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Abstract

In this paper we consider the nonparametric identification of Markov dynamic games
models in which each firm has its own unobserved state variable, which is persistent
over time. This class of models includes most models in the Ericson and Pakes (1995)
and Pakes and McGuire (1994) framework. We provide conditions under which the
joint Markov equilibrium process of the firms’ observed and unobserved variables can
be nonparametrically identified from data. For stationary continuous action games, we
show that only three observations of the observed component are required to identify
the equilibrium Markov process of the dynamic game. When agents’ choice variables
are discrete, but the unobserved state variables are continuous, four observations are
required.

1 Introduction

In this paper, we consider nonparametric identification in Markovian dynamic games models

where each agent may have its own serially-correlated unobserved state variable. This class

of models includes most models in the Ericson and Pakes (1995) and Pakes and McGuire

∗The authors can be reached at yhu@jhu.edu and mshum@caltech.edu.
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(1994) framework.1 These models have been the basis for much of the recent empirical

applications of dynamic game models. Throughout, by “unobservable”, we mean variables

which are commonly observed by all agents, and condition their actions, but are unobserved

by the researcher.

Consider a dynamic duopoly game in which two firms compete. It is straightforward to

extend our assumptions and arguments to the case of N firms. A dynamic duopoly is

described by the sequence of variables (Wt+1, χt+1) , (Wt, χt) , ..., (W1, χ1) where

Wt = (W1,t,W2,t) ,

χt = (χ1,t, χ2,t) .

Wi,t stands for the observed information on firm i and χi,t denotes the unobserved hetero-

geneity of firm i at period t, which we allow to vary over time and be serially-correlated.

In empirical dynamic games model, the observed variables Wi,t consist of two variables:

Wi,t ≡ (Yi,t,Mi,t),

where Yi,t denotes firm i’s choice, or control variable in period t, and Mi,t denotes the state

variables of firm i which are observed by both the firms and the researcher. We assume that

the serially-correlated variables χ1,t and χ2,t are observed by both firms prior to making

their choices of Y1,t, Y2,t in period t, but the researcher never observes χt. For simplicity,

we assume that each firm’s variables Yi,t,Mi,t, χi,t are scalar-valued.

Main Results: Our goal is to identify the density

fWt,χt|Wt−1,χt−1
, (1)

which corresponds to the equilibrium transition density of the choice and state variables

along the Markov equilibrium path of the dynamic game.2 The identification of this stochas-

tic process plays a key role in the identification of dynamic games because it can be inter-

preted as the “reduced form” equations of the model and contains all the information that

is needed to identify and estimate the structural parameters under standard exclusion re-

1Our framework is one of incomplete information but our results apply both to models of incomplete
information and, as a particular case, to dynamic games of complete information.

2Markov Perfect Equilibrium (MPE) is the equilibrium concept that has been used in this literature and
this concept assumes that players’ strategies depend only on payoff-relevant state variables.
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strictions.

In Markovian dynamic settings, the transition density can be factored into two components

of interest:

fWt,χt|Wt−1,χt−1
= fYt,Mt,χt|Yt−1,Mt−1,χt−1

= fYt|Mt,χt︸ ︷︷ ︸
CCP

· fMt,χt|Yt−1,Mt−1,χt−1︸ ︷︷ ︸
state transition

. (2)

The first term denotes the conditional choice probabilities (CCP) for the firms’ actions

in period t, conditional on the current state (Mt, χt). In the Markov equilibrium, firms’

optimal strategies typically depends just on the current state variables (Mt, χt), but not

past values. The second term denotes is the equilibrium Markovian transition probabilities

for the state variables (Mt, χt). As shown in Hotz and Miller (1993) and Magnac and

Thesmar (2002), once these two structural components are known, it is possible to recover

the “deep” structural elements of the model, including the period utility functions.

In an earlier paper (Hu and Shum (2013)), we focused on nonparametric identification of

Markovian single-agent dynamic optimization models. There, we showed that in stationary

models, four periods of data Wt+1, . . . ,Wt−2 were enough to identify the Markov transition

Wt, χt|Wt−1, χt−1, while five observations Wt+1, . . . ,Wt−3 were required for the nonstation-

ary case. In this paper, we focus on Markovian dynamic games. We show that, once

additional features of the dynamic optimization framework are taken into account, only

three observations Wt, . . . ,Wt−2 are required to identify Wt, χt|Wt−1, χt−1 in the stationary

case, when Yt is a continuous choice variable. If Yt is a discrete choice variable (while χt is

continuous), then four observations are required for identification.

