥2

E = o(1), where hJk,n(εk)

and gJ′
k,n(X∗) are the sieve approximations of

√
f 0
εk (εk) and g0

k(X∗).

Assumption B.7. (i) There exist a measurable function H(X ) with E{H(X )4}<∞ such that

|ℓ(xi;α)| ≤ H(X ) for all X and α ∈An; (ii) ℓ(xi;α) ∈Λκ,ω
c (X ) with κ> dim X /2, for all α ∈An,

where dim X is the dimension of X .

Assumption B.8. A is convex in α0, and fk(Xk− gk(x∗)) is pathwise differentiable at g0
k for

k = 2, · · · ,K .
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Assumption B.9. ln N(δ,An) = O(kn ln(kn/δ)) where N(δ,An) is the minimum number of

balls with radius δ under the ∥ ·∥s norm covering An.

Assumption B.10. There exist c1, c2 > 0,

c1E
(
ln

fX (X i;α0)
fX (X i;α)

)
≤ ∥α−α0∥2

F ≤ c2E
(
ln

fX (X i;α0)
fX (X i;α)

)

holds for all α ∈An with ∥α−α0∥s = o(1).

Assumption B.11. For any α ∈A , there exists Πnα ∈An such that ∥Πnα−α∥F = o(k−µ1
n ) and

k−µ1
n = o(n−1/4).

Assumption B.6 imposes conditions related to the sieve approximation of
√

f 0
εk (εk) and

g0
k(X∗). It is used to show that the residual part L̂n(α)−E[L̂n(α)]= o(n−1/4) uniformly over

α ∈An. Assumption B.7(i) and (ii) impose a dominance condition and smoothness condition

on ℓ(xi;α). Envelope conditions are imposed to limit changes in the objective function when

the parameters change, ensuring stochastic equi-continuity. Assumption B.8 implies that

the Fisher norm in Equation (B.1) is well defined. Assumption B.9 requires that the size

of the sieve space An does not grow too fast in terms of the covering number. Assumption

B.10 assumes that the population criterion function is locally equivalent to the Fisher norm.

Assumption B.11 controls the approximation error of Πnα to α and the selection of kn such

that the error goes to zero uniformly at the rate op(n−1/4) over α ∈A .

Theorem B.1. If Assumptions B.1–B.11 hold, ∥α̂n −α0∥F = op(n−1/4).

Proof See Online Appendix C.4. Q.E.D.

B.4. Consistency of β̂n

To show that β̂n is a consistent estimator, we first prove the consistency of the estimated

conditional density f̂X∗|X (X∗|X ) under a sup norm. f̂X∗|X (X∗|X ) enters the sample ana-

logue of the objective function for the optimal linear rank index. We use the consistency

results in Lemma B.1 and Theorem B.1 to focus on a neighborhood of α0. Define Nα0n ≡ {α ∈
An : ∥α−α0∥s = o(1),∥α−α0∥F = op(n−1/4)}. We only use the sieve ML estimator α̂n in this

neighborhood to construct the conditional density estimator

f̂X∗|X (X∗|X )= f̂X ,X∗(X , X∗)∫
X ∗ f̂X ,X∗(X , x∗)dx∗

.
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To achieve the consistency of f̂X∗|X (X∗|X ), we first show that

∥∥ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)
∥∥∞ = op(1) and

∥∥ f̂X (X )− fX (X )
∥∥∞ = op(1).

We construct the upper bounds for
∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

∣∣∣ and
∣∣∣ f̂X (X )− fX (X )

∣∣∣ in Ap-

pendix C.1. Specifically,

∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)
∣∣∣≤ h2(X , X∗, α̂n,ω̄)∥α̂n −α0∥s,∣∣∣ f̂X (X )− fX (X )

∣∣∣≤ ∫
X ∗

h2(X , x∗, α̂n,ω̄)dx∗∥α̂n −α0∥s,

where

h2(X , X∗, α̂n,ω̄)

≡
∣∣∣K−1∑

l=0

l∏
j=1

f 0
ε j

(ε0
j )×

(√
f̂ l+1(ε̂l+1)+

√
f 0
εl+1(ε0

l+1)
)
ω−1(X , X∗)

K∏
k=l+2

f̂k(ε̂k) f̂K+1(X∗)

+
K∏

k=1
f 0
εk

(ε0
k)

(√
f̂K+1(X∗)+

√
f 0

X∗(X∗)
)
ω−1(X∗)

∣∣∣ with ω̄(X , X∗)= (ω−1(X , X∗),ω−1(X∗)).

