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a b s t r a c t

We consider the identification of a Markov process

Wt , X∗

t


when only {Wt} is observed. In structural

dynamic models, Wt includes the choice variables and observed state variables of an optimizing
agent, while X∗

t denotes time-varying serially correlated unobserved state variables (or agent-specific
unobserved heterogeneity). In the non-stationary case, we show that the Markov law of motion
fWt ,X∗

t |Wt−1,X∗
t−1

is identified from five periods of data Wt+1,Wt ,Wt−1,Wt−2,Wt−3. In the stationary case,
only four observations Wt+1,Wt ,Wt−1,Wt−2 are required. Identification of fWt ,X∗

t |Wt−1,X∗
t−1

is a crucial
input in methodologies for estimating Markovian dynamic models based on the ‘‘conditional-choice-
probability (CCP)’’ approach pioneered by Hotz and Miller.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the identification of aMarkov process
Wt , X∗

t


when only {Wt}, a subset of the variables, is observed.

In structural dynamic models, Wt typically consists of the choice
variables and observed state variables of an optimizing agent.
X∗
t denotes time-varying serially correlated unobserved state

variables (or agent-specific unobserved heterogeneity), which are
observed by the agent, but not by the econometrician.

We demonstrate two main results. First, in the non-stationary
case, where the Markov law of motion fWt ,X∗

t |Wt−1,X∗
t−1

, can vary
across periods t , we show that, for any period t, fWt ,X∗

t |Wt−1,X∗
t−1

is identified from five periods of data Wt+1, . . . ,Wt−3. Second, in
the stationary case, where fWt ,X∗

t |Wt−1,X∗
t−1

is the same across all t ,
only four observationsWt+1, . . . ,Wt−2, for some t , are required for
identification.

In most applications, Wt consists of two components Wt =

(Yt ,Mt), where Yt denotes the agent’s action in period t , andMt de-
notes the period-t observed state variable(s). X∗

t are time-varying
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unobserved state variables (USVs), which are observed by agents
and affect their choice of Yt , but unobserved by the econometrician.
The economic importance of models with unobserved state vari-
ables has been recognized since the earliest papers on the struc-
tural estimation of dynamic optimization models. Two examples
are:

(1) Miller’s 1984 job matching model was one of the first
empirical dynamic discrete choice models with unobserved
state variables. Yt is an indicator for the occupation chosen by
a worker in period t , and the unobserved state variables X∗

t are
the time-varying posteriormeans of workers’ beliefs regarding
their occupation-specific match values. The observed state
variables Mt include job tenure and education level. �

(2) Pakes (1986) estimates an optimal stoppingmodel of the year-
by-year renewal decision on European patents. In his model,
the decision variable Yt is an indicator for whether a patent
is renewed in year t , and the unobserved state variable X∗

t is
the profitability from the patent in year t , which varies across
years and is not observed by the econometrician. The observed
state variable Mt could be other time-varying factors, such as
the stock price or total sales of the patent-holding firm, which
affect the renewal decision. �

These two early papers demonstrated that dynamic optimiza-
tion problems with an unobserved process partly determining
the state variables are indeed empirically tractable. Their authors
(cf. Miller, 1984, Section V; Pakes and Simpson, 1989) also pro-
vided some discussion of the restrictions implied on the data by
their models, thus highlighting how identification has been a con-
cern since the earliest structural empirical applications of dynamic
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models with unobserved state variables. Obviously, the nonpara-
metric identification of these complex nonlinear models has im-
portant practical relevance for empirical researchers, and our goal
here is to provide identification resultswhich apply to a broad class
ofMarkovian dynamicmodelswith time-varying unobserved state
variables.

Our main result concerns the identification of the Markov
law of motion fWt ,X∗

t |Wt−1,X∗
t−1

. Once this is known, it factors into
conditional and marginal distributions of economic interest. For
Markovian dynamic optimization models (such as the examples
given above), the law of motion fWt ,X∗

t |Wt−1,X∗
t−1

factors into

fWt ,X∗
t |Wt−1,X∗

t−1
= fYt ,Mt ,X∗

t |Yt−1,Mt−1,X∗
t−1

= fYt |Mt ,X∗
t  

CCP

· fMt ,X∗
t |Yt−1,Mt−1,X∗

t−1  
state law of motion

. (1)

The first term denotes the conditional choice probability for
the agent’s optimal choice in period t . The second term is the
Markovian law of motion for the state variables (Mt , X∗

t ).
Once the CCPs and the law of motion for the state variables are

recovered, it is straightforward to use them as inputs in a CCP-
based approach for estimating dynamic discrete-choice models.
This approach was pioneered in Hotz and Miller (1993) and Hotz
et al. (1994).1 A general criticism of these methods is that they
cannot accommodate unobserved state variables. In response,
Aguirregabiria andMira (2007), Buchinsky et al. (2004), and Houde
and Imai (2006), among others, recently developed CCP-based
estimation methodologies allowing for agent-specific unobserved
heterogeneity, which is the special case where the latent X∗

t is
time-invariant. Similarly, Kasahara and Shimotsu (2009, hereafter
KS) consider the identification of dynamic models with discrete
unobserved heterogeneity, where the latent variable X∗

t = X∗ is
time-invariant and discrete. KS demonstrate that the Markov law
ofmotionWt+1|Wt , X∗ is identified in this setting, using six periods
of data.

Relative to these papers, we consider a more general setting
where the unobserved X∗

t is allowed to vary over time (as in
the Miller and Pakes examples above), and can evolve depending
on past values of the observed variables Wt−1. Our focus is on
the identification of such models. Our identification approach
is novel because it is based on recent econometric results in
nonlinear measurement error models.2 Specifically, we show that
the identification results in Hu and Schennach (2008) and Carroll
et al. (2010) for nonclassical measurement models (where the
measurement error is not assumed to be independent of the latent
‘‘true’’ variable) can be applied to Markovian dynamic models, and
we use those results to establish nonparametric identification.

Our results extend nonparametric identification to classes of
models not covered in the existing identification literature. When
the unobserved state variable X∗

t is discrete, our results cover cases
where X∗

t is time-varying and can evolve depending on past values
of the observed variablesWt−1. This is new in the literature. When
X∗
t is continuous, however, our identification results require high-

level ‘‘completeness’’ assumptions which are difficult to verify
in practice. One worked-out example (in Section 4.2) shows
that these completeness assumptions are implied by independent
initial conditions, in addition to other restrictions on the laws of

1 Subsequent methodological developments for CCP-based estimation include
Aguirregabiria and Mira (2002, 2007), Pesendorfer and Schmidt-Dengler (2008),
Bajari et al. (2007a), Pakes et al. (2007), and Hong and Shum (2009). At the same
time, Magnac and Thesmar (2002) and Bajari et al. (2007b) use the CCP logic to
provide identification results for dynamic discrete-choice models.
2 See Li (2002) and Schennach (2004, 2007) for recent papers on nonlinear

measurement error models, and Chen et al. (2007) for a detailed survey.
motion of the state variables: while this is new ground, these
restrictions are nevertheless strong. Because of this, when X∗

t is
continuous, we see our results more as a useful starting point,
rather than a final word on the subject.

Our identification approach is quite distinct from other
recent papers which have studied identification and estimation
of dynamic models with unobserved and time-varying state
variables. Arcidiacono and Miller (2006) developed a CCP-based
approach to estimate dynamic discrete models where X∗

t varies
over time according to an exogenous first-order discrete Markov
process.3 Henry et al. (2008, hereafter HKS) exploit exclusion
restrictions to identify Markov regime-switching models with
a discrete and latent state variable. While our identification
arguments are quite distinct from those in HKS, they share a
common starting point in that we also exploit the feature of first-
order Markovian models that, conditional on Wt−1,Wt−2 is an
‘‘excluded variable’’ which affectsWt only via the unobserved state
X∗
t .

4

Cunha et al. (2006) apply the result of Hu and Schennach
(2008) to show nonparametric identification of a nonlinear fac-
tormodel consisting of (Wt ,W ′

t ,W
′′
t , X

∗
t ), where the observed pro-

cesses {Wt}
T
t=1 ,


W ′

t

T
t=1, and


W ′′

t

T
t=1 constitute noisy measure-

ments of the latent process

X∗
t

T
t=1, contaminated with random

disturbances. In contrast, we consider a setting where (Wt , X∗
t )

jointly evolves as a dynamic Markov process. We use observations
of Wt in different periods t to identify the conditional density of
Wt , X∗

t |Wt−1, X∗

t−1


. Thus, our model and identification strategy

differ from theirs.
The paper is organized as follows. In Section 2, we introduce

and discuss the main assumptions we make for identification.
In Section 3, we present, in a sequence of lemmas, the proof
of our main identification result. Subsequently, we also present
several useful corollarieswhich follow from themain identification
result. In Section 4, we discuss two examples, including a discrete
case, to make our assumptions more transparent. We conclude
in Section 5. While the proof of our main identification result is
presented in the main text, Appendix A contains the proofs for
several lemmas and corollaries.

2. Overview of assumptions

We assume that for each agent i, {(WT , X∗

T ), . . . , (Wt , X∗
t ),

. . . , (W1, X∗

1 )}i is an independent random draw from a bounded
continuous distribution f(WT ,X∗

T ),...,(Wt ,X∗
t ),...,(W1,X∗

1 )
. The researcher

observes a panel dataset consisting of an i.i.d. random sample
of {WT ,WT−1, . . . ,W1}i, with T ≥ 5, for many agents i. We
first consider identification in the non-stationary case, where the
Markov law of motion fWt ,X∗

t |Wt−1,X∗
t−1

varies across periods. This
model subsumes the special case of unobserved heterogeneity, in
which X∗

t is fixed across all periods.
Next, we introduce our four assumptions. The first assumption

below restricts attention to certain classes of models, while
Assumptions 2–4 establish identification for the restricted class of
models. Unless otherwise stated, all assumptions are taken to hold
for all periods t .

Assumption 1. (i) First-order Markov: fWt ,X∗
t |Wt−1,X∗

t−1,Ω<t−1 =

fWt ,X∗
t |Wt−1,X∗

t−1
, whereΩ<t−1 ≡


Wt−2, . . . ,W1, X∗

t−2, . . . , X
∗

1


,

the history up to (but not including) t − 1.
(ii) Limited feedback: fWt |Wt−1,X∗

t ,X
∗
t−1

= fWt |Wt−1,X∗
t
.

