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Abstract

This paper presents identification and estimation results for a flexible state space

model. Our modification of the canonical model allows the permanent component to

follow a unit root process and the transitory component to follow a semiparametric model

of a higher-order autoregressive-moving-average (ARMA) process. Using panel data of

observed earnings, we establish identification of the nonparametric joint distributions for

each of the permanent and transitory components over time. We apply the identification

and estimation method to the earnings dynamics of U.S. men using the Panel Survey of

Income Dynamics (PSID). The results show that the marginal distributions of permanent

and transitory earnings components are more dispersed, more skewed, and have fatter tails

than the normal and that earnings mobility is much lower than for the normal. We also

find strong evidence for the existence of higher-order ARMA processes in the transitory

component, which lead to much different estimates of the distributions of and earnings

mobility in the permanent component, implying that misspecification of the process for

transitory earnings can affect estimated distributions of the permanent component and

estimated earnings dynamics of that component. Thus our flexible model implies earnings

dynamics for U.S. men different from much of the prior literature.
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1 Introduction

Methods of estimating models with panel data have a long history. Those methods were first

developed in the 1950s and 1960s for panel data sets of firms and of state aggregates for con-

sumption (see Nerlove (2002) for a recounting of this period of development and for the key

historical references). What we term the “canonical” model was developed in that period,

consisting of a permanent component and a transitory component, distributed independently

of each other. In some variants, the transitory component was assumed to follow a simple low-

order ARMA process. Because of its simplicity, its intuition, and its alignment with economic

theories which have permanent and transitory processes, the model has been enormously influ-

ential and has found applications in dozens of areas. Models of earnings dynamics, consumption

dynamics, dynamics for firms or industries, and dynamics for individual health, student aca-

demic achievement, and other individual outcomes are just a few examples of applications.

This paper considers the identification and estimation of the canonical model under non-

parametric assumptions on the unobservables. While the literature on panel data models

since their development is enormous, most papers have generalized the model with additional

parametric features (random walks, random growth terms, higher-order ARMAs, and other

stochastic processes) and most have concerned themselves with fitting the parameters of the

model only to the second moments of the data and hence fitting only the second moments of

the unobservables. Our goals are to determine under what assumptions the full distribution of

the unobservables in the model can be nonparametrically identified, to provide an estimator

for the relevant distributions, and to provide an empirical application.

We first establish identification for our model, which is a somewhat modified version of the

canonical model in several respects. For example, we allow a slightly generalized version of the

common MA process, allowing it to be nonlinear; we allow the AR process to be nonstationary

and to change with age; and we do not assume the shocks in each period to be i.i.d. We

prove identification of the model by showing that the key unobserved elements have repeated

measurements with classical measurement errors. We can, therefore, make use of the Kotlarski’s

identity (Kotlarski, 1967; Rao, 1992; Li and Vuong, 1998; Schennach, 2004; Bonhomme and

Robin, 2010; Evdokimov, 2010) to provide closed-form identification of the distribution of

the unobservables. In the identification of the generalized MA process, we rely on a recently

developed result for nonlinear measurement error models (Schennach and Hu, 2013). We also

provide an estimator based on deconvolution methods, which is similar to the existing estimators

developed for this closed-form identification results (Li and Vuong, 1998). An advantage of

this closed-form estimator is that it requires many fewer nuisance parameters than alternative

semiparametric estimators.
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Prior work on nonparametric identification and estimation of the canonical model and ex-

panded versions of it include Horowitz and Markatou (1996) and Bonhomme and Robin (2010).

Our paper differs from those by its approach. While the existing identification results for dy-

namic models with latent variables rely on a Markovian property of the dynamic structure, our

paper complements the existing literature by showing the identification of a semiparametric

unit-root process of a permanent state variable and a semiparametric non-Markovian process

of a transitory state variable. In particular, the transitory state variable is generated by an

ARMA process and does not follow a finite-order Markov process.1 Nonparametric approaches

applied to earnings dynamics models have also been developed by Geweke and Keane (2000),

who allow some of the unobservables to be a mixture of normals, and by Arellano, Blundell,

and Bonhomme (2017), who replace the unit root process on the permanent component with a

nonparametric autoregressive function while maintaining an independence assumption for the

transitory error. Our model keeps the unit root process and allow the transitory shocks to

follow a semiparametric ARMA process as in the canonical models. As mentioned above, such

a process of the transitory state is not Markovian and therefore can capture different dynamic

structures. As for methodology, Arellano, Blundell, and Bonhomme (2017) use the results in

Hu and Schennach (2008) for a general nonlinear nonclassical measurement error model with

three observables. Our paper uses the Kotlarski’s identity (Kotlarski, 1967; Rao, 1992; Li and

Vuong, 1998; Schennach, 2004; Bonhomme and Robin, 2010; Evdokimov, 2010) and the results

in Schennach and Hu (2013) for a nonlinear model with classical measurement errors when only

two observables are available.

We also provide an application to the earnings dynamics of U.S. men using the Panel Study

on Income Dynamics (PSID), the data set most commonly used in the literature on estimating

models of individual earnings dynamics. There is a very large literature on applications to

earnings dynamics models, going back to early work by Hause (1977), Lillard and Willis (1978),

MaCurdy (1982), and Abowd and Card (1989), followed by many contributions including those

by Horowitz and Markatou (1996), Baker (1997), Meghir and Pistaferri (2004), Guvenen (2007,

2009), Bonhomme and Robin (2010), Browning, Ejrnaes, and Alvarez (2010), Hryshko (2012),

Jensen and Shore (2014), Arellano, Blundell, and Bonhomme (2017), and Botosaru and Sasaki

(2018). A review of this literature, including studies which have allowed the dynamic processes

to shift with calendar time, can be found in Moffitt and Zhang (2018).

Our results show that the marginal distributions of log earnings of U.S. men are nonnormal,

with significant skewness and fatter tails of both the permanent and transitory components

of earnings than the normal. We also find earnings dynamics very different than the normal,

for our results show that the likelihood of remaining in a lower tail of the permanent earnings

1In fact, the AR process is a higher-order Markov process, but the MA process is not a finite-order Markov.
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distribution does not fall over time as much, suggesting considerably less earnings mobility than

would be found with a multivariate normality assumption. Another important finding from

our empirical analysis is that the estimates of the marginal distributions as well of persistence

and dynamics of permanent earnings are very sensitive to the degree of persistence in the

transitory component. We find evidence for the existence of higher-order ARMA processes in

the transitory component and that, with such higher-order processes, the permanent component

of earnings has much less variability in marginal distributions and less mobility over time.

Thus the transitory component makes a much stronger relative contribution to the marginal

earnings distributions and to earnings mobility than in much of the prior literature, which

often allows much less persistence in the transitory component. Finally, we consider earnings

dynamics in subsamples of men with strong labor force attachment and of married men (both

subsamples have been studied in the literature), finding both subsamples to have lower variances

of permanent and transitory shocks than for the full population but also more earnings mobility

than that population.

The rest of the paper is organized as follows. Section 2 introduces a generalized semipara-

metric canonical model of earnings dynamics. Section 3 presents an informal illustration of the

identification strategy. Section 4 presents the formal identification results. Section 5 proposes

estimators. Section 6 presents the empirical application. Section 7 concludes. Mathematical

proofs, large sample properties, and additional empirical results are found in the appendix and

the supplementary material.

2 The Semiparametric State Space Model

We consider the following setup of a semiparametric state space model. The measurement Yt

in time t is decomposed into two independent components:

Yt = Ut + Vt. (2.1)

The first one, Ut is the permanent state which follows the unit root process:

Ut = Ut−1 + ηt (2.2)

with innovation ηt. The second one, Vt is the transitory state which follows the ARMA(p,q)

process:

Vt = ρt,1Vt−1 + ρt,2Vt−2 · · ·+ ρt,pVt−p +Gt (εt, εt−1, · · · , εt−q) . (2.3)

For a short-hand notation, we write the vector of the AR coefficients by ρt = (ρt,1, · · · , ρt,p)′.
Note that the time effect is the source of non-stationarity in this model both through the

time-varying ARMA specifications (i.e, ρt and Gt) and through arbitrary time variations in the

4



distributions of the primitives (i.e., ηt and εt). Because of the nonparametric specification of

these time-varying distributions of the primitives, the time effect may appear in higher-order

moments as well as in the first moment e.g., as commonly introduced by additive time effects in

(2.1), as is common in applications. In contrast to much of the literature, we allow arbitrarily

high-order ARMA processes and this will be a major feature of our empirical application in

Section 6.

Our first goal in this paper is the identification of the nonparametric distributions of Ut,

Vt, ηt, and εt as well as the function Gt and the AR parameters ρt in this state space model.

The following example illustrates an application of this general framework to a semiparametric

model of earnings dynamics.

Example 1 (The Model of Earnings Dynamics). One application is the model of earnings

dynamics, where the measurement Yt is the observed earnings at age t, the permanent state Ut

is the permanent component of earnings at age t, the innovation ηt is the permanent shock at

age t, and the transitory state Vt is the transitory component of earnings at age t.

3 An Illustration of the Identification Strategy

For an illustration, we focus on the model where the permanent state follows the unit root

process and the transitory state follows an ARMA(1,1) process. The general identification

results will follow in Section 4. In a random sample, we observe the joint distribution of Yt

for periods t = 1, 2, · · · , T . While we keep the parts (2.1) and (2.2) of the general model, the

ARMA part (2.3) simplifies to

Vt = ρtVt−1 +Gt (εt, εt−1) (3.1)

in the current section. The unknown coefficient ρt and the unknown function Gt may be time-

varying. Furthermore, we do not require a parametric or semiparametric specification of Gt.

We assume the following independence condition.

Assumption 1. (i) The random variables ηT , · · · , η1, U0, εT , · · · , ε1, and the random vector

(ε0, V0) are mutually independent, i.e.,

f (ηT , · · · , η1, U0, εT , · · · , ε1, ε0, V0) = f (ηT ) · · · f(η1)f(U0)f(εT ) · · · f(ε1)f (ε0, V0) .

(ii) (ηT , · · · , η1, U0, V0) have zero means and E [Gt (εt, εt−1)] = 0 for t ∈ {1, · · · , T}.

This assumption implies that process {Ut} is independent of process {Vt}. We leave the

marginal distributions of ηt and εt unspecified and allow them to vary arbitrarily with t. In this
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setup, we are interested in identification of the nonparametric distributions of the primitives

εt and ηt, the structures ρt and Gt, and the nonparametric distributions of the components Ut

and Vt. Our identification strategy is illustrated below in four steps.

3.1 Step 1: Identification of fVt

Consider the first difference:

∆Yt+1 = Yt+1 − Yt = (Ut+1 − Ut) + (Vt+1 − Vt) = ηt+1 + Vt+1 − Vt. (3.2)

This equation implies that we may replace Vt+1 by Vt, ηt+1 and ∆Yt+1 as

Vt+1 = Vt − ηt+1 + ∆Yt+1. (3.3)

Consider the following first difference for the next time period:

∆Yt+2 = Yt+2 − Yt+1 (3.4)

= ηt+2 + Vt+2 − Vt+1 = (ρt+2 − 1)Vt+1 +Gt+2 (εt+2, εt+1) + ηt+2.

