Online Appendix: A Generalized Model of Misclassification Errors and Labor Force Dynamics

Shuaizhang Feng^{*}

Yingyao Hu[†]

Jiandong Sun[‡]

Abstract

This appendix accompanies the paper entitled "A Generalized Model of Misclassification Errors and Labor Force Dynamics" by Shuaizhang Feng, Yingyao Hu and Jiandong Sun. Section A describes the 4-8-4 rotating design in the Current Population Surveys (CPS). Section B provides a detailed proof of Theorem 1 in the paper. Section C considers a specification when further relaxing Assumptions 1 and 2. Section D evaluates Assumptions 1 and 2 in the paper through Monte Carlo simulations. Section E tests Assumption 3 in the paper directly using the CPS data. Section F provides a procedure of correcting gross labor flows with the framework in Feng and Hu (2013). Additional results are presented in Section G.

^{*}Institute for Economic and Social Research, Jinan University, Guangzhou 510632, China. E-mail: shuaizhang.feng@foxmail.com [†]Department of Economics, Johns Hopkins University, Baltimore, MD 21218, United States. E-mail: yhu@jhu.edu.

[‡]Corresponding author. School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China. E-mail: jiandong-sun11@gmail.com.

A The 4-8-4 Rotating Structure of the Current Population Survey

The Current Population Survey (CPS) is the primary source of labor force statistics for the civilian population of the United States. For each month, the sample size in recent years is around 60,000 households or 100,000 adults. The CPS has a 4-8-4 rotating panel structure with all sampled individuals scheduled to appear eight times in total, as illustrated in Table A1. For example, cohort A entered in period t - 2 for the first time and is denoted as A_1 , and it stayed in the sample for period t - 1 (A_2), period t (A_3), period t + 1 (A_4), and idled for eight periods from t + 2to t + 9, before re-appearing in period t + 10 as A_5 , then in period t + 11 as A_6 , in period t + 12 as A_7 , and finally in period t + 13 as A_8 . Such a 4-8-4 rotating structure enables us to obtain the joint distribution of five-period labor force statuses, which is required for the estimation using our proposed identification strategy.

Period				Month-in	n-sample			
1 01104	1	2	3	4	5	6	7	8
t-2	A_1							
t-1	B_1	A_2						
t	C_1	B_2	A_3					
t+1	D_1	C_2	B_3	A_4				
t+2	E_1	D_2	C_3	B_4				
t+3	F_1	E_2	D_3	C_4				
t+4	G_1	F_2	E_3	D_4				
t+5	H_1	G_2	F_3	E_4				
t+6	I_1	H_2	G_3	F_4				
t+7	J_1	I_2	H_3	G_4				
t+8	K_1	J_2	I_3	H_4				
t+9	L_1	K_2	J_3	I_4				
t + 10	M_1	L_2	K_3	J_4	A_5			
t + 11	N_1	M_2	L_3	K_4	B_5	A_6		
t + 12	O_1	N_2	M_3	L_4	C_5	B_6	A_7	
t + 13	P_1	O_2	N_3	M_4	D_5	C_6	B_7	A_8

Table A1: The 4-8-4 rotating structure in the CPS

Note: Each letter represents a cohort, and the subscript represents month-in-sample. So each entry represents a different rotation group in a given calendar month.

B Proof of Theorem 1

This section provides a formal proof of Theorem 1, which states that under Assumptions 1 to 7 in the paper, the misclassification probabilities in periods t and t + 1, i.e., $\Pr(S_t|S_t^*, S_{t-1}, \mathbf{X})$ and $\Pr(S_{t+1}|S_{t+1}^*, S_t, \mathbf{X})$, as well as the labor force transition probabilities, i.e., $\Pr(S_{t+1}^*|S_t^*, S_{t-1}, \mathbf{X})$, are uniquely identified from the observed joint distribution of five-period matched reported labor force status, i.e., $\Pr(S_{t+10}, S_{t+1}, S_t, S_{t-1}, S_{t-2}|\mathbf{X})$, through the eigenvalue-eigenvector decomposition method proposed in Hu (2008).

Assumption 1 is imposed on the misclassification process, which allows for the correlation between the reported statuses across two consecutive months even conditional on the current true status, that is,

$$\Pr\left(S_t | S_t^*, \{S_\tau^*, S_\tau\}_{\tau \le t-1}, \mathbf{X}\right) = \Pr\left(S_t | S_t^*, S_{t-1}, \mathbf{X}\right).$$
(1)

Note that respondents are not interviewed for those drop-out periods, implying that the reported status may only depend on the true status for incoming rotation groups (i.e., rotation groups one and five). That is, for $i \in \{t-2, t+10\}$,

$$\Pr\left(S_i|S_i^*, \{S_\tau^*, S_\tau\}_{\tau \le i-1}, \mathbf{X}\right) = \Pr\left(S_i|S_i^*, \mathbf{X}\right).$$
(2)

Assumption 2 allows for the non-Markovian nature of true labor force dynamics by including a lag of reported status in the true labor force transition across periods t and t + p, that is,

$$\Pr\left(S_{t+p}^*|\left\{S_{\tau}^*, S_{\tau}\right\}_{\tau \leq t}, \mathbf{X}\right) = \Pr\left(S_{t+p}^*|S_t^*, S_{t-1}, \mathbf{X}\right).$$
(3)

In fact, the sufficient conditions we need are

$$\Pr\left(S_{t+10}^*|S_{t+1}, S_{t+1}^*, S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) = \Pr\left(S_{t+10}^*|S_{t+1}^*, S_t, \mathbf{X}\right),\tag{4}$$

and

$$\Pr\left(S_{t+1}^*|S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) = \Pr\left(S_{t+1}^*|S_t^*, S_{t-1}, \mathbf{X}\right).$$
(5)

Under Assumptions 1 and 2, we derive the following joint distribution:

$$\begin{aligned} \Pr\left(S_{t+10}, S_{t+1}, S_{t}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+10}^{*}, S_{t+1}^{*}, S_{t}^{*}}} \Pr\left(S_{t+10}, S_{t+10}^{*}, S_{t+1}, S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+10}^{*}, S_{t+1}^{*}, S_{t}^{*}}} \Pr\left(S_{t+10} | S_{t+10}^{*}, S_{t+1}, S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ \Pr\left(S_{t+10}^{*} | S_{t+1}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ \Pr\left(S_{t+10}^{*} | S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ \Pr\left(S_{t+1}^{*} | S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \times \\ \Pr\left(S_{t+1}^{*} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t+10}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \right) \Pr\left(S_{t+1} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \times \\ \Pr\left(S_{t+1}^{*} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \\ = \sum_{\substack{S_{t+1}^{*}, S_{t}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \times \\ \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t+1}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \\ = \sum_{\substack{S_{t+1}^{*}, S_{t}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ \\ = \sum_{\substack{S_{t+1}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ \\ = \sum_{\substack{S_{t+1}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ \\ = \sum_{\substack{S_{t+1}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ \\ = \sum_{\substack{S_{t+1}^{*}}} \Pr\left(S_{t+10} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^{*}, S_{t}, \mathbf{X}\right) \Pr\left(S_{t+1}^{*}$$

This means that, if S_t and S_{t-1} are fixed, we may apply the identification strategy in Hu (2008) to identify the unknown conditional distributions on the right-hand side of Equation (6). Integrating out S_{t+10} , we have

$$\Pr\left(S_{t+1}, S_t, S_{t-1}, S_{t-2} | \mathbf{X}\right) = \sum_{S_{t+1}^*} \Pr\left(S_{t+1} | S_{t+1}^*, S_t, \mathbf{X}\right) \Pr\left(S_{t+1}^*, S_t, S_t, S_t, S_{t-2} | \mathbf{X}\right).$$
(7)

Given $S_{t+10} = 1$, $S_t = s_t$, $S_{t-1} = s_{t-1}$ and $\mathbf{X} = \mathbf{x}$, we define the following matrices:

$$\begin{split} M_{1,S_{t+1},s_{t},s_{t-1},S_{t-2}|\mathbf{x}} &\equiv \left[\Pr\left(S_{t+10}=1,S_{t+1}=i,S_{t}=s_{t},S_{t-1}=s_{t-1},S_{t-2}=j|\mathbf{x}\right) \right]_{i,j}, \\ M_{S_{t+1},s_{t},s_{t-1},S_{t-2}|\mathbf{x}} &\equiv \left[\Pr\left(S_{t+1}=i,S_{t}=s_{t},S_{t-1}=s_{t-1},S_{t-2}=j|\mathbf{x}\right) \right]_{i,j}, \\ D_{1|S_{t+1}^{*},s_{t},\mathbf{x}} &\equiv Diag \left[\Pr\left(S_{t+10}=1|S_{t+1}^{*}=j,S_{t}=s_{t},\mathbf{x}\right) \right]_{j}, \\ M_{S_{t+1}|S_{t+1}^{*},s_{t},\mathbf{x}} &\equiv \left[\Pr\left(S_{t+1}=i|S_{t+1}^{*}=j,S_{t}=s_{t},\mathbf{x}\right) \right]_{i,j}, \\ M_{S_{t+1}^{*},s_{t},s_{t-1},S_{t-2}|\mathbf{x}} &\equiv \left[\Pr\left(S_{t+1}^{*}=i,S_{t}=s_{t},S_{t-1}=s_{t-1},S_{t-2}=j|\mathbf{x}\right) \right]_{i,j}. \end{split}$$

As shown in Hu (2008), Equations (6) and (7) imply the following two matrix equations:

$$M_{1,S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}} = M_{S_{t+1}|S_{t+1}^*,s_t,\mathbf{x}} D_{1|S_{t+1}^*,s_t,\mathbf{x}} M_{S_{t+1}^*,s_t,s_{t-1},S_{t-2}|\mathbf{x}}$$
(8)

and

$$M_{S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}} = M_{S_{t+1}|S_{t+1}^*,s_t,\mathbf{x}} M_{S_{t+1}^*,s_t,s_{t-1},S_{t-2}|\mathbf{x}}.$$
(9)

Assumption 3 implies that the observed matrix $M_{S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}}$ is invertible, which can be tested using real data. We then can derive the following equation:

$$M_{1,S_{t+1},s_{t},s_{t-1},S_{t-2}|\mathbf{x}}M_{S_{t+1},s_{t},s_{t-1},S_{t-2}|\mathbf{x}}^{-1}$$

$$= M_{S_{t+1}|S_{t+1}^{*},s_{t},\mathbf{x}}D_{1|S_{t+1}^{*},s_{t},\mathbf{x}}M_{S_{t+1}^{*},s_{t},s_{t-1},S_{t-2}|\mathbf{x}}\left(M_{S_{t+1}|S_{t+1}^{*},s_{t},\mathbf{x}}M_{S_{t+1}^{*},s_{t},s_{t-1},S_{t-2}|\mathbf{x}}\right)^{-1}$$

$$= M_{S_{t+1}|S_{t+1}^{*},s_{t},\mathbf{x}}D_{1|S_{t+1}^{*},s_{t},\mathbf{x}}M_{S_{t+1}|S_{t+1}^{*},s_{t},\mathbf{x}}^{-1}.$$
(10)

Equation (10) implies that the observed matrix on the left-hand side has an eigen-decomposition on the right-hand side, where the three diagonal entries in $D_{1|S_{t+1}^*,s_t,\mathbf{x}}$ are three eigenvalues, and the three columns in $M_{S_{t+1}|S_{t+1}^*,s_t,\mathbf{x}}$ are the corresponding three eigenvectors. Note that each column of $M_{S_{t+1}|S_{t+1}^*,s_t,\mathbf{x}}$ is a conditional distribution, so that the entries in each column sum to 1, implying that the eigenvectors are normalized. Assumption 4 implies that the eigenvalues are distinctive, thus the eigenvectors are linearly independent and can be uniquely identified.

Assumption 5 specifies the re-ordering rule of eigenvectors. In particular, if the current true labor force status is the same as the previously-reported status, individuals are always more likely to report that status than if the true status is otherwise. Furthermore, if the current true status is different from the previously-reported status, then the least possible choice to report would be the status other than the current true status or the previously-reported status. Under this rule, the ordering of the eigenvectors is determined and the the eigenvector matrix $M_{S_{t+1}|S_{t+1}^*,s_t,\mathbf{x}}$ is uniquely identified from the eigen-decomposition of the observed matrix $M_{1,S_{t+1},s_{t,S_{t-1}},S_{t-2}|\mathbf{x}}M_{S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}}$.

Given that $\Pr\left(S_{t+1}|S_{t+1}^*, S_t, \mathbf{X}\right)$ has been identified, we may identify $\Pr\left(S_{t+1}^*, S_t, S_{t-1}, S_{t-2}|\mathbf{X}\right)$ from Equation (7). To further identify $\Pr\left(S_t|S_t^*, S_{t-1}, \mathbf{X}\right)$ and $\Pr\left(S_{t+1}^*|S_t^*, S_{t-1}, \mathbf{X}\right)$, we apply similar strategy to the following equations:

$$\Pr\left(S_{t+1}^{*}, S_{t}, S_{t-1}, S_{t-2} | \mathbf{X}\right) = \sum_{S_{t}^{*}} \Pr\left(S_{t+1}^{*} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right),$$
(11)

and

$$\Pr\left(S_{t}, S_{t-1}, S_{t-2} | \mathbf{X}\right) = \sum_{S_{t}^{*}} \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, \mathbf{X}\right) \Pr\left(S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right).$$
(12)

Given $S_{t+1}^* = 1$, $S_{t-1} = s_{t-1}$, and $\mathbf{X} = \mathbf{x}$, Equations (11) and (12) also imply the following two matrix equations:

$$M_{1,S_t,s_{t-1},S_{t-2}|\mathbf{x}} = M_{S_t|S_t^*,s_{t-1},\mathbf{x}} D_{1|S_t^*,s_{t-1},\mathbf{x}} M_{S_t^*,s_{t-1},S_{t-2}|\mathbf{x}}$$
(13)

and

$$M_{S_t, s_{t-1}, S_{t-2}|\mathbf{x}} = M_{S_t|S_t^*, s_{t-1}, \mathbf{x}} M_{S_t^*, s_{t-1}, S_{t-2}|\mathbf{x}},$$
(14)

where

$$\begin{split} M_{1,S_{t},s_{t-1},S_{t-2}|\mathbf{x}} &\equiv \left[\Pr\left(S_{t+1}^{*} = 1, S_{t} = i, S_{t-1} = s_{t-1}, S_{t-2} = j|\mathbf{x} \right) \right]_{i,j} \\ M_{S_{t},s_{t-1},S_{t-2}|\mathbf{x}} &\equiv \left[\Pr\left(S_{t} = i, S_{t-1} = s_{t-1}, S_{t-2} = j|\mathbf{x} \right) \right]_{i,j} , \\ D_{1|S_{t}^{*},s_{t-1},\mathbf{x}} &\equiv Diag \left[\Pr\left(S_{t+1}^{*} = 1|S_{t}^{*} = j, S_{t-1} = s_{t-1}, \mathbf{x} \right) \right]_{j} , \\ M_{S_{t}|S_{t}^{*},s_{t-1},\mathbf{x}} &\equiv \left[\Pr\left(S_{t} = i|S_{t}^{*} = j, S_{t-1} = s_{t-1}, \mathbf{x} \right) \right]_{i,j} , \\ M_{S_{t}|S_{t}^{*},s_{t-1},\mathbf{x}} &\equiv \left[\Pr\left(S_{t} = i|S_{t}^{*} = j, S_{t-1} = s_{t-1}, \mathbf{x} \right) \right]_{i,j} , \end{split}$$

Under Assumption 6, we eliminate $M_{S_t^*, s_{t-1}, S_{t-2}|\mathbf{x}}$ in Equations (13) and (14) as follows:

$$M_{1,S_{t},s_{t-1},S_{t-2}|\mathbf{x}}M_{S_{t},s_{t-1},S_{t-2}|\mathbf{x}}^{-1}$$

$$= M_{S_{t}|S_{t}^{*},s_{t-1},\mathbf{x}}D_{1|S_{t}^{*},s_{t-1},\mathbf{x}}M_{S_{t}^{*},s_{t-1},S_{t-2}|\mathbf{x}}\left(M_{S_{t}|S_{t}^{*},s_{t-1},\mathbf{x}}M_{S_{t}^{*},s_{t-1},S_{t-2}|\mathbf{x}}\right)^{-1}$$

$$= M_{S_{t}|S_{t}^{*},s_{t-1},\mathbf{x}}D_{1|S_{t}^{*},s_{t-1},\mathbf{x}}M_{S_{t}^{*}|S_{t}^{*},s_{t-1},\mathbf{x}}^{-1}.$$
(15)

Assumption 7 ensures that $M_{S_t|S_t^*,s_{t-1},\mathbf{x}}$ and $D_{1|S_t^*,s_{t-1},\mathbf{x}}$ can be uniquely identified using the eigen-decomposition. Again, we use Assumption 5 to re-arrange the orderings of the eigenvectors and the corresponding eigenvalues. After applying the same procedures to subsamples with $S_{t+1}^* \in \{1, 2, 3\}$, the transition probabilities with a lagged reported status, i.e., $\Pr\left(S_{t+1}^*|S_t^*, s_{t-1}, \mathbf{x}\right)$, are identified. Q.E.D.

C Relaxing Assumptions 1 and 2 by Adding One More Lag

Regarding the misclassification process and the underlying true labor force dynamics, we propose the following two assumptions in the paper:

Assumption 1. Conditional on observed characteristics X, the reported status in the current month (S_t) only depends on the true status in the current month (S_t^*) and the reported status in the previous month (S_{t-1}) , i.e.,

$$\Pr\left(S_t | S_t^*, \{S_\tau^*, S_\tau\}_{\tau \le t-1}, \boldsymbol{X}\right) = \Pr\left(S_t | S_t^*, S_{t-1}, \boldsymbol{X}\right).$$
(16)

Assumption 2. Conditional on observed characteristics X, the true status in the current month (S_t^*) and the reported status in the previous month (S_{t-1}) , the true or reported statuses in other months have no predictive power on the true status k months later (S_{t+p}^*) . That is, for $p \ge 1$,

$$\Pr\left(S_{t+p}^{*}|\{S_{\tau}^{*}, S_{\tau}\}_{\tau \leq t}, \boldsymbol{X}\right) = \Pr\left(S_{t+p}^{*}|S_{t}^{*}, S_{t-1}, \boldsymbol{X}\right).$$
(17)

In this section, we consider a case where both the misclassification process and the underlying true labor force transition are generalized to be dependent on one more lag of the reported labor force status than our proposed assumptions. That is,

Assumption 1'. Conditional on observed characteristics X, the reported status in the current month (S_t) only depends on the true status in the current month (S_t^*) and the reported status in the previous two months $(S_{t-1} \text{ and } S_{t-2})$, i.e.,

$$\Pr\left(S_t | S_t^*, \{S_\tau^*, S_\tau\}_{\tau \le t-1}, \boldsymbol{X}\right) = \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \boldsymbol{X}\right).$$
(18)

Assumption 2'. Conditional on observed characteristics X, the true status in the current month (S_t^*) and the reported status in the previous two months $(S_{t-1} \text{ and } S_{t-2})$, the true or reported statuses in other months have no predictive power on the true status k months later (S_{t+p}^*) . That is, for $p \ge 1$,

$$\Pr\left(S_{t+p}^{*}|\{S_{\tau}^{*}, S_{\tau}\}_{\tau \leq t}, \boldsymbol{X}\right) = \Pr\left(S_{t+p}^{*}|S_{t}^{*}, S_{t-1}, S_{t-2}, \boldsymbol{X}\right).$$
(19)

In this case, the sufficient conditions we need are

$$\Pr\left(S_{t+10}^{*}|S_{t+1}, S_{t+1}^{*}, S_{t}, S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) = \Pr\left(S_{t+10}^{*}|S_{t+1}^{*}, S_{t}, S_{t-1}, \mathbf{X}\right),\tag{20}$$

and

$$\Pr\left(S_{t+1}^*|S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) = \Pr\left(S_{t+1}^*|S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right).$$
(21)

Under the new Assumptions 1' and 2', the joint distribution can be derived as follows:

$$\begin{aligned} &\Pr(S_{t+10}, S_{t+1}, S_t, S_{t-1}, S_{t-2} | \mathbf{X}) \\ &= \sum_{\substack{S_{t+10}, S_{t+1}^*, S_t^*}} \Pr\left(S_{t+10}, S_{t+10}^*, S_{t+1}, S_{t+1}, S_t, S_t^*, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+10}, S_{t+1}^*, S_t^*}} \Pr\left(S_{t+10} | S_{t+10}^*, S_{t+1}, S_{t+1}, S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ &\Pr\left(S_{t+10}^* | S_{t+1}, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^*, S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ &\Pr\left(S_{t+1}^* | S_t, S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+1}^*, S_t^*}} \left(\sum_{\substack{S_{t+10}}} \Pr\left(S_{t+10} | S_{t+10}^*, \mathbf{X}\right) \Pr\left(S_{t+10} | S_{t+10}^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2} | \mathbf{X}\right) \\ &\Pr\left(S_{t+1}^* | S_t, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ &\Pr\left(S_{t+1}^* | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1}^* | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ &\Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \times \\ &\Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t+1} | S_{t+1}^*, S_t, S_{t-1}, \mathbf{X}\right) \times \\ &\left(\sum_{\substack{S_{t+1}^*, S_t^*}} \Pr\left(S_{t+10} | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+1}^*, S_t^*}} \Pr\left(S_{t+10} | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \\ &= \sum_{\substack{S_{t+1}^*}} \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \\ \\ &= \sum_{\substack{S_{t+1}^*}} \Pr\left(S_{t+10} | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \\ \\ &= \sum_{\substack{S_{t+1}^*}} \Pr\left(S_t | S_t | S_t, S_{t-1}, \mathbf{X}\right) \Pr\left(S_t | S_t^*, S_{t-1}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right$$

This means that, given $S_t = s_t$ and $S_{t-1} = s_{t-1}$, we may apply the identification strategy in Hu (2008) to identify the unknown conditional distributions on the right-hand side of Equation (22).

The problem is that we cannot use Hu (2008) in the second step anymore, i.e.,

$$\Pr\left(S_{t+1}^{*}, S_{t}, S_{t-1}, S_{t-2} | \mathbf{X}\right)$$

$$= \sum_{S_{t}^{*}} \Pr\left(S_{t+1}^{*} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right) \Pr\left(S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right)$$

$$= \sum_{S_{t}^{*}} \Pr\left(S_{t+1}^{*}, S_{t}^{*}, S_{t-1}, S_{t-2} | \mathbf{X}\right) \Pr\left(S_{t} | S_{t}^{*}, S_{t-1}, S_{t-2}, \mathbf{X}\right), \qquad (23)$$

because the number of restrictions is smaller than that of unknowns. However, since the misclassification probabilities in period t + 1, i.e., $\Pr(S_{t+1}|S_{t+1}^*, S_t, S_{t-1}, \mathbf{X})$, have been identified from the first step, we may identify $\Pr(S_{t+1}^*, S_t, S_{t-1}, S_{t-2} | \mathbf{X})$ from Equation (23) if assuming stationarity on the misclassification probabilities, i.e.,

$$\Pr\left(S_t | S_t^*, S_{t-1}, S_{t-2}, \mathbf{X}\right) = \Pr\left(S_{t+1} | S_{t+1}^*, S_t, S_{t-1}, \mathbf{X}\right).$$
(24)

It is worth noting that, given the 4-8-4 rotating structure, this is the most general setting under which we can still show identification with the conditional independence assumption, and adding more lags will lose the identification arguments. However, since we now include one more lag in the conditional probabilities, there will be much more estimation burden if we control for as many observed characteristics as the baseline setting. Therefore, in this case we only control for dummy variables for business cycle and gender. Tables C1 and C2 show the results for the misclassification probabilities including one more lag of the reported status. Since in this setting we need to impose the stationarity restriction, the misclassification probabilities in periods t and t + 1 are almost the same. In Panels A-C, it is clearly shown that the misclassification probabilities are different when further conditional on one more lag of the reported status, meaning that the earlier reports may still have impacts on the current misreporting behavior. Nonetheless, the orderings of the columns of the misclassification probabilities after integrating out the extra lag, showing quite similar numbers and consistent patterns with our baseline results in Panel E, but in general they have larger standard errors. In the last row of Table 5 in the paper, we present the corrected transition probabilities under this setting, which also show more fluidity in labor force transition than the reported ones, confirming the robustness of our main results.

