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 Statistica Sinica 19 (2009), 949-968

 NONPARAMETRIC IDENTIFICATION AND ESTIMATION

 OF NONCLASSICAL ERRORS-IN-VARIABLES MODELS

 WITHOUT ADDITIONAL INFORMATION

 Xiaohong Chen, Yingyao Hu and Arthur Lewbel

 Yale University, Johns Hopkins University and Boston College

 Abstract: This paper considers identification and estimation of a nonparametric
 regression model with an unobserved discrete covariate. The sample consists of a
 dependent variable and a set of covariates, one of which is discrete and arbitrarily
 correlates with the unobserved covariate. The observed discrete covariate has the

 same support as the unobserved covariate, and can be interpreted as a proxy or
 mismeasure of the unobserved one, but with a nonclassical measurement error that
 has an unknown distribution. We obtain nonparametric identification of the model
 given monotonicity of the regression function and a rank condition that is directly
 testable given the data. Our identification strategy does not require additional
 sample information, such as instrumental variables or a secondary sample. We
 then estimate the model via the method of sieve maximum likelihood, and provide
 root-n asymptotic normality and semiparametric efficiency of smooth functionals
 of interest. Two small simulations are presented to illustrate the identification and
 estimation results.

 Key words and phrases: Errors-in-variables (eiv), identification, nonclassical mea
 surement error, nonparametric regression, sieve maximum likelihood.

 1. Introduction

 We consider identification and estimation of the nonparametric regression
 model

 Y = m(X*) + rli, E{r)\X*}=0 (1.1)

 where Y and X* are scalars and X* is not observed. We assume X* is discrete,
 so for example X* could be categorical, qualitative, or count data. We observe
 a random sample of Y and a scalar X, where X could be arbitrarily correlated
 with the unobserved X*, and 77 is independent of X and X*. We assume X has
 the same support as X*. The extension to Y = m (X*, W) +77, E[q\X*, W] = 0,
 where W is an additional vector of observed error-free covariates is immediate

 (and is included in the estimation section) because our assumptions and iden
 tification results for model (1.1) can be all restated as conditional upon W.
 Discreteness of X and X* (with the same support) means that the measurement
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 950 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 error X — X* will be nonclassical, in particular, the error will depend on X* and
 generally has nonzero mean. See, e.g., Bound, Brown and Mathiowetz (2001) for
 a review of nonclassical measurement errors.

 This type of discrete measurement error is common in many data sets, in
 particular, it arises in contexts where X* indexes or classifies the group that an
 individual belongs to, which is sometimes misreported, yielding classification er
 rors. For example, Kane and Rouse (1995) find that school transcript reports of
 years of schooling often contain errors, so X* could indicate one's actual years of
 schooling and X the transcript report. Finney (1964) discusses misclassification
 in biological assay. Gustman and Steinmeier (2004) report that many individuals
 that actually have a defined benefit retirement plan claimed to have a defined
 contribution plan, and vice versa, so here X* and X are binary indicators of
 actual versus reported pension type. Hirsch and Macpherson (2003) document
 misclassification in surveys of union status. Balke and Pearl (1997) model imper
 fect compliance, where X is some assigned experimental treatment that differs
 from the actual treatment received, X*, because of compliance difficulties. More
 generally X* and X could be the actual and reported values in any count data
 or multiple choice survey question, with differences between X* and X arising
 from either imperfect knowledge, or recording and transcription errors.

 Many estimators and empirical analyses have been proposed to deal with mis
 classified discrete variables. See, e.g., Chua and Fuller (1987), Bollinger (1996),
 Lewbel (2007), Hu (2006), and Mahajan (2006). However, to the best of our
 knowledge, there is no published work that allows for nonparametric point iden
 tification and estimation of nonparametric regression models with nonclassically
 mismeasured discrete regressors, without parametric restrictions or additional
 sample information such as instrumental variables, repeated measurements, or
 validation data, which our paper provides. In short, we nonparametrically re

 cover, and hence identify, the conditional density fY\x* (equivalently, the re
 gression function m and the distribution of the regression error rj) just from the
 observed joint distribution fy,x, while imposing minimal restrictions on the joint

 distribution of X* and X. We also recover fx\x* and /x* which, respectively,
 imply identifying the conditional distribution of the measurement error and the
 marginal distribution of the unobserved regressor fx*, and also imply identifica
 tion of the joint distributions fy,x* and fx,x* ■

 Although we interpret X as a measure of X* that is contaminated by mea
 surement or misclassification error, more generally X* could represent some la
 tent, unobserved quantifiable discrete variable, a health status or life expectancy
 quantile for example, and X could be some observed proxy, say a body mass
 index quantile or the response to a health related categorical survey question.
 Equation (1.1) could then be interpreted as a latent factor model Y — m* + r]
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 951

 featuring unobserved independent factors m* and 77, with identification based on

 observing the proxy X and on existence of a measurable function m(-) such that
 m* = m(X*).

 The relationship between the latent model fy\x* and the observed density
 fy.x is

 fr,x(y,x) = J fY\x*{y\x*)fx,x* (x,x*)dx*. (1.2)
 Existing papers identifying the latent model fy\x* make one of three assump
 tions: the measurement error structure fx\x* belongs to a parametric family;
 there exists an additional exogenous variable Z in the sample (such as an instru

 ment or a repeated measure) that does not enter the latent model fy\x*, and
 exploiting assumed restrictions on fy\x*,z and fx,x*,z to identify fy\x* given
 the joint distribution of {y, x,z}; a secondary sample exists to provide infor

 mation on fx,x* and permit recovery of fY\x* from the observed fyx in the
 primary sample. See Carroll, Puppert, Stefanski and Crainiceanu (2006) and
 the references therein for detailed reviews on existing approaches and results.

 In this paper, we obtain identification by exploiting nonparametric features

 of the latent model fy\x*, such as independence of the regression error term 77
 and discreteness of X*. Our results are useful because many applications specify

 the latent model of interest fy\x*, while little is known about fx,x*, that is,
 about the nature of the measurement error or the exact relationship between the
 unobserved latent X* and a proxy X. In addition, our key "rank" condition for
 identification is directly testable from the data.

