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We are grateful to the discussants for their insightful comments. Below is our rejoinder and
clarification related to their main discussions.

The comments from Aurore Delaigle and Peter Hall mainly focus on two issues: the availability
of the auxiliary sample satisfying the assumptions and the empirical choice of smoothing param-
eters. Our key identification assumptions require that the conditional distribution, fY |X∗,W , of the
dependent variable Y given (X∗, W) is the same in both samples, but that the distribution, fX∗|W , of
the independent variables differs in the two samples. We think these are reasonable in many appli-
cations. For example, we consider a consumption model, where Y is an individual’s consumption,
X∗ an individual’s true log income and W the gender and marital status. We use a primary sample
from the current population survey (CPS) and an auxiliary sample from the survey of income
and program participation (SIPP). Generally speaking, the CPS is from the whole US population,
while the SIPP focuses more on participants in welfare programmes with more welfare-related
questions. Most economic theory models assume that the conditional distribution fY |X∗,W is the
same in both samples. It is clearly reasonable to believe that the latent log income distribution
fX∗|W for given gender and marital status is different from the support, that is, the whole real line,
in the two samples. An advantage of our results is that we allow the misreporting errors to have
different distributions in the two samples.

The empirical choice of smoothing parameters is always a difficult task in semi/nonparametric
estimation. This is partly why, after establishing nonparametric identification of fY |X∗,W , fX|X∗ ,
fX∗|W , fXa |X∗

a
, and fX∗

a |Wa
, we consider semiparametric estimation by specifying fY |X∗,W =

g(Y |X∗, W ; θ0) parametrically up to a finite-dimensional unknown parameter of interest θ0, and
treating fX|X∗ , fX∗|W , fXa |X∗

a
and fX∗

a |Wa
as nuisance functions. In a closely related problem of

sieve minimum distance (MD) estimation of semi/nonparametric ill-posed inverse instrumental
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variables regression models, Chen and Pouzo (2009) have shown that the same choice of sieve
number of terms can simultaneously lead to the optimal convergence rate of a sieve MD estimator
of the nonparametric nuisance functions and the root-n asymptotic normality of a sieve MD
estimator of the finite-dimensional parameter of interest. This nice property only holds for
semi/nonparametric models estimated via the method of sieves, and is not valid for kernel-based
semi/nonparametric estimators in general. It is very easy to show that this nice property also holds
for the sieve maximum-likelihood (ML) estimation of semi/nonparametric measurement error
models. Consequently, we could use various existing data-driven methods and/or model selection
criteria such as modified AIC and BIC to select the sieve number of terms for the nonparametric
nuisance functions, and the resulting estimator of θ will still be root-n asymptotically
normal.

Delaigle and Hall also comment on the choice of sieve bases in the section on semiparametric
estimation. They mention that the particular sieve basis approximation we suggested could be
viewed as a slightly more general version of the classical measurement error model. It is true
that one should be more careful with the choice of sieve approximation bases when the main
parameter of interest is the latent probability conditional and/or marginal densities. However, if
one cares mainly about estimation and inference of the finite-dimensional parameter θ associ-
ated with the parametrically specified conditional density fY |X∗,W , then our experience indicates
that the choice of sieve bases is not important. Moreover, as the sieve number of terms grows to
infinity with sample size n, even this simple sieve basis suggested in Section 3 can still approx-
imate any unknown density functions. Of course many other sieve basis approximation could
also be used.

Marie-Luce Taupin provides a nice brief review of the recent statistical literature on density
deconvolution and nonlinear regression models for classical measurement error problems. She
also presents concerns about the identification and estimation results in our paper. As an example,
she considers a simple case of identification, where

Y = θ0X
∗ + ξ, X = X∗ + ε,

and X∗, ξ and ε are mutually independent. Her concern is that the model is not identified when
θ0 = 0. In other words, the operator LX,Y cannot be injective in this case. This setting violates
our Assumption A.1, hence our Theorem 2.1 is not applicable. Our Assumption A.1 does require
the latent explanatory variable X∗ to be relevant in the model. In fact, it requires the dependent
variable Y to be informative enough about the latent variable X∗ in the sense that the operator
LX,Y is injective. For example, the injectivity assumption would also fail when we have

Y = I (θ0X
∗ + ξ > 0), X = X∗ + ε,

where I (·) is the indicator function. In this example, even if θ0 �= 0, a discrete-dependent variable
Y is not informative enough for a continuous latent variable X∗ since the operator LX,Y is not
injective. This example is also ruled out by our Assumption A.1.