3 That is, X∗
t is discrete-valued, and depends stochastically only on X∗

t−1 , and not
on any other variables. We relax this in Section 4.1.
4 Similarly, Bouissou et al. (1986) exploit the Markov restrictions on a stochastic

process X to formulate tests for the noncausality of another process Y on X .
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Assumption 1(i), a first-order Markov assumption, is satisfied for
Markovian dynamic decision models (cf. Rust, 1994). Assump-
tion 1(ii) is a ‘‘limited feedback’’ assumption, which rules out di-
rect feedback from the last period’s USV, X∗

t−1, on the current value
of the observed Wt . When Wt = (Yt ,Mt), as before, Assumption 1
implies:

fWt ,X∗
t |Wt−1,X∗

t−1,Ω<t−1 = fWt ,X∗
t |Wt−1,X∗

t−1

= fWt |Wt−1,X∗
t ,X

∗
t−1

fX∗
t |Wt−1,X∗

t−1
, (2)

and

fWt |Wt−1,X∗
t ,X

∗
t−1

= fWt |Wt−1,X∗
t

= fYt ,Mt |Yt−1,Mt−1,X∗
t

= fYt |Mt ,Yt−1,Mt−1,X∗
t
fMt |Yt−1,Mt−1,X∗

t
. (3)

In the bottom line of the above display, the limited feedback
assumption eliminates X∗

t−1 as a conditioning variable in both
terms. In Markovian dynamic optimization models, the first term
further simplifies to fYt |Mt ,X∗

t
(the CCP), because the Markovian

laws of motion for (Mt , X∗
t ) imply that the optimal policy function

depends just on the current state variables. Hence, Assumption 1
imposes weaker restrictions on the first term than Markovian
dynamic optimization models.5

In the second term of the above display, the limited feedback
condition rules out direct feedback from last period’s unobserved
state variable X∗

t−1 to the current observed state variable Mt .
However, it allows indirect effects via X∗

t−1’s influence on Yt−1 or
Mt−1. Implicitly, the limited feedback Assumption 1(ii) imposes
a timing restriction, that X∗

t is realized before Mt , so that Mt
depends on X∗

t . While this is less restrictive than the assumption
thatMt evolves independently of both X∗

t−1 and X∗
t , which has been

made in many applied settings to enable the estimation of the
Mt law of motion directly from the data, it does rule out models
such as Mt = h(Mt−1, X∗

t−1) + ηt , which implies the alternative
timing assumption that X∗

t is realized after Mt .6 For the special
case of unobserved heterogeneity, where X∗

t = X∗

t−1, ∀t , the
limited feedback assumption is trivial. Finally, the limited feedback
assumption places no restrictions on the law of motion for X∗

t , and
allows X∗

t to depend stochastically on X∗

t−1, Yt−1,Mt−1. �
In this paper,we assume that theunobserved state variableX∗

t is
scalar-valued, and is drawn from a continuous distribution.7 Since
Wt is usually a vector, we first reduce the dimensionality of Wt by
defining

Vt ≡ gt(Wt), (4)

where the function gt : Rd
→ R is known with d being the

dimension of Wt . We treat Vt−2 and Vt+1 as noisy ‘‘measure-
ments’’ of the latent X∗

t and use the identification strategies in
Carroll et al. (2010, Assumption 2.4) to achieve the nonparametric
identification of our model. Before we introduce our identification

5 Moreover, if we move outside the class of these models, the above display
also shows that Assumption 1 does not rule out the dependence of Yt on Yt−1
or Mt−1 , which corresponds to some models of state dependence. These may
include linear or nonlinear panel datamodels with lagged dependent variables, and
serially correlated errors; cf. Arellano and Honoré (2000). Arellano (2003, Chapters
7–8) considers linear panel models with lagged dependent variables and serially-
correlated unobservables, which is also related to our framework.
6 Most empirical applications of dynamic optimization models with unobserved

state variables satisfy the Markov and limited feedback conditions: examples from
the industrial organization literature include Erdem et al. (2003), Crawford and
Shum (2005), Das et al. (2007), Xu (2007), and Hendel and Nevo (2006).
7 A discrete distribution for X∗

t , which is assumed in many applied settings (e.g.
Arcidiacono andMiller, 2006) is a special case,whichwewill consider as an example
in Section 4.1.
assumptions, we connect our model to the existing nonclassical
measurement error models in Hu and Schennach (2008) and Car-
roll et al. (2010).

Hu and Schennach (2008) consider a framework where three
observed measurements (X, Y , Z) are conditionally independent
given a latent variable X∗. In other words, the four variables
(X, Y , Z, X∗) satisfy

fX,Y ,Z =


fX |X∗ fY |X∗ fX∗,Zdx∗. (5)

They use a spectral decomposition technique to show that under
reasonable assumptions all the elements fX |X∗ , fY |X∗ , fX∗,Z are
nonparametrically identified from fX,Y ,Z . Besides the conditional
independence, other key assumptions include that (i) the linear
operators corresponding to density functions fX |X∗ and fZ |X are
injective; (ii) the eigenvalues corresponding to fY |X∗ are distinctive;
(iii) the measurement error distribution fX |X∗ satisfies a zero
location assumption.

Carroll et al. (2010) consider the identification of amodel fY |X∗,Z
with a latent X∗ using two survey samples {X, Y , Z, S}, where S
is a binary indicator for the two samples. They assume the three
observables (X, Y , Z) in the two samples satisfy

fX,Y ,Z,S =


fX |X∗,S fX∗,Z,S fY |X∗,Zdx∗, (6)

where fY |X∗,Z is the model of interest, fX |X∗,S is the measurement
error distribution in the two samples, and fX∗,Z,S is the joint
distribution of explanatory variables in the two samples. Since
the results in Hu and Schennach (2008) do not directly apply
to this framework, Carroll et al. (2010) use a clever trick to
extend the spectral decomposition technique to this framework to
show the nonparametric identification of all the elements on the
RHS. Besides the conditional independence, other key assumptions
include that (i) the linear operators corresponding to fX |X∗,S and
fX,Y ,Z,S are injective; (ii) the eigenvalues are distinctive; (iii) the
measurement error distribution fX |X∗,S satisfies a zero location
assumption.

Under Assumption 1, our paper considers a framework as
follows

fWt+1,Wt ,Wt−1,Wt−2 =


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t
fX∗

t ,Wt−1,Wt−2dx
∗

t

=


fWt+1|Wt ,X∗

t
fWt ,Wt−1,X∗

t
fWt−2|X∗

t ,Wt−1dx
∗

t . (7)

Comparing Eqs. (6) and (7), we may use the identification
strategy in Carroll et al. (2010) with


Wt+1,Wt ,Wt−1,Wt−2, X∗

t


corresponding to (X, S, Z, Y , X∗), respectively. This consists of
the key step of our identification. We also make assumptions
corresponding to those in Carroll et al. (2010). 8

Denote the supports of Vt and Wt as Vt and Wt , respectively.9
The linear operator LVt−2,wt−1,wt ,Vt+1 is a mapping from the Lp-
space of functions of Vt+1 to the Lp space of functions of Vt−2,10

8 Shiu and Hu (2010) use the identification results in Hu and Schennach (2008) in
the measurement error literature to identify a panel data model. The identification
strategy only requires three periods of data. The limited feedback assumption in
our paper is more general than the one used in Shiu and Hu (2010) so that we
require five periods of data and Shiu and Hu (2010) need three periods of data
in the comparable setting. Their assumptions are tailored for panel data models.
Our framework ismore suitable for IOmodels, where the conditional independence
assumptions are based on empirical IO models.
9 Here, capital letters denote random variables, while lower-case letters denote

realizations.
10 For 1 ≤ p < ∞,Lp(X) is the space ofmeasurable real functionsh (·) integrable
in the Lp-norm, i.e.


X

|h(x)|pdµ(x) < ∞, where µ is a measure on a σ -field in X.
One may also consider other classes of functions, such as bounded functions in L1 ,
in the definition of an operator.
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defined as11
LVt−2,wt−1,wt ,Vt+1h


(vt−2)

=


fVt−2,Wt−1,Wt ,Vt+1(vt−2, wt−1, wt , vt+1)h(vt+1)dvt+1;

h ∈ Lp (Vt+1) , wt−1 ∈ Wt−1, wt ∈ Wt . (8)

Similarly, we define the diagonal (or multiplication) operator
Dwt |wt−1,X∗

t
h
 

x∗

t


= fWt |Wt−1,X∗

t
(wt |wt−1, x∗

t )h(x
∗

t );

h ∈ Lp 
X∗

t


, wt−1 ∈ Wt−1, wt ∈ Wt . (9)

In the next section, we show that our identification argument
relies on a spectral decomposition of a linear operator generated
from LWt+1,wt ,wt−1,Wt−2 , which corresponds to the observed density
fWt+1,Wt ,Wt−1,Wt−2 . (A spectral decomposition is the operator analog
of the eigenvalue–eigenvector decomposition for matrices, in the
finite-dimensional case.)12 The next two assumptions ensure the
validity and uniqueness of this decomposition.

Assumption 2. Invertibility. There exists variable(s) Vt such that

(i) for any wt ∈ Wt , there exist a wt−1 ∈ Wt−1 and a
neighborhood N r around (wt , wt−1)

13 such that, for any
(wt , wt−1) ∈ N r , LVt−2,wt−1,wt ,Vt+1 is one-to-one;

(ii) for anywt ∈ Wt , LVt+1|wt ,X∗
t
is one-to-one;

(iii) for anywt−1 ∈ Wt−1, LVt−2,wt−1,Vt is one-to-one.