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
Panel A	A: $\Pr(S_t)$	$=i S_{t}^{*}=$	$j, S_{t-1} =$	$=k, S_{t-2}$	= E)				
i = E	99.2	81.7	70.4	67.9	21.4	26.3	59.2	31.3	14.4
	(0.04)	(1.01)	(0.62)	(2.62)	(3.77)	(2.86)	(1.08)	(3.06)	(0.69)
i = U	0.4	13.4	2.5	26.6	66.9	24.7	4.5	26.1	1.6
	(0.02)	(0.89)	(0.20)	(2.21)	(3.27)	(2.71)	(0.77)	(2.30)	(0.35)
i = N	0.4	4.9	27.1	5.5	11.8	49.1	36.3	42.5	84.0
	(0.03)	(0.38)	(0.64)	(0.88)	(1.27)	(2.77)	(0.78)	(2.57)	(0.83)
Panel H	$B: \Pr\left(S_t\right)$	$=i S_{t}^{*}=$	$j, S_{t-1} =$	$=k, S_{t-2}$	= U)				
i = E	88.4	62.9	71.7	40.2	2.4	6.8	42.1	3.1	3.8
	(0.84)	(4.66)	(5.45)	(0.89)	(0.53)	(0.59)	(1.92)	(1.22)	(0.60)
i = U	9.4	25.8	5.4	51.7	90.5	43.3	24.0	56.9	9.7
	(1.11)	(1.55)	(2.49)	(1.09)	(1.06)	(1.47)	(2.04)	(2.54)	(1.38)
i = N	2.2	11.4	22.9	8.2	7.1	49.9	33.9	40.0	86.5
	(0.69)	(4.53)	(3.35)	(0.50)	(0.97)	(1.37)	(1.82)	(2.31)	(1.51)
Panel C	C: $\Pr(S_t)$	$= i S_t^* =$	$j, S_{t-1} =$	$=k, S_{t-2}$	= N)				
i = E	86.9	72.8	45.5	45.3	10.3	3.7	30.9	7.7	0.6
	(0.61)	(3.75)	(1.00)	(2.90)	(3.28)	(1.29)	(0.74)	(1.29)	(0.02)
i = U	1.9	15.1	2.0	28.3	70.2	27.6	2.0	22.1	0.3
	(0.25)	(1.97)	(0.26)	(3.08)	(3.17)	(1.62)	(0.67)	(1.01)	(0.02)
i = N	11.2	12.0	52.5	26.4	19.5	68.8	67.1	70.3	99.1
	(0.54)	(2.74)	(1.07)	(1.86)	(1.97)	(1.51)	(0.49)	(0.93)	(0.03)
Panel I	D: Integra	ating out	S_{t-2} , Pi	$r(S_t = i I)$	$S_t^* = j, S$	$f_{t-1} = k)$			
i = E	99.0	79.6	66.8	48.4	8.0	8.3	40.8	9.8	1.2
	(0.04)	(1.08)	(0.64)	(0.88)	(1.33)	(0.83)	(1.02)	(1.06)	(0.04)
i = U	0.5	14.5	2.5	41.2	81.4	34.9	4.8	26.8	0.5
	(0.03)	(0.91)	(0.21)	(0.84)	(1.38)	(1.15)	(0.48)	(1.13)	(0.04)
i = N	0.6	5.9	30.7	10.5	10.7	56.8	54.4	63.4	98.4
	(0.03)	(0.50)	(0.66)	(0.62)	(0.72)	(1.15)	(0.87)	(0.88)	(0.06)
Panel B	E: Baseliı	ne results	s, $\Pr(S_t =$	$=i S_{t}^{*}=$	$j, S_{t-1} =$	= k)			
i = E	98.2	77.5	65.2	48.4	9.8	10.9	35.5	8.3	1.4
	(0.02)		(0.31)	(0.73)			(0.33)	(0.31)	(0.02)
i = U	0.6	15.3	3.6	40.6	74.8	41.8	5.4	32.5	0.9
	(0.01)	(0.60)	(0.12)	(0.67)	(0.34)	(0.46)	(0.21)	(0.59)	(0.02)
i = N	1.1	7.3	31.2	11.0	15.4	47.4	59.1	59.2	97.7
	(0.01)	(0.30)	(0.32)	(0.30)	(0.27)	(0.50)	(0.29)	(0.62)	(0.03)
									· · · ·

Table C1: Misclassification probabilities with more lags, $\Pr(S_t | S_t^*, S_{t-1}, S_{t-2})$

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
Panel A	A: $\Pr(S_t)$	$+1 = i S_t^*$	$f_{+1} = j, S_{i}$	$t = k, S_{t}$	-1 = E)				
i = E	99.2	81.7	70.4	67.9	$21.5^{'}$	26.2	59.3	31.1	14.4
	(0.04)	(1.01)	(0.62)	(2.56)	(3.71)	(2.85)	(1.06)	(3.03)	(0.68)
i = U	0.4	13.5	2.5	26.6	66.7	24.7	4.4	25.9	1.6
	(0.02)	(0.89)	(0.20)	(2.16)	(3.21)	(2.69)	(0.77)	(2.30)	(0.36)
i = N	0.4	4.8	27.1	5.5	11.8	49.0	36.2	43.0	84.0
	(0.03)	(0.39)	(0.64)	(0.87)	(1.27)	(2.78)	(0.77)	(2.59)	(0.83)
Panel I	B: $\Pr(S_t)$	$+1 = i S_t^*$	$j_{+1} = j, S_i$	$t = k, S_{t-1}$	-1 = U)				
i = E	88.4	62.9	71.6	40.1	2.4	6.8	42.1	3.1	3.8
	(0.84)	(4.64)	(5.51)	(0.89)	(0.53)	(0.59)	(1.91)	(1.23)	(0.61)
i = U	9.3	25.7		51.8	90.5	43.2	24.0	56.7	9.7
	(1.10)	(1.53)	(2.50)	(1.08)	(1.05)	(1.47)	(2.01)	(2.53)	(1.36)
i = N	2.2	11.3	22.9	8.1	7.1	50.0	33.9	40.2	86.5
	(0.70)	(4.55)	(3.39)	(0.49)	(0.95)	(1.36)	(1.79)	(2.30)	(1.50)
Panel ($\overline{C: \Pr\left(S_t\right)}$	$_{+1} = i S_t^*$	$j_{+1} = j, S_i$	$t = k, S_{t-1}$	-1 = N)				
i = E	87.Ò	72.7	45.5	45.4	$10.1^{'}$	3.7	31.0	7.7	0.6
	(0.59)	(3.76)	(0.98)	(2.93)	(3.26)	(1.29)	(0.73)	(1.28)	(0.02)
i = U	1.8	15.3	1.9	28.3	70.5	27.5	2.0	22.0	0.3
	(0.25)	(1.94)	(0.26)	(3.11)	(3.18)	(1.62)	(0.67)	(1.01)	(0.02)
i = N	11.2	12.0	52.5	26.3	19.4	68.9	67.0	70.3	99.1
	(0.54)	(2.76)	(1.04)	(1.86)	(1.98)	(1.50)	(0.49)	(0.92)	(0.03)
Panel I	D: Integra	ating out	$S_{t-1}, \operatorname{Pr}$	$\cdot (S_{t+1} =$	$i S_{t+1}^* =$	$j, S_t = k$;)		
i = E	98.9	79.9	66.4	48.3	7.8	7.9	39.7	9.7	1.0
	(0.04)	(1.06)	(0.67)	(0.89)	(1.26)	(0.78)	(0.89)	(1.04)	(0.03)
i = U	0.5	14.3	2.6	40.8	81.7	34.9	4.3	26.6	0.4
	(0.02)	(0.89)	(0.21)	(0.84)	(1.33)	(1.13)	(0.47)	(1.11)	(0.03)
i = N	0.6	5.7	31.0	10.9	10.5	57.2	56.0	63.7	98.6
	(0.03)	(0.45)	(0.66)	(0.63)	(0.72)	(1.10)	(0.68)	(0.87)	(0.04)
Panel I	E: Baselir	ne results	s, $\Pr\left(S_{t+}\right)$	$_{1}=i S_{\star\perp}^{*}$	$j_1 = j, S_t$	=k)			
i = E	98.8	73.3	55.7	58.6	8.0	9.4	45.9	7.8	0.9
	(0.02)	(0.45)	(0.28)	(0.46)	(0.41)	(0.31)	(0.26)	(0.35)	(0.01)
i = U	0.4	19.7	2.4	32.5	79.8	26.4	4.7	39.2	0.5
						(0.17)	(0, 1, 4)		(0, 01)
	(0.01)	(0.34)	(0.09)	(0.42)	(0.52)	(0.45)	(0.14)	(0.43)	(0.01)
i = N	$(0.01) \\ 0.7$	$(0.34) \\ 7.0$	$(0.09) \\ 41.9$	$(0.42) \\ 8.9$	(0.52) 12.2	$(0.45) \\ 64.2$	(0.14) 49.4	(0.43) 53.0	(0.01) 98.6

Table C2: Misclassification probabilities with more lags, $\Pr\left(S_{t+1}|S_{t+1}^*, S_t, S_{t-1}\right)$

D Monte Carlo Simulations

D.1 Consistencies under the generalized and the restrictive DGPs

In this subsection, we perform Monte Carlo simulations to show the consistencies of our estimators under a generalized data generating process (DGP) which satisfies all the maintained assumptions, and a restrictive DGP which imposes strong assumptions.

Case 1 In a generalized case, we let the DGP satisfy the assumptions proposed in this paper. That is, both the misclassification process and the dynamics of underlying true labor force status can be influenced by the previous reported status. Besides, the the misclassification process is nonstationary.

Case 2 In a more restrictive case, we let the DGP satisfy the assumptions widely-used in previous methods, where the misclassification process satisfies the Independent Classification Errors (ICE) assumption and is stationary across periods, and the latent labor force status follows the first-order Markov process.

For each case, we show three estimators. The first one is directly calculated from mismeasured data, which ignores the misclassification errors. The second one is based on the restrictive method with strong assumptions imposed, i.e., the ICE assumption, the stationarity assumption, and the first-order Markov assumption. The third one is based on our proposed method. For each estimator, we report the Root Mean Squared Error (RMSE), the average bias, and the mean and the standard deviation of the estimates over the replications.

Table D1 presents the simulation results for Case 1. The reported transition probabilities are all significantly biased, and the restrictive method produces even larger biases because it correct for bias in a restrictive way. On the contrary, our method substantially reduces biases, although the standard deviations of the estimates are much larger. Overall, in terms of the MSEs, our estimators perform much better than the restrictive ones. For Case 2 where the DGP satisfies the strong assumptions, Table D2 shows that both our proposed method and the restrictive one perform well in correcting for biases in the transition probabilities. As expected, in this case, the MSEs of our estimators are in general slightly larger than the restrictive ones.

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$									
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)		
True	92.0	4.1	3.9	36.0	39.2	24.8	6.1	4.8	89.1		
Reported											
Mean	94.9	2.0	3.1	25.9	49.1	25.0	4.9	3.5	91.7		
Bias	2.9	-2.2	-0.8	-10.1	9.9	0.2	-1.2	-1.3	2.5		
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1		
RMSE	2.9	2.2	0.8	10.1	9.9	0.5	1.3	1.3	2.5		
Corrected-	Restricti	ve									
Mean	97.7	1.3	1.0	16.4	73.3	10.3	1.3	1.9	96.8		
Bias	5.8	-2.8	-3.0	-19.6	34.2	-14.5	-4.8	-2.9	7.7		
SD	0.1	0.1	0.1	0.6	0.8	0.7	0.1	0.1	0.1		
RMSE	5.8	2.8	3.0	19.7	34.2	14.6	4.8	2.9	7.7		
Corrected											
Mean	92.2	4.0	3.9	36.4	38.3	25.2	6.1	4.8	89.1		
Bias	0.2	-0.2	-0.0	0.4	-0.8	0.4	0.0	0.0	-0.0		
SD	1.1	0.8	0.7	6.9	5.5	4.8	1.3	1.1	2.0		
RMSE	1.1	0.8	0.7	6.9	5.6	4.8	1.3	1.1	2.0		

Table D1: Simulation results of transition probabilities, Case 1

				$\Pr(\mathscr{S})$	$\mathcal{V}_{t+1} = i \mathcal{S}$	$\mathcal{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	98.0	1.0	1.0	10.0	85.0	5.0	1.5	0.5	98.0
Reported									
Mean	93.8	2.3	3.9	31.4	44.0	24.6	6.7	3.1	90.2
Bias	-4.2	1.3	2.9	21.4	-41.0	19.6	5.2	2.6	-7.8
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1
RMSE	4.2	1.3	2.9	21.4	41.0	19.6	5.2	2.6	7.8
Corrected-	Restricti	ve							
Mean	98.0	1.0	1.0	10.0	85.0	5.0	1.5	0.5	98.0
Bias	-0.0	0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0
SD	0.1	0.1	0.1	0.8	1.2	0.8	0.1	0.1	0.1
RMSE	0.1	0.1	0.1	0.8	1.2	0.8	0.1	0.1	0.1
Corrected									
Mean	98.0	1.0	1.0	10.1	84.9	5.0	1.5	0.5	98.0
Bias	0.0	0.0	-0.0	0.1	-0.1	-0.0	0.0	-0.0	-0.0
SD	0.1	0.1	0.1	1.2	1.5	0.8	0.1	0.1	0.1
RMSE	0.1	0.1	0.1	1.2	1.5	0.8	0.1	0.1	0.1

Table D2: Simulation results of transition probabilities, Case 2

D.2 Checking the robustness of Assumption 1

In this subsection, we perform simulations to evaluate the robustness of our proposed estimators when Assumption 1 deviates as follows.

Case 3 The misclassification probabilities depend on not only the previous reported status S_{t-1} , but also the previous true status S_{t-1}^* . That is,

$$\Pr\left(S_t | S_t^*, \{S_\tau, S_\tau^*\}_{\tau \le t-1}, \mathbf{X}\right) = \Pr\left(S_t | S_t^*, S_{t-1}, S_{t-1}^*, \mathbf{X}\right) \\ \neq \Pr\left(S_t | S_t^*, S_{t-1}, \mathbf{X}\right).$$

In matrix notation, we let

$$M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*} = \begin{bmatrix} M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*=1} & M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*=2} & M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*=3} \end{bmatrix}.$$

There are so many ways of deviating from $M_{S_t|S_t^*,S_{t-1}}$ to $M_{S_t|S_t^*,S_{t-1},S_{t-1}^*}$ that we cannot show all the cases. In our simulation, the misclassification probabilities matrix $M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*=l}$ is generated by letting the entries in $M_{S_t|S_t^*,S_{t-1}=k}$ deviate according to the confidence intervals in the baseline setting. For each $S_{t-1} = k$, let the original

$$M_{S_t|S_t^*,S_{t-1}=k} = \begin{bmatrix} m_{1|1,k} & m_{1|2,k} & m_{1|3,k} \\ m_{2|1,k} & m_{2|2,k} & m_{2|3,k} \\ m_{3|1,k} & m_{3|2,k} & m_{3|3,k} \end{bmatrix}$$

and $[\underline{m}_{i|j,k}, \overline{m}_{i|j,k}]$ be the corresponding 95% confidence interval of the entry $m_{i|j,k}$. Define

$$\underline{M}_{S_t|S_t^*,S_{t-1}=k} = \begin{bmatrix} 1 - \underline{m}_{2|1,k} - \underline{m}_{3|1,k} & \underline{m}_{1|2,k} & \underline{m}_{1|3,k} \\ \underline{m}_{2|1,k} & 1 - \underline{m}_{1|2,k} - \underline{m}_{3|2,k} & \underline{m}_{2|3,k} \\ \underline{m}_{3|1,k} & \underline{m}_{3|2,k} & 1 - \underline{m}_{1|3,k} - \underline{m}_{2|3,k} \end{bmatrix}$$

$$\overline{M}_{S_t|S_t^*,S_{t-1}=k} = \begin{bmatrix} 1 - \overline{m}_{2|1,k} - \overline{m}_{3|1,k} & \overline{m}_{1|2,k} & \overline{m}_{1|3,k} \\ \overline{m}_{2|1,k} & 1 - \overline{m}_{1|2,k} - \overline{m}_{3|2,k} & \overline{m}_{2|3,k} \\ \overline{m}_{3|1,k} & \overline{m}_{3|2,k} & 1 - \overline{m}_{1|3,k} - \overline{m}_{2|3,k} \end{bmatrix}$$

which are the two deviated misclassification probabilities matrices generated by allowing the off-diagonal entries to deviate to the upper and the lower bounds of their 95% confidence intervals, respectively. In general, we consider the following deviation:

$$M_{S_t|S_t^*,S_{t-1}=k,S_{t-1}^*=l} = (1-\lambda_{k,l})\underline{M_{S_t|S_t^*,S_{t-1}=k}} + \lambda_{k,l}M_{S_t|S_t^*,S_{t-1}=k},$$

with the degree of deviation determined by $\Lambda = \{\lambda_{1,1}, \lambda_{1,2}, \lambda_{1,3}, \lambda_{2,1}, \lambda_{2,2}, \lambda_{2,3}, \lambda_{3,1}, \lambda_{3,2}, \lambda_{3,3}\}$. In our analysis, we choose two sets of possible values for $\lambda_{k,l}$, i.e., $\{0, 0.5, 1\}$ and $\{-0.5, 0.5, 1.5\}$, with the latter allowing for slightly more deviations. Tables D3–D10 show that, even when Assumption 1 is violated to some extent, the results based on our proposed method are still acceptable. Additionally, our proposed estimators consistently outperform the restrictive ones.

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	92.0	4.1	4.0	36.5	38.6	24.9	6.2	4.8	89.0			
Reported												
Mean	94.7	2.1	3.2	25.9	48.7	25.4	5.0	3.5	91.5			
Bias	2.7	-2.0	-0.7	-10.6	10.1	0.5	-1.3	-1.2	2.5			
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1			
RMSE	2.7	2.0	0.7	10.6	10.1	0.7	1.3	1.2	2.5			
Corrected-	Restricti	ve										
Mean	97.6	1.4	1.0	14.6	73.4	12.0	1.3	2.1	96.6			
Bias	5.7	-2.6	-3.0	-21.9	34.9	-13.0	-4.9	-2.7	7.6			
SD	0.1	0.1	0.1	0.7	1.0	0.7	0.1	0.1	0.1			
RMSE	5.7	2.6	3.0	21.9	34.9	13.0	4.9	2.7	7.6			
Corrected												
Mean	92.6	3.4	4.0	36.8	39.5	23.7	5.8	3.6	90.6			
Bias	0.6	-0.7	0.1	0.3	1.0	-1.2	-0.4	-1.2	1.6			
SD	1.3	0.9	0.7	6.0	5.3	4.9	1.0	1.3	1.8			
RMSE	1.4	1.2	0.7	6.0	5.4	5.1	1.1	1.7	2.4			

Table D3: Simulation results of transition probabilities, Case 3 with $\Lambda = \{0.5, 1, 0.5, 0, 0.5, 0, 0.5, 1, 0\}$

		$\Pr\left(\mathscr{S}_{t+1}=i \mathscr{S}_t=j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	92.2	4.0	3.9	37.3	37.9	24.8	6.3	4.7	89.0			
Reported												
Mean	94.9	2.0	3.1	26.3	47.4	26.3	4.9	3.4	91.7			
Bias	2.7	-1.9	-0.7	-10.9	9.5	1.5	-1.4	-1.3	2.6			
SD	0.1	0.0	0.1	0.5	0.6	0.5	0.1	0.1	0.1			
RMSE	2.7	1.9	0.8	11.0	9.5	1.5	1.4	1.3	2.6			
Corrected-	Restricti	ve										
Mean	97.7	1.4	0.9	12.8	77.4	9.8	1.3	2.0	96.7			
Bias	5.6	-2.6	-2.9	-24.5	39.5	-15.0	-5.0	-2.7	7.7			
SD	0.1	0.1	0.1	0.7	1.0	0.8	0.1	0.1	0.1			
RMSE	5.6	2.6	2.9	24.5	39.5	15.0	5.0	2.7	7.7			
Corrected												
Mean	90.5	5.0	4.5	36.2	38.0	25.9	5.6	3.9	90.5			
Bias	-1.7	1.0	0.7	-1.1	0.1	1.0	-0.6	-0.8	1.4			
SD	1.1	0.7	0.7	5.8	5.4	4.9	1.0	0.8	1.4			
RMSE	2.0	1.2	1.0	5.9	5.4	5.0	1.2	1.1	2.0			

Table D4: Simulation results of transition probabilities, Case 3 with $\Lambda = \{1, 0.5, 0, 1, 0, 0.5, 1, 0.5, 0\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	92.1	4.0	3.9	37.1	38.0	24.9	6.0	4.6	89.4			
Reported												
Mean	94.8	2.0	3.2	28.4	46.9	24.7	4.6	3.5	91.8			
Bias	2.7	-2.0	-0.8	-8.6	8.9	-0.2	-1.4	-1.1	2.5			
SD	0.1	0.0	0.1	0.5	0.6	0.5	0.1	0.1	0.1			
RMSE	2.7	2.0	0.8	8.7	8.9	0.6	1.4	1.1	2.5			
Corrected	Restricti	ve										
Mean	97.6	1.3	1.0	13.6	81.6	4.8	1.4	1.8	96.9			
Bias	5.6	-2.7	-2.9	-23.5	43.6	-20.1	-4.7	-2.8	7.5			
SD	0.1	0.1	0.1	0.8	1.2	1.0	0.1	0.1	0.1			
RMSE	5.6	2.7	2.9	23.5	43.6	20.1	4.7	2.8	7.5			
Corrected												
Mean	93.1	2.7	4.2	36.6	42.5	20.9	7.5	5.1	87.4			
Bias	1.1	-1.3	0.2	-0.5	4.5	-4.0	1.4	0.6	-2.0			
SD	1.2	1.0	0.6	12.3	11.2	5.8	2.2	1.0	2.7			
RMSE	1.6	1.7	0.7	12.3	12.1	7.1	2.6	1.2	3.4			

Table D5: Simulation results of transition probabilities, Case 3 with $\Lambda = \{0, 1, 0, 1, 0.5, 1, 0, 0.5, 1\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	92.0	4.0	4.0	37.8	37.1	25.1	6.5	4.7	88.8			
Reported												
Mean	94.5	2.1	3.4	27.8	46.2	26.0	5.2	3.5	91.3			
Bias	2.5	-1.9	-0.6	-10.0	9.1	0.9	-1.3	-1.2	2.5			
SD	0.1	0.0	0.1	0.5	0.6	0.5	0.1	0.1	0.1			
RMSE	2.5	1.9	0.6	10.0	9.1	1.1	1.3	1.2	2.5			
Corrected-	Restricti	ve										
Mean	97.6	1.4	1.0	14.2	75.6	10.2	1.4	2.0	96.6			
Bias	5.6	-2.6	-3.0	-23.6	38.5	-14.9	-5.1	-2.6	7.8			
SD	0.1	0.1	0.1	0.8	1.0	0.8	0.1	0.1	0.1			
RMSE	5.6	2.6	3.0	23.6	38.5	14.9	5.1	2.6	7.8			
Corrected												
Mean	92.6	3.4	4.0	35.1	42.3	22.6	6.4	4.4	89.2			
Bias	0.6	-0.6	0.0	-2.7	5.2	-2.5	-0.1	-0.2	0.3			
SD	1.1	0.9	0.6	7.5	6.4	5.3	1.5	1.2	2.2			
RMSE	1.3	1.1	0.6	8.0	8.2	5.9	1.5	1.2	2.3			

Table D6: Simulation results of transition probabilities, Case 3 with $\Lambda = \{0, 1, 0, 0.5, 0, 0.5, 1, 0.5, 0\}$

				$\Pr(\mathscr{S}$	$y_{t+1} = i \mathcal{L}$	$\mathscr{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	92.1	4.0	4.0	36.2	38.1	25.7	6.1	4.8	89.2
Reported									
Mean	95.1	1.9	3.0	24.7	45.6	29.7	4.9	3.8	91.3
Bias	3.0	-2.1	-1.0	-11.5	7.6	4.0	-1.1	-1.0	2.1
SD	0.1	0.0	0.0	0.5	0.6	0.6	0.1	0.1	0.1
RMSE	3.0	2.1	1.0	11.6	7.6	4.0	1.1	1.0	2.1
Corrected-	Restricti	ve							
Mean	97.9	1.2	0.9	11.5	84.6	3.9	1.4	1.4	97.3
Bias	5.9	-2.8	-3.1	-24.7	46.6	-21.8	-4.7	-3.4	8.1
SD	0.1	0.1	0.1	0.8	1.2	0.9	0.1	0.1	0.1
RMSE	5.9	2.8	3.1	24.7	46.6	21.8	4.7	3.4	8.1
Corrected									
Mean	89.1	5.3	5.6	29.6	48.5	21.8	6.9	2.6	90.5
Bias	-2.9	1.3	1.6	-6.6	10.5	-3.9	0.8	-2.1	1.3
SD	1.2	0.7	0.9	4.8	6.5	6.4	0.8	0.5	0.9
RMSE	3.2	1.5	1.8	8.1	12.3	7.5	1.2	2.2	1.6

Table D7: Simulation results of transition probabilities, Case 3 with $\Lambda = \{1.5, -0.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, -0.5\}$

				$\Pr\left(\mathscr{S}\right)$	$\mathcal{V}_{t+1} = i \mathcal{Q}$	$\mathscr{S}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	92.1	3.9	4.0	37.2	37.1	25.7	6.3	4.7	89.0
Reported									
Mean	95.0	1.8	3.1	25.6	46.5	27.9	5.2	3.6	91.2
Bias	2.9	-2.1	-0.8	-11.6	9.4	2.2	-1.1	-1.1	2.2
SD	0.1	0.0	0.0	0.5	0.6	0.5	0.1	0.1	0.1
RMSE	2.9	2.1	0.8	11.6	9.4	2.2	1.1	1.1	2.2
Corrected-	Restricti	ve							
Mean	97.8	1.4	0.8	15.6	77.6	6.8	1.2	1.8	97.0
Bias	5.7	-2.6	-3.2	-21.6	40.5	-18.9	-5.0	-2.9	8.0
SD	0.1	0.1	0.1	0.8	1.1	0.9	0.1	0.1	0.1
RMSE	5.7	2.6	3.2	21.6	40.5	18.9	5.0	2.9	8.0
Corrected									
Mean	88.9	5.5	5.5	38.2	37.1	24.7	5.7	3.3	91.0
Bias	-3.2	1.6	1.6	1.0	-0.1	-1.0	-0.6	-1.4	2.1
SD	1.2	0.9	0.7	6.4	7.5	5.0	1.2	0.8	1.5
RMSE	3.4	1.8	1.7	6.5	7.5	5.0	1.3	1.6	2.6

Table D8: Simulation results of transition probabilities, Case 3 with $\Lambda = \{1.5, -0.5, 0.5, 1.5, -0.5, 0.5, 1.5, 0.5, -0.5\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$									
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)		
True	91.9	4.2	3.8	34.3	40.8	24.9	5.5	4.7	89.8		
Reported											
Mean	95.4	1.9	2.7	24.2	51.1	24.7	4.1	3.5	92.3		
Bias	3.5	-2.3	-1.2	-10.1	10.3	-0.2	-1.3	-1.2	2.5		
SD	0.1	0.0	0.0	0.5	0.5	0.5	0.1	0.1	0.1		
RMSE	3.5	2.3	1.2	10.1	10.3	0.5	1.3	1.2	2.5		
Corrected-	Restricti	ve									
Mean	97.9	1.4	0.7	13.9	78.6	7.6	1.0	1.9	97.2		
Bias	6.0	-2.9	-3.1	-20.5	37.7	-17.3	-4.5	-2.8	7.3		
SD	0.1	0.1	0.1	0.6	0.9	0.7	0.1	0.1	0.1		
RMSE	6.0	2.9	3.1	20.5	37.7	17.3	4.5	2.9	7.3		
Corrected											
Mean	92.4	4.2	3.4	40.7	32.3	27.0	4.9	4.9	90.3		
Bias	0.5	-0.1	-0.4	6.4	-8.5	2.2	-0.6	0.2	0.4		
SD	1.2	0.8	0.6	4.7	4.3	3.4	0.9	1.1	1.7		
RMSE	1.3	0.8	0.7	7.9	9.6	4.0	1.1	1.1	1.7		

Table D9: Simulation results of transition probabilities, Case 3 with $\Lambda = \{1.5, -0.5, 0.5, -0.5, 0.5, 1.5, -0.5, 0.5, 1.5\}$

Note: Number of repetitions is 500, and the sample size for each repetition is 200,000. The "Reported" numbers are directly calculated from the mismeasured data. The "Corrected-Restrictive" ones are produced using the method with restrictive assumptions imposed. The "Corrected" ones are produced using the proposed method in this paper.