Related literature Recently, there has been a growing literature related to identifica-

tion and estimation of dynamic games. Papers include Aguirregabiria and Mira (2007),

Pesendorfer and Schmidt-Dengler (2008), Bajari, Benkard, and Levin (2007), Pakes, Os-

trovsky, and Berry (2007), and Bajari, Chernozhukov, Hong, and Nekipelov (2007). Our

main contribution relative to this literature is to provide nonparametric identification re-

sults for the case where there are firm-specific unobserved state variables, which are seri-

ally correlated over time. Allowing for firm-specific and serially-correlated unobservables

is important, because the dynamic game models in Ericson and Pakes (1995) and Pakes

and McGuire (1994) (see also Doraszelski and Pakes (2007)), which provide an important

framework for much of the existing empirical work in dynamic games, explicitly contain
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firm-specific “product quality” variables which are typically unobserved by researchers.

A few recent papers have considered estimation methodologies for games with serially-

correlated unobservables.3 Arcidiacono and Miller (2011) develop an EM-algorithm for es-

timating dynamic games where the unobservables are assumed to follow a discrete Markov

process. Siebert and Zulehner (2008) extend the Bajari, Benkard, and Levin (2007) ap-

proach to estimate a dynamic product choice game for the computer memory industry where

each firm experiences a serially-correlated productivity shock. Finally, Blevins (2008) de-

velops simulation estimators for dynamic games with serially-correlated unobservables, uti-

lizing state-of-the-art recursive importance sampling (“particle filtering”) techniques. How-

ever, all these papers focus on estimation of parametric models in which the parameters are

assumed to be identified, whereas this paper concerns nonparametric identification.

2 Examples of Dynamic Duopoly Games

To make things concrete, we present two examples of a dynamic duopoly problem, both of

which are in the “dynamic investment” framework of Ericson and Pakes (1995) and Pakes

and McGuire (1994), but simplified without an entry decision.

Example 1 is a model of learning by doing in a durable goods market, similar to Benkard

(2004). There are two heterogeneous firms i = 1, 2, with each firm described by two time-

varying state variables (Mi,t, χi,t). Mi,t denotes the “installed base” of firm i, which are the

share of consumers who have previously bought firm i’s product. χi,t is firm i’s marginal

cost, which is unobserved to the econometrician, and is an unobserved state variable. There

is learning by doing, in the sense that increases in the installed base will lower future

marginal costs. In each period, each firm’s choice variable Yi,t is its period t price, which

affects the demand for its product in period t and thereby the future installed base, which

in turn affects future production costs.

In the following, let Yt ≡ (Y1,t, Y2,t), and similarly for Mt and χt. Let St ≡ (Mt, χt) denote

the common-knowledge state variables of the game in period t. Si,t ≡ (Mi,t, χi,t), for i = 1, 2,

denotes firm i’s state variables. Each period, firms earn profits by selling their products to

3Kasahara and Shimotsu (2009) considers a dynamic discrete choice model as a mixture model where
the unobserable is time-invariant. We use a general identification result for measurment error models (Hu
(2008)) to identify a dynamic game with time-varying unobserved state variables. See also Hu, Kayaba, and
Shum (2013) and An, Hu, and Shum (2010).
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consumers who have not yet bought the product. The demand curve for firm i’s product is

qi(Yt,Mt, ηi,t)

which depends on the price and installed base of both firms’ products. Firm i’s demand also

depends on ηi,t, a firm-specific demand shock. As in Aguirregabiria and Mira (2007) and

Pesendorfer and Schmidt-Dengler (2008), we assume that ηi,t is privately observed by each

firm; that is, only firm 1, but not firm 2, observes η1,t, making this a game of incomplete

information. Furthermore, we assume that the demand shocks ηi,t are i.i.d. across firm

and periods, and distributed according to a distribution K which is common knowledge to

both firms. The main role of the variable ηi,t is to generate randomness in Yi,t, even after

conditioning on (Mt, χt).

The period t profits of firm i can then be written:

Πi(Yt, St, ηi,t) = qi(Yt,Mt, ηi,t) ∗ (Yi,t − χi,t)

where Yi,t − χi,t is firm i’s margin from each unit that it sells.

