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Abstract

Consider an observed binary regressor D and an unobserved binary variable D�, both of

which a¤ect some other variable Y . This paper considers nonparametric identi�cation and

estimation of the e¤ect of D on Y , conditioning on D� = 0. For example, suppose Y is a

person�s wage, the unobserved D� indicates if the person has been to college, and the observed

D indicates whether the individual claims to have been to college. This paper then identi�es

and estimates the di¤erence in average wages between those who falsely claim college experience

versus those who tell the truth about not having college. We estimate this average e¤ect of lying

to be about 6% to 20%. Nonparametric identi�cation without observing D� is obtained either

by observing a variable V that is roughly analogous to an instrument for ordinary measurement

error, or by imposing restrictions on model error moments.

JEL Codes: C14, C13, C20, I2. Keywords: Binary regressor, misclassi�cation, measurement error, unob-

served factor, discrete factor, program evaluation, treatment e¤ects, returns to schooling, wage model.

�Department of Economics, Johns Hopkins University, 440 Mergenthaler Hall, 3400 N. Charles Street, Baltimore,

MD 21218, USA Tel: 410-516-7610. Email: yhu@jhu.edu, http://www.econ.jhu.edu/people/hu/
yDepartment of Economics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 USA. Tel:

617-552-3678. email: lewbel@bc.edu http://www2.bc.edu/~lewbel

1



1 Introduction

Consider an observed binary regressor D and an unobserved binary variable D�, both of which a¤ect

some other variable Y . This paper considers nonparametric identi�cation and estimation of the e¤ect

of D on Y , conditioning on a value of the unobserved D� (and possibly on a set of other observed

covariates X). Formally, what is identi�ed is the function R(D;X) de�ned by

R(D;X) = E(Y j D� = 0; D;X).

This can then be used to evaluate

r(X) = R(1; X)�R(0; X)

and r = E[r(X)], which are respectively, the conditional and unconditional e¤ects of D on Y ,

holding D� �xed. When D� is observed, identi�cation and estimation of R is trivial. Here we obtain

identi�cation and provide estimators when D� is unobserved.

Assuming E(Y j D�; D;X) exists, de�ne a model H and an error � by

Y = E(Y j D�; D;X) + � = H(D�; D;X) + � (1)

where the function H is unknown and the error � is mean zero and uncorrelated with D, D�, and

X. Then, since D and D� are binary, we may without loss of generality rewrite this model in terms

of the unknown R, r, and an unknown function s as

Y = R(D;X) + s(D;X)D� + � (2)

or equivalently

Y = R(0; X) + r(X)D + s(D;X)D� + �. (3)

This paper provides conditions that are su¢ cient to point identify the unknown functions R and r,

even though D� is unobserved. We also show set (interval) identi�cation under weaker assumptions.

For a speci�c example, suppose for a sample of individuals the observed D is one if an individual

claims or is reported to have some college education (and zero otherwise), and the unobserved D�

is one if the individual actually has some college experience. Let Y be the individual�s wage rate.

Then r is the di¤erence in average wages Y between those who claim to have a degree when they
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actually do not, versus those who honestly report not having a college degree. This paper provides

nonparametric identi�cation and associated estimators of the function r. We empirically apply these

methods to estimate this average di¤erence in outcomes between truth tellers and liars, when the

truth D� is not observed. Notice that we are not focusing on the e¤ects of misreporting on estimates

of returns to schooling, as in, e.g., Ashenfelter and Krueger (1994), but rather on the direct e¤ects

of misreporting on wages.

Only responses and not intent can be observed, so we cannot distinguish between intentional lying

and false beliefs about D�. For example, suppose D� as an actual treatment and D is a perceived

treatment (i.e., D is the treatment an individual thinks he received, and so is a false belief rather than

an intentional lie). Then r is the average placebo e¤ect, that is, the average di¤erence in outcomes

between those who were untreated but believe they received treatment versus those who correctly

perceive that they were untreated. This paper then provides identi�cation and an estimator for this

placebo e¤ect when the econometrician does not observe who actually received treatment.

Given a Rubin (1974) type unconfoundedness assumption, r will equal the average placebo e¤ect,

or the average returns to lying (which could be positive or negative). Unconfoundedness may be a

reasonable assumption in the placebo example, but is less likely to hold when lying is intentional.

Without unconfoundedness, the di¤erence r in outcomes Y that this paper identi�es could be due

in part to unobserved di¤erences between truth tellers and liars. For example, r could be positive

even if lying itself has no direct e¤ect on wages, if those who misreport their education level are on

average more aggressive in pursuing their goals than others, or if some of them have spent enough

time and e¤ort studying (more on average than other nongraduates) to rationalize claiming that

they have college experience. Alternatively r could be negative even if the returns to lying itself is

zero, if the liars are more likely to arouse suspicion, or if there exist other negative character �aws

that correlate with misreporting. Even with unconfoundedness, r might not equal the true returns

to lying if Y is self reported data and the propensity to misreport D� is correlated with misreporting

Y , e.g., individuals who lie about their education level may also lie about their income.

Given that unconfoundedness may often be implausible in this context, we will call r the "e¤ects

of lying," and use the phrase "returns to lying" only when unconfoundedness is assumed.

The interpretation of r as a placebo e¤ect or as e¤ects or returns to lying also assumes that D�

and D are respectively the true and reported values of the same variable. This paper�s identi�cation

and associated estimator does not require D and D� to be related in this way (they can be completely
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di¤erent binary variables), however, for the purposes of interpreting the required assumptions and

associated results, we will throughout this paper refer to D as the reported value of a true D�.

Discreteness of D and D� is also not essential for this paper�s identi�cation method, but it does

simplify the associated estimators and limiting distribution theory. In particular, if we more generally

have a reported Z and an unobserved Z�, we could apply this paper�s identi�cation method for any

particular values z and z� of interest by letting D� = I(Z� 6= z) and D = I(Z 6= z), where I is the

indicator function. Then D = 1 when D� = 0 means lying by claiming a value z when the truth is

not z. Although our identi�cation theory still holds in that case, having D or D� be zero could then

be zero probability events, resulting in estimation problems analogous to weak instruments which we

do not address here.

When D is a possibly mismeasured or misclassi�ed observation of D�, then D �D� is the mea-

surement or misclassi�cation error. Virtually all of the literature on mismeasured binary regressors

(which goes back at least as far as Aigner 1973) that attempts to estimate or bound the e¤ect

of D� on Y (a treatment e¤ect) assumes r(X) = 0, or equivalently, that any misclassi�cation or

measurement errors have no e¤ect on the outcome Y after conditioning on the true D�. Examples in-

clude Ashenfelter and Krueger (1994), Kane and Rouse (1995), Card (1996), Bollinger (1996), Hotz,

Mullin, and Sanders (1997), Klepper, (1988), Manski (1990), Hu (2008), Mahajan (2006), Lewbel

(2007a), Chen, Hu, and Lewbel (2008a, 2008b), and Molinari (2008). The same is true for general

endogenous binary regressor estimators when they are interpreted as arising from mismeasurement.

See, e.g., Das (2004), Blundell and Powell (2004), Newey and Powell (2003), and Florens and Mala-

volti (2003). The assumption that r(X) = 0 may be reasonable if the reporting errors D �D� are

due to data collection errors such as accidently checking the wrong box on a survey form. Having

r(X) = 0 would also hold if the outcome Y could not be a¤ected by the individual�s beliefs or

reports regarding D, e.g., if D� were an indicator of whether the individual owns stock and Y is the

return on his investment, then that return will only depend on the assets he actually owns and not

on his beliefs or self reports about what he owns. Still, there are many applications where it is not

reasonable to assume a priori that r(X) is zero, so even when r(X) is not of direct interest, it may

be useful to apply this paper�s methods to test if it is zero, which would then permit the application

of the existing mismeasured or misclassi�ed binary regressor estimators that require that r(X) = 0.

We propose two di¤erent methods of obtaining nonparametric identi�cation without observing

D�. One is by observing a variable V that has some special properties, analogous to an instrument.
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The second way we obtain identi�cation is through restrictions on the �rst three moments of the

model error �. Identi�cation using an instrument V requires V to have some of the properties of a

repeated measurement. In particular, Kane and Rouse (1995) and Kane, Rouse, and Staiger (1999)

obtain data on both self reports of educational attainmentD, and on transcript reports. They provide

evidence that this transcript data (like the self reports D) may contain considerable reporting errors

on questions like, "Do you have some years of college?" These transcript reports therefore cannot be

taken to equal D�, but we show these transcripts may satisfy the conditions we require for use as an

instrument V .

The alternative method we propose for identi�cation does not require an instrument V , but is

instead based primarily on assuming that the �rst three moments of the model error � are independent

of the covariates. For example, if � is normal, as might hold by Gibrat�s (1931) law for Y being log

wages, and homoskedastic, then � will satisfy this assumption. This second method of identi�cation

is similar to Chen, Hu, and Lewbel (2008a, 2008b), though (as we will show later) those papers could

not be used to identify the e¤ects of lying in our context without additional information.