Although our paper provides nonparametric identification of fY |X∗,W , fX|X∗ , fX∗|W , fXa |X∗
a

and fX∗
a |Wa

, we consider a semiparametric estimation by specifying fY |X∗,W parametrically,
g(Y |X∗, W ; θ0) , up to a finite-dimensional unknown parameter θ0, and treating fX|X∗ , fX∗|W ,
fXa |X∗

a
and fX∗

a |Wa
as nuisance functions. It is true that to obtain the optimal convergence rates

in weighted sup-norm or L2-norm for sieve estimators of fX|X∗ , fX∗|W , fXa |X∗
a

and fX∗
a |Wa

is a
difficult ill-posed inverse problem. In particular, the problem could be severely ill-posed in the
sense that some of these density functions are estimated at a log(n) rate in a weighted sup-norm
or L2-norm. For example, if the measurement error regression model in the primary sample is
a classical one, that is, fX|X∗ = fε(x − x∗) with a Gaussian measurement error ε, then for ordi-
narily smooth density function fX∗|W , for example, fX∗|W belongs to a Holder, Sobolev or Besov
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space with finite smoothness, the convergence rate of its sieve estimator in weighted sup-norm or
L2-norm will be of a logarithmic order. Hence, the finite sample performance of sieve estimators
of fX|X∗ , fX∗|W , fXa |X∗

a
and fX∗

a |Wa
is typically more sensitive to the choices of sieve bases and

sieve number of terms than that of sieve estimators for direct density estimation problems, that
is, when X∗ are observable. This is partly why we focus on estimation of the finite-dimensional
parameter θ , and treating fX|X∗ , fX∗|W , fXa |X∗

a
and fX∗

a |Wa
as nuisance functions. Our experience

is that to obtain root-n asymptotic normality estimation of θ , the choices of sieve bases and
sieve number of terms are not very crucial. As clearly shown in Van der Vaart (1996), Ai and
Chen (2003) and Chen and Pouzo (2009), for root-n asymptotic normality estimation of θ in
semi/nonparametric ill-posed inverse problems, what matters is to choose the sieves and sieve
number of terms to ensure faster than n−1/4 rates of convergence of sieve estimators of these
nuisance functions under the Fisher metric, even though the rate in L2-norm is slower than n−1/4.
Applying the general theory on semiparametric sieve ML estimation of Shen (1997) and on sieve
MD estimation of semi/nonparametric ill-posed inverse problems of Chen and Pouzo (2009), we
know that the nonparametric convergence rates of our sieve estimators of fX|X∗ , fX∗|W , fXa |X∗

a

and fX∗
a |Wa

depend on the sieve approximation bias order as well as complexity of our semipara-
metric mixture models. For our semiparametric measurement error regression model, under the
assumption that fX|X∗ , fX∗|W , fXa |X∗

a
and fX∗

a |Wa
belong to a Holder, Sobolev or Besov space with

finite smoothness, the optimal convergence rates of sieve estimators of these density functions
in weighted sup-norm or L2-norm are typically slower than n−1/4, but the corresponding con-
vergence rates in Fisher norm is faster than n−1/4. For linear ill-posed inverse problems, even
when the nonparametric estimation in L2-norm is severely ill-posed, a nonparametric rate faster
than n−1/4 in Fisher norm is sufficient to ensure root-n asymptotic normality of estimators of θ .
Unfortunately, for nonlinear ill-posed inverse problems, our current sufficient conditions to ensure
root-n asymptotic normality of estimators of θ rules out severely ill-posed cases. See Chen and
Pouzo (2009) for explanation as to why one may fail to obtain root-n estimation of θ for nonlinear
severely ill-posed problems.

Young Truong is mainly concerned with the existence of an optimum solution of the sieve
parameters β in sieve ML estimation. There are two kinds of parameters in our sieve ML estima-
tion of the semiparametric measurement error model specified in our Section 3: the parameter of
interest θ used to specify the conditional density fY |X∗,W parametrically as g(y|x∗, w; θ) and the
sieve parameters β associated with the sieve bases used to approximate the unknown nuisance
functions such as fX|X∗ and fX∗|W . Our Assumption 3.2(iii) requires that the parametrically speci-
fied latent conditional density model g(y|x∗, w; θ) is identified when there were no measurement
errors involved. That is, ourAssumption 3.2(iii) requires

∫ [log g(y|x∗, w; θ)]fY |X∗,W (y|x∗, w)dy

to have a unique maximiser θ0 ∈ �, where � is a compact subset of R
dθ and dθ is finite and

independent of sample size n. This assumption allows us to focus on the identification problem
caused by measurement errors. It is true that without any conditions the local optimum solution
of θ may not exist in the presence of measurement errors. Our paper provides a set of reasonable
conditions so that all the latent density functions fY |X∗,W , fX|X∗ and fX∗|W are nonparametrically
identified. These nonparametric identification results and our Assumption 3.2(iii) imply that the
expectation of the log-likelihood function of the data will be maximised at the true θ0, fX|X∗ and
fX∗|W . Therefore, the sieve ML does have a unique maximiser (θ̂ , f̂X|X∗ , f̂X∗|W) when sample
size is reasonably large. Nevertheless, once the unknown nuisance functions fX|X∗ and fX∗|W are
approximated by finite-dimensional sieves with sieve parameters β, it is possible that a sieve ML
does not have a unique maximiser in terms of sieve parameters β for a particular sieve basis.
This is not too surprising since different combinations of sieve bases could approximate the same
true unknown solutions fX|X∗ and fX∗|W and hence it is likely that although the solutions f̂X|X∗

and f̂X∗|W are well defined their corresponding sieve parameter estimators β̂ are not unique.
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The asymptotic properties of the sieve ML estimator (θ̂ , f̂X|X∗ , f̂X∗|W) only assumes that the esti-
mator is well defined and does not require uniqueness of the individual sieve parameter estimator
β̂ in any given sample. Of course, if one also wants to have a unique optimum β̂ in any given
sample, then one should be more careful in terms of the choice of sieve bases. Finally, our non-
parametric identification strategy is constructive and one could propose an alternative estimation
procedure by following the identification proofs.