Assumption 2 enables us to take inverses of certain operators,
and is analogous to assumptions made in the nonclassical
measurement error literature. Specifically, treating Vt−2 and Vt+1
as noisy ‘‘measurements’’ of the latent X∗

t , Assumption 2(i), (ii)
impose the same restrictions between the measurements and
the latent variable as Hu and Schennach (2008, Assumption 3)
and Carroll et al. (2010, Assumption 2.4). Compared with these
two papers, Assumption 2(iii) is an extra assumption we need
because, in our dynamic setting, there is a second latent variable,
X∗

t−1, in the Markov law of motion fWt ,X∗
t |Wt−1,X∗

t−1
. Below, we

show that Assumption 2(ii) implies that pre-multiplication by the
inverse operator L−1

Vt+1|wt ,X∗
t
is valid, while 2(i), (iii) imply that post-

multiplication by, respectively, L−1
Vt+1,wt ,wt−1,Vt−2

and L−1
Vt ,wt−1,Vt−2

is
valid.14

The statements in Assumption 2 are equivalent to completeness
conditionswhichhave recently been employed in thenonparamet-
ric IV literature: namely, an operator LVt−2,wt−1,wt ,Vt+1 is one-to-one
if the corresponding density function fVt−2,Wt−1,Wt ,Vt+1 satisfies a
‘‘completeness’’ condition: for any (wt−1, wt),

fVt−2,Wt−1,Wt ,Vt+1(vt−2, wt−1, wt , vt+1)h(vt+1)dvt+1 = 0

for all vt−2 implies h(vt+1) = 0 for all vt+1. (10)

Completeness is a high-level condition, and special cases of it have
been considered in, e.g. Newey and Powell (2003), Blundell et al.

11 Analogously, the operator LVt+1 |wt ,X∗
t
, corresponding to the condi-

tional density fVt+1 |Wt ,X∗
t
, is defined, for all functions h ∈ Lp


X∗

t


,

and wt ∈ Wt as

LVt+1 |wt ,X∗

t
h

(vt+1) =


fVt+1 |Wt ,X∗

t
(vt+1|wt , x∗

t )

h(x∗
t )dx

∗
t .

12 Specifically, when Wt , X∗
t are both scalar and discrete with J(< ∞) points of

support, the operator LWt+1,wt ,wt−1,Wt−2 is a J× J matrix, and spectral decomposition
reduces to diagonalization of the corresponding matrix. This discrete case is
discussed in detail in Section 4.1.
13 A neighborhood of w ∈ Rk is defined as


w ∈ Rk

: ∥w − w∥E < r

for some

r > 0, where ∥·∥E is the Euclidean metric.
14 Additional details are given in Section 3 of the online appendix (Hu and Shum,
2009).
(2007) and d’Haultfoeuille (2011). However, sufficient conditions
are not available for more general settings. Below, in Section 4,
we will construct examples which satisfy the completeness
requirements.

The variable Vt+1 defined in Eq. (4) is a function of Wt+1.
Intuitively, by Assumption 2(ii), the variable Vt+1 is a component of
Wt+1 which ‘‘transmits’’ information on the latent X∗

t conditional
on Wt , the observables in the previous period. We consider
suitable choices of Vt+1 for specific examples in Section 4.15
Assumption 2(ii) also rules out models where X∗

t has a continuous
support, but Wt+1 contains only discrete components. In this
case, there is no Vt+1 for which LVt+1|wt ,X∗

t
can be one-to-

one. Hence, dynamic discrete-choice models with a continuous
unobserved state variable X∗

t , but only discrete observed state
variables Mt , fail this assumption, and may be nonparametrically
underidentified without further assumptions. Moreover, models
where theWt and X∗

t processes evolve independently will also fail
this assumption. �

Assumption 3. Uniqueness of spectral decomposition. For anywt ∈

Wt and any x∗

t ≠ x∗
t ∈ X∗

t , there exists a wt−1 ∈ Wt−1 and
corresponding neighborhood N r satisfying Assumption 2(i) such
that, for some (wt , wt−1) ∈ N r withwt ≠ wt , wt−1 ≠ wt−1:

(i) 0 < k

wt , wt , wt−1, wt−1, x∗

t


< C < ∞ for any x∗

t ∈ X∗
t and

some constant C;
(ii) k(wt , wt , wt−1, wt−1, x∗

t ) ≠ k(wt , wt , wt−1, wt−1,x∗
t ), where

k

wt , wt , wt−1, wt−1, x∗

t


=

fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )

fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )
. (11)

Assumption 3 ensures the uniqueness of the spectral decompo-
sition of a linear operator generated from LVt+1,wt ,wt−1,Vt−2 . As Eq.
(45) shows, the k(· · ·) function in the assumption corresponds to
the eigenvalues in this decomposition, so that conditions (i) and (ii)
guarantee that these eigenvalues are, respectively, bounded and
distinct across all values of x∗

t . In turn, this ensures that the cor-
responding eigenfunctions are linearly independent, so that the
spectral decomposition is unique.16 �

Assumption 4. Monotonicity and normalization. For any wt ∈ Wt ,
there exists a known functional G such that G


fVt+1|Wt ,X∗

t
(·|wt , x∗

t )


is monotonic in x∗
t . We normalize x∗

t = G

fVt+1|Wt ,X∗

t
(·|wt , x∗

t )

.

The eigenfunctions in the aforementioned spectral decomposi-
tion correspond to the densities fVt+1|Wt ,X∗

t
(·|wt , x∗

t ), for all values
of x∗

t . Since X
∗
t is unobserved, the eigenfunctions are only identified

up to an arbitrary one-to-one transformation of X∗
t . To resolve this

issue, we need additional restrictions deriving from the economic
or stochastic structure of themodel, to ‘‘pin down’’ the values of the
unobserved X∗

t relative to the observed variables. In Assumption 4,
this additional structure comes in the form of the functional G
which, when applied to the family of densities fVt+1|Wt ,X∗

t
(·|wt , x∗

t ),
is monotonic in x∗

t , given wt . Given the monotonicity restriction,

15 Theremay bemultiple choices of V which satisfy Assumption 2. In this case, the
model may be overidentified, and it may be possible to do specification testing. We
do not explore this possibility here.
16 In the case where Wt = (Yt ,Mt ) and fWt |Wt−1,X∗

t
= fYt |Mt ,X∗

t
· fMt |Yt−1,Mt−1,X∗

t
,

Assumption 3 simplifies further. Specifically, because the CCP term fYt |Mt ,X∗
t
does

not contain Wt−1 , Eq. (45) implies that the CCP term cancels out in the expression
of eigenvalues in the spectral decomposition, so that Assumption 3 imposes
restrictions only on the second term fMt |Yt−1,Mt−1,X∗

t
. See additional discussion in

Example 2 below.
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we can normalize X∗
t by setting, x∗

t = G

fVt+1|Wt ,X∗

t
(·|wt , x∗

t )

with-

out loss of generality.17 The functionalG, whichmay depend on the
value ofwt , could be the mean, mode, median, or another quantile
of fVt+1|Wt ,X∗

t
. �

Assumptions 1–4 are the four main assumptions underlying
our identification arguments. Of these four assumptions, all except
Assumption 2(i), (iii) involve densities not directly observed in the
data, and are not directly testable.

3. Main nonparametric identification results

We present our argument for the nonparametric identification
of theMarkov lawofmotion fWt ,X∗

t |Wt−1,X∗
t−1

byway of several inter-
mediate lemmas. The first two lemmas present convenient repre-
sentations of the operators corresponding to the observed density
fVt+1,wt ,wt−1,Vt−2 and the Markov law of motion fwt ,X∗

t |wt−1,X∗
t−1

, for
given values of (wt , wt−1) ∈ Wt × Wt−1:

Lemma 1 (Representation of the Observed Density fVt+1,wt ,wt−1,Vt−2 ).
For any t ∈ {3, . . . , T − 1}, Assumption 1 implies that, for any
(wt , wt−1) ∈ Wt × Wt−1,

LVt+1,wt ,wt−1,Vt−2 = LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . (12)

Lemma 2 (Representation of Markov Law of Motion). For any t ∈

{3, . . . , T − 1}, Assumptions 1, 2(ii), and (iii) imply that, for any
(wt , wt−1) ∈ Wt × Wt−1,

Lwt ,X∗
t |wt−1,X∗

t−1

= L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2L

−1
Vt ,wt−1,Vt−2

LVt |wt−1,X∗
t−1
. (13)

Proofs. In Appendix A. �

Since LVt+1,wt ,wt−1,Vt−2
and LVt ,wt−1,Vt−2 are observed, Lemma 2

implies that the identification of the operators LVt+1|wt ,X∗
t

and
LVt |wt−1,X∗

t−1
implies the identification of Lwt ,X∗

t |wt−1,X∗
t−1

, the oper-
ator corresponding to the Markov law of motion. The next lemma
postulates that LVt+1|wt ,X∗

t
is identified just from observed data.

Lemma 3 (Identification of fVt+1|Wt ,X∗
t
). For any t ∈ {3, . . . , T − 1},

Assumptions 1–4 imply that the density fVt+1,Wt ,Wt−1,Vt−2 uniquely
determines the density fVt+1|Wt ,X∗

t
.

Proofs. In Appendix A. �

This lemma encapsulates the heart of the identification
argument, which is the identification of fVt+1|Wt ,X∗

t
via a spectral

decomposition of an operator generated from the observed
density fVt+1,Wt ,Wt−1,Vt−2 . Once this is established, re-applying
Lemma 3 to the operator corresponding to the observed density
fVt ,Wt−1,Wt−2,Vt−3 yields the identification of fVt |Wt−1,X∗

t−1
. Once

fVt+1|Wt ,X∗
t
and fVt |Wt−1,X∗

t−1
are identified, then so is the Markov law

of motion fwt ,X∗
t |wt−1,X∗

t−1
, from Lemma 2.18 Hence, we have shown

the following result.

Theorem 1 (Identification of Markov Law of Motion, Non-Stationary
Case). Under Assumptions 1–4, the density fWt+1,Wt ,Wt−1,Wt−2,Wt−3
for any t ∈ {4, . . . , T − 1} uniquely determines the density
fWt ,X∗

t |Wt−1,X∗
t−1

.

17 To be clear, the monotonicity assumption here is a model restriction, and not
without loss of generality; if it were false, our identification argument would not
recover the correct CCPs and laws of motion for the underlying model. See Matzkin
(2003) and Hu and Schennach (2008) for similar uses of monotonicity restrictions
in the context of nonparametric identification problems.
18 Recall that Assumptions 1–4 are assumed to hold for all periods t . Hence,
applying Lemma 3 to the observed density fVt ,Wt−1,Wt−2,Vt−3 does not require any
additional assumptions.
3.1. Initial conditions

Some CCP-based estimation methodologies for dynamic opti-
mization models (e.g. Hotz et al., 1994 and Bajari et al., 2007a) re-
quire simulation of theMarkov process (Wt , X∗

t ,Wt+1, X∗

t+1,Wt+2,
X∗

t+2, . . .) starting from some initial valuesWt−1, X∗

t−1. When there
are unobserved state variables, this raises difficulties because X∗

t−1
is not observed. However, it turns out that, as a by-product of the
main identification results,we are also able to identify themarginal
densities fWt−1,X∗

t−1
. For any given initial value of the observed vari-

ables wt−1, knowledge of fWt−1,X∗
t−1

allows us to draw an initial
value of X∗

t−1 consistent withwt−1.