 We utilize characteristic functions. Suppose X and X* have support X =

 {!,..., J}. Then by (1.1), exp (itY) = exp (itrf) Ylj=i lpf* = j) exp [im (j) t] for '3

 any given constant t, where 1() is the indicator function. This equation, and
 independence of 77, yield moments

 J

 E [exp (itY) fx(x) | X = x] = E [exp (^77)] ^ fx,x* (x, x*) exp [im (x*) t]
 X*=l

 (L3)
 Evaluating (1.3) for t € {t\,..., tx} and x G {1,..., J} provides KJ equations
 in J2 + J + K unknown constants. These unknown constants are the values of

 fx,x* (x,x*), m (x*), and E [exp (itrj)] for t e {t\,..., tx}, x € {1,..., J}, and
 x* € {1,..., J}. Given a large enough value of K. these moments provide more
 equations than unknowns. We provide sufficient regularity assumptions to ensure

 existence of some set of constants {t\,... ,tx} such that these equations do not
 have multiple solutions, and the resulting unique solution to these equations

 provides identification of m(-), fr) and fx,x*, and hence of fy\x* ■
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 952 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 Estimation could be based directly on (1.3) using, for example, Hansen's
 (1982) Generalized Method of Moments (GMM). However, this would require
 knowing or choosing constants Moreover, under the independence
 assumption of rj and X*, we have potentially infinitely many constants t that
 solve (1.3); hence GMM estimation using finitely many such t's is not efficient
 in general. Here we apply instead the method of sieve Maximum Likelihood
 (ML) of Grenander (1981), which does not require knowing or choosing con
 stants and easily allows for an additional vector of error-free covariates

 W. The sieve ML estimator essentially replaces the unknown functions fv, m,
 and fx*\x,w with polynomials, Fourier series, splines, wavelets, or other sieve ap
 proximators, and estimates the parameters of these approximations by maximum
 likelihood. By simple applications of the general theory on sieve MLE developed
 in Wong and Shen (1995), Shen (1997), Van de Geer (2000), and others, we get
 consistency and find the convergence rate of the sieve MLE, along with root-n
 asymptotic normality and semiparametric efficiency of such smooth functional
 as the weighted averaged derivatives of the latent nonparametric regression func
 tion m(X*,W), or the finite-dimensional parameters (ß) in a semiparametric
 specification of m(X*, W\ß).

 The rest of this paper is organized as follows. Section 2 provides the iden
 tification results. Section 3 describes the sieve ML estimator and presents its
 large sample properties. Section 4 provides two small simulation studies. Sec
 tion 5 briefly concludes. All proofs are in the Supplement appendix, available at
 http ://www.stat.sinica.edu.tw/statistica.

 2. Nonparametric Identification

 Our basic nonparametric regression model is equation (1.1) with scalar Y
 and X* G X = {1,..., J}. We observe a random sample of (X,Y) € X x y,
 where A is a proxy for X*. The goal is to consider restrictions on the latent

 model fy\x* that suffice to nonparametrically identify fy\x* and fx\x* from
 fy\x

 Assumption 2.1. X X ri\X*.

 This assumption implies that the measurement error X — X* is independent
 of the dependent variable Y conditional on the true value X*. In other words,

 we have fy\x*,x(u\x*ix) = fY\x*(y\x*) f°r (x,x*,y) £ X x X x y. This
 is equivalent to the classical measurement error property that the outcome Y,
 conditional on both the true X* and on the measurement error in X, does not
 depend upon the measurement error.

 Assumption 2.2. X* X 77.
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 953

 This assumption implies that the regression error 77 is independent of the

 regressor X* so fy\x* (v\x*) = fv (v ~ The relationship between the
 observed density and the latent ones is then

 J

 fy,x(y,x) = fn (y - m(x*)) fx,x* (x,x*). (2.1)
 x*—l

 Assumption 2.2 rules out heteroskedasticity or other heterogeneity of the regres

 sion error 77, but allows its density fv to be completely unknown and nonpara
 metric. The regression error 77 is not required to be continuously distributed, but

 the rank condition discussed below does place a lower bound on the number of
 points in the support of 77. We later show that this assumption can be relaxed in
 a couple of different ways, e.g., as noted in the introduction, it can be replaced by

 E [exp (itrj) \X*,X] = E [exp (itrj)\ for a certain finite set of values of t. For di
 chotomous (binary) X*, we show Assumption 2.2 can alternatively be weakened

 to just requiring E (rik\X*) — E (77^) for k = 2,3.
 Let 4> denote a characteristic function (ch.f.). Equation (2.1) is equivalent to

 J

 (f>Y,x=x (t) = <f>,? (t) exp (itm(x*)) fx,x* (<x,x*) (2.2)
 x* = l

 for all real-valued t, where 4>y,x=x (t) = f exp(ity)fyX(y,x)dy and x € X. Since
 77 may not be symmetric, 0V (t) = f exp(itrj) fv(r])dr] need not be real-valued. We

 let (/).,) (t) = \<pn (t)| exp {ia (t)), where

 10»? (t)I = \]\Re{<j>n ^)}]2 + [Im{<t>v (*)}]2, a(t) = arccos •

 We then have for any real-valued scalar t,

 J

 4>y,x=x (t) = 1Wl ^2 exp ('itm(x*) +ia (*)) fx,x* (xix*) ■ (2-3)
 x*=l

 Define

 Fx,x* =

 ( fx,x* (1,1) fx,x* (!)2) " ' fx,x* (1, J) \
 fx,x* (2,1) fx,x* (2>2) " " " fx,x* (2, J)

 \fx,x* (J, 1) fx,x* (J, 2) ••• fx,x* (J, J) J

 For a real-valued vector t = (0, ... ,tj), let D^( t) = Diag{l, 1^(^2)1 •>
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 954 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 \4>ri{tj)\}i

 ( fx( 1) <f>Y,X=l(t2) ••• <l>Y,X=l(tj)\
 . . fx(2) (f>YX=2(^2) ••• <f>Y,X=2{tj)

 $Y,X( t) = ...