Assumption B.12. Suppose α̂n ∈ Nα0n. The following conditions hold: (i) h2(X , X∗, α̂n,ω̄)

is bounded; and (ii)
∫
X ∗ h2(X , x∗, α̂n,ω̄)dx∗ is bounded in probability.

Assumption B.12 (i) and (ii) ensure that f̂X ,X∗(X , X∗) and f̂X (X ) are Hölder continuous

in a neighborhood of α0, respectively. The following corollary provides a consistency result

for the estimator f̂X∗|X (X∗|X ) under a sup norm.

Corollary B.1. Suppose that all assumptions in Lemma B.1 and Theorem B.1 hold. Then,

under Assumption B.12, f̂X∗|X in Equation (3.3) satisfies
∥∥ f̂X∗|X − fX∗|X

∥∥∞ = op(1).

Proof See Appendix C.1. Q.E.D.

Note that β0 is assumed to be in the interior of a parameter space Θ= [0,1]K . Given the

definition of the objective function, Q0(β) is continuous at β, and therefore, the consistency

of β̂n follows.

Theorem B.2. If Assumptions 2.9-2.10, and B.1, B.2–B.12 hold, then β̂n
p→β0.

Proof See Appendix C.2. Q.E.D.
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B.5. Asymptotic Normality of β̂n

With the consistency of β̂n in Theorem B.2, we consider estimators close to the popula-

tion parameter β0. Let N be a neighborhood of β0. We follow the general method in

Sherman (1993) to establish that the proposed optimal linear rank index estimator β̂n is
p

n−consistent for β0 and asymptotically normally distributed. The key challenge we face

is that the estimated conditional density f̂X∗|X (X∗|X ) enters the sample objective function.

For each x and for each β ∈Θ, define

Γ(β; fX∗|X )≡Q0(β)−Q0(β0)= E
[∫

[1(X iβ> X jβ)−1(X iβ0 > X jβ0)]1(x∗i > x∗j )(B.2)

× fX∗|X (x∗i |X i) fX∗|X (x∗j |X j)dx∗i dx∗j
]
.

Assumptions 2.9 and 2.10 ensure that Q0(β) is uniquely maximized at β0, so that Γ(β; fX∗|X )

is also uniquely maximized at β0. We therefore rewrite the optimal linear rank index esti-

mator as

β̂n = argmax
β

Γn(β; f̂X∗|X ),(B.3)

where

Γn(β; f̂X∗|X )= 1
n(n−1)

∑
i ̸= j

∫
[1(xiβ> x jβ)−1(xiβ0 > x jβ0)]1(x∗i > x∗j )(B.4)

× f̂X∗|X (x∗i |xi) f̂X∗|X (x∗j |x j)dx∗i dx∗j .

We decompose the sample objective function Γn(β; f̂X∗|X ) into two terms

Γn(β; f̂X∗|X )=Γn(β; fX∗|X )︸ ︷︷ ︸
Term A

+[
Γn(β; f̂X∗|X )−Γn(β; fX∗|X )

]︸ ︷︷ ︸
Term B

.(B.5)

Term A in Equation (B.5) is the sample analogue of Γ(β; fX∗|X ). It does not depend on f̂X∗|X
and has the same structure as the sample objective in Sherman (1993). We apply the U-

statistic decomposition to Γn(β; fX∗|X ) and analyze the properties of each term separately.

