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a b s t r a c t

We propose a novel methodology for identification of first-price auctions, when bidders’ private
valuations are independent conditional on one-dimensional unobserved heterogeneity. We extend the
existing literature (Li and Vuong, 1998; Krasnokutskaya, 2011) by allowing the unobserved heterogeneity
to be non-separable from bidders’ valuations. Our central identifying assumption is that the distribution
of bidder values is increasing in the state. When the state-space is finite, such monotonicity implies
the full-rank condition needed for identification. Further, we extend our approach to the conditionally
independent private values model of Li et al. (2000), as well as to unobserved heterogeneity settings in
which the implicit reserve price or the cost of bidding varies across auctions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

This paper considers the problem of identification in first-price
auctions in which bidders have independent private values condi-
tional on an unobserved one-dimensional state Y . Given the joint
distribution of bids, (B1, . . . , Bn), what can be inferred about the
joint distribution of bidder values and the state, (V1, . . . , Vn, Y )?
In many empirical applications, such a state variable Y captures an
auction-specific characteristic commonly observed by the bidders
but unobserved by the econometrician. The resulting model is one
of Independent Private ValueswithUnobservedHeterogeneity (theUH
model).

The existing literature has mainly focused on the convolution
case, in which the unobserved heterogeneity has either an additive
or multiplicative effect on bidder values, e.g., Vi = SiY , with inde-
pendent signals Si that are independent of Y (Li and Vuong, 1998;
Krasnokutskaya, 2011). Our approach to identify (V1, . . . , Vn, Y )
differs in that we rely instead on the weaker assumption that the
distribution of bidder values is monotone in the state, in the sense
of first-order stochastic dominance (FOSD).
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This additional generality in the relationship between V and Y
comes at some cost. Our identification approach relies on recent
results in the econometric literature on nonlinear measurement
error, namely Hu (2008). At least three bidders per auction are
required to apply these results, whereas previous approaches have
required only twobidders per auction. In addition, for our results to
hold, the distribution of equilibrium bids conditional on the state
must satisfy a full-rank condition. When the state-space is finite,
however, this full-rank condition follows immediately from our
monotonicity assumption on the underlying distribution of bidder
values.

Most of the paper focuses on a setting in which the state can be
interpreted as product quality that is observed by the bidders but
not the econometrician. In particular, higher states correspond to
FOSD-higher conditional distributions of bidder values. While the
distribution of equilibriumbids need not be FOSD-increasing in the
state, the maximum of the equilibrium bid support is increasing in
the state. Such ‘‘monotonicity of themaximum’’ is enough to satisfy
the monotonicity condition required by our approach. Further,
when the state-space is finite, monotonicity of the maximum is
also enough to satisfy the full-rank condition.

In Section 3, we consider the Conditionally Independent Private
Value (CIPV)model, the identification and estimation of which has
been analyzed in Li et al. (2000, 2002). This model is behaviorally
distinct from but statistically similar to the UH model. The key

http://dx.doi.org/10.1016/j.jeconom.2013.02.005
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:david.mcadams@duke.edu
http://dx.doi.org/10.1016/j.jeconom.2013.02.005


Y. Hu et al. / Journal of Econometrics 174 (2013) 186–193 187
difference between the CIPV model and the UH model is that, in
the CIPV model, bidders also do not observe the state.

To illustrate the breadth of applicability of our identification
approach, Section 4 considers two settings in which the state
induces unobserved heterogeneity in the distribution of bids
without affecting the underlying distribution of bidder values. First,
suppose that the seller’s (implicit) reserve price is known to the
bidders but unobserved by the econometrician. The maximum of
the equilibrium bid support is higher when bidders are faced with
a higher reserve. Thus, the central monotonicity assumption of
our approach is satisfied, and we identify the joint distribution
of bidder values and the reserve. Second, and similarly, suppose
that bidding is costly, but the cost of bidding is not observed by
the econometrician. The maximum of the equilibrium bid support
is higher when bidders are faced with a lower cost of bidding,
again satisfying our monotonicity requirement when the space
of possible costs is endowed with the reverse order. In this case,
we identify the joint distribution of bidder values and the cost of
bidding.
Related literature. Our paper builds on the pioneeringwork of Li and
Vuong (1998), Li et al. (2000, 2002), and Krasnokutskaya (2011),
who applied results from the literature on classical measurement
error to identify CIPVmodels and UHmodels inwhich the state has
a separable effect on bidder values.1,2 We relax this separability
assumption by applying non-classical measurement error results
in Hu (2008), though at the cost of requiring three bids per auction
rather than two.

Another closely related paper is An et al. (2010), in which
unobserved heterogeneity takes the form of an unobserved number
of potential bidders N∗. An et al. (2010)’s identification approach
exploits the fact that the number of observed bidders is always less
than or equal toN∗. By contrast, our approach exploits the fact that
some location of the distribution of equilibrium bids is increasing
in the unobserved state. Thus, while their approach is specific to
their particular application, our approach can be adapted to a wide
variety of auction settings that exhibit monotonicity of bids in the
state. Indeed, our approach can even be adapted to identify An
et al. (2010)’s model, since the distribution of equilibrium bids is
increasing in N∗.3 Further, An, Hu, and Shum focuses exclusively
on the UH model, while we also extend our analysis to the CIPV
model.

