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a b s t r a c t

We study dynamic discrete choice models without assuming rational expectations.
Agents’ beliefs about state transitions are subjective, unknown, and may differ from
their objective counterparts. We show that agents’ preferences and subjective beliefs are
identified in both finite and infinite horizon models. We estimate the model primitives
via maximum likelihood estimation and demonstrate the good performance of the
estimator by Monte Carlo experiments. Using the Panel Study of Income Dynamics (PSID)
data, we illustrate our method in an analysis of women’s labor participation. We find
that workers do not hold rational expectations about income transitions.

© 2020 Published by Elsevier B.V.

1. Introduction

Decision making under uncertainty—including educational choice, labor participation, and occupational choice—is a
prominent theme in economics. In the literature, agent choices are modeled as the optimal solution to an expected utility
maximization problem. Expected utility is computed using agent beliefs about choice-specific future outcomes (e.g., a
woman’s beliefs about household income, conditional on her labor participation decision). That is, observed choices are
determined not only by the agents’ preferences but also by their beliefs. A central problem in this literature is to infer
agent preferences from the choices observed in the data by using the connection among preferences, beliefs, and choices.
Thus, information about agent beliefs is crucial for the inference of preferences from observed choices.

Unfortunately, because the econometrician typically does not observe agent beliefs in practice, certain assumptions are
usually imposed. One ubiquitous assumption is that agent beliefs are rational, such that agents’ subjective beliefs about
future uncertainty will coincide with the distribution of ex-post realized outcomes. That assumption may be problematic.
First, Manski (1993a) points out that observed choices can be consistent with multiple combinations of beliefs and
preferences, and Manski (1993b) shows that even a learning process may not justify rational expectations. Moreover,
some recent studies, by comparing survey data on agents’ subjective beliefs with their objective counterparts (see
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.g., Heimer et al., 2019 and Cruces et al., 2013, among others), have documented systematic discrepancies between the
wo. Furthermore, Esponda and Pouzo (2015) theoretically justify that agents can hold biased beliefs in the steady state.
ot surprisingly, violation of the rational expectations assumption may induce biased estimation of agent preferences and
isleading counterfactual results. One dominating solution to this problem in the literature is to first solicit agent beliefs

see Manski, 2004 for a review) and then to study agent decisions under those beliefs (see e.g., Van der Klaauw, 2012).
evertheless, it is costly to obtain information on agent beliefs. Moreover, it is impossible to collect agents’ subjective
eliefs for some historical datasets.
In the existing literature, there is little knowledge of what can be achieved without solicited subjective beliefs or a

nown link between such beliefs and some observables, for example, the assumption of rational or myopic expectations.
n this paper, we provide a first positive result: we can recover both agents’ preferences and their subjective beliefs from
heir observed choices. Specifically, we consider a standard dynamic discrete choice (DDC) model in which agents may
ave subjective beliefs about a state variable’s transition process, though it is unknown to the econometrician. We provide
unified identification strategy for identifying agent preferences and their subjective beliefs, in both finite and infinite
orizon models. The identification relies mainly on variations provided by variables affecting agent conditional choice
robabilities (CCPs) but being excluded from beliefs and preferences. Our identification results apply to both homogeneous
nd heterogeneous beliefs.
We show that when agents’ subjective beliefs are homogeneous, they can be identified and estimated from the CCPs

n both finite-horizon and infinite-horizon models. Based on the insight of under-identification result—e.g., Rust (1994)
nd Magnac and Thesmar (2002)—we address identification of DDC models assuming that the discount factor and the
istribution of agents’ unobserved preference shocks are known. Our methodology then identifies agents’ subjective beliefs
n state transitions as a closed-form solution to a set of conditions that are induced from Bellman equations, using the
nsight in Hotz and Miller (1993). In finite horizon models, the key identification assumptions are that: subjective beliefs
nd preferences are time-invariant; and subjective beliefs are partially known to the econometrician. In addition to these
wo assumptions, identification of infinite horizon models requires further exclusion restrictions.