To derive the asymptotic properties of Term B in Equation (B.5), we take the pathwise

derivative of it along the vector f̂X∗|X − fX∗|X and then apply a similar U-statistic decom-
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position. Combing the derivations for Term A and Term B together allows us to write the

sample objective function Γn(β; f̂X∗|X ) as a quadratic approximation, from which we derive

the asymptotic distribution of
p

n
(
β̂n −β0

)
.

The following notations are introduced for convenience. Let ∇k denote the k-th partial

derivative operator with respect to β, and |∇k|g(β) = ∑
i1,...,ik

∣∣∣ ∂k g(β)
∂βi1 ···∂βik

∣∣∣. For the U-statistic

decomposition for Term A, we define

fRC(x1, x2,β)(B.6)

=
∫ [

1(x1β> x2β)−1(x1β0 > x2β0)
]
1(x∗1 > x∗2 ) fX∗|X (x∗1 |x1) fX∗|X (x∗2 |x2)dx∗1 dx∗2 ,

f1(x,β)= E
[
fRC(x, ·,β)

]+E
[
fRC(·, x,β)

]−2E
[
Γn(β; fX∗|X )

]
,(B.7)

f2(x1, x2,β)= fRC(x1, x2,β)−E
[
fRC(x1, ·,β)

]−E
[
fRC(·, x2,β)

]+E
[
Γn(β; fX∗|X )

]
,(B.8)

τ(x,β)= EX i

[∫
1(X iβ> xβ)1(x∗i > x∗j ) fX∗|X (x∗i |X i) fX∗|X (x∗j |x)dx∗i dx∗j

]
(B.9)

+EX j

[∫
1(xβ> X jβ)1(x∗i > x∗j ) fX∗|X (x∗i |x) fX∗|X (x∗j |X j)dx∗i dx∗j

]
.

It follows that E
[
τ(·,β)−τ(·,β0)

]= 2Γ(β; fX∗|X ). Define the pathwise derivative of Γn(β; fX∗|X )

at the direction [h− fX∗|X ] evaluated at fX∗|X :

κn(β,h, fX∗|X )= 1
n(n−1)

∑
i ̸= j

∫
[1(xiβ> x jβ)−1(xiβ0 > x jβ0)]1(x∗i > x∗j )(B.10)

×
(
h̄(x∗i |xi)(h(x∗j |x j)− fX∗|X (x∗j |x j))

+ h̄(x∗j |x j)(h(x∗i |xi)− fX∗|X (x∗i |xi))
)
dx∗i dx∗j ,

where h̄ is a mean value between h and fX∗|X . For the U-statistic decomposition for Term

B, we define

τ2(x,β,h, fX∗|X )= EX i

[∫
1(X iβ> xβ)1(x∗i > x∗j )

(
h̄(x∗i |X i)(h(x∗j |x)− fX∗|X (x∗j |x))(B.11)

+ h̄(x∗j |x)(h(x∗i |X i)− fX∗|X (x∗i |X i))
)
dx∗i dx∗j

]
,

+EX j

[∫
1(xβ> X jβ)1(x∗i > x∗j )

(
h̄(x∗i |x)(h(x∗j |X j)− fX∗|X (x∗j |X j))

+ h̄(x∗j |X j)(h(x∗i |x)− fX∗|X (x∗i |x))
)
dx∗i dx∗j

]
.

We invoke the following assumptions to show the asymptotic normality of β̂n.
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Assumption B.13. The following conditions hold:

(i) For each x, all mixed second partial derivatives of τ(x,β) exist on N .

(ii) There is an integrable function M(x) such that for all x, and β ∈N ,

∥∇2τ(x,β)−∇2τ(x,β0)∥ ≤ M(x)|β−β0|,(B.12)

where ∥ ·∥ denotes the matrix norm ∥(ai j)∥ = (
∑
i, j

a2
i j)

1/2.

(iii) E
[|∇1τ(·,β0)|2]<∞.

(iv) E
[|∇2|τ(·,β0)

]<∞.