 \fx(J) <l>Y,X=j(t 2) • • • <f>Y,X=j(tj) J

 and take rrij = m(j) for j = 1,..., J, with

 ^771,a(f) —

 ( 1 exp (Ü2m\ 4- ia (£2)) • • • exp (itjmi + ia (tj)) \
 1 exp (it2rri2 + ia (t2)) • • • exp (if jm2 + ia (tj))

 \ 1 exp (it2mj + ia (t2)) ■ ■ ■ exp {itjmj + ia (tj)) /

 With these matrix notations, for any real-valued vector t, (2.3) is equivalent to

 $y,x(t) = Fx,X* x $m,a(t) x D\^(t). (2.4)

 Equation (2.4) relates the known parameters $y,x(t) (which may be inter
 preted as reduced form parameters of the model) to the unknown structural

 parameters Fx,x*, ^m,a(t), and D\m(t). Equation (2.4) provides a sufficient
 number of equality constraints to identify the structural parameters given the
 reduced form parameters, so what is required are sufficient invertibility or rank
 restrictions to rule out multiple solutions of these equations.

 To provide these conditions, consider both the real and imaginary parts of

 "hyw (t). Since D\^ (t) is real by definition, we have

 i?e{$yjx(t)} = Fx,x* x iîe{4>mia(t)} x D^(t), (2.5)
 Im{$Y,x(t)} = Fx,x* x /m{$m)0(t)} x D^{t). (2.6)

 Since the matrices Jm-ft&y^t)} and Im{4>m>a(t)} are not invertible because
 their first columns are zeros, we replace (2.6) with

 (/m{$y,x(t)} + ?x) = Fx,x* x (Jm{#m>a(t)} + T) x Dw(t), (2.7)

 where

 Fx =

 (fx( 1) 0 0 \
 fx{2) 0 ••• 0

 \fx(j) 0... 0 y

 and T

 / i 0 ••• 0 \
 1 0 ••• 0

 V 1 0 0

 Equation (2.7) holds because Fx,x* x T = Tx and T x E>|^|(t) = T. Let
 Ct = {Re{$Y,x{t)}) 1 x (/m{$y^(t)} + Tx).
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 955

 Assumption 2.3. {rank). There is a real-valued vector t = (0, t2> • ■ ■, tj) such
 that (i) ite-f^y^t)} and {Im{^Y,x{'t)} + ^x) are invertible, and (ii) For any
 real-valued J x J—diagonal matrices Dk = Diag (0, (4.2, ■■■, (4;j), if Efi + Ct x
 D\ x Ct + D2 x Ct — Ct x D2 = 0, then = 0 for k = 1,2.

 We call Assumption 2.3 the rank condition, because it is analogous to the
 rank condition for identification in linear models and, in particular, implies iden
 tification of the two diagonal matrices

 (d d 0, ^ In\(pv{t2)\, • • •, Qj. In |<?4(4/)I

 Dda(t) = Diag 0 (°,|a((2), ■ • •, |«(W)
 Assumption 2.3 (ii) is rather complicated, but can be replaced by some simpler
 sufficient alternatives, which we describe later. Given a candidate value of t, we
 can test if Assumption 2.3 holds for that value, since the assumption is expressed
 entirely in terms of fx and the matrix $y,x(t) which, given a vector t, can be
 directly estimated from data. It would also be possible to set up a numerical
 search for sensible candidate values of t that one might check. For example,
 letting Q{t) be an estimate of the product of the squared determinants of the
 matrices in Assumption 2.3 (i), one could search for values of t that numerically
 maximize Q{t). Assumption 2.3 (i) is then satisfied with high probability if the
 maximized Q{t) differs significantly from zero. Similarly, one could let Q(t) be
 the product of the squared differences between the left and right hand sides of
 each inequality in Assumption 2.8, and maximize that to find values of t that
 satisfy this binary rank condition. Note also that estimation does not actually
 require finding an example value of t.

 In the Appendix, we show that

 Re$Y,x(t) x At x (i?e$y;x(t)) 1 = Fx\x* x An x [Fx\x*) 1 > (2-8)

 where At on the left-hand side is identified when Dqinw|(t) and D,ga(t) are iden
 tified, Dm = Diag (m( 1),..., m( J)), and

 FX\x*

 ( fx\x* (1|1) fx\x* (1|2) • • • fx\x* (1|"0 ^
 fx\x* (2|1) fx\x* (2|2) ■ ■ • fx\x* (2| J)

 \fx\x* (^|1) fx\x* (^|2) ■ • • fx\x*

 Equation (2.8) implies that fx\x*{'\x*) and m(x*) are eigenfunctions and eigen
 values of an identified J x J matrix on the left. We may then identify fx\x- ("I®*)
 and m(x*) under the following.
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 956 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 Assumption 2.4. (i) m(x*) < oo and m(x*) / 0 for all x* G X; (ii) m(x*) is
 strictly increasing in x* G X.

 Assumption 2.4(i) implies that each possible value of X* is relevant for Y.
 and 2.4(ii) allows us to assign each eigenvalue m(x*) to its corresponding value
 x*. If we only wish to identify the support of the latent factor m* = m(X*) and
 not the regression function m(-) itself, then this monotonicity assumption can be
 dropped.

 Given identification and invertibility of Fx\x*i identification of fx* (the
 marginal distribution of X*) immediately follows because fx* can solved from

 fx = J2x* fx\x*fx* given the invertibility of FX\x*
 Assumption 2.4 could be replaced by restrictions on fx\x* (e.g., by exploiting

 knowledge about the eigenfunctions rather than eigenvalues to properly assign
 each m(x*) to its corresponding value x*), but Assumption 2.4 is more in line
 with our other assumptions, which assume that we have information about our
 regression model but know very little about the relationship of the unobserved
 X* to the proxy X.