The next two sections describe identi�cation with and without an instrument. We then propose

estimators based on each of these methods of identi�cation, and provide an empirical application

estimating the e¤ects on wages of lying about educational attainment.

2 Identi�cation Using an Instrument

ASSUMPTION A1: The variable Y , the binary variable D, and a (possibly empty) vector
of other covariates X are all observable. The binary variable D� is unobserved. E(Y j D�; D;X)

exists. The functions H, R, r, s and the variable � are de�ned by equations (1), (2) and (3).

ASSUMPTION A2: A variable V is observed with

E (�V j D;X) = 0; (4)

E (V j D;D� = 1; X) = E (V j D� = 1; X) ; (5)

E (V j D = 1; X) 6= E (V j X) : (6)
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Equation (4) says that the instrument V is uncorrelated with the model error � for any value of the

observable regressorsD andX. A su¢ cient condition for equation (4) to hold is ifE (Y j D�; D;X; V ) =

E (Y j D�; D;X). This is a standard property for an instrument. The following very simple Lemmas

are useful for interpreting and applying the other equations that comprise Assumption A2:

LEMMA 1: Assume E (D j D� = 1; X) 6= 0. Equation (5) holds if and only if

Cov (D;V j D� = 1; X) = 0 (7)

LEMMA 2: Assume E (D j X) 6= 0. Equation (6) holds if and only if

Cov (D;V j X) 6= 0. (8)

Proofs of Lemmas and Theorems are in the Appendix. As shown by Lemmas 1 and 2, equations

(5) and (6) say that D and V are correlated, but at least for D� = 1, this relationship only occurs

through D�. Equation (5) means that when D� = 1, the variable D has no additional power to

explain V given X. If V is a second mismeasurement of D�, then (5) or its equivalent (7) is implied

by a standard assumption of repeated measurements, namely, that the error in the measurement D

be unrelated to the error in the measurement V , while equation (6) can be expected to hold because

both measurements are correlated with the true D�. Equation (6) is close to a standard instrument

assumption, if we are thinking of V as an instrument for D (since we are trying to identify the e¤ect

of D on Y ). Note that equation (6) or Lemma 2 can be easily tested, since they only depend on

observables.

To facilitate interpretation of the identifying assumptions, we discuss them in the context of the

example in which Y is a wage, D� is the true indicator of whether an individual has some college

experience, D is the individual�s self report of college experience, and V is transcript reports of

educational attainment, which are an alternative mismeasure of D�. Let X denote a vector of other

observable covariates we may be interested in that can a¤ect either wages, schooling, and/or lying,

so X could include observed attributes of the individual and of her job.

In the college and wages example, equation (4) will hold if wages depend on both actual and

self reported education, i.e., D� and D, but not on the transcript reports V . This should hold

if employers rely on resumes and worker�s actual knowledge and abilities, but don�t see college
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transcripts. Equation (5) or equivalently (7) makes sense, in that errors in college transcripts depend

on the actual D�, but not on what individuals later self report. However, this assumption could

be violated if individuals see their own transcripts and base their decision to lie in part on what

the transcripts say. Finally, (6) is likely to hold assuming transcripts and self reports are accurate

enough on average to both be positively correlated with the truth.

De�ne the function g (X) by

g (X) = E (V j D� = 1; X) .

THEOREM 1: If Assumptions A1 and A2 hold then R(D;X) satis�es

R(D;X) =
E (Y V j D;X)� E (Y j D;X) g (X)

E (V j D;X)� g (X)
: (9)

and r (X) = R(1; X)�R(0; X) satis�es

r(X) = E (Y j D = 1; X)�E (Y j D = 0; X)+
cov (Y; V j D = 0; X)

g (X)� E (V j D = 0; X)
� cov (Y; V j D = 1; X)

g (X)� E (V j D = 1; X)
:

(10)

We now consider set identi�cation of r(X) based on equation (10), and then follow that with

additional assumptions that su¢ ce for point identi�cation of R(D;X), and hence of r(X), based on

equation (9).

2.1 Set Identi�cation Bounds Using an Instrument

ASSUMPTION A3: Assume that 0 � E (V j D = 0; X) < E (V j D = 1; X) � g (X)

Assumption A3 is a very mild set of inequalities. Having the support of V be nonnegative su¢ ces

to make the expectations in Assumption A3 nonnegative. E (V j D = 0; X) < E (V j D = 1; X) es-

sentially means that self reports are positively correlated with the instrument, which should hold since

both would typically be positively correlated with the truth. In the college example, this inequality
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is equivalent to Pr (V = 1 j D = 0; X) < Pr (V = 1 j D = 1; X), meaning that people reporting going

to college are more likely to have a transcript that says they went to college than people who report

not going to college. Given equation (7), violation of this inequality would require a relatively large

fraction of people to reverse lie, that is, claim to not have college when they have in fact gone to

college.

De�ne �� (X) by

�� (X) = g (X)� E (V j D = 1; X)

So the last inequality in Assumption A3 is �� (X) � 0. When V is a mismeasure of D�, having

�� (X) � 0 is equivalent to Pr (V = 1 j D = 1; X) � Pr (V = 1 j D� = 1; X), which basically says

that the instrument is closer to the truth than to the self report. This holds if a transcript is more

likely to say you went to college when you are in the set of people that actually did go to college than

when you are in the set of people that claimed to have been to college. It can also be readily shown

that this last equality holds if Pr (V = 1 j D = 1; D� = 1; X) � Pr (V = 1 j D = 1; D� = 0; X), which

means that among people who claim college, those who actually went to college have a higher chance

of their transcript saying they went to college than those that who�s claims to college are misreports.

As with some earlier assumptions, this assumption in any of its forms will hold if people�s decision

to lie, or accidental misreporting, is unrelated to transcript errors.

COROLLARY 1.: Let Assumptions A1, A2, and A3 hold. Then r(X) lies in an identi-

�ed interval that is bounded from below if cov (Y; V j D = 0; X) > 0 and bounded from above if

cov (Y; V j D = 0; X) < 0. If there exists an identi�ed positive � (X) such that � (X) � �� (X) then

r(X) lies in an identi�ed bounded interval.

Corollary 1 provides bounds on r (X) whether an identi�ed � (X) exists or not, but the bounds are

improved given a � (X). For an example of a � (X), suppose thatE (V j D� = 1; X) = E (V j D� = 1),

that is, the probability that a school produces the transcript error V = 0when D� = 1 is unrelated

to an individual�s observed attributes X, e.g., this would hold if all college graduates are equally

likely to have the school lose their �le or otherwise mistakenly report that they are not graduates.

Then g(X) is independent of X, and � (X) = supxE (V j D = 1; X = x) � E (V j D = 1; X) which

may be strictly positive for many values of X.

Corollary 1 follows immediately from inspection of equation (10), as does the construction

of bounds for r(X). All of the terms on the right of equation (10) are moments of observable
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data, and hence are identi�ed, except for g (X). By Assumption A3, a lower bound on g (X) is

E (V j D = 1; X). An upper bound of g (X) is sup [supp (V )], since g (X) is an expectation of V

and so cannot exceed the largest value V can take on. Note that when V is a mismeasure of D�

as in the college example, this upper bound of g (X) is one. From Assumptions A1 and A2, all of

the expectations and covariances on the right of equation (10) exist. The function g(x) appears only

in the denominators of the last two terms in equation (10). By Assumption A3, the third term in

equation (10) lies in the interval bounded by the two points

cov (Y; V j D = 0; X)

E (V j D = 1; X)� E (V j D = 0; X)
and

cov (Y; V j D = 0; X)

sup [supp (V )]� E (V j D = 0; X)

Both of which are �nite. Similarly, the last term in equation (10) lies in the interval bounded by the

two points
cov (Y; V j D = 1; X)

�� (X)
and

cov (Y; V j D = 1; X)

sup [supp (V )]� E (V j D = 1; X)

The second of these points is �nite. Given only assumptions A1, A2, and A3, �� (X) � 0 so the �rst
of the above points can be in�nite. Whether it is plus or minus in�nity, and hence whether we only

have a lower or upper bound for r (X), depends on the sign of cov (Y; V j D = 1; X). If we have a

� (X) with 0 < � (X) � �� (X), then we instead obtain the �nite bound cov (Y; V j D = 1; X) =� (X).

To construct the identi�ed interval that contains r (X), we must consider four cases corre-

sponding to the four possible pairs of signs that cov (Y; V j D = 0; X) and cov (Y; V j D = 1; X)

can take on. Note that the denominators of the last two terms in equation (10) are positive. If

cov (Y; V j D = 0; X) and cov (Y; V j D = 1; X) have opposite signs, then r (X) is strictly increasing

or decreasing in g (X), so the interval that r (X) can lie in is bounded by equation (10) evaluated

at the lowest and highest values g (X) can take on, the highest being sup [supp (V )] and lowest ei-

ther E (V j D = 1; X) or E (V j D = 1; X) + � (X) if a � (X) is known. If cov (Y; V j D = 0; X) and

cov (Y; V j D = 1; X) have the same signs, then these could still be bounds on r (X), but it is also

possible in that case that r (X) either �rst increases and then decreases in g (X) or vice versa, in

which case the point where the derivative of r (X) with respect to g (X) equals zero may also be a

bound.