In the finite horizon framework, we first explore variations of CCPs over time to identify both agents’ beliefs and their
references. If preferences and beliefs are time-invariant, then for a given state CCPs would only change over time because
f proximity to the terminal period. Therefore, under the same state the first difference in CCPs must be attributed to the
irst difference of continuation values, integrated over all possible future states based on agent subjective beliefs. We then
ontrol the impact of continuation values on CCPs via their recursive relationship. Thus it is possible to disentangle beliefs
rom continuation values using multiple, consecutive time periods of data. Essentially identification requires stationarity
f preferences and beliefs so that time shifts CCPs without altering preferences or beliefs. Identification also requires that
ubjective beliefs are known to the econometrician for an action, or for an action given a state. This is because for any
ction CCP depends on choice-specific values of all actions, relative to a reference action. These relative choice-specific
alues further rely on the relative subjective beliefs. Consequently, partially known beliefs are necessary for identifying
ubjective beliefs for all actions and states. In addition, identification requires a sufficiently large number of periods
f data—more than the cardinality of the state variable’s support. This requirement may limit the applicability of our
dentification results in some empirical studies where the support of the state variable is large. Fortunately, we prove
hat the required number of periods for identification is greatly reduced if there is an additional state variable whose
ransition is known and independent of the transition of the state variable with subjective beliefs. If this additional state
ariable takes the same or more values than the state variable with subjective transitions, then four consecutive periods
f data are sufficient for identification.
In infinite horizon models, the stationarity of CCPs rules out the possibility of using time variations for identification.

nstead, we introduce an additional state variable to achieve identification. This variable evolves independently from the
ariable with subjective transitions; it has a known transition process; and it enters the flow utility in a particular way.
he identification argument here is similar to that of the finite horizon model. Specifically, the CCPs for different values
f this additional state variable reveal information about agent flow utility, beliefs, and the ex-ante value function. The
dentification then relies on the following conditions: (1) We impose exclusion restrictions on utility; (2) We assume that
oth preferences and subjective beliefs are known for a reference action; (3) The additional variable takes at least the
ame number of possible values as the state variable on which agents hold subjective beliefs.
Our identification strategies also apply to DDC models where agents hold heterogeneous subjective beliefs and/or

references. Assuming that agents are classified into finite unobserved types, with agents of the same type holding
omogeneous beliefs and preferences, we first prove that type-specific CCPs can be identified nonparametrically. This step
ses methodologies in measurement error, e.g., Hu (2008). Once the type-specific CCPs are recovered, one can apply the
dentification results developed for homogeneous beliefs to identify the type-specific subjective beliefs and/or preferences.

We propose a maximum likelihood estimator to estimate agents’ preferences and their subjective beliefs in both finite
nd infinite horizon cases. Our Monte Carlo experiments show that the proposed estimator performs well with moderate
ample sizes. That performance is maintained when the data are generated under rational expectations. Furthermore, we
ind that imposing rational expectations leads to inconsistent estimation of payoff primitives if the data are generated
rom subjective beliefs that differ from their objective counterparts.

We illustrate our methodology by analyzing women’s labor participation using Panel Study of Income Dynamics (PSID)
ata. To decide whether the wife should join the labor force or stay at home, the household needs to perceive how
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the wife’s labor force status would affect future household income. We divide household income into three groups:
low, medium, and high. Our estimation results reveal clear discrepancies between agents’ subjective beliefs about state
transitions and the objective reality. Households with a non-working wife are overly pessimistic about their income
transitions; those with a working wife are less so. We also show that agents have ‘‘asymmetric’’ beliefs about income
transitions. Conditional on not working, agents with medium income believe that their income is very likely to remain at
medium. However, agents with high income are more pessimistic. They believe that income is almost certain to drop to
medium, while the objective probability that income drop is only 0.24. We test the hypothesis that agents hold rational
expectations and decisively reject the null hypothesis. We further simulate agent CCPs under both subjective beliefs and
rational expectations. Our results suggest that having subjective beliefs increases the probability of working as compared
to rational expectations. The effects are heterogeneous across income levels: women with low income are more likely to
work under their subjective beliefs than those with medium or high income.