 Theorem 2.1. Under Assumptions 2.1, 2.2, 2.3 and 2.4 in (1.1), the density
 fy,x uniquely determines fy\x*> fx\x*> and fx*

 Given our model, defined by Assumptions 2.1 and 2.2, Theorem 2.1 shows
 that Assumptions 2.3 and 2.4 guarantee that the sample of (Y, X) is informative
 enough to nonparametrically identify <j)r), m(x*) and fx,x*i which correspond
 respectively to the regression error distribution, the regression function, and the
 joint distribution of the unobserved regressor X* and the measurement error.
 This identification is obtained without additional sample information such as an
 instrumental variable or a secondary sample. Of course, if we have additional
 covariates such as instruments or repeated measures, they could be exploited
 along with Theorem 2.1. Our results can also be immediately applied if we
 observe an additional covariate vector W that appears in the regression function,
 so Y = m (X*, W) + 77, since our assumptions and results can all be restated as
 conditioned upon W.

 Now consider some simpler sufficient conditions for Assumption 2.3(ii) in
 Theorem 2.1. Let CJ be the transpose of Ct, and "o" stand for the Hadamard
 product, i.e., the element-wise product of two matrices.

 Assumption 2.5. The real-valued vector t = (0,^2, • • • Xj) satisfying Assump
 tion 2.3 (i) also has Ct ° CjT +1 invertible, and all entries in the first row of the
 matrix Ct nonzero.

 Assumption 2.5 implies Assumption 2.3 (ii), and is in fact stronger than
 Assumption 2.3(ii), since if it holds then we may explicitly solve for A3in|<j| (t)
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 957

 and Dga(t) in simple closed form. Another alternative to Assumption 2.3(ii) is
 the following

 Assumption 2.6. (symmetric rank) a (t) = 0 for all t and, for any real-valued
 J x J diagonal matrix D\ = Diag (0, d\$, • ■ •, d\tj), if D\ + C*t x D\ x Ct = 0
 then D\ = 0.

 The condition in Assumption 2.6 that a (t) = 0 for all t is the same as assum
 ing that the distribution of the error term rj is symmetric. We call Assumption
 2.6 the symmetric rank condition because it implies our previous rank condition
 when r] is symmetrically distributed.

 Finally, the assumption that the measurement error is independent of the
 regression error, Assumption 2.2, is stronger than necessary. All independence
 is used for is to obtain (1.3) for some given values of t. More formally, all that
 is required is that (2.4), and hence (2.6) and (2.7), hold for the vector t in
 Assumption 2.3.When there are covariates W in the regression model, which we
 use in the estimation, the requirement becomes that (2.4) hold for the vector t
 in Assumption 2.3 conditional on W. Therefore, Theorem 2.1 holds replacing
 Assumption 2.2 with the following, strictly weaker assumption.

 Assumption 2.7. For the known t = 0,tz,...,tj that satisfies Assumption
 2-3, <f>v\x*=x* (t) = <i>n|x*=i (*) and iß/dt)4>v\x*=x* (t) = (d/dt)^\x»=1 (t) for all
 x* e A.

 This condition permits some correlation of the proxy X with the regression
 error rj, and allows some moments of rj to correlate with X*.

 2.1. The dichotomous case

 We now show how the assumptions for Theorem 2.1 can be simplified in
 the special case that X* is a 0-1 dichotomous variable, i.e., X = {0,1}. Define
 mj = m{j) for j = 0,1. Given Assumptions 2.1 and 2.2, the relationship between
 the observed density and the latent ones becomes

 fv\x(y\j) = fx*\x (0|j) fr,(y - mo) + fx*\x (lb') My - m) for j = 0, l, (2.9)

 which says that the observed density fY\x{y\j) is a mixture of two distributions
 that only differ in their means. Studies on mixture models focus on parametric
 or nonparametric restrictions on fv for a single value of j that suffice to identify
 all the unknowns in this equation. For example, Bordes, Mottelet and Vandek
 erkhove (2006) show that all the unknowns in (2.9) are identified for each j when
 the distribution of rj is symmetric. In contrast, errors-in-variables models typ

 ically impose restrictions on fx*\x (or exploit additional information regarding
 fx*\x such as instruments or validation data) along with (2.9) to obtain identi
 fication with few restrictions on the distribution fv.
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 958 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 Now consider Assumptions 2.3 or 2.5 in the dichotomous case. We have for
 any real-valued 2 x 1—vector t = (0, t),

 YM) \fx( l)<f>Y\x=i(t)fx(l)J'

 Re{$YX(t)} = (/x(0) R^Y\x=o(t)fx(0)\ 1 }i \fx(l)Recf>Y]x=l(t)fx(l)J,
 det (Äe{$y,x(t)}) = /x(0)/x(l) [Re<t>Y\x=i(t) ~ Re<t>Y\x=o(t)] ,

 det (Im{$Y>x{t)} + Tx) = /x(0)/x(l) [lm4>Y]x=i(t) - Imfo|x=0(*)] •
 Also

 Ct =

 -, /x(0)/x(l)[-fra<fty|x=o(*)-Reifty|x=i(t)~^e'/'y|x=o(iKTn'fty|x=i(b]
 det(Äe{$y,x(t)})

 det(jm{$y|X(t)}+Tx)
 det(fie{<E>y,x(t)})

 thus

 (r nrT) I t r>inni^ /det (/m{$yx(t)} + Yx)\2 \
 (C,oCt)+J=B.«S^ det(M^(t)}) J +1J

 is always invertible. Therefore, in the dichotomous case, Assumptions 2.3 and
 2.5 are the same, and can be expressed as the following

 Assumption 2.8. (binary rank) (i) /x(0)/x(l) > 0; (ii) there exist a real-valued
 scalar t such that Re(fiY\x=o(t) ^ Re4>Y\X=i{t), Im(/)Y\X=0(t) ^ Imcf)Y|x=i (*),
 Im(j)Y\x=o{t)Re4>Y\x=\(t) 7^ #e0Y|X=o(/)^m<?V|X=l(i)

 It is easy to find a real-valued scalar t that satisfies this binary rank condition.
 In the dichotomous case, instead of imposing Assumption 2.4, we may obtain

 the ordering of m3 from that of observed pj = E(Y\X = j) under the following.