Corollary 1 (Identification of Initial Conditions, Non-Stationary
Case). Under Assumptions 1–4, the density fWt+1,Wt ,Wt−1,Wt−2,Wt−3 for
any t ∈ {4, . . . , T − 1} uniquely determines the density fWt−1,X∗

t−1
.

Proof. In Appendix A. �

3.2. Stationarity

In the proof of Theorem1 from the previous section,we only use
the fifth period of data Wt−3 for the identification of LVt |wt−1,X∗

t−1
.

Given that we identify LVt+1|wt ,X∗
t

using four periods of data,
i.e., {Wt+1,Wt ,Wt−1,Wt−2}, the fifth period Wt−3 is not needed
when LVt |wt−1,X∗

t−1
= LVt+1|wt ,X∗

t
. This is true when the Markov

kernel density fWt ,X∗
t |Wt−1,X∗

t−1
is time-invariant. Thus, in the

stationary case, only four periods of data, {Wt+1,Wt ,Wt−1,Wt−2},
are required to identify fWt ,X∗

t |Wt−1,X∗
t−1

. Formally, we make the
additional assumption.

Assumption 5. Stationarity: the Markov law of motion of (Wt , X∗
t )

is time-invariant: fWt ,X∗
t |Wt−1,X∗

t−1
= fW2,X∗

2 |W1,X∗
1
, ∀ 2 ≤ t ≤ T .

Stationarity is usually maintained in infinite-horizon dynamic
programming models. Given the foregoing discussion, we present
the next corollary without proof.

Corollary 2 (Identification of Markov Law of Motion, Stationary
Case). Under Assumptions1–5, the observed density fWt+1,Wt ,Wt−1,Wt−2
for any t ∈ {3, . . . , T − 1} uniquely determines the density
fW2,X∗

2 |W1,X∗
1
.

In the stationary case, initial conditions are still a concern. The
following corollary, analogous to Corollary for the non-stationary
case, postulates the identification of themarginal density fWt ,X∗

t
, for

periods t ∈ {1, . . . , T − 3}. For any of these periods, fWt ,X∗
t
can be

used as a sampling density for the initial conditions.19

Corollary 3 (Identification of Initial Conditions, Stationary Case).Un-
der Assumptions 1–5, the observed density fWt+1,Wt ,Wt−1,Wt−2 for any
t ∈ {3, . . . , T − 1} uniquely determines the density fWt−2,X∗

t−2
.

Proof. In Appendix A. �

4. Comments on assumptions in specific examples

Even though we focus on nonparametric identification, we
believe that our results can be valuable for applied researchers

19 Even in the stationary case, where fWt ,X∗
t |Wt−1,X∗

t−1
is invariant over time, the

marginal density of fWt−1,X∗
t−1

may still vary over time (unless the Markov process
(Wt , X∗

t ) starts from the steady-state). For this reason, it is useful to identify fWt ,X∗
t

across a range of periods.
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working in a parametric setting, because they provide a guide for
specifying models such that they are nonparametrically identified.
As part of a pre-estimation check, our identification assumptions
could be verified for a prospective model via direct calculation,
as in the examples here. If the prospective model satisfies the
assumptions, then the researcher could proceed to estimation,
with the confidence that underlying variation in the data, rather
than the particular functional forms chosen, is identifying the
model parameters. If some assumptions are violated, then our
results suggest ways that the model could be adjusted in order to
be nonparametrically identified.

To this end, we present two examples of dynamic models
here. Because some of the assumptions that we made for our
identification argument are quite abstract, we discuss these
assumptions in the context of these examples.

4.1. Example 1: a discrete model

As a first example, let (Wt , X∗
t ) denote a bivariate discrete first-

order Markov process where Wt and X∗
t are both binary scalars:

∀t, suppX∗
t = suppWt ≡ {0, 1}. This is the simplest example of

the models considered in our framework. One example of such a
model is a binary version of Abbring et al.’s (2008) ‘‘dynamicmoral
hazard’’ model of auto insurance. In that model, Wt is a binary
indicator of claim occurrence, and X∗

t is a binary effort indicator,
with X∗

t = 1 denoting higher effort. In this model, moral hazard in
driving behavior and experience rating in insurance pricing imply
that the laws of motion for both Wt and X∗

t should exhibit state
dependence:

Pr(Wt = 1|wt−1, x∗

t , x
∗

t−1) = p(wt−1, x∗

t );

Pr(X∗

t = 1|x∗

t−1, wt−1) = q(x∗

t−1, wt−1).
(14)

These laws of motion satisfy Assumption 1. Previously, KS also
analyzed the identification of dynamic discrete models with
unobserved variables, but they only considered models where the
unobserved variables X∗ were time-invariant. In contrast, even in
the simple example here, we allow X∗

t to vary over time, so that
this model falls outside KS’s framework.

Themain difference between this discrete case and the previous
continuous case is that the linear integral operators are replaced
by matrices. The L operators in the main proof correspond to 2× 2
squarematrices, and theD operators are 2×2 diagonal matrices.20
Assumptions 2 and 3 are quite transparent to interpret in the
matrix setting.

Assumption 2 implies the invertibility of certainmatrices. From
Lemma 1, the following matrix equality holds, for all values of
(wt , wt−1):

LWt+1,wt |wt−1,Wt−2 = LWt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t |wt−1,Wt−2 . (15)

Given this equation, the invertibility of LWt+1,wt |wt−1,Wt−2 implies
that LWt+1|wt ,X∗

t
and LX∗

t |wt−1,Wt−2 are both invertible, and that all
the elements in the diagonalmatrixDwt |wt−1,X∗

t
are nonzero. Hence,

in this discrete model, Assumption 2(ii) is redundant, because it
is implied by 2(i). That implies that Assumption 2 is fully testable
from the observed data.

Assumption 3 puts restrictions on the eigenvalues in the
spectral decomposition of the AB−1 operator. In the discrete case,
AB−1 is an observed 2 × 2 matrix, and the spectral decomposition
reduces to the usual matrix diagonalization. Assumption 3(i)
implies that the eigenvalues are nonzero and finite, and 3(ii)

20 Specifically, for binary random variables R1, R2, R3 , the (i+1, j+1)-th element
of the matrix LR1,r2,R3 contains the joint probability that (R1 = i, r2, R3 = j), for
i, j ∈ {0, 1}.
implies that the eigenvalues are distinctive. For all values
of (wt , wt−1), these assumptions can be verified, by directly
diagonalizing the AB−1 matrix.

In this discrete case, Assumption 4 can be interpreted as an
‘‘ordering’’ assumption,which imposes an ordering on the columns
of the LWt+1|wt ,X∗

t
matrix, corresponding to the eigenvectors of

AB−1. If the goal is only to identify fWt ,X∗
t |Wt−1,X∗

t−1
for a single period

t , then we could dispense with Assumption 4 altogether, and pick
two arbitrary ordering in recovering LWt+1|wt ,X∗

t
and LWt |wt−1,X∗

t−1
.

If we do this, we will not be able to pin down the exact value of
X∗
t or X∗

t−1, but the recovered density of Wt , X∗
t |Wt−1, X∗

t−1 will
still be consistent with the two arbitrary orderings for X∗

t and X∗

t−1
(in the sense that the implied transition matrix X∗

t |X∗

t−1, wt−1 for
every wt−1 ∈ Wt−1 will be consistent with the true, but unknown
ordering of X∗

t and X∗

t−1).
21

But this will not suffice if we wish to recover the transition
density fWt ,X∗

t |Wt−1,X∗
t−1

in two periods t = t1, t2, with t1 ≠ t2. If
we want to compare values of X∗

t across these two periods, then
we must invoke Assumption 4 to pin down values of X∗

t which are
consistent across the twoperiods. For this example, one reasonable
monotonicity restriction is

forwt = {0, 1} : E[Wt+1|wt , X∗

t = 1]

< E[Wt+1|wt , X∗

t = 0]. (16)

The restriction (16) implies that future claims Wt+1 occur less
frequently with higher effort today, and imposes additional
restrictions on the p(·) and q(·) functions in (14).22

To see how this restriction orders the eigenvectors, and pins
down the value of X∗

t , note that E[Wt+1|wt , X∗
t ] = f (Wt+1 =

1|wt , X∗
t ), which is the second component of each eigenvector.

Therefore, the monotonicity restriction (16) implies that the
eigenvectors (and their corresponding eigenvalues) should be
ordered such that their second components are decreasing, from
left to right. Given this ordering, we assign a value of X∗

t = 0 to the
eigenvector in the first column, and X∗

t = 1 to the eigenvector in
the second column.

4.2. Example 2: generalized investment model

For the second example, we consider a dynamic model of
firm R&D and product quality in the ‘‘generalized dynamic
investment’’ framework described inDoraszelski and Pakes (2007).
This framework, in which firms make incremental ‘‘investment’’
decisions which affect the growth of an underlying ‘‘capital stock’’
variable, stems from the work of Ericson and Pakes (1995). More
recently, such models have been usefully applied in empirical
work in IO (Ryan, 2006), productivity (Xu, 2007; Collard-Wexler,
2006), and international trade (Dunne et al., 2006).23 In this model,
Wt = (Yt ,Mt), where Yt is a firm’s R&D in year t , and Mt is the
product’s installed base. The unobserved state variable X∗

t is the
firm’s product quality, which is unobserved by the econometrician
but observed by the firm, and affects their R&D choices.

Product quality X∗
t ∈ R evolves as follows:

X∗

t = 0.8X∗

t−1 + 0.2 exp (ψ (Yt−1)) νt . (17)

In the above, νt ∈ R is a standard normal shock, distributed
independently over t , and ψ(·) < ∞, ψ ′(·) > 0. Eq. (17) implies
fX∗

t |Yt−1,Mt−1,X∗
t−1

= fX∗
t |Yt−1,X∗

t−1
.