Several other papers in the recent literature address identifica-
tion when there is an unobserved state. d’Haultfoeuille and Fevrier
(2008) identify a common value model with conditionally inde-
pendent signals, assuming that the support of bidders’ signals is
strictly increasing in the underlying common value. d’Haultfoeuille
and Fevrier (2010) extends this approach to a broader class of
mixture models with at least three conditionally independent ob-
servations, again under a moving-support assumption. Roberts
(2009) identifies a model with independent private values and
unobserved heterogeneity given two bidders plus a reserve price
that serves as an instrument for the unobserved heterogeneity.
Aradillas-Lopez et al. (forthcoming) partially identify a model with
unobserved heterogeneity and correlated private values, given
data generated in an ascending auction.

The rest of the paper is organized as follows. Section 2 intro-
duces and analyzes our main model of unobserved heterogeneity

1 These papers also developed important results on estimation. Our focus is on
identification.
2 Krasnokutskaya (2012) has recently extended her approach to a setting in

which amulti-dimensional state has a separable effect on bidder values.
3 An et al. (2010) assume that the distribution of bidder values does not depend

on N∗ , and that N∗
≥ 3 with positive probability. As long as bidder identities are

observed, one can then apply our identification results to the joint distribution of
three bidders’ bids—including when they each fail to bid.
in first-price auctionswith independent private values (UHmodel).
Sufficient conditions for themonotonicity and full-rank conditions
are discussed in detail in Sections 2.1–2.2. Section 3 extends our ap-
proach to a setting with conditionally independent private values
(CIPV model). Two other UH applications, to settings with an un-
observed implicit reserve price or an unobserved cost of bidding,
are considered in Section 4. Section 5 offers concluding remarks,
followed by a technical appendix.

2. Independent private values with unobserved heterogeneity

Model. n ≥ 3 symmetric risk-neutral bidders participate in a first-
price auction with zero reserve price. Bidders’ private values
(V1, . . . , Vn) are independent conditional on an auction-specific
‘‘state’’ Y ∈ {1, . . . , K} and bounded with support [0, v]. The
conditional probability distribution function (pdf) f (vi|Y = y) is
continuously differentiable in vi and bounded away from both zero
and infinity on its support. Let f (vi, y) denote the joint density of
(Vi, Y ).4

These assumptions are sufficient to imply existence of a unique
bidding equilibrium, which is in symmetric strategies. Let b(vi|y)
denote the equilibrium bid of a bidder having value vi, conditional
on realized state y. Let G(bi|y) and g(bi|y) be the cumulative
distribution function (cdf) and pdf of each bidder’s equilibrium bid
conditional on state Y = y, and g(bi, y) the joint density of (Bi, Y ).
Note that, since bidder values are i.i.d. conditional on Y , so are bids.

The state Y is common knowledge among the bidders prior to
the bidding, but the econometrician does not observe Y and does
not even know the distribution from which it is drawn. (However,
for convenience, we assume that the number of points of support
K is known.) Y constitutes a source of unobserved heterogeneity,
since equilibrium bidding strategies vary with the state.

Our central identifying assumption is a monotonicity property
on model primitives, that the distribution of bidder values is
stochastically increasing in the state.
Monotonicity assumption. Vi|(Y = y) is strictly increasing in ywith
respect to first-order stochastic dominance (FOSD-increasing).
That is, y′ > y implies that F(vi|y′) ≤ F(vi|y) for all vi, with strict
inequality at some vi.5

Proposition 1 (Monotonicity of the Maximum). Suppose that the
monotonicity assumption is satisfied. Then b(y) = b(v|y) is strictly
increasing in y.

Proof. By the envelope theorem, a bidder with value vi earns
interim expected payoff equal to

 vi
0 F(v|y)n−1dv, where F(v|y)n−1

is each bidder’s conditional probability of winning given value v.
Since a bidder with the highest possible value v always wins, this
means that such a bidder’s equilibrium bid equals

b(y) = b(v|y) = v −

 v

0
F(v|y)n−1dv.

Suppose that y′ > y. By the monotonicity assumption, F(v|y′) ≤

F(v|y) for all v, with strict inequality for a positive measure of
values. Thus, b(y′) > b(y). �

Identification: assumptions and argument. When there is un-
observed heterogeneity, the unconditional distribution of bids
observed by the econometrician differs from the conditional distri-
bution that bidders use when formulating their bids. Thus, correct

4 Random variables are capitalized while realizations of random variables are in
lower case.
5 Since F(vi|y) is continuous in vi , F(v̂i|y′) < F(v̂i|y) implies that F(vi|y′) <

F(vi|y) for a positive measure of values vi .
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inference about bidder values requires identification of the joint
distribution of bids and the unobserved heterogeneity.We achieve
such identification by applying a result from Hu (2008), for which
we need two conditions to hold on the distribution of equilibrium
bids: the UH monotonicity condition and the UH full-rank condi-
tion.
UHmonotonicity condition: There exists a known functionalM such
thatM[g(·|y)] is strictly increasing in y.

Definition 1 (Discretization of Bids). A ‘‘discretization of bids’’ is
any monotone onto mapping D : R+ → {1, . . . , K}. Each such
mapping is equivalent to a partition of the bid-space R+ into K
intervals. Let Dk = D(Bk) be shorthand for the interval to which
bidder k’s bid belongs and dk = D(bk) be the realization of Dk.