 Assumption 2.9. (i) pi > p0; (ii) fx*\x (1|0) + fx*\x (°|1) < f■

 Assumption 2.9(i) is not restrictive because one can always redefine X as
 1 — X if needed. Assumption 2.9(ii) reveals the ordering of rn\ and mo by
 making it the same as that of pi and po, because

 1 - fx*\x (1|0) - fx*\x (0|1) = ———, 1 1 mi — mo

 so mi > pi > po > mo- Assumption 2.9(ii) says that the sum of misclassification
 probabilities is less than one, meaning that, on average, the observations X are
 more accurate predictions of X* than pure guesses. The following Corollary is a
 direct application of Theorem 2.1; hence we omit its proof.
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 Corollary 1. If X — {0,1}, (1.1) and (2.9) hold with Assumptions 2.8 and 2.9,
 then the density fy,x uniquely determines fy\x*> fx\x*> and fx*

 3. Sieve Maximum Likelihood Estimation

 This section considers the estimation of a nonparametric regression model
 Y = niQ (X*, W) + 77, where the function mo() is unknown, IT is a vector of
 error-free covariates, and 77 is independent of (X*, W). Let {Zt = (Yt) Xt, Wt)}"=1
 denote a random sample of Z ~ (Y,X,W). We have shown that fy\x*,w arid

 fx*\x,w are identified from fY\x,w- Let a0 = (/0i, /02, M)T = {ft,, fx*\x,w,
 be the true parameters of interest. Before we present a sieve ML estimator a for
 ao, we need to impose some mild smoothness restrictions on the unknown func
 tions «0. The sieve method allows for unknown functions belonging to function
 spaces such as Sobolev, Besov and others; see e.g., Shen and Wong (1994), Wong
 and Shen (1995), Shen (1997), and Van de Geer (2000). But, for the sake of con
 creteness and simplicity, we consider the widely used Holder space of functions.
 Let £ = (£1,..., Çd)T G a = («1,..., ad)T be a vector of non-negative integers,
 and Va/i(£) = <9la'h(£i,..., fdj/dfH1 * • • denote the |a| = ai + • • • + -th
 derivative. Let ||-||£ denote the Euclidean norm. Let V Ç W1 and 7 be the largest
 integer satisfying 7 > 7. The Holder space A7(V) of order 7 > 0 is a space of
 functions h : V i-> R such that the first 7 derivatives are continuous and bounded,

 and the 7-th derivative is Holder continuous with exponent 7-76 (0,1], Take
 the Holder norm as

 ,_a, 1 |Vah(0 - Va/i(£')|
 ||/i||A7 = max sup IV h(Ç)\ + max sup ——— < 00,

 lal^7 « M=2€#' (IK-C lb) ~

 and write A/(V) = {h G A7(V) : ||/i||^7 < c < 00} as a Holder ball. Let 77 G R
 and W € W with VV a compact convex subset in Rd,x'. Let

 = {VW) G A7HR) : /i(-) > 0, J fi(v)dv = l},

 p2 = {Vf2 (x*\x, •) G A72 (W) : fi (•(■, •) > 0, J f2(x*\x,w)i

 for x G X, w G wj,

 ?3 = |/3 (x*, •) G A73 (W) : f3 (i, w) > h C3, w) for all i > j, i,j<EX,weW j.

 We impose the following smoothness restrictions on the densities

 Assumption 3.1. (i) The assumptions of Theorem 2.1 hold\ (ii) /jj(-) G T\
 with 71 > 1/2; (iii) fx*\x,w(x*\xr) G T<i with 72 > dw/2 for all x*,x G X =
 {1,..., J}; (iv) mo(x*, ■) G T3 with 73 > dw/2 for all x* G X.

 I dx* = 1
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 960 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 Write A = T\ xT2 x.F3 and a = (/1, /2, /s)T- Let £[■] denote the expectation
 with respect to the underlying true data generating process for Zt- Then op =
 (/01, /02, /o3)T = argmaxQ£v4 E[£(Zt; a)], where

 £(Zt;a) = ln{ £ /x (yt - /3(x*, Wt)) f2 (x*\Xt, Wt) }. (3.1)
 x'tX

 Let An = B\l x JF)1 x be a sieve space for A: a sequence of approximating
 spaces that are dense in A under some pseudo-metric. The sieve MLE an =

 (/1, h, h"j € An for q0 € A: an = argmaxae^n Z(zt\")■ For simplicity
 we present a finite-dimensional sieve M7t = JF™ x JF^ x JF". For j = 1,2,3, let

 pF,,n ^ )je a x 1—vector of known basis functions, such as power series, splines,
 Fourier series, etc. The sieve spaces for F), j = 1,2,3, are

 F? = {SMr) = p'lhn(-)Tß 1^4
 J J

 F? = { >//2(x1x,-) = ^2 1 (x* = k)I(x = j) vk2'n e jf2},
 fe=l j=l

 J

 = {/3 (**, •) = E7 (x* = fc)^2'n(-)TÄ,fe € Fj,}.
 fc=i

 The method of sieve MLE is very flexible and we can easily impose prior
 information on the parameter space (A) and the sieve space (An). For exam
 ple, if the functional form of the true regression function mo(x*,w) is known
 to up some finite-dimensional parameters ßo € B, where B is a compact sub
 set of W1'3, then we can take A — Fi x F2 x Fb and An = Ff x F)' x Fb
 with Tb = {/3 (x*,w) = mo(x*, w,ß) : ß G £?}. The sieve MLE becomes S„ =
 argmaxcg^ ]T?=i a)' with

 *(Zt;a) = ln{ ]T /j - m0(x*,Wt; /?)) /2 (x*|Xt, Wt) }. (3.2)
 x*ex

 We could let /3 (x*,w) = /3 (x*,w,ß) be any flexible semi-nonparametric form;
 see, e.g., Liang and Wang (2005), Liang, Hardie and Carroll (1999), and Wang
 (2000).

 3.1. Consistency and convergence rate

 First we define a norm on A as

 -C/2
 |Q||S = Sup

 V
 /i(p) (1+ p2) + sup I/2 (x*\x,w)\ + sup I/3 (x*, w)|

 x*,x,w x* ,w
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 961

 for some ( > 0.