Replacing Vt+1 by the expression in equation (3.3), we obtain

∆Yt+2

ρt+2 − 1
−∆Yt+1 = Vt +

Gt+2 (εt+2, εt+1) + ηt+2

ρt+2 − 1
− ηt+1 ≡ Vt + et+1. (3.5)

With the pair of equations (2.1) and (3.5), we obtain two measurements, ∆Yt+2

ρt+2−1
−∆Yt+1 and Yt

up to an unknown scalar parameter ρt+2, of the latent variable Vt with classical measurement

errors, Ut and et+1, satisfying the mutual independence among Vt, Ut and et+1. By Kotlarski’s

identity (under regularity conditions to be formally stated as Assumptions 9 and 10 in Section

4 for the general setup), the distribution of Vt is identified up to the unknown scalar parameter

ρt+2 as

fVt(v) =
1

2π

∫ ∞
−∞

e−iτvφVt(τ)dτ, where i =
√
−1 (3.6)

φVt(τ) = exp

∫ τ

0

iE
[(

∆Yt+2

ρt+2−1
−∆Yt+1

)
exp (isYt)

]
E [exp (isYt)]

ds

 .
For the current step, a well-definition of the last identifying formula requires the following

non-unit root assumption for the transitory state.

Assumption 2. ρt 6= 1 for all t.
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3.2 Step 2: Identification of ρt

The previous step shows identification of fVt up to the unknown scalar parameter ρt. We now

discuss alternative routes of identifying the AR parameter ρt. Combining (3.1) and (3.4), we

obtain

∆Yt+2 = (ρt+2 − 1)Vt+1 +Gt+2 (εt+2, εt+1) + ηt+2

= (ρt+2 − 1) (ρt+1Vt +Gt+1 (εt+1, εt)) +Gt+2 (εt+2, εt+1) + ηt+2 (3.7)

Eliminating Vt with (3.5) yields

∆Yt+2

(ρt+2 − 1) ρt+1

−
(

∆Yt+2

ρt+2 − 1
−∆Yt+1

)
=

(ρt+2 − 1)Gt+1 (εt+1, εt) +Gt+2 (εt+2, εt+1) + ηt+2

(ρt+2 − 1) ρt+1

−
(
Gt+2 (εt+2, εt+1) + ηt+2

ρt+2 − 1
− ηt+1

)
.

Notice that the last expression is independent of Yt−1 = Vt−1 + Ut−1 under Assumption 1, and

we get the moment restriction

cov

((
1− ρt+1

ρt+1 (1− ρt+2)
∆Yt+2 −∆Yt+1

)
, Yt−1

)
= 0. (3.8)

For a better view, we rewrite it as

ρt+1
1− ρt+2

1− ρt+1

=
cov (∆Yt+2, Yt−1)

cov (∆Yt+1, Yt−1)
. (3.9)

We can see from this equation that, by imposing one restriction on the sequence ρt+1, ρt+2, · · · ,
we can sequentially identify these AR parameters. Examples of such a restriction include

ρt+1 = a known constant, or

ρt+1 = ρt+2.

In the former case, one can recursively identify ρt+2, ρt+3, · · · by iterating (3.9). In the latter

case, (3.9) directly yields the identifying formula

ρt+1 =
cov (∆Yt+2, Yt−1)

cov (∆Yt+1, Yt−1)
, (3.10)

provided that cov (∆Yt+1, Yt−1) 6= 0 and Assumption 2. We state this restriction as an assump-

tion below.

Assumption 3. cov (∆Yt+1, Yt−1) 6= 0 and ρt+1 = ρt+2 for all t.
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3.3 Step 3: Identification of fηt, fU2,··· ,UT−2 and fV2,··· ,VT−2

Steps 1 and 2 identify the characteristic function φVt by (3.6) for t = 2, · · · , T − 2. Given that

Ut and Vt are independent, we identify the marginal distribution of Ut via the deconvolution:

φUt =
φYt
φVt

. (3.11)

Similarly and consequently, we also identify the marginal distribution of ηt by

φηt =
φUt
φUt−1

. (3.12)

Notice that the independence between the permanent state Ut−1 and the innovation ηt implies

that

fUt|Ut−1 (ut, ut−1) = fηt (ut − ut−1) (3.13)

holds. Therefore, the joint distribution of (U2, U3, · · · , UT−2) is identified by

fU2,U3,··· ,UT−2
= fUT−2|UT−3

fUT−3|UT−4
· · · fU3|U2fU2 . (3.14)

Moreover, the independence between the process {Ut} and the process {Vt} implies

φY2,··· ,YT−2
= φU2,··· ,UT−2

φV2,··· ,VT−2
,

where φY2,··· ,YT−2
is the joint characteristic function of Y2, · · · , YT−2. Therefore, the joint dis-

tribution of the transitory states (V2, · · · , VT−2) is also identified from the corresponding joint

characteristic function

φV2,··· ,VT−2
=
φY2,··· ,YT−2

φU2,··· ,UT−2

. (3.15)

This step requires the following assumption.

Assumption 4. (i) φU1,··· ,UT (s1, · · · , sT ) = E [exp(is1U1 + · · ·+ isTUT )] is not equal to zero

for any real (s1, · · · , sT ). (ii) For each of (Y1, · · · , YT ), (U1, · · · , UT ), (V1, · · · , VT ), ηt and

εt, the marginal and joint distributions are absolutely continuous with respect to the Lebesgue

measure, and the marginal and joint characteristic functions are absolutely integrable.

Part (i) of this assumption is the assumption of non-vanishing characteristic function as

in Li and Vuong (1998) with a multivariate extension. It corresponds to the “completeness”

assumption for nonparametric identification as in Hu and Schennach (2008) and Arellano, Blun-

dell, and Bonhomme (2017) – see also D’Haultfoeuille (2011). In the univariate context, this

assumption is known to be satisfied by most of the popular continuous distribution families,

while counter-examples of distribution families violating this assumption are the uniform, the

truncated normal, and many discrete distributions (Evdokimov and White, 2012). Similar re-

marks apply to multivariate distribution families, though there are not many stylized families of
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multivariate distributions. Particularly, the assumption is satisfied by the multivariate normal

distributions.

We summarize the results as follows.

Proposition 1. Suppose that Assumptions 1, 2, 3, and 4 hold. The joint distribution of

(Y1, · · · , YT ) uniquely determines the marginal distribution of ηt for t = 3, 4, · · · , T − 2, the

joint distribution of (U2, · · · , UT−2), and the joint distribution of (V2, · · · , VT−2), together with

ρt for t = 3, 4, · · · , T .

3.4 Step 4: Identification of fεt and Gt

Since Gt is arbitrarily nonparametric, we cannot identify the nonparametric distribution of εt

in general. However, we may identify its distribution if the following restriction is imposed.2

Assumption 5. The MA function Gt takes the form Gt (εt, εt−1) = εt + gt (εt−1) with the

location normalizations E[εt] = E[gt(εt−1)] = 0.

Since we have identified ρt for t = 3, 4, · · · , T and the joint distribution fV2,··· ,VT−2
, we identify

the joint distribution of two composite random variables (Vt − ρtVt−1) and (Vt−1 − ρt−1Vt−2).

These two random variables can be in turn rewritten as follows:

Vt − ρtVt−1 = εt + gt (εt−1) (3.16)

Vt−1 − ρt−1Vt−2 = εt−1 + gt−1 (εt−2)

The three shocks to the transitory states on the right-hand side are mutually independent.

When the function gt (x) = λtx is linear, Reiersol (1950) shows that the coefficient λt is generally

identified if εt is not normally distributed. Schennach and Hu (2013) generalize this result to

nonlinear cases. We may identify the function gt for t = 4, · · · , T − 2 and the marginal

distribution of εt for t = 3, · · · , T − 2 using the results in Schennach and Hu (2013).

Assumption 6 (Schennach and Hu (2013)). (i) The marginal characteristic functions of εt−1,

εt, gt(εt−1), and gt−1(εt−2) do not vanish on the real line. (ii) The density function fεt−1 of εt−1

exists and is uniformly bounded. (iii) gt is continuously differentiable, strictly monotone, and

is not exactly of the form gt(εt−1) = a+ b ln(ecεt−1 + d) for a, b, c, d ∈ R.

2This assumption is testable via the identification result of Hu, Schennach, and Shiu (2018, Theorem 2.1),

where they identify a repeated measurement model with one measurement entailing an additively separable

model and the other measurement entailing a nonseparable model.
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This assumption states Assumptions 1–6 and an additional condition of Theorem 1 in Schen-

nach and Hu (2013) in terms of our notation. (The notations in Schennach and Hu (2013) and

our notations are reconciled by y := Vt − ρtVt−1, x := Vt−1 − ρt−1Vt−2, x∗ := εt−1, ∆y := εt,

∆x := gt−1(εt−2) and g := gt.) The first part of Assumption 1 in Schennach and Hu (2013) is

implied by our Assumption 1 (ii), and hence is not included in our Assumption 6. Likewise,

the second part of Assumption 1 in Schennach and Hu (2013) is implied by our Assumption

5, and hence is not included in Assumption 6. Part (i) is similar to Assumption 4 (i). As

discussed earlier, it corresponds to the “completeness” assumption for nonparametric identifi-

cation (D’Haultfoeuille, 2011). This assumption is known to be satisfied by most of the popular

continuous distribution families, while counter-examples of distribution families violating this

assumption are the uniform, the truncated normal, and many discrete distributions (Evdoki-

mov and White, 2012). Part (ii) of the assumption is also satisfied by most of the popular

continuous distribution families, with the chi-square distribution of one degree of freedom be-

ing a major counter-example. Part (iii) is a set of requirement for the function gt in the MA

decomposition.

Proposition 2. Suppose that Assumption 5 and 6, in addition to the assumptions in Propo-

sition 1, are satisfied. The joint distribution of (Y1, · · · , YT ) uniquely determines the marginal

distribution of εt and the MA function Gt.

This result guarantees nonparametric identification but the identification is not constructive

and therefore a plug-in estimator is not available. A closed-form estimator is available at the

cost of further assuming the linear MA structure as in Reiersol (1950):

gt (x) = λtx.

In this case, (3.16) simplifies to the classical repeated measurement model:

Vt − ρtVt−1 = εt + λtεt−1

Vt−1 − ρt−1Vt−2 = εt−1 + λt−1εt−2

Therefore, we may use Kotlarski’s identity to obtain the closed-form identifying formula

fεt(x) =
1

2π

∫ ∞
−∞

e−iτxφεt(τ)dτ, where

φεt(τ) = exp

∫ τ

0

iE
[(

Vt+1−ρt+1Vt
λt+1

)
exp (is (Vt − ρtVt−1))

]
E [exp (Vt − ρtVt−1)]

ds

 (3.17)

where the expectations can be computed using the closed-form identifying formula (3.15) for

the joint distribution of (Vt−1, Vt, Vt+1) obtained in the previous step.
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To compute the closed form (3.17) it remains to identify the unknown scalar λt+1. We can

find the moment restrictions

var (εt+1) + λ2
t+1var (εt) = var (Vt+1 − ρt+1Vt)

λt+1var (εt) = cov (Vt − ρtVt−1, Vt+1 − ρt+1Vt) (3.18)

λt+2var (εt+1) = cov (Vt+1 − ρt+1Vt, Vt+2 − ρt+2Vt+1)

where the values on the right-hand sides can be computed again using the closed-form identi-

fying formula (3.15) for the joint distribution of (Vt−1, Vt, Vt+1, Vt+2) obtained in the previous

step. The left-hand sides contain four unknowns, var(εt), var(εt+1), λt+1 and λt+2. Therefore,

one restriction is necessary for identification of λt+1 using the above three equations.

4 General Identification Results

4.1 Nonparametric Identification of the Distributions

We now return to the general model (2.1), (2.2) and (2.3). Consider

Yt = Ut + Vt.

Ut = Ut−1 + ηt,

Vt = ρt,1Vt−1 + ρt,2Vt−2 · · ·+ ρt,pVt−p +Gt (εt, εt−1, · · · , εt−q)

for t = 1, 2, · · · , T , and the following independence and zero mean conditions.