Installed base evolves according to the conditional distribution:

Mi,t+1 ∼ G(·|Mi,t, Yi,t). (3)

One example is to model the incremental change Mi,t+1 − Mi,t as a log-normal random

variable

log(Mi,t+1 −Mi,t) ∼ qi(Yt,Mt, ηi,t) + εi,t, εi,t ∼ N(0, σ2
ε ), i.i.d.-(i, t).

Marginal cost evolves according to the conditional distribution

χi,t+1 ∼ H(·|χi,t,Mi,t+1). (4)

One example is

χi,t+1 = χi,t −N(γ(Mi,t+1 −Mi,t), σ
2
k)

where γ and σk are unknown parameters. This encompasses learning-by-doing because the

incremental reduction in marginal cost (χi,t+1 − χi,t) depends on the incremental increase

in installed base (Mi,t+1 −Mi,t).
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In the dynamic Markov-perfect equilibrium, each firm’s optimal pricing strategy will also

be a function of the current St, and the current demand shock ηi,t:

Yi,t = Y ∗i (St, ηi,t), i = 1, 2 (5)

where the strategy satisfies the equilibrium Bellman equation:

Y ∗i (St, ηi,t) = argmaxyEη−i,t

{
Πi(St, y, Y−i,t = Y ∗−i(St, η−i,t))+

βE
[
Vi(St+1, ηi,t+1)|y, Y−i,t = Y ∗−i(St, η−i,t)

]} (6)

subject to Eqs. (4) and (3). In the above equation, Vi(St, ηit) denotes the equilibrium value

function for firm i, which is equal to the expected discounted future profits that firm i will

make along the equilibrium path, starting at the current state (St, ηit). �

Example 2 is a simplified version of the dynamic investment models estimated in the

productivity literature. (See Ackerberg, Benkard, Berry, and Pakes (2007) for a detailed

survey of this literature.) In this model, firms’ state variables are (Mi,t, χi,t), where Mi,t

denotes firm i’s capital stock, and χi,t denotes its productivity shock in period t. Yi,t, firm

i’s choice variable, denotes new capital investment in period t.

Capital stock Mi,t evolves deterministically, as a function of (Yi,t−1,Mi,t−1):

Mi,t = (1− δ) ·Mi,t−1 + Yi,t−1. (7)

The productivity shock is serially correlated, and evolves according to the conditional dis-

tribution

χi,t+1 ∼ H(·|χi,t,Mi,t). (8)

Each period, firms earn profits by selling their products. Let qi(pi,t, p−i,t, ηi,t) denote the

demand curve for firm i’s product, which depends on the quality and prices of both firms’

products. As in Example 1, ηi,t denotes the privately observed demand shock for firm i in

period t, which is distributed i.i.d. across firms and time periods.

The period t profits of firm i are:

qi(pi,t, p−i,t, ηi,t) ∗ (pi,t − ci(Si,t))−K(Yi,t)
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where ci(·) is the marginal cost function for firm i (we assume constant marginal costs) and

K(Yit) is the investment cost function.

Following the literature, we assume that each firm’s price in period t are determined by a

static equilibrium, given the current values of the state variables St, and the firm-specific

demand shock ηi,t. Let p∗i (St, ηi,t) denote the static equilibrium prices for each firm in period

t. By substituting in the equilibrium prices in firm’s profit function, we obtain each firm’s

“reduced-form” expected profits:

Πi(St, Yt, ηi,t) = Eη−i,tqi
(
p∗1(St, η1,t), p

∗
2(St, η2,t), ηi,t

)
∗[p∗i (St, ηi,t)− ci(Si,t)]−K(Yi,t), i = 1, 2

As in Example 1, the Markov equilibrium investment strategy for each firm just depends

on the current state variables St, and the current shock ηi,t:

Yt = Y ∗i (St, ηit), i = 1, 2.

subject to the Bellman equation (6) and the transitions (7) and (8). �

The substantial difference between examples 1 and 2 is that in example 2, the evolution of

the observed state variable Mi,t is deterministic, whereas in example 1 there is randomness

in Mi,t conditional on (Mi,t−1, Yi,t−1) (i.e., compare Eqs. (3) and (7)). As we will see below,

this has important implications for nonparametric identification.

Moreover, as illustrated in these two examples, for the first part of the paper we focus on

games with continuous actions, so that Yt are continuous variables. Later, we will consider

the important alternative case of discrete-action games, where Yt is discrete-valued.