 Assumption 3.2. (i) —oo < E [£(Zt\cto)] < oo and E[£(Zt;a)\ is upper semi
 continuous on A under the metric ||-||s; (ii) there is a finite k > 0 and a ran
 dom variable U(Zt) with E{U(Zt)} < oo, such that supae_4n.||a_ao|| <6 \£(Zt; a) —
 £(Zf,ao)\<6KU(Zt).

 ki
 Assumption 3.3. (i) p1 '"(•) is a k\^nxl—vector of spline wavelet basis functions

 on R, and for j = 2,3, Pjj'n(-) is a k^n x 1—vector of tensor product of spline
 basis functions on W; (ii) kjtU —► oo and kjtU/n —► 0 for j = 1, 2, 3.

 The following consistency lemma is a direct application of Theorem 3.1 (or
 Remark 3.3) of Chen (2007); we omit its proof.

 Lemma 3.1. Let an be the sieve MLE. Under Assumptions 3.1—3.3, we have
 ||«n - «o||s = Op{ 1).

 Given Lemma 3.1, we can now restrict our attention to a shrinking || •
 I|s—neighborhood around cto- Let Aos = {a 6 A : ||a —c*o||s = o(l), ||a||s < Co <
 c} and Aosn = {a e An ■ \\a — «oils = o(l), ||a||s < cq < c}. For simplicity we
 assume that both Aos and Aosn are convex parameter spaces. Suppose that for
 any a, a + v € Aos, {a + tv : t € [0,1]} is a continuous path in Aos, and that
 £(Zt',a + tv) is twice continuously differentiable at r = 0 for almost all Zt and
 any direction v G Aqs- Define the pathwise first derivative as

 d£(Zt\a) r , d£(Zt] a + tv) 'u =
 da dr

 and the pathwise second derivative as

 d2£(Zt; a) d2£(Zt-,a + tv)
 -[v,v] =

 a.s. Zt,
 T=0

 a.s. Zt
 T=0

 dadaT ' dr2

 Define the Fisher metric ||-|| on Aqs as follows: for any ai, a*2 G A()S,

 K_a2fs£{(^0)
 Assumption 3.4. (i) C > 7L (ü) 7 = min{7i, 72/d«,, 73/dw} > 1/2.

 Assumption 3.5. (i) Aqs is convex at ao; (ii) £(Zt;a) is twice continuously
 pathwise differentiable with respect to a £ Ao,s.

 Assumption 3.6. sup5e^0s supa6A)sn |(d£(Zt;a)/da) [a - a0/||a - a0||J| < U(Zt)
 for a random variable U(Zt) with E{[U(Zt)}2} < 00.
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 962 XIAOHONG CHEN, YINGYAO HU AND ARTHUR LEWBEL

 Assumption 3.7. (i) suPî)e^0s:|HU=1 E j (^ao) [«]) | <
 formly over à G Aos and a G Aosn, we have

 -E

 c < oo; (ii) uni

 ^dada^ [Q " «°> « ~ a«]) = II« - «of x {1 + o(l)}.

 Assumption 3.4 guarantees that the sieve approximation error under the
 strong norm || • ||s goes to zero at the rate of max{(A;ijn)_71, (fo.n)-72^1")
 (^3,ri)_73//dt"} = O ((fci,n + ^2,n + fe3,n)~7); Assumption 3.5 makes sure that the
 pseudo metric ||a — ao|| is well defined on Aqs; Assumption 3.6 imposes an en
 velope condition; Assumption 3.7(i) implies that ||a — ao|| < \/c\\a — ao||s for
 all a € Aos; Assumption 3.7(ii) implies that there are positive finite constants
 c\ and C2 such that for all a G ci ||a — ao||2 < E[£(Zt;ao) — £(Zt;a)] <
 C2 ||a — ao||2, that is, ||a — q:o||2 is equivalent to the Kullback-Leibler discrepancy
 on the local sieve space AoSn- The following convergence rate theorem is a di
 rect application of Theorem 3.2 of Shen and Wong (1994) to the local parameter
 space Aos and the local sieve space A),sn ! we omit its proof.

 Theorem 3.1. Under Assumptions 3.1—3.7, ki:Tl = O (n7/[7l(27+1)l) and kj)Tl =
 O (n7d™/[7A2T+1)]) for j = 2,3, we have ||Sn — ao|| = Op (n_7^27+1^) .

 3.2. Asymptotic normality and semiparametric efficiency

 Let V denote the closure of the linear span of Aos— {oo} under the Fisher
 metric ||-||. Then (V, ||-||) is a Hilbert space with the inner product

 We are interested in estimation of a functional p(ao), where p : A —> M. It is
 known that the asymptotic properties of p(ân) depend on the smoothness of the
 functional p and the rate of convergence of the sieve MLE &n. For any v G V,
 we write

 dp(a0) ri ,. fp{a0 + Tv) - p(a0) —7—[v] = hm j
 aa r-> o r

 whenever the right hand-side limit is well defined.

 Assumption 3.8. (i) for any v G V, p(ao + tv) is continuously differentiate
 in t G [0,1] near r = 0, and

 dp(a0) _ \(dp(a>o)/da)[v}\
 = sup 77-77 < 00;

 ueV:|]t;l|>o ll^ll da
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 NONCLASSICAL EIV WITHOUT ADDITIONAL INFOMATION 963

 (ii) there exist constants c > 0, u > 0, and an e > 0 such that, for any v € V
 with ||u|| < e, we have

 p(a0 + v) - p(a0) - M  < cllul

 Under Assumption 3.8(i), by the Riesz Representation Theorem, there ex
 ists v* € V such that (v*,v) — (dp(ao)/da)[v] for all v G V, and ||u*||2 =
 Mdp(a,)/da)p.

 Under Theorem 3.1, we have ||an — cco|| = Op(Sn) with Sn = n t/CUM-U.
 Write Wo = {a € Mos : \\a - a0|| = 0(ôn)} and Won = {a G Aosn ■ II" - "oil =
 0{6n)}.

 Assumption 3.9. (i) (Sn)" — o(n-1/2); (ii) there is a v* £ An— {c*o} such that
 IIvn ~~ ^*11 = °(1) and ôn x ||u* — u*|| = o(n-1/2).