21 We thank Thierry Magnac for this insight.
22 See Hu (2008) for a number of other alternative ordering assumptions for the
discrete case.
23 See Hu and Shum (2009, Section 1.2) for additional discussion of dynamic
investment models.
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Installed base evolves as:

Mt+1 = Mt [1 + exp(ηt+1 + X∗

t+1)] (18)

where ηt+1 ∈ R is a random shock following the extreme value
distribution, with density fηt+1 (η) = exp(η − eη) for η ∈ R,
independently across t . This law of motion also implies that
fMt+1|Yt ,Mt ,X∗

t ,X
∗
t+1

= fMt+1|Mt ,X∗
t+1

. Eq. (18) implies that, ceteris
paribus, product quality raises installed base. Moreover, we also
assume that the initial installed base M1 > 0, so that Mt > 0 for
all t and, for a givenMt ,Mt+1 ∈ (Mt ,+∞).

Each period, a firm chooses its R&D to maximize its discounted
future profits:

Yt = Y ∗(Mt , X∗

t , γt)

= argmax0≤y≤Ī


Π(Mt , X∗

t )  
profits

− γt
shock

· Y 2
t

R&D cost

+βE V (Mt+1, X∗

t+1, γt+1)  
value fxn


(19)

where Ī is a cap on per-period R&D, and γt is a shock to R&D costs.
We assume that γt ∈ (0,+∞) follows a standard exponential
distribution independently across t . The RHS of Eq. (19) is
supermodular in Yt and −γt , for all (Mt , X∗

t ); accordingly, for fixed
(Mt , X∗

t ), the firm’s optimal R&D investment Y ∗
t is monotonically

decreasing in γt , and take values in (0, Ī].
We verify the assumptions out of order, leaving the most

involved Assumption 2 to the end. Since we focus here on the
stationary case, without loss of generality we label the four
observed periods of dataWt as t = 1, 2, 3, 4.

Assumption 1 is satisfied for this model. Assumption 3 contains
two restrictions on the density fW3|W2,X∗

3
, which factors as

fW3|W2,X∗
3

= fY3|M3,X∗
3

· fM3|M2,X∗
3
. (20)

The first term in Eq. (20) is the density of R&D Y3. Because the first
term is not a function of M2, Eq. (45) implies that the investment
density fY3|M3,X∗

3
cancels out from the numerator and denominator

of the eigenvalues in the spectral decomposition as follows:

k

w3, w3, w2, w2, x∗

3


=

fW3|W2,X∗
3
(w3|w2, x∗

3)fW3|W2,X∗
3
(w3|w2, x∗

3)

fW3|W2,X∗
3
(w3|w2, x∗

3)fW3|W2,X∗
3
(w3|w2, x∗

3)

=
fM3|M2,X∗

3
(m3|m2, x∗

3)fM3|M2,X∗
3
(m3|m2, x∗

3)

fM3|M2,X∗
3
(m3|m2, x∗

3)fM3|M2,X∗
3
(m3|m2, x∗

3)
. (21)

Hence, to ensure that the eigenvalues are distinct, we only require
fY3|M3,X∗

3
> 0 for all X∗

3 . Given the discussions above, conditional
on (M3, X∗

3 ), investment Y3 will be monotonically decreasing in
the shock γ3. Since, by assumption, the density of γ3 is nonzero
for γ3 > 0, so also the conditional density fY3|M3,X∗

3
> 0 along its

support (0, Ī], for all (M3, X∗

3 ), as required.
The second term fM3|M2,X∗

3
is the law of motion for installed

base which, by assumption, is an extreme value distribution with
density

fM3|M2,X∗
3
(m3|m2, x∗

3) =
1

(m3 − m2)
exp


log


m3 − m2

m2


− x∗

3 − elog

m3−m2

m2


−x∗3


=

e−x∗3

m2
exp


−e−x∗3


m3 − m2

m2


. (22)
Plugging this into Eq. (21), we obtain an expression for the
eigenvalues

k

w3, w3, w2, w2, x∗

3


= exp


−e−x∗3


− (m3 − m3) (m2 − m2)

m2m2


. (23)

For given m3, we can pick a finite and nonzero m2,24 and set (m3,
m2) = (m3 −∆,m2 +∆), with∆ nonzero and small. At these val-
ues, the eigenvalues in Eq. (23) simplify to exp(−e−x∗3 [ ∆2

m2(m2+∆)
])

so that, for fixed m3, and x∗

3 ∈ R, 0 < k

w3, w3, w2, w2, x∗

3


<

1, which satisfies Assumption 3(i). Moreover, the eigenvalues in
Eq. (23) are monotonic in x∗

3 for any given (w3, w3, w2, w2), which
implies Assumption 3(ii).

To verify Assumption 4, we set Vt = Mt for all t . Note
E[log M4−m3

m3
|m3, y3, x∗

3] = E[η4] + E[X∗

4 |x∗

3, y3]. Because the law
of motion for product quality X∗

4 = 0.8X∗

3 + 0.2 exp (ψ (Y3)) ν4
implies that E[X∗

4 |x∗

3, y3] is monotonic in x∗

3 , we set the functional
G to be x∗

3 = E[log M4−m3
m3

|m3, y3, x∗

3].
Finally, Assumption 2 contains three injectivity assumptions. As

before,we useVt = Mt , for all periods t . Here,we provide sufficient
conditions for Assumption 2, in the context of this investment
model. We exploit the fact that the laws of motion for this model
(cf. Eqs. (17) and (18)) are either linear or log-linear to apply results
from the convolution literature, for which operator invertibility
has been studied in detail.

For Assumption 2, it is sufficient to establish the injectivity
of the operators LM1,w2,w3,M4 , LM4|w3,X∗

3
, and LM1,w2,M3 for any

(w2, w3) in the support. We start by showing the injectivity of
LM4,w3,w2,M1 , LM4|w3,X∗

3
, and LM3,w2,M1 . As shown in the proof of

Lemma 1, Assumption 1 implies that

LM4,w3,w2,M1 = LM4|w3,X∗
3
Dw3|w2,X∗

3
LX∗

3 ,w2,M1

= LM4|w3,X∗
3
Dw3|w2,X∗

3
LX∗

3 |w2,X∗
2
LX∗

2 ,w2,M1 (24)

LM3,w2,M1 = LM3|w2,X∗
2
LX∗

2 ,w2,M1 . (25)

Furthermore, we have LM4|w3,X∗
3

= LM4|w3,X∗
4
LX∗

4 |w3,X∗
3
.

Hence, the injectivity of LM4,w3,w2,M1 , LM4|w3,X∗
3
, and LM3,w2,M1

is implied by the injectivity of LM4|w3,X∗
4
,Dw3|w2,X∗

3
, LX∗

3 |w2,X∗
2
and

LX∗
2 ,w2,M1 .

25 It turns out that assumptions we have made already
for this example ensure that three of these operators are injective.
We discuss each case in turn.

(i) The diagonal operator Dw3|w2,X∗
3
has kernel function fw3|w2,X∗

3
= fy3|m3,X∗

3
fm3|m2,X∗

3
. In the discussion on Assumption 3(i) above, we

showed that fy3|m3,X∗
3
is nonzero along its support and that fm3|m2,X∗

3

is nonzero for any

m3,m2, x∗

3


in the support. Therefore, Dw3|w2,X∗

3
is injective.

(ii) For LM4|w3,X∗
4
, we use Eq. (18)whereby, for every (y3,m3),M4

is a convolution of X∗

4 , i.e. log [M4 − M3] − logM3 = X∗

4 + η4. We
have

g (m4) ≡


LM4|w3,X∗

4
h

(m4)

24 In verifying Assumption 2(i) below, we show that the assumption holds for
all (w3, w2), so that the neighborhood N r is unrestricted. Hence, in verifying
Assumption 3(i) here, we can pick any m2 , and also pick any other point (m3,m2)

as needed.
25 By stationarity, the operators LM4 |w3,X∗

3
and LM3 |w2,X∗

2
are the same, and do not

need to be considered separately. Our notion of stationarity here is distinct from
the notion of covariance-stationarity for stochastic processes. Indeed, as defined in
Eq. (18), the Mt process may not be covariance-stationary, but the law of motion
fM4 |w3,X∗

4
is still time-invariant.
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=


∞

−∞

fM4|w3,X∗
4


m4|w3, x∗

4


h(x∗

4)dx
∗

4

=


∞

−∞

1
m4 − m3

fη4


log


m4 − m3

m3


− x∗

4


h(x∗

4)dx
∗

4

=
1

m4 − m3


∞

−∞

fη4

ϕ4 − x∗

4


h(x∗

4)dx
∗

4,
ϕ4 ≡ log


m4 − m3

m3


≡

1
m4 − m3

×


Lϕ4|X∗

4
h

(ϕ4). (26)

Since the function 1
m4−m3

is nonzero, g (m4) = 0 for any m4 ∈

(m3,∞) implies

Lϕ4|X∗

4
h

(ϕ4) = 0 for any ϕ4 ∈ R, where the

kernel of the operator Lϕ4|X∗
4
has a convolution form fη4


ϕ4 − x∗

4


.

As shown in Lemma 4, as long as the characteristic function of
η4 has no real zeros, which is satisfied by the assumed extreme
value distribution,26the corresponding operator Lϕ4|X∗

4
is injective.

Therefore,

Lϕ4|X∗

4
h

(ϕ4) = 0 for any ϕ4 ∈ R implies h


x∗

4


= 0

for any x∗

4 ∈ R. Thus, the operator LM4|w3,X∗
4
is injective.

(iii) Similarly, for fixed w2, X∗

3 is a convolution of X∗

2 , i.e. X
∗

3 =

0.8X∗

2 + 0.2 exp (ψ (Y2)) ν3 (cf. Eq. (17)). By an argument similar
to that for the previous operator, we can show that LX∗

3 |w2,X∗
2
is

injective.
(iv) For the last operator, corresponding to the density fX∗

2 ,w2,M1 ,
the model assumptions do not allow us to establish injectivity
directly. This is because this joint density confounds both the
structural components (laws ofmotion) in themodel and the initial
condition fX∗

1 ,M1 . Thus in general, injectivity of this operator is not
verifiable based only on the assumptions made thus far about the
laws of motion for the state variables.