3 Nonparametric identification

In this section, we present the assumptions for nonparametric identification in the dynamic

game model. Our identification strategy requires a panel dataset with multiple markets

and the asymptotics in the corresponding estimation is in the number of markets. The

assumptions we make here are different than those in our earlier paper (Hu and Shum

(2013)), and are geared specifically for the dynamic games literature, and motivated directly

by existing applied work utilizing dynamic games. We assume that for each market j,

{(Wt+1, χt+1) , (Wt, χt) , ..., (W1, χ1)}j is an independent random draw from the identical
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distribution fWt+1,Wt,...,W1,χt+1,χt,...,χ1 . This rules out across-market effects and spillovers.

And the assumption of identical distribution across markets rules out the possibility of

multiple equilibria. For each market j, {W1, . . . ,WT }j is observed, for T ≥ 4.

After presenting each assumption, we relate it to the examples in the previous section.

Define Ω<t = {Wt−1, ...,W1, χt−1, ..., χ1}. We assume the dynamic process satisfies:

Assumption 1 First-order Markov:

fWt,χt|Wt−1,χt−1,Ω<t−1
= fWt,χt|Wt−1,χt−1

; (9)

Remark: The first-order Markov assumption is satisfied along the Markov-equilibrium

path of both examples given in the previous section. �

Without loss of generality, we assume that Wt = (Yt,Mt) ∈ R2. We assume

Assumption 2

(i) fYt|Mt,χt,Yt−1,Mt−1,χt−1
= fYt|Mt,χt

,

(ii) fχt|Mt,Yt−1,Mt−1,χt−1
= fχt|Mt,Mt−1,χt−1

.

Assumption 2(i) is motivated completely by the state-contingent aspect of the optimal policy

function in dynamic optimization models. It turns out that this assumption is stronger than

necessary for our identification, but it allows us to achieve identification only using three

periods of data. Assumption 2(ii) implies that χt is independent of Yt−1 conditional on Mt,

Mt−1 and χt−1. This is consistent with the setup above.

Remarks: Assumption 2 is satisfied in both examples 1 and 2. �

The conditional independence assumptions 1-2 imply that the Markov transition density

(1) can be factored into

fWt,χt|Wt−1,χt−1
= fYt,Mt,χt|Yt−1,Mt−1,χt−1

= fYt|Mt,χt
· fχt|Mt,Mt−1,χt−1

· fMt|Yt−1,Mt−1,χt−1
. (10)

In the identification procedure, we will identify these three components of fWt,χt|Wt−1,χt−1

in turn.
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Next, we restrict attention to stationary equilibria in the dynamic game, which is natural

given our focus on Markov equilibria. In stationary equilibria, the Markov transition density

fWt,χt|Wt−1,χt−1
is time-invariant.

Assumption 3 Stationarity of Markov kernel:

fWt,χt|Wt−1,χt−1
= fW2,χ2|W1,χ1

.

For simplicity, we assume that Yi,t, Mt, χi,t ∈ {1, 2, ..., J}. 4 Consider the joint density of

{Yt,Mt, Yt−1,Mt−1, Yt−2}. We show in the Appendix, that Assumptions 1-2 imply that

fYt,Mt,Yt−1|Mt−1,Yt−2

=
∑
χt−1

fYt|Mt,Mt−1,χt−1
fMt,Yt−1|Mt−1,χt−1

fχt−1|Mt−1,Yt−2
(11)

where the final line follows from Assumptions 1-2. Note that the density fYt,Mt,Yt−1|Mt−1,Yt−2

on the left-hand side is nonparametrically identified everywhere under mild regularity con-

ditions, and that Equation 11 summarizes all the key restrictions that the model imposes

on the densities on the righ-hand side.

In order to identify the unknown densities on the right hand side, we use the identification

strategy for the nonclassical measurement error models in Hu (2008). His results imply that

two measurements and a dependent variable of a latent explanatory variable are enough

to achieve identification. For fixed values of (Mt,Mt−1), we see that (Yt, Yt−1, Yt−2) enter

equation (11) separately in, respectively, the first, second, and third terms. This implies

that we can use (Yt, Yt−2) as the two measurements and Yt−1 as the dependent variable of

the latent variable χt−1.

We abuse the notation Yt and define

Yt = G(Y1,t, Y2,t) ≡


1 if (Y1,t, Y2,t) = (1, 1)

2 if (Y1,t, Y2,t) = (1, 2)

... ...