Assumption 7 (Serial Independence and Zero Mean). (i) The random variables ηT , · · · , η1, U0,

εT , · · · , ε1, and the random vector (ε0, · · · , ε1−q, V0, · · · , V1−p) are mutually independent, i.e.,

f (ηT , · · · , η1, U0, εT , · · · , ε1, ε0, · · · , ε1−q, V0, · · · , V1−p) = f (ηT ) · · · f(η1) f(U0) f(εT ) · · · f(ε1)

f (ε0, · · · , ε1−q, V0, · · · , V1−p). (ii) The random vector (ηT , · · · , η1, U0, V0, · · · , V1−p) has zero

mean and E [Gt (εt, εt−1, · · · , εt−q)] = 0 for t ∈ {1, · · · , T}.

The goal is to derive non-parametric identification of the joint distribution of (Ut, · · · , Ut+τ )
and the joint distribution of (Vt, · · · , Vt+τ ). In the current subsection, we derive the identi-

fication results up to finite-dimensional AR(p) parameters ρt+q+1, · · · , ρt+τ+q+1, leaving their

identification for Section 4.2. To simplify the writings, we introduce the following random and
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deterministic functions, µYt+q+1, νη,εt+q+1 and κ, of the AR parameters ρt+q+1.

µYt+q+1(ρt+q+1) = [Yt+q+1 − Yt]−
p∑

p′=1

ρt+q+1,p′ [Yt+q+1−p′ − Yt]

νη,εt+q+1(ρt+q+1) =

q∑
τ ′=1

ηt+τ ′ −
p∑

p′=1

q+1−p′∑
τ ′=1

ρt+q+1,p′ηt+τ ′ +Gt+q+1 (εt+q+1, εt+q, · · · , εt+1) + ηt+q+1

κ(ρt+q+1) =

p∑
p′=1

ρt+q+1,p′ − 1

The first line defines a random function µYt+q+1 of ρt+q+1 which is observed by econometricians

(up to the finite dimensional AR parameters), using max{p + 1, q + 2} periods of panel data

(Ymin{t,t+q+1−p}, · · · , Yt+q+1). The second line defines a random function νη,εt+q+1 of ρt+q+1 which

is not observed by econometricians. The third line defines a deterministic function κ of ρt+q+1.

We derive identifying formulas that involve this κ function in denominators, and we make the

following assumption to make sense of such identifying formulas.

Assumption 8 (AR(p) Restriction).
∑p

p′=1 ρt,p′ 6= 1 for each t.

Note that Assumption 8 guarantees κ(ρt+q+1) 6= 0. The following lemma, which follows from

arithmetic operations using our model (2.1), (2.2) and (2.3), provides a relationship among the

three random and deterministic functions, µYt+q+1, νη,εt+q+1 and κ.

Lemma 1 (Restriction for Vt). If Assumption 8 is satisfied for the state space model (2.1),

(2.2) and (2.3), then the following restriction holds:

µYt+q+1(ρt+q+1)

κ(ρt+q+1)
= Vt +

νη,εt+q+1(ρt+q+1)

κ(ρt+q+1)
. (4.1)

The role of this auxiliary lemma is to construct repeated observations for Vt. Specifically,

combining (2.1) and (4.1), we obtain the system

Yt = Vt + Ut
µYt+q+1(ρt+q+1)

κ(ρt+q+1)
= Vt +

νη,εt+q+1(ρt+q+1)

κ(ρt+q+1)

where the left-hand side of each equation is observed (up to finite dimensional parameters

ρt+q+1), the first term on the right-hand side is the common factor Vt, and the second term on

the right-hand side is an error. Thus, under the assumptions to be listed below, the Kotlarski’s

(1967) identity allows us to identify the marginal distributions of Ut and Vt as in Li and Vuong

(1998). Once Ut−1 and Ut are identified, we can in turn use the relation (2.2) to identify the

marginal distribution of ηt by the deconvolution. To formally obtain these results, we note with
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the notation It = σ(Ut, Vt, Ut−1, Vt−1, · · · , U1, V1) for the information available at time t that

the following mean independence conditions hold under Assumption 7.

E [Gτ (ετ , ετ−1, · · · , ετ−q) | It] = 0 whenever τ − q > t. (4.2)

E[ητ | It] = 0 whenever τ > t. (4.3)

The moment condition (4.2) follows from the definition of the model where the moving

average is of order q. Equation (4.3) implies that the permanent state Ut follows the Martingale

process, an assumption which is commonly made in the canonical models.

The marginal characteristic function φX of a random variable X is defined by φX(s) =

E[eisX ]. The marginal characteristic functions of Yt, Ut and Vt are denoted by φYt , φUt and φVt ,

respectively. The joint characteristic function φX1,X2 of a random vector (X1, X2) is defined

by φX1,X2(s1, s2) = E[eis1X1+is2X2 ]. The joint characteristic function of (Yτ , Yt) is denoted by

φYτ ,Yt . With these notations, we make the following regularity assumptions.

Assumption 9 (Regularity Conditions). (i) E[Yt] exists for each t. (ii) The characteristic

functions φUt and φVt do not vanish on the real line for each t. (iii) The characteristic function

φVt is continuous for each t.

Part (i) is sufficient for the existence of the moment E
[
µYt+q+1(ρt+q+1) eis

′Yt
]

which shows up

in our closed-form identifying formulas. Part (ii) is to guarantee that the denominator of the

identifying formula is non-zero along with Assumption 8. It is satisfied by the major distribution

families, including the normal, chi-squared, Cauchy, gamma, and exponential distributions.

Part (iii) is used to recover the characteristic function of Vt from an ordinary differential equation

with an initial value. By the aforementioned deconvolution approaches, we identify the marginal

distributions of Ut, Vt and ηt up to the finite-dimensional parameters ρt+q+1 as follows.

Lemma 2 (Identification of the Marginal Characteristic Functions). If Assumptions 7, 8, and

9 are satisfied for the state space model (2.1), (2.2) and (2.3), then φVt is identified up to the

finite-dimensional parameters ρt+q+1 by

φVt(s; ρt+q+1) = exp

[∫ s

0

i E
[
µYt+q+1(ρt+q+1) eis

′Yt
]

κ(ρt+q+1) E [eis′Yt ]
ds′

]
(4.4)

using max{p + 1, q + 2} periods of panel data (Ymin{t,t+q−p+1}, · · · , Yt+q+1). Likewise, φUt is

identified up to the finite-dimensional parameters ρt+q+1 by

φUt(s; ρt+q+1) =
E
[
eisYt

]
φVt(s; ρt+q+1)

(4.5)
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using max{p+ 1, q + 2} periods of panel data (Ymin{t,t+q−p+1}, · · · , Yt+q+1). Furthermore, φηt is

identified up to the finite-dimensional parameters ρt+q and ρt+q+1 by

φηt(s; ρt+q, ρt+q+1) =
φUt(s; ρt+q+1)

φUt−1(s; ρt+q)
(4.6)

using max{p+ 2, q + 3} periods of panel data (Ymin{t−1,t+q−p}, · · · , Yt+q+1).

Whereas this lemma provides the identification of the marginal distributions, our goal is

to identify the joint distributions. To this goal, we note that the following joint independence

restrictions hold under Assumption 7 (i).

(Ut, · · · , Ut+τ ) ⊥⊥ (Vt, · · · , Vt+τ ) (4.7)

ηt+t′ ⊥⊥ (Ut, · · · , Ut+t′−1) for any t′ ∈ {1, 2, · · · }. (4.8)

Furthermore, the following regularity assumptions are made for density representation of dis-

tributions and for the purpose of applying the Fourier transform.

Assumption 10 (Regularity). (i) The distribution of Ut is absolutely continuous with respect to

the Lebesgue measure. (ii) φUt is absolutely integrable. (iii) The distribution of ηt is absolutely

continuous with respect to the Lebesgue measure. (iv) φηt is absolutely integrable. (v) φVt,··· ,Vt+τ

is absolutely integrable. (vi) φUt,··· ,Ut+τ (s1, · · · , st+τ ) 6= 0 for all (s1, · · · , st+τ ) ∈ Rτ+1.

Parts (i) and (iii) allow the density representation of the respective probability distributions.

Parts (ii), (iv) and (v) guarantee that we can recover the density functions from the respective

characteristic functions. Part (vi) plays a similar role to Assumption 9 (ii). Under these

conditions, we identify the joint density of (Ut, · · · , Ut+τ ) and the joint density of (Vt, · · · , Vt+τ )
as follows.

Theorem 1 (Identification of the Joint Density Functions). If Assumptions 7, 8, 9 and 10 are

satisfied for the state space model (2.1), (2.2) and (2.3), then fUt,··· ,Ut+τ is identified up to the

finite-dimensional parameters ρt+q+1, · · · , ρt+τ+q+1 by

fUt,··· ,Ut+τ (ut, · · · , ut+τ ; ρt+q+1, · · · , ρt+τ+q+1) = (4.9)

1

2π

∫
e−isut φUt(s; ρt+q+1)ds

τ∏
τ ′=1

[
1

2π

∫
e−is(ut+τ ′−ut+τ ′−1) φηt+τ ′ (s; ρt+τ ′+q, ρt+τ ′+q+1)ds

]
using max{p + τ + 1, q + τ + 2} periods of panel data (Ymin{t,t+q−p+1}, · · · , Yt+τ+q+1), where

φUt(s; ρt+q+1) and φηt(s; ρt+q, ρt+q+1) are given by (4.5) and (4.6), respectively. In addition,

fVt,··· ,Vt+τ is identified up to the finite-dimensional parameters ρt+q+1, · · · , ρt+τ+q+1 by

fVt,··· ,Vt+τ (vt, · · · , vt+τ ; ρt+q+1, · · · , ρt+τ+q+1) =
1

(2π)τ+1

∫
· · ·
∫

(4.10)

E
[∏τ

τ ′=0 e
ist+τ ′ (Yt+τ ′−vt+τ ′ )

]∫
· · ·
∫ ∏τ

τ ′=0 e
ist+τ ′ut+τ ′fUt,··· ,Ut+τ (ut, · · · , ut+τ ; ρt+q+1, · · · , ρt+τ+q+1)dut · · · dut+τ

dst · · · dst+τ
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using max{p + τ + 1, q + τ + 2} periods of panel data (Ymin{t,t+q−p+1}, · · · , Yt+τ+q+1), where

fUt,··· ,Ut+τ (ut, · · · , ut+τ ; ρt+q+1, · · · , ρt+τ+q+1) is given in (4.9).

In this theorem, (4.9) provides a closed-form identifying formula for the joint density of

the permanent states (Ut, · · · , Ut+τ ) for τ + 1 periods. Likewise, (4.10) provides a closed-

form identifying formula for the joint density of the transitory states (Vt, · · · , Vt+τ ) for τ +

1 periods. For the both results, we need max{p + τ + 1, q + τ + 2} periods of panel data

(Ymin{t,t+q−p+1}, · · · , Yt+τ+q+1) of measurements.

Remark 1. It is important to observe that our general identification results for the joint density

functions do not require a parametric specification of the MA part. Specifically, the identification

formulae do not involve the MA parameters even if we would impose a parametric specification.

In other words, the identification formulae will remain the same even if we imposed a parametric

MA specification.

4.2 Identification of the AR Parameters

The previous subsection derives the nonparametric identification of the marginal and joint dis-

tributions of the permanent state and the transitory state. These non-parametric identification

results, however, assume that the finite-dimensional AR parameters ρt+q+1, · · · , ρt+τ+q+1 are

already known. The current subsection explores alternative routes of identifying these remain-

ing parameters. As a useful device to this goal, we develop the following moment equality that

holds under the zero conditional mean restrictions in Assumption 7.

Proposition 3 (Moment Equality). If Assumptions 7 and 8 are satisfied for the state space

model (2.1), (2.2) and (2.3), then the following moment equality holds:

E
[
κ(ρt)µ

Y
t+1(ρt+1)− κ(ρt+1)µYt (ρt)− κ(ρt)κ(ρt+1) (Yt−q − Yt−q−1)

∣∣ It−q−1

]
= 0. (4.11)

The following three examples illustrate normalizing restrictions on the AR parameters ρt

to identify them using (4.11). The first example suggests to impose the time-invariance in the

AR parameters, i.e., ρt = ρt+1. The second example suggests that the initial AR parameters ρt

are known values, and the succeeding AR parameters ρt+1, ρt+2, · · · are inductively identified.