(v) The matrix E
[∇2τ(·,β0)

] = E
[
∂2τ(·,β0)
∂βi∂β j

]
is negative definite and uniformly bounded away

from zero.

Assumption B.14. { f2(·, ·,β) :β ∈Θ} is Euclidean with a finite envelop. 21

Assumption B.15. For β ∈N and h ∈N fX∗|X ,n,

κn(β,h, fX∗|X )= 1p
n

(
β−β0

)′W2n + op(|β−β0|2)+ op(
1
n

),

where W2n =p
nPn∇1τ2(x,β0,h; fX∗|X ) denotes an average of the first derivative terms with

E
[|∇1τ(·,β0)+∇1τ2(x,β0, fX∗|X ; fX∗|X )|2]<∞.

Assumption B.13 contains regularity conditions used for a Taylor expansion of τ(x, ·)
around β0. Assumption B.14 is used to ensure that the remainder term of a Taylor expansion

of τ(x, ·) around β0 has an order op( 1
n ). Assumption B.15 underscores the quadratic and

linear relationships between the deviation of β from β0 and the pathwise derivative κn,

with adjustments for the sample size n. The terms op(|β−β0|2) and op( 1
n ) denote the rates

at which the remaining components become negligible as n grows. This captures the effect

of the first-step estimation on the linear rank index estimator β̂n in a neighborhood of β0.

Theorem B.3. Under Assumptions 2.9–2.10, and B.1–B.15, we obtain

p
n

(
β̂n −β0

) d→ N
(
0,V−1∆V−1) ,

where V = 1
2 E

[∇2τ(·,β0)
]

and Wn
d→ N (0,∆).

21The definition of a Euclidean class of functions can be found in Section 2 of Pakes and Pollard (1989).
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Proof See Appendix C.3. Q.E.D.

Theorem B.3 states our main asymptotic results that the proposed optimal linear rank

index estimator β̂n is
p

n−consistent for β0 and asymptotically normally distributed. To

make inference, since we have shown the asymptotic normality of β̂n, we suggest a bootstrap

procedure for β̂n. More detailed discussions on the consistency of the bootstrap procedure

can be found in Chen, Linton, and Van Keilegom (2003).

C. Proofs

C.1. Proof of Corollary B.1

Proof Define f̂X ,X∗(X , X∗)=∏K
k=1 f̂k(Xk− ĝk(X∗)) f̂K+1(X∗) and f̂X (X )= ∫

X ∗ f̂X ,X∗(X , x∗)dx∗.

We first show that
∥∥ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

∥∥∞ = op(1) and
∥∥ f̂X (X )− fX (X )

∥∥∞ = op(1)

and then use them to show that

∥∥ f̂X∗|X (X∗|X )− fX∗|X (X∗|X )
∥∥∞ = op(1).

Denote ε̂k = Xk− ĝk(X∗), ε0
k = Xk−g0

k(X∗), and
∏0

j=1 f 0
ε j

(ε0
j )

∏K
k=1 f̂k(ε̂k) f̂K+1(X∗)=∏K

k=1 f̂k(ε̂k) f̂K+1(X∗).

Consider

∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)
∣∣∣

=
∣∣∣ K∏

k=1
f̂k(ε̂k) f̂K+1(X∗)−

K∏
k=1

f 0
εk

(ε0
k) f 0

X∗(X∗)
∣∣∣

=
∣∣∣K−1∑

l=0

(
l∏

j=1
f 0
ε j

(ε0
j )

K∏
k=l+1

f̂k(ε̂k) f̂K+1(X∗)−
l+1∏
j=1

f 0
ε j

(ε0
j )

K∏
k=l+2

f̂k(ε̂k) f̂K+1(X∗)

)

+
(

K∏
k=1

f 0
εk

(ε0
k) f̂K+1(X∗)−

K∏
k=1

f 0
εk

(ε0
k) f 0

X∗(X∗)

)∣∣∣
=

∣∣∣K−1∑
l=0

l∏
j=1

f 0
ε j

(ε0
j )