However, in the special case where product quality X∗
t evolves

exogenously27 – that is, ψ(·) = 0 in Eq. (17) – it turns out that
an additional independence assumption on the initial values of the
state variables (X∗

1 ,M1), i.e., fX∗
1 ,M1 = fX∗

1
fM1 , suffices to ensure

injectivity of the operator LX∗
2 ,w2,M1 :

Claim 1. If ψ(·) = 0 in Eq. (17), and the initial values of the
state variables (X∗

1 ,M1) are independently distributed, the operator
LX∗

2 ,w2,M1 is injective.

Proof. In Appendix B. �

Up to this point, we have shown the injectivity of LM4,w3,w2,M1 ,
LM4|w3,X∗

3
, and LM3,w2,M1 . It turns out that this implies injectivity of

LM1,w2,w3,M4 and LM1,w2,M3 , as required by Assumption 2:

Claim 2. LM1,w2,w3,M4 and LM1,w2,M3 are injective.

Proof. In Appendix B. �

The assumptions underlying Claim 1, particularly the restric-
tions on the joint distribution of the initial values of the state vari-
ables (X∗

1 ,M1), may appear artificial. However, given the recursive
nature ofMarkoviandynamic optimizationmodels,webelieve that
restrictions on initial conditions will be, generally, unavoidable in

26 The characteristic function for η4 is φη4 (τ ) = Γ (1 + iτ), which is nonzero for
any τ ∈ R.
27 A large class of investment models (e.g. Olley and Pakes, 1996, Levinsohn
and Petrin, 2003) assume that the unobserved variable X∗

t (denoting productivity)
evolves exogenously.
verifying completeness. However, the exact nature of the restric-
tions will differ on an example-by-example basis. Here, only re-
strictions on the initial distribution of the state variables (X∗

1 ,M1)
were required. At the same time, we also reiterate that these are
sufficient conditions, and may not be necessary for the general re-
sults. In Appendices, we provide and discuss a necessary condition
for operators to satisfy completeness, which allows for very gen-
eral and flexible classes of joint densities.

5. Concluding remarks

We have considered the identification of a first-order Markov
process


Wt , X∗

t


when only {Wt} is observed. Under non-

stationarity, the Markov law of motion fWt ,X∗
t |Wt−1,X∗

t−1
is identified

from the distribution of the five observations Wt+1, . . . ,Wt−3.
Under stationarity, identification of fWt ,X∗

t |Wt−1,X∗
t−1

obtains with
only four observations Wt+1, . . . ,Wt−2. Once fWt ,X∗

t |Wt−1,X∗
t−1

is
identified, nonparametric identification of the remaining parts of
the models – particularly, the per-period utility functions – can
proceed by applying the results in Magnac and Thesmar (2002)
and Bajari et al. (2007b), who considered dynamic models without
unobserved state variables X∗

t .
For a general k-th order Markov process (k < ∞), it can

be shown that the 3k + 2 observations Wt+k, . . . ,Wt−2k−1 can
identify the Markov law of motion fWt ,X∗

t |Wt−1,...,Wt−k,X∗
t−1,...,X

∗
t−k

,
under appropriate extensions of the assumptions in this paper.

We have only considered the case where the unobserved state
variable X∗

t is scalar-valued. The case where X∗
t is a multivariate

process,whichmay apply to dynamic game settings, presents some
serious challenges. Specifically, when X∗

t is multi-dimensional,
Assumption 2(ii), which requires that LVt+1|wt ,X∗

t
be one-to-one, can

be quite restrictive. Ackerberg et al. (2007, Section 2.4.3) discuss
the difficulties with multivariate unobserved state variables in the
context of dynamic investment models.

Finally, this paper has focused on identification, but not
estimation. In ongoingwork,we are using our identification results
to guide the estimation of dynamic models with unobserved state
variables. This would complement recent papers on the estimation
of parametric dynamic models with unobserved state variables,
using non-CCP-based approaches.28

Appendix A. Proofs

Proof of Lemma 1. By Assumption 1(i), the observed density
fWt+1,Wt ,Wt−1,Wt−2 equals

fWt+1,Wt ,X∗
t ,X

∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1

=


fWt+1|Wt ,Wt−1,Wt−2,X∗

t ,X
∗
t−1

fWt ,X∗
t |Wt−1,Wt−2,X∗

t−1

× fX∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1

=


fWt+1|Wt ,X∗

t
fWt ,X∗

t |Wt−1,X∗
t−1

fX∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1

=


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t ,X
∗
t−1

fX∗
t |Wt−1,X∗

t−1

× fX∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1

=


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t ,X
∗
t−1

fX∗
t |Wt−1,Wt−2,X∗

t−1

28 Imai et al. (2009) and Norets (2009) consider Bayesian estimation, and
Fernandez-Villaverde and Rubio-Ramirez (2007) consider efficient simulation
estimation based on particle filtering.
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× fX∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1

=


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t ,X
∗
t−1

fX∗
t ,X

∗
t−1,Wt−1,Wt−2dx

∗

t dx
∗

t−1. (27)

(We omit the arguments in the density functions as long as doing
this does not cause confusion.) Assumption 1(ii) then implies

fWt+1,Wt ,Wt−1,Wt−2 =


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t

×


fX∗

t ,X
∗
t−1,Wt−1,Wt−2dx

∗

t−1


dx∗

t

=


fWt+1|Wt ,X∗

t
fWt |Wt−1,X∗

t
fX∗

t ,Wt−1,Wt−2dx
∗

t . (28)

In operator notation, given values of (wt , wt−1) ∈ Wt × Wt−1, this
is

LWt+1,wt ,wt−1,Wt−2 = LWt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Wt−2 . (29)

For the variable(s) Vt ⊆ Wt , for all periods t , introduced in
Assumption 2, Eq. (29) implies that the joint density of {Vt+1,Wt ,
Wt−1, Vt−2} is expressed in operator notation as LVt+1,wt ,wt−1,Vt−2 =

LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , as postulated by Lemma 1. �

Proof of Lemma 2. Assumption 1 implies the following two
equalities:

fVt+1,Wt ,Wt−1,Vt−2 =


fVt+1|Wt ,X∗

t
fWt ,X∗

t ,Wt−1,Vt−2dx
∗

t

fWt ,X∗
t ,Wt−1,Vt−2 =


fWt ,X∗

t |Wt−1,X∗
t−1

fX∗
t−1,Wt−1,Vt−2dx

∗

t−1. (30)

In operator notation, for fixed wt , wt−1, the above equations are
expressed:

LVt+1,wt ,wt−1,Vt−2 = LVt+1|wt ,X∗
t
Lwt ,X∗

t ,wt−1,Vt−2 (31)
Lwt ,X∗

t ,wt−1,Vt−2 = Lwt ,X∗
t |wt−1,X∗

t−1
LX∗

t−1,wt−1,Vt−2 .

Substituting the second line into the first, we get

LVt+1,wt ,wt−1,Vt−2 = LVt+1|wt ,X∗
t
Lwt ,X∗

t |wt−1,X∗
t−1

LX∗
t−1,wt−1,Vt−2

⇔Lwt ,X∗
t |wt−1,X∗

t−1
LX∗

t−1,wt−1,Vt−2 = L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2

(32)

where the second line uses Assumption 2(ii). Next, we eliminate
LX∗

t−1,wt−1,Vt−2 from the above. Again using Assumption 1, we have

fVt ,Wt−1,Vt−2 =


fVt |Wt−1,X∗

t−1
fX∗

t−1,Wt−1,Vt−2dx
∗

t−1 (33)

which, in operator notation (for fixedwt−1), is

LVt ,wt−1,Vt−2 = LVt |wt−1,X∗
t−1

LX∗
t−1,wt−1,Vt−2

⇒ LX∗
t−1,wt−1,Vt−2 = L−1

Vt |wt−1,X∗
t−1

LVt ,wt−1,Vt−2 (34)

where the right-hand side applies Assumption 2(ii). Hence,
substituting the above into Eq. (32), we obtain the desired
representation

Lwt ,X∗
t |wt−1,X∗

t−1
L−1
Vt |wt−1,X∗

t−1
LVt ,wt−1,Vt−2

= L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2

⇒ Lwt ,X∗
t |wt−1,X∗

t−1
L−1
Vt |wt−1,X∗

t−1

= L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2

L−1
Vt ,wt−1,Vt−2

⇒ Lwt ,X∗
t |wt−1,X∗

t−1
= L−1

Vt+1|wt ,X∗
t
LVt+1,wt ,wt−1,Vt−2

L−1
Vt ,wt−1,Vt−2

LVt |wt−1,X∗
t−1
. (35)
The second line applies Assumption 2(iii) to post-multiply by
L−1
Vt ,wt−1,Vt−2

, while in the third line, we postmultiply both sides by
LVt |wt−1,X∗

t−1
. �

Proof of Lemma 3. For each wt , choose a wt−1 and a neighbor-
hood N r around (wt , wt−1) to satisfy Assumptions 2(i) and 3, and
pick a (wt , wt−1) within the neighborhood N r to satisfy Assump-
tion 3. Because (wt , wt−1) ∈ N r , also (wt , wt−1) , (wt , wt−1) ∈

N r . By Lemma 1, LVt+1,wt ,wt−1,Vt−2 = LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . The first term on the RHS, LVt+1|wt ,X∗
t
, does not depend

onwt−1, and the last term LX∗
t ,wt−1,Vt−2 does not depend onwt . This

feature suggests that, by evaluating Eq. (12) at the four pairs of
points (wt , wt−1), (wt , wt−1), (wt , wt−1), (wt , wt−1), each pair of
equations will share one operator in common. Specifically:

for (wt , wt−1) : LVt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (36)

for (wt , wt−1) : LVt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (37)

for (wt , wt−1) : LVt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (38)

for (wt , wt−1) : LVt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . (39)

Assumption 2(ii) implies that LVt+1|wt ,X∗
t
is invertible. Moreover,

Assumption 3(i) implies fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t ) > 0 for all x∗
t

so that Dwt |wt−1,X∗
t
is invertible. We can then solve for LX∗

t ,wt−1,Vt−2
from Eq. (37) as

D−1
wt |wt−1,X∗

t
L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2 = LX∗

t ,wt−1,Vt−2 . (40)