The third example suggests to impose a parametric life-cycle restriction on the AR parameters,

i.e., ρt = h(t, θ), and to determine θ via the moment restriction (4.11).

Example 2 (Normalizing Restriction I). One normalizing restriction is the time-invariant AR

process, i.e., ρt = ρt+1. In this case, with ρ̄ := ρt = ρt+1, the moment equality (4.11) reduces to

E
[
µYt+1(ρ̄)− µYt (ρ̄)− κ(ρ̄) (Yt−q − Yt−q−1)

∣∣ It−q−1

]
= 0.

15



Using (Yt−q−1, · · · , Yt−q−p) as instruments yields the closed-form identifying formula

ρ̄ = E[(Yt−q−1, · · · , Yt−q−p)′(∆t,1, · · · ,∆t,p)]
−1 E[(Yt−q−1, · · · , Yt−q−p)′∆t,0],

where ∆t,p′ := Yt+1−p′ − Yt−q − Yt−p′ + Yt−q−1 + Yt−q − Yt−q−1 for each p′ ∈ {0, 1, · · · , p}.

Example 3 (Normalizing Restriction II). Another normalizing restriction is to set the initial

AR parameters ρt to a p-vector of known values, ρt = ρ̄. In this case, the moment equality

(4.11) can be applied upward-inductively to recover ρt+1, ρt+2, and so on. Specifically, given ρt,

we can identify ρt+1 by the closed-form formula

ρt+1 = E[(Yt−q−1, · · · , Yt−q−p)′(Λt,1(ρt), · · · ,Λt,p(ρt))]
−1 E[(Yt−q−1, · · · , Yt−q−p)′Λt,0(ρt)],

where Λt,p′(ρt) := κ(ρt) [Yt+1−p′ − Yt−q−1] + µYt (ρt) for each p′ ∈ {0, 1, · · · , p}.

Example 4 (Parametric Life-Cycle Restriction). We may specify the sequence of the AR pa-

rameters ρt as a parametric function of t, i.e., ρt = h(t, θ). We may then use the moment

equality (4.11) to construct the moment function

g(θ) := E
[
(Yt−q−1, · · · , Yt−q−p)′

{
κ(h(t, θ))µYt+1(h(t+ 1, θ))− κ(h(t+ 1, θ))µYt (h(t, θ))

−κ(h(t, θ))κ(h(t+ 1, θ)) (Yt−q − Yt−q−1)}]

for a GMM estimation of θ, and thus for ρt = h(t, θ) for all t.

For generality to encompass all the above examples, we state the conditions for the identi-

fication of the AR parameters as a high-level assumption below.

Assumption 11 (Identification of the AR Parameters). The moment equality (4.11) admits a

unique solution (ρt+q+1, · · · , ρt+τ+q+1).

The main identification result is now stated as the following corollary to Theorem 1.

Corollary 1 (Identification of the Joint Density Functions). If Assumptions 7, 8, 9, 10, and

11 are satisfied for the state space model (2.1), (2.2) and (2.3), then fUt,··· ,Ut+τ is identified by

(4.9) using max{p + τ + 1, q + τ + 2} periods of panel data (Ymin{t,t+q−p+1}, · · · , Yt+τ+q+1). In

addition, fVt,··· ,Vt+τ is identified by (4.10) using max{p+ τ + 1, q + τ + 2} periods of panel data

(Ymin{t,t+q−p+1}, · · · , Yt+τ+q+1).

Remark 2. Recall that we also show the identification of the MA structure Gt in Section 3.4

under the additive separability restriction (Assumption 5). Given that Gt is arbitrarily non-

parametric and that εt, ..., εt−q are nonparametrically distributed, it is difficult to identify Gt

unless some model restriction is imposed, such as the additive separability restriction (Assump-

tion 5). A potential direction to proceed without imposing the additive separability restriction
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is to impose support restrictions as in Hu and Sasaki (2017). Under their support restriction

assumption, nonseparable repeated measurement models are indeed identifiable, although it is

not necessarily easy to argue that their assumption of support restrictions is satisfied in general

for the application to earnings dynamics. Generalized identification of a nonseparable models

with repeated measurements deserves a topic for future research.

4.3 Relation with an Existing Approach

Our identification results are based on the deconvolution method with Kotlarski’s identity (e.g.,

Kotlarski, 1967; Rao, 1992; Li and Vuong, 1998; Schennach, 2004; Bonhomme and Robin, 2010;

Evdokimov, 2010), and are closely related to the recent econometrics literature on identification

of latent process models (e.g., Arellano, Blundell, and Bonhomme, 2017) based on an operator

theoretic approach (e.g., Hu and Schennach, 2008). The objectives are quite similar – one is

interested in semi- or non-parametrically identifying the joint and marginal distributions of the

latent components in dynamic processes. The two approaches to identification are distinct,

however, and exhibit tradeoffs in terms of model flexibility and practicality.

On one hand, the framework of Hu and Schennach (2008) and Arellano, Blundell, and

Bonhomme (2017) admit nonparametric and nonseparable models with greater extents of flex-

ibility. This contrasts with the semiparametric and additive restrictions that we impose on our

model. On the other hand, the approach of Hu and Schennach (2008) and Arellano, Blundell,

and Bonhomme (2017) entail implicit identification without any closed-form guide to sample

counterpart estimators. All the nonparametric parts of our identification results are accompa-

nied by explicit and closed-form identifying formulas, which in turn yield closed-form analog

estimators presented in the following section.

More importantly, however, our main objective is to allow for a non-Markovian transitory

state process, in particular through the ARMA model. Nonparametric or semiparametric iden-

tification under this non-conventional setting seems to require partial additivity, and we hence

find the approach based on Kotlarski’s identity to be a natural path.

5 Estimation

Sample counterparts of the identification results yield closed-form estimators, since we derive

closed-form identification for the density functions of the permanent state and the transitory

state. In this section, we propose the closed-form estimators. Many details and additional

results are delegated to the appendix for a concise exposition. Large sample properties are de-

veloped by extending the results of Li and Vuong (1998) – see Appendix C in the supplementary

material.
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The first step is to estimate the AR coefficients following the sample analog of the moment

restrictions in Example 2, 3, or 4. For Example 2, the analog estimator ρ̂ is

ρ̂ =

[
N∑
j=1

(Yj,t−q−1, · · · , Yj,t−q−p)′(∆j,t,1, · · · ,∆j,t,p)

]−1 [ N∑
j=1

(Yj,t−q−1, · · · , Yj,t−q−p)′∆j,t,0

]
,

where ∆j,t,p′ := Yj,t+1−p′ −Yj,t−q−Yj,t−p′ +Yj,t−q−1 +Yj,t−q−Yj,t−q−1 for each p′ ∈ {0, 1, · · · , p}.
We may of course extend this estimator by pooling the sums across t from 1 + p+ q to T − 1.

Example 3 also entails a similarly simple parametric estimator. For estimation of ρt under

Example 4, see Appendix B.1 in the supplementary material for detailed procedures.

The second step is to estimate the marginal characteristic functions of Ut, Vt and ηt by

the sample analog of the identifying formulas displayed in Lemma 2. Specifically, the analog

estimators for (4.4), (4.5) and (4.6) read

φ̂Vt(s; ρ̂t+q+1) = exp

[∫ s

0

i
∑N

j=1 µ
Y
j,t+q+1(ρ̂t+q+1) eis

′Yj,t

κ(ρ̂t+q+1)
∑N

j=1 e
is′Yj,t

ds′

]
for t ∈ {1, · · · , T − q − 1},

φ̂Ut(s; ρ̂t+q+1) =
N−1

∑N
j=1 e

isYj,t

φ̂Vt(s; ρ̂t+q+1)
for t ∈ {1, · · · , T − q − 1}, and

φ̂ηt(s; ρ̂t+q, ρ̂t+q+1) =
φ̂Ut(s; ρ̂t+q+1)

φ̂Ut−1(s; ρ̂t+q)
for t ∈ {2, · · · , T − q − 1},

respectively, where

µYj,t+q+1(ρ̂t+q+1) = [Yj,t+q+1 − Yj,t]−
p∑

p′=1

ρ̂t+q+1,p′ [Yj,t+q+1−p′ − Yj,t] and

κ(ρ̂t+q+1) =

p∑
p′=1

ρ̂t+q+1,p′ − 1.

The final step is to estimate the density functions. Specifically, the marginal density func-

tion Vt can be estimated by the regularized Fourier transform of the second-step estimator

φ̂Vt(s; ρ̂t+q+1):

f̂Vt(vt) =
1

2π

∫
e−isvtφ̂Vt(s; ρ̂t+q+1)φK(hs)ds for t ∈ {1, · · · , T − q − 1},

where φK denotes the Fourier transform of a suitable choice of a kernel function K, and h

denotes the bandwidth parameter – we discuss φK and h in Appendix C in the supplemen-

tary material. Likewise, the marginal density functions of Ut and ηt can be estimated by the

regularized Fourier transforms

f̂Ut(ut) =
1

2π

∫
e−isutφ̂Ut(s; ρ̂t+q+1)φK(hs)ds for t ∈ {1, · · · , T − q − 1} and

f̂ηt(ηt) =
1

2π

∫
e−isηtφ̂ηt(s; ρ̂t+q, ρ̂t+q+1)φK(hs)ds for t ∈ {2, · · · , T − q − 1}
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respectively.

Furthermore, we can estimate the joint density function of (Ut, · · · , Ut+τ ) and the joint

density function of (Vt, · · · , Vt+τ ) by the sample analog of the identifying formulas displayed in

Theorem 1. Specifically, the analog estimator for (4.9) reads

f̂Ut,··· ,Ut+τ (ut, · · · , ut+τ ; ρ̂t+q+1, · · · , ρ̂t+τ+q+1) =
1

2π

∫
e−isut φ̂Ut(s; ρ̂t+q+1)φK(hs)ds

τ∏
τ ′=1

[
1

2π

∫
e−is(ut+τ ′−ut+τ ′−1) φ̂ηt+τ ′ (s; ρ̂t+τ ′+q, ρ̂t+τ ′+q+1)φK(hs)ds

]
for t ∈ {1, · · · , T − q − 1− τ}. Likewise, the sample analog estimator for (4.10) reads

f̂Vt,··· ,Vt+τ (vt, · · · , vt+τ ; ρ̂t+q+1, · · · , ρ̂t+τ+q+1) =
1

(2π)τ+1

∫
· · ·
∫

N−1
∑N

j=1

[∏τ
τ ′=0 e

ist+τ ′ (Yj,t+τ ′−vt+τ ′ )
]
· φK(Ht) · · ·φK(Hst+τ )∫

· · ·
∫ ∏τ

τ ′=0 e
ist+τ ′ut+τ ′ f̂Ut,··· ,Ut+τ (ut, · · · , ut+τ ; ρ̂t+q+1, · · · , ρ̂t+τ+q+1)dut · · · dut+τ

dst · · · dst+τ

for t ∈ {1, · · · , T − q − 1− τ} with the multi-dimensional regularization, where H denotes the

bandwidth parameter. We use this upper case notation H to distinguish it from the previous

bandwidth parameter h, where their asymptotic divergence rates are different – see Appendix

C in the supplementary material for details. This multivariate density estimate f̂Vt,··· ,Vt+τ can

be also used to estimate the MA errors εt under an additional model restriction described in

Section 3.4 – see Appendix B.2 in the supplementary material for details.