(
f̂ l+1(ε̂l+1)− f 0

εl+1
(ε0

l+1)
) K∏

k=l+2
f̂k(ε̂k) f̂K+1(X∗)

+
K∏

k=1
f 0
εk

(ε0
k)

(
f̂K+1(X∗)− f 0

X∗(X∗)
)∣∣∣

≤
∣∣∣K−1∑

l=0

l∏
j=1

f 0
ε j

(ε0
j )

(√
f̂ l+1(ε̂l+1)+

√
f 0
εl+1(ε0

l+1)
)
ω−1(X , X∗)

K∏
k=l+2

f̂k(ε̂k) f̂K+1(X∗)
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+
K∏

k=1
f 0
εk

(ε0
k)

(√
f̂K+1(X∗)+

√
f 0

X∗(X∗)
)
ω−1(X∗)

∣∣∣∥α̂n −α0∥s

≡ h2(X , X∗, α̂n,ω̄)∥α̂n −α0∥s,(C.1)

where ω̄(X , X∗)= (ω−1(X , X∗),ω−1(X∗)). Since Assumption B.12(i) ensures the boundedness

of the function h2(X , X∗, α̂n,ω̄), we have

sup
X ,X∗

∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)
∣∣∣= ∥∥ f̂X ,X∗ − fX ,X∗

∥∥∞ = op(1)(C.2)

by the consistency result in Lemma B.1. Integrating out X∗ in Equation (C.1) yields the

following inequality

∣∣∣ f̂X (X )− fX (X )
∣∣∣= ∣∣∣∫

X ∗
f̂X ,X∗(X , x∗)− fX ,X∗(X , x∗)dx∗

∣∣∣
≤

∫
X ∗

∣∣∣ f̂X ,X∗(X , x∗)− fX ,X∗(X , x∗)
∣∣∣dx∗

≤
∫
X ∗

h2(X , x∗, α̂n,ω̄)dx∗ · ∥α̂n −α0∥s.(C.3)

Applying Assumption B.12(ii) and Lemma B.1 to the inequality in Equation (C.3), we obtain∥∥ f̂X − fX
∥∥∞ = op(1). Consider

∣∣∣∣ f̂X∗|X (X∗|X )− fX∗|X (X∗|X )
∣∣∣∣

=
∣∣∣∣ f̂X ,X∗(X , X∗)

f̂X (X )
− fX ,X∗(X , X∗)

fX (X )

∣∣∣∣
=

∣∣∣∣ fX (X )
(
f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

)
f̂X (X ) · fX (X )

+ fX ,X∗(X , X∗)
(
fX (X )− f̂X (X )

)
f̂X (X ) · fX (X )

∣∣∣∣
=

∣∣∣∣ fX (X )
(
f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

)
fX (X ) · ( f̂X (X )− fX (X )

)+ fX (X )2

+ fX ,X∗(X , X∗)
(
fX (X )− f̂X (X )

)
fX (X ) · ( f̂X (X )− fX (X )

)+ fX (X )2

∣∣∣∣
≤

∣∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)(
f̂X (X )− fX (X )

)+ fX (X )

∣∣∣∣+ ∣∣∣∣ fX ,X∗(X , X∗)
(
fX (X )− f̂X (X )

)
fX (X ) · ( f̂X (X )− fX (X )

)+ fX (X )2

∣∣∣∣
≤

∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)
∣∣∣

fX (X )−∥ f̂X − fX∥∞
+

fX ,X∗(X , X∗)
∣∣∣ fX (X )− f̂X (X )

∣∣∣
fX (X )2 − fX (X ) · ∥ f̂X (X )− fX (X )∥∞

.
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For each X in the domain of fX∗|X , we have fX (X ) > 0. Because
∥∥ f̂X − fX

∥∥∞ = op(1), for

sufficient large n, we have
∥∥ f̂X − fX

∥∥∞ < 1
2 fX (X ). This implies that for sufficient large n,

∣∣∣∣ f̂X∗|X (X∗|X )− fX∗|X (X∗|X )
∣∣∣∣

≤
2
∣∣∣ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

∣∣∣
fX (X )

+
2 fX ,X∗(X , X∗)

∣∣∣ fX (X )− f̂X (X )
∣∣∣

fX (X )2 .