Although Assumption A3 is already rather weak, one could similarly obtain a looser bound by

replacing it with the weaker assumption that 0 � E (V j D� = 0; X) � E (V j D� = 1; X). This is

little more than the assumption that transcripts be right more often than they are wrong, that is,
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people with college education will have a higher probability of transcripts reporting college education

than those without college education.

2.2 Point Identi�cation Using an Instrument

We now consider additional assumptions that permit point identi�cation of r (X).

COROLLARY 2: Let Assumptions A1 and A2 hold. Assume the function g (X) is known and
E (V j D;X) 6= g (X). Then R(D;X) is identi�ed by

R(D;X) =
E (Y (V � g (X)) j D;X)
E ((V � g (X)) j D;X) (11)

Identi�cation of r (X) is then given by r (X) = R(1; X)�R(0; X). Corollary 2 follows immediately
from Theorem 1 by substituting g (X) for E (V j D� = 1; X) in equation (9), and observing that all

the other terms in equation (9) are expectations of observables, conditioned on other observables,

and hence are themselves identi�ed. One way Corollary 2 might hold is if a form of validation data

exists. For example if D and D� refer to graduating from college, then g (X) could be obtained

from a survey of transcripts just of people known to have graduated college. A special case of this

assumption holding is if V is a mismeasure of D�, as when V is the transcript report, and g (X) = 1,

that is, if transcript errors of the form V = 0 when D� = 1 are ruled out.

Another example or variant of Corollary 2 is the following.

ASSUMPTION A4: There exists an x1 such that

E (V j D� = 1; X) = E (V j X = x1) (12)

and

E (V j D;X) 6= E (V j X = x1) (13)

Equation (12) assumes that V has the same mean for people who have X = x1 as for people

that have D� = 1 and any value of X. One set of su¢ cient (but stronger than necessary) conditions

for equation (12) to hold is if E (V j D� = 1; X = x1) = E (V j D� = 1), so for people having college
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(D� = 1), the probability of a transcript error is unrelated to one�s personal attribute information

X, and if

Pr (D� = 1 j X = x1) = 1; (14)

so people who have X = x1 are an observable subpopulation that de�nitely have some college. In

our application, we use Corollary 3 below for identi�cation and we take this subpopulation x1 to

be individuals with very high test scores and self reported advanced degrees. Note that if equation

(14) holds then equation (12) would only be violated if colleges systematically made more or fewer

errors when producing transcripts for individuals with attributes X = x1 than for students with

other attribute values.

Equation (13) is a technicality that, analogous to the assumption that E (V j D;X) 6= g (X) in

Corollary 2, will avoid division by zero in Corollary 3 below. It is di¢ cult to see why it should not

hold in general, and it is empirically testable since it depends only on observables. However, if both

equations (12) and (14) hold then equation (13) will not hold for X = x1. This means that R(D; x1)

cannot be identi�ed in this case, though we still identify R(D;X) for X 6= x1. This is logical because

if all individuals having X = x1 have D� = 1 by equation (14), then none of them can be lying when

reporting D = 1.

COROLLARY 3: If Assumptions A1, A2, and A4 hold then R(D;X) is identi�ed by

R(D;X) =
E (Y V j D;X)� E (Y j D;X)E (V j X = x1)

E (V j D;X)� E (V j X = x1)
: (15)

Corollary 3 follows Theorem 1, by substituting equation (12) into equation (9) to obtain equation

(15), and equation (13) makes the denominator in equation (15) be nonzero.

Given identi�cation of R(D;X) by Corollary 2 or 3, the e¤ects of lying r(X) is also identi�ed by

r(X) = R(1; X)�R(0; X).

Although rather more di¢ cult to interpret and satisfy than the assumptions in Corollaries 2 and 3,

yet another alternative set of identifying assumptions is equations (4), (6) and Cov (D�; V j D;X) =
0, which by equation (3) implies Cov (Y; V j X) = r(X)Cov (D;V j D;X) which can then be solved
for, and hence identi�es, r(X).
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3 Identi�cation Without an Instrument

We now consider identi�cation based on restrictions on moments of � rather than on the presence of

an instrument. In particular, we will assume that the second and third moments of � do not depend

on D�, D, and X. The method of identi�cation here is similar to that of Chen, Hu, and Lewbel

(2008b), though that paper imposes the usual measurement error assumption that the outcome Y

is conditionally independent of the mismeasure D, conditioning on the true D�, or equivalently, it

assumes that r(X) = 0. One could modify Chen, Hu, and Lewbel (2008b) to identify our e¤ects of

lying model in part by including D in the list of regressors and treating our V from the previous

section as the observed mismeasure of D�. However, in that case one would need both an instrument

V with certain properties and restrictions on higher moments of �, while in the present paper these

are alternative methods of identi�cation.

ASSUMPTION B1:
E (� j D�; D;X) = 0; (16)

E
�
�k j D�; D;X

�
= E

�
�k
�

for k = 2; 3; (17)

there exists an x0 such that

Pr (D = 0 j D� = 1; X = x0) = 0 and Pr (D = 0 j X = x0) > 0; (18)

and

E (Y j D� = 1; D;X) � E (Y j D� = 0; D;X) (19)

Equation (16) can be assumed to hold without loss of generality by de�nition of the model error

�. Equation (17) says that the second and third moments of the model error � do not depend on

D�; D;X, and so would hold under the common modeling assumption that the error � in a wage

equation is independent of the regressors.

Equation (18) implies that people, or at least those in some subpopulation fX = x0g, will not
underreport and claim to not have been to college if they in fact have been to college. At least in

terms of wages, this is plausible in that it is hard to see why someone would lie to an employer by

claiming to have less education or training than he or she really possesses.

Finally, equation (19) implies that the impact of D� on Y conditional on D and X is known to be

positive. This makes sense when Y is wages and D� is the true education level, since ceteris paribus,

higher education on average should result in higher wages on average.
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De�ne

�2Y jD;X(D;X) = E
�
Y 2jD;X

�
� [E (Y jD;X)]2 ;

�3Y jD;X(D;X) = E
�
[Y � E (Y jD;X)]3 jD;X

�
;

�(D;X) = �2Y jD;X(D;X)� �2Y jD;X(0; x0);

�(D;X) = �3Y jD;X(D;X)� �3Y jD;X(0; x0) + 2E (Y jD;X)�(D;X);
(D;X) = �(D;X)2 + [E (Y jD;X)]2 �(D;X)� E (Y jD;X) �(D;X):

THEOREM 2: Suppose that Assumptions A1 and B1 hold and that �(D;X) 6= 0 for (D;X) 6=
(0; x0). Then, R(D;X) and s(D;X) are identi�ed as follows:

i) if (D;X) = (0; x0), then R(D;X) = E (Y jD;X);
ii) if (D;X) 6= (0; x0), then

R(D;X) =
�(D;X)�

p
�(D;X)2 + 4�(D;X)(D;X)

2�(D;X)
;

and

s(D;X) =
�(D;X)

E (Y jD;X)�R(D;X)
+ E (Y jD;X)�R(D;X):

As before given R(D;X) we may identify the e¤ects of lying r(X) using r(x) = R(1; X)�R(0; X).
Identi�cation of s(D;X) in Theorem 2 means that the entire conditional mean functionH in equation

1 is identi�ed.

Some intuition for this identi�cation comes from observing that, conditional on X, the number

of equality constraints imposed by the assumptions equal the number of unknowns. One of these

equations is a quadratic, and the inequality (19) is only needed to identify which of the two roots

is correct. Based on this intuition, identi�cation based on alternative equality restrictions should

be possible, e.g., in place of equation (18) one could consider the constraint that the third moment

E (�3) equal zero. Also, dropping inequality assumptions like (19) will result in set rather than point

identi�cation, where the sets are �nite and consist of only two or three possible values.
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4 Unconfoundedness

By construction the function r(X) is the di¤erence in the conditional mean of Y (conditioning on

D, X, and on D� = 0) when D changes from zero to one. Assuming D is the reported response and

D� is the truth, here we formally provide the unconfoundedness condition required to have this r(X)

equal the returns to lying. Consider the weak version of the Rubin (1974) or Rosenbaum and Rubin

(1984) unconfoundedness assumption given by equation (20), interpreting D as a treatment. Letting

Y (d) denote what Y equals given the response D = d, if

E[Y (d) j D;D� = 0; X] = E[Y (d) j D� = 0; X] (20)

then it follows immediately from applying, e.g., Heckman, Ichimura, and Todd (1998), that E[Y (1)�
Y (0) j D� = 0; X] = r(X) is the conditional average e¤ect of D, and so is the conditional on X

average returns to lying.