				$\Pr\left(\mathscr{S}\right)$	$v_{t+1} = i \mathcal{S}$	$\mathscr{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	92.0	4.1	3.8	38.5	37.2	24.3	6.4	4.6	89.0
Reported									
Mean	94.6	1.9	3.4	32.9	45.2	21.8	4.9	3.0	92.1
Bias	2.6	-2.2	-0.4	-5.5	8.0	-2.5	-1.5	-1.6	3.1
SD	0.1	0.0	0.1	0.5	0.6	0.5	0.1	0.1	0.1
RMSE	2.6	2.2	0.4	5.6	8.0	2.5	1.5	1.6	3.1
Corrected-	Restricti	ve							
Mean	98.0	0.9	1.1	13.0	74.2	12.9	1.1	2.4	96.5
Bias	6.0	-3.2	-2.7	-25.5	37.0	-11.5	-5.3	-2.2	7.5
SD	0.1	0.1	0.1	0.8	1.1	0.9	0.1	0.1	0.1
RMSE	6.0	3.2	2.7	25.5	37.0	11.5	5.3	2.2	7.5
Corrected									
Mean	92.5	3.6	3.9	34.5	36.7	28.8	4.5	5.0	90.5
Bias	0.5	-0.5	0.1	-4.0	-0.5	4.4	-1.9	0.5	1.5
SD	1.2	0.9	0.7	6.1	5.3	5.6	2.0	1.7	3.1
RMSE	1.3	1.1	0.7	7.3	5.3	7.1	2.8	1.7	3.4

Table D10: Simulation results of transition probabilities, Case 3 with $\Lambda = \{-0.5, 0.5, -0.5, 1.5, -0.5, 0.5, 1.5, -0.5, 1.5, -0.5, 1.5\}$

D.3 Checking the robustness of Assumption 2

In this subsection, we perform simulations to evaluate the robustness of our proposed estimators when Assumption 2 deviates as follows.

Case 4 Conditional on the reported status in period t - 1, the true status in period t - 1 may also affect the dynamics of underlying true labor force status across periods t and t + q. That is,

$$\Pr\left(S_{t+p}^{*}|\{S_{\tau}, S_{\tau}^{*}\}_{\tau \leq t}, \mathbf{X}\right) = \Pr\left(S_{t+p}^{*}|S_{t}^{*}, S_{t-1}, S_{t-1}^{*}, \mathbf{X}\right)$$

$$\neq \Pr\left(S_{t+p}^{*}|S_{t}^{*}, S_{t-1}, \mathbf{X}\right).$$

To do this type of deviation, our strategy is similar to Case 3. Let the original

$$M_{S_{t+p}^*|S_t^*,S_{t-1}} = \begin{bmatrix} m_{1|1,k} & m_{1|2,k} & m_{1|3,k} \\ m_{2|1,k} & m_{2|2,k} & m_{2|3,k} \\ m_{3|1,k} & m_{3|2,k} & m_{3|3,k} \end{bmatrix},$$

and $\left[\underline{m}_{i|j,k}, \overline{m}_{i|j,k}\right]$ be the corresponding 95% confidence interval of the entry $m_{i|j,k}$. Define

$$\underbrace{M_{S_{t+p}^*|S_t^*,S_{t-1}=k}}_{M_{S_{t+p}^*|S_t^*,S_{t-1}=k}} = \begin{bmatrix} 1 - \underline{m}_{2|1,k} - \underline{m}_{3|1,k} & \underline{m}_{1|2,k} & \underline{m}_{1|3} \\ \underline{m}_{2|1,k} & 1 - \underline{m}_{1|2,k} - \underline{m}_{3|2,k} & \underline{m}_{2|3,k} \\ \underline{m}_{3|1,k} & \underline{m}_{3|2,k} & 1 - \underline{m}_{1|3,k} - \underline{m}_{2|3,k} \end{bmatrix}, \\
\overline{M_{S_{t+p}^*|S_t^*,S_{t-1}=k}} = \begin{bmatrix} 1 - \overline{m}_{2|1,k} - \overline{m}_{3|1,k} & \overline{m}_{1|2,k} & \overline{m}_{1|3,k} \\ \overline{m}_{2|1,k} & 1 - \overline{m}_{1|2,k} - \overline{m}_{3|2,k} & \overline{m}_{2|3,k} \\ \overline{m}_{3|1,k} & \overline{m}_{3|2,k} & 1 - \overline{m}_{1|3,k} - \overline{m}_{2|3,k} \end{bmatrix},$$

which are the two deviated transition probabilities matrix generated by allowing the off-diagonal entries to deviate to the upper and lower bounds of their 95% confidence intervals, respectively. We consider the following deviation:

$$M_{S_{t+p}^*|S_t^*,S_{t-1}=k,S_{t-1}^*} = \begin{bmatrix} M_{S_{t+p}^*|S_t^*,S_{t-1}=k,S_{t-1}^*=1} & M_{S_{t+p}^*|S_t^*,S_{t-1}=k,S_{t-1}^*=2} & M_{S_{t+p}^*|S_t^*,S_{t-1}=k,S_{t-1}^*=3} \end{bmatrix},$$

where

$$M_{S_{t+p}^*|S_t^*,S_{t-1}=k,S_{t-1}^*=l} = (1-\lambda_{k,l})\underline{M_{S_{t+p}^*|S_t^*,S_{t-1}=k}} + \lambda_{k,l}\overline{M_{S_{t+p}^*|S_t^*,S_{t-1}=k}}$$

The degree of deviation is determined by $\Lambda = \{\lambda_{1,1}, \lambda_{1,2}, \lambda_{1,3}, \lambda_{2,1}, \lambda_{2,2}, \lambda_{2,3}, \lambda_{3,1}, \lambda_{3,2}, \lambda_{3,3}\}$. In our analysis, we still choose two sets of possible values for $\lambda_{k,l}$, i.e., $\{0, 0.5, 1\}$ and $\{-0.5, 0.5, 1.5\}$, with the latter allowing for slightly more deviations. Tables D11–D18 show that, even when Assumption 2 is violated to some extent, the results based on our proposed method are still acceptable. Additionally, our proposed estimators consistently outperform the restrictive ones.

				$\Pr\left(\mathscr{S}\right)$	$y_{t+1} = i \mathcal{L}$	$\mathscr{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	91.7	4.2	4.1	35.4	38.5	26.1	6.7	5.4	87.9
Reported									
Mean	94.8	2.0	3.2	26.1	48.6	25.3	5.1	3.7	91.3
Bias	3.1	-2.2	-0.9	-9.3	10.1	-0.8	-1.6	-1.7	3.3
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1
RMSE	3.1	2.2	0.9	9.3	10.1	0.9	1.6	1.7	3.3
Corrected-	Restricti	ve							
Mean	97.6	1.4	1.0	16.8	73.6	9.6	1.5	2.0	96.6
Bias	5.9	-2.8	-3.1	-18.6	35.1	-16.5	-5.2	-3.4	8.6
SD	0.1	0.1	0.1	0.6	0.9	0.8	0.1	0.1	0.1
RMSE	5.9	2.8	3.1	18.6	35.1	16.5	5.2	3.4	8.6
Corrected									
Mean	91.6	4.3	4.1	37.5	36.7	25.8	6.7	5.0	88.3
Bias	-0.1	0.1	0.0	2.1	-1.8	-0.3	0.0	-0.4	0.3
SD	1.4	1.1	0.8	6.1	5.2	5.4	1.1	1.2	2.0
RMSE	1.4	1.1	0.8	6.4	5.5	5.4	1.1	1.3	2.0

Table D11: Simulation results of transition probabilities, Case 4 with $\Lambda = \{0.5, 1, 0.5, 0, 0.5, 0, 0.5, 1, 0\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	93.4	3.1	3.6	35.8	37.1	27.1	6.6	5.6	87.9			
Reported												
Mean	95.4	1.8	2.8	27.2	47.8	25.0	5.1	3.6	91.3			
Bias	2.0	-1.3	-0.7	-8.6	10.7	-2.1	-1.4	-2.0	3.4			
SD	0.1	0.0	0.0	0.5	0.5	0.5	0.1	0.1	0.1			
RMSE	2.0	1.3	0.7	8.6	10.7	2.1	1.4	2.0	3.4			
Corrected-	Restricti	ve										
Mean	98.2	1.1	0.7	18.5	72.7	8.8	1.5	1.9	96.6			
Bias	4.8	-1.9	-2.9	-17.3	35.6	-18.3	-5.0	-3.7	8.7			
SD	0.1	0.1	0.1	0.6	0.9	0.7	0.1	0.1	0.1			
RMSE	4.8	1.9	2.9	17.3	35.6	18.3	5.0	3.7	8.7			
Corrected												
Mean	93.9	2.5	3.6	30.5	40.6	28.9	5.3	5.2	89.5			
Bias	0.5	-0.5	0.0	-5.3	3.5	1.8	-1.2	-0.4	1.6			
SD	1.1	0.6	0.7	5.2	6.0	5.6	1.0	1.3	1.9			
RMSE	1.2	0.8	0.7	7.4	6.9	5.9	1.6	1.4	2.5			

Table D12: Simulation results of transition probabilities, Case 4 with $\Lambda = \{1, 0.5, 0, 1, 0, 0.5, 1, 0.5, 0\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$											
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)				
True	90.9	4.9	4.2	40.5	33.4	26.2	6.0	4.1	89.9				
Reported													
Mean	94.7	2.0	3.3	26.8	48.2	25.0	4.6	3.2	92.1				
Bias	3.8	-2.9	-0.9	-13.7	14.8	-1.2	-1.4	-0.8	2.2				
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1				
RMSE	3.8	2.9	0.9	13.7	14.8	1.3	1.4	0.8	2.2				
Corrected-	Restricti	ve											
Mean	97.6	1.3	1.1	17.4	71.6	11.0	1.0	1.6	97.4				
Bias	6.7	-3.6	-3.1	-23.1	38.2	-15.2	-5.0	-2.5	7.4				
SD	0.1	0.1	0.1	0.6	0.8	0.7	0.1	0.1	0.1				
RMSE	6.7	3.6	3.1	23.1	38.2	15.2	5.0	2.5	7.4				
Corrected													
Mean	92.4	3.7	3.9	39.8	33.0	27.2	6.4	4.7	88.9				
Bias	1.5	-1.2	-0.3	-0.7	-0.4	1.1	0.5	0.6	-1.1				
SD	1.1	0.8	0.7	8.2	6.5	6.0	1.7	1.0	2.2				
RMSE	1.9	1.4	0.8	8.2	6.5	6.1	1.8	1.1	2.4				

Table D13: Simulation results of transition probabilities, Case 4 with $\Lambda = \{0, 1, 0, 1, 0.5, 1, 0, 0.5, 1\}$

				$\Pr\left(\mathscr{S}\right)$	$\mathcal{O}_{t+1} = i \mathcal{O}_{t+1} $	$\mathscr{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	90.1	5.3	4.6	44.9	24.1	31.0	7.3	6.0	86.6
Reported									
Mean	94.6	2.0	3.4	27.6	46.9	25.5	5.3	3.7	91.0
Bias	4.5	-3.3	-1.2	-17.3	22.7	-5.4	-2.0	-2.4	4.4
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1
RMSE	4.5	3.3	1.2	17.3	22.7	5.5	2.0	2.4	4.4
Corrected-	Restricti	ve							
Mean	97.6	1.3	1.1	17.2	73.6	9.2	1.5	1.9	96.5
Bias	7.5	-4.0	-3.5	-27.7	49.5	-21.8	-5.8	-4.1	9.9
SD	0.1	0.1	0.1	0.6	0.9	0.7	0.1	0.1	0.1
RMSE	7.5	4.0	3.5	27.7	49.5	21.8	5.8	4.1	9.9
Corrected									
Mean	91.1	4.5	4.4	42.1	26.1	31.8	6.7	6.0	87.3
Bias	1.0	-0.8	-0.2	-2.8	1.9	0.8	-0.7	-0.0	0.7
SD	1.3	0.9	0.9	7.7	5.9	5.9	1.7	1.4	2.5
RMSE	1.7	1.2	0.9	8.2	6.2	5.9	1.9	1.4	2.6

Table D14: Simulation results of transition probabilities, Case 4 with $\Lambda = \{0, 1, 0, 0.5, 0, 0.5, 1, 0.5, 0\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$										
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)			
True	95.1	1.9	3.0	37.4	33.0	29.6	6.1	5.2	88.8			
Reported												
Mean	95.7	1.5	2.8	27.0	46.8	26.2	5.1	3.6	91.3			
Bias	0.7	-0.5	-0.2	-10.4	13.7	-3.3	-1.0	-1.6	2.5			
SD	0.1	0.0	0.0	0.5	0.5	0.5	0.1	0.1	0.1			
RMSE	0.7	0.5	0.2	10.4	13.8	3.4	1.0	1.6	2.5			
Corrected-	Restricti	ve										
Mean	98.6	0.7	0.7	18.3	68.7	12.9	1.6	2.1	96.2			
Bias	3.5	-1.3	-2.2	-19.1	35.7	-16.6	-4.4	-3.0	7.5			
SD	0.1	0.1	0.1	0.6	0.8	0.7	0.1	0.1	0.1			
RMSE	3.5	1.3	2.2	19.1	35.7	16.7	4.4	3.0	7.5			
Corrected												
Mean	94.7	2.1	3.2	25.9	44.1	30.0	5.1	4.9	90.0			
Bias	-0.3	0.1	0.2	-11.5	11.1	0.4	-0.9	-0.3	1.3			
SD	1.0	0.4	0.7	3.6	5.6	5.5	0.8	0.8	1.2			
RMSE	1.0	0.5	0.8	12.1	12.4	5.5	1.2	0.9	1.7			

Table D15: Simulation results of transition probabilities, Case 4 with $\Lambda = \{1.5, -0.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, -0.5\}$

				$\Pr\left(\mathscr{S}\right)$	$\mathcal{O}_{t+1} = i \mathcal{O}_{t+1} $	$\mathscr{S}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	94.3	2.4	3.3	41.0	26.3	32.7	6.7	6.1	87.2
Reported									
Mean	95.7	1.5	2.8	28.2	46.0	25.8	5.4	3.7	90.9
Bias	1.3	-0.9	-0.5	-12.8	19.8	-6.9	-1.3	-2.4	3.7
SD	0.1	0.0	0.0	0.5	0.5	0.5	0.1	0.1	0.1
RMSE	1.3	0.9	0.5	12.9	19.8	6.9	1.3	2.4	3.7
Corrected-	Restricti	ve							
Mean	98.5	0.7	0.7	19.0	71.6	9.5	1.8	2.1	96.2
Bias	4.2	-1.7	-2.5	-22.0	45.3	-23.3	-4.9	-4.0	9.0
SD	0.1	0.1	0.1	0.6	0.9	0.7	0.1	0.1	0.1
RMSE	4.2	1.7	2.5	22.0	45.3	23.3	4.9	4.0	9.0
Corrected									
Mean	96.0	1.1	2.8	23.2	41.4	35.4	5.1	6.2	88.7
Bias	1.7	-1.3	-0.4	-17.8	15.2	2.6	-1.6	0.2	1.5
SD	0.9	0.3	0.7	3.4	6.8	6.2	0.8	1.5	1.8
RMSE	1.9	1.3	0.8	18.1	16.6	6.7	1.8	1.5	2.3

Table D16: Simulation results of transition probabilities, Case 4 with $\Lambda = \{1.5, -0.5, 0.5, 1.5, -0.5, 0.5, 1.5, 0.5, -0.5\}$

		$\Pr\left(\mathscr{S}_{t+1} = i \mathscr{S}_t = j\right)$											
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)				
True	94.7	2.3	3.0	36.9	36.5	26.6	4.3	2.7	93.0				
Reported													
Mean	95.7	1.5	2.8	24.8	48.7	26.5	3.9	2.9	93.2				
Bias	1.0	-0.8	-0.2	-12.1	12.2	-0.1	-0.4	0.2	0.2				
SD	0.1	0.0	0.0	0.4	0.5	0.5	0.1	0.1	0.1				
RMSE	1.0	0.8	0.2	12.1	12.2	0.5	0.4	0.2	0.2				
Corrected-	Restricti	ve											
Mean	98.7	0.6	0.7	13.8	71.1	15.1	0.6	1.4	98.1				
Bias	4.0	-1.7	-2.3	-23.1	34.6	-11.5	-3.8	-1.3	5.1				
SD	0.1	0.1	0.1	0.6	0.8	0.7	0.1	0.1	0.1				
RMSE	4.0	1.7	2.3	23.1	34.6	11.5	3.8	1.3	5.1				
Corrected													
Mean	96.3	1.3	2.4	28.8	50.2	21.0	4.6	3.1	92.3				
Bias	1.6	-1.0	-0.6	-8.1	13.8	-5.7	0.2	0.4	-0.7				
SD	0.7	0.3	0.5	3.4	4.6	4.2	0.9	1.0	1.5				
RMSE	1.8	1.0	0.8	8.7	14.5	7.0	1.0	1.1	1.7				

Table D17: Simulation results of transition probabilities, Case 4 with $\Lambda = \{1.5, -0.5, 0.5, -0.5, 0.5, 1.5, -0.5, 0.5, 1.5\}$

				$\Pr\left(\mathscr{S}\right)$	$v_{t+1} = i \mathcal{S}$	$\mathscr{P}_t = j$			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
True	89.8	5.8	4.4	48.0	21.0	31.0	6.3	4.4	89.3
Reported									
Mean	94.4	2.2	3.4	29.0	45.8	25.2	5.1	2.9	92.0
Bias	4.6	-3.6	-1.0	-19.0	24.8	-5.8	-1.2	-1.5	2.7
SD	0.1	0.0	0.1	0.5	0.5	0.5	0.1	0.1	0.1
RMSE	4.6	3.6	1.0	19.0	24.8	5.8	1.2	1.5	2.7
Corrected-	Restricti	ve							
Mean	97.3	1.6	1.2	19.5	70.3	10.2	1.5	1.0	97.5
Bias	7.5	-4.3	-3.2	-28.5	49.3	-20.8	-4.8	-3.3	8.2
SD	0.1	0.1	0.1	0.6	0.9	0.7	0.1	0.1	0.1
RMSE	7.5	4.3	3.2	28.5	49.3	20.8	4.8	3.3	8.2
Corrected									
Mean	90.5	5.5	4.0	44.6	31.5	23.9	5.8	3.9	90.3
Bias	0.8	-0.3	-0.4	-3.4	10.5	-7.1	-0.5	-0.5	0.9
SD	1.3	1.2	0.6	8.1	6.4	4.4	1.6	0.8	2.1
RMSE	1.5	1.2	0.7	8.7	12.3	8.4	1.7	0.9	2.3

Table D18: Simulation results of transition probabilities, Case 4 with $\Lambda = \{-0.5, 0.5, -0.5, 1.5, -0.5, 0.5, 1.5, -0.5, 1.5\}$

E Testing Assumption 3 Using the CPS Data

Assumption 3 requires that, for each combination of s_t and s_{t-1} , the observed matrix $M_{S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}}$ has a full rank, which implies its determinant is not equal to zero. We then use the real CPS data to calculate the determinants and bootstrap the standard errors. The results in Table E1 show that, for each demographic group, we can always reject the null hypothesis that the determinant is zero at the 1% significance level, suggesting that Assumption 3 holds with the CPS data.

					(s_t, s_{t-1})				
	(E,E)	(E, U)	(E, N)	(U, E)	(U, U)	(U, N)	(N, E)	(N, U)	(N, N)
(1) Aged 16-24	9.7e-07	2.7e-10	5.0e-09	5.6e-10	2.0e-08	5.5e-09	3.5e-09	4.9e-09	2.0e-06
	(6.2e-08)	(8.7e-11)	(6.8e-10)	(1.1e-10)	(1.7e-09)	(6.4e-10)	(5.3e-10)	(4.7e-10)	(8.9e-08)
	[15.62]	[3.07]	[7.38]	[5.32]	[11.36]	[8.56]	[6.61]	[10.41]	[21.97]
(2) Aged 25-54	1.9e-07	2.4e-11	3.6e-10	3.7e-11	4.5e-09	2.2e-10	3.6e-10	2.1e-10	1.1e-07
	(1.0e-08)	(5.1e-12)	(3.6e-11)	(6.5e-12)	(2.7e-10)	(2.1e-11)	(4.0e-11)	(2.0e-11)	(4.4e-09)
	[18.56]	[4.81]	[10.21]	[5.67]	[16.84]	[10.24]	[9.13]	[10.42]	[25.03]
(3) Aged 55 plus	3.9e-08	2.8e-12	5.7e-11	3.6e-12	4.9e-10	4.8e-11	1.2e-10	3.7e-11	3.3e-07
	(3.9e-09)	(9.6e-13)	(2.3e-11)	(1.1e-12)	(4.7e-11)	(6.9e-12)	(2.9e-11)	(6.2e-12)	(2.0e-08)
	[9.97]	[2.91]	[2.46]	[3.38]	[10.44]	[6.92]	[3.95]	[5.87]	[16.51]
(4) Male	3.8e-07	6.5e-11	5.8e-10	9.4e-11	6.4e-09	4.3e-10	$5.4e{-}10$	4.6e-10	3.2e-07
	(1.8e-08)	(1.3e-11)	(6.0e-11)	(1.4e-11)	(3.5e-10)	(4.3e-11)	(5.7e-11)	(3.8e-11)	(1.2e-08)
	[20.81]	[5.00]	[9.65]	[6.62]	[18.12]	[9.95]	[9.43]	[12.18]	[27.24]
(5) Female	1.6e-07	2.0e-11	6.2e-10	2.3e-11	2.6e-09	3.7e-10	5.5e-10	2.6e-10	5.5e-07
	(9.6e-09)	(4.9e-12)	(6.9e-11)	(5.0e-12)	(1.7e-10)	(3.3e-11)	(6.8e-11)	(2.4e-11)	(2.0e-08)
	[16.72]	[4.13]	[8.91]	[4.54]	[15.77]	[11.31]	[8.03]	[10.52]	[28.16]
(6) White	2.5e-07	2.1e-11	4.5e-10	3.6e-11	3.2e-09	2.2e-10	3.5e-10	2.0e-10	3.5e-07
	(1.1e-08)	(4.4e-12)	(4.2e-11)	(5.7e-12)	(1.6e-10)	(1.8e-11)	(3.7e-11)	(1.6e-11)	(1.1e-08)
	[23.79]	[4.71]	[10.68]	[6.45]	[20.40]	[12.43]	[9.63]	[13.01]	[32.33]
(7) Nonwhite	3.1e-07	1.8e-10	1.5e-09	1.7e-10	1.2e-08	1.9e-09	2.1e-09	1.7e-09	8.5e-07
	(2.4e-08)	(3.5e-11)	(2.0e-10)	(3.1e-11)	(1.0e-09)	(2.3e-10)	(2.5e-10)	(1.8e-10)	(4.0e-08)
	[12.93]	[5.07]	[7.83]	[5.65]	[11.46]	[8.39]	[8.29]	[9.11]	[20.96]

Table E1: Testing Assumption 3, determinants of $M_{S_{t+1},s_t,s_{t-1},S_{t-2}|\mathbf{x}}$

Note: In parentheses are bootstrapped standard errors based on 500 repetitions, and corresponding t-values are in square brackets.