Applying the results
∥∥ f̂X ,X∗(X , X∗)− fX ,X∗(X , X∗)

∥∥∞ = op(1) and
∥∥ f̂X (X )− fX (X )

∥∥∞ = op(1)

with fX (X )> 0, we obtain the desired result
∥∥ f̂X∗|X (X∗|X )− fX∗|X (X∗|X )

∥∥∞ = op(1). Q.E.D.

C.2. Proof of Theorem B.2

Proof With the consistency result of α̂n in Lemma B.1, we prove the consistency of the

linear rank index estimator β̂n using Theorem 2.1 in Newey and McFadden (1994).

We show in Section B.5 that it is equivalent to write the optimal linear rank index esti-

mator as

β̂n = argmax
β

Γn(β; f̂X∗|X ),

where the sample objective function Γn(β; f̂X∗|X ) is defined in Equation (B.4). After checking

the conditions in Theorem 2.1 in Newey and McFadden (1994), one thing left to verify is

the uniform convergence of the sample objective function Γn(β; f̂X∗|X ) to Γ(β; fX∗|X ) (the

population objective function is defined in Equation (B.2)). Using the triangular inequality,

we have

∣∣∣Γn(β; f̂X∗|X )−Γ(β; fX∗|X )
∣∣∣

≤
∣∣∣Γn(β; f̂X∗|X )−Γn(β; fX∗|X )

∣∣∣+ ∣∣∣Γn(β; fX∗|X )−Γ(β; fX∗|X )
∣∣∣

≤
∣∣∣Γn(β; f̂X∗|X )−Γn(β; fX∗|X )

∣∣∣+ ∣∣∣Γn(β; fX∗|X )−E
[
Γn(β; fX∗|X )

]∣∣∣.
The second term on the right-hand is the second-order U−process with zero mean, and

Euclidean with a constant envelope. Applying Corollary 7 in Sherman (1994) to the term
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yields

sup
β

∣∣∣Γn(β; fX∗|X )−E
[
Γn(β; fX∗|X )

]∣∣∣=Op(
1p
n

)= op(1).(C.4)

As for the first term, we rewrite Γn(β; f̂X∗|X )−Γn(β; fX∗|X ) as follows

∣∣∣Γn(β; f̂X∗|X )−Γn(β; fX∗|X )
∣∣∣

=
∣∣∣ 1
n(n−1)

∑
i ̸= j

∫
[1(xiβ> x jβ)−1(xiβ0 > x jβ0)]1(x∗i > x∗j )

×
(
f̂X∗|x(x∗i |xi) f̂X∗|X (x∗j |x j)− fX∗|X (x∗i |xi) fX∗|X (x∗j |x j)

)
dx∗i dx∗j

∣∣∣
< sup

X i ,X j

∫ ∣∣∣ f̂X∗|X (x∗i |X i) f̂X∗|X (x∗j |X j)− fX∗|X (x∗i |X i) fX∗|X (x∗j |X j)
∣∣∣dx∗i dx∗j

≤ sup
X i ,X j

∫ ∣∣∣( f̂X∗|X (x∗i |X i)− fX∗|X (x∗i |X i)
)
f̂X∗|X (x∗j |X j)

∣∣∣
+

∣∣∣ fX∗|X (x∗i |X i)
(
f̂X∗|X (x∗j |X j)− fX∗|X (x∗j |X j)

)∣∣∣dx∗i dx∗j

≤ c∗
(

sup
x∗i ,X i

∣∣∣ f̂X∗|X (x∗i |X i)− fX∗|X (x∗i |X i)
∣∣∣+ sup

x∗j ,X j

∣∣∣ f̂X∗|X (x∗j |X j)− fX∗|X (x∗j |X j)
∣∣∣),(C.5)

for some constant c∗, where we have used Assumptions B.2(ii) and (iii). We have
∣∣∣Γn(β; f̂X∗|X )−

Γn(β; fX∗|X )
∣∣∣= op(1) by the consistency result of Corollary B.1. Therefore, we obtain the uni-

form convergence result,

sup
β

∣∣∣Γn(β; f̂X∗|X )−Γ(β; fX∗|X )
∣∣∣= op(1).(C.6)

Q.E.D.