UH full-rank condition: There exists a discretization of bids such
that the K × K matrix LDi,Dk =


Pr


Di = i′,Dk = k′,


i′,k′∈{1,...,K}

has rank K .

Theorem 1 (UH Identification). Suppose that n ≥ 3. If the UHmono-
tonicity condition and the UH full-rank condition hold, then the joint
distribution of (V1, . . . , Vn, Y ) is identified from the joint distribution
of bids (B1, . . . , Bn).

Proof. The proof has two steps. First, under the assumptions of
Theorem 1, the joint distribution of (B1, . . . , Bn, Y ) is identified
from that of (B1, . . . , Bn). For this, we apply Theorem 1 of Hu
(2008), using three bids (Bi, Bj, Bk) as multiple conditionally inde-
pendent measurements of Y . Then, by established methods in the
literature (see, e.g., Guerre et al., 2000), the joint distribution of val-
ues (V1, . . . , Vn) conditional on Y is identified from the distribution
of bids (B1, . . . , Bn) conditional on Y by the first-order conditions
of equilibrium bidding as in Guerre et al. (2000). �

The key step of our identification argument applies Theorem
1 of Hu (2008) to identify (B1, . . . , Bn, Y ) from (B1, . . . , Bn). For
completeness, and to shed light on why we require three bids
and impose the UH monotonicity and UH full-rank conditions, we
provide a self-contained proof of this key step in the Appendix.

Lemma 1 (Corollary to Hu, 2008, Theorem 1). Suppose that n ≥

3. If the UH monotonicity and UH full-rank conditions hold, then
(B1, . . . , Bn, Y ) is identified from the joint distribution of bids
(B1, . . . , Bn).

Proof. See the Appendix. �

Discussion. Three bidders. If there are only two bidders, our analysis
still applies if an appropriate alternative instrument can be found
that satisfies the full-rank condition. Loosely speaking, such an
instrument should be correlated with the bids but independent of
the bids conditional on Y . For example, consider a timber auction
inwhich Y denotes the quality of the timber for sale. An instrument
in this context might be average rainfall or soil quality, which
is related to timber quality but does not directly affect bidders’
valuations.

Symmetry. The analysis can be easily generalized to allow for
asymmetric bidders, as long as one is willing to assume or able
to prove (as in Proposition 1) that the maximum of each bidder’s
equilibrium bid support, or some other location of the distribution
of bids such as the mean, is higher in higher states.

2.1. Sufficient conditions for the UH monotonicity condition

UH monotonicity is a non-primitive condition on the distribu-
tion of equilibrium bids. However, this monotonicity property of
bids follows directly from our maintained monotonicity assump-
tion on values. (Proposition 2 is an immediate corollary of Proposi-
tion 1.)
Proposition 2 (UH Monotonicity). When the monotonicity assump-
tion on bidder values is satisfied, the UHmonotonicity condition is sat-
isfied with respect to the operator corresponding to the maximum of
the equilibrium bid support, M[g(·|y)] = max supp(Bi|y).

2.2. Sufficient conditions for the UH full-rank condition

The UH full-rank condition is also a non-primitive condition
on the distribution of equilibrium bids. However, in the finite
state-space case considered here, this full-rank condition follows
immediately from our maintained monotonicity assumption on
values. Thus, no further assumptions are required.

Proposition 3 (UH Full-Rank). When the monotonicity assumption
on bidder values is satisfied, the UH full-rank condition is satisfied.

Proof. To establish that the UH full-rank condition is satisfied, it
suffices to show that there exists a discretization such that

Rank(LDi,Dk) = K , (1)

where LDi,Dk =

Pr


Di = i′,Dk = k′,


i′,k′∈{1,...,K}

. Consider the

following discretization: D(b) = 1 if b ≤ b(1); D(b) = k if
b ∈


b(k − 1), b(k)


for all k = 2, . . . , K − 1; and D(b) = K if

b > b(K − 1). (Recall that b(K) > b(K − 1) > · · · > b(1) > 0
by Proposition 1.) In each state y = k, bids are at most b(k).
Thus, for each bidder i, LDi|Y =


Pr


Di = i′|Y = y,


i′,y∈{1,...,K}

is
a triangular matrix of rank K . Finally, note that LDi,Dk = LDi|Y ×

DY × LTDk|Y
, where DY = diag


Pr {Y = y}y∈{1,...,K}


also has rank K .

Thus, LDi,Dk has rank K . �

Discussion: The proof of Proposition 3 leverages the fact that bidder
values are bounded, but this is not essential. Suppose that bidder
values are unbounded but, for simplicity, that the state-space has
exactly two elements, ‘‘low’’ and ‘‘high’’. This special case is useful
from an expositional point of view, since the full-rank condition (1)
reduces to a simple correlation condition, that there exists some
threshold b∗ > 0 such that

Pr(Bj > b∗
|Bi > b∗) ≠ Pr(Bj > b∗

|Bi < b∗). (2)

Let b(vi|low), b(vi|high) denote equilibrium bidding strategies in
each state. Lebrun (1998) shows that equilibrium bids are increas-
ing in the state, i.e., b(vi|high) > b(vi|low) for all vi, whenever the
distribution of bidder values has the monotonicity property that
d

F(v|y′)
F(v|y)


/dv > 0 for all v and all y′ > y. (This monotonicity

property is stronger than our monotonicity assumption. See Le-
brun, 1998 for details.) Thus, G(b|Y = high) < G(b|Y = low)
for all b > 0, and hence Pr(Bj > b|Bi > b) > Pr(Bj > b|Bi < b) for
all b > 0. The correlation condition (2) is therefore satisfied with
respect to any b∗ > 0.