Finally, we remark that we can also use the estimated characteristic functions in turn to

estimate the moments of the latent components, Ut and Vt. The estimated moments can then

be used to obtain estimates of the distributional indices, such as standard deviations, skewness,

and kurtosis. Specifically, we estimate the k-th moment of Vt by i−k dk

dsk
φ̂Vt(s; ρ̂t+q+1)

∣∣∣
s=0

.

Furthermore, we estimate the k-th moment of Ut by i−k d
k

dsk

[
φ̂Yt (s)

φ̂Vt (s;ρ̂t+q+1)

]
s=0

where φ̂Yt(s) =

1
N

∑N
j=1 e

isYj,t . See Appendix B.3 in the supplementary material for the closed-form estimators

for the first four moments of Vt and Ut that are needed to compute the important distributional

indices including the skewness and the kurtosis. They all consist of analytic expressions written

in terms of sample moments of the measurements to admit linear representations, and hence

the asymptotic normality of these moment and index estimators follows in the standard way

by applications of the central limit theorem and the delta method. Large sample properties are

presented in Appendix C in the supplementary material.3

3Kato, Sasaki, and Ura (2018) develop a method of inference for density functions identified by Kotlarski’s

identity.
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6 Application to Earnings Dynamics

We apply the identification and estimation methods for our semiparametric model to the case

of earnings dynamics and we estimate the distributions of the error terms and parameters of

the model and show the results. We also focus on three types of analyses that demonstrate

the contributions of our flexible model relative to past work. First, we analyze higher-order

ARMA models for the transitory effect and we study the quantitative implications of omitting

higher-order components. Second, we analyze the quantitative implications of omitting life-

cycle effects in the persistence parameters for life-cycle earnings dynamics. Third, we analyze

the quantitative implications of imposing Gaussian distributions for the error terms.

We first describe the data that we use for our analysis in Section 6.1, and then discuss the

empirical procedure in Section 6.2. Estimation results and their discussions are presented in

Sections 6.3 and 6.4 with an emphasis on the above three points.

6.1 Data

We use the most commonly-used U.S. data set for earnings dynamics, the Panel Study of Income

Dynamics (PSID), 1970-1996.4 This data set has been used by Horowitz and Markatou (1996)

and Bonhomme and Robin (2010) for earnings models with related econometric approaches

based on deconvolution.

Our sample selection procedure is similar to those of preceding papers on earnings dynamics

using the PSID – see Moffitt and Zhang (2018) for a survey. We select male individuals aged

25–55 who are recorded as household heads. Full-time students are excluded from the sample.

In the first stage, we estimate a regression of log annual earnings on education, separately by

year, and use the residuals Yt to estimate the earnings dynamics model. Extreme outliers for Yt

are trimmed at the top one percent and bottom one percent, consistent with usual practice in

this literature. Allowing for a unbalanced sample from the above sample selections, we obtain

T = 31 and NT =28,436. The cross-sectional sample sizes are N =1,320 at age 30, N =1,185

at age 40, and N =984 at age 50 to list a few age groups. The top third of Table 1, labeled as

the “baseline” sample, provides summary statistics of this baseline sample.

In addition to the baseline sample defined above, we also consider two subsamples that have

been studied in the literature. The first is a subsample of those individuals with strong labor

force attachment, defined by 40 weeks or more of work in the previous year. In the literature,

a subsample based on strong labor force attachment is considered by Guvenen (2009). We

examine whether the patterns of earnings dynamics are different for this subsample and for

the baseline sample. The total unbalanced sample has T = 31 and NT =25,328 while the

4We do not use the data after 1996 where interviews are conducted biannually.
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cross-sectional sample sizes are N =1,183 at age 30, N =1,076 at age 40, and N =864 at age

50. The middle third of Table 1, labeled as the sample of individuals with “strong labor force

attachment,” provides a summary statistics of this sub-sample.

The second subsample we consider is one which selects only married men. This subsample

was considered by Arellano, Blundell, and Bonhomme (2017). We test whether married men

have more stable earnings dynamics than for men as a whole. The unbalanced sample has

T = 31 and NT =25,328 and the cross-sectional sample sizes are N =991 at age 30, N =993 at

age 40, and N =873 at age 50. The bottom third of Table 1, labeled as the sample of “married”

individuals, provides a summary statistics of this subsample.

6.2 Empirical Procedure

In the framework of Example 4 to obtain ρt, we set the life-cycle of AR parameters by the

cubic function ρt = h(t, θ) = θ0 + θ1t + θ2t
2 + θ3t

3 in the baseline model but we also try an

alternative specification as a sensitivity analysis. The auxiliary parameters θ = (θ0, θ1, θ2, θ3)

and thus the AR parameters ρt = h(t, θ) for each t ∈ {26, · · · , 55} are estimated using the

GMM – see Appendix B.1 in the supplementary material. Since our subsequent identification

steps require Assumption 8, the estimation imposes this additional restriction. Specifically, we

impose ρt ∈ (0, 1) for all t.

For nonparametric density estimation, we use the kernel function given in the supplemen-

tary appendix. The bandwidth parameter is chosen to minimize the integrated squared errors

with the reference normal distribution with the variance corresponding to the negative second

derivative of the estimated characteristic function.5 We also estimate the MA structure focus-

ing on the simple case of ARMA(1,1) model described in Section 3.4. Details of the estimation

procedure are described in Appendix B.2 in the supplementary material. Like the AR param-

eter ρt, we set the life-cycle cubic function λt = l(t, ϑ) = ϑ0 + ϑ1t + ϑ2t
2 + ϑ3t

3 for the MA

parameter λt.

6.3 Results for the Baseline Sample

6.3.1 Marginal Distributions

Table 2 shows estimates of the model assuming ARMA(0,0) and the top panels of Tables 3, 4, 5,

and 6 show, respectively, estimated indices of the marginal distributions of the permanent and

transitory earnings at three different ages under the ARMA(1,1), ARMA(2,2), ARMA(3,3),

5Delaigle and Gijbels (2004) propose a number of methods to choose the bandwidth parameter for a decon-

volution estimator, although our framework does not exactly fit theirs.
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and ARMA(4,4) models.6 The displayed indices are the mean, the standard deviation, the

skewness, and the kurtosis. The numbers in parentheses indicate the standard errors of the

respective estimates. The last column shows the p-values for the one-sided test of the null

hypothesis that kurtosis is less than equal to three, against the alternative hypothesis that it

is greater than three (recall that the Gaussian distribution has the kurtosis of three, and the

p-valued hence indicate results of the test of sub-Gaussianity).

Several patterns appear in all tables, regardless of the ARMA order. The estimated means

are very close zero uniformly across all the models but the standard deviations are greater

for the permanent component than for the transitory. Also, the standard deviations of the

permanent component tend to grow with age while those for the transitory component tend to

decline with age. These standard deviation patterns are consistent with past evidence showing

that earnings profiles tend to spread out with age but that older workers settle into more stable

earnings profiles. The distributions are negatively skewed but are more skewed for the transitory

component than for the permanent, and both are quadratic in age, falling from age 30 to 40

but rising from age 40 to 50. Strong evidence of kurtosis appears in almost all distributions and

Gaussianity is almost always rejected at conventional confidence levels, implying distributions

that are more fat-tailed than the normal.

On the other hand, several patterns differ across the ARMA orders. For example, the

estimated standard deviations exhibit heterogeneous patterns across models. Specifically, the

standard deviations of the permanent component of earnings tend to decrease as the order of the

ARMA model increases, while the standard deviations of the transitory component of earnings

tend to increase as the order of the ARMA model increases. This implies that the lower-order

models, such as ARMA(0,0), erroneously impute larger portions of cross sectional variations

in earnings to variations in permanent earnings. As such, omitting higher-order terms in the

ARMA models produces biases in estimates of the distributions of earnings components. The

estimated skewness and the estimated kurtosis exhibit similar patterns to those of the estimated

standard deviations.

There is mixed evidence on the importance of time-varying, life-cycle effects in the ARMA

parameters. On the one hand, the top panel of Figure 1 presents the estimated ARMA(1,1)

parameters and indicates that there exist nontrivial life-cycle effects in the persistence param-

eters, with rising AR parameters and falling MA parameters with age. However, the lower

panels of Tables 3, 4, 5, and 6 show that our estimates of the shapes of the distributions are

not much affected if life cycle effects in the ARMA parameters are ignored.

The third point we focus on, as emphasized at the beginning of Section 6, concerns the

6In addition to the estimated distributional indices, we also illustrate estimated marginal densities of the

permanent and transitory components of earnings in the supplementary material.
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Gaussianity of distributions. The hypothesis that the distributions of the permanent component

of earnings have a sub-Gaussian kurtosis is rejected for ages 40 and 50 at the level of 0.05 across

all the model specifications. The hypothesis that the distributions of the transitory component

of earnings have a sub-Gaussian kurtosis is rejected for ages 30 and 40 at the level of 0.05 across

all the model specifications except under the most restrictive model, namely ARMA(0,0). From

these results, we conclude that it is too restrictive to use Gaussian marginal distributions for

canonical models of earnings dynamics.

To summarize the results of marginal distributions, we find the following three points.

First, omitting higher-order components of the ARMA model imply different distributions

both for the permanent and transitory components of earnings. Second, omitting life-cycle

effects of persistence parameters does not imply different distributions either for the permanent

or transitory components of earnings. Third, it is too restrictive to impose Gaussian marginal

distributions for earnings dynamics models.

6.3.2 Joint Distributions and Implications for Life-Cycle Earnings Dynamics

We now turn to an analysis of life-cycle earnings dynamics which focuses on the degree of per-

sistence in the life cycle earnings process. Persistence is often measured with impulse response

functions, showing how shocks to a variable affect the mean of a variable at later dates. Given

our results in the last section, we are more interested in the tails of the distributions rather

than the means. We instead measure persistence by using a measure of lower tail dependence,

which is the probability that earnings fall below a particular percentile point of the distribution

at age t if it was below that percentile point at age τ < t. Further, we focus on lower tail depen-

dence in the permanent component and at different ages. Thus, for example, provided that the

permanent component of earnings of a worker is in the bottom one percent of the distribution

at age 30, what is the probability that it stays in the bottom one percent thereafter? To answer

this question, we draw trajectories of the probability that the permanent component of earnings

at age 30 + ∆ falls below the first percentile in the cross section provided that the worker had

the permanent component of earnings at age 30 below the first percentile in the cross section.7

This conditional probability is quantified by λl30,t(0.01) = P (Ut ≤ F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01))

where t = 30 + ∆ – see Section 6.2. Under the bivariate Gaussian copula, it is well known

that limq→0 λ
l
30,t(q) = 0 must hold, and hence λl30,t(0.01) at q = 0.01 is supposed to be a very

small probability. As such, Gaussian models have limited abilities to describe life-cycle earnings

dynamics of lower tail persistence. On the other hand, our semiparametric model can allow

7In addition to the estimated trajectories of these conditional probabilities, we also illustrate estimated joint

densities of the permanent and transitory components of earnings in the supplementary material.
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λl30,t(0.01) to possibly take a high probability unlike the case of the bivariate Gaussian copula.8

Figures 2a and 2b display trajectories of the lower tail dependence measure λl30,t(0.01) of

permanent earnings for ages t ∈ {31, ..., 50} following the event of permanent earnings less than

or equal to the first percentile at age 30. The solid lines represent the trajectories under our

semiparametric model and the dashed lines represent those under the bivariate normal distri-

bution. The results are displayed under each of the ARMA(0,0), ARMA(1,1), ARMA(2,2),

ARMA(3,3) and ARMA(4,4) specifications with time-varying persistence parameters and with

time-invariant persistence parameters. The figures thus show how lower tail dependence de-

pends on the ARMA order, whether life cycle effects in the ARMA process are present, and

the effect of imposing Gaussianity.