C.3. Proof of Theorem B.3

Proof We first apply the U-statistic decomposition to Γn(β; fX∗|X ), that is Term A in Equa-

tion (B.5).

Γn(β; fX∗|X )= E
[
Γn(β; fX∗|X )

]+Pn f1(·,β)+Un f2(·, ·,β),(C.7)
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where Pn f1(·,β)= 1
n

∑
i

f1(xi,β) and Un f2(·, ·,β)= 1
n(n−1)

∑
i ̸= j

f2(xi, x j,β) are degenerate U− pro-

cesses of the first and the second order, respectively, with f1 and f2 defined in Equations

(B.7) and (B.8) respectively. We investigate each term on the right-hand side of Equation

(C.7) following Sherman (1993).

The first term E
[
Γn(β; fX∗|X )

]
is connected to the function τ(x,β) defined in Equation

(B.9). Under Assumption B.13(i), for each x, a second order Taylor expansion of τ(x,β) at β0

yields

τ(x,β)−τ(x,β0)= (
β−β0

)′∇1τ(x,β0)+ 1
2

(
β−β0

)′∇2τ(x,β∗)
(
β−β0

)
,(C.8)

where β∗ lies between β and β0. Taking the expectation of Equation (C.8) under Assumption

B.13(ii) yields

2E
[
Γn(β; fX∗|X )

]= 2Γ(β; fX∗|X )= (
β−β0

)′V (
β−β0

)+ op(|β−β0|2)(C.9)

for β ∈N and β close to β0. Note that E
[∇1τ(·,β0)

]= 0 because Γ(β; fX∗|X ) is maximized at

β0 and the exchange of the partial derivatives and expectation.

The second term Pn f1(·,β) can be represented as

Pn f1(·,β)= Pn
[
τ(·,β)−τ(·,β0)

]−2Γ(β; fX∗|X ).(C.10)

Applying Equations (C.8) and (C.9) to (C.10) and with Assumption B.13(ii), we obtain

Pn f1(·,β)= (
β−β0

)′ Pn∇1τ(x,β0)+ 1
2

(
β−β0

)′ [Pn∇2τ(x,β0)−2V
](
β−β0

)+ op(|β−β0|2),

(C.11)

uniformly over a neighborhood of β0. By Assumption B.13(iv) and a weak law of large

numbers, Pn∇2τ(x,β0)−2V = op(1) as n →∞. This implies that

Pn f1(·,β)= 1p
n

(
β−β0

)′W1n + op(|β−β0|2).(C.12)

As for the third term Un f2(·, ·,β), by Assumption B.14, the collection of functions { f2(·, ·,β) :

β ∈Θ} is zero mean, and is Euclidean with a finite envelop. In addition, we have E
[
f2(·, ·,β)2]→
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0 as β→β0. Theorem 3 in Sherman (1993) therefore implies that

Un f2(·, ·,β)= op(
1
n

)(C.13)

uniformly over op(1) neighborhoods of β0.

Combining the results of the three terms in Equation (C.7), we obtain

Γn(β; fX∗|X )= 1
2

(
β−β0

)′V (
β−β0

)+ 1p
n

(
β−β0

)′W1n + op(|β−β0|2)+ op(
1
n

),(C.14)

where β in op(1) neighborhoods of β0.

Next, we analyze Term B in Equation (B.5).