Plugging in this expression to Eq. (36) leads to

LVt+1,wt ,wt−1,Vt−2 = LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t

× L−1
Vt+1|wt ,X∗

t
LVt+1,wt ,wt−1,Vt−2 . (41)

Lemma 1 of Hu and Schennach (2008) shows that, given the
injectivity of LVt−2,wt−1,wt ,Vt+1 as in Assumption 2(i), we can
postmultiply by L−1

Vt+1,wt ,wt−1,Vt−2
, to obtain:

A ≡ LVt+1,wt ,wt−1,Vt−2L
−1
Vt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
L−1
Vt+1|wt ,X∗

t
. (42)

Similar manipulations of Eqs. (38) and (39) lead to

B ≡ LVt+1,wt ,wt−1,Vt−2L
−1
Vt+1,wt ,wt−1,Vt−2

= LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
L−1
Vt+1|wt ,X∗

t
. (43)

Assumption 2(i) guarantees that, for any wt , (wt , wt−1, wt−1)
exist so that (9) and (10) are valid operations. Finally, we
postmultiply Eq. (42) by Eq. (43) to obtain

AB = LVt+1|wt ,X∗
t
Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t

×


L−1
Vt+1|wt ,X∗

t
LVt+1|wt ,X∗

t


×Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
L−1
Vt+1|wt ,X∗

t

= LVt+1|wt ,X∗
t


Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
Dwt |wt−1,X∗

t

×D−1
wt |wt−1,X∗

t


L−1
Vt+1|wt ,X∗

t

≡ LVt+1|wt ,X∗
t
Dwt ,wt ,wt−1,wt−1,X∗

t
L−1
Vt+1|wt ,X∗

t
, where (44)



Y. Hu, M. Shum / Journal of Econometrics 171 (2012) 32–44 41

Dwt ,wt ,wt−1,wt−1,X∗

t
h
 

x∗

t


=


Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
Dwt |wt−1,X∗

t
D−1
wt |wt−1,X∗

t
h
 

x∗

t


=

fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )

fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )fWt |Wt−1,X∗
t
(wt |wt−1, x∗

t )
h(x∗

t )

≡ k

wt , wt , wt−1, wt−1, x∗

t


h

x∗

t


. (45)

This equation implies that the observed operator AB on the left
hand side of Eq. (44) has an inherent eigenvalue–eigenfunction de-
composition, with the eigenvalues corresponding to the function
k

wt , wt , wt−1, wt−1, x∗

t


and the eigenfunctions corresponding

to the density fVt+1|Wt ,X∗
t
(·|wt , x∗

t ). The decomposition in Eq. (44) is
similar to the decomposition in Hu and Schennach (2008) or Car-
roll et al. (2010).

Assumption 3 ensures that this decomposition is unique.
Specifically, Eq. (44) implies that the operator AB on the LHS has
the same spectrum as the diagonal operator Dwt ,wt ,wt−1,wt−1,X∗

t
.

Assumption 3(i) guarantees that the spectrum of the diagonal
operator Dwt ,wt ,wt−1,wt−1,X∗

t
is bounded. Since an operator is

bounded by the largest element of its spectrum, Assumption 3(i)
also implies that the operatorAB is bounded, whencewe can apply
Theorem XV.4.3.5 from Dunford and Schwartz (1971) to show
the uniqueness of the spectral decomposition of bounded linear
operators.

Several ambiguities remain in the spectral decomposition. First,
Eq. (44) itself does not imply that the eigenvalues k(wt , wt , wt−1,
wt−1, x∗

t ) are distinctive for different values x∗
t . When the eigen-

values are the same for multiple values of x∗
t , the corresponding

eigenfunctions are only determined up to an arbitrary linear com-
bination, implying that they are not identified. Assumption 3(ii)
rules out this possibility, and implies that for each wt , we can find
values wt , wt−1, and wt−1 such that the eigenvalues are distinct
across all x∗

t .
29,30

Second, the eigenfunctions fVt+1|Wt ,X∗
t
(·|wt , x∗

t ) in the spectral
decomposition (44) are unique up to multiplication by a scalar
constant. However, these are density functions, so their scale is
pinned down because they must integrate to one. Finally, both
the eigenvalues and eigenfunctions are indexed by X∗

t . Since our
arguments are nonparametric, and X∗

t is unobserved, we need
an additional monotonicity condition, in Assumption 4, to pin
down the value of X∗

t relative of the observed variables. This was
discussed earlier, in the remarks following Assumption 4.

Therefore, altogether the density fVt+1|Wt ,X∗
t

or LVt+1|wt ,X∗
t

is
nonparametrically identified for any givenwt ∈ Wt via the spectral
decomposition in Eq. (44). �

Proof of Corollary 1. From Lemma 3, fVt |Wt−1,X∗
t−1

is identified
fromdensity fVt ,Wt−1,Wt−2,Vt−3 . The equality fVt ,Wt−1 =


fVt |Wt−1,X∗

t−1
fWt−1,X∗

t−1
dx∗

t−1 implies that, for anywt−1 ∈ Wt ,

fVt ,Wt−1=wt−1 = LVt |wt−1,X∗
t−1

fWt−1=wt−1,X∗
t−1

(46)

⇔ fWt−1=wt−1,X∗
t−1

= L−1
Vt |wt−1,X∗

t−1
fVt ,Wt−1=wt−1

29 Specifically, the operators AB corresponding to different values of (wt , wt−1,

wt−1) share the same eigenfunctions fVt+1 |Wt ,X∗
t
(·|wt , x∗

t ). Assumption 3(ii)
implies that, for any two different eigenfunctions fVt+1 |Wt ,X∗

t
(·|wt , x∗

t ) and fVt+1 |Wt ,X∗
t

(·|wt ,x∗
t ), one can always find values of (wt , wt−1, wt−1) such that the

two different eigenfunctions correspond to two different eigenvalues, i.e.,
k

wt , wt , wt−1, wt−1, x∗

t


≠ k


wt , wt , wt−1, wt−1,x∗

t


.

30 When wt (resp. wt−1) is close to wt (resp. wt−1), Eq. (45) implies that the
logarithm of the eigenvalues in this decomposition can be represented as a second-
order derivative of the log-density fWt |Wt−1,X∗

t
. Therefore, a sufficient condition

for 3(ii) is that ∂3

∂zt ∂zt−1∂x∗t
log fWt |Wt−1,X∗

t
is continuous and nonzero, which implies

that ∂2

∂zt ∂zt−1
log fWt |Wt−1,X∗

t
is monotonic in x∗

t for any (wt , wt−1), where zt is the
continuous component ofwt .
where the second line applies Assumption 2(ii). Hence, fWt−1,X∗
t−1

is
identified. �

Proof of Corollary 3. Under stationarity, the operator LVt−1|wt−2,X∗
t−2

is the same as LVt+1|wt ,X∗
t
, which is identified from the observed

density fVt+1,Wt ,Wt−1,Vt−2 (by Lemma 3). Because fVt−1,Wt−2 =
fVt−1|Wt−2,X∗

t−2
fWt−2,X∗

t−2
dx∗

t−2, the same argument as in the proof
of Corollary 1 then implies that fWt−2,X∗

t−2
is identified from the ob-

served density fVt−1,Wt−2 . �

Appendix B. Proofs of claims for Example 2

Here we provide the proofs for Claims 1 and 2 in Example 2.We
start with a general lemma regarding integral operators based on
a convolution form, which is useful for what follows. We consider
the basic convolution casewhere X = Z+ϵwith Z ∈ R, ϵ ∈ R, and
Z ⊥ ϵ. The independence between Z and ϵ implies that fX |Z (x|z) =

fϵ (x − z). We define the two operators
LX |Zh


(x) =


fϵ (x − z) h(z)dz


L∗

X |Zh

(z) =


fϵ (x − z) h(x)dx. (47)

Notice that L∗

X |Z maps functions of X to those of Z .

Lemma 4. Suppose that (i) the kernel of operator LX |Z is fϵ (x − z);
(ii) the Fourier transform of fϵ does not vanish on the real line. Then,
operators LX |Z and L∗

X |Z are injective.

Proof of Lemma 4. We have

g(x) ≡

LX |Zh


(x)

=


fϵ (x − z) h(z)dz. (48)

Let φg denote the Fourier transform of g , and φϵ that of fϵ . We have
for any t ∈ R

φg(t) = φϵ(t)φh(t). (49)

Therefore, φg = 0 implies φh = 0 if φϵ(t) ≠ 0 for any t ∈ R, which
is assumed by hypothesis. So LX |Z is injective.

Next, we show the injectivity of L∗

X |Z . We consider

ϕ(z) ≡

L∗

X |Zψ

(z)

=


fϵ (x − z) ψ(x)dx

≡


κ (z − x) ψ(x)dx (50)

where κ(x) ≡ fϵ (−x), i.e., φκ(t) = φϵ(−t). We then have

φϕ(t) = φκ(t)φψ (t)

= φϵ(−t)φψ (t). (51)

Again, φϕ = 0 implies φψ = 0 because φϵ(t) ≠ 0 for any t ∈ R.
Thus, L∗

X |Z is injective. �

Given this lemma, we proceed to prove the two claims from
Example 2.
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Proof of Claim 1. The operator LX∗
2 ,w2,M1 has kernel function

fX∗
2 ,w2,M1 =


fX∗

2 ,y2,m2,X∗
1 ,Y1,M1dy1dx

∗

1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1


fX∗

2 |Y1,X∗
1

× fY1|X∗
1 ,M1 fX∗

1 ,M1dy1dx
∗

1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1


fX∗

2 |X∗
1


fY1|X∗

1 ,M1dy1


× fX∗

1 ,M1dx
∗

1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1


fX∗

2 |X∗
1
fX∗

1
dx∗

1


fM1

= fy2|m2,X∗
2
fX∗

2
fm2|X∗

2 ,M1 fM1 . (52)

In the third line, we have utilized the restriction that ψ(·) = 0 in
Eq. (17) so that the density of fY1|X∗

1 ,M1 can be integrated out. The
fourth line applies the independence of (X∗

1 ,M1) so that fX∗
1 ,M1 =

fX∗
1
fM1 . The corresponding operator equation is

LX∗
2 ,w2,M1 = Dy2|m2,X∗

2
DX∗

2
Lm2|X∗

2 ,M1DM1 . (53)