F Correcting Labor Flows with the Framework in Feng and Hu (2013)

Although Feng and Hu (2013) focus on correcting for misclassification errors in labor stock statistics (i.e., unemployment rate and labor force participation rate), their framework may also be applied to correcting labor flow statistics using a two-step procedure.

Consider the following equation with three-period matched data:

$$\Pr\left(S_{t+1}, S_t, S_{t-9} | \mathbf{X}\right) = \sum_{S_t^*} \left(\sum_{S_{t+1}^*} \Pr\left(S_{t+1} | S_{t+1}^*, \mathbf{X}\right) \Pr\left(S_{t+1}^* | S_t^*, \mathbf{X}\right) \right) \Pr\left(S_t | S_t^*, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-9} | \mathbf{X}\right)$$
(25)

$$= \sum_{S_t^*} \Pr\left(S_{t+1}|S_t^*, \mathbf{X}\right) \Pr\left(S_t|S_t^*, \mathbf{X}\right) \Pr\left(S_t^*, S_{t-9}|\mathbf{X}\right).$$
(26)

First, the misclassification probabilities in period t, i.e., $\Pr(S_t|S_t^*, \mathbf{X})$, can be identified and estimated from Equation (26) using the proposed eigenvalue-eigenvector decomposition method in Feng and Hu (2013). Second, we may plugin the estimated $\Pr(S_t|S_t^*, \mathbf{X})$ back to Equation (25) and use MLE to estimate the transition probabilities, i.e., $\Pr(S_{t+1}^*|S_t^*, \mathbf{X})$, as well as the misclassification probabilities in period t+1, i.e., $\Pr(S_{t+1}|S_{t+1}^*, \mathbf{X})$. It is worth noting that the second step relies on a local identification argument that the number of unknowns dose not exceed that of restrictions, and needs a set of proper initial values. For simplicity, we do not include observed heterogeneity in this exercise.

G Additional Results

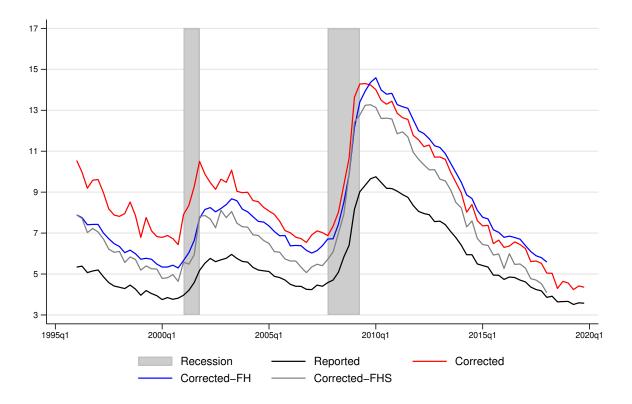


Figure G1: Reported and corrected unemployment rate

Note: The "Reported" line is based on the uncorrected numbers and the "Corrected" one is calculated using the method in this paper. The "Corrected-FH" and the "Corrected-FHS" ones are from Feng and Hu (2013) and Feng, Hu, and Sun (2022), respectively. All series are quarterly average of monthly data, seasonally adjusted using a ratio to moving average.

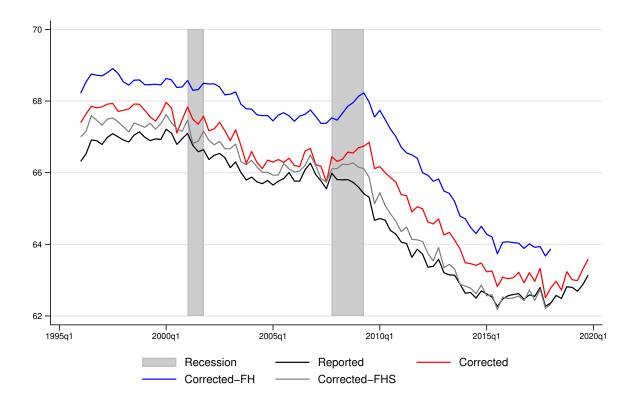
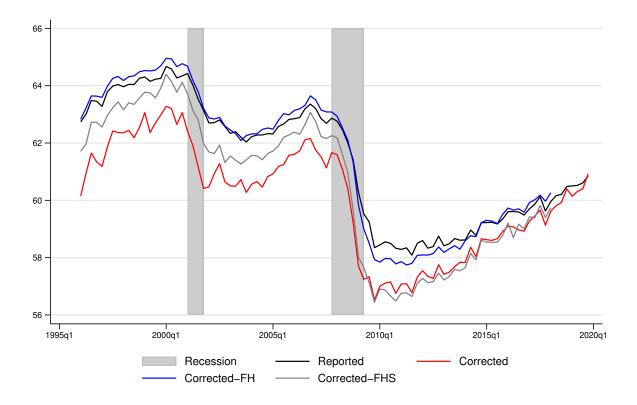



Figure G2: Reported and corrected labor force participation rate

Note: The "Reported" line is based on the uncorrected numbers and the "Corrected" one is calculated using the method in this paper. The "Corrected-FH" and the "Corrected-FHS" ones are from Feng and Hu (2013) and Feng, Hu, and Sun (2022), respectively. All series are quarterly average of monthly data, seasonally adjusted using a ratio to moving average.

Figure G3: Reported and corrected employment-to-population ratio

Note: The "Reported" line is based on the uncorrected numbers and the "Corrected" one is calculated using the method in this paper. The "Corrected-FH" and the "Corrected-FHS" ones are from Feng and Hu (2013) and Feng, Hu, and Sun (2022), respectively. All series are quarterly average of monthly data, seasonally adjusted using a ratio to moving average.

	$S_{ au}^*$	= E	$S^*_{ au}$:	= U	$S^*_{ au}$:	= N
	$S_{\tau} = E$	$S_{\tau} = U$	$S_{\tau} = E$	$S_{\tau} = U$	$S_{\tau} = E$	$S_{\tau} = U$
Panel A: Aged 16-24						
$S_{\tau-1} = U$	-2.04***	1.73^{***}	-2.42***	0.73^{***}	-1.94***	1.45***
	(0.07)	(0.06)	(0.16)	(0.06)	(0.05)	(0.06)
$S_{\tau-1} = N$	-4.01***	-1.41***	-3.67***	-0.99***	-3.98***	-1.52**
, <u> </u>	(0.02)	(0.08)	(0.13)	(0.06)	(0.02)	(0.07)
Female	-0.00	-0.32***	-0.02	-0.25***	-0.03	-0.15**
	(0.02)	(0.04)	(0.07)	(0.03)	(0.02)	(0.03)
Nonwhite	-0.12***	0.22***	-0.41***	0.14***	-0.36***	0.26***
	(0.02)	(0.06)	(0.07)	(0.04)	(0.02)	(0.05)
Sub-period 2	-0.03	-0.35***	-0.41***	-0.02	-0.12**	-0.37**
ous periou 2	(0.05)	(0.12)	(0.12)	(0.08)	(0.06)	(0.10)
Sub-period 3	0.07***	-0.08	-0.44***	0.08	-0.12***	-0.11**
Sub-period 5	(0.03)	(0.05)	(0.07)	(0.06)	(0.03)	(0.05)
Sub pariod 4	0.23^{***}	-0.41	-0.36***	0.09	-0.23***	-0.31^{**}
Sub-period 4	(0.23) (0.06)	(0.37)				
Ch	(0.00) 0.11^{***}		(0.11)	(0.08) 0.17^{**}	(0.05) - 0.39^{***}	(0.12) -0.35**
Sub-period 5		-0.00	-0.59***			
	(0.03)	(0.09)	(0.14)	(0.08)	(0.03)	(0.09)
Constant for $\tau = t$	3.17***	-0.87***	2.25***	0.33***	1.16***	-1.70**
	(0.03)	(0.06)	(0.09)	(0.08)	(0.03)	(0.08)
Constant for $\tau = t + 1$	3.60^{***}	-0.83***	2.29^{***}	0.52^{***}	0.74^{***}	-2.38^{**}
	(0.03)	(0.07)	(0.10)	(0.09)	(0.03)	(0.08)
Panel B: Aged 25-54						
$S_{\tau-1} = U$	-3.32***	1.79^{***}	-2.78^{***}	0.89^{***}	-2.49^{***}	2.00^{***}
	(0.04)	(0.04)	(0.07)	(0.05)	(0.06)	(0.05)
$S_{\tau-1} = N$	-4.98^{***}	-1.61***	-4.47***	-1.41***	-4.84***	-2.43**
	(0.02)	(0.05)	(0.07)	(0.04)	(0.03)	(0.06)
Female	-0.57***	-0.72***	-0.32***	-0.35***	0.09***	-0.18**
	(0.02)	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)
Nonwhite	-0.22***	-0.18***	-0.39***	-0.19***	-0.10***	0.14***
	(0.02)	(0.04)	(0.04)	(0.03)	(0.03)	(0.04)
Sub-period 2	-0.02	-0.21***	0.19**	0.14*	0.15***	0.03
ouo portou =	(0.06)	(0.08)	(0.10)	(0.08)	(0.06)	(0.09)
Sub-period 3	0.00	0.07^{*}	-0.01	0.08	-0.03	0.08
Sub period 5	(0.03)	(0.04)	(0.06)	(0.05)	(0.04)	(0.05)
Sub-period 4	-0.06	0.15***	-0.11	0.12**	-0.20***	0.30***
Sub-period 4	(0.04)	(0.05)	(0.07)		(0.05)	(0.06)
Sub-period 5	(0.04) - 0.15^{***}	(0.05) - 0.06^*	(0.07) - 0.24^{***}	(0.05) 0.14^{***}	-0.15^{***}	0.20***
Sup-herior 9						
Ormation to the second second	(0.03) 5.42^{***}	(0.04) 0.21^{***}	(0.06)	(0.04)	(0.03)	(0.05)
Constant for $\tau = t$	-	-	3.02^{***}	1.13^{***}	0.81^{***}	-1.98**
	(0.03)	(0.04)	(0.06)	(0.05)	(0.04)	(0.07)
Constant for $\tau = t + 1$	5.81***	0.19***	2.98***	1.43***	0.30***	-2.84**
	(0.03)	(0.04)	(0.06)	(0.05)	(0.04)	(0.08)

Table G1: Parameters of multinomial logit model for misclassification probabilities, $\Pr(S_{\tau}|S_{\tau}^*, S_{\tau-1}, \mathbf{X})$

Note: Dummies for $S_{\tau-1} = E$ and sub-period 1 are omitted as reference groups. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

	$S_{ au}^*$:	= E	$S_{ au}^*$:	= U	$S^*_{ au}$:	= N
	$S_{\tau} = E$	$S_{\tau} = U$	$S_{\tau} = E$	$S_{\tau} = U$	$S_{\tau} = E$	$S_{\tau} = U$
Panel C: Aged 55 plus						
$S_{\tau-1} = U$	-3.02***	2.21^{***}	-3.14***	1.05^{***}	-2.76***	2.69^{***}
	(0.06)	(0.07)	(0.15)	(0.12)	(0.10)	(0.09)
$S_{\tau-1} = N$	-4.94***	-2.06***	-4.78***	-1.53***	-5.65***	-3.25***
	(0.03)	(0.06)	(0.14)	(0.10)	(0.04)	(0.10)
Female	-0.10***	-0.22***	0.04	-0.24***	-0.22***	-0.21***
	(0.03)	(0.05)	(0.07)	(0.06)	(0.03)	(0.06)
Nonwhite	-0.05	-0.03	-0.46***	-0.17***	-0.08***	-0.04
	(0.04)	(0.07)	(0.08)	(0.07)	(0.04)	(0.08)
Sub-period 2	0.29^{***}	0.60^{***}	-0.38*	-0.30*	0.08	-0.02
	(0.09)	(0.13)	(0.21)	(0.18)	(0.08)	(0.23)
Sub-period 3	0.27^{***}	0.44^{***}	0.03	0.14	0.16^{***}	0.37^{***}
	(0.04)	(0.09)	(0.13)	(0.11)	(0.04)	(0.10)
Sub-period 4	0.37^{***}	0.74^{***}	0.02	0.53^{***}	0.11^{**}	0.66^{***}
	(0.06)	(0.10)	(0.15)	(0.12)	(0.06)	(0.10)
Sub-period 5	0.33^{***}	0.68^{***}	-0.17	0.32^{***}	0.18^{***}	0.56^{***}
	(0.03)	(0.07)	(0.12)	(0.10)	(0.04)	(0.09)
Constant for $\tau = t$	4.10^{***}	-1.49***	2.53^{***}	0.54^{***}	0.49^{***}	-3.22***
	(0.04)	(0.08)	(0.13)	(0.12)	(0.04)	(0.12)
Constant for $\tau = t + 1$	4.60^{***}	-1.40***	2.73^{***}	1.20^{***}	0.05^{***}	-3.76***
	(0.04)	(0.09)	(0.15)	(0.13)	(0.04)	(0.12)

Table G1 (Continued): Parameters of multinomial logit model for misclassification probabilities, $\Pr(S_{\tau}|S_{\tau}^*, S_{\tau-1}, \mathbf{X})$

Note: Dummies for $S_{\tau-1} = E$ and sub-period 1 are omitted as reference groups. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		k = E	-		k = U	Jups, 11 (, · · · · ·	k = N	,
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Age	d 16-24.	male, an	d white						
i = E	94.8	72.5	69.4	50.6	11.5	18.6	29.6	9.5	4.3
	(0.11)	(1.96)	(0.42)	(1.93)	(0.68)	(0.74)	(0.54)	(0.49)	(0.10)
i = U	1.5	16.6	4.0	34.1	67.8	31.5	6.2	33.0	2.9
	(0.07)	(1.30)	(0.27)	(1.61)	(0.72)	(1.26)	(0.47)	(1.07)	(0.11)
i = N	3.7	10.9	26.7	15.3	20.8	49.9	64.1	57.4	92.7
	(0.08)	(0.82)	(0.49)	(0.81)	(0.56)	(1.18)	(0.42)	(1.18)	(0.16)
(2) Age	d 16-24,	male, an	d nonwh	ite					
i = E	93.9	60.8	60.1	43.9	7.1	12.5	26.9	6.2	3.1
	(0.19)	(3.78)	(0.63)	(2.37)	(0.48)	(0.50)	(0.75)	(0.52)	(0.08)
i = U	2.0	25.0	6.4	41.3	73.5	39.5	7.9	37.5	3.8
	(0.11)	(2.59)	(0.36)	(2.15)	(0.81)	(1.00)	(0.76)	(1.28)	(0.16)
i = N	4.1	14.1	33.5	14.8	19.5	48.0	65.2	56.3	93.1
	(0.13)	(1.39)	(0.62)	(0.77)	(0.66)	(1.07)	(0.56)	(1.23)	(0.19)
(3) Age	d 16-24,	female, a	and white	e					
i = E	95.2	74.9	69.1	55.8	13.3	19.0	30.2	10.2	4.3
	(0.11)	(2.64)	(0.46)	(2.02)	(0.78)	(0.79)	(0.52)	(0.71)	(0.09)
i = U	1.1	13.6	3.5	27.4	62.3	28.6	4.6	27.8	2.5
	(0.06)	(1.59)	(0.21)	(1.55)	(0.87)	(1.05)	(0.38)	(1.14)	(0.08)
i = N	3.7	11.5	27.4	16.9	24.4	52.3	65.3	62.0	93.2
	(0.09)	(1.17)	(0.50)	(0.90)	(0.66)	(1.01)	(0.40)	(1.12)	(0.12)
(4) Age	ed 16-24,	female, a	and nonw	vhite					
i = E	94.4	64.0	59.8	49.3	8.4	12.9	27.5	6.6	3.0
	(0.18)	(4.55)	(0.66)	(2.61)	(0.81)	(0.54)	(0.72)	(0.82)	(0.08)
i = U	1.5	20.9	5.7	33.9	68.3	36.1	5.8	32.0	3.3
	(0.09)	(2.85)	(0.30)	(2.27)	(1.09)	(1.02)	(0.61)	(1.37)	(0.15)
i = N	4.1	15.1	34.5	16.8	23.3	50.9	66.7	61.4	93.7
	(0.13)	(1.85)	(0.67)	(0.87)	(0.77)	(1.06)	(0.54)	(1.20)	(0.19)
(5) Age	ed 25-54,	male, an	d white						
i = E	99.0	81.1	64.6	47.9	10.6	7.2	53.7	10.3	1.6
	(0.02)	(0.67)	(0.74)	(0.91)	(0.43)	(0.43)	(0.59)	(0.57)	(0.05)
i = U	0.6	14.6	4.8	45.8	79.9	50.3	9.1	40.7	1.4
	(0.01)	(0.53)	(0.26)	(0.93)	(0.45)	(0.89)	(0.37)	(0.71)	(0.05)
i = N	0.5	4.3	30.6	6.3	9.5	42.5	37.2	49.0	97.0
	(0.01)	(0.21)	(0.72)	(0.22)	(0.28)	(0.84)	(0.58)	(0.88)	(0.08)
(6) Age	d 25-54,	male, an	d nonwh	ite					
i = E	98.8	76.7	61.4	46.3	8.7	6.1	48.8	7.8	1.4
	(0.03)	(1.01)	(0.94)	(1.15)	(0.45)	(0.35)	(0.78)	(0.51)	(0.06)
i = U	0.6	17.2	5.9	46.1	79.8	54.3	8.6	37.5	1.6
	(0.02)	(0.81)	(0.34)	(1.16)	(0.60)	(0.90)	(0.41)	(0.79)	(0.07)
i = N	0.6	6.1	32.6	7.6	11.5	39.7	42.6	54.7	97.0
	(0.02)	(0.32)	(0.86)	(0.28)	(0.39)	(0.83)	(0.74)	(0.88)	(0.10)

Table G2: Misclassification probabilities by subgroups, $\Pr(S_t = i | S_t^* = j, S_{t-1} = k)$

Table G2 (Continued): Misclassification probabilities by subgroups, $\Pr(S_t = i | S_t^* = j, S_{t-1} = k)$

		k = E			k = U			k = N				
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N			
(7) Age	ed 25-54,	female,	and white	9								
i = E	98.7	80.1	67.1	48.7	10.5	8.7	42.4	9.0	1.8			
	(0.03)	(1.16)	(0.58)	(0.92)	(0.46)	(0.50)	(0.59)	(0.57)	(0.05)			
i = U	0.5	14.0	3.8	40.0	76.5	45.2	6.1	33.5	1.1			
	(0.02)	(0.86)	(0.17)	(0.94)	(0.63)	(0.69)	(0.23)	(0.84)	(0.04)			
i = N	0.8	5.9	29.1	11.3	12.9	46.1	51.5	57.5	97.1			
	(0.02)	(0.38)	(0.56)	(0.37)	(0.45)	(0.70)	(0.62)	(0.97)	(0.06)			
(8) Age	ed 25-54,	female,	and non-	white								
i = E	98.5	75.4	64.1	46.7	8.6	7.4	37.3	6.5	1.6			
	(0.04)	(1.46)	(0.83)	(1.17)		(0.42)	(0.61)	(0.47)	(0.06)			
i = U	0.5	16.3	4.7	39.8	75.9	49.1	5.6	30.5	1.3			
	(0.02)	(1.03)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0.89)	(0.27)	(0.67)	(0.06)					
i = N	1.0	8.2			. ,	43.5	57.1	63.0	97.1			
	(0.03)	(0.53)	(0.77)			(0.84)	(0.62)	(0.80)	(0.09)			
(9) Age	ed 55 plu	s. male.	and white	3								
i = E	98.3	78.8			6.2	5.9	34.4	6.1	0.6			
	(0.05)	(1.05)				(0.54)	(0.78)	(0.68)	(0.02)			
i = U	0.5	14.4	· /	· · · ·	· /	45.4	3.0	29.9	0.2			
	(0.02)	(0.82)				(1.33)	(0.14)	(1.63)	(0.02)			
i = N	1.3	6.8	· /	()	. ,	48.8	62.6	64.0	99.1			
	(0.04)	(0.60)				(1.27)	(0.84)	(1.71)	(0.03)			
(10) Ag	· /	()	· /	()	· /	()	()	· /	. ,			
i = E	98.2	72.1			4.5	5.5	33.5	4.1	0.6			
	(0.08)	(1.65)				(0.52)	(1.04)	(0.46)	(0.03)			
i = U	0.5	18.0		. ,	· /	44.9	3.0	27.3	0.2			
	(0.04)	(1.22)				(1.64)	(0.22)	(1.57)	(0.02)			
i = N	1.3	9.9	. ,	. ,	. ,	49.6	63.5	68.6	99.2			
0 10	(0.06)	(0.92)				(1.58)	(1.08)	(1.71)	(0.04)			
(11) A	· /	· /	. ,	. ,	(11-0)	(1100)	(1100)	(1111)	(0.01)			
i = E	98.2	81.9			78	5.2	32.4	6.8	0.5			
i = L	(0.05)	(1.12)				(0.47)	(0.63)	(0.79)	(0.01)			
i = U	(0.05) 0.4	(1.12) 11.3	· /		· /	(0.47) 40.9	(0.03) 2.5	(0.79) 25.1	(0.01) 0.2			
$\iota = 0$	(0.4)	(0.84)				(1.14)			(0.2)			
i = N	(0.02) 1.4	(0.84) 6.8	. ,			(1.14) 53.9	(0.13) 65.1	(1.49) 68.1	(0.01) 99.3			
$\iota = 1$ V	(0.04)	(0.65)				(1.10)	(0.66)	(1.67)	(0.02)			
(19) 10	· /	· /	· /	. ,	(110)	(110)	(0.00)	(1.01)	(0.02)			
i = E	98.1	75.8			5.6	4.9	31.6	4.6	0.5			
$\iota - D$												
i = U	$(0.08) \\ 0.4$	(1.67)		. ,	. ,	(0.46)	(0.98)	(0.54)	(0.02)			
i = 0		14.2				40.4	2.5	22.8	0.2			
i = M	(0.03)	(1.20)		. ,	· /	(1.87)	(0.18)	(1.40)	(0.02)			
i = N	1.4	10.0				54.7	65.9 (1.00)	72.7	99.3			
	(0.07)	(0.95)	(1.20)	(0.85)	(1.55)	(1.80)	(1.00)	(1.55)	(0.03)			