 Assumption 3.10. There is a U(Zt) with E{[U(Zt)\ } < oo and a non-negative
 measurable function g with lim^o w(ö) = 0 such that, for all a £ Won,

 d2l{Zt-a)
 sup
 äEjVo

 ■ [ûf ^n]  < U(Zt) x g(\\a - a0| dadaT

 Assumption 3.11. Uniformly over a £ Wo and a £ Won,

 p fd2l(Zt;a)r d2l(Zp, a0) r W-i/2\
 V dadaT a dadaT a°'^J °vn )■

 Assumption 3.8(i) is necessary for obtaining the \fn convergence of plug-in
 sieve MLE p(ân) to p(a0) and its asymptotic normality; Assumption 3.9 implies
 that the asymptotic bias of the Riesz représenter is negligible; Assumptions 3.10
 and 3.11 control the remainder term. Applying Theorems 1 and 4 of Shen (1997),
 we obtain the following

 Theorem 3.2. Suppose that Assumptions 3.1—3.11 hold. Then the plug-in

 sieve MLE p(ân) is semiparametrically efficient, and yjn (p(ân) — p(ao)) —>
 a~(o, IMP).

 Following Ai and Chen (2003), the asymptotic efficient variance, ||f*||2, of
 the plug-in sieve MLE p{àn) can be consistently estimated by

 2 _ \(dp(an)/da)[v]\2
 (* ry-, IlldlX.

 veAn {l/n)Y,t=i ({d£(Zt;an)/da)[v])

 We conclude the section by mentioning that, instead of the sieve MLE method,
 we could also apply the random sieve MLE or more generalized sieve empirical
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 Table 1. Simulation results, Example 1
 Value of x*:  1  2  3  4

 m(x*):  true value  1.3500  2.8000  5.9500  11.400

 m(x*):  mean estimate  1.2984  2.9146  6.0138  11.433

 m(x*)\  standard error  0.2947  0.3488  0.2999  0.2957

 Pr (x*)  true value  0.2  0.3  0.3  0.2

 Pr (&*)  : mean estimate  0.2159  0.2818  0.3040  0.1983

 Pr (x*)  : standard error  0.1007  0.2367  0.1741  0.0153

 fx\x* ('  x*): true value  0.6  0.2  0.1  0.1

 0.2  0.6  0.1  0.1

 0.1  0.1  0.7  0.1

 0.1  0.1  0.1  0.7

 fx\x* ('  x*): mean estimate  0.5825  0.2008  0.0991  0.0986

 0.2181  0.5888  0.1012  0.0974

 0.0994  0.1137  0.6958  0.0993

 0.1001  0.0967  0.1039  0.7047

 fx\x* ('  x*): standard error  0.0788  0.0546  0.0201  0.0140

 0.0780  0.0788  0.0336  0.0206

 0.0387  0.0574  0.0515  0.0281

 0.0201  0.0192  0.0293  0.0321

 likelihood as proposed in Shen, Shi and Wong (1999) and Zhang and Gijbels
 (2003). This alternative method has the advantage of allowing for non-continuous
 densities.

 4. Simulation

 4.1. Moment-based estimation

 This subsection applies the identification procedure to a simple nonlinear
 regression model with simulated data. The latent regression model is y = 1 +
 0.25 (x*)2 + 0.1 (x*)3 + 77, where 77 ~ iV(0,1) is independent of x*. The marginal
 distribution Pr(x*) is Pr(x*) = 0.2[l(x* = l) + l(x* = 4)]+0.3[l(x* = 2) + l(x* =
 3)]. We present two examples of the misclassification probability matrix Fx\x* in
 Tables 1—2. Example 1 considers a strictly diagonally dominant matrix Fx\x*;

 see the true value fx\x*('\x*) i*1 Table 1. Example 2 has Fx|x. = 0.7FU + 0.31,
 where I is the identify matrix and Fu = [uij/ Y2k uk-j\l] with uij independently
 drawn from a uniform distribution on [0,1]; see the true value fx\x* (-|x*) in Table
 2.

 In each repetition, we directly follow the identification procedure shown
 in the proof of Theorem 2.1. The matrix <t>y,x is estimated by replacing the
 function 4>y,x=x (t) with its corresponding empirical counterpart as 4>y,x=x (t) —

 J2?=i exP(ityj) x 1 (xj = x). Since it is directly testable, Assumption 2.3 was ver
 ified with tj in the vector t = (0, t-i-, £3,14) independently drawn from a uniform

 Value of x*:  1  2  3  4

 m(x*):  true value  1.3500  2.8000  5.9500  11.400

 m(x*)\  mean estimate  1.2984  2.9146  6.0138  11.433

 m(x*)\  standard error  0.2947  0.3488  0.2999  0.2957

 Pr (&*)  true value  0.2  0.3  0.3  0.2

 Pr (&*)  : mean estimate  0.2159  0.2818  0.3040  0.1983

 Pr (x*)  : standard error  0.1007  0.2367  0.1741  0.0153

 fx\x* ('  x*): true value  0.6  0.2  0.1  0.1

 0.2  0.6  0.1  0.1

 0.1  0.1  0.7  0.1

 0.1  0.1  0.1  0.7

 fx\x* ('  x*): mean estimate  0.5825  0.2008  0.0991  0.0986

 0.2181  0.5888  0.1012  0.0974

 0.0994  0.1137  0.6958  0.0993

 0.1001  0.0967  0.1039  0.7047

 fx\x* ('  x*): standard error  0.0788  0.0546  0.0201  0.0140

 0.0780  0.0788  0.0336  0.0206

 0.0387  0.0574  0.0515  0.0281

 0.0201  0.0192  0.0293  0.0321
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 Table 2. Simulation results, Example 2