5 Estimation Using an Instrument

We now provide estimators of R(D;X) and hence of r(X) following from Corollary 2 or 3 of Theorem

1. We �rst describe nonparametric estimators that are based on ordinary sample averages, which

can be used if X is discrete. We then discuss kernel based nonparametric estimation, and �nally

we provide a simple least squares based semiparametric estimator that does not require any kernels,

bandwidths, or other smoothers regardless of whether X contains continuous or discrete elements.

5.1 Nonparametric, Discrete X Estimation

Note that while identi�cation only requires Assumption A4 to hold for a single value of X, that is,

x1, it may be the case that this assumption is known to hold for a range of values of x1. We may then

replace E (V j X = x1) with the expected value of V conditional on X equalling any value in this

range. This may then improve the accuracy with which we can estimate this conditional expectation.

In particular if X has any continuous components then E (V j X = x1) for a single value of x1 is

conditioning on a zero probability event, the estimate of which will converge at a slower rate than

conditioning on a range of values X that has nonzero probability. Therefore, de�ne Ui to be a dummy
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variable such that

Ui = I (Xi 2 fx1: Assumption A4 is known to holdg) ; (21)

where I (:) is the indicator function. In other words, let Ui equal one if equations (12) and (13)

are assumed to hold when replacing x1 in those equations with Xi , otherwise let Ui equal zero. It

then follows immediately from Corollary 3 that equation (15) holds replacing E (V j X = x1) with

E (V j U = 1), so

R(D;X) =
E (Y V j D;X)� E (Y j D;X)E (V j U = 1)

E (V j D;X)� E (V j U = 1) : (22)

We �rst consider estimation in the simple case where X is discrete. Replacing the expectations

in equation (22) with sample averages in this case gives the estimators

bR(d; x) = b�Y;V;X;d � b�Y;X;db�b�V;X;d � b�X;db� , br(x) = bR(1; x)� bR(0; x): (23)

with

b�Y;V;X;d =
1

n

nX
i=1

YiViI(Xi = x;Di = d), b�Y;X;d = 1

n

nX
i=1

YiI(Xi = x;Di = d),

b�V;X;d =
1

n

nX
i=1

ViI(Xi = x;Di = d), b�X;d = 1

n

nX
i=1

I(Xi = x;Di = d),

b�V;U =
1

n

nX
i=1

ViUi, b�U = 1

n

nX
i=1

Ui, b� = b�V;U=b�U
Estimation based on equation (11) is the same replacing b� with g(X) in equation (23)
One may also consider the unconditional mean wages Rd = E [R (d;X)] and unconditional average

e¤ects of lying r = E [r (X)], which may be estimated by

bRd = 1

n

nX
i=1

bR(d;Xi), br = 1

n

nX
i=1

br(Xi). (24)

Assuming independent, identically distributed draws of fYi; Vi; Xi; Di; Uig, and existence of rele-
vant variances, it follows immediately from the Lindeberg-Levy central limit theorem and the delta

method that bR(d; x), br(x), bRd, and br are root n consistent and asymptotically normal, with variance
formulas as provided in the appendix, or that can be obtained by an ordinary bootstrap. Analogous

limiting distribution results will hold with heteroskedastic or dependent data generating processes,

as long as a central limit theorem still applies.
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5.2 General Nonparametric Estimation

Letting � = E (V j U = 1), equation (22) can be rewritten as

R(D;X) =
E [Y (V � �) j D;X]
E [(V � �) j D;X] : (25)

Equation (11) can also be written in the form of equation (25) by replacing � with g (X).

Assume n independent, identically distributed draws of fYi; Vi; Xi; Di; Uig. Let Xi = (Zi; Ci)

where Z and C are, respectively, the vectors of discretely and continuously distributed elements of

X. Similarly let x = (z; c). Let b� = b�V;U=b�U if estimation is based on equation (22), otherwise
replace b� with g (x). Using equation (25), a kernel based estimator for R(D;X) is

bR(d; x) = �ni=1Yi (Vi � b�)K[(Ci = c)=b]I(Zi = z)I(Di = d)

�ni=1 (Vi � b�)K[(Ci = c)=b]I(Zi = z)I(Di = d)
(26)

where K is a kernel function and b is a bandwidth that goes to zero as n goes to in�nity. Equation

(26) is numerically identical to the ratio of two ordinary nonparametric Nadaraya-Watson kernel

regressions of Y (V � b�) and V � b� on X;D, which under standard conditions are consistent and
asymptotically normal. These will have the same slower than root n rate of convergence as regressions

that use a known � in place of the estimator b�, because an estimated b� converges at the rate root n
by the law of large numbers. Alternatively, equation (25) can be rewritten as the conditional moment

E [(Y �R(D;X)) (V � �) j D;X] = 0 (27)

which may be estimated using, e.g., the functional GMM estimator of Ai and Chen (2003), or by

Lewbel�s (2007b) local GMM estimator , with limiting distributions as provided by those references.

Given bR(d; x) from equation (26) we may as before construct br(x) = bR(1; x) � bR(0; x), and
unconditional estimates bRd and br by equation (24). We also construct trimmed unconditional e¤ectsbrt = 1

n

Pn
i=1 br(Xi)Iti and similarly for bRdt, where Iti is a trimming parameter that equals one for

most observations i, but equals zero for tail observations. Assuming regularity conditions such as

Newey (1994) these trimmed unconditional e¤ects are root n consistent and asymptotically normal

estimates of the trimmed means rt and Rdt.

5.3 Simple Semiparametric Estimation

Assume we have a parameterization R(D;X; �) for the function R(D;X) with a vector of parameters

�. The function s(D;X) and the distribution of the model error � are not parameterized. Then
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based on the de�nition of � and equation (27), � and � could be jointly estimated based on Corollary

3 by applying GMM to the moments

E [(V � �)U ] = 0 (28)

E [ (D;X) (Y �R(D;X; �)) (V � �)] = 0 (29)

for a chosen vector of functions  (D;X). For estimation based on Corollary 2, the estimator would

just use the moments given by equation (29) replacing � with g (X).

Let W = (1; D;X 0)0. If R has the linear speci�cation R(D;X; �) = W 0� then let  (D;X) = W

to yield moments E [W (Y �W 0�) (V � �)] = 0, so � = E [(V � �)WW 0]�1E [(V � �)WY ]. This

then yields a weighted linear least squares regression estimator

b� = " nX
i=1

(Vi � b�)WiW
0
i

#�1 " nX
i=1

(Vi � b�)WiYi

#
(30)

based on Corollary 3, or the same expression replacing b� with g (Xi) based on Corollary 2. Given b� we
then have bR(D;X) =W 0b�. In this semiparametric speci�cation r(x) is a constant with br(x) = br = b�1,
the �rst element of b�. Note that both GMM based on equation (29) and the special case of weighted

linear regression based on equation (30) do not require any kernels, bandwidths, or other smoothers

for their implementation.

6 Estimation Without an Instrument

We now consider estimation based on Theorem 2. As in the previous section, let K be a kernel

function, b be a bandwidth, and Xi = (Zi; Ci) where Z and C are, respectively, the vectors of

discretely and continuously distributed elements of X. Also let x = (z; c). For k = 1; 2; 3, de�ne

bE �Y kjD = d;X = x
�
=
�ni=1Y

k
i K[(Ci = c)=b]I(Zi = z)I(Di = d)

�ni=1K[(Ci = c)=b]I(Zi = z)I(Di = d)
(31)

This is a standard Nadayara-Watson Kernel regression combining discrete and continuous data, which

provides a uniformly consistent estimator of E
�
Y kjD = d;X = x

�
under standard conditions. De�ne

b�2Y jD;X(d; x) = bE �Y 2jD = d;X = x
�
�
h bE (Y jD = d;X = x)

i2
;

b�3Y jD;X(d; x) = bE �hY � bE (Y jD = d;X = x)
i3
jD = d;X = x

�
;
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b�(d; x) = b�2Y jD;X(d; x)� b�2Y jD;X(0; x0);b�(d; x) = b�3Y jD;X(d; x)� �3Y jD;X(0; x0) + 2
bE (Y jD = d;X = x) b�(d; x);

b(d; x) = b�(d; x)2 + h bE (Y jD = d;X = x)
i2 b�(d; x)� bE (Y jD = d;X = x) b�(d; x):

Based on Theorem 2 and uniform consistency of the kernel regressions, a consistent estimator of

R(d; x) is then bR(0; x0) = bE (Y jD = 0; X = x0) ,

bR(d; x) = b�(d; x)�qb�(d; x)2 + 4b�(d; x)b(d; x)
2b�(d; x) for (d; x) 6= (0; x0).

As before, every conditional expectation above that conditions on X = x0 can be replaced by

an expectation conditional on X equalling any value x having the property that the assumptions of

Theorem 2 hold replacing x0 with that value x.