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Age	ed 16-24,	male, an	d white						
i = E	96.5	70.8	61.3	60.5	10.7	15.5	39.3	9.3	3.0
	(0.10)	(1.09)	(0.50)	(1.13)	(1.44)	(0.67)	(0.45)	(0.94)	(0.08)
i = U	1.0	18.9	2.7	27.6	71.1	20.5	5.6	37.1	1.5
	(0.07)	(0.75)	(0.17)	(1.04)	(1.59)	(0.83)	(0.30)	(0.90)	(0.07)
i = N	2.5	10.3	35.9	11.9	18.2	64.0	55.2	53.6	95.5
	(0.05)	(0.62)	(0.51)	(0.70)	(0.59)	(0.92)	(0.46)	(0.90)	(0.11)
(2) Age	ed 16-24,	male, ar	id non-wl	nite					
i = E	95.9	59.0	51.8	53.8	6.6	10.6	36.1	6.0	2.1
	(0.11)	(1.83)	(0.67)	(1.48)	(0.71)	(0.49)	(0.61)	(0.45)	(0.07)
i = U	1.4	27.9	4.3	34.4	76.4	26.2	7.2	41.8	2.0
	(0.08)	(1.27)	(0.25)	(1.25)	(1.12)	(0.87)	(0.48)	(0.94)	(0.12)
i = N	2.7	13.1	43.9	11.8	17.0	63.2	56.7	52.2	95.9
	(0.07)	(0.93)	(0.63)	(0.71)	(0.70)	(0.99)	(0.60)	(0.95)	(0.15)
(3) Age	ed 16-24,	female,	and white	e					
i = E	96.8	73.5	60.9	65.5	12.5	15.6	39.9	10.0	2.9
	(0.09)	(1.23)	(0.48)	(1.21)	(1.20)	(0.68)	(0.47)	(0.70)	(0.07)
i = U	0.7	15.6	2.4	21.7	65.9	18.3	4.1	31.6	1.3
	(0.05)	(0.77)	(0.14)	(0.97)	(1.29)	(0.73)	(0.25)	(0.75)	(0.06)
i = N	2.5	10.9	36.7	12.9	21.6	66.1	56.0	58.4	95.8
	(0.06)	(0.71)	(0.49)	(0.74)	(0.67)	(0.80)	(0.48)	(0.92)	(0.10)
(4) Age	ed 16-24,	female,	and non-	white					
i = E	96.2	62.5	51.4	59.3	7.9	10.8	36.8	6.5	2.0
	(0.11)	(2.57)	(0.65)	(1.67)	(0.56)	(0.50)	(0.62)	(0.37)	(0.06)
i = U	1.0	23.5	3.8	27.6	71.7	23.5	5.3	36.0	1.7
	(0.06)	(1.67)	(0.22)	(1.35)	(0.99)	(0.94)	(0.41)	(0.89)	(0.12)
i = N	2.7	14.1	44.8	13.1	20.4	65.7	57.9	57.5	96.2
	(0.08)	(1.20)	(0.65)	(0.78)	(0.80)	(1.02)	(0.61)	(0.97)	(0.15)
(5) Age	ed 25-54,	male, ar	d white						
i = E	99.3	76.2	54.1	58.1	8.1	6.4	63.4	8.7	1.0
	(0.01)	(0.56)	(0.82)	(0.62)	(0.52)	(0.40)	(0.53)	(0.50)	(0.03)
i = U	0.4	19.5	2.9	36.8	84.5	31.2	7.1	48.4	0.6
	(0.01)	(0.48)	(0.18)	(0.63)	(0.54)	(0.89)	(0.28)	(0.76)	(0.03)
i = N	0.3	4.2	43.1	5.1	7.5	62.5	29.6	43.0	98.5
	(0.01)	(0.18)	(0.81)	(0.19)	(0.23)	(0.85)	(0.51)	(0.75)	(0.04)
(6) Age	ed 25-54,	male, ar	d non-wl	nite					
i = E	99.2	71.4	51.0	56.4	6.6	5.5	58.7	6.6	0.9
	(0.02)	(0.84)	(1.01)	(0.93)	(0.46)	(0.33)	(0.79)	(0.43)	(0.04)
i = U	0.4	22.7	3.5	37.3	84.4	34.5	6.8	45.0	0.7
	(0.02)	(0.77)	(0.23)	(0.91)	(0.60)	(0.93)	(0.32)	(0.93)	(0.03)
i = N	0.4	6.0	45.5	6.3	9.0	60.0	34.5	48.4	98.5
	(0.01)	(0.26)	(0.98)	(0.26)	(0.35)	(0.88)	(0.76)	(0.92)	(0.05)

Table G3: Misclassification probabilities by subgroups, $\Pr\left(S_{t+1} = i | S_{t+1}^* = j, S_t = k\right)$

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(7) Age	ed 25-54,	female, a	and white	e					
i = E	99.1	75.5	56.6	58.7	8.1	7.4	52.1	7.7	1.1
	(0.02)	(0.80)	(0.55)	(0.67)	(0.38)	(0.44)	(0.50)	(0.38)	(0.03)
i = U	0.3	18.7	2.3	32.1	81.6	27.0	5.0	40.8	0.5
	(0.01)	(0.65)	(0.13)	(0.68)	(0.50)	(0.76)	(0.18)	(0.81)	(0.02)
i = N	0.6	5.8	41.1	9.2	10.2	65.6	42.8	51.6	98.5
	(0.01)	(0.26)	(0.55)	(0.31)	(0.35)	(0.76)	(0.51)	(0.84)	(0.03)
(8) Age	ed 25-54,	female, a	and non-	white					
i = E	99.0	70.4	53.6	56.6	6.6	6.4	46.9	5.7	1.0
	(0.03)	(0.99)	(0.84)	(0.98)	(0.32)	(0.37)	(0.64)	(0.32)	
i = U	ight) 0.3	21.6	2.8	32.2	81.1	30.3	4.7	$37.3^{'}$	· · · ·
	(0.02)	(0.79)	(0.17)	(0.99)	(0.52)	(0.93)	(0.22)	(0.74)	
$(7) \text{ Aged } 2$ $i = E \qquad (9)$ $i = U \qquad (0)$ $i = V \qquad (0)$ $i = N \qquad (0)$ $(8) \text{ Aged } 2$ $i = E \qquad (9)$ $i = U \qquad (0)$ $(6) \text{ Aged } 5$ $i = E \qquad (9)$ $(10) \text{ Aged } 5$ $i = U \qquad (0)$ $(10) \text{ Aged } 5$ $i = U \qquad (0)$ $(11) \text{ Aged } 5$ $i = U \qquad (0)$ $(11) \text{ Aged } 5$ $i = U \qquad (0)$ $(11) \text{ Aged } 5$ $i = U \qquad (0)$ $(11) \text{ Aged } 5$ $i = U \qquad (0)$ $(12) \text{ Aged } 5$ $i = U \qquad (0)$ $(12) \text{ Aged } 5$ $i = U \qquad (0)$ $(12) \text{ Aged } 5$ $i = U \qquad (0)$ $(12) \text{ Aged } 5$	0.7	8.0	43.6	11.1	12.3	63.4	48.5	57.0	· · · ·
	(0.02)	(0.37)	(0.83)	(0.41)	(0.44)	(0.90)	(0.64)	(0.79)	
(9) Age	ed 55 plu	s, male, a	and whit	e					
i = E	98.9	73.3	53.8	56.5	4.4	4.8	46.4	5.8	0.4
	(0.03)	(1.31)	(0.64)	(0.95)	(0.52)	(0.43)	(0.61)	(0.66)	
i = U	0.3	21.5	1.6	34.5	88.4	33.5	2.7	44.6	· · · ·
	(0.02)	(1.04)	(0.14)	(1.04)	(0.65)	(1.18)	(0.14)	(1.49)	
i = N	0.8	5.2	44.6	8.9	7.2	61.7	51.0	49.6	· · · ·
	(0.02)	(0.56)	(0.64)	(0.48)	(0.47)	(1.17)	(0.63)	(1.40)	
(10) Ag	ged 55 pl	us, male,	and non	-white					
i = E	98.9	66.1	51.9	55.7	3.2	4.5	45.5	4.0	0.4
	(0.05)	(1.99)	(1.00)	(1.52)	(0.41)	(0.42)	(0.95)	(0.45)	(0.02)
i = U	ight) 0.3	26.4	1.6	35.1	88.4	33.2	2.7	41.7	0.1
	(0.03)	(1.63)	(0.19)	(1.64)	(0.87)	(1.66)	(0.21)	(1.71)	$\begin{array}{c} (0.03)\\ 0.5\\ (0.02)\\ 98.5\\ (0.03)\\ \hline\\ 1.0\\ (0.03)\\ 0.6\\ (0.03)\\ 98.5\\ (0.05)\\ \hline\\ 0.4\\ (0.01)\\ 0.1\\ (0.01)\\ 99.4\\ (0.02)\\ \hline\\ 0.4\\ (0.02)\\ \hline\end{array}$
i = N	0.8	7.4	46.5	9.1	8.4	62.3	51.8	54.3	
	(0.03)	(0.82)	(0.99)	(0.56)	(0.75)	(1.63)	(0.95)	(1.73)	(0.02)
(11) Ag	ged 55 pl	us, femal	e, and w	hite					
$\dot{i} = E$	98.9	77.5	48.5	58.1	5.6	4.1	44.2	6.7	0.3
	(0.04)	(1.15)	(0.77)	(1.04)	(0.54)	(0.37)	(0.57)	(0.72)	
i = U	0.3	17.2	1.4	31.8	85.6	29.3	2.3	38.6	· · · ·
	(0.02)	(0.93)	(0.14)	(1.07)	(0.80)	(1.21)	(0.13)	(1.46)	
i = N	0.8	$ac{}5.3^{'}$	50.0	10.1	8.9	66.6	53.5	54.7	· · · ·
	(0.03)	(0.58)	(0.78)	(0.56)	(0.69)	(1.18)	(0.57)	(1.49)	(0.01)
(12) Ag	ged 55 pl	us, femal	e, and no	on-white					
i = E	98.8	70.9	46.6	57.3	4.1	3.9	43.3	4.6	0.3
	(0.05)	(1.84)	(1.11)	(1.42)	(0.45)	(0.36)	(0.99)	(0.49)	
i = U	ight) 0.3	21.4	1.5	32.3	85.5	29.0	2.3	36.0	,
	(0.02)	(1.53)	(0.19)	(1.47)	(1.12)	(1.88)	(0.18)	(1.63)	
i = N	0.9	7.7	51.9	10.4	10.4	67.2	54.4	59.5	. ,
	(0.04)	(0.84)	(1.11)	(0.66)	(1.00)	(1.84)	(0.99)	(1.67)	

Table G3 (Continued): Misclassification probabilities by subgroups, $\Pr\left(S_{t+1} = i | S_{t+1}^* = j, S_t = k\right)$

	$\Delta_{i j,E,t}^{p-y}$				$\Delta^{p-y}_{i j,U,t}$			$\Delta^{p-y}_{i j,N,t}$			$\Delta^{p-y}_{i j,E,t+1}$			$\Delta^{p-y}_{i j,U,t+1}$			$\Delta^{p-y}_{i j,N,t+1}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Mal	e and whit	e																
i = E	4.1^{***}	8.6***	-4.8***	-2.7	-0.9	-11.3***	24.1^{***}	0.8	-2.8***	2.8^{***}	5.4^{***}	-7.3***	-2.5*	-2.6*	-9.2***	24.1^{***}	-0.6	-2.0***
	(0.12)	(2.06)	(0.87)	(2.13)	(0.79)	(0.88)	(0.80)	(0.76)	(0.12)	(0.10)	(1.20)	(0.96)	(1.27)	(1.54)	(0.80)	(0.68)	(1.05)	(0.09)
i = U	-0.9***	-2.0	0.8^{**}	11.7^{***}	12.1^{***}	18.7^{***}	2.9^{***}	7.7***	-1.6***	-0.6***	0.6^{***}	0.1	9.2^{***}	13.4^{***}	10.7^{***}	1.5^{***}	11.2^{***}	-1.0**
	(0.07)	(1.42)	(0.37)	(1.85)	(0.83)	(1.54)	(0.60)	(1.34)	(0.13)	(0.07)	(0.90)	(0.25)	(1.20)	(1.66)	(1.20)	(0.41)	(1.21)	(0.07)
i = N	-3.2***	-6.6***	4.0^{***}	-9.0***	-11.3***	-7.4***	-26.9***	-8.5***	4.3^{***}	-2.1***	-6.0***	7.1***	-6.7***	-10.8***	-1.6	-25.6***	-10.6***	2.9***
	(0.08)	(0.83)	(0.87)	(0.84)	(0.64)	(1.44)	(0.71)	(1.52)	(0.18)	(0.05)	(0.64)	(0.95)	(0.73)	(0.62)	(1.24)	(0.69)	(1.18)	(0.12)
(2) Mal	e and nonv	white																
i = E	4.9^{***}	15.8^{***}	1.3	2.5	1.6^{***}	-6.4***	22.0^{***}	1.6^{**}	-1.6^{***}	3.3^{***}	12.4^{***}	-0.8	2.7	-0.0	-5.2^{***}	22.6^{***}	0.6	-1.2**
	(0.19)	(3.93)	(1.16)	(2.62)	(0.67)	(0.63)	(1.10)	(0.75)	(0.11)	(0.12)	(1.99)	(1.24)	(1.74)	(0.85)	(0.60)	(1.03)	(0.61)	(0.08)
i = U	-1.4***	-7.8***	-0.5	4.7^{**}	6.3***	14.7^{***}	0.7	0.1	-2.3***	-1.0***	-5.3^{***}	-0.8***	2.9^{*}	8.0***	8.4***	-0.3	3.2^{**}	-1.3**
	(0.11)	(2.75)	(0.48)	(2.43)	(1.03)	(1.32)	(0.85)	(1.58)	(0.17)	(0.08)	(1.50)	(0.32)	(1.52)	(1.27)	(1.23)	(0.56)	(1.39)	(0.12)
i = N	-3.5***	-8.0***	-0.9	-7.2***	-8.0***	-8.4***	-22.6***	-1.6	3.9***	-2.3***	-7.1***	1.6	-5.5***	-7.9***	-3.2***	-22.3***	-3.8***	2.5***
	(0.13)	(1.42)	(1.08)	(0.83)	(0.79)	(1.31)	(0.97)	(1.58)	(0.21)	(0.08)	(0.96)	(1.19)	(0.77)	(0.78)	(1.28)	(1.00)	(1.36)	(0.16)
(3) Fem	ale and wh	hite																
i = E	3.5^{***}	5.2^{*}	-2.0***	-7.0***	-2.8***	-10.4***	12.2^{***}	-1.2	-2.5***	2.3^{***}	2.0	-4.3***	-6.7***	-4.4***	-8.3***	12.3^{***}	-2.3***	-1.8**
	(0.11)	(2.89)	(0.75)	(2.24)	(0.92)	(0.96)	(0.78)	(0.95)	(0.10)	(0.09)	(1.45)	(0.74)	(1.39)	(1.28)	(0.84)	(0.69)	(0.79)	(0.07)
i = U	-0.6***	0.4	0.3	12.6^{***}	14.3^{***}	16.6^{***}	1.6^{***}	5.7^{***}	-1.4^{***}	-0.4***	3.1^{***}	-0.1	10.4^{***}	15.8^{***}	8.8***	0.9^{***}	9.2^{***}	-0.9**
	(0.06)	(1.82)	(0.27)	(1.82)	(1.09)	(1.24)	(0.45)	(1.40)	(0.09)	(0.05)	(1.01)	(0.19)	(1.18)	(1.40)	(1.00)	(0.30)	(1.13)	(0.06)
i = N	-2.9***	-5.6***	1.7**	-5.6***	-11.5***	-6.2***	-13.8***	-4.5***	3.9***	-1.9***	-5.1***	4.4***	-3.7***	-11.4***	-0.5	-13.2***	-6.8***	2.7**
	(0.09)	(1.22)	(0.76)	(0.99)	(0.81)	(1.25)	(0.74)	(1.50)	(0.14)	(0.06)	(0.75)	(0.74)	(0.82)	(0.76)	(1.09)	(0.71)	(1.25)	(0.10
(4) Fem	ale and no	onwhite																
$\dot{i} = E$	4.1^{***}	11.4^{***}	4.3^{***}	-2.6	0.2	-5.6***	9.8^{***}	-0.1	-1.4***	2.7^{***}	7.9^{***}	2.2^{***}	-2.7	-1.3**	-4.4***	10.0^{***}	-0.8*	-1.1**
	(0.19)	(4.78)	(1.08)	(2.86)	(0.92)	(0.70)	(0.94)	(0.98)	(0.10)	(0.11)	(2.71)	(1.09)	(1.94)	(0.65)	(0.64)	(0.91)	(0.48)	(0.07)
i = U	-1.0***	-4.6	-0.9***	5.9^{**}	7.6***	13.0^{***}	-0.2	-1.5	-2.0***	-0.7***	-1.9	-1.0***	4.6^{***}	9.4^{***}	6.8***	-0.6	1.4	-1.2**
	(0.10)	(3.04)	(0.39)	(2.57)	(1.28)	(1.37)	(0.66)	(1.51)	(0.17)	(0.07)	(1.83)	(0.28)	(1.65)	(1.14)	(1.29)	(0.46)	(1.16)	(0.12)
i = N	-3.1***	-6.8***	-3.4***	-3.3***	-7.7***	-7.4***	-9.6***	1.5	3.4***	-2.0***	-6.0***	-1.2	-1.9**	-8.1***	-2.4*	-9.5***	-0.5	2.2**
	(0.13)	(1.92)	(1.02)	(1.00)	(0.92)	(1.36)	(0.82)	(1.43)	(0.21)	(0.08)	(1.24)	(1.07)	(0.89)	(0.91)	(1.35)	(0.90)	(1.24)	(0.16)

Table G4: Testing the heterogeneity of misclassification probabilities, prime-age vs. young

Note: $\Delta_{i|j,k,\tau}^{p-y} = \Pr_p(S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k) - \Pr_y(S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		$\Delta^{p-o}_{i j,E,t}$			$\Delta^{p-o}_{i j,U,t}$			$\Delta^{p-o}_{i j,N,t}$			$\Delta_{i j,E,t+1}^{p-o}$	L		$\Delta^{p-o}_{i j,U,t+1}$			$\Delta_{i j,N,t+1}^{p-o}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Male	e and whit	е																
i = E	0.7^{***}	2.3^{*}	0.8	2.0	4.4^{***}	1.4^{**}	19.3^{***}	4.2^{***}	0.9^{***}	0.4^{***}	3.0^{**}	0.3	1.5	3.7^{***}	1.6^{***}	17.0^{***}	2.8^{***}	0.5^{***}
	(0.05)	(1.28)	(1.07)	(1.29)	(0.84)	(0.70)	(1.00)	(0.92)	(0.06)	(0.03)	(1.43)	(1.05)	(1.16)	(0.75)	(0.60)	(0.81)	(0.85)	(0.04)
i = U	0.1^{***}	0.2	2.7^{***}	3.9^{***}	-1.2	4.9^{***}	6.1^{***}	10.8^{***}	1.1^{***}	0.1^{***}	-2.0*	1.3^{***}	2.3^{*}	-4.0***	-2.3	4.4^{***}	3.8^{**}	0.4^{***}
	(0.03)	(1.00)	(0.30)	(1.38)	(1.20)	(1.61)	(0.40)	(1.80)	(0.06)	(0.02)	(1.16)	(0.23)	(1.24)	(0.86)	(1.50)	(0.31)	(1.71)	(0.03)
i = N	-0.8***	-2.5***	-3.5***	-5.8***	-3.2***	-6.3***	-25.4***	-15.0***	-2.1***	-0.4	-0.9	-1.5***	-3.8***	0.2	0.8	-21.4***	-6.6***	-1.0***
	(0.04)	(0.64)	(1.06)	(0.68)	(0.92)	(1.54)	(1.03)	(1.92)	(0.09)	(0.02)	(0.58)	(1.03)	(0.51)	(0.51)	(1.46)	(0.83)	(1.60)	(0.05)
(2) Male	e and nonv	vhite																
i = E	0.6^{***}	4.6^{**}	-0.6	1.2	4.2^{***}	0.6	15.3^{***}	3.6^{***}	0.8^{***}	0.3^{***}	5.2^{***}	-0.9	0.7	3.4^{***}	1.0^{*}	13.2^{***}	2.6^{***}	0.5^{***}
	(0.09)	(2.00)	(1.35)	(1.96)	(0.69)	(0.64)	(1.34)	(0.70)	(0.06)	(0.06)	(2.15)	(1.38)	(1.86)	(0.61)	(0.56)	(1.31)	(0.62)	(0.04)
i = U	0.1**	-0.8	3.8***	3.5	-1.0	9.3***	5.6***	10.2***	1.3***	0.1**	-3.8**	1.9***	2.1	-4.0***	1.3	4.1***	3.3*	0.5***
·	(0.04) -0.7***	(1.50)	(0.41) -3.2***	(2.14) -4.7***	(1.43)	(1.87) -9.9***	(0.46)	(1.74) -13.9***	(0.08) -2.2***	(0.03) - 0.4^{***}	(1.80)	(0.30)	(1.93)	(1.03)	(1.93)	(0.37)	(1.96)	(0.04) -1.0***
i = N	(0.07)	-3.8^{***} (0.97)	(1.30)	(0.81)	-3.2^{***} (1.26)	(1.80)	-20.9*** (1.36)	(1.91)	(0.10)	(0.04)	$^{-1.5*}_{(0.85)}$	-0.9 (1.34)	-2.9^{***} (0.61)	0.6 (0.81)	-2.3 (1.86)	-17.4^{***} (1.29)	-5.9^{***} (1.96)	(0.06)
	(0.07)	(0.97)	(1.30)	(0.81)	(1.20)	(1.80)	(1.50)	(1.91)	(0.10)	(0.04)	(0.85)	(1.34)	(0.01)	(0.81)	(1.80)	(1.29)	(1.90)	(0.00)
	ale and wh																	
i = E	0.5^{***}	-1.8	8.2***	1.3	2.8^{***}	3.5^{***}	10.0***	2.2**	1.2^{***}	0.2^{***}	-2.0	8.1***	0.6	2.6^{***}	3.2^{***}	7.9***	1.0	0.7***
	(0.06)	(1.66)	(1.08)	(1.39)	(0.92)	(0.68)	(0.88)	(0.98)	(0.05)	(0.04)	(1.45)	(0.96)	(1.28)	(0.67)	(0.58)	(0.76)	(0.83)	(0.03)
i = U	0.1^{***}	2.7^{**}	1.9^{***}	1.2	-0.4	4.3^{***}	3.6^{***}	8.5***	0.9^{***}	0.0^{**}	1.5	0.8^{***}	0.3	-3.9^{***}	-2.2	2.7^{***}	2.1	0.4^{***}
i = N	(0.03) - 0.6^{***}	(1.23) -0.9	(0.23) -10.1***	(1.43) -2.5***	(1.54) -2.4*	(1.31) -7.8***	(0.27) -13.6***	(1.75) -10.6***	(0.04) -2.2***	(0.02) - 0.3^{***}	$(1.16) \\ 0.5$	(0.19) -8.9***	(1.31) -0.9	(0.95) 1.4^*	(1.43) -1.0	(0.23) -10.7***	(1.71) -3.1*	(0.02) -1.1***
$\iota = 1$	(0.05)	(0.76)	(1.07)	(0.79)	(1.31)	(1.31)	(0.91)	(1.95)	(0.06)	(0.03)	(0.65)	(0.96)	(0.63)	(0.79)	(1.41)	(0.77)	(1.75)	(0.03)
<i></i>	()	()	(1.01)	(0.1.0)	(1101)	(1101)	(0.01)	(1.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0110)	(1111)	(0.11)	(1110)	(0.00)
	ale and no				0.0***	~ ~ * * * *		0.0***	a a 4 4 4	0 1 * *	~ -	H 0444	o -	~ ~ ~ ~ ~ ~	~	0 0***	*	0 0***
i = E	0.3^{***}	-0.4	7.1^{***}	(1.80)	3.0^{***}	2.5^{***}	5.7^{***}	2.0^{***}	1.1^{***}	0.1^{**}	-0.5	7.0^{***}	-0.7	2.5^{***}	2.5^{***}	3.6^{***}	1.1^{*}	0.6^{***}
i = U	(0.09) 0.1^*	(2.31) 2.1	(1.40) 2.7^{***}	(1.89) 0.5	(0.75) -0.7	(0.63) 8.7***	(1.18) 3.1^{***}	(0.71) 7.7***	(0.06) 1.1***	$(0.06) \\ 0.0$	$(2.16) \\ 0.2$	(1.37) 1.3^{***}	(1.78) -0.1	(0.54) -4.4***	$(0.53) \\ 1.3$	(1.24) 2.4^{***}	(0.58) 1.4	(0.04) 0.5^{***}
i = 0	(0.04)	(1.64)	(0.35)	(2.00)	(1.81)	(2.06)	(0.32)	(1.56)	(0.06)	(0.03)	(1.76)	(0.26)	(1.81)	(1.21)	(2.12)	(0.28)	(1.81)	(0.03)
i = N	-0.4***	-1.8	-9.8***	-0.6	-2.3	-11.2***	-8.8***	-9.7***	-2.2***	-0.2***	0.4	-8.3***	0.8	1.9*	-3.8*	-6.0***	-2.5	-1.1***
	(0.08)	(1.10)	(1.37)	(0.94)	(1.64)	(1.98)	(1.21)	(1.73)	(0.09)	(0.05)	(0.93)	(1.35)	(0.76)	(1.09)	(2.06)	(1.24)	(1.86)	(0.05)