 Value of x*:  1  2  3  4

 m(x*): true value  1.3500  2.8000  5.9500  11.400

 m(x*): mean estimate  1.2320  3.1627  6.1642  11.514

 m{x*): standard error  0.4648  0.7580  0.7194  0.6940

 Pr (x*): true value  0.2  0.3  0.3  0.2

 Pr(:r*): mean estimate  0.2244  0.3094  0.2657  0.2005

 Pr (x*): standard error  0.1498  0.1992  0.1778  0.0957

 fx|x* frue value  0.5220  0.1262  0.2180  0.2994

 0.1881  0.4968  0.1719  0.2489

 0.1829  0.1699  0.4126  0.0381

 0.1070  0.2071  0.1976  0.4137

 fx\x* mean estimate 0.4761  0.1545  0.2214  0.2969

 0.2298  0.4502  0.1668  0.2455

 0.1744  0.1980  0.4063  0.0437

 0.1197  0.1973  0.2056  0.4140

 fx\x- ('I#*)1 standard error 0.1053  0.0696  0.0343  0.0215

 0.0806  0.0771  0.0459  0.0262

 0.0369  0.0528  0.0573  0.0313

 0.0327  0.0221  0.0327  0.0238

 value or x :  i  z  ô  4

 m(x*): true value  1.3500  2.8000  5.9500  11.400

 m(x*): mean estimate  1.2320  3.1627  6.1642  11.514

 m{x*): standard error  0.4648  0.7580  0.7194  0.6940

 Pr (x*): true value  0.2  0.3  0.3  0.2

 Pr(x*): mean estimate  0.2244  0.3094  0.2657  0.2005

 Pr(x*): standard error  0.1498  0.1992  0.1778  0.0957

 fx|x* ('k*): true value  0.5220  0.1262  0.2180  0.2994

 0.1881  0.4968  0.1719  0.2489

 0.1829  0.1699  0.4126  0.0381

 0.1070  0.2071  0.1976  0.4137

 fx\x* mean estimate 0.4761  0.1545  0.2214  0.2969

 0.2298  0.4502  0.1668  0.2455

 0.1744  0.1980  0.4063  0.0437

 0.1197  0.1973  0.2056  0.4140

 fx\x- ('I#*)1 standard error 0.1053  0.0696  0.0343  0.0215

 0.0806  0.0771  0.0459  0.0262

 0.0369  0.0528  0.0573  0.0313

 0.0327  0.0221  0.0327  0.0238

 distribution on [—1,1] until a desirable t was found. The sample size was 5,000
 and there are 1,000 repetitions. The simulation results in Tables 1—2 include the
 estimates of regression function m(x*), the marginal distribution Pr(.x*), and

 the estimated misclassification probability matrix Fx\x*, together with standard
 errors of each element. As shown in Tables 1—2, the estimator following the
 identification procedure performed well with the simulated data.

 4.2. Sieve MLE

 This subsection applies the sieve ML procedure to the semiparametric model
 Y = ßiW + /?2 (1 — X*) W2 + ßz + rj, where rj is independent of X* G {0,1} and
 W. The unknowns include the parameter of interest ß = (ß\. /%, ßs) and the
 nuisance functions fv and fx*\x,w

 We simulated the model from rj ~ N(0,1) and X* G {0,1} according to the
 marginal distribution fx*(x*) — 0.4 x l(x* = 0) + 0.6 x l(x* = 1). We generated
 the covariate W as W = (1 — 0.5X*) x u, where v ~ N(0,1) was independent
 of X*. The observed mismeasured X was generated according to: X = 0 if
 (u) < p(X*) and X = 1 otherwise, where p(0) = 0.5 and p( 1) = 0.3.
 The Monte Carlo simulation consisted of 400 repetitions. In each repeti

 tion, we randomly drew 3,000 observations of (Y,X, W), and then applied three
 ML estimators to compute the parameter of interest ß. All three estimators as

 sumed that the true density fv of the regression error was unknown. The first
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 Table 3. Simulation results (n = 3,000, reps = 400)
 true value of 0:  01 = 1  02 = 1  03 ~ 1
 ignoring error: mean  2.280  1.636  0.9474

 ignoring error: standard error 0.1209  0.1145  0.07547

 ignoring error: root mse  1.286  0.6461  0.09197

 infeasible ML: mean  0.9950  1.012  0.9900

 infeasible ML: standard error  0.05930  0.08263  0.07048

 infeasible ML: root mse  0.05950  0.08346  0.07118

 sieve ML: mean  0.9760  0.9627  0.9834

 sieve ML: standard error  0.1366  0.06092  0.1261

 sieve ML: root mse  0.1387  0.07145  0.1272

 estimator used the contaminated sample {Y), Xi, as if it were accurate;
 this estimator is inconsistent and its bias should dominate the squared root of
 mean square error (root MSE). The second estimator was the sieve MLE using
 uncontaminated data {Y\, X*, Wi}"=1; this estimator is consistent and most ef
 ficient. However, we call it the "infeasible MLE" since X* is not observed in
 practice. The third estimator was the sieve MLE (3.2) presented in Section 3,
 using the sample {Y), Xi, W;}"=1 and allowing for arbitrary measurement error
 by assuming fx\x*,w unknown. In this simulation study, all three estimators
 were computed by approximating the unknown \fTq using the same Hermite
 polynomial sieve with k\ .n — 3; for the third estimator (the sieve MLE) we also

 approximated \] fx\x*yv by another Hermite polynomial sieve with k^-n = 3 for
 each x and x* value. In applications, the sieve MLE method needs to specify
 the order of the sieve terms. Our experience is that the estimation of the finite
 dimensional parameters is not very sensitive to the order of sieves. Of course if
 one cares about estimation of the nonparametric density function itself, then one
 could apply the covariance penalty methods suggested in Efron (2004) and Shen
 and Huang (2006), among others. The Monte Carlo results in Table 3 show that
 the sieve MLE had a much smaller bias than the first estimator ignoring mea
 surement error. Since the sieve MLE has to estimate the additional unknown

 function fx\x*,Wi its ßj, j = 1,2,3, estimate may have larger standard error
 compared to the other two estimators. In summary, our sieve MLE performed
 well in this Monte Carlo simulation.

 5. Discussion

 We have provided nonparametric identification and estimation of a regres
 sion model in the presence of a mismeasured discrete regressor without the use
 of additional sample information, such as instruments, repeated measurements
 or validation data, and without parameterizing the distributions of the mea
 surement error or of the regression error. It may be possible to extend the
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 identification result to continuously distributed nonclassically mismeasured re
 gressors, by replacing many of our matrix-related assumptions and calculations
 with corresponding linear operators.
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