This paper is related to the rapidly growing literature on subjective beliefs. Relaxing rational expectations in DDC
models, or in decision models in general, is of both theoretical and empirical importance. Manski (2004) advocates using
data on subjective beliefs in empirical decision models. In related literature, a substantial effort has been invested in
collecting data on agents’ subjective beliefs, so that the econometrician can directly use those beliefs to study agents’
behaviors under uncertainty. For example, Van der Klaauw and Wolpin (2008) study retirement and savings using a
DDC model in which information about agents’ subjective beliefs about their own retirement age, anticipated longevity,
and future changes in the Social Security program comes from surveys. Zafar (2011, 2013) studies schooling choice
using survey data on students’ subjective beliefs. Wang (2014) uses individuals’ subjective longevity beliefs to explain
adults’ smoking decisions. d’Haultfoeuille et al. (2018) provide a new test of rational expectations based on the marginal
distributions of realizations and solicited subjective beliefs. Acknowledging the scarcity of data on beliefs, we take a
distinct approach from this literature: we focus on inferring agents’ subjective beliefs from their choices.

This paper also contributes to a growing literature on the identification of DDC models. Rust (1994) provides some
non-identification results for the infinite-horizon case. Magnac and Thesmar (2002) further determine the exact degree
of under-identification and explore the identifying power of some exclusion restrictions. Kasahara and Shimotsu (2009)
and Hu and Shum (2012) consider identification of DDC models with unobserved heterogeneity/state variables. Abbring
and Daljord (2020) identify the discount factor using an exclusion restriction on agent preferences. Abbring (2010)
provides an excellent review on identification of DDC models. In all of these papers, the assumption of rational
expectations is imposed, and it plays an important role for identification. We relax the assumption of rational expectations
and propose an original argument to identify agents’ subjective beliefs. The estimated subjective beliefs can be used to
test the widely imposed assumption of rational expectations.

Our paper is also related to Aguirregabiria and Magesan (2020), which study identification and estimation of dynamic
games where the strategic interaction among players is crucial. In contrast to the existing literature that assumes Nash
equilibrium, Aguirregabiria and Magesan (2020) identify players’ payoffs and their beliefs about rivals’ behaviors while
allowing those beliefs to be inconsistent with their equilibrium counterparts. Their paper relies on exclusion restrictions
and partially unbiased beliefs for identification, which is similar to that in our paper. However, their paper differs from ours
in that players still have rational expectations about state transitions in their model. It is unclear how their identification
strategy would apply to our setting. Moreover, in finite horizon framework, we mainly exploit variations of CCPs over
time with/without an additional state variable for identification, while Aguirregabiria and Magesan (2020) only explore
the identification power of state variables.

The remainder of this paper is organized as follows. Section 2 presents DDC models with subjective beliefs. Section 3
proposes identification results for the finite horizon case. Section 4 describes identification strategies that rely on exclusion
restrictions. Section 5 extends identification results to a model with heterogeneous beliefs and/or preferences. Section 6
discusses estimation and provides Monte Carlo evidence. Section 7 focuses on women’s labor participation, applying our
method to PSID data. Section 8 concludes. Proofs are presented in Appendix.

2. DDC models with subjective beliefs

In this section, we describe a DDC model where agents’ rational expectations are relaxed and then present some basic
assumptions.

In each discrete time period t = 1, 2, . . . , T (T can be finite or infinite), a single agent chooses an action at from a
finite set of actions, A = {1, . . . , K }, K ≥ 2, to maximize her expected lifetime utility. The utility-relevant state variables
in period t consist of two parts, xt and ϵt , where xt is the state variable observed by the econometrician, and ϵt is a
vector of unobserved choice-specific shocks, i.e., ϵt = (ϵt (1), . . . , ϵt (K )). We assume that the observed state variable xt
is discrete and takes values in X ≡ {1, . . . , J}, J ≥ 2. Both state variables are known to the agent at the beginning of
period t . The agent then makes choice at and obtains per-period utility u(xt , at , ϵt ). There is uncertainty regarding future
states, which is governed by an exogenous mechanism and is assumed to be a Markov process, given the agent’s choice.
Specifically, given the current state (x, ϵ) and agent choice a, the state variables in the next period (x′, ϵ′) are determined
by the transition function f (x′, ϵ′

|x, ϵ, a). We suppress period subscripts and use prime to represent the next period for
ease of notation. Following the existing literature, we impose the following assumption on the transition function.
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ssumption 1 (Conditional Independence). (a) The observed and unobserved state variables evolve independently
onditional on x and a. That is,

f (x′, ϵ′
|x, a, ϵ) = f (x′

|x, a)f (ϵ′
|ϵ, a).