J2 if (Y1,t, Y2,t) = (J, J)

,

4This restriction limits the support of the common knowledge unobservables to be discrete. An advantage
of this restriction is that the identification procedure does not require high-level technical assumption, such
as injectivity, and many assumptions are directly testable from the data. An obvious disadvantage is that
it rules out continuous unobserved state variables.
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where the one-to-one function G maps a vector of discrete variables to a scalar discrete

variable. 5 Similarly, we may also redefine χt = G(χ1,t, χ2,t). Furthermore, we define the

matrix FYt,mt,yt−1|mt−1,Yt−2
for any given (mt, yt−1,mt−1) in the support of (Mt, Yt−1,Mt−1)

and i,j, k ∈ S ≡
{

1, 2..., J2
}

FYt,mt,yt−1|mt−1,Yt−2
=

[
fYt,Mt,Yt−1|Mt−1,Yt−2

(i,mt, yt−1|mt−1, j)
]
i,j
,

FYt|mt,mt−1,χt−1
=

[
fYt|Mt,Mt−1,χt−1

(i|mt,mt−1, k)
]
i,k
,

Dyt−1|mt,mt−1,χt−1
= diag

{[
fYt−1|Mt,Mt−1,χt−1

(yt−1|mt,mt−1, k)
]
k

}
,

Dmt|mt−1,χt−1
= diag

{[
fMt|Mt−1,χt−1

(mt|mt−1, k)
]
k

}
,

Fχt−1|mt−1,Yt−2
=

[
fχt−1|Mt−1,Yt−2

(k|mt−1, j)
]
k,j
,

where diag {V } generates a diagonal matrix with diagonal entries equal to the corresponding

ones in the vector V . As shown in the Appendix, equation (11) can be written in matrix

notation as (for fixed (mt, yt−1,mt−1)):

FYt,mt,yt−1|mt−1,Yt−2
= FYt|mt,mt−1,χt−1

Dyt−1|mt,mt−1,χt−1
Dmt|mt−1,χt−1

Fχt−1|mt−1,Yt−2
. (12)

Similarly, integrating our yt−1 in equation 11 leads to for any given (mt,mt−1)

FYt,mt|mt−1,Yt−2
= FYt|mt,mt−1,χt−1

Dmt|mt−1,χt−1
Fχt−1|mt−1,Yt−2

, (13)

where

FYt,mt|mt−1,Yt−2
=
[
fYt,Mt|Mt−1,Yt−2

(i,mt|mt−1, j)
]
i,j
.

The identification of a matrix, e.g., FYt|mt,mt−1,χt−1
, is equivalent to that of its corre-

sponding density, e.g., fYt|Mt,Mt−1,χt−1
. Identification of FYt|mt,mt−1,χt−1

from the observed

FYt,mt,yt−1|mt−1,Yt−2
requires

Assumption 4 For any (mt,mt−1), there exists a yt−1 ∈ S such that FYt,mt|mt−1,Yt−2
is

invertible.

Assumption 4 rules out cases where the support of χt−1 is larger than that of Yt. Hence,

5The identification strategy for the continuous choice games is the same as that for the discrete choice
games after discretization of the observed choice, as long as the latent unobservable is discrete. This can
be seen in the transformation of (Y1,t, Y2,t) before introducing the matrices. For the continuous choice

games, one may pick a function G̃ to map continuous Y1,t, Y2,t to a discrete Yt = G̃(Y1,t, Y2,t), then impose
restrictions on Yt.
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in this section, we are restricting attention to the case where Yt and χt−1 have the same

support.

Remark: This assumption implies that all the unknown matrices on the right hand side

are invertible. In particular, all the diagonal entries in Dyt−1|mt,mt−1,χt−1
and Dmt|mt−1,χt−1

are nonzero. Furthermore, this assumption is imposed on the observed probabilities, and

therefore, directly testable using the sample. �

As in Hu (2008), if the latter matrix relation can be inverted (which is ensured by Assump-

tion 4), we can combine Eqs. (12) and (13) to get

FYt,mt,yt−1|mt−1,Yt−2
F−1
Yt,mt|mt−1,Yt−2

= FYt|mt,mt−1,χt−1
·Dyt−1|mt,mt−1,χt−1

· F−1
Yt|mt,mt−1,χt−1

. (14)

This representation shows that an eigenvalue-eigenfunction decomposition of the observed

matrix FYt,mt,yt−1|mt−1,Yt−2
F−1
Yt,mt|mt−1,Yt−2

yields the unknown density functions fYt|mt,mt−1,χt−1

as the eigenfunctions and fyt−1|mt,mt−1,χt−1
as the eigenvalues.