Term B= [
Γn(β; f̂X∗|X )−Γn(β; fX∗|X )

]
= dΓn(β; f̄X∗|X + t( f̂X∗|X − fX∗|X ))

dt

∣∣∣
t=0

= 1
n(n−1)

∑
i ̸= j

∫
[1(xiβ> x jβ)−1(xiβ0 > x jβ0)]1(x∗i > x∗j )

×
(
f̄X∗|X (x∗i |xi)( f̂X∗|X (x∗j |x j)− fX∗|X (x∗j |x j))

+ f̄X∗|X (x∗j |x j)( f̂X∗|X (x∗i |xi)− fX∗|X (x∗i |xi))
)
dx∗i dx∗j

≡ κn(β, f̂X∗|X , fX∗|X ),

where f̄X∗|X is a mean value between f̂X∗|X and fX∗|X . We can see that κn(β, f̂X∗|X , fX∗|X ) is

also a U-statistics of order two and discontinuous at β. We can adopt the similar U-statistic

decomposition to the Term A to deal with κn(β, f̂X∗|X , fX∗|X ). Under Assumption B.15, an

expansion of κn(β, f̂X∗|X , fX∗|X ) in op(1) neighborhoods of β0 is

κn(β, f̂X∗|X , fX∗|X )= 1p
n

(
β−β0

)′W2n + op(|β−β0|2)+ op(
1
n

).

Combining the derivation for Term A and Term B allows us to write the sample objective

function Γn(β; f̂X∗|X ) by a quadratic approximation as follows

Γn(β; f̂X∗|X )(C.15)

= 1
2

(
β−β0

)′V (
β−β0

)+ 1p
n

(
β−β0

)′ (W1n +W2n)+ op(|β−β0|2)+ op(
1
n

)
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= 1
2

(
β−β0

)′V (
β−β0

)+ 1p
n

(
β−β0

)′Wn + op(|β−β0|2)+ op(
1
n

),

where β in op(1) neighborhoods of β0, f̂X∗|X ∈ N fX∗|X ,n and Wn ≡ W1n +W2n. Since the ex-

pected value of the sum of ∇1τ(·,β0) and ∇1τ2(x,β0, fX∗|X ; fX∗|X ) is zero, and the expected

value of the square of this sum is finite (as stated in Assumption B.15), it follows that Wn

converges in distribution to a normal distribution with mean zero and variance ∆.

We then derive the expression for
p

n
(
β̂n −β0

)
and obtain the influence function from

the expression to show the asymptotic properties of our estimator. Because β̂n maximizes

the sample objective function Γn(β; f̂X∗|X ) and the parameters β0 + V−1Wnp
n is in op(1) neigh-

borhoods of β0 for sufficient large n, we have Γn(β̂n; f̂X∗|X )≥Γn(β0− V−1Wnp
n ; f̂X∗|X ). Plugging

Equation (C.15) into this inequality yields

1
2

(
β̂n −β0

)′V (
β̂n −β0

)+ 1p
n

(
β̂n −β0

)′Wn + op(
1
n

)

= 1
2n

t′nV tn + 1
n

t′nWn + op(
1
n

)

≥ 1
2n

(
V−1Wn

)′V (
V−1Wn

)+ 1
n

(
V−1Wn

)′Wn + op(
1
n

)

= 1
2n

t∗
′

n V t∗n +
1
n

t∗
′

n Wn + op(
1
n

),

where tn = p
n

(
β̂n −β0

)
and t∗n = −V−1Wn. We multiply this expression by 2n, rearrange

terms, and use the facts that −V−1Wnp
n maximizes 1

2nθ
′Vθ+ 1

nθ
′Wn and V is negative definite

by Assumption B.13(v) to get

0≤−(
tn − t∗n

)′V (
tn − t∗n

)≤ op(1).

This implies that tn = t∗n+op(1) or
p

n
(
β̂n −β0

)=−V−1Wn+op(1), which leads to the desired

asymptotic result,
p

n
(
β̂n −β0

) d→ N
(
0,V−1∆V−1). Q.E.D.
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