Table G5: Testing the heterogeneity of misclassification probabilities, prime-age vs. old

Note: $\Delta_{i|j,k,\tau}^{p-o} = \Pr_p(S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k) - \Pr_o(S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		$\Delta^{m-f}_{i j,E,t}$			$\Delta^{m-f}_{i j,U,t}$			$\Delta^{m-f}_{i j,N,t}$			$\Delta^{m-f}_{i j,E,t+1}$			$\Delta^{m-f}_{i j,U,t+1}$			$\Delta^{m-f}_{i j,N,t+1}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
() 0	d 16-24 an																	
i = E	-0.4***	-2.4**	0.2	-5.2***	-1.8***	-0.5	-0.5	-0.7	0.1	-0.3***	-2.7**	0.4	-4.9***	-1.8***	-0.1	-0.6	-0.7	0.1
	(0.10)	(1.11)	(0.42)	(0.78)	(0.76)	(0.31)	(0.41)	(0.59)	(0.08)	(0.07)	(1.37)	(0.47)	(0.75)	(0.55)	(0.26)	(0.47)	(0.50)	(0.06)
i = U	0.4^{***} (0.05)	3.0^{***} (0.63)	0.5^{***} (0.13)	6.7^{***} (0.89)	5.5^{***} (0.89)	2.9^{***} (0.70)	1.6^{***} (0.23)	5.2^{***} (0.65)	0.4^{***} (0.10)	0.3^{***} (0.04)	3.3^{***} (0.93)	0.3^{***} (0.09)	5.9^{***} (0.80)	5.2^{***} (0.75)	2.2^{***} (0.54)	1.5^{***} (0.19)	5.5^{***} (0.73)	0.2^{***} (0.05)
i = N	-0.0	-0.6	(0.13) -0.7*	-1.6***	-3.7***	-2.4^{***}	-1.1***	-4.5***	-0.5***	-0.0	-0.6	-0.7	-1.0***	-3.4***	(0.34) -2.1***	(0.19) -0.9*	-4.8***	-0.3***
0 = 11	(0.07)	(0.55)	(0.40)	(0.32)	(0.48)	(0.62)	(0.44)	(0.67)	(0.15)	(0.05)	(0.49)	(0.47)	(0.23)	(0.45)	(0.55)	(0.47)	(0.67)	(0.09)
(2) Age	d 16-24 an	d nonwhit	e															
i = E	-0.5***	-3.2***	0.3	-5.4^{***}	-1.4***	-0.5**	-0.6	-0.4	0.1	-0.4***	-3.5**	0.4	-5.6***	-1.3***	-0.2	-0.7	-0.5	0.0
	(0.12)	(1.31)	(0.47)	(0.83)	(0.56)	(0.23)	(0.39)	(0.45)	(0.06)	(0.08)	(1.53)	(0.49)	(0.80)	(0.38)	(0.19)	(0.46)	(0.36)	(0.04)
i = U	0.5***	4.1***	0.8***	7.4***	5.1***	3.4***	2.1***	5.5***	0.5***	0.4***	4.5***	0.5***	6.8***	4.7***	2.7***	1.9***	5.8***	0.3***
i = N	(0.07) -0.0	(0.77) -1.0	(0.20) -1.0**	(0.97) -2.0***	(0.75) - 3.8^{***}	(0.79) -2.9***	(0.29) -1.5***	(0.69) -5.1***	(0.12) - 0.6^{***}	(0.05) -0.0	(1.06) -1.0*	(0.13) - 0.9^*	(0.88) -1.3***	(0.62) -3.4***	(0.62) -2.5***	(0.24) -1.2***	(0.74) -5.3***	(0.06) - 0.3^{***}
i = Iv	(0.08)	(0.66)	(0.45)	(0.34)	(0.48)	(0.70)	(0.44)	(0.66)	(0.15)	(0.05)	(0.57)	(0.49)	(0.25)	(0.44)	(0.61)	(0.47)	(0.68)	(0.08)
(3) A rea	d 25-54 an	()	、 /	· /	. /	~ /	× /	~ /	~ /	. /	. /	· /	· /	~ /	~ /	. /	、 /	. /
i = E	0.3***	0.9	-2.6***	-0.8	0.1	-1.4***	11.3***	1.3***	-0.2***	0.2^{***}	0.7	-2.6***	-0.7	-0.0	-1.0***	11.2^{***}	1.0^{***}	-0.1***
	(0.03)	(0.72)	(0.67)	(0.66)	(0.44)	(0.24)	(0.55)	(0.36)	(0.05)	(0.02)	(0.82)	(0.74)	(0.63)	(0.34)	(0.19)	(0.52)	(0.33)	(0.03)
i = U	0.1^{***}	0.6	1.0^{***}	5.8^{***}	3.3***	5.0^{***}	2.9^{***}	7.2^{***}	0.2^{***}	0.1^{***}	0.8	0.6^{***}	4.7^{***}	2.8^{***}	4.1^{***}	2.1^{***}	7.6^{***}	0.1^{***}
	(0.02)	(0.53)	(0.16)	(0.69)	(0.58)	(0.78)	(0.23)	(0.65)	(0.04)	(0.01)	(0.69)	(0.09)	(0.64)	(0.47)	(0.66)	(0.18)	(0.71)	(0.02)
i = N	-0.4^{***} (0.02)	-1.5^{***} (0.23)	1.6^{***} (0.61)	-5.0^{***} (0.22)	-3.4^{***} (0.31)	-3.6^{***} (0.71)	-14.2^{***} (0.53)	-8.5^{***} (0.66)	-0.1 (0.07)	-0.2^{***} (0.01)	-1.5^{***} (0.19)	2.0^{***} (0.72)	-4.1^{***} (0.18)	-2.8^{***} (0.25)	-3.1^{***} (0.65)	-13.3^{***} (0.49)	-8.6^{***} (0.67)	0.0 (0.04)
	· · /	(/	· · /	(0.22)	(0.31)	(0.71)	(0.00)	(0.00)	(0.07)	(0.01)	(0.15)	(0.72)	(0.18)	(0.23)	(0.05)	(0.49)	(0.07)	(0.04)
(4) Ageo i = E	d 25-54 an 0.4***	d nonwhit 1.3	e -2.7***	-0.3	0.1	-1.3***	11.6***	1.2^{***}	-0.1***	0.2***	1.0	-2.6***	-0.2	0.0	-0.9***	11.9***	0.9***	-0.1***
i = L	(0.4)	(0.83)	(0.70)	(0.63)	(0.37)	(0.20)	(0.54)	(0.28)	(0.04)	(0.2)	(0.93)	(0.75)	(0.61)	(0.29)	(0.17)	(0.52)	(0.26)	(0.03)
i = U	0.1***	0.9	1.2***	6.2***	3.9***	5.2^{***}	3.0***	7.1***	0.3***	0.1***	1.1	0.7***	5.1***	3.3***	4.3***	2.1***	7.7***	0.1***
	(0.02)	(0.59)	(0.19)	(0.69)	(0.54)	(0.77)	(0.22)	(0.64)	(0.05)	(0.01)	(0.75)	(0.11)	(0.64)	(0.43)	(0.68)	(0.17)	(0.70)	(0.02)
i = N	-0.4***	-2.1***	1.5***	-5.9***	-4.0***	-3.9***	-14.5^{***}	-8.3***	-0.1*	-0.3***	-2.1***	1.9***	-4.9***	-3.3***	-3.4***	-14.0***	-8.6***	-0.0
	(0.02)	(0.31)	(0.63)	(0.26)	(0.34)	(0.71)	(0.53)	(0.65)	(0.07)	(0.01)	(0.25)	(0.72)	(0.21)	(0.27)	(0.67)	(0.50)	(0.67)	(0.04)
	d 55 plus a		e so de de la C		a se de de 1	a adudud	a adulus		an an almala a'		e se de de la	an an de de la	a ada	a statute t	a adultat	a adulus	a adul	en an alta da di
i = E	0.1^{*}	-3.1^{***}	4.9^{***}	-1.5	-1.5^{***}	0.6^{***}	2.0^{***}	-0.7	0.1^{***}	0.0	-4.2***	5.3^{***}	-1.6^{*}	-1.2^{***}	0.6^{***}	2.2^{***}	-0.9^{**}	0.1^{***}
i = U	(0.04) 0.0^{***}	(1.13) 3.1^{***}	$(0.69) \\ 0.1$	(0.90) 3.1^{***}	(0.49) 4.1^{***}	(0.20) 4.5^{***}	(0.60) 0.5^{***}	(0.46) 4.9^{***}	(0.02) 0.0^{***}	(0.03) 0.0^{***}	(1.39) 4.3^{***}	$(0.73) \\ 0.1$	(0.91) 2.7^{***}	(0.34) 2.9^{***}	(0.15) 4.2^{***}	(0.66) 0.4^{***}	(0.43) 5.9***	(0.01) 0.0^{***}
$\iota = 0$	(0.02)	(0.82)	(0.12)	(1.05)	(0.95)	(1.46)	(0.12)	(1.12)	(0.01)	(0.01)	(1.18)	(0.09)	(0.98)	(0.64)	(1.28)	(0.11)	(1.32)	(0.01)
i = N	-0.1***	0.0	-5.0***	-1.6***	-2.6***	-5.1***	-2.4***	-4.2***	-0.2***	-0.1***	-0.1	-5.4***	-1.2***	-1.7***	-4.9***	-2.6***	-5.1***	-0.1***
	(0.04)	(0.42)	(0.68)	(0.36)	(0.71)	(1.34)	(0.63)	(1.17)	(0.02)	(0.02)	(0.32)	(0.72)	(0.26)	(0.45)	(1.22)	(0.68)	(1.31)	(0.02)
() 0	*	and nonwh																
i = E	0.1*	-3.7***	5.0***	-1.4	-1.1***	0.6***	2.0***	-0.4	0.1***	0.0	-4.8***	5.3***	-1.6*	-0.9***	0.6***	2.2***	-0.6*	0.1***
· • • • •	(0.05) 0.1^{***}	(1.37)	(0.71)	(0.92) 3.2^{***}	(0.37) 4.2^{***}	(0.19) 4.5^{***}	(0.60) 0.5^{***}	(0.32) 4.5^{***}	(0.02) 0.0^{***}	(0.03) 0.0^{***}	(1.59)	(0.73)	(0.93) 2.8^{***}	(0.26) 2.8^{***}	(0.14) 4.2^{***}	(0.66) 0.4^{***}	(0.30) 5.7***	(0.01) 0.0^{***}
i = U	(0.02)	3.8^{***} (0.96)	0.2 (0.12)	(1.09)	(0.96)	(1.49)	(0.13)	(1.08)	(0.0^{***})	(0.0^{***})	5.0^{***} (1.34)	0.2^{*} (0.09)	(1.01)	(0.66)	(1.26)	(0.4^{****})	(1.32)	(0.0^{***})
i = N	-0.1***	-0.1	-5.2***	-1.8***	-3.1***	-5.1***	-2.4***	-4.1***	-0.2***	-0.1***	-0.2	-5.4***	-1.2***	-2.0***	-4.8***	-2.6***	(1.52) -5.2***	-0.1***
v 1.	(0.04)	(0.58)	(0.69)	(0.38)	(0.79)	(1.39)	(0.63)	(1.11)	(0.02)	(0.02)	(0.44)	(0.72)	(0.28)	(0.52)	(1.22)	(0.68)	(1.31)	(0.01)
Note: Λ^r	n-f = P		i S* - i 9	~	. , ,	1.0*												. ,

Table G6: Testing the heterogeneity of misclassification probabilities, male vs. female

Note: $\Delta_{i|j,k,\tau}^{m-f} = \Pr_m (S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k) - \Pr_f (S_{\tau} = i|S_{\tau}^* = j, S_{\tau-1} = k)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		$\Delta_{i j,E,t}^{w-nw}$			$\Delta^{w-nw}_{i j,U,t}$			$\Delta^{w-nw}_{i j,N,t}$			$\Delta_{i j,E,t+1}^{w-nw}$			$\Delta_{i j,U,t+1}^{w-nw}$			$\Delta_{i j,N,t+1}^{w-nw}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Ageo	l 16-24 an	d male																
i = E	0.9^{***}	11.7^{***}	9.3^{***}	6.7^{***}	4.4^{***}	6.1^{***}	2.8^{***}	3.3^{***}	1.3^{***}	0.7^{***}	11.8^{***}	9.5^{***}	6.7^{***}	4.1^{***}	4.9^{***}	3.1^{***}	3.3^{***}	0.9^{***}
	(0.16)	(2.07)	(0.55)	(1.05)	(0.65)	(0.41)	(0.49)	(0.49)	(0.09)	(0.10)	(1.74)	(0.58)	(1.11)	(0.84)	(0.32)	(0.58)	(0.63)	(0.06)
i = U	-0.6^{***} (0.10)	-8.4^{***} (1.47)	-2.4^{***} (0.23)	-7.2^{***} (1.30)	-5.7^{***} (0.81)	-8.0^{***} (1.06)	-1.7^{***} (0.44)	-4.5^{***} (0.81)	-0.9^{***} (0.17)	-0.4^{***} (0.06)	-9.0*** (1.25)	-1.6^{***} (0.17)	-6.8^{***} (1.23)	-5.3^{***} (0.88)	-5.7^{***} (0.86)	-1.6^{***} (0.35)	-4.7^{***} (0.85)	-0.5^{***} (0.10)
i = N	-0.4***	-3.2***	-6.8***	0.5	1.3^{***}	1.9**	-1.0*	1.1	-0.4*	-0.3***	-2.8***	-8.0***	0.1	1.3^{***}	0.8	-1.5***	1.4	-0.4***
	(0.09)	(0.72)	(0.51)	(0.39)	(0.55)	(0.87)	(0.53)	(0.83)	(0.21)	(0.06)	(0.62)	(0.58)	(0.27)	(0.50)	(0.81)	(0.56)	(0.89)	(0.13)
(2) Age	d 16-24 an	d female																
i = E	0.8^{***}	10.9^{***}	9.3^{***}	6.5^{***}	4.9^{***}	6.1^{***}	2.7^{***}	3.6^{***}	1.3^{***}	0.6^{***}	11.0^{***}	9.5^{***}	6.1^{***}	4.6^{***}	4.8^{***}	3.1^{***}	3.5^{***}	0.9^{***}
	(0.14)	(2.12)	(0.55)	(1.08)	(0.62)	(0.42)	(0.49)	(0.47)	(0.08)	(0.09)	(1.76)	(0.58)	(1.03)	(0.82)	(0.32)	(0.58)	(0.59)	(0.06)
i = U	-0.4^{***} (0.08)	-7.3^{***} (1.40)	-2.2^{***} (0.21)	-6.6^{***} (1.31)	-6.1^{***} (0.83)	-7.5^{***} (1.02)	(0.33)	-4.1^{***} (0.74)	-0.8^{***} (0.15)	-0.3^{***} (0.05)	-7.8*** (1.19)	-1.4^{***} (0.16)	-5.9^{***} (1.11)	-5.8^{***} (0.88)	-5.2^{***} (0.82)	-1.2^{***} (0.27)	-4.4^{***} (0.79)	-0.4^{***} (0.09)
i = N	-0.4***	-3.6***	-7.2***	(1.31) 0.1	1.2*	(1.02)	-1.4***	(0.74) 0.5	-0.5***	-0.3***	-3.2^{***}	-8.1***	-0.2	1.2**	0.4	(0.27) -1.9***	0.9	-0.5^{***}
0 10	(0.10)	(0.82)	(0.53)	(0.40)	(0.61)	(0.87)	(0.51)	(0.78)	(0.19)	(0.06)	(0.70)	(0.59)	(0.28)	(0.58)	(0.79)	(0.56)	(0.85)	(0.12)
(3) Ageo	ł 25-54 an	d male																
i = E	0.1^{***}	4.4***	3.1^{***}	1.6^{*}	1.9^{***}	1.2^{***}	4.9^{***}	2.5^{***}	0.2^{***}	0.1^{***}	4.9^{***}	3.1^{***}	1.6^{**}	1.5^{***}	0.9^{***}	4.6^{***}	2.1^{***}	0.1^{***}
	(0.03)	(0.67)	(0.75)	(0.82)	(0.33)	(0.22)	(0.58)	(0.29)	(0.05)	(0.02)	(0.75)	(0.81)	(0.81)	(0.27)	(0.19)	(0.57)	(0.26)	(0.03)
i = U	-0.0 (0.02)	-2.6***	-1.1***	-0.3	0.1	-4.0***	0.5^{*}	3.2^{***}	-0.2***	-0.0	-3.2^{***}	-0.7^{***}	-0.5	0.1	-3.4***	0.2	3.3^{***}	-0.1***
i = N	(0.02) -0.1***	(0.55) -1.8***	(0.20) -2.0***	(0.87) -1.3***	(0.48) -2.0***	(0.87) 2.8^{***}	(0.26) -5.3***	(0.71) -5.7***	$(0.05) \\ 0.0$	(0.01) - 0.1^{***}	(0.66) -1.7***	(0.12) -2.4***	(0.82) -1.1***	(0.41) -1.6***	(0.78) 2.5^{***}	(0.22) -4.9***	(0.75) -5.4***	(0.02) -0.0
<i>v</i> = 11	(0.01)	(0.20)	(0.67)	(0.17)	(0.30)	(0.80)	(0.55)	(0.74)	(0.08)	(0.01)	(0.18)	(0.77)	(0.14)	(0.25)	(0.76)	(0.53)	(0.75)	(0.04)
(4) Age	ł 25-54 an	d female																
i = E	0.2^{***}	4.7^{***}	3.0^{***}	2.0^{***}	2.0^{***}	1.3^{***}	5.1^{***}	2.4^{***}	0.2^{***}	0.2^{***}	5.1^{***}	3.0^{***}	2.1^{***}	1.5^{***}	1.0^{***}	5.3^{***}	2.0^{***}	0.1^{***}
	(0.03)	(0.69)	(0.74)	(0.75)	(0.33)	(0.26)	(0.56)	(0.27)	(0.05)	(0.02)	(0.74)	(0.80)	(0.74)	(0.27)	(0.21)	(0.59)	(0.23)	(0.03)
i = U	-0.0	-2.3^{***}	-0.9^{***}	0.2	0.7	-3.9^{***}	0.5^{***}	3.1^{***}	-0.2***	-0.0	-2.9^{***}	-0.5^{***}	-0.1	0.5	-3.2^{***}	0.3^{**}	3.4^{***}	-0.1***
i = N	(0.02) - 0.2^{***}	(0.51) -2.4***	(0.17) -2.1***	(0.82) -2.2***	(0.54) -2.6***	(0.87) 2.6^{***}	(0.18) -5.6***	(0.67) -5.5***	(0.05) -0.0	(0.01) - 0.1^{***}	(0.61) -2.3***	(0.10) -2.5***	(0.76) -1.9***	(0.46) -2.1***	(0.73) 2.2^{***}	(0.15) -5.6***	(0.73) -5.4***	$(0.02) \\ -0.0$
$\iota = \iota$	(0.02)	(0.27)	(0.67)	(0.27)	(0.37)	(0.79)	(0.57)	(0.71)	(0.07)	(0.02)	(0.24)	(0.77)	(0.22)	(0.32)	(0.72)	(0.58)	(0.74)	(0.04)
(5) Age	1 55 plus a	and male																
i = E	0.1	6.7***	1.8^{**}	0.9	1.7^{***}	0.4	0.8	2.0^{***}	0.0**	0.0	7.2^{***}	1.9^{**}	0.8	1.2^{***}	0.3^{*}	0.9	1.8^{***}	0.0**
	(0.07)	(1.48)	(0.81)	(1.36)	(0.43)	(0.25)	(0.85)	(0.43)	(0.02)	(0.04)	(1.70)	(0.87)	(1.38)	(0.30)	(0.18)	(0.94)	(0.40)	(0.01)
i = U	-0.0	-3.6***	-0.1	-0.6	0.3	0.4	-0.0	2.6*	0.0	-0.0	-4.9***	-0.0	-0.6	0.1	0.3	-0.0	2.9^{*}	0.0
i = N	(0.03) -0.0	(1.09) -3.1***	(0.17) -1.7**	(1.59) -0.2	(1.00) -2.0***	(1.90) -0.8	(0.18) -0.8	(1.34) -4.6***	(0.02) -0.1*	(0.02) -0.0	(1.47) -2.3***	(0.13) -1.9**	(1.50) -0.2	(0.67) -1.2***	(1.72) -0.6	(0.17) -0.9	(1.58) -4.7***	(0.01) -0.0*
$\iota = I$	(0.05)	(0.62)	(0.79)	(0.47)	(0.79)	(1.73)	(0.88)	(1.39)	(0.03)	(0.03)	(0.48)	(0.85)	(0.34)	(0.51)	(1.63)	(0.95)	(1.57)	(0.02)
(6) Age	1 55 plus a	and female																
i = E	0.1	6.1***	1.9^{**}	0.9	2.1^{***}	0.3	0.8	2.2^{***}	0.0**	0.0	6.6^{***}	1.9^{**}	0.8	1.5^{***}	0.3^{*}	0.9	2.1^{***}	0.0**
	(0.07)	(1.33)	(0.85)	(1.30)	(0.51)	(0.22)	(0.83)	(0.48)	(0.02)	(0.04)	(1.55)	(0.86)	(1.32)	(0.36)	(0.15)	(0.94)	(0.45)	(0.01)
i = U	-0.0	-2.9***	-0.1	-0.5	0.4	0.5	-0.0	2.3^{*}	0.0	-0.0	-4.2***	-0.0	-0.5	0.1	0.3	-0.0	2.7^{*}	0.0
i = N	(0.03) -0.1	(0.90) -3.2***	(0.16) -1.8**	(1.52) -0.3	(1.17) -2.5***	(1.89) -0.8	$(0.16) \\ -0.8$	(1.20) -4.5***	(0.01) - 0.0^*	(0.02) -0.0	(1.28) -2.4***	(0.12) -1.9**	(1.43) -0.3	(0.81) -1.5***	(1.61) -0.6	(0.14) -0.9	(1.51) -4.8***	(0.01) - 0.0^*
ι — 1Ν	(0.06)	(0.63)	(0.83)	(0.51)	(0.92)	(1.76)	(0.86)	(1.31)	(0.02)	(0.03)	(0.50)	(0.86)	(0.37)	(0.62)	(1.54)	(0.95)	(1.53)	(0.01)
	()	(0.00) m (9	()	()	(0.0 <u>2</u>)	()	(/	(1101) - h) In m	· /	· /	()	· /	· /	()	· /	*** ** :	· /	()

Table G7: Testing the heterogeneity of misclassification probabilities, white vs. nonwhite