2.3. Estimation

Our identification strategy is constructive, and one may follow
the identification procedure to estimate the model. For a nonpara-
metric approach, onemay follow the estimator inAn et al. (2010) to
estimate the bid distribution gBj|Y . For a semiparametric approach,
one may use the estimator in Hu (2008).

Here, we provide a brief description of the nonparametric
approach, focusing on how to recover gBj|Y from a random sample
Dkt , Bjt ,Dit


t=1,...,T . From the discussion above, we have

gDk,Bj,Di(dk, bj, di) =

K
y=1

gDk|Y (dk|y)gBj|Y (bj|y)gY ,Di(y, di). (3)
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Averaging over Bj leads to
bgDk,Bj,Di(dk, b, di)db

=

K
y=1

gDk|Y (dk|y)


bgBj|Y (b|y)db

gY ,Di(y, di)

=

K
y=1

gDk|Y (dk|y)E(Bj|y)gY ,Di(y, di).

Following An et al. (2010), we estimate gBj|Y in two steps: first,
we use the equation above to obtain gDk|Y ; thereafter, we estimate
gBj|Y from the observed gBj,Dk . In the first step, we define

LDk,EBj,Di =


bgDk,Bj,Di(k

′, b, i′)db

k′,i′=1,2,...,K

LDi,Dk =

gDi,Dk(i

′, k′)

i′,k′=1,2,...,K

LDk|Y =

gDk|Y (k

′
|y)


k′,y=1,2,...,K

LY ,Di =

gY ,Di(y, i

′)

y,i′=1,2,...,K

and

DEBj|Y = diag


E(Bj|y)

y=1,2,...,K


.

We then have

LDk,EBj,Di = LDk|YDEBj|Y LY ,Di

and similarly

LTDi,Dk
= LDk|Y LY ,Di .

The invertibility of LDi,Dk implies that

LDk,EBj,Di


LTDi,Dk

−1
= LDk|YDEBj|Y L

−1
Dk|Y

. (4)

Next, we apply the UH monotonicity condition, and use the
conditional expectation of the bid as the functional which satisfies
this condition, i.e., M[g(·|y)] =


bg(b|y)db. Therefore, we may

order the eigenvalues E(Bj|y) to obtain a unique decomposition.
Further,

LDk|Y = ψ

LDk,EBj,Di


LTDi,Dk

−1

,

where ψ (·) denotes the mapping from the square matrix on the
left-hand side (LHS) of Eq. (4) to its eigenvector matrix following
the identification procedure. We may estimate LDk|Y as follows:

LDk|Y = ψ
LDk,EBj,Di

LTDi,Dk

−1

, (5)

whereLDk,EBj,Di andLDi,Dk are defined as

LDk,EBj,Di =


1
T

T
t=1

Bjt1(Dkt = k′,Dit = i′)


k′,i′=1,2,...,K

(6)

LDi,Dk =


1
T

T
t=1

1(Dit = i′,Dkt = k′)


i′,k′=1,2,...,K

. (7)

In the second step, we estimate gBj|Y

bj|y


from6

gBj,Dk(bj, dk) =

K
y=1

gDk|Y (dk|y)gBj,Y (bj, y),

which is equivalent to
−→g (bj, dk) = LDk|Y ×

−→g (bj, y),

6 We omit the subscripts when it does not cause any confusion.
with the vector of densities −→g (bj, d) ≡

g(bj, d = 1), g(bj, d =

2), . . . , g(bj, d = K)
T .

Define ey = (0, . . . , 0, 1, 0, . . . , 0)T , where 1 is at the yth
position in the vector. Our corresponding estimator is

g(bj, y) = eTy
LDk|Y

−1 −→g (bj, dk),
whereLDk|Y is from the first step,

−→g (bj, dk) =
g(bj, dk = 1),g(bj,

dk = 2), . . . ,g(bj, dk = K)
T , and

g 
bj, dk = k′


=


1
T

T
t=1

1
h
κ


bj − Bjt

h


1(Dkt = k′)


, (8)

with a kernel function κ and a bandwidth h.
Similarly, we may estimate the marginal distribution of Y as

follows:g(y) = eTy
LDk|Y

−1 −→g (dk),
where

−→g (dk) ≡
 1
T


t 1Dkt=1, . . . ,

1
T


t 1Dkt=K


. Therefore, the

conditional bid densities gBj|Y

bj|y


may be estimated as

gBj|Y 
bj|y


=

eTy
LDk|Y

−1 −→g (bj, dk)
eTy

LDk|Y
−1 −→g (dk) . (9)

The empirical conditional cdf for the bids is

FBj|Y 
bj|y


=

eTy
LDk|Y

−1 −→F (bj, dk)
eTy

LDk|Y
−1 −→g (dk) , (10)

where
−→F (bj, dk) denotes the vector of the following elements:

F 
bj, dk = k′


=

1
T

T
t=1

1

Bjt < bj,Dkt = k′


,

k′
= 1, . . . , K , (11)

which can be recovered from the sample.
A complete discussion of the asymptotic theory for this proce-

dure is provided in the Appendix of An et al. (2010), and we sum-
marize the results here. Since the first step only involves sample
averages in different subsamples, our estimatorLDk|Y converges at
a
√
T -rate. The convergence rate ofgBj|Y 

bj|y

is determined by the

convergence properties of the kernel estimator g 
bj, dk = k′


in

Eq. (8); for a fixed bj, (Th)1/2
gBj|Y 

bj|y

− gBj|Y


bj|y


converges

to a normal distribution. For the empirical distributionFBj|Y 
bj|y


,

we have that T 1/2
[FBj|Y 

bj|y

− FBj|Y


bj|y


] converges to a normal

distribution with mean zero. Complete details can be found in Hu
(2008) and An et al. (2010).