In all cases, the probability of remaining in the lower first percentile drops immediately at

the next age and then remains, fairly stably, thereafter. But the probability drops to a very

different level depending on the ARMA order, with persistence (i.e., immobility) much higher

at high-order ARMAs than at low-order ARMAs (i.e., the solid lines tend to shift upward as

the order increases. These results imply again that omitting higher-order components in the

ARMA model can provide restrictive implications for life-cycle earnings dynamics and, specifi-

cally, lower-order ARMAs show too little persistence and too much mobility in the permanent

component. For example, under more flexible higher-order ARMA models, such as ARMA(4,4),

the conditional probability λl30,t(0.01) of extremely low permanent earnings remains as high as

0.9 until age 50 under our semiparametric model.

Regarding the the importance of age-varying ARMA parameters, we do not detect qualita-

tive differences in the trajectories between the model with time-varying persistence parameters

and the model with time-invariant persistence parameters. As such, we fail to find different

implications of omitting life-cycle effects in the persistence parameters for life-cycle earnings

dynamics through our analysis. This conclusion is consistent with our conclusion from the

analysis of marginal distributions above.

Finally, regarding normality, we find that the trajectories of λl30,t(0.01) under the bivariate

Gaussian distribution (dashed lines) are consistently lower than those under the flexible semi-

parametric models. In particular, the Gaussian trajectories appear very close to zero under

more flexible higher-order ARMA models, such as the ARMA(4,4) model. This is consistent

with the well-known fact that limq→0 λ
l
30,t(q) = 0 holds under the Gaussian copula. On the

other hand, as just noted, our semiparametric model allows the life-cycle earnings dynamics

to exhibit greater tail dependence than the Gaussian model can. Thus we find again that our

semiparametric model gives a different answer to earnings dynamics in the tails than would a

8We considered measures of upper tail dependence as well but these measures were very noisy and we do

not present them.
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Gaussian model.

Figure 3 displays trajectories of the lower tail dependence measures, λl30,t(0.10) and λl30,t(0.05),

as well as λl30,t(0.01), under each of the ARMA(1,1) and ARMA(4,4) models with time-varying

persistent parameters, but for the lower fifth and tenth percentile points of the permanent

component distribution rather than for the first. The results show that the discrepancies im-

puted both to the order of the ARMA model and the Gaussianity diminish as the percentile

of interest increases. In other words, misspecification of any of the three types will not cause

much difference on the dynamic dependence at a higher percentile, such as the tenth percentile,

of the distribution.

A final issue we consider is whether our findings vary with age. For this, we examine results

for age 40 instead of 30. Figure 4 displays trajectories of the lower tail dependence measure

λl40,t(0.10), λl40,t(0.05), and λl40,t(0.01) under the ARMA(4,4) models with time-varying persis-

tent parameters, as well as λl30,t(0.10), λl30,t(0.05), and λl30,t(0.01) for the purpose of comparison.

The results show that lower-tail persistence is considerably lower at higher ages than at lower

ages. This is a surprising result because it implies that older workers have greater upward

mobility if they have very low earnings than do younger workers. However, the qualitative

patterns of the implications of distributional misspecification are the same between λl30,t(q) and

λl40,t(q) for q ∈ {0.01, 0.05, 0.10}, for the discrepancy between the two types of the lines is the

largest for the first percentile and diminishes as the percentile of interest increases.

6.4 Results for Restricted Samples

As described in Section 6.1, we consider two of restricted subsamples of the baseline sample,

one a subsample of workers with strong labor force attachment and one a subsample of married

workers. These two subsamples yield qualitatively very similar results to each other, and we

hence focus on the subsample of workers with strong labor force attachment. A complete set

of results for the subsample of married workers can be found in the supplementary appendix,

but we also briefly discuss results for married workers in Section 6.4.3.

6.4.1 Marginal Distributions

Tables 7, 8, 9, 10, and 11 summarize estimated indices of the marginal distributions of the per-

manent and transitory earnings under the ARMA(0,0), ARMA(1,1), ARMA(2,2), ARMA(3,3),

and ARMA(4,4) models with time-varying persistence parameters and with time-invariant per-

sistence parameters for the strong labor force attachment subsample.9

9In addition to the estimated distributional indices, we also illustrate semiparametrically estimated marginal

densities of the permanent and transitory components of earnings in the supplementary material.
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The estimated means are very close to zero uniformly across all the models, as in the

baseline sample. But the standard deviations of the permanent and transitory components

are almost always somewhat smaller than those in the baseline sample, consistent with the

expectation that those with strong labor force attachment have more stable profiles. Similar

to the results for the baseline sample, the standard deviations of the permanent component

of earnings tend to decrease as the order of the ARMA model increases while the standard

deviations of the transitory component of earnings tend to increase with the order of the

ARMA model. Therefore, omitting higher-order terms in the ARMA specification again can

cause specification biase in the component distributions. On the other hand, similar to the

results for the baseline sample, we do not detect any outstanding evidence that the life-cycle

effects in the persistence parameters significantly matter for marginal distributions. The model

implications for the subsample discussed thus far about the mean and the standard deviation

are therefore similar to those for the baseline sample except for the magnitude of the standard

deviations.

The estimated distributions of the permanent component of earnings entail significantly

negative skewness at ages 30 and 40 across all the model specifications. This pattern of the

results for the subsample differs from that of the results for the baseline sample, where the

skewness of the permanent component distribution tends to disappear as the order of the

ARMA model increases. The magnitude of the skewness, however, is always smaller for the

restricted sample than for the baseline sample at age 30. Thus, workers with stronger labor

force attachment have less negative skewness than do other workers, although the skewness

does maintain itself later into the life cycle. Also unlike the results for the baseline model, the

hypothesis that the distributions of the permanent component of earnings have a sub-Gaussian

kurtosis is not rejected at ages 40 and 50 at the level of 0.05 in any of the model specifications

(hence less fat-tailed than the overall population). On the other hand, the hypothesis that

the distributions of the transitory component of earnings have a sub-Gaussian kurtosis is still

rejected at ages 30 and 40 at the level of 0.05 across all the model specifications, similar to

the results for the baseline model. However, the kurtosis of the transitory component for the

restricted sample is always smaller than the kurtosis for the baseline sample under all the

model specifications at ages 30 and 40. Hence the subsample of workers with strong labor force

attachment has less evidence of fat tails in the transitory component of earnings.

6.4.2 Joint Distributions and Implications for Life-Cycle Earnings Dynamics

Figures 5a and 5b display trajectories of the lower tail dependence measure λl30,t(0.01) of per-

manent earnings for ages t ∈ {31, ..., 50} following the event of permanent earnings less than

or equal to the first percentile at age 30 for the strong labor force attachment subsample. The
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solid lines again represent the trajectories under our semiparametric model and the dashed lines

again represent those under the bivariate normal distribution. The results are displayed under

each of the ARMA(0,0), ARMA(1,1), ARMA(2,2), ARMA(3,3),and ARMA(4,4) specifications

with time-varying persistence parameters and with time-invariant persistence parameters.

We obtain qualitatively the same results as those we obtained for the baseline sample.

Comparing the life-cycle dynamics between the baseline sample and the restricted sample, we

see persistence patterns that are very close to one another in the baseline and restricted samples

under the ARMA(1,1) and ARMA(2,2) models but less persistence in the restricted sample than

in the baseline sample for the ARMA(3,3) and ARMA(4,4) models. Thus, at least for these

measures of persistence, we find that, for higher-order ARMA models, those with strong labor

force attachment are more likely to move out of their initial quantile than the full population.

Regarding the three points of the focus of our analysis emphasized at the beginning of

Section 6, we once again conclude the following three points. First, under more flexible higher-

order ARMA models, such as ARMA(4,4), the conditional probability λl30,t(0.01) of permanent

earnings at the first percentile remains as high as 0.7 under the semiparametric model, while it

stays as low as 0.2 under the bivariate Gaussian distribution. Second, we fail to find different

implications of omitting life-cycle effects in the persistence parameters for life-cycle earnings

dynamics through our analysis. Third, our more flexible semiparametric model gives different

answers to questions regarding life-cycle dynamics of earnings than would a Gaussian model.

These three points of the conclusion are the same as for the case of the baseline sample.

6.4.3 Married Workers

In addition to the subsample of workers with strong labor force attachment analyzed above, we

also estimate the model for the subsample of married workers. All the results look similar to

those presented above for the subsample of workers with strong labor force attachment – see

supplementary appendix for a complete set of results. Therefore, we do not repeat discussions

of the results for this subsample. However, two remarks on the results are in order. First, the

standard deviations of both the permanent and transitory component distributions are smaller

for this subsample than for the baseline sample. Married men, therefore, have more stable

earnings profiles than for men as a whole. Furthermore, married men are more likely to exit

the bottom 1 percentile than was the case for men as a whole. This finding echoes that for men

with strong labor force attachment referred to above.
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7 Conclusions

In this paper we have investigated identification and estimation of flexible state space models.

In our version of the canonical model, the permanent state Ut follows a unit root process

and the transitory transitory state Vt follows a semiparametric model of ARMA(p,q) process.

Using panel data of measurements Yt, we establish identification of the nonparametric joint

distributions for each of the permanent state and transitory state variables over time. The

constructive identification allows for closed-form sample counterpart estimators.

We apply the identification and estimation method to the earnings dynamics of U.S. men

using the Panel Survey of Income Dynamics (PSID). Our results show that the marginal dis-

tributions of log earnings of U.S. men are nonnormal, with significant skewness and fatter tails

of both the permanent and transitory components of earnings than the normal. We also find

earnings dynamics very different than the normal, for our results show that the likelihood of

remaining in a lower tail of the permanent earnings distribution does not fall over time as

much, suggesting considerably more earnings mobility than would be found with a multivariate

normality assumption. Another important finding from our empirical analysis is that the esti-

mates of the marginal distributions as well of persistence and dynamics of permanent earnings

are very sensitive to the degree of persistence in the transitory component. We find evidence

for the existence of higher-order ARMA processes in the transitory component and that, with

such higher-order processes, the permanent component of earnings has much less variability

in marginal distributions and less mobility over time. Thus the transitory component makes

a much stronger relative contribution to the marginal earnings distributions and to earnings

mobility than in much of the prior literature, which often allows much less persistence in the

transitory component. We also consider earnings dynamics in subsamples of men with strong

labor force attachment and of married men, finding both subsamples to have lower variances of

permanent and transitory shocks than for the full population but also more earnings mobility

than that population.

As for future research, further generalizations of the state space model would be useful but

the restrictions on the permanent state model and the transitory state model cannot be relaxed

to the full extent simultaneously, because the permanent and transitory states are unobserved

and cannot be distinguished without model restrictions. But there are a couple of directions

for future research. One direction is to partially relax the independence of the innovation ηt in

the permanent state transition, for instance, by accommodating heteroskedastic or dependently

skewed distributions of permanent shocks, while keeping the Martingale feature of the canonical

model. The other direction is to relax the semiparametric specification of the ARMA model for

the transitory state variable by accommodating general nonparametric ARMA processes. Both
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directions are desirable, but it is essential to maintain nonparametric distributional assumptions

and higher orders of the ARMA specification for the transitory state process as we stressed in

discussing the empirical results.

As for applications, it would be helpful to modify our model to allow for changes in the

earnings dynamic process with calendar time, for the growing literature on whether earnings

volatility has been growing in the U.S. over time has only used simpler models of that process.

An extension of our model to the earnings dynamics of women would also be of interest, for

that would require adding a process for moving in and out of a zero-earnings state. Finally,

applying our model to data sets drawn from administrative records (Social Security earnings,

Unemployment Insurance earnings) would, given the large sample sizes of those data sets, allow

more precise estimates of the distributions of the components, particularly in the tails.