Note: $\Delta_{i|j,k,\tau}^{w-nw} = \Pr_w (S_\tau = i|S_\tau^* = j, S_{\tau-1} = k) - \Pr_{nw} (S_\tau = i|S_\tau^* = j, S_{\tau-1} = k)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		$\Delta_{i j,E}$			$\Delta_{i j,U}$			$\Delta_{i j,N}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(1) Age	d 16-24, r	nale, and	white						
i = E	1.7***	-1.7	-8.0***	9.9***	-0.8	-3.0***	9.6***	-0.3	-1.4***
	(0.12)	(2.19)	(0.47)	(1.29)	(1.08)	(0.34)	(0.55)	(0.89)	(0.08)
i = U	-0.5***	2.3	-1.3***	-6.5***	3.3***	-11.1***	-0.6*	4.1***	-1.4***
	(0.07)	(1.50)	(0.15)	(1.35)	(1.41)	(0.80)	(0.34)	(1.19)	(0.09)
i = N	-1.2***	-0.6	9.3***	-3.4***	-2.5***	14.1***	-9.0***	-3.8***	2.8^{***}
	(0.07)	(0.76)	(0.45)	(0.29)	(0.66)	(0.69)	(0.46)	(0.95)	(0.13)
(2) Age		nale, and	non-white						
i = E	2.0^{***}	-1.9	-8.3***	9.9^{***}	-0.5	-1.8***	9.2^{***}	-0.2	-1.0***
	(0.17)	(2.63)	(0.50)	(1.27)	(0.80)	(0.24)	(0.52)	(0.67)	(0.06)
i = U	-0.6***	2.9	-2.1***	-6.9***	3.0***	-13.3***	-0.8*	4.3***	-1.8***
· 37	(0.11)	(1.86)	(0.22)	(1.44)	(1.20)	(0.81)	(0.44)	(1.22)	(0.10)
i = N	-1.4***	-1.0	10.4^{***}	-3.0^{***}	-2.5^{***}	15.1^{***}	-8.5^{***}	-4.1***	2.8^{***}
	(0.09)	(0.89)	(0.49)	(0.32)	(0.65)	(0.74)	(0.45)	(0.99)	(0.12)
() =		emale, and	d white				a and dated		dadada
i = E	1.6***	-1.4	-8.2***	9.7***	-0.8	-3.4***	9.7***	-0.2	-1.4***
·	(0.11)	(1.88)	(0.46)	(1.23)	(1.35)	(0.34)	(0.55)	(1.01)	(0.08)
i = U	-0.3***	2.0^{*}	-1.1***	-5.7***	3.6^{**}	-10.4^{***}	-0.5^{*}	3.8^{***}	-1.2^{***}
i M	(0.05) -1.3***	(1.12)	(0.13) 9.3^{***}	(1.21) -4.0***	(1.60) -2.8***	(0.72) 13.8***	(0.26) -9.2***	(1.07) -3.6***	(0.07) 2.6^{***}
i = N	(0.07)	-0.6 (0.82)	(0.45)	(0.31)	(0.72)	(0.64)	(0.47)	(0.94)	(0.11)
	()	· /	· /	、 ,	(0.12)	(0.04)	(0.47)	(0.34)	(0.11)
. , _	d 16-24, f 1.8***		d non-white		0.0	0.1***	0.0***	0.1	1 0***
i = E		-1.5	-8.4^{***}	10.0^{***}	-0.6	-2.1^{***}	9.3^{***}	-0.1	-1.0^{***}
i = U	(0.15) - 0.5^{***}	$(2.33) \\ 2.5^*$	(0.51) -1.9***	(1.30) -6.3***	(1.00) 3.4^{***}	(0.24) -12.7***	(0.51) - 0.5^*	(0.78) 4.0^{***}	(0.06) -1.6***
i = 0	(0.08)	(1.45)	(0.18)	(1.42)	(1.37)	(0.74)	(0.33)	(1.12)	(0.09)
i = N	(0.08) -1.4***	-1.0	10.3^{***}	(1.42) - 3.7^{***}	-2.8***	(0.74) 14.8***	-8.8***	-3.9^{***}	(0.03) 2.5^{***}
0 - 11	(0.09)	(0.99)	(0.50)	(0.32)	(0.72)	(0.68)	(0.44)	(0.94)	(0.11)
(F) A mo	. ,	· /	. ,	(0.02)	(0)	(0.00)	(011)	(0.01)	(0111)
(5) Age i = E	0.3^{***}	nale, and -4.8***	-10.5***	10.1***	-2.5***	-0.9***	9.7***	-1.6***	-0.6***
$\iota - L$	(0.02)	(0.83)	(0.60)	(0.66)	(0.40)	(0.18)	(0.40)	(0.45)	(0.04)
i = U	-0.2^{***}	(0.03) 4.9^{***}	-1.9***	-9.0***	(0.40) 4.6^{***}	-19.1^{***}	-2.0***	(0.45) 7.6^{***}	-0.8***
	(0.01)	(0.67)	(0.15)	(0.71)	(0.44)	(0.81)	(0.23)	(0.66)	(0.04)
i = N	-0.2***	-0.1	12.5***	-1.1***	-2.0***	20.0***	-7.7***	-6.0***	1.4^{***}
	(0.01)	(0.20)	(0.57)	(0.12)	(0.23)	(0.74)	(0.40)	(0.74)	(0.06)
(6) Age	. ,	. ,	non-white						
i = E	0.4^{***}	-5.3***	-10.4***	10.1***	-2.1***	-0.6***	9.9***	-1.2***	-0.6***
	(0.02)	(0.94)	(0.62)	(0.64)	(0.34)	(0.16)	(0.40)	(0.36)	(0.04)
i = U	-0.2***	5.5***	-2.4***	-8.8***	4.6***	-19.7***	-1.8***	7.5***	-0.9***
	(0.02)	(0.73)	(0.20)	(0.71)	(0.42)	(0.83)	(0.22)	(0.66)	(0.05)
i = N	-0.2***	-0.2	12.9^{***}	-1.3***	-2.5***	20.3***	-8.1***	-6.3***	1.5***
	(0.01)	(0.27)	(0.58)	(0.14)	(0.27)	(0.77)	(0.42)	(0.74)	(0.07)

Table G8: Testing the stationarity of misclassification probabilities, by subgroups

Note: $\Delta_{i|j,k} = \Pr\left(S_{t+1} = i|S_{t+1}^* = j, S_t = k\right) - \Pr\left(S_t = i|S_t^* = j, S_{t-1} = k\right)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, ** , ** signify significance at the 1%, 5%, 10% level, respectively.

		$\Delta_{i j,E}$			$\Delta_{i j,U}$			$\Delta_{i j,N}$	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
(7) Age	ed 25-54, fe	emale, and	d white						
i = E	0.4***	-4.6***	-10.5***	10.0***	-2.4***	-1.3***	9.8***	-1.3***	-0.7***
	(0.02)	(0.79)	(0.58)	(0.59)	(0.45)	(0.21)	(0.42)	(0.42)	(0.04)
i = U	-0.2***	4.7***	-1.5***	-7.9***	5.1^{***}	-18.2***	-1.1***	7.2***	-0.6***
	(0.01)	(0.57)	(0.11)	(0.67)	(0.52)	(0.75)	(0.16)	(0.63)	(0.03)
i = N	-0.3***	-0.1	12.0^{***}	-2.1^{***}	-2.7***	19.5***	-8.6***	-5.9***	1.3***
	(0.01)	(0.27)	(0.55)	(0.20)	(0.31)	(0.69)	(0.44)	(0.74)	(0.05)
(8) Age			d non-white	9					
i = E	0.5^{***}	-5.0***	-10.6***	10.0^{***}	-2.0***	-1.0***	9.6^{***}	-0.9***	-0.6***
	(0.02)	(0.91)	(0.61)	(0.57)	(0.38)	(0.19)	(0.41)	(0.32)	(0.04)
i = U	-0.2***	5.2^{***}	-1.9***	-7.6***	5.2^{***}	-18.8***	-0.9***	6.9***	-0.8***
	(0.01)	(0.61)	(0.15)	(0.67)	(0.49)	(0.79)	(0.15)	(0.62)	(0.04)
i = N	-0.3***	-0.2	12.5***	-2.4***	-3.2***	19.8***	-8.7***	-6.0***	1.4***
	(0.02)	(0.37)	(0.57)	(0.23)	(0.35)	(0.73)	(0.44)	(0.71)	(0.06)
$(9) \operatorname{Age}$	ed 55 plus,								
i = E	0.7^{***}	-5.5***	-10.0***	10.6^{***}	-1.9***	-1.1***	12.0^{***}	-0.3	-0.2***
	(0.04)	(1.25)	(0.63)	(0.89)	(0.41)	(0.20)	(0.62)	(0.47)	(0.02)
i = U	-0.2***	7.1***	-0.5***	-7.4***	7.3***	-11.9***	-0.3***	14.7***	-0.1***
	(0.02)	(0.99)	(0.09)	(1.02)	(0.81)	(1.15)	(0.12)	(1.41)	(0.01)
i = N	-0.5***	-1.6***	10.5***	-3.2***	-5.5***	12.9***	-11.7***	-14.4***	0.3***
	(0.03)	(0.45)	(0.61)	(0.35)	(0.69)	(1.05)	(0.66)	(1.59)	(0.02)
(10) Ag		s, male, a	nd non-whi						
i = E	0.7^{***}	-5.9***	-10.1***	10.6^{***}	-1.3***	-1.0***	11.9^{***}	-0.1	-0.2***
	(0.05)	(1.49)	(0.65)	(0.89)	(0.30)	(0.18)	(0.62)	(0.33)	(0.02)
i = U	-0.2***	8.4***	-0.5***	-7.4***	7.6***	-11.7***	-0.3***	14.4***	-0.1***
	(0.02)	(1.18)	(0.10)	(1.04)	(0.85)	(1.12)	(0.13)	(1.43)	(0.01)
i = N	-0.5***	-2.5***	10.7***	-3.2***	-6.3***	12.7***	-11.6***	-14.3***	0.3***
	(0.04)	(0.63)	(0.63)	(0.38)	(0.80)	(1.04)	(0.65)	(1.55)	(0.02)
(11) Ag	ged 55 plus		and white						
i = E	0.7***	-4.4***	-10.4***	10.7***	-2.2***	-1.1***	11.8***	-0.1	-0.2***
	(0.04)	(1.06)	(0.66)	(0.86)	(0.51)	(0.17)	(0.63)	(0.52)	(0.01)
i = U	-0.1***	5.9***	-0.5***	-7.0***	8.6***	-11.6***	-0.2***	13.6***	-0.1***
	(0.02)	(0.78)	(0.08)	(0.98)	(0.97)	(1.05)	(0.10)	(1.30)	(0.01)
i = N	-0.5***	-1.5***	10.9***	-3.7***	-6.4***	12.7***	-11.6***	-13.5***	0.3***
	(0.03)	(0.47)	(0.64)	(0.37)	(0.84)	(0.99)	(0.66)	(1.54)	(0.01)
(12) Ag			and non-w						
i = E	0.7^{***}	-4.9***	-10.4***	10.7^{***}	-1.6***	-1.0***	11.7^{***}	0.0	-0.2***
	(0.05)	(1.32)	(0.66)	(0.85)	(0.38)	(0.16)	(0.62)	(0.37)	(0.01)
i = U	-0.1***	7.2***	-0.5***	-7.0***	8.9***	-11.5***	-0.2***	13.2***	-0.1***
	(0.02)	(0.99)	(0.09)	(0.98)	(1.02)	(1.03)	(0.11)	(1.33)	(0.01)
i = N	-0.6***	-2.3***	10.9***	-3.7***	-7.4***	12.5***	-11.5***	-13.2***	0.2***
	(0.04)	(0.66)	(0.65)	(0.40)	(0.96)	(0.97)	(0.66)	(1.49)	(0.02)

Table G8 (Continued): Testing the stationarity of misclassification probabilities, by subgroups

Note: $\Delta_{i|j,k} = \Pr\left(S_{t+1} = i|S_{t+1}^* = j, S_t = k\right) - \Pr\left(S_t = i|S_t^* = j, S_{t-1} = k\right)$. In parentheses are bootstrapped standard errors based on 500 repetitions. ***, **, * signify significance at the 1%, 5%, 10% level, respectively.

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
Panel A	$\therefore \Pr(S_t =$	$=i S_t^*=j_t$	$S_{t-1} = k)$						
i = E	98.2	77.7	64.1	47.6	8.3	11.4	35.8	10.4	1.5
	(0.03)	(0.76)	(0.38)	(0.72)	(0.63)	(0.57)	(0.33)	(0.41)	(0.03)
i = U	0.6	14.7	3.5	39.6	75.5	42.0	5.5	32.3	0.9
	(0.02)	(0.55)	(0.18)	(0.67)	(0.63)	(0.48)	(0.21)	(0.65)	(0.03)
i = N	1.2	7.5	32.5	12.9	16.2	46.6	58.7	57.2	97.6
	(0.02)	(0.38)	(0.45)	(0.39)	(0.42)	(0.68)	(0.36)	(0.67)	(0.04)
Panel E	$: \Pr(S_{t+1})$	$_{1} = i S_{t+1}^{*} $	$= j, S_t =$	k)					
i = E	98.9	74.5	56.7	59.4	8.7	9.2	45.1	6.6	0.9
	(0.02)	(0.49)	(0.34)	(0.51)	(0.33)	(0.36)	(0.30)	(0.32)	(0.02)
i = U	0.4	18.8	2.5	32.1	79.6	25.3	4.3	39.2	0.5
	(0.01)	(0.38)	(0.13)	(0.51)	(0.40)	(0.66)	(0.16)	(0.50)	(0.02)
i = N	0.7	6.7	40.8	8.5	11.7	65.5	50.6	54.2	98.6
	(0.01)	(0.30)	(0.34)	(0.29)	(0.35)	(0.64)	(0.29)	(0.53)	(0.03)
Panel C	: Testing	the statio	narity assu	umption, l	$\Pr\left(S_{t+1} S\right)$	$(_{t+1}^*, S_t) - I$	$\Pr\left(S_t S_t^*, t\right)$	$S_{t-1})$	
i = E	0.7***	-3.2***	-7.4***	11.8***	0.4	-2.2***	9.3***	-3.8***	-0.6***
	(0.04)	(0.83)	(0.46)	(0.73)	(0.76)	(0.65)	(0.40)	(0.52)	(0.03)
i = U	-0.2***	4.1***	-0.9***	-7.4***	4.1***	-16.6***	-1.1***	6.9** [*]	-0.4***
	(0.03)	(0.61)	(0.22)	(0.73)	(0.77)	(0.77)	(0.26)	(0.71)	(0.03)
i = N	-0.6***	-0.8*	8.3***	-4.4***	-4.5***	18.8***	-8.2***	-3.0***	1.0***
	(0.02)	(0.47)	(0.51)	(0.48)	(0.63)	(0.84)	(0.41)	(0.70)	(0.05)

Table G9: Robustness check for misclassification probabilities: using more flexible parametrization

		k = E			k = U			k = N	
	j = E	j = U	j = N	j = E	j = U	j = N	j = E	j = U	j = N
Panel A	A: $\Pr(S_t =$	$=i S_t^*=j,$	$S_{t-1} = k)$						
i = E	98.2	79.2	65.5	49.6	11.1	11.6	36.4	8.9	1.4
	(0.02)	(0.66)	(0.34)	(0.74)	(0.31)	(0.37)	(0.36)	(0.33)	(0.02)
i = U	0.6	13.5	3.4	38.7	72.2	40.0	5.1	30.9	0.9
	(0.01)	(0.45)	(0.11)	(0.68)	(0.39)	(0.70)	(0.21)	(0.55)	(0.02)
i = N	1.2	7.3	31.1	11.7	16.7	48.4	58.5	60.1	97.7
	(0.02)	(0.28)	(0.34)	(0.32)	(0.32)	(0.67)	(0.34)	(0.65)	(0.03)
Panel E	B: $\Pr\left(S_{t+1}\right)$	$1 = i S_{t+1}^*$	$= j, S_t = j$	k)					
i = E	98.8	74.3	55.9	59.1	8.5	9.7	46.5	8.0	0.9
	(0.02)	(0.40)	(0.32)	(0.52)	(0.37)	(0.32)	(0.31)	(0.31)	(0.01)
i = U	0.4	18.6	2.4	31.6	78.7	26.1	4.6	38.8	0.5
	(0.01)	(0.31)	(0.09)	(0.46)	(0.47)	(0.51)	(0.16)	(0.47)	(0.01)
i = N	0.8	7.2	41.7	9.3	12.8	64.2	48.8	53.2	98.6
	(0.01)	(0.22)	(0.33)	(0.29)	(0.27)	(0.54)	(0.30)	(0.50)	(0.02)
Panel C	C: Testing	the statio	narity assu	umption, 1	$\Pr\left(S_{t+1} S\right)$	$(S_{t+1}^*, S_t) - \mathbf{I}$	$\Pr\left(S_t S_t^*, S_t^*\right)$	$S_{t-1})$	
i = E	0.6***	-4.9***	-9.6***	9.5***	-2.6***	-1.9***	10.1***	-0.9***	-0.5***
	(0.02)	(0.60)	(0.35)	(0.50)	(0.36)	(0.21)	(0.34)	(0.37)	(0.02)
i = U	-0.2***	5.0***	-1.0***	-7.1***	6.5***	-13.9***	-0.4***	7.9***	-0.4***
	(0.01)	(0.42)	(0.08)	(0.56)	(0.51)	(0.63)	(0.14)	(0.60)	(0.02)
i = N	-0.4***	-0.2	10.6***	-2.4***	-3.9***	15.8***	-9.7***	-6.9***	0.9***
	(0.01)	(0.24)	(0.33)	(0.16)	(0.33)	(0.54)	(0.33)	(0.62)	(0.03)

Table G10: Robustness check for misclassification probabilities: sample attrition

				 Dn (· · · · · ·			
					$\mathscr{S}_{t+1} = i \mathscr{S}$	- /			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
(1) Aged 10	6-24, male	, and wh	ite						
Reported	91.2	2.8	6.1	27.9	45.4	26.8	10.0	6.1	83.9
	(0.04)	(0.02)	(0.03)	(0.18)	(0.19)	(0.18)	(0.05)	(0.04)	(0.06)
Corrected	83.3	6.8	9.9	34.5	46.6	18.8	16.4	9.4	74.2
	(0.04)	(0.02)	(0.03)	(0.18)	(0.19)	(0.18)	(0.05)	(0.04)	(0.06)
Difference	-7.9***	4.1***	3.8^{***}	6.7^{***}	1.3	-8.0***	6.3^{***}	3.3^{***}	-9.7***
	(0.45)	(0.37)	(0.27)	(2.34)	(2.15)	(0.80)	(0.47)	(0.43)	(0.53)
(2) Aged 10	6-24, male	, and nor	n-white						
Reported	88.6	3.6	7.7	18.2	49.8	32.1	6.8	7.1	86.1
	(0.09)	(0.06)	(0.08)	(0.23)	(0.30)	(0.28)	(0.07)	(0.08)	(0.10)
Corrected	80.1	7.9	12.0	28.3	39.2	32.5	11.5	10.8	77.7
	(0.09)	(0.06)	(0.08)	(0.23)	(0.30)	(0.28)	(0.07)	(0.08)	(0.10)
Difference	-8.5***	4.3***	4.2***	10.2***	-10.6***	0.4	4.7***	3.7***	-8.4***
	(0.43)	(0.32)	(0.30)	(1.87)	(1.57)	(0.91)	(0.28)	(0.38)	(0.40)
(3) Aged 10	6-24, fema	le, and w	hite						
Reported	91.3	2.0	6.7	27.8	40.6	31.6	9.3	4.8	85.9
-	(0.04)	(0.02)	(0.04)	(0.21)	(0.23)	(0.22)	(0.05)	(0.04)	(0.06)
Corrected	82.2	6.3	11.5	30.6	45.5	23.8	16.2	7.6	76.1
	(0.04)	(0.02)	(0.04)	(0.21)	(0.23)	(0.22)	(0.05)	(0.04)	(0.06)
Difference	-9.1***	4.3***	4.7***	2.8	5.0^{***}	-7.7***	6.9^{***}	2.9^{***}	-9.8***
	(0.48)	(0.39)	(0.31)	(2.17)	(1.79)	(0.98)	(0.44)	(0.33)	(0.47)
(4) Aged 10	6-24, fema	le, and n	on-white						
Reported	88.8	2.9	8.2	19.5	46.0	34.5	7.0	6.1	86.9
-	(0.10)	(0.05)	(0.08)	(0.27)	(0.34)	(0.32)	(0.07)	(0.07)	(0.09)
Corrected	79.3	8.1	12.6	28.8	39.5	31.7	11.4	9.7	78.9
	(0.10)	(0.05)	(0.08)	(0.27)	(0.34)	(0.32)	(0.07)	(0.07)	(0.09)
Difference	-9.5***	5.2^{***}	4.4***	9.3***	-6.5***	-2.8***	4.4***	3.6***	-8.0***
	(0.62)	(0.52)	(0.31)	(2.05)	(1.43)	(1.15)	(0.27)	(0.33)	(0.38)
(5) Aged 2	5-54, male	, and wh	ite						
Reported	97.9	1.1	0.9	29.0	57.4	13.6	8.8	5.3	85.9
-	(0.01)	(0.01)	(0.01)	(0.15)	(0.16)	(0.11)	(0.06)	(0.04)	(0.07)
Corrected	96.2	3.1	0.8	44.9	41.2	13.9	7.9	8.7	83.4
	(0.01)	(0.01)	(0.01)	(0.15)	(0.16)	(0.11)	(0.06)	(0.04)	(0.07)
Difference	-1.8***	2.0***	-0.2***	15.9***	-16.2***	0.3	-0.9***	3.4***	-2.5***
	(0.12)	(0.12)	(0.03)	(1.55)	(1.39)	(0.54)	(0.30)	(0.26)	(0.39)
(6) Aged 2	5-54, male	, and nor	n-white						
Reported	96.8	1.5	1.7	22.7	58.7	18.6	8.7	6.5	84.7
_	(0.02)	(0.02)	(0.02)	(0.21)	(0.25)	(0.21)	(0.09)	(0.08)	(0.11)
Corrected	93.9	4.0	2.1	39.5	37.9	22.6	13.2	13.2	73.6
	(0.02)	(0.02)	(0.02)	(0.21)	(0.25)	(0.21)	(0.09)	(0.08)	(0.11)
Difference	-2.9***	2.5^{***}	0.5^{***}	16.8^{***}	-20.8***	4.0***	4.5^{***}	6.7***	-11.1***
	(0.14)	(0.14)	(0.06)	(1.14)	(0.98)	(0.70)	(0.34)	(0.33)	(0.42)

Table G11: Transition probabilities by subgroups, averaged over 1996-2019

				Pr (S	$\mathscr{V}_{t+1} = i \mathscr{S}_t$	= j)			
	(E E)	(U E)	(N E)	(E U)	(U U)	(N U)	(E N)	(U N)	(N N)
(7) Aged 25	5-54, fema	le, and w	hite						
Reported	97.0	0.9	2.1	25.2	52.0	22.8	6.1	2.8	91.1
	(0.01)	(0.01)	(0.01)	(0.14)	(0.17)	(0.15)	(0.03)	(0.02)	(0.03)
Corrected	95.1	2.4	2.5	34.9	43.9	21.2	9.7	4.6	85.7
	(0.01)	(0.01)	(0.01)	(0.14)	(0.17)	(0.15)	(0.03)	(0.02)	(0.03)
Difference	-1.9***	1.5***	0.4^{***}	9.7***	-8.1***	-1.6*	3.6^{***}	1.8***	-5.4***
	(0.13)	(0.10)	(0.10)	(1.30)	(1.16)	(0.84)	(0.30)	(0.16)	(0.32)
(8) Aged 25	5-54, fema	le, and no	on-white						
Reported	96.4	1.2	2.4	19.3	56.2	24.5	6.6	4.6	88.9
	(0.02)	(0.01)	(0.02)	(0.20)	(0.25)	(0.22)	(0.05)	(0.04)	(0.07)
Corrected	93.0	3.6	3.5	31.3	39.9	28.8	11.0	9.0	79.9
	(0.02)	(0.01)	(0.02)	(0.20)	(0.25)	(0.22)	(0.05)	(0.04)	(0.07)
Difference	-3.4***	2.4^{***}	1.1^{***}	12.0***	-16.3^{***}	4.3***	4.5^{***}	4.5***	-8.9***
	(0.15)	(0.12)	(0.12)	(1.13)	(0.95)	(0.90)	(0.32)	(0.25)	(0.39)
(9) Aged 55	5 plus, ma	le, and w	hite						
Reported	95.9	0.8	3.3	22.5	55.4	22.2	2.1	0.6	97.3
	(0.02)	(0.01)	(0.02)	(0.27)	(0.33)	(0.26)	(0.01)	(0.01)	(0.02)
Corrected	93.3	2.1	4.5	37.5	34.1	28.4	3.7	1.0	95.3
	(0.02)	(0.01)	(0.02)	(0.27)	(0.33)	(0.26)	(0.01)	(0.01)	(0.02)
Difference	-2.6***	1.3***	1.3***	15.1***	-21.3***	6.3***	1.6***	0.4***	-2.0***
	(0.21)	(0.10)	(0.20)	(1.11)	(0.97)	(1.00)	(0.16)	(0.04)	(0.17)
(10) Aged 3	55 plus, m	ale, and	non-white	е					
Reported	95.2	1.1	3.7	16.9	56.3	26.8	2.0	1.0	97.0
-	(0.07)	(0.03)	(0.06)	(0.51)	(0.66)	(0.57)	(0.04)	(0.02)	(0.04)
Corrected	90.1	4.0	5.9	36.3	28.3	35.4	3.8	2.4	93.9
	(0.07)	(0.03)	(0.06)	(0.51)	(0.66)	(0.57)	(0.04)	(0.02)	(0.04)
Difference	-5.1***	2.9***	2.2***	19.4***	-27.9***	8.6***	1.7***	1.4***	-3.1***
	(0.24)	(0.19)	(0.18)	(1.03)	(0.78)	(1.08)	(0.12)	(0.07)	(0.14)
(11) Aged 3	55 plus, fe	male, and	l white						
Reported	95.4	0.7	3.8	21.6	52.2	26.3	1.5	0.4	98.1
-	(0.03)	(0.01)	(0.02)	(0.30)	(0.35)	(0.32)	(0.01)	(0.01)	(0.01)
Corrected	92.8	2.5	4.7	38.2	33.3	28.6	2.3	0.7	97.1
	(0.03)	(0.01)	(0.02)	(0.30)	(0.35)	(0.32)	(0.01)	(0.01)	(0.01)
Difference	-2.6***	1.7***	0.9***	16.6***	-18.9***	2.3**	0.8***	0.3***	-1.1***
	(0.24)	(0.13)	(0.21)	(1.25)	(0.96)	(1.19)	(0.10)	(0.03)	(0.11)
(12) Aged 3	55 plus, fe	male, and	l non-wh	ite					
Reported	94.8	0.9	4.3	17.9	52.0	30.1	1.6	0.7	97.7
	(0.07)	(0.03)	(0.07)	(0.58)	(0.74)	(0.66)	(0.03)	(0.02)	(0.03)
Corrected	89.0	4.7	6.3	38.3	26.9	34.8	2.5	1.7	95.8
	(0.07)	(0.03)	(0.07)	(0.58)	(0.74)	(0.66)	(0.03)	(0.02)	(0.03)
Difference	-5.8***	3.8***	2.0***	20.4***	-25.1***	4.7***	0.9***	1.0***	-1.9***
	(0.30)	(0.25)	(0.20)	(1.19)	(0.84)	(1.23)	(0.09)	(0.06)	(0.10)
	· /	· /	× /	× /	× /	· /	\ /	× /	· /