(b) The unobserved state variables over time periods and actions are independent and identically distributed (i.i.d.) draws
from the mean zero type-I extreme value distribution.1

Under Assumption 1, the transition process can be simplified as

f (x′, ϵ′
|x, a, ϵ) = f (x′

|x, a)f (ϵ′).

Because the agent is forward-looking and her choice involves intertemporal optimization, her beliefs about the state
transition play an essential role in her decision-making process. Let s(x′

|x, a) be the agent’s subjective beliefs about the
transition of the observed state. In the literature of DDC models, a ubiquitous assumption is that agents have perfect beliefs
or rational expectations—i.e., s(x′

|x, a) = f (x′
|x, a) for all x′, x and a—and this is crucial for identifying and estimating DDC

models (e.g., see Magnac and Thesmar, 2002). Unfortunately, this assumption is very restrictive. Manski (1993b) points
out that even a learning process may not justify rational expectations if the law of motion changes between the two
cohorts due to some macro-level shocks, or if the earlier cohort’s history cannot be fully observed. Moreover, the recent
literature documents violations of rational expectations when comparing survey data on agents’ subjective beliefs with
their objective counterparts and examining the impact of such violations on agent choices. For example, Heimer et al.
(2019) show that surveyed beliefs about mortality over the life cycle differ substantially from actuarial statistics from the
Social Security Administration. This discrepancy leads the young to under-save by 30% and causes retirees to draw down
on their assets 15% more slowly than would be ideal. Cruces et al. (2013) provide evidence of agents’ biased perception
of the income distribution. And, in the literature on structural models of oligopoly competition, including Aguirregabiria
and Jeon (2020), firms also may have biased beliefs about model primitives.

Motivated by the theoretical argument above and the empirical evidence, we relax the assumption of rational
expectations in our model. In what follows, we describe the agent’s problem in a general framework allowing for
subjective beliefs. Then we lay out some basic assumptions and characterize the agent’s optimal decision.

In each discrete period, the agent’s problem is to decide what action maximizes her expected life-time utility, based
on her subjective beliefs about the future evolution of the state variable. The optimization problem is characterized as

max
at∈A

∑
τ=t,t+1,...

βτ−tE
[
u(xτ , aτ , ϵτ )|xt , at , ϵt

]
,

where β ∈ [0, 1) is the discount factor, u(xτ , aτ , ϵτ ) is the flow utility, and the expectation is taken over all future actions
and states, based on the agent’s subjective beliefs s(x′

|x, a). These beliefs are a complete set of conditional probabilities
that satisfy the following properties:

Assumption 2 (Valid Stationary Belief). Agents’ subjective beliefs about the transition probabilities of the observed state
variable satisfy the following conditions:

(a)
∑

x′∈X s(x′
|x, a) = 1 and s(x′

|x, a) ≥ 0 for any x ∈ X and a ∈ A.
(b) s(x′

|x, a) is time-invariant.

Assumption 2(a) presents some minimum requirements for subjective beliefs as probabilities. Part (b) restricts subjective
beliefs to be stationary and rules out the possibility that agents update their beliefs about the transition through learning.
There are several reasons why subjective beliefs could be stationary and could differ from their objective counterparts.
First, suppose that agents update their beliefs based on some historical information. They may not be able to learn the true
objective state transitions even in the steady state. For example, Esponda and Pouzo (2015) consider a dynamic framework
where agents have a prior over a set of possible transitions. They show that if this set does not contain the true transition,
then agents can hold biased beliefs about the transition even in the steady state. Second, it is possible that agents only
update their beliefs after accumulating sufficient evidence, rather than in every period. For example, Coutts (2019) finds
in experiment that only 9% subjects update their beliefs in every round. In such a case, it would be reasonable to assume
that beliefs would remain the same for some periods.