Given that all the densities in the diagonal operators are nonzero
and bounded, it remains to show the injectivity of Lm2|X∗

2 ,M1 . For a
fixedm2, we have:

g

x∗

2


≡


Lm2|X∗

2 ,M1h
 

x∗

2


=

 m2

0
fm2|X∗

2 ,M1


m2|x∗

2,m1

h(m1)dm1

=

 m2

0

1
m2 − m1

fη2


log


m2 − m1

m1


− x∗

2


h(m1)dm1

=

 m2

0

1
m2 − m1


−m2

(m2 − m1)m1

−1

× fη2


log


m2 − m1

m1


− x∗

2


h(m1)d log


m2 − m1

m1


=

 0

m2

m1

m2
fη2


log


m2 − m1

m1


− x∗

2


× h(m1)d log


m2 − m1

m1


=


∞

−∞

fη2

ϕ2 − x∗

2


h


m2

eϕ2 + 1


1

eϕ2 + 1
dϕ2,

ϕ2 ≡ log

m2 − m1

m1


≡


∞

−∞

fη2

ϕ2 − x∗

2

h (ϕ2) dϕ2,h (ϕ2) ≡ h


m2

eϕ2 + 1


1

eϕ2 + 1


=


L∗

ϕ2|X∗
2
h (x∗

2), (54)

where the operator L∗

ϕ2|X∗
2
is defined analogously to Eq. (47). As

shown above, g

x∗

2


= 0 for any x∗

2 ∈ R implies that (L∗

ϕ2|X∗
2
h)

(x∗

2) = 0 for any x∗

2 ∈ R, where the kernel of L∗

ϕ2|X∗
2
has a con-

volution form fη2

ϕ2 − x∗

2


. Since the characteristic function of η2

has no zeros on the real line, we can apply Lemma 4 to obtain
the injectivity of L∗

ϕ2|X∗
2
. Accordingly,


L∗

ϕ2|X∗
2
h (x∗

2) = 0 for any

x∗

2 ∈ R impliesh (ϕ2) = 0 for any ϕ2 ∈ R. Next, becauseh(ϕ2) =
h( m2
eϕ2+1 )

1
eϕ2+1 and 1

eϕ2+1 is nonzero,h(ϕ2) = 0 for any ϕ2 ∈ R

implies h( m2
eϕ2+1 ) = 0 for any ϕ2 ∈ R. Given ϕ2 ≡ log


m2−m1

m1


,

we have h (m1) = 0 for any m1 ∈ (0,m2). Altogether, then,
g


x∗

2


= 0 for any x∗

2 ∈ R implies h (m1) = 0 for anym1 ∈ (0,m2),
thus demonstrating the injectivity of the operator Lm2|X∗

2 ,M1 , as
claimed. �

Proof of Claim 2. First, we show the injectivity of LM1,w2,w3,M4 . For
fixed (w2, w3):

fM1,w2,w3,M4

=


fM4|w3,X∗

3
fw3|w2,X∗

3
fX∗

3 ,w2,M1dx
∗

3.

=

 
fM4|w3,X∗

4
fX∗

4 |w3,X∗
3
dx∗

4


fw3|w2,X∗

3

×


fX∗

3 |w2,X∗
2
fX∗

2 ,w2,M1dx
∗

2


dx∗

3

=

 
fM4|w3,X∗

4
fX∗

4 |w3,X∗
3
dx∗

4


fw3|w2,X∗

3

×


fX∗

3 |w2,X∗
2
fy2|m2,X∗

2
fX∗

2
fm2|X∗

2 ,M1 fM1dx
∗

2


dx∗

3. (55)

Therefore, the equivalent operator equation is

LM1,w2,w3,M4 = LM1,y2,m2,y3,m3,M4

= DM1L
∗

m2|X∗
2 ,M1

DX∗
2
Dy2|m2,X∗

2
L∗

X∗
3 |w2,X∗

2

×Dw3|w2,X∗
3
L∗

X∗
4 |w3,X∗

3
L∗

M4|w3,X∗
4
. (56)

In the above, the L∗ operators are defined analogously to Eq. (47),
and all the L∗ operators are based on convolution kernels.
Earlier, in the main text and Claim 1, we showed that the
operators Lm2|X∗

2 ,M1 , LX∗
3 |w2,X∗

2
, LX∗

4 |w3,X∗
3
, and LM4|w3,X∗

4
are injective;

hence, by applying Lemma 4, we also obtain the injectivity
of L∗

m2|X∗
2 ,M1

, L∗

X∗
3 |w2,X∗

2
, L∗

X∗
4 |w3,X∗

3
, and L∗

M4|w3,X∗
4
using an argument

similar to that used in the proof of Claim 1.
Finally, all the densities corresponding to thediagonal operators

in Eq. (56) are nonzero and bounded, implying that these operators
are injective. Hence, LM1,w2,w3,M4 is also injective.

Second, for LM1,w2,M3 , we have

fM1,w2,M3 =


fM3|w2,X∗

2
fX∗

2 ,w2,M1dx
∗

2

=

 
fM3|w2,X∗

3
fX∗

3 |w2,X∗
2
dx∗

3


fX∗

2 ,w2,M1dx
∗

2

=

 
fM3|w2,X∗

3
fX∗

3 |w2,X∗
2
dx∗

3


× fy2|m2,X∗

2
fX∗

2
fm2|X∗

2 ,M1 fM1dx
∗

2. (57)

Therefore, the equivalent operator equation is

LM1,w2,M3 = DM1L
∗

m2|X∗
2 ,M1

DX∗
2
Dy2|m2,X∗

2
L∗

X∗
3 |w2,X∗

2
L∗

M3|w2,X∗
3
. (58)

By stationarity, the injectivity of L∗

M3|w2,X∗
3
is implied by that of

L∗

M4|w3,X∗
4
. All the other operators on the RHS also appeared in

Eq. (56), and we argued above that these were injective. Thus,
LM1,w2,M3 is injective. �

Appendix C. Miscellaneous remarks

C.1. Further discussion on Assumption 2

In this section, we discuss how Assumption 2 is used to ensure
the validity of two different ways for taking operator inverses.
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Consider two scenarios involving an operator equation

LR1,r2,R4 = LR1|r2,R3Lr2,R3,R4 . (59)

In the first scenario, suppose we want to solve for Lr2,R3,R4 given
LR1,r2,R4 and LR1|r2,R3 . The assumption that LR1|r2,R3 is one-to-one
guarantees that we may have

L−1
R1|r2,R3

LR1,r2,R4 = Lr2,R3,R4 . (60)

As an example, Assumption2(ii) guarantees that pre-multiplication
by the inverse operator LVt+1|wt ,X∗

t
is valid, which is used in the

equation following Eq. (9).
In the second scenario, suppose we need to solve for LR1|r2,R3

given LR1,r2,R4 and Lr2,R3,R4 in Eq. (59). We would need the operator
Lr2,R3,R4 to be invertible as follows:

LR1,r2,R4L
−1
r2,R3,R4

= LR1|r2,R3 . (61)

As proved in Lemma 1 in Hu and Schennach (2008), the sufficient
condition for obtaining Eq. (61) from Eq. (59) is that the operator
LR4,R3,r2 is one-to-one.31 (Notice that the operator LR4,R3,r2 is from
Lp (R3) to Lp (R4).)

Assumption 2(i) is an example of this. It is used to justify
the post-multiplication by L−1

Vt+1,w̄t ,wt−1,Vt−2
and L−1

Vt+1,wt ,w̄t−1,Vt−2
in, respectively, Eqs. (9) and (10). Similarly, Assumption 2(iii)
guarantees the validity of post-multiplication by L−1

Vt ,wt−1,Vt−2
,

which is done in the second line in Eq. (29). Throughout this paper,
we only post-multiply by the inverses of LVt+1,wt ,wt−1,Vt−2 and
LVt ,wt−1,Vt−2 ; all other cases of inverses involve pre-multiplication.
For amore technical discussion, see Aubin (2000, Sections 4.5–4.6).

C.2. Necessary conditions for completeness

As the discussion of the dynamic investment model has
illustrated, the functional forms of the operators for which we can
verify completeness are restrictive. But in those examples we have
focused on providing sufficient conditions; those conditions, while
restrictive, may be far from necessary.

To show this, in this section we provide a necessary condition
for completeness.

Lemma 5 (Necessary Conditions for One-to-One). If LR1|R3 is one-to-
one, then for any set S3 ⊆ R3 with Pr (S3) > 0, there exists a set
S1 ⊆ R1 such that Pr (S1) > 0 and

∂

∂r3
fR1|R3(r1|r3) ≠ 0 almost surely for ∀r1 ∈ S1, ∀r3 ∈ S3. (62)

Proof of Lemma 5. Suppose Eq. (62) fails, so there exists an
interval S3 ≡ [r, r̄] such that, for ∀r3 ∈ S3 and ∀r1 ∈

R1,
∂
∂r3

fR1|R3(r1|r3) = 0. Define h0 (r3) = IS3 (r3) g(r3). Then
LR1|R3h0


(r1) =


fR1|R3(r1|r3)h0(r3)dr3

=


S3

fR1|R3(r1|r3)g(r3)dr3

≡


S3

fR1|R3(r1|r3)dG(r3)

= fR1|R3(r1|r3)G(r3) |
r
r

−


S3

G(r3)

∂

∂r3
fR1|R3(r1|r3)


dr3

= fR1|R3(r1|r)G(r)− fR1|R3(r1|r)G(r).

31 A similar assumption is also used in Carroll et al. (2010).
Notice that fR1|R3(r1|r) = fR1|R3(r1|r). Thus, for ∀r1 ∈ R1
LR1|R3h0


(r1) = fR1|R3(r1|r)


G(r)− G(r)


.

Then, pick any function g for which G(r)− G(r) =
 r̄
r g(r)dr = 0,

but g(r) ≠ 0 for any r in a nontrivial subset of [r, r̄]. We have
LR1|R3h0 = 0, but h0 ≠ 0. Therefore, Eq. (10) fails, and LR1|R3 is not
one-to-one. �

Intuitively, the necessary condition here ensures that there is
enough variation in the distribution of R1 for different values of
R3. Note that this allows for great flexibility in specifying the
functional forms of the operators, and may even allow for some
‘‘semiparametric’’ specifications, in which, for instance, the laws of
motions for the state variable are specified as flexible polynomials.
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