If X does not contain any continuously distributed elements, then these estimators are smooth

functions of cell means, and so are root n consistent and asymptotically normal by the Lindeberg

Levy central limit theorem and the delta method. Given bR(d; x) from equation (26) we may as

before construct br(x) = bR(1; x)� bR(0; x), and unconditional e¤ects bRd and br by equation (24). Also
as before, root n consistent, asymptotically normal convergence of trimmed means of bRd and br is
possible using regularity conditions as in Newey (1994) for two step plug in estimators.

7 E¤ects of Misreporting College Attainment

Here we report results of empirically implementing our estimators of r(x) where D is self reports of

schooling and Y is log wages. In this context, our e¤ects of lying estimates should be interpreted only

as the di¤erence in means between accurate reporters and misreporters of college for a limited sample,

rather than as actual returns to lying about schooling, for many reasons. First, our conditional mean

estimates cannot control for the selection e¤ects that are at the heart of the modern literature

on wages and schooling going back at least to Heckman (1979). Similarly, unconfoundedness with

respect to lying based on equation (20) may not hold. Also, people who misreport college may

similarly misreport their wages. Our results may also di¤er from actual returns to lying by the fact

that both the risks and the returns to misreporting on a survey are lower than for lying on a job
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application, though presumably the cost of potentially being caught in a lie in any context provides

some incentive to report the same education level on a survey as was reported to one�s employer.

Finally, our sample may not be representative of the general population.

7.1 Preliminary Data Analysis

Kane, Rouse, and Staiger (1999) estimate a model of wages as a function of having either some

college, an associate degree or higher, or a bachelors degree or higher. Their model also includes

other covariates, and they use data on both self reports and transcript reports of education level.

Their data is from the National Longitudinal Study of High School Class of 1972 (NLS-72) and a

Post-secondary Education Transcript Survey (PETS). We use their data set of n = 5912 observations

to estimate the e¤ects of lying, de�ning Y to be log wage in 1986, D to be one if an individual self

reports having "some college" and zero otherwise, while V is one for a transcript report of having

"some college" and zero otherwise (both before 1979). We also provide estimates where D and V are

self and transcript reports of having an associate degree or more, and reports of having a bachelor�s

degree or more. We take X to be the same set of other regressors Kane, Rouse, and Staiger (1999)

used, which are a 1972 standardized test score and zero-one dummy variables for female, black

nonhispanic, hispanic, and other nonhispanic.

The means of D and V (which equal the fractions of our sample that report having that level

of college or higher) are 0.6739 and 0.6539 for "some college," 0.4322 and 0.3884 respectively for

"Associate degree," and 0.3557 and 0.3383 for "Bachelors degree." The average log wage Y is 2.228.

Table 1: E¤ects of Lying and Schooling Treating Transcripts as True
Some college Associate degree Bachelor�s degree

r if V=D� 0.1266 ( 0.03129 ) 0.2322 ( 0.02748 ) 0.1948 ( 0.04451 )

r if V=D�, linear 0.07868 ( 0.02864 ) 0.1681 ( 0.02777 ) 0.1269 ( 0.04082 )

s if V=D� 0.2831 ( 0.01366 ) 0.2958 ( 0.01288 ) 0.3181 ( 0.01280 )

E(DV) 0.6204 0.3794 0.3325

E[D(1-V)] 0.05345 0.05277 0.02317

E[(1-D)V] 0.03349 0.008965 0.005751

E[(1-D)(1-V)] 0.2926 0.5589 0.6385
Standard Errors are in Parentheses
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IfD� were observed along with Y andD, then the functions r(x) and s (d; x) could be immediately

estimated from equation (3). Table 1 provides preliminary estimates of r and s based on this equation,

under the assumption that transcripts have no errors. The row "r if V=D�" in Table 1 is the sample

estimates ofE(Y jV = 0; D = 1)�E(Y jV = 0; D = 0), which would equal an estimate of r = E [r (X)]

if V = D�, that is, if the transcripts V were always correct. The row, "r if V=D�, linear" is the

coe¢ cient of D in a linear regression of Y on D, V , and X, and so is another estimate of r that

would be valid if if V = D� and given a linear model for log wages.

The third row of Table 1 is the sample analog of E(Y jV = 1) � E(Y jV = 0), which if V = D�

would be an estimate of the e¤ects of schooling s = E [s (D;X)] (that is, the di¤erence in conditional

means of log wages between those with D� = 1, versus those with D� = 0, which equals returns

to schooling if the e¤ects of schooling satisfy an unconfoundedness condition). In this and all other

tables, standard errors are obtained by 400 bootstrap replications, and are given in parentheses.

Table 1 also shows the fraction of truth tellers and liars, if the transcripts V were always correct.

The rows labeled E(DV) and E[(1-D)(1-V)] give the fraction of observations where self and transcript

reports agree that the individual respectively either has or does not have the given level of college.

The row labeled E[D(1-V)] gives the fraction of relevant liars if the transcripts are correct, that is,

it is the fraction who claim to have the given level of college, D = 1, while their transcripts say they

do not, V = 0. This fraction is a little over 5% of the sample for some college or Associate degree,

but only about half that amount appear to misreport having a Bachelor�s degree.

If V has no errors, then Table 1 indicates a small amount of lying in the opposite direction,

given by the row labeled E[(1-D)V]. These are people who self report having less education than is

indicated by their transcripts, ranging from a little over half a percent of the sample regarding college

degrees to almost 3% for "some college." It is di¢ cult to see a motive for lying in this direction, which

suggests ordinary reporting errors in self reports, transcript reports, or both.

Prior to estimating r(x), we examined equation (6) of Assumption A2, which is testable. A

su¢ cient condition for equation (6) to hold is that E(V jD = 1) � E(V ) 6= 0. In our data the

t-statistic for the null hypothesis E(V jD = 1) = E(V ) is over 40 for each of the three levels of

schooling considered, which strongly supports this assumption.
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7.2 Instrumental Variable Based Estimates

We now report instrumental variable based estimates, speci�cally, Table 2 summarizes estimates of

r(x) based on Corollary 3. We de�ne U in equation (21) to equal one for individual�s that both self

report having a masters degree or a PhD and are in the top decile of the standardized test scores.

We are therefore assuming that Assumption A4 holds for x0 equal to any X that includes these

attributes of a self reported advanced degree and a high test score.

In our data the mean of U is 0.03468, so about 3.5% of our sample have both very high test

scores and self report an advance degree. We could have based U on transcript reports of a graduate

degree instead, but then by construction we would have b�V jU = 1. In our data, b�V jU is .971 for a
Bachelor�s degree, .981 for an Associate degree, and 1.000 for some college. Nonparametric estimates

of br(x) = bR(1; x) � bR(0; x) are obtained with bR(d; x) given by equation (26) with these estimates
of b�V jU , and where the variable C in X is the test score, while Z is the vector of other elements

of X. The �rst row of Table 2 contains r, the sample average of br(X), while the second row has
the estimated trimmed mean rt, which is the sample average of br(X) after removing the highest
5% and lowest 5% of br(X) in the sample. Next are the lower quartile, middle quartile (median)
and upper quartile rq1, rmed, and rq3, of br(X) in the sample. The �nal row, "r semi, linear" is a
semiparametric estimate of r using equation (30). Standard errors, reported in parentheses, are based

on 400 bootstrap replications. One set of su¢ cient regularity conditions for bootstrapping here is

Theorem B in Chen, Linton, and Van Keilegom (2003).

Table 2: E¤ects of Lying, Nonparametric and Semiparametric Corollary 2 IV Estimates
Some college Associate degree Bachelor�s degree

r nonparametric 0.07052 ( 0.03420 ) 0.1696 ( 0.3335 ) 0.1250 ( 1.918 )

rt nonparametric 0.07355 ( 0.03166 ) 0.1796 ( 0.04158 ) 0.07109 ( 0.1217 )

rq1 nonparametric -0.05768 ( 0.04930 ) 0.09099 ( 0.06185 ) -0.1654 ( 0.1841 )

rmed nonparametric 0.06447 ( 0.03663 ) 0.1287 ( 0.04903 ) 0.06696 ( 0.1003 )

rq3 nonparametric 0.1421 ( 0.03903 ) 0.3214 ( 0.05156 ) 0.3002 ( 0.1596 )

r semi, linear 0.08008 ( 0.02940 ) 0.1610 ( 0.03362 ) 0.05613 ( 1.138 )

For the nonparametric estimates, the kernel function K is a standard normal density function,

with bandwidth b = 0.1836 given by Silverman�s rule. Doubling or halving this bandwidth changed
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most estimates by less than 10%, indicating that the results were generally not sensitive to bandwidth

choice. An exception is that mean and trimmed mean estimates for the Bachelor�s degree, which are

small in Table 2, become larger (closer to the median r estimate) when the bandwidth is doubled.

The results for the bachelor�s degree are also much less precisely estimated than for some college or

associate degree, with generally more than twice as large standard errors. Based on Table 1, we might

expect that far fewer individuals misreport having a bachelor�s degree, so the resulting imprecision

in the Bachelor�s degree estimates could be due to a much smaller fraction of data points that are

informative about misreporting.