Supplementary Material

The supplementary material contains large sample theories of the proposed estimator (Appendix

C) and additional results of the application (Appendix D).
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Wage Wage Weeks Marital Number of

Sample Definition Age Salary Rate Worked Status Observations

Baseline 30 34,090 12.706 46.583 0.751 1,320

(19,711) (4,879) (8.313) (0.433)

40 46,016 14.296 46.732 0.838 1,185

(43,701) (6.198) (7.596) (0.369)

50 46,923 14.682 45.680 0.887 984

(37,883) (5.872) (8.850) (0.317)

Strong Labor 30 35,709 12.927 48.950 0.766 1,183

Force Attachment (19,535) (5.010) (2.376) (0.424)

40 48,123 14.490 48.715 0.849 1,076

(44,950) (6.270) (2.336) (0.359)

50 49,053 14.702 48.384 0.890 864

(38,815) (5.826) (2.490) (0.313)

Married 30 35,092 13.250 47.018 1.000 991

(19,145) (4.959) (7.499) (0.000)

40 47,619 14.525 47.050 1.000 993

(45,844) (6.217) (7.084) (0.000)

50 47,929 14.898 45.647 1.000 873

(38,674) (5.778) (8.923) (0.000)

Table 1: Summary statistics of wage salary, wage rate, weeks worked, and marital status. The

numbers indicate the sample averages and the numbers in parentheses indicate the sample

standard deviations. The statistics are provided under each of the three age groups, 30, 40,

and 50, and uncer each of the three sample definitions: the baseline sample of workers, the

sample of workers with strong labor force attachment (defined as 40 weeks or more of work in

the previous year), and the sample of married workers. The currency units are real 1996 US

dollars, deflated by the CPI-U-RS price deflator.
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Baseline

ARMA(0,0) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.441 -1.105 7.665 p-value = 0.002

(0.016) (0.018) (0.284) (1.644)

U40 -0.000 0.512 -1.136 9.748 p-value = 0.002

(0.020) (0.028) (0.437) (2.335)

U50 0.000 0.547 -1.341 11.169 p-value = 0.000

(0.024) (0.034) (0.469) (2.211)

V30 -0.000 0.297 -4.664 39.881 p-value = 0.000

(0.012) (0.029) (0.721) (8.407)

V40 0.000 0.227 -2.012 37.239 p-value = 0.499

(0.013) (0.040) (74.459) (13340.516)

V50 -0.000 0.222 -6.195 49.806 p-value = 0.487

(1.422) (3.695) (1.303) (1407.858)

Table 2: Estimated distributional indices under the ARMA(0,0) model for the baseline sample.

The indices include the mean, the standard deviation, the skewness, and the kurtosis. The

numbers in parentheses indicate the standard errors of the respective estimates. The last

column shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than

equal to three, against the alternative hypothesis that it is greater than three.
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Baseline: Time-Varying Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.391 -0.750 6.721 p-value = 0.068

(0.016) (0.016) (0.367) (2.494)

U40 -0.000 0.458 -0.506 6.858 p-value = 0.000

(0.019) (0.021) (0.333) (1.172)

U50 0.000 0.492 -0.928 9.681 p-value = 0.011

(0.025) (0.031) (0.523) (2.900)

V30 0.000 0.328 -3.991 28.236 p-value = 0.000

(0.014) (0.029) (0.499) (4.681)

V40 0.000 0.258 -3.016 27.830 p-value = 0.000

(0.014) (0.027) (1.081) (7.260)

V50 -0.000 0.232 -5.239 48.314 p-value = 0.362

(0.018) (0.039) (4.439) (128.250)

Baseline: Time-Constant Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.388 -0.718 6.672 p-value = 0.076

(0.017) (0.016) (0.372) (2.560)

U40 -0.000 0.458 -0.509 6.886 p-value = 0.000

(0.019) (0.021) (0.339) (1.170)

U50 0.000 0.493 -0.914 9.682 p-value = 0.009

(0.025) (0.030) (0.522) (2.822)

V30 0.000 0.332 -3.947 27.514 p-value = 0.000

(0.015) (0.028) (0.491) (4.670)

V40 0.000 0.258 -2.996 27.508 p-value = 0.000

(0.014) (0.027) (1.075) (7.096)

V50 -0.000 0.231 -5.411 48.554 p-value = 0.499

(0.017) (0.039) (51.590) (16379.615)

Table 3: Estimated distributional indices under the ARMA(1,1) model for the baseline sample.

The indices include the mean, the standard deviation, the skewness, and the kurtosis. The

numbers in parentheses indicate the standard errors of the respective estimates. The last

column shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than

equal to three, against the alternative hypothesis that it is greater than three.
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Baseline: Time-Varying Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.394 -0.829 6.737 p-value = 0.040

(0.018) (0.018) (0.352) (2.136)

U40 0.000 0.433 -0.331 8.027 p-value = 0.000

(0.020) (0.022) (0.410) (1.403)

U50 0.000 0.457 -0.841 12.093 p-value = 0.009

(0.031) (0.034) (0.708) (3.868)

V30 -0.000 0.321 -4.246 32.980 p-value = 0.000

(0.016) (0.032) (0.638) (6.267)

V40 -0.000 0.284 -3.371 23.843 p-value = 0.000

(0.016) (0.027) (0.929) (5.346)

V50 -0.000 0.270 -4.619 35.106 p-value = 0.053

(0.027) (0.039) (2.309) (19.825)

Baseline: Time-Invariant Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.391 -0.806 6.628 p-value = 0.049

(0.019) (0.019) (0.370) (2.196)

U40 0.000 0.432 -0.324 8.074 p-value = 0.000

(0.021) (0.023) (0.416) (1.431)

U50 0.000 0.464 -0.854 11.766 p-value = 0.008

(0.028) (0.033) (0.686) (3.670)

V30 -0.000 0.325 -4.170 32.056 p-value = 0.000

(0.017) (0.033) (0.657) (6.435)

V40 -0.000 0.285 -3.365 23.471 p-value = 0.000

(0.017) (0.028) (0.945) (5.238)

V50 -0.000 0.258 -4.986 39.363 p-value = 0.347

(0.022) (0.037) (2.164) (92.165)

Table 4: Estimated distributional indices under the ARMA(2,2) model for the baseline sample.

The indices include the mean, the standard deviation, the skewness, and the kurtosis. The

numbers in parentheses indicate the standard errors of the respective estimates. The last

column shows the p-value of the one-sided test of the null hypothesis that kurtosis is less than

equal to three, against the alternative hypothesis that it is greater than three.
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Baseline: Time-Varying Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.378 -0.949 7.307 p-value = 0.124

(0.020) (0.021) (0.497) (3.735)

U40 -0.000 0.418 -0.293 8.846 p-value = 0.000

(0.024) (0.023) (0.453) (1.465)

U50 0.000 0.455 -0.178 6.954 p-value = 0.002

(0.031) (0.029) (0.432) (1.403)

V30 -0.000 0.314 -4.260 31.880 p-value = 0.000

(0.018) (0.035) (0.696) (6.801)

V40 -0.000 0.283 -3.290 24.914 p-value = 0.000

(0.021) (0.028) (0.879) (6.106)

V50 -0.000 0.246 -5.946 47.363 p-value = 0.500

(0.026) (0.049) (3910.480) (833223.987)

Baseline: Time-Invariant Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.376 -0.953 7.371 p-value = 0.134

(0.021) (0.022) (0.526) (3.950)

U40 -0.000 0.417 -0.289 8.876 p-value = 0.000

(0.024) (0.023) (0.463) (1.463)

U50 0.000 0.457 -0.198 6.952 p-value = 0.003

(0.029) (0.028) (0.433) (1.434)

V30 -0.000 0.317 -4.169 30.937 p-value = 0.000

(0.020) (0.035) (0.711) (6.917)

V40 -0.000 0.284 -3.275 24.660 p-value = 0.000

(0.021) (0.028) (0.871) (6.043)

V50 -0.000 0.242 -6.101 49.495 p-value = 0.496

(0.023) (0.046) (84.350) (4392.234)

Table 5: Estimated distributional indices under the ARMA(3,3) model. The indices include

the mean, the standard deviation, the skewness, and the kurtosis. The numbers in parentheses

indicate the standard errors of the respective estimates. The last column shows the p-value of

the one-sided test of the null hypothesis that kurtosis is less than equal to three, against the

alternative hypothesis that it is greater than three.
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Baseline: Time-Varying Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.360 -0.689 6.071 p-value = 0.197

(0.020) (0.022) (0.496) (3.603)

U40 -0.000 0.420 -0.311 7.804 p-value = 0.001

(0.024) (0.024) (0.453) (1.520)

U50 0.000 0.429 -0.612 7.068 p-value = 0.011

(0.032) (0.030) (0.449) (1.769)

V30 0.000 0.318 -4.434 34.961 p-value = 0.000

(0.020) (0.039) (0.766) (9.531)

V40 -0.000 0.288 -3.431 31.704 p-value = 0.001

(0.020) (0.035) (1.650) (9.283)

V50 -0.000 0.287 -3.711 31.328 p-value = 0.132

(0.029) (0.045) (2.103) (25.319)

Baseline: Time-Invariant Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.355 -0.640 5.686 p-value = 0.237

(0.022) (0.023) (0.519) (3.748)

U40 -0.000 0.419 -0.305 7.764 p-value = 0.001

(0.025) (0.024) (0.451) (1.539)

U50 0.000 0.436 -0.581 6.992 p-value = 0.011

(0.029) (0.028) (0.434) (1.734)

V30 0.000 0.323 -4.325 33.745 p-value = 0.000

(0.022) (0.040) (0.817) (9.336)

V40 -0.000 0.289 -3.418 31.635 p-value = 0.002

(0.021) (0.036) (1.770) (9.894)

V50 -0.000 0.276 -4.163 34.864 p-value = 0.456

(0.024) (0.044) (8.261) (289.995)

Table 6: Estimated distributional indices under the ARMA(4,4) model. The indices include

the mean, the standard deviation, the skewness, and the kurtosis. The numbers in parentheses

indicate the standard errors of the respective estimates. The last column shows the p-value of

the one-sided test of the null hypothesis that kurtosis is less than equal to three, against the

alternative hypothesis that it is greater than three.
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Strong Labor Force Attachment

ARMA(0,0) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.332 -0.586 2.992 p-value = 0.513

(0.013) (0.009) (0.096) (0.249)

U40 0.000 0.379 -0.399 3.240 p-value = 0.112

(0.015) (0.011) (0.093) (0.197)

U50 -0.000 0.382 -0.232 3.212 p-value = 0.326

(0.019) (0.014) (0.151) (0.472)

V30 0.000 0.187 -1.436 9.240 p-value = 0.001

(0.009) (0.012) (0.439) (2.073)

V40 -0.000 0.152 -2.525 24.713 p-value = 0.005

(0.008) (0.016) (1.108) (8.389)

V50 -0.000 0.173 -4.332 39.945 p-value = 0.044

(0.011) (0.028) (1.832) (21.681)

Table 7: Estimated distributional indices under the ARMA(0,0) model for the sub-sample of

individuals with strong labor force attachment. The indices include the mean, the standard

deviation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard

errors of the respective estimates. The last column shows the p-value of the one-sided test of

the null hypothesis that kurtosis is less than equal to three, against the alternative hypothesis

that it is greater than three.
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Strong Labor Force Attachment: Time-Varying Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.316 -0.532 2.774 p-value = 0.790

(0.014) (0.010) (0.107) (0.281)

U40 -0.000 0.358 -0.556 3.401 p-value = 0.108

(0.016) (0.013) (0.139) (0.324)

U50 -0.000 0.371 -0.351 3.115 p-value = 0.413

(0.023) (0.017) (0.158) (0.527)

V30 -0.000 0.192 -1.323 7.837 p-value = 0.006

(0.011) (0.014) (0.420) (1.945)

V40 0.000 0.184 -1.031 11.349 p-value = 0.004

(0.011) (0.016) (0.859) (3.153)