3. Extension: conditionally independent private values

Our results also apply to a setting in which bidders have
conditionally independent private values (CIPV model). The main
behavioral distinction between the UH and CIPV models is that,
in the UH model, bidders observe Y before they choose their bid
while, in the CIPV model, bidders do not observe Y .

As before, we achieve identification by applying a result from
Hu (2008). The main difference is that our monotonicity and full-
rank conditions are now primitive conditions on bidder values,
rather than non-primitive conditions on equilibrium bids.
CIPV monotonicity condition: There exists a known functional M
such thatM[f (·|y)] is strictly increasing in y.
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Definition 2 (Discretization of Values). A ‘‘discretization of values’’
is any monotone onto mapping D : R → {1, . . . , K}. Each such
mapping is equivalent to a partition of the value-space [0, v] into
K intervals. Let Dk = D(Vk) be shorthand for the interval to which
bidder k’s value belongs and dk = D(vk) be the realization of Dk.

CIPV full-rank condition: There exists a discretization of values such
that the K × K matrix LDi,Dk = [Pr{Di = i′,Dk = k′, }]i′,k′∈{1,...,K}

has rank K .

Theorem 2 (CIPV Theorem). Suppose that n ≥ 3. If the CIPV
monotonicity and CIPV full-rank conditions hold, then the joint
distribution of (V1, . . . , Vn, Y ) is identified from the joint distribution
of bids (B1, . . . , Bn).

Proof. The proof has two steps. First, by established methods
in the literature (see, e.g., Li et al., 2000), the joint distribution
of values (V1, . . . , Vn) is identified from the distribution of bids
(B1, . . . , Bn) by the first-order conditions of equilibrium bidding
in the CIPV model.7 The second step is to show that, under
the assumptions of the CIPV theorem, the joint distribution of
values and the state (V1, . . . , Vn, Y ) is identified from (V1, . . . , Vn).
For this step, we apply Theorem 1 of Hu (2008), where three
values (Vi, Vj, Vk) serve as multiple conditionally independent
measurements of Y . �

Sufficient condition for the CIPV monotonicity condition. As in the UH
model, it suffices for the distribution of bidder values to be FOSD-
increasing in Y .

Proposition 4 (CIPV Monotonicity). Suppose that the monotonicity
assumption is satisfied. The CIPV monotonicity condition is then
satisfied with respect to the mean operator, M[g(·|Y = y)] =

E[Bi|Y = y].

Proof. In the CIPV model, bidders’ bids depend on their realized
values but not the state. Thus, the distribution of equilibrium
bids is just a monotone transformation of the distribution of
bidder values, where this transformation does not vary with the
state. Since the distribution of bidder values is FOSD-increasing
in the state by the monotonicity assumption, the distribution of
equilibrium bids must also be FOSD-increasing in the state. In
particular, the mean equilibrium bid is strictly increasing in the
state. �

Sufficient conditions for the CIPV full-rank condition. The CIPV full-
rank condition is identical to the UH full-rank condition in all but
one respect: the CIPV full-rank condition applies to the primitive
joint distribution of the state and bidder values while the UH full-
rank condition applies to the non-primitive joint distribution of
the state and equilibrium bids. Thus, our results on full rank in the
UHmodel translate directly to the CIPVmodel, once interpreted as
applying to values rather than bids. In particular, the CIPV full-rank
condition holds whenever the joint distribution of two bidders’
(discretized) values satisfies a full-rank condition analogous to that
of Eq. (1).

4. Additional extensions

This section aims to illustrate the breadth of application of
our identification approach, by examining two settings outside

7 The CIPV model has a unique equilibrium when bidders are symmetric
(McAdams, 2007). Without uniqueness, the equilibrium selected by bidders would
be a source of unobserved heterogeneity. Further, the approach developed here
cannot accommodate this sort of unobserved heterogeneity, since equilibrium bids
across multiple equilibria need not be ordered so as to satisfy our monotonicity
condition.
of the model of Section 2 with independent private values and
unobserved heterogeneity. In Section 4.1, we consider a situation
inwhich the seller’s (implicit) reserve price is known to the bidders
but not observed by the econometrician. The reserve price affects
the distribution of equilibrium bids and therefore constitutes a
source of unobserved heterogeneity, even if it is uncorrelated with
the distribution of bidder values. Given the joint distribution of at
least three bids, we identify the distribution of the reserve and the
distribution of bidder values. In Section 4.2, we consider a situation
inwhich bidding is costly, but the econometrician does not observe
the cost of bidding. Given the joint distribution of at least three
bids, we identify the distribution of the cost of bidding and the
distribution of bidder values.