The nonparametric mean and median estimates of r are signi�cant in Table 2, except for the

Bachelor�s degree. Overall, these results indicate that those who misreport by claiming to have have

some college have about 6% to 8% higher wages than those who tell the truth about not having

any college on average, and those who misreport by claiming to have an associate degree have about

13% to 18% higher wages. The point estimates for lying about having a Bachelor�s degree are lower,

but they also have much larger standard errors. The variability in these estimated e¤ects is quite

large, ranging from a zero or negative e¤ect at the �rst quartile to e¤ects of 14% for some college to

32% for a degree at the third quartile. The semiparametric estimates of r are similar to the mean of

the nonparametric estimates, though the variation in the quantiles of the nonparametric estimates

suggests that the semiparametric speci�cation, which assumes r is constant, is not likely to hold.

If transcripts V are very accurate, then V should be close to D�, and the estimates of r in

Table 1 should be close to those in Table 2. The linear model estimates in Table 1 are close to the

semiparametric linear model estimates in Table 2 (for some college and associate degrees), however,

the nonparametric estimates of r in Table 1 are much larger than the mean and median nonparametric

estimates in Table 2. In linear models measurement error generally causes attenuation bias, but in

contrast here the potentially mismeasured data estimates appear too large rather than too small. This

could be due to nonlinearity, or because the potentially mismeasured variable V is highly correlated

with another regressor, D.

We should expect that the e¤ects of lying would be smaller than the returns to actually having

some college or a degree. These e¤ects of actual schooling are not identi�ed from the assumptions

in Corollary 2 or 3. Table 1 gives estimates of the e¤ects of schooling s ranging from 28% for some

college to 32% for a bachelor�s degree, though these estimates are only reliable if transcripts V are

accurate. These are indeed higher than the e¤ects of lying, as one would expect. Also, while we
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would expect the e¤ects of schooling to increase monotonically with the level of schooling, we do not

necessarily expect the e¤ects of lying to increase in the same way, because those e¤ects depend on

other factors like the plausibility of the misreport.

Kane, Rouse, and Staiger (1999) report some substantial error rates in transcripts, however,

those �ndings are based on model estimates that could be faulty, rather than any type of direct

veri�cation. It is possible that transcripts are generally accurate, and in that case the ability of our

estimator to produce reasonable estimates of r would not be impressive, since one could then just

as easily generate good estimates of r using regressions or cell means as in Table 1. Therefore, to

check the robustness of our methodology, we reestimated the model after randomly changing 20%

of the observations of V to 1 � V , thereby arti�cially making V a much weaker instrument. The

resulting estimates of the mean and trimmed mean of r were generally higher than those reported in

Tables 1 and 2 (consistent with our earlier result that, in our application, measurement error in V

seems to raise rather than lower estimates of the e¤ects of lying). As with the other estimates, the

numbers for bachelor�s degrees are unstable with very large standard errors. However, the estimates

of the median of r with this noisy V data are very close to the median estimates in table 2 (though

of course with larger standard errors) for some college and associate degree. Speci�cally, the rmed
estimates with substantial measurement error added to V were 0.070, 0.133, and 0.190, compared to

the rmed estimates in Table 2 of 0.064, 0.129, and 0.067.

Table 3: Nonparametric Corollary 3 IV E¤ects of Lying Linearized Coe¢ cient Estimates
X Some college Associate degree Bachelor�s degree

blacknh -0.09208 (0.1246) -0.2429 (2.674) -0.3735 (2.288)

hispanic 0.01220 (0.1289) -0.1529 (1.627) -0.1541 (1.588)

othernh 0.2176 (0.1304) 0.1444 (1.265) 0.5398 (4.763)

female 0.09291 (0.06570) 0.2306 (0.5377) 0.2876 (3.370)

mscore -0.009755 (0.03807) 0.03345 (0.3496) -0.09489 (2.471)

constant 0.02449 (0.04635) 0.07127 (0.2840) 0.01803 (2.900)

To summarize how br(x) varies with regressors x, Table 3 reports the estimated coe¢ cients from
linearly regressing the nonparametric estimates br(x) on x and on a constant. The results show a few
interesting patterns, including that women appear to have a larger e¤ect of (possibly indicating higher
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returns to) lying than men, and that individuals with above average high school test scores also have

above average e¤ects of misreporting a higher degree of education. These results are consistent with

the notion that the e¤ects of lying should be highest for those who can lie most plausibly (e.g., those

with high ability) or for those who may be perceived as less likely to lie (such as women). However,

these results should not be over interpreted, since they are mostly not statistically signi�cant.

8 Alternative Estimates Without IV

To check the robustness of our results to alternative identifying assumptions, in Table 4 we report the

e¤ects of lying using the estimator based on Theorem 2, which does not use data on the instrument

V . These estimates are based only on self reports, and so do not use the transcript data in any way.

For these estimates we assume equation (18) holds for x0 equal to any value of X, which implies the

assumption that that no one understates their education level by reporting D = 0 when D� = 1 (and

hence that transcripts are wrong for the few observations in the data that have D = 0 and V = 1).

Table 4: E¤ects of Lying, Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor�s degree

r nonparametric -0.4127 ( 28.66 ) 0.1917 ( 2.915 ) 0.1247 ( 18.27 )

rt nonparametric 0.05064 ( 0.1402 ) 0.1684 ( 0.1738 ) 0.09186 ( 0.2489 )

rq1 nonparametric -0.05096 ( 0.1446 ) -0.1065 ( 0.2406 ) -0.5425 ( 0.3659 )

rmed nonparametric 0.1179 ( 0.06115 ) 0.1495 ( 0.06191 ) 0.1958 ( 0.05549 )

rq3 nonparametric 0.2570 ( 0.1019 ) 0.2813 ( 0.1428 ) 0.3308 ( 0.2038 )

As should be expected, the estimates in Table 4 are mostly less precise than those in Table 2, in

part because they do not exploit any transcript information, and they assume no heteroskedasticity

in the model error �, which may not hold in this application. They are also more variable in part

because they depend on higher moments of the data, and so will be more sensitive to outliers in

the �rst stage nonparametric estimates. Still, the estimates in Table 4 are generally consistent with

those in Table 2, and in particular almost all of the di¤erences between Tables 2 and 4 are not

statistically signi�cant. Given the substantial di¤erences in estimators and identifying assumptions
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between Corollary 3 and Theorem 2, it is reassuring that the resulting estimates are robust across

the two methodologies.

In the Appendix we report the estimates of E [R(d;X)] corresponding to Tables 2 and 4. As one

would expect, these are generally more stable than the estimates of E [r(X)] reported in Tables 2

and 4, since r(X) is a di¤erence R(1; X)�R(0; X) rather than a level R(d;X).

9 Conclusions

We provide identi�cation and associated estimators for the conditional mean of an outcome Y , con-

ditioned upon an observed discrete variable D and an unobserved discrete variable D�. In particular,

we identify the e¤ects of lying, that is, the average di¤erence in the mean level of Y between indi-

viduals having the unobserved D� = 0 and those having D� = 1 when the observed D = 0. Given an

unconfoundedness assumption this di¤erence in conditional means equals either the returns to lying

(if misreports of D are intentional) or a placebo e¤ect.

In our empirical application, Y is log wages, while D and D� are self reports and actual levels of

educational attainment. We �nd that wages are on average about 6% to 12% higher for those who

lie about having some college, and from 8% to 20% higher on average for those who lie about having

a college degree, relative to those who tell the truth about not having college or a diploma. Median

and trimmed mean estimates appear to be more reliable and robust than estimates of raw mean

returns and returns at other quantiles. Our results are about the same based on either semiparamet-

ric or nonparametric estimation, and are roughly comparable whether identi�cation and associated

estimation is based on using transcript reports as an instrument, or is based on higher moment

error independence assumptions without exploiting transcript data. Our results are also robust to

arti�cially adding a great deal of noise to the instrument.

The plausibility of our particular identifying assumptions may be debated, but we believe much

of the value of this paper is in demonstrating that these e¤ects of misreporting can be identi�ed at

all, and we expect future research will yield alternative assumptions that may be better suited to

this and other applications. It would be particularly useful in the future to investigate how these

results may be extended to handle confounding correlations with the unobserved treatment D�, to

obtain returns to lying without unconfoundedness assumptions.

In this application D and D� refer to the same binary event (educational attainment), with D
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a self report of D�. However, our theorems do require having D and D� refer to the same binary

event. More generally, one could estimate the average e¤ect of any binary treatment or choice D

(e.g., exposure to a law, a tax, or an advertisement) on any outcome Y (e.g., compliance with a law,

income, expenditures on a product) where the e¤ect is averaged only over some subpopulation of

interest indexed by D� (e.g., potential criminals, the poor, or a target audience of potential buyers),

and where we do not observe exactly who is in the subpopulation of interest. Our identi�cation

strategy may thereby be relevant to a wide variety of applications, not just e¤ects of lying.