The following assumption ensures the uniqueness of this decomposition, and restricts the

choice of the ω(·) function.

Assumption 5 For any (mt,mt−1), there exists a yt−1 ∈ S such that for j 6= k ∈ S

fYt−1|Mt,Mt−1,χt−1
(yt−1|mt,mt−1, j) 6= fYt−1|Mt,Mt−1,χt−1

(yt−1|mt,mt−1, k).

Assumption 5 implies that the latent variable does change the distribution of Yt−1 given Mt

in the two periods. Notice that assumption 4 guarantees that fyt−1|mt,mt−1,χt−1
6= 0.

Remark: Assumption 5 requires that the conditional density fYt−1|Mt,Mt−1,χt−1
(yt−1|mt,mt−1, χt−1)

varies in χt−1 given any fixed (mt,mt−1), so that the “eigenvalues” in the decomposition (14)

are distinctive. Although this assumption is not imposed directly on observed probability,

the probability fYt−1|Mt,Mt−1,χt−1
for different values of χt−1 is an eigenvalue of an matrix in-

duced by observed probabilities. Therefore, Assumption 5 is also testable using the sample.

For example 1, given the preceding discussion, assumption 5 should hold. For example 2, the

capital stock Mt evolves deterministically, so that fYt−1|Mt,Mt−1,χt−1
(yt−1|mt,mt−1, χt−1) =

I (yt−1 = mt − (1− δ)mt−1). Since this does not change with χt−1 for any fixed (mt,mt−1),
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Therefore, assumption 5 fails. �

Remark (Complete information games): In some models, the choice variable Yit is a

deterministic function of the current state variables, i.e.,

Yi,t−1 = gi(Mt−1, χt−1), i = 1, 2. (15)

In examples 1 and 2, this would be the case if we eliminated the privately-observed demand

shocks η1t and η2t. Assumption 5 becomes

fYt−1|Mt−1,χt−1
(yt−1|mt−1, j) 6= fYt−1|Mt−1,χt−1

(yt−1|mt−1, k).

�

Remark: Notice that in the decomposition (14), yt−1 only appears in the eigenvalues.

Therefore, if there are several values yt−1 which satisfy Assumption (5), the decompositions

(14) using these different yt−1’s should yield the same eigenfunctions. Hence, depending on

the specific model, it may be possible to use this feature as a general specification check for

Assumptions (1) and (2). We do not explore this possibility here. �

Under the foregoing assumptions, the density Yt,mt, yt−1|mt−1, Yt−2 can form a unique

eigenvalue-eigenvector decomposition. In this decomposition, the eigenfunction corresponds

to the density fYt|mt,mt−1,χt−1
(·|mt,mt−1, χt−1) which can be written as

fYt|mt,mt−1,χt−1
(·|mt,mt−1, χt−1) = fY1,t,Y2,t|mt,mt−1,χ1,t−1,χ2,t−1

(·, ·|mt,mt−1, χ1,t−1, χ2,t−1).

(16)

The eigenvalue-eigenfunction decomposition only identifies this eigenfunction up to some

arbitrary ordering of the (χ1,t−1, χ2,t−1) argument. Hence, in order to pin down the right

ordering of χt−1, an additional ordering assumption is required. In our earlier paper (Hu and

Shum (2013)), where χt was scalar-valued, a monotonicity assumption sufficed to pin down

the ordering of χt. However, in dynamic games, χt−1 is multivariate, so that monotonicity

is no longer well-defined.

Consider the marginal density

fYi,t|mt,mt−1,χ1,t−1,χ2,t−1
(·|mt,mt−1, χ1,t−1, χ2,t−1),
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which can be computed from Eq. (16) above. We make the following ordering assumption:

Assumption 6 for any given (mt,mt−1) and j 6= k ∈ S

fYt|mt,mt−1,χt−1
(k|mt,mt−1, k) > fYt|mt,mt−1,χt−1

(j|mt,mt−1, k).