4.1. Implicit reserve price as unobserved heterogeneity

Auction datasets often include the explicit reserve price, the
minimal bid permitted by the auction rules. However, real-world
sellers sometimes refuse to sell to the highest bidder, unless the
highest bid exceeds an even higher implicit reserve price.8 This
observation has motivated an important empirical literature on
auctions with a ‘‘random reserve price’’; see, e.g., Li and Perrigne
(2003). Papers in this literature presume that bidders do not
know the seller’s implicit reserve price when bidding, only the
distribution from which it is drawn. Yet sellers can have an
incentive to reveal their implicit reserve price to bidders prior
to the bidding.9 If bidders observe the implicit reserve price,
the distribution of equilibrium bids will vary with the implicit
reserve, making this a potentially important source of unobserved
heterogeneity.

We consider here the simplest case in which (i) the realized im-
plicit reserve price R = r is commonknowledge among the bidders
prior to the bidding, (ii) bidder values are independent of R, and
(iii) the econometrician knows nothing about the implicit reserve,
not even the distribution fromwhich it is drawn. Such econometri-
cian ignorance could arise naturally, if the seller’s implicit reserve
depends on his/her own cost but the econometrician has no data
on seller cost.

For simplicity of the exposition, we shall henceforth suppress
the distinction between explicit and implicit reserve prices,
treating the reserve price as if it is an explicit reserve that is
unobserved by the econometrician.10 Also, wewill assume that the
reserve has finite support, supp(R) = {r1, . . . , rK }.
Monotonicity. Equilibrium bids b(v|r) vary monotonically with the
reserve price r .

Proposition 5 (Monotonicity in the Reserve Price).Given any reserve
prices r ′ > r, b(v|r ′) > b(v|r) for all values v > r ′.

Proof. Given reserve price r , each bidder earns zero surplus given
any value vi ≤ r . By the envelope theorem, each bidder’s expected
surplus given value vi > r takes the form

 vi
r F(v)n−1dv, where

8 If the seller is bound to accept the highest bid whenever it exceeds the explicit
reserve, the implicit reserve equals the explicit reserve and there is no problem.
Otherwise, the ‘‘true’’ reserve typically exceeds the explicit reserve, and bidders’
beliefs about the reserve price affect the distribution of equilibrium bids.
9 For example, suppose that the seller’s cost is random and unobserved by the

bidders. Since the optimal reserve price varies with the seller’s cost, the seller
cannot implement the optimal auction unless he/she credibly reveals the reserve
price to bidders. Consequently, any seller who can commit to an optimal implicit
reserve pricewill always choose to reveal it to bidders. See also Brisset andNaegelen
(2006) for another context in which the seller chooses to reveal the reserve price.
10 When R is an implicit reserve price, the data will include permissible but
unacceptable bids between the explicit and implicit reserves. R is the minimal
acceptable bid, rather than the minimal permissible bid.
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F(v)n−1 is the probability of winning given value v. Equilibrium
bids b(vi|r)must therefore satisfy the condition

(vi − b(vi|r)) F(vi)n−1
=

 vi

r
F(v)n−1dv. (12)

The right-hand side (RHS) of (12) is decreasing in r for all vi > r .
Thus, b(vi|r)must be increasing in r for all vi > r . �

Proposition 5 implies that the maximum of the equilibrium
bid support, b(v|r), is strictly increasing in r . Thus, the UH
monotonicity condition is satisfied with respect to the operator
corresponding to this maximum.
Full rank. Since the maximum of the equilibrium bid support
is increasing in the reserve, the UH full-rank condition is
automatically satisfied by the argument of Proposition 3.
Identification. As noted above, the UH monotonicity condition and
the UH full-rank condition are automatically satisfied. Thus, we
may apply Theorem 1 to identify the joint distribution of the bids
and the unobserved state. More precisely, we may identify the
joint distribution of (B1, . . . , Bn, γ (R)), where γ : {r1, . . . , rK } →

{1, . . . , K} is a normalization.
Identifying the unnormalized support of the unobserved hetero-

geneity requires extraworkwhich, in this case, is trivial and imme-
diate. Namely, since the realized reserve price rk is theminimumof
the support of submitted bids conditional on γ (R) = k, wemay in-
fer rk directly from the distribution of bids conditional on γ (R) = k.
Thus, in fact, the joint distribution of (B1, . . . , Bn, R) is identified.

Identifying bidder values is now straightforward. In particular,
the conditional distribution of (V1, . . . , Vn)|R is identified as
usual from that of (B1, . . . , Bn)|R, by the first-order conditions of
equilibrium bidding as in Guerre et al. (2000). (More precisely, for
each realized reserve price R = rk, wemay identify the distribution
of values above rk.)

4.2. Bidding cost as unobserved heterogeneity

Samuelson (1985) noted that ‘‘competing firms must bear sig-
nificant bid-preparation and documentation costs’’ in order to bid
in an auction, spawning a large literature on auctions with costly
bidding. Suppose that, as in Samuelson (1985), each bidder cost-
lessly learns his/her private value and then simultaneously decides
whether to pay C ≥ 0 to submit a bid in a first-price auction with
zero reserve price. The distribution of equilibrium bids varies with
the cost of bidding, making this a potentially important source of
unobserved heterogeneity if the cost of bidding varies across auc-
tions but is not observed by the econometrician. (Such a case of un-
observed heterogeneity is also discussed in Li and Zheng (2009).)
Also, we will assume that the cost of bidding is drawn from finite
support, supp(C) = {c1, . . . , cK }.
Monotonicity. Equilibrium bids b(v|c) vary monotonically with the
bidding cost c.