Assumption 2(b) is an approximation of agent beliefs about state transitions. It might be strong and unrealistic in some
applications, where learning should be incorporated. However, modeling learning can be very challenging. Empirically,
it is unclear what information agents incorporate into their learning process; e.g., agents may learn from their own
experience, their cohort’s (Manski, 1993b), or both. An incomplete understanding of the sources of the underlying learning
process complicates the framework in either theoretical or empirical analyses. Thus, modeling agents’ learning about their
subjective beliefs is still an open question so we leave it to future work.

1 The assumption of type-I extreme value distribution is for ease of illustration. As long as the distribution is known and absolutely continuous,
ur identification argument holds.
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It is worth noting that assuming stationary subjective beliefs is less restrictive than assuming stationary rational
xpectations. Our model with subjective beliefs nests the existing DDC model with stationary rational expectations as a
pecial case. No matter whether agents have subjective beliefs or rational expectations, the transitions of the state variable
re still governed by the objective distribution f (x′

|x, a), while agents’ optimal behaviors depend on their perception of
he objective transition.

Next, we present an assumption about agent preferences following the existing literature (e.g., Rust, 1987).

ssumption 3 (Stationary and Additively Separable Preference). The flow utility is time-invariant.2 The unobserved state is
ssumed to enter the preference additively and separably, i.e., u(x, a, ϵ) = u(x, a) + ϵ(a) ≡ ua(x) + ϵ(a) for any a ∈ A.

The stationarity and additive separability of agent utility imposed in Assumption 3 are used widely in the literature.
onsequently, we can represent the agent’s optimal choice at , which depends on the state, xt and ϵt , in period t as

at = argmax
a∈A

{
ua(xt ) + ϵ(a) + β

∑
x′∈X

Vt+1(x′)s(x′
|x, a)

}
,

here Vt+1(x) is the ex-ante or continuation value function in period t + 1 defined below.

Vt (x) = E

[
max
a∈A

{
ua(x) + ϵ(a) + β

∑
x′∈X

Vt+1(x′)s(x′
|x, a)

}]
, (1)

here the expectation is taken with respect to the distribution of ϵ.
In the finite horizon setting, an agent can solve the model using backward induction, starting from the terminal

eriod; this requires the continuation value at the terminal period is known to the agent. In the existing literature,
he continuation value at the terminal period could be zero or nonzero, depending on the empirical context. In the
nfinite horizon setting, stationarity implies that the value function is a fixed point of a contraction mapping (see
.g., Aguirregabiria and Mira, 2010 for details).
Following the existing literature, we characterize agents’ optimal behavior using a whole set of probabilities (CCPs)

hat each action i ∈ A is chosen conditional on the observed state in period t , denoted as pt,i(x). Under Assumption 1(b),
he agent’s optimal behavior can be characterized as

pt,i(x) =
exp(vt,i(x))∑

a∈A exp(vt,a(x))
, (2)

where vt,a(x) is the choice-specific value function for action a conditional on state x,

vt,a(x) ≡ ua(x) + β
∑
x′∈X

Vt+1(x′)s(x′
|x, a).

3. Identification with time variations in CCPs

In this section, we provide sufficient conditions under which agents’ subjective beliefs are uniquely determined by
their CCPs in a finite horizon framework. The main idea of identification is to build a relationship between observed CCPs
and unknown subjective beliefs by exploring the variation of CCPs over time. Specifically, time is excluded from flow
utility and beliefs, but it does affect CCPs given its proximity to the terminal period.

Suppose we observe data {at , xt}, where t = 1, . . . , T , and T is not necessarily the terminal period of agent decisions.
Eq. (2) allows us to obtain the log ratio of CCPs for action i ∈ A over K (i ̸= K ) at time t for state x:

ξt,i,K (x) ≡ log
( pt,i(x)
pt,K (x)

)
= vt,i(x) − vt,K (x)

=
[
ui(x) − uK (x)

]
+ β

∑
x′∈X

Vt+1(x′)
[
s(x′

|x, i) − s(x′
|x, K )

]
. (3)

The log ratio of CCPs ξt,i,K captures the likelihood of an agent choosing action i relative to action K in period t in state x.
It can be represented in a matrix form as follows.