10 Appendix

Proof of Lemmas 1 and 2: Consider Lemma 2 �rst:

Cov (D;V j X) = E (DV j X)� E (D j X)E (V j X)
= E [DE (V j D;X) j X]� E (D j X)E (V j X)
= Pr (D = 1 j X)E (V j D = 1; X)� E (D j X)E (V j X)
= E (D j X) [E (V j D = 1; X)� E (V j X)]

so Cov (D;V j X) 6= 0 if and only if the right side of the above expression is nonzero. The proof of
Lemma 1 works exactly the same way.

Proof of Theorem 1:
First observe that

E (D�V j D;X) =
1X

d�=0

Pr (D� = d� j D;X)E (D�V j D� = d�; D;X)

= Pr (D� = 1 j D;X)E (V j D� = 1; D;X)

= E (D� j D;X)E (V j D� = 1; X)

and using this result we have

E (Y V j D;X) = R(D;X)E (V j D;X) + s(D;X)E [D�V j D;X] + E (�V j D;X)
= R(D;X)E (V j D;X) + s(D;X)E (D� j D;X)E (V j D� = 1; X) .
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Also

E (Y j D;X) = R(D;X) + s(D;X)E [D�jD;X]

Use the latter equation to substitute s(D;X)E [D�jD;X] out of the former equation, and solve what
remains for R(D;X) to obtain equation (9). Equation (10) then follows immediately from equation

(9) using r(X) = R(1; X)�R(0; X) and the properties of a covariance.

Proof of Theorem 2: Begin with equation (2), Y = R(D;X)+s(D;X)D�+� with R(D;X) =

R(X) + r(X)D. Assumption B1 implies that

�Y jD;X � E (Y jD;X) (32)

= E ((R(D;X) + s(D;X)D�) jD;X)
= R(D;X) + s(D;X)E (D�jD;X) ;

�Y 2jD;X � E
�
Y 2jD;X

�
(33)

= E
�
(R(D;X) + s(D;X)D� + �)2 jD;X

�
= E

�
(R(D;X) + s(D;X)D�)2 jD;X

�
+ E�2

= R(D;X)2 + 2R(D;X)s(D;X)E (D�jD;X) + s(D;X)2E (D�jD;X) + E�2

= R(D;X)2 + 2R(D;X)
�
�Y jD;X �R(D;X)

�
+ s(D;X)

�
�Y jD;X �R(D;X)

�
+ E�2

= �Y jD;XR(D;X) + (R(D;X) + s(D;X))
�
�Y jD;X �R(D;X)

�
+ E�2;

and

�Y 3jD;X � E
�
Y 3jD;X

�
(34)

= E
�
(R(D;X) + s(D;X)D� + �)3 jD;X

�
= E

�
(R(D;X) + s(D;X)D�)3 jD;X

�
+ 3E [(R(D;X) + s(D;X)D�) jD;X]E�2 + E�3

= R(D;X)3 + 3R(D;X)2s(D;X)E (D�jD;X)
+3R(D;X)s(D;X)2E (D�jD;X) + s(D;X)3E (D�jD;X)
+3�Y jD;XE�

2 + E�3:
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We now show that assumption B1 implies the identi�cation of E
�
�k
�
for k = 2; 3. This assump-

tion implies that

E (D�jD = 0; X = x0)

= Pr (D� = 1jD = 0; X = x0)

= Pr (D = 0jD� = 1; X = x0)
Pr (D� = 1jX = x0)

Pr (D = 0jX = x0)
= 0;

and therefore,

�Y j0;x0 � E (Y jD = 0; X = x0)

= R(0; x0) + s(0; x0)E (D
�jD = 0; X = x0)

= R(0; x0);

�Y 2j0;x0 � E
�
Y 2jD = 0; X = x0

�
= R(0; x0)

2 + 2R(D;X)s(D;X)E (D�jD = 0; X = x0)

+s(D;X)2E (D�jD = 0; X = x0) + E�2

= R(0; x0)
2 + E�2

= �2Y j0;x0 + E�2;

and

�Y 3j0;x0 = E
�
Y 3jD = 0; X = x0

�
= R(0; x0)

3 + 3�Y j0;x0E�
2 + E�3

= �3Y j0;x0 + 3�Y j0;x0
�
�Y 2j0;x0 � �2Y j0;x0

�
+ E�3:

Therefore, we have

E�2 = �Y 2j0;x0 � �2Y j0;x0

� �2Y j0;x0 ;
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and

E�3 = �Y 3j0;x0 + 2�
3
Y j0;x0 � 3�Y j0;x0�Y 2j0;x0

= E
��
Y � �Y j0;x0

�3 jD = 0; X = x0

�
� �3Y j0;x0 :

In the next step, we eliminate s(D;X) and E (D�jD;X) in equations 32-34 to obtain a restriction
only containing R(D;X) and known variables. We will use the following two equations repeatedly.

(R(D;X) + s(D;X))
�
�Y jD;X �R(D;X)

�
= �Y 2jD;X � E�2 � �Y jD;XR(D;X) (35)

s(D;X)E (D�jD;X) = �Y jD;X �R(D;X) (36)

Notice that

s(D;X) =
�Y 2jD;X � �2Y jD;X � �2Y j0;x0

�Y jD;X �R(D;X)
+ �Y jD;X �R(D;X)

which also implies that we can�t identify s(0; x0) because �Y jD=0;x0 = R(0; x0).

From here on we will for clarity drop the term (D;X) when it is obvious from context. Consider

�Y 3jD;X � E
�
Y 3jD;X

�
= E

�
(R(D;X) + s(D;X)D� + �)3 jD;X

�
= E

�
(R + sD�)3 jD;X

�
+ 3E ((R + sD�) jD;X)E�2 + E

�
�3
�

= R(D;X)3 + 3R(D;X)2s(D;X)E (D�jD;X)
+3R(D;X)s(D;X)2E (D�jD;X) + s(D;X)3E (D�jD;X)
+3 [R(D;X) + s(D;X)E (D�jD;X)]E�2 + E�3

= R3 + 3R2
�
�Y jD;X �R

�
+ 3Rs

�
�Y jD;X �R

�
+ s2

�
�Y jD;X �R

�
+ 3�Y jD;XE�

2 + E�3

= R3 + 3R2
�
�Y jD;X �R

�
+ 2Rs

�
�Y jD;X �R

�
+ s (R + s)

�
�Y jD;X �R

�
+ 3�Y jD;XE�

2 + E�3

= R3 + 3R2
�
�Y jD;X �R

�
+ 2Rs

�
�Y jD;X �R

�
+ s

�
�Y 2jD;X � E�2 � �Y jD;XR

�
+3�Y jD;XE�

2 + E�3
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Which, with a little algebra can be written as

�Y 3jD;X = R
�
�Y 2jD;X � E�2

�
+ (R + s)

�
�Y 2jD;X � E�2 � �Y jD;XR

�
+ 3�Y jD;XE�

2 + E�3

= R
�
�Y 2jD;X � E�2

�
+
�Y 2jD;X � E�2 � �Y jD;XR�

�Y jD;X �R
� �

�Y 2jD;X � E�2 � �Y jD;XR
�

+3�Y jD;XE�
2 + E�3:

That is

0 =
�
�Y 2jD;X � E�2 � �Y jD;XR

�2
+
�
�Y 2jD;X � E�2

� �
�Y jD;X �R

�
R

�
�
�Y 3jD;X �

�
3�Y jD;XE�

2 + E�3
�� �

�Y jD;X �R
�
:

The restrictions on R simplify to the quadratic equation

��R2 + �R +  = 0;

where

� = �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
;

� =
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X + �Y 3jD;X �

�
3�Y jD;XE�

2 + E�3
��
;

 =
�
�Y 2jD;X � E�2

�2 � ��Y 3jD;X � �3�Y jD;XE�2 + E�3
��
�Y jD;X :

Notice that

�2Y jD;X = �Y 2jD;X � �2Y jD;X ;

�3Y jD;X � E
��
Y � �Y jD;X

�3 jD;X�
= �Y 3jD;X + 2�

3
Y jD;X � 3�Y jD;X�Y 2jD;X :

We then simplify the expressions of �, �, and  as follows:

� = �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
=

�
�2Y jD;X � �2Y j0;x0

�
;
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� =
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X + �Y 3jD;X �

�
3�Y jD;XE�

2 + E�3
��

=
�
�Y 3jD;X � 2�Y jD;XE�2 � E�3 � �Y jD;X�Y 2jD;X

�
= �3Y jD;X � 2�3Y jD;X + 3�Y jD;X�Y 2jD;X � 2�Y jD;XE�2 � E�3 � �Y jD;X�Y 2jD;X

= �3Y jD;X � E�3 � 2�3Y jD;X � 2�Y jD;XE�2 + 2�Y jD;X�Y 2jD;X
= �3Y jD;X � E�3 � 2�3Y jD;X � 2�Y jD;XE�2 + 2�Y jD;X