Proposition 6 (Monotonicity in the Bidding Cost). Given any bidding
costs c ′ < c, b(v|c ′) > b(v|c) for all values v > v(c), where
v(c) is the equilibrium participation threshold implicitly defined by
the indifference condition c = v(c)F(v(c))n−1.

Proof. Each bidder earns zero surplus given any value vi ≤ v(c).
By the envelope theorem, each bidder’s expected surplus given
value vi > v(c) takes the form

 vi
v(c) F(v)

n−1dv. Since this is net
expected surplus, equilibrium bids b(vi|c) must therefore satisfy
the condition

(vi − b(vi|c)) F(vi)n−1
= c +

 vi

v(c)
F(v)n−1dv

=

 vi

0
F(max{v, v(c)})n−1dv, (13)
where the last equality comes fromsubstituting c = v(c)F(v(c))n−1.
The threshold v(c) is strictly increasing in c. Thus, the RHS of (13) is
strictly increasing in c for all v > v(c). Thus, b(vi|c)must be strictly
decreasing in c for all vi > v(c). This completes the proof. �

Proposition 6 implies that the maximum of the equilibrium
bid support, b(v|c), is strictly decreasing in c. Thus, the UH
monotonicity condition is satisfied with respect to the operator
corresponding to this maximum when the state-space of possible
bidding costs is endowed with the reverse order.
Full rank. Since the maximum of the equilibrium bid support
is monotone in the bidding cost, the UH full-rank condition is
automatically satisfied by the argument of Proposition 3.
Identification. As noted above, the UH monotonicity condition and
the UH full-rank conditions are automatically satisfied. Thus, we
may apply Theorem 1 to identify the joint distribution of the
bids and the unobserved state. That is, we may identify the joint
distribution of (B1, . . . , Bn, γ (C)), where γ : {c1, . . . , cK } →

{1, . . . , K} is a normalization.
Identifying the unnormalized support of the unobserved hetero-

geneity requires extraworkwhich, in this case, is not as immediate
as in the reserve price example of Section 4.1. First, for every real-
ization of the normalized cost of bidding k = 1, . . . , K , the condi-
tional distribution of values (V1, . . . , Vn)|(γ (C) = k) is identified
from the conditional distribution of bids (B1, . . . , Bn)|(γ (C) = k),
by the first-order conditions of equilibrium bidding as in Guerre
et al. (2000). More precisely, the distribution of values is identified
above the minimal value v(ck) given which each bidder submits a
bid, conditional on bidding cost C = ck.

The threshold v(ck) is determined by the indifference condition

ck = v(ck)F(v(ck))n−1 for all k = 1, . . . , K . (14)

(A bidder having value vi = v(ck) bids zero in equilibrium, wins
with probability F(v(ck))n−1, and is indifferent between bidding or
not.) Both the probability of non-bidding F(v(ck)) and the bidding
threshold v(ck), conditional on C = ck, are identified from the
distribution of bidder values conditional on γ (C) = k. Eq. (14)
therefore allows us to identify ck from the distribution of bidder
values conditional on γ (C) = k. Thus, in fact, the joint distribution
of (V1, . . . , Vn, C) is identified.

5. Concluding remarks

This paper has developed a novel approach to identify first-
price auctionmodelswith independent private values in the face of
one-dimensional unobserved heterogeneity.11 Our key identifying
assumption is that the distribution of bidder values is increasing
in the state, in the sense of first-order stochastic dominance. This
monotonicity assumption suffices to imply both the monotonicity
and full-rank conditions on the distribution of equilibrium bids that
are necessary for our identification approach.

Our identification approach can be adapted to a wide variety of
auction environments, in which some location of the distribution
of equilibrium bids is increasing in the unobserved state. We
consider three such applications: (i) bidders also donot observe the
underlying state, so the model is one of conditionally independent
private values (Section 3); (ii) the seller’s implicit reserve price
is known to the bidders but unobserved by the econometrician
(Section 4.1); and (iii) the bidders’ cost of preparing a bid is known
to the bidders but unobserved by the econometrician (Section 4.2).

11 We focused on the simplest case with a finite state-space. See the working-
paper version Hu et al. (2011) for some additional results in the more challenging
case with a continuous state-space.
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We see three important directions for future work building
upon this paper. First, inmany applications it is likely that there are
multiple potential sources of unobserved heterogeneity. We are
currently exploring an extension of this paper’s analysis to a setting
with multi-dimensional unobserved heterogeneity. Second, the
proof of our main result relies heavily on the assumption of
independent private values.Weareworking to extendour results to
settings in which bidders have affiliated private values conditional
on the state. Finally, we are considering how to extend our
results to ‘‘endogenous participation’’ models, roughly defined as
models of entry in auctions. Unlike the ‘‘bidding cost’’ example
of Section 4.2, bidders’ entry decisions in such models depend
on unobserved auction characteristics which also affect their
valuations; see, e.g., Haile et al. (2003) and Li and Zheng (2009).