Remark: With this assumption, the mode of fY1,t,Y2,t|mt,mt−1,χ1,t−1,χ2,t−1
(·, ·|mt,mt−1, j, k)

is (j, k). Therefore, the value of the latent variable χ1,t−1, χ2,t−1 can be identified from the

eigenvectors. In other words, the ”pattern” of the latent marginal cost (χ1,t−1, χ2,t−1) is

revealed at the mode of the price distribution of (Y1,t, Y2,t). This assumption should be

confirmed on a model-by-model basis. In example where the Yi,t is interpreted as a price

and χ1,t as a marginal cost variable, this assumption implies that a firm whose marginal

cost is the k-th lowest would most likely has the k-th lowest price for given the installed

base. �

From the eigenvalue-eigenvector decomposition in Eq. (14), Hu (2008) implies that we can

identify all the unknown matrices FYt|mt,mt−1,χt−1
, Dyt−1|mt,mt−1,χt−1

, Dmt|mt−1,χt−1
, and

Fχt−1|mt−1,Yt−2
for any (mt, yt−1,mt−1) and their corresponding densitiesfYt|Mt,Mt−1,χt−1

,

fYt−1|Mt,Mt−1,χt−1
, fMt|Mt−1,χt−1

, and fχt−1|Mt−1,Yt−2
. That implies we can identify fMt,Yt−1|Mt−1,χt−1

as

fMt,Yt−1|Mt−1,χt−1
= fYt−1|Mt,Mt−1,χt−1

fMt|Mt−1,χt−1
.

From the factorization

fMt,Yt−1|Mt−1,χt−1
= fMt|Yt−1,Mt−1,χt−1

· fYt−1|Mt−1,χt−1

we can recover fMt|Yt−1,Mt−1,χt−1
and fYt−1|Mt−1,χt−1

. Given stationarity, the latter density

is identical to fYt|Mt,χt
, so that from fMt,Yt−1|Mt−1,χt−1

we have recovered the first two

components of fWt,χt|Wt−1,χt−1
in Eq. (10).

All that remains now is to identify the third component fχt|Mt,Mt−1,χt−1
. To obtain this,

note that the following matrix relation holds:

FYt|mt,mt−1,χt−1
= FYt|mt,χt

Fχt|mt,mt−1,χt−1

13



for given (mt,mt−1), and where for i,l, k ∈ S

Fχt|mt,mt−1,χt−1
=

[
fχt|Mt,Mt−1,χt−1

(l|mt,mt−1, k)
]
l,k

FYt|mt,χt
=

[
fYt|Mt,χt

(i|mt, l)
]
i,l
.

The invertibility of FYt|mt,mt−1,χt−1
implies that of FYt|mt,χt

. Therefore, the final component

in Eq. (10) can be recovered as:

Fχt|mt,mt−1,χt−1
= F−1

Yt|mt,χt
FYt|mt,mt−1,χt−1

(17)

where both terms on the right-hand-side have already been identified in previous steps.

Finally, we summarize the identification results as follows:

Theorem 1 (Stationary case) Under the assumptions 1, 2, 3, 4, 5, and 6, the density

fWt,Wt−1,Wt−2, for any t ∈ {3, . . . T}, uniquely determines the time-invariant Markov equi-

librium transition density fW2,χ2|W1,χ1
.

Proof. See the appendix.

This theorem implies that we may identify the Markov kernel density with three periods of

data.

Without stationarity, the desired density fYt|Mt,χt
is not the same as fYt−1|Mt−1,χt−1

, which

can be recovered from the three observations fWt,Wt−1,Wt−2 . However, in this case, we can

repeat the whole foregoing argument for the three observations fWt+1,Wt,Wt−1 to identify

fYt|Mt,χt
. Hence, the following corollary is immediate:

Corollary 1 (Nonstationary case) Under the assumptions 1, 2, 4, 5, and 6, the density

fWt+1,Wt,Wt−1,Wt−2 uniquely determines the time-varying Markov equilibrium transition den-

sity fWt,χt|Wt−1,χt−1
, for every period t ∈ {3, . . . T − 1}.
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4 Extensions

4.1 Alternatives to Assumption 2(ii)

In this section, we consider alternative conditions of assumption 2(ii). Assumption 2(ii)

implies that χt is independent of Yt−1 conditional on Mt, Mt−1 and χt−1. There are other

alternative ”limited feedback” assumptions, which may be suitable for different empirical

settings. Assumptions 1 and 2(i) imply

fWt+1,Wt,Wt−1,Wt−2

= fYt+1,Mt+1,Yt,Mt,Yt−1,Mt−1,Yt−2,Mt−2

=

∫ ∫ [
fYt+1,Mt+1|Yt,Mt,χt

fYt|Mt,χt
fχt,Mt|Yt−1,Mt−1,χt−1

·

fYt−1|Mt−1,χt−1
fχt−1,Mt−1,Yt−2,Mt−2

]
dχtdχt−1.