Han Hong provides a nice brief review of the recent econometrics literature on nonclassical
measurement error models prior to 2006, and also presents a fair comparison between our paper
and Chen, Hong, and Tamer (2005). As for the identification literature, there are also studies an
statistics which provide constructive identification of nonlinear models with a misclassified binary
variable. For example, Hui and Walter (1980) show that models with a latent binary regressor
can be nonparametrically expressed as explicit functions of observed probabilities when two
conditionally independent measurements of the latent variable are available.

Hong nicely suggests that one could compare the semiparametric efficiency gain of the sieve
MLE estimator θ̂ when both the assumptions of our paper and those of Chen et al. (2005) hold,
which could then lead to a test of the validity of the existence of a validation sample, that is,
the secondary sample contains observation of the true value X∗

a . Since we may identify the error
distributions in both samples, it is feasible to test whether there are measurement errors in the
secondary sample. When the secondary sample is a validation sample, the estimator in Chen
et al. (2005) should be more efficient than the one in our paper because their estimator uses the
information that the true values X∗

a are observed in the secondary sample, and their estimator of
θ is always root-n asymptotically normal regardless of what kind of measurement errors occur
in the primary sample. Although we provide sufficient conditions to ensure root-n asymptotic
normality of our sieve MLE of θ when both samples contain possibly nonclassical measurement
errors and the true value X∗

a is never observed, our current sufficient conditions rule out nonlinear
measurement error problems that are severely ill-posed.

Hong also suggests to test some of our conditions imposed for nonparametric identification. It is
true that some of our assumptions, such as Assumption 2.3, are testable from the data under other
identification assumptions. A special case which violates Assumption 2.5 is that fX∗|Wj

= fX∗|Wi

and fX∗
a |Wj

= fX∗
a |Wi

, which holds if and only if the observed densities satisfy fX|Wj
= fX|Wi

and
fXa |Wj

= fXa |Wi
underAssumptions 2.1, 2.2 and 2.4. Therefore, this special case is directly testable

from the data. However, it would be very difficult to test all the identification assumptions at the
same time. The invertibility Assumption A.1 is directly testable when the latent variable X∗ is
discrete and the linear operators are in fact matrices. For a continuous X∗, testing the invertibility
of an operator means to test whether the corresponding nonparametric distribution is complete,
which is quite challenging.

Our identification strategy assumes that the perfectly measured covariates W are discrete. When
they are continuous, the identification results still hold with some modification of the assumptions.
To be specific, Assumption 2.1(ii) implies that

fX,Y,W (x, y, w) =
∫

fX|X∗(x|x∗)fY,X∗,W (y, x∗, w)dx∗,

where W may be continuous. Discretising W to Wd leads to

fX,Y |Wd (x, y|wd
j ) =

∫
fX|X∗(x|x∗)fY |X∗,Wd (y|x∗, wd

j )fX∗|Wd
j
(x∗)dx∗,

which is the same as Equation (A2) in the current setting. Although the density fY |X∗,Wd is no
longer the model of interest fY |X∗,W , the same identification strategy may still pin down the error
distribution fX|X∗ . Since the operator corresponding to fX|X∗ is injective, the density fY,X∗,W
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may still be identified from the observed fX,Y,W . Therefore, the identification with continuous
covariates is feasible under certain modification of the current assumptions.

Acknowledgements

Chen acknowledges support from the National Science Foundation (SES-0631613). Carroll’s research was supported by
grants from the National Cancer Institute (CA57030, CA104620), and partially supported by Award Number KUS-CI-
016-04 made by King Abdullah University of Science and Technology (KAUST).

References

Ai, C., and Chen, X. (2003), ‘Efficient Estimation of Conditional Moment Restrictions Models Containing Unknown
Functions’, Econometrica, 71, 1795–1843.

Chen, X., and Pouzo, D. (2009), ‘Efficient Estimation of Semiparametric Conditional Moment Models with Possibly
Nonsmooth Residuals’, Journal of Econometrics, 152, 46–60.

Chen, X., Hong, H., and Tamer, E. (2005), ‘Measurement Error Models with Auxiliary Data’, Review of Economic Studies,
72, 343–366.

Hui, S.L., and Walter, S.D. (1980), ‘Estimating the Error Rates of Diagnostic Tests’, Biometrics, 36, 167–171.
Shen, X. (1997), ‘On Methods of Sieves and Penalization’, Annals of Statistics, 25, 2555–2591.
Van der Vaart, A. (1996), ‘Efficient Maximum Likelihood Estimation in Semiparametric Mixture Models’, Annals of

Statistics, 24, 862–878.