�
�2Y jD;X + �2Y jD;X

�
= �3Y jD;X � E�3 + 2�Y jD;X

�
�2Y jD;X � E�2

�
= �3Y jD;X � �3Y j0;x0 + 2�Y jD;X

�
�2Y jD;X � �2Y j0;x0

�
= �3Y jD;X � �3Y j0;x0 + 2�Y jD;X�;

 =
�
�Y 2jD;X � E�2

�2 � ��Y 3jD;X � �3�Y jD;XE�2 + E�3
��
�Y jD;X

=
�
�2Y jD;X + �2Y jD;X � E�2

�2 � ��Y 3jD;X � �3�Y jD;XE�2 + E�3
��
�Y jD;X

= �4Y jD;X + 2�
2
Y jD;X

�
�2Y jD;X � E�2

�
+
�
�2Y jD;X � E�2

�2
��Y 3jD;X�Y jD;X + 3�2Y jD;XE�2 + �Y jD;XE�

3

= �4Y jD;X + 2�
2
Y jD;X�

2
Y jD;X +

�
�2Y jD;X � E�2

�2 � �Y 3jD;X�Y jD;X + �2Y jD;XE�
2 + �Y jD;XE�

3

= �4Y jD;X + 2�
2
Y jD;X�

2
Y jD;X +

�
�2Y jD;X � E�2

�2
�
�
�3Y jD;X � 2�3Y jD;X + 3�Y jD;X�Y 2jD;X

�
�Y jD;X + �2Y jD;XE�

2 + �Y jD;XE�
3

= �4Y jD;X + 2�
2
Y jD;X�

2
Y jD;X +

�
�2Y jD;X � E�2

�2
+2�4Y jD;X � 3�2Y jD;X�Y 2jD;X + �2Y jD;XE�

2 + �Y jD;X
�
E�3 � �3Y jD;X

�
= �4Y jD;X + 2�

2
Y jD;X�

2
Y jD;X +

�
�2Y jD;X � E�2

�2
+2�4Y jD;X � 3�2Y jD;X

�
�2Y jD;X + �2Y jD;X

�
+ �2Y jD;XE�

2 + �Y jD;X
�
E�3 � �3Y jD;X

�
=

�
�2Y jD;X � E�2

�2 � �2Y jD;X
�
�2Y jD;X � E�2

�
� �Y jD;X

�
�3Y jD;X � E�3

�
=

�
�2Y jD;X � �2Y j0;x0

�2 � �2Y jD;X
�
�2Y jD;X � �2Y j0;x0

�
� �Y jD;X

�
�3Y jD;X � �3Y j0;x0

�
= �2 � �2Y jD;X�� �Y jD;X

�
� � 2�Y jD;X�

�
= �2 + �2Y jD;X�� �Y jD;X�:

In summary, we have

��R2 + �R +  = 0
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� = �2Y jD;X � �2Y j0;x0

� = �3Y jD;X � �3Y j0;x0 + 2�Y jD;X�

 = �2 + �2Y jD;X�� �Y jD;X�

That means

R =
� +

p
�2 + 4�

2�
or

� �
p
�2 + 4�

2�
:

In fact, we may show that equations 36 and 35 implies

� � 0

Consider

s =
�Y 2jD;X � �2Y jD;X � E�2

�Y jD;X �R
+ �Y jD;X �R

=
�

�Y jD;X �R
+ �Y jD;X �R

and

E (D�jD;X) =
�Y jD;X �R

s

=

�
�Y jD;X �R

�2�
�Y jD;X �R

�2
+ �

:

Therefore, 0 � E (D�jD;X) � 1 implies that � � 0.
The last step is to eliminate one of the two roots to achieve point identi�cation. Notice that

E (Y jD�; D;X) = R(D;X) + s(D;X)D�:

Assumption B1 implies that

s(D;X) � 0:

Consider

�Y jD;X = R + sE (D�jD;X)
= R [1� E (D�jD;X)] + (R + s)E (D�jD;X) :
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Therefore, 0 � E (D�jD;X) � 1 and s(D;X) � 0 imply

R � �Y jD;X � s+R;

Thus, we may identify R as the smaller root if �Y jD;X is between the two roots. , i.e.,

���2Y jD;X + ��Y jD;X +  � 0;

which holds because

���2Y jD;X + ��Y jD;X + 

= ���2Y jD;X + ��Y jD;X + �2 + �2Y jD;X�� �Y jD;X�

= �2 � 0:

Therefore, we have

R(D;X) =
� �

p
�2 + 4�

2�
:

Notice that R equals the larger root if s(D;X) � 0. The function s(D;X) then follows.

Discrete Limiting Distributions for equation (15). Let

b�(x) =
�b�Y;V;X;1; b�Y;V;X;0; b�Y;X;1; b�Y;X;0; b�V;X;1; b�V;X;0; b�X;1; b�X;0; b�V U ; b�U�T ;

�0 = E [b�(x)] ;
bR(d; b�(x)) �

�b�dY;V;X;1b�1�dY;V;X;0

� b�U � �b�dY;X;1b�1�dY;X;0

� b�V U�b�dV;X;1b�1�dV;X;0

� b�U � �b�dX;1b�1�dX;0

� b�V U ;

br(x) = bR(1; b�(x))� bR(0; b�(x));
 =

@

@t
R (d; �0 + t (b�� �0))

����
t=0

� G (d; �0)
T (b�� �0) ;

V (b�(x)) = n� E
h
(b�� �0) (b�� �0)

T
i
.
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Assuming independent, identically distributed draws and existence of V (b�(x)), by the Lindeberg-
Levy central limit theorem and the delta method

p
n
h bR(d; x)�R(d; x)

i
! dN (0;
R)


R = G (d; �0(x))
T V (b�(x))G (d; �0(x))

and

p
n [br(x)� r(x)] ! dN (0;
r)


r = [G (1; �0(x))�G (0; �0(x))]
T V (b�(x)) [G (1; �0(x))�G (0; �0(x))] :

Table 5: R(0,X), Nonparametric and Semiparametric Corollary 3 IV Estimates
Some college Associate degree Bachelor�s degree

R0 nonparametric 2.072 ( 0.01514 ) 2.125 (0.009665 ) 2.143 (0.007997 )

R0t nonparametric 2.065 ( 0.01536 ) 2.125 ( 0.01016 ) 2.144 (0.008579 )

R0q1 nonparametric 1.863 ( 0.02520 ) 1.939 ( 0.01940 ) 1.975 ( 0.01834 )

R0med nonparametric 2.003 ( 0.03859 ) 2.089 ( 0.03225 ) 2.143 ( 0.02788 )

R0q3 nonparametric 2.309 ( 0.02681 ) 2.326 ( 0.01763 ) 2.319 ( 0.01665 )

R0 semi, linear 2.025 ( 0.01174 ) 2.094 (0.008754 ) 2.114 (0.007451 )

Table 6: R(1,X), Nonparametric and Semiparametric Corollary 3 IV Estimates
Some college Associate degree Bachelor�s degree

R1 nonparametric 2.142 ( 0.03011 ) 2.295 ( 0.3326 ) 2.268 ( 1.918 )

R1t nonparametric 2.152 ( 0.02986 ) 2.319 ( 0.04103 ) 2.223 ( 0.1219 )

R1q1 nonparametric 1.997 ( 0.04430 ) 2.181 ( 0.06094 ) 2.092 ( 0.1694 )

R1med nonparametric 2.173 ( 0.04633 ) 2.380 ( 0.04084 ) 2.189 ( 0.1026 )

R1q3 nonparametric 2.340 ( 0.04635 ) 2.449 ( 0.04508 ) 2.397 ( 0.1731 )

R1 semi, linear 2.188 ( 0.02898 ) 2.341 ( 0.03397 ) 2.267 ( 1.149 )
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Table 7: R(0,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor�s degree

R0 nonparametric 2.078 ( 0.01383 ) 2.126 (0.009571 ) 2.144 (0.007897 )

R0t nonparametric 2.074 ( 0.01447 ) 2.123 ( 0.01025 ) 2.148 (0.008459 )

R0q1 nonparametric 1.891 ( 0.02270 ) 1.942 ( 0.01916 ) 1.974 ( 0.01820 )

R0med nonparametric 2.022 ( 0.03761 ) 2.095 ( 0.03227 ) 2.146 ( 0.02767 )

R0q3 nonparametric 2.288 ( 0.02247 ) 2.321 ( 0.01708 ) 2.324 ( 0.01620 )

Table 8: R(1,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor�s degree

R1 nonparametric 1.666 ( 28.66 ) 2.318 ( 2.915 ) 2.269 ( 18.27 )

R1t nonparametric 2.141 ( 0.1418 ) 2.310 ( 0.1719 ) 2.227 ( 0.2483 )

R1q1 nonparametric 1.832 ( 0.1459 ) 2.069 ( 0.2132 ) 1.525 ( 0.3052 )

R1med nonparametric 2.223 ( 0.07273 ) 2.247 ( 0.08727 ) 2.222 ( 0.07330 )

R1q3 nonparametric 2.419 ( 0.09065 ) 2.501 ( 0.1239 ) 2.552 ( 0.2033 )
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