Assumption 2(ii) implies that the state transition density satisfies

fχt,Mt|Yt−1,Mt−1,χt−1
= fχt|Mt,Mt−1,χt−1

fMt|Yt−1,Mt−1,χt−1
.

Alternative ”limited feedback” assumptions may be imposed on the density fχt,Mt|Yt−1,Mt−1,χt−1
.

One alternative to assumption 2(ii) is

fχt,Mt|Yt−1,Mt−1,χt−1
= fχt|Mt,Yt−1,χt−1

fMt|Yt−1,Mt−1,χt−1
, (18)

which implies that Mt−1 does not have a direct effect on χt conditional on Mt, Yt−1, and

χt−1. A second alternative is

fχt,Mt|Yt−1,Mt−1,χt−1
= fMt|χt,Yt−1,Mt−1

fχt|Yt−1,Mt−1,χt−1
. (19)

which is the ”limited feedback” assumption used in our earlier study (Hu and Shum (2013))

of identification on single-agent dynamic optimization problems. Both alternatives (18)

and (19) can be handled using identification arguments similar to the one in Hu and Shum

(2013).

A third alternative to assumption 2(ii) is

fχt,Mt|Yt−1,Mt−1,χt−1
= fχt|Mt,Yt−1,Mt−1,χt−1

fMt|Mt−1,χt−1
. (20)
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This alternative can be handled in an identification framework similar to the one used in

this paper.

5 Conclusions

In this paper, we show several results regarding nonparametric identification in a general

class of Markov dynamic games, including many models in the Ericson and Pakes (1995) and

Pakes and McGuire (1994) framework. We show that only three observations Wt, . . . ,Wt−2

are required to identify Wt, χt|Wt−1, χt−1 in the stationary case, when Yt is a continuous

choice variable. If Yt is a discrete choice variable (while χt is continuous), then four obser-

vations are required for identification.

In ongoing work, we are working on developing estimation procedures for dynamic games

which utilize these identification results.
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Proof. (theorem 1) First, assumptions 1-2 imply that the density of interest becomes

fWt,χt|Wt−1,χt−1
= fYt,Mt,χt|Yt−1,Mt−1,χt−1

= fYt|Mt,χt,Yt−1,Mt−1,χt−1
fχt|Mt,Yt−1,Mt−1,χt−1

fMt|Yt−1,Mt−1,χt−1

= fYt|Mt,χt
fχt|Mt,Mt−1,χt−1

fMt|Yt−1,Mt−1,χt−1
. (21)

We consider the observed density fWt,Wt−1,Wt−2 . One can show that assumptions 1 and 2(i)

imply

fWt,Wt−1,Wt−2

=
∑
χt

∑
χt−1

fWt,χt|Wt−1,Wt−2,χt−1
fWt−1,Wt−2,χt−1

=
∑
χt

∑
χt−1

fYt|Mt,χt
fχt|Mt,Yt−1,Mt−1,χt−1

fMt|Yt−1,Mt−1,χt−1
fYt−1|Mt−1,χt−1

fχt−1,Mt−1,Yt−2,Mt−2

=
∑
χt

∑
χt−1

fYt|Mt,χt
fχt|Mt,Yt−1,Mt−1,χt−1

fMt,Yt−1|Mt−1,χt−1
fχt−1,Mt−1,Yt−2,Mt−2 .

After integrating out Mt−2, assumption 2(ii) then implies

fYt,Mt,Yt−1,Mt−1,Yt−2

=
∑
χt−1

(∑
χt

fYt|Mt,χt
fχt|Mt,Mt−1,χt−1

)
fMt,Yt−1|Mt−1,χt−1

fχt−1,Mt−1,Yt−2

The expression in the parenthesis can be simplified as fYt|Mt,Mt−1,χt−1
. We then have

fYt,Mt,Yt−1|Mt−1,Yt−2
(22)

=
∑
χt−1

fYt|Mt,Mt−1,χt−1
fMt,Yt−1|Mt−1,χt−1

fχt−1|Mt−1,Yt−2
.

Straightforward algebra shows that this equation is equivalent to

FYt,mt,yt−1|mt−1,Yt−2
= FYt|mt,mt−1,χt−1

Dyt−1|mt,mt−1,χt−1
Dmt|mt−1,χt−1

Fχt−1|mt−1,Yt−2
. (23)

for any given (mt, yt−1,mt−1). The identification results then follow from theorem 1 in Hu

(2008).
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