V50 0.000 0.158 -4.770 64.914 p-value = 0.497

(0.016) (0.040) (132.359) (9677.548)

Strong Labor Force Attachment: Time-Constant Coefficients

ARMA(1,1) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.315 -0.535 2.764 p-value = 0.794

(0.015) (0.010) (0.109) (0.288)

U40 -0.000 0.358 -0.560 3.405 p-value = 0.111

(0.017) (0.013) (0.144) (0.332)

U50 -0.000 0.370 -0.335 3.085 p-value = 0.435

(0.0209) (0.016) (0.153) (0.524)

V30 -0.000 0.193 -1.299 7.747 p-value = 0.010

(0.011) (0.014) (0.436) (2.035)

V40 0.000 0.185 -1.006 11.157 p-value = 0.004

(0.011) (0.017) (0.863) (3.122)

V50 0.000 0.160 -4.784 61.908 p-value = 0.484

(0.014) (0.037) (39.663) (1470.245)

Table 8: Estimated distributional indices under the ARMA(1,1) model for the sub-sample of

individuals with strong labor force attachment. The indices include the mean, the standard

deviation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard

errors of the respective estimates. The last column shows the p-value of the one-sided test of

the null hypothesis that kurtosis is less than equal to three, against the alternative hypothesis

that it is greater than three.
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Strong Labor Force Attachment: Time-Varying Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.305 -0.390 2.479 p-value = 0.993

(0.015) (0.010) (0.105) (0.210)

U40 0.000 0.331 -0.338 3.227 p-value = 0.269

(0.018) (0.013) (0.146) (0.369)

U50 0.000 0.334 -0.298 2.300 p-value = 0.661

(0.024) (0.020) (0.304) (1.688)

V30 -0.000 0.188 -1.503 7.165 p-value = 0.021

(0.012) (0.014) (0.452) (2.055)

V40 -0.000 0.197 -1.640 8.369 p-value = 0.016

(0.014) (0.017) (0.522) (2.518)

V50 -0.000 0.223 -2.306 25.355 p-value = 0.072

(0.020) (0.038) (2.083) (15.309)

Strong Labor Force Attachment: Time-Invariant Coefficients

ARMA(2,2) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.303 -0.377 2.442 p-value = 0.995

(0.016) (0.010) (0.110) (0.219)

U40 0.000 0.330 -0.333 3.223 p-value = 0.281

(0.018) (0.013) (0.147) (0.385)

U50 0.000 0.341 -0.269 2.449 p-value = 0.660

(0.022) (0.018) (0.253) (1.331)

V30 -0.000 0.191 -1.513 7.077 p-value = 0.029

(0.013) (0.015) (0.481) (2.155)

V40 -0.000 0.199 -1.638 8.247 p-value = 0.017

(0.014) (0.017) (0.526) (2.469)

V50 0.000 0.212 -2.729 29.773 p-value = 0.049

(0.017) (0.037) (2.113) (16.189)

Table 9: Estimated distributional indices under the ARMA(2,2) model for the sub-sample of

individuals with strong labor force attachment. The indices include the mean, the standard

deviation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard

errors of the respective estimates. The last column shows the p-value of the one-sided test of

the null hypothesis that kurtosis is less than equal to three, against the alternative hypothesis

that it is greater than three.
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Strong Labor Force Attachment: Time-Varying Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.292 -0.451 2.459 p-value = 0.983

(0.016) (0.011) (0.120) (0.256)

U40 -0.000 0.330 -0.352 3.355 p-value = 0.182

(0.019) (0.013) (0.148) (0.390)

U50 0.000 0.345 -0.275 2.445 p-value = 0.768

(0.023) (0.017) (0.195) (0.758)

V30 -0.000 0.203 -1.202 5.341 p-value = 0.071

(0.013) (0.015) (0.352) (1.596)

V40 0.000 0.181 -1.675 10.175 p-value = 0.030

(0.014) (0.017) (0.682) (3.829)

V50 -0.000 0.218 -2.589 28.596 p-value = 0.037

(0.017) (0.037) (1.976) (14.329)

Strong Labor Force Attachment: Time-Invariant Coefficients

ARMA(3,3) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 0.000 0.291 -0.451 2.456 p-value = 0.984

(0.016) (0.011) (0.120) (0.255)

U40 -0.000 0.330 -0.351 3.354 p-value = 0.183

(0.019) (0.013) (0.148) (0.391)

U50 0.000 0.345 -0.269 2.445 p-value = 0.768

(0.023) (0.017) (0.192) (0.757)

V30 -0.000 0.204 -1.196 5.305 p-value = 0.077

(0.013) (0.015) (0.356) (1.613)

V40 0.000 0.181 -1.676 10.167 p-value = 0.028

(0.014) (0.017) (0.683) (3.759)

V50 -0.000 0.218 -2.638 29.049 p-value = 0.032

(0.017) (0.038) (1.965) (14.085)

Table 10: Estimated distributional indices under the ARMA(3,3) model for the sub-sample of

individuals with strong labor force attachment. The indices include the mean, the standard

deviation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard

errors of the respective estimates. The last column shows the p-value of the one-sided test of

the null hypothesis that kurtosis is less than equal to three, against the alternative hypothesis

that it is greater than three.

41



Strong Labor Force Attachment: Time-Varying Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.277 -0.315 2.371 p-value = 0.978

(0.017) (0.012) (0.139) (0.313)

U40 0.000 0.323 -0.617 3.473 p-value = 0.180

(0.020) (0.015) (0.169) (0.517)

U50 0.000 0.337 -0.280 2.021 p-value = 0.895

(0.025) (0.018) (0.184) (0.779)

V30 0.000 0.205 -1.355 5.507 p-value = 0.080

(0.014) (0.016) (0.368) (1.781)

V40 0.000 0.191 -0.999 9.042 p-value = 0.044

(0.015) (0.019) (0.710) (3.537)

V50 -0.000 0.228 -2.337 28.495 p-value = 0.041

(0.021) (0.043) (2.273) (14.647)

Strong Labor Force Attachment: Time-Invariant Coefficients

ARMA(4,4) Mean SD Skewness Kurtosis H0 : Kurtosis63

U30 -0.000 0.277 -0.309 2.359 p-value = 0.977

(0.017) (0.012) (0.142) (0.321)

U40 0.000 0.323 -0.618 3.473 p-value = 0.176

(0.020) (0.015) (0.167) (0.507)

U50 0.000 0.337 -0.270 2.021 p-value = 0.890

(0.026) (0.018) (0.184) (0.799)

V30 0.000 0.206 -1.357 5.483 p-value = 0.080

(0.015) (0.016) (0.363) (1.764)

V40 -0.000 0.191 -0.997 9.031 p-value = 0.043

(0.015) (0.019) (0.714) (3.520)

V50 -0.000 0.227 -2.386 28.827 p-value = 0.097

(0.021) (0.043) (2.329) (19.870)

Table 11: Estimated distributional indices under the ARMA(4,4) model for the sub-sample of

individuals with strong labor force attachment. The indices include the mean, the standard

deviation, the skewness, and the kurtosis. The numbers in parentheses indicate the standard

errors of the respective estimates. The last column shows the p-value of the one-sided test of

the null hypothesis that kurtosis is less than equal to three, against the alternative hypothesis

that it is greater than three.
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Baseline Sample

AR Parameter ρ̂t MA Parameter λ̂t

Sub-Sample of Workers with Strong Labor Force Attachment

AR Parameter ρ̂t MA Parameter λ̂t

Figure 1: Estimates of the AR parameter (left) and the MA parameter (right) under the

ARMA(1,1) specification for the baseline sample (top) and the sub-sample of workers with

strong labor force attachment (bottom). The dashed and dotted curves indicate the boundary

of 90 percent and 95 percent confidence intervals, respectively.
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ARMA(0,0)

ARMA(1,1) ARMA(1,1) with Constant Coefficients

ARMA(2,2) ARMA(2,2) with Constant Coefficients

Figure 2a: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earn-

ings less than or equal to the 1 percentile at age 30. The results are based on the baseline

sample. The solid lines represent the trajectories under our semiparametric model, while the

dashed lines represent those under the bivariate normal distribution. The results are displayed

under each of the ARMA(0,0), ARMA(1,1), and ARMA(2,2) specifications with time-varying

coefficients and time-invariant coefficients.
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ARMA(3,3) ARMA(3,3) with Constant Coefficients

ARMA(4,4) ARMA(4,4) with Constant Coefficients

Figure 2b: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earn-

ings less than or equal to the 1 percentile at age 30. The results are based on the baseline

sample. The solid lines represent the trajectories under our semiparametric model, while the

dashed lines represent those under the bivariate normal distribution. The results are displayed

under each of the ARMA(3,3) and ARMA(4,4) specifications with time-varying coefficients and

time-invariant coefficients.
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λl30,t(0.10) under ARMA(1,1) λl30,t(0.10) under ARMA(4,4)

λl30,t(0.05) under ARMA(1,1) λl30,t(0.05) under ARMA(4,4)

λl30,t(0.01) under ARMA(1,1) λl30,t(0.01) under ARMA(4,4)

Figure 3: Trajectories of the lower tail dependence measure λl30,t(q) = P (Ut ≤ F−1
Ut

(q)|U30 ≤
F−1
U30

(q)) of permanent earnings following the event of permanent earnings less than or equal

to the q-th quantile at age 30 for q ∈ {0.10, 0.05, 0.01}. The results are based on the baseline

sample. The solid lines represent the trajectories under our semiparametric model, while the

dashed lines represent those under the bivariate normal distribution. The results are displayed

under each of the ARMA(1,1) and ARMA(4,4) specifications with time-varying coefficients.
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λl30,t(0.10) under ARMA(4,4) λl40,t(0.10) under ARMA(4,4)

λl30,t(0.05) under ARMA(4,4) λl40,t(0.05) under ARMA(4,4)

λl30,t(0.01) under ARMA(4,4) λl40,t(0.01) under ARMA(4,4)

Figure 4: Trajectories of the lower tail dependence measures λl30,t(q) = P (Ut ≤ F−1
Ut

(q)|U30 ≤
F−1
U30

(q)) and λl40,t(q) = P (Ut ≤ F−1
Ut

(q)|U40 ≤ F−1
U40

(q)) of permanent earnings following the event

of permanent earnings less than or equal to the q-th quantile at age 30 and 40, respectively, for

q ∈ {0.10, 0.05, 0.01}. The results are based on the baseline sample. The solid lines represent

the trajectories under our semiparametric model, while the dashed lines represent those under

the bivariate normal distribution. The results are displayed under the ARMA(4,4) specification

with time-varying coefficients.
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ARMA(0,0)

ARMA(1,1) ARMA(1,1) with Constant Coefficients

ARMA(2,2) ARMA(2,2) with Constant Coefficients

Figure 5a: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earnings

less than or equal to the 1 percentile at age 30. The sample consists of individuals with strong

labor force attachment. The solid lines represent the trajectories under our semiparametric

model, while the dashed lines represent those under the bivariate normal distribution. The re-

sults are displayed under each of the ARMA(0,0), ARMA(1,1), and ARMA(2,2) specifications

with time-varying coefficients and time-invariant coefficients.
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ARMA(3,3) ARMA(3,3) with Constant Coefficients

ARMA(4,4) ARMA(4,4) with Constant Coefficients

Figure 5b: Trajectories of the lower tail dependence measure λl30,t(0.01) = P (Ut ≤
F−1
Ut

(0.01)|U30 ≤ F−1
U30

(0.01)) of permanent earnings following the event of permanent earn-

ings less than or equal to the 1 percentile at age 30. The sample consists of individuals with

strong labor force attachment. The solid lines represent the trajectories under our semipara-

metric model, while the dashed lines represent those under the bivariate normal distribution.

The results are displayed under each of the ARMA(3,3) and ARMA(4,4) specifications with

time-varying coefficients and time-invariant coefficients.
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