Table G11 (Continued): Transition probabilities by subgroups, averaged over 1996-2019

	$\Pr\left(S_{t+1}^* = i S_t^* = j, S_{t-1} = k\right)$ $(U E k) = (V E k) = (V V k)$										
	(E E,k)	(U E,k)	(N E,k)	(E U,k)	(U U,k)	(N U,k)	(E N,k)	(U N,k)	(N N,k)		
(1) Aged	l 16-24, ma	le, and whi	te								
k = E	93.1	3.7	3.2	51.3	35.4	13.3	60.5	19.4	20.1		
	(0.34)	(0.31)	(0.14)	(2.57)	(1.99)	(1.10)	(1.25)	(0.86)	(0.90)		
k = U	38.6	47.3	14.1	22.2	63.3	14.4	23.6	52.0	24.4		
	(1.76)	(1.70)	(0.79)	(1.52)	(2.42)	(1.21)	(1.25)	(1.57)	(1.12)		
k = N	26.0	15.3	58.6	25.1	43.7	31.2	6.5	4.5	89.0		
	(1.12)	(0.79)	(1.28)	(1.22)	(1.44)	(1.42)	(0.34)	(0.29)	(0.40)		
(2) Aged	l 16-24, ma	le, and non	-white								
k = E	92.5	3.6	3.9	47.1	28.6	24.3	55.8	20.9	23.3		
	(0.32)	(0.27)	(0.19)	(2.74)	(1.45)	(1.55)	(0.92)	(0.74)	(0.71)		
k = U	32.4	41.1	26.5	20.7	57.3	21.9	20.4	50.1	29.5		
	(0.97)	(0.88)	(0.72)	(1.16)	(1.84)	(1.01)	(0.78)	(1.31)	(1.04)		
k = N	29.3	20.8	49.9	22.8	28.2	49.0	4.5	4.8	90.7		
	(0.90)	(0.74)	(0.97)	(0.85)	(1.01)	(1.13)	(0.25)	(0.32)	(0.37)		
(3) Aged	l 16-24, fen	nale, and w	hite								
k = E	92.0	3.3	4.7	46.6	34.5	19.0	65.5	15.6	18.9		
	(0.32)	(0.30)	(0.18)	(2.74)	(1.76)	(1.50)	(1.44)	(1.00)	(1.04)		
k = U	37.9	41.9	20.2	19.0	62.5	18.5	21.5	52.9	25.6		
	(1.77)	(1.52)	(0.87)	(1.30)	(1.88)	(1.01)	(1.21)	(1.53)	(1.04)		
k = N	27.5	17.4	55.1	24.3	42.0	33.8	4.6	3.4	92.0		
	(1.26)	(0.94)	(1.46)	(1.05)	(1.36)	(1.43)	(0.23)	(0.23)	(0.27)		
(4) Aged	l 16-24, fen	nale, and no	on-white								
k = E	91.8	4.0	4.2	47.5	28.0	24.4	56.0	21.2	22.9		
	(0.46)	(0.43)	(0.21)	(3.05)	(1.36)	(1.91)	(0.92)	(0.81)	(0.77)		
k = U	34.5	38.9	26.6	20.5	56.7	22.8	21.5	47.8	30.7		
	(1.36)	(1.09)	(0.70)	(0.89)	(1.46)	(0.96)	(0.75)	(1.12)	(1.03)		
k = N	27.1	22.1	50.8	22.7	32.5	44.9	4.0	5.0	91.0		
	(0.97)	(0.86)	(1.03)	(0.84)	(1.20)	(1.23)	(0.21)	(0.32)	(0.36)		
(5) Aged	l 25-54, ma	le, and whi	te								
k = E	98.1	1.6	0.3	58.1	32.2	9.7	38.1	25.2	36.7		
	(0.08)	(0.08)	(0.02)	(1.75)	(1.53)	(0.60)	(1.43)	(0.97)	(1.31)		
k = U	34.7	59.8	5.6	25.4	62.2	12.4	17.8	55.1	27.1		
~	(1.42)	(1.42)	(0.27)	(1.15)	(1.53)	(0.80)	(0.73)	(1.25)	(1.14)		
k = N	44.2	23.8	32.0	21.9	36.6	41.4	1.1	1.4	97.6		
	(1.18)	(0.97)	(1.18)	(0.72)	(1.17)	(1.28)	(0.05)	(0.07)	(0.09)		
(6) Aged	l 25-54, ma	le, and non	-white								
k = E	97.2	2.0	0.8	57.9	28.3	13.8	52.2	24.7	23.1		
	(0.12)	(0.12)	(0.04)	(1.36)	(1.17)	(0.75)	(1.08)	(0.84)	(0.86)		
k = U	31.7	53.0	15.3	23.6	58.1	18.4	19.9	55.9	24.2		
-	(1.13)	(1.09)	(0.62)	(0.88)	(1.35)	(0.83)	(0.70)	(1.10)	(0.93)		
k = N	34.6	25.9	39.5	18.9	28.5	52.6	2.3	3.1	94.5		
	0 1.0	-0.0	(1.16)	(0.63)	(0.89)	(1.04)	(0.10)	(0.13)	(0.16)		

Table G12: Transition probabilities with a lagged reported status by subgroups, averaged over 1996-2019

				$\Pr\left(S_{t+1}^*\right)$	$=i S_t^*=j,$	$S_{t-1} = k)$			
	(E E,k)	(U E,k)	(N E,k)	(E U,k)	(U U,k)	(N U,k)	(E N,k)	(U N,k)	(N N,k)
(7) Age	d 25-54, fen	nale, and w	hite						
$\dot{k} = E$	98.1	1.2	0.8	47.0	34.9	18.2	54.8	9.6	35.6
	(0.07)	(0.07)	(0.04)	(1.74)	(1.46)	(1.05)	(1.26)	(0.58)	(1.09)
k = U	38.8	50.8	10.4	21.4	63.2	15.4	13.6	56.3	30.1
	(1.61)	(1.58)	(0.50)	(0.98)	(1.34)	(0.86)	(0.66)	(1.52)	(1.42)
k = N	38.1	14.1	47.8	27.1	38.6	34.3	1.4	1.2	97.4
	(1.26)	(0.73)	(1.46)	(0.97)	(1.43)	(1.58)	(0.07)	(0.06)	(0.09)
(8) Age	d 25-54, fen	nale, and n	on-white						
$\dot{k} = E$	97.3	1.6	1.1	54.0	27.6	18.4	62.0	18.1	19.9
	(0.10)	(0.09)	(0.05)	(1.49)	(1.12)	(1.01)	(1.22)	(0.79)	(0.93)
k = U	31.7	48.8	19.4	18.4	63.4	18.2	17.6	62.0	20.5
	(1.10)	(1.10)	(0.67)	(0.83)	(1.42)	(0.90)	(0.70)	(1.02)	(0.86)
k = N	34.1	22.2	43.6	16.5	31.8	51.7	1.9	2.4	95.7
	(1.23)	(0.93)	(1.47)	(0.63)	(1.14)	(1.22)	(0.09)	(0.12)	(0.15)
(9) Age	d 55 plus, r	nale, and w	hite						
k = E	97.8	1.1	1.1	54.8	24.1	21.1	51.7	7.1	41.2
	(0.11)	(0.08)	(0.07)	(1.42)	(1.10)	(0.96)	(1.49)	(0.43)	(1.40)
k = U	32.2	48.5	19.3	21.7	60.3	18.0	24.2	45.0	30.8
	(1.08)	(1.10)	(0.62)	(0.83)	(1.25)	(0.77)	(0.67)	(1.22)	(1.07)
k = N	32.6	8.4	59.0	24.5	22.1	53.4	0.5	0.2	99.2
	(1.35)	(0.59)	(1.57)	(0.99)	(1.09)	(1.68)	(0.03)	(0.01)	(0.04)
(10) Ag	ed 55 plus,	male, and	non-white						
k = E	95.8	2.3	2.0	54.2	23.9	21.9	52.5	22.2	25.2
	(0.20)	(0.18)	(0.10)	(1.04)	(0.63)	(0.88)	(0.99)	(0.81)	(0.83)
k = U	31.3	37.6	31.1	26.7	45.5	27.8	29.1	39.2	31.7
	(0.35)	(0.40)	(0.37)	(0.55)	(0.94)	(0.63)	(0.40)	(0.55)	(0.54)
k = N	23.3	20.9	55.9	21.5	21.5	57.0	1.0	0.9	98.1
	(0.63)	(0.73)	(1.00)	(0.78)	(0.64)	(1.14)	(0.04)	(0.05)	(0.06)
	ged 55 plus,								
k = E	97.2	1.4	1.4	54.9	23.9	21.2	54.3	8.2	37.6
	(0.13)	(0.11)	(0.07)	(1.52)	(1.01)	(1.02)	(1.49)	(0.49)	(1.37)
k = U	31.7	45.6	22.7	20.9	59.6	19.6	23.6	43.8	32.6
	(0.78)	(0.86)	(0.64)	(0.71)	(1.11)	(0.78)	(0.63)	(1.02)	(1.04)
k = N	37.9	10.7	51.4	25.3	22.6	52.1	0.3	0.2	99.5
	(1.61)	(0.80)	(1.82)	(1.08)	(1.29)	(2.02)	(0.02)	(0.01)	(0.02)
. , .	ged 55 plus,	,			ac -		F O :		
k = E	95.3	2.8	2.0	56.5	23.7	19.8	50.4	23.4	26.2
	(0.25)	(0.23)	(0.10)	(1.11)	(0.62)	(0.94)	(1.04)	(0.81)	(0.87)
k = U	31.7	37.4	30.9	27.3	44.2	28.5	29.6	38.4	32.0
	(0.33)	(0.40)	(0.36)	(0.52)	(0.97)	(0.66)	(0.38)	(0.49)	(0.53)
k = N	25.1	22.1	52.8	21.4	22.5	56.1	0.7	0.7	98.6
	(0.79)	(0.88)	(1.12)	(0.82)	(0.71)	(1.19)	(0.03)	(0.04)	(0.05)

Table G12 (Continued): Transition probabilities with a lagged reported status by subgroups, averaged over 1996-2019

						$\frac{1}{\Pr\left(S_{t+1}^*\right)} =$			
	$\Delta^{p-q}_{E E}$	$\Delta_{U E}^{p-q}$	$\Delta^{p-q}_{N E}$	$\Delta_{E U}^{p-q}$	$\Delta^{p-q}_{U U}$	$\Delta_{N U}^{p-q}$	$\Delta_{E N}^{p-q}$	$\Delta^{p-q}_{U N}$	$\Delta^{p-q}_{N N}$
(1) Aged 16-24	, male, and	d white							
p = E, q = U	54.5^{***}	-43.6***	-10.9^{***}	29.0^{***}	-27.9^{***}	-1.1	36.9^{***}	-32.6***	-4.3***
	(1.56)	(1.50)	(0.77)	(1.86)	(1.93)	(1.90)	(1.71)	(1.64)	(1.36)
p = E, q = N	67.1***	-11.7***	-55.4***	26.1^{***}	-8.2***	-17.9^{***}	54.0^{***}	14.9^{***}	-68.9***
	(1.06)	(0.75)	(1.25)	(2.40)	(2.00)	(1.78)	(1.23)	(0.85)	(0.93)
p = U, q = N	12.6^{***}	31.9^{***}	-44.5***	-2.9*	19.7***	-16.8^{***}	17.0^{***}	47.5^{***}	-64.5***
	(1.82)	(1.68)	(1.44)	(1.48)	(2.20)	(1.67)	(1.16)	(1.44)	(1.09)
(2) Aged 16-24	, male, and	d non-white	9						
p = E, q = U	60.1^{***}	-37.5***	-22.5***	26.4^{***}	-28.8***	2.4	35.3^{***}	-29.2***	-6.1***
	(0.87)	(0.81)	(0.71)	(2.15)	(1.46)	(2.12)	(1.17)	(1.51)	(1.17)
p = E, q = N	63.2***	-17.2***	-46.0***	24.4***	0.4	-24.7***	51.3***	16.0***	-67.3***
	(0.88)	(0.69)	(0.95)	(2.58)	(1.56)	(1.90)	(0.93)	(0.83)	(0.75)
p = U, q = N	3.1***	20.3***	-23.4***	-2.0*	29.2***	-27.1***	15.9^{***}	45.2***	-61.2***
	(1.21)	(0.97)	(1.11)	(1.09)	(1.68)	(1.39)	(0.76)	(1.14)	(0.95)
(3) Aged 16-24	, female, a	and white							
p = E, q = U	54.0***	-38.5***	-15.5***	27.6***	-28.1***	0.5	44.0***	-37.3***	-6.7***
. , .	(1.60)	(1.34)	(0.88)	(2.04)	(1.72)	(1.94)	(1.96)	(1.84)	(1.42)
p = E, q = N	64.5***	-14.0***	-50.5***	22.3***	-7.5***	-14.8***	60.9***	12.2***	-73.1***
	(1.17)	(0.84)	(1.41)	(2.77)	(1.97)	(2.19)	(1.43)	(1.02)	(1.04)
p = U, q = N	10.5^{***}	24.5^{***}	-35.0***	-5.3***	20.6^{***}	-15.3***	16.9^{***}	49.5^{***}	-66.4***
	(1.78)	(1.43)	(1.59)	(1.43)	(1.82)	(1.50)	(1.15)	(1.40)	(1.01)
(4) Aged 16-24	, female, a	nd non-whi	te						
p = E, q = U	57.4***	-34.9***	-22.4***	27.1***	-28.7***	1.6	34.5***	-26.6***	-7.8***
. , .	(1.09)	(0.86)	(0.71)	(2.71)	(1.48)	(2.20)	(1.22)	(1.45)	(1.26)
p = E, q = N	64.7***	-18.1***	-46.6***	24.9***	-4.4***	-20.4***	52.0***	16.2***	-68.1***
	(0.89)	(0.74)	(1.01)	(2.96)	(1.53)	(2.29)	(0.93)	(0.88)	(0.79)
p = U, q = N	7.4***	16.8^{***}	-24.2***	-2.2**	24.3^{***}	-22.1***	17.5^{***}	42.8^{***}	-60.3***
	(1.28)	(1.06)	(1.16)	(0.97)	(1.45)	(1.37)	(0.72)	(1.00)	(0.94)
(5) Aged 25-54	, male, and	d white							
p = E, q = U	63.4***	-58.1***	-5.3***	32.8***	-30.0***	-2.7***	20.3***	-29.9***	9.6***
~ / £ `	(1.36)	(1.37)	(0.26)	(1.54)	(1.57)	(0.97)	(1.48)	(1.32)	(1.54)
p = E, q = N	53.9***	-22.2***	-31.7***	36.2***	-4.4***	-31.8***	37.0***	23.8***	-60.8***
- , *	(1.16)	(0.95)	(1.17)	(1.79)	(1.80)	(1.38)	(1.42)	(0.96)	(1.30)
p = U, q = N	-9.5***	35.9^{***}	-26.5***	3.4***	25.6***	-29.1***	16.7***	53.7***	-70.5***
	(1.49)	(1.28)	(1.13)	(1.25)	(1.70)	(1.33)	(0.72)	(1.24)	(1.13)
(6) Aged 25-54	, male. and	d non-white)						
p = E, q = U	65.5***	-51.0***	-14.5***	34.3***	-29.8***	-4.5***	32.3***	-31.2***	-1.1***
. ,1 ,	(1.07)	(1.03)	(0.61)	(1.35)	(1.42)	(0.99)	(1.19)	(1.12)	(1.15)
p = E, q = N	62.5***	-23.9***	-38.7***	38.9***	-0.1	-38.8***	49.9***	21.6***	-71.5***
- , *	(1.06)	(0.82)	(1.14)	(1.42)	(1.34)	(1.25)	(1.07)	(0.81)	(0.86)
p = U, q = N	-2.9***	27.1***	-24.2***	4.6***	29.6***	-34.2***	17.6***	52.8***	-70.4***
- / 4	(1.20)	(1.08)	(1.17)	(0.96)	(1.35)	(1.18)	(0.70)	(1.07)	(0.90)
	. /	. /	. ,	. ,	. ,	. ,	. ,	. ,	. ,

Table G13: Testing the first-order Markov assumption by subgroups

$ \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline \hline & \begin{array}{ c } \hline & \begin{array}{ c } \hline \hline \hline & \begin{array}{ c } \hline \hline \hline & \begin{array}{ c } \hline \hline \hline \hline & \begin{array}{ c } \hline \hline \hline \end{array} \\ \hline \hline \hline \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \hline \end{array} \end{array} \end{array} \\ \hline \hline \end{array} \end{array} \end{array} \\ \hline \hline \end{array} \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} = \begin{array}{ c } \hline \hline \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} \end{array}$			$\Delta^{p-q} = \Pr(S^* - iS_{-1} - m) = \Pr(S^* - iS_{-1} - m)$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10							• <i>n</i> - <i>a</i>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta_{E E}^{P-q}$	$\Delta^p_{U E}$	$\Delta_{N E}^{P-q}$	$\Delta_{E U}^{p-q}$	$\Delta^p_{U U}$	$\Delta_{N U}^{P-q}$	$\Delta_{E N}^{p-q}$	$\Delta^{P}_{U N}$	$\Delta_{N N}^{p-q}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7) Aged 25-54										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = U	59.3^{***}	-49.6***	-9.6***	25.6^{***}	-28.3***	2.7^{**}	41.2***	-46.7***	5.5^{***}	
$ \begin{array}{c} \begin{array}{c} (1.23) & (0,70) & (1.44) & (1.87) & (1.88) & (1.90) & (1.24) & (0.57) & (1.08) \\ p = U, q = N & 0.7 & 36.7^{***} & -37.4^{***} & -5.7^{***} & 24.6^{***} & -18.8^{***} & 12.2^{***} & 55.1^{***} & -67.3^{***} \\ (1.77) & (1.46) & (1.43) & (1.20) & (1.68) & (1.72) & (0.50) & (1.50) & (1.41) \\ \end{array} \\ \begin{array}{c} (8) \mbox{ Aged } 25.54, \mbox{ female, and non-white} \\ p = E, q = U & 65.5^{***} & -47.2^{***} & -18.3^{***} & 35.6^{***} & -35.8^{***} & 0.3 & 44.4^{***} & -43.9^{***} & -0.5 \\ \hline (1.05) & (1.06) & (0.67) & (1.60) & (1.57) & (1.21) & (1.34) & (1.17) & (1.19) \\ p = E, q = N & 63.1^{***} & -20.6^{***} & -42.5^{***} & 37.5^{***} & -4.2^{***} & -33.2^{***} & 60.1^{***} & 15.6^{***} & -75.8^{***} \\ \hline (1.20) & (0.90) & (1.44) & (1.48) & (1.50) & (1.53) & (1.21) & (0.78) & (0.92) \\ p = U, q = N & -2.4^{*} & 26.6^{***} & -24.2^{***} & 1.9^{***} & 31.6^{***} & -35.5^{***} & 15.7^{***} & -37.9^{***} & 10.4^{***} \\ \hline (1.36) & (1.22) & (1.47) & (0.84) & (1.53) & (1.36) & (0.70) & (1.00) & (0.83) \\ \end{array} \\ \begin{array}{c} (9) \mbox{ Aged } 55 \ plus, male, and white \\ p = E, q = U & 65.6^{***} & -47.4^{***} & -18.2^{***} & 33.1^{***} & -36.2^{***} & 3.1^{***} & -37.9^{***} & 10.4^{***} \\ \hline (1.03) & (1.05) & (0.62) & (1.47) & (1.42) & (1.12) & (1.49) & (1.10) & (1.55) \\ p = E, q = N & 65.1^{***} & -75.8^{***} & 30.3^{***} & 2.0 & -32.3^{***} & 51.2^{***} & -37.9^{***} & 10.4^{***} \\ \hline (1.62) & (1.06) & (1.62) & (1.18) & (1.53) & (1.73) & (1.66) & (1.21) & (1.69) \\ \hline (10) \ \ Aged 55 \ plus, male, and non-white \\ p = E, q = U & 64.4^{***} & -35.4^{***} & 22.4^{***} & 21.6^{***} & -35.4^{***} & 23.4^{***} & -64.4^{***} \\ \hline (0.33) & (0.40) & (0.37) & (1.61) & (1.03) & (1.01) & (0.89) & (0.99) \\ p = E, q = N & 72.5^{**} & 18.6^{**} & -53.9^{***} & 32.6^{***} & 25.6^{***} & 23.4^{***} & 17.0^{***} & -72.4^{***} \\ p = L, q = N & 72.5^{**} & 18.6^{**} & -23.9^{***} & 32.6^{***} & 25.6^{***} & 23.4^{***} & 21.4^{***} & -64.4^{***} \\ p = E, q = N & 72.5^{**} & 18.6^{**} & -23.9^{***} & 32.6^{***} & 22.6^{***} & 23.4^{***} & 21.6^{***} & 23.$		(1.57)	(1.53)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = N	59.9^{***}		-47.0***	19.8^{***}	-3.8**		53.4^{***}	8.4***	-61.8^{***}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.23)	(0.70)	()	(1.87)			· · · ·	· · · ·	· · · ·	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	p = U, q = N										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.77)	(1.46)	(1.43)	(1.20)	(1.68)	(1.72)	(0.65)	(1.50)	(1.41)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = U	65.5^{***}		-18.3***		-35.8***					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							· · · ·				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p = E, q = N										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	** **	. ,									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	p = U, q = N										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.36)	(1.22)	(1.47)	(0.84)	(1.53)	(1.36)	(0.70)	(1.00)	(0.83)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p = E, q = U	65.6^{***}	-47.4***	-18.2^{***}		-36.2***	-	27.5^{***}	-37.9***	10.4^{***}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						· /	· · · ·				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = N							-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,				· · · ·	· · ·				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = U, q = N										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.62)	(1.06)	(1.62)	(1.18)	(1.53)	(1.73)	(0.66)	(1.21)	(1.06)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(10) Aged 55 p	lus, male,									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = U	64.4^{***}			27.4^{***}			23.4***	-17.0***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(1.03)		· · · ·	· · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p = E, q = N								-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.70)					(0.98)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = U, q = N				-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.72)	(0.75)	(1.05)	(0.85)	(1.07)	(1.32)	(0.39)	(0.54)	(0.52)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(11) Aged 55 plus, female, and white										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p=E, q=U	65.6^{***}		-21.3***		-35.7***		30.7^{***}	-35.6***	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(0.83)			· /		(1.53)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p = E, q = N										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			· /		(1.89)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p = U, q = N										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.65)	(1.08)	(1.80)	(1.23)	(1.54)	(2.02)	(0.63)	(1.02)	(1.03)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ p = E, q = N \begin{array}{ccccccccccccccccccccccccccccccccccc$				-29.0***	29.3***	-20.6***	-8.7***	20.8^{***}	-15.0***	-5.8***	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$p = U, q = N \qquad 6.6^{***} \qquad 15.3^{***} \qquad -21.9^{***} \qquad 5.9^{***} \qquad 21.8^{***} \qquad -27.7^{***} \qquad 28.9^{***} \qquad 37.7^{***} \qquad -66.6^{***} \qquad -66.6^{**} \qquad -66.6^{**} \qquad -66.6^{**} \qquad -66.6^{**} \qquad -66.6^{**} \qquad -66.6^{*} \qquad $	p = E, q = N	70.2^{***}		-50.9***						-72.5***	
							· · · ·				
(0.84) (0.88) (1.14) (0.88) (1.05) (1.32) (0.38) (0.48) (0.52)	p = U, q = N										
		(0.84)	(0.88)	(1.14)	(0.88)	(1.05)	(1.32)	(0.38)	(0.48)	(0.52)	

Table G13 (Continued): Testing the first-order Markov assumption by subgroups

References

- Feng, Shuaizhang, and Yingyao Hu. 2013. "Misclassification errors and the underestimation of the US unemployment rate." *American Economic Review* 103 (2): 1054–1070.
- Feng, Shuaizhang, Yingyao Hu, and Jiandong Sun. 2022. "Rotation group bias and the persistence of misclassification errors in the Current Population Surveys." *Econometric Reviews* 41 (9): 1077–1094.
- Hu, Yingyao. 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution." *Journal of Econometrics* 144 (1): 27–61.