Appendix. Proof of Lemma 1

Proof. Since bidders are symmetric and equilibrium bids are
conditionally independent, the joint distribution of (B1, . . . , Bn, Y )
is identified from the distributions of Y and Bk|Y , for any k =

1, . . . , n. Fix any three bidders i, j, k. (The following proof can
be repeated for any triplet of bidders.) We will show that the
distributions of Y and Bk|Y are identified from the joint distribution
of (Di, Bj,Dk)with Dk = D (Bk).

The following matrices will be useful in the proof. (In what
follows, variables with bars (̄ ) denote fixed values.)

LDk|Y =

gDk|Y (k

′
|y)


k′,y=1,2,...,K

LDi,Dk =

gDi,Dk(i

′, k′)

i′,k′=1,2,...,K

LDk,bj,Di
=


gDk,Bj,Di(k

′, bj, i′)

k′,i′=1,2,...,K

Dbj|Y = diag


gBj|Y (bj|y)

y=1,2,...,K


LY ,Di =


gY ,Di(y, i

′)

y,i′=1,2,...,K .

Invertibility of LDk|Y .
Note that

E [h(Dk)|di] =

K
k′=1

h

k′


gDk|Di(k

′
|di)

=
1

gDi(di)

K
k′=1

gDi,Dk(di, k
′)h


k′


.

By the UH full-rank condition, E [h(Dk)|di] = 0 for all di ∈

{1, . . . , K} implies that h

k′


= 0 for all k′. Thus, the matrix LDi,Dk

is invertible. The conditional independence between Di and Dk, i.e.,
gDk,Di(dk, di) =

K
y=1 gDk|Y (dk|y)gY ,Di(y|di), implies that

LTDi,Dk
= LDk|Y LY ,Di , (15)

where LTDi,Dk
is the transpose of LDi,Dk . Therefore, the invertibility of

LDi,Dk implies that LDk|Y is invertible.
Eigenvalue/eigenvector decomposition.
Since bidder values are assumed to be conditionally indepen-

dent, bids are also independent conditional on Y :

gDk,Bj,Di(dk, bj, di) =

K
y=1

gDk|Y (dk|y)gBj|Y (bj|y)gY ,Di(y, di). (16)

In particular, this equation is equivalent to the matrix equation as
follows:

LDk,bj,Di
= LDk|YDbj|Y LY ,Di . (17)
Since LDi,Dk and LDk|Y are invertible, as shown before, Eq. (15)
implies that

LY ,Di = L−1
Dk|Y

LTDi,Dk
. (18)

Substituting this expression in (17), for any fixed bj, yields

LDk,bj,Di
= LDk|YDbj|Y L

−1
Dk|Y

LTDi,Dk
. (19)

By the invertibility of LDi,Dk , finally,

LDk,bj,Di


LTDi,Dk

−1
= LDk|YDbj|Y L

−1
Dk|Y

. (20)

This equation implies that the observed LHS has an eigenvalue and
eigenvector decomposition. The eigenvalues are gBj|Y (bj|y) in the
diagonal matrix Dbj|Y and the eigenvectors are gDk|Y (·|y) in the ma-
trix LDk|Y . Because LDk|Y is a conditional probability matrix, the fact
that its column sums are all equal to 1 provides a natural normal-
ization for the eigenvectors. The realization of unobserved hetero-
geneity y is the index for the eigenvalues and eigenvector. The UH
monotonicity condition implies that for any two possible values y
andy of Y there exists a nonzero-measure set of bj such that the
corresponding two eigenvalues gBj|Y (bj|y) and gBj|Y (bj|y) are dis-
tinctive. In other words, for any two eigenvectors corresponding
to two indices y and y, there must exist a bj such that the two
corresponding eigenvalues are different. The eigendecompositions
corresponding to different bj may share the same set ofK eigenvec-
tors because the eigenvectors gDk|Y (·|y) do not depend on bj. This
means that the Keigenvectors are uniquely determined. However,
the ordering of the K eigenvectors is still arbitrary in Eq. (20). This
can be seen from the following equation:

LDk,bj,Di


LTDi,Dk

−1
= LDk|YDbj|Y L

−1
Dk|Y

=

LDk|YQ

 
Q−1Dbj|YQ

 
LDk|YQ

−1
, (21)

where Q is an elementary matrix generated by interchanging
columns of the identity matrix. Let


LDk|YQ


be an eigenvector

matrix with a fixed ordering of the eigenvectors arbitrarily set
by the econometrician. Notice that the corresponding unknown
matrix Q does not change with different bj. We then have
LDk|YQ

−1

LDk,bj,Di


LTDi,Dk

−1
 

LDk|YQ


=


Q−1Dbj|YQ


. (22)

The RHS is a diagonal matrix, whose only difference from Dbj|Y
is an unknown permutation of the diagonal entries implied by
Q . We may then apply the functional M in the UH monotonicity
condition to each diagonal entry for different values of bj. The
UH monotonicity condition directly implies an ordering of the
diagonal entries, which uniquely determines the elementary
matrix Q . Therefore, the eigenvector matrix LDk|Y is identified from
LDk|YQ


and the eigenvalue matrix Dbj|Y is uniquely determined

from

Q−1Dbj|YQ


for any given bj. In addition, both gY ,Di(y, di) and

gY (y) =
K

di=1 gY ,Di(y, di) are identified from (18). This completes
the proof. �
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