ξt,i,K (x) ≡ log
(

pt,i(x)
pt,K (x)

)
= ui(x) − uK (x) + β

[
Si(x) − SK (x)

]
V t+1, t = 1, 2, . . . , T , (4)

where Sa(x) ≡ [s(x′
= 1|x, a), . . . , s(x′

= J − 1|x, a)], ∀a ∈ A, is a 1 × (J − 1) vector capturing beliefs associated
with action a and state x but excluding the element s(x′

= J|x, a) because they sum to one; the ex-ante value function
vector V t+1, thus, is constructed as a (J − 1) × 1 vector that consists of relative values using J as a reference state,
i.e., V t+1 ≡ [Vt+1(x = 1) − Vt+1(J), . . . , Vt+1(x = J − 1) − Vt+1(J)]′.

2 With this assumption, time is excluded from the utility function so that exclusion restrictions hold trivially, as in Bajari et al. (2016).
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From Eq. (4), the log ratios of CCP ξt,i,K (x) are determined by three components: the difference in utilities between

ction i and K , ui(x) − uK (x); the relative continuation value V t+1 discounted by β; and the subjective beliefs conditional
on action i relative to action K , Si(x)− SK (x). We assume that the discount factor β is known because it is not the focus of
our paper.3 To separately recover those components from the observed CCPs, we rely on variables that shift the log ratios
of CCPs without affecting the relative flow utility. Time can be such a variable because it is excluded from preferences
and beliefs. As a result, we can control the impact of the flow utility on the CCPs by taking the first difference of the log
ratio of CCPs for any given state. That is,

∆ξt,i,K (x) ≡ ξt,i,K (x) − ξt−1,i,K (x) = β
[
Si(x) − SK (x)

]
∆V t+1, t = 2, 3, . . . , T − 1, (5)

where ∆V t+1 ≡ V t+1−V t captures the first difference of the relative ex-ante value functions. To proceed, we stack Eq. (5)
and collect all J − 1 equations for x = 1, 2, . . . , J − 1 to obtain the following matrix representation of the equation above,

∆ξt,i,K = β
[
S i − SK

]
∆V t+1, (6)

where ∆ξt,i,K ≡ [∆ξt,i,K (1), . . . , ∆ξt,i,K (J − 1)]′ collects the first difference of the log ratio of CCPs for J − 1 values of x,
and Sa ≡ [Sa(x = 1), . . . , Sa(x = J − 1)]′ is a (J − 1) × (J − 1) matrix that stacks the beliefs associated with action a for
x ∈ {1, . . . , J − 1}.

Eq. (6) summarizes restrictions implied by the model on subjective beliefs for actions i and K . These restrictions are
insufficient for us to identify S i and SK because ∆V t+1 is unknown. However, we can control the impact of continuation
values on CCPs via its recursive relationship. Because in Eq. (6) the variation in the log ratios of CCPs only reveals
information about agent beliefs once we control for the ex-ante value function, it is possible for us to disentangle subjective
beliefs from continuation values. For this purpose, we obtain extra restrictions for the model primitives by exploring the
recursive relation between continuation value functions by backward induction. That is,

V t = − log pt,K + uK + S̃KV t+1, (7)

where S̃K is defined as a (J − 1) × (J − 1) matrix with its jth row (j = 1, 2, . . . , J − 1) being the agent’s belief about state
transition under action a = K when the current state is x = j relative to that of state x = J , i.e., SK (j) − SK (J). The vector
of log CCPs, log pt,K , and flow utility, uK , are defined analogously. The construction of S̃K is necessary because the vector
of the ex-ante value function is formulated as the relative ex-ante value of state x with respect to the reference state J ,
i.e., Vt (x) − Vt (J).

Intuitively, Eq. (7) indicates that the ex-ante value from optimal behaviors can be expressed as the overall value of
choosing action K , uK + S̃KV t+1, and a non-negative adjustment term, − log pt,K , which adjusts for the fact that K may
not be the optimal choice. This adjustment term goes to zero as the probability of selecting K goes to one. Note that the
recursive relation in Eq. (7) holds for all the choices and is derived from agent’s optimization condition via backward
induction. Therefore, Eq. (7) provides some restrictions to model primitives besides Eq. (5) but it requires no additional
assumptions.

We take advantage of the time-invariant utility again and obtain a recursive relationship for the first difference of the
ex-ante value function V t ,

∆V t = −∆ log pt,K + β S̃K∆V t+1. (8)

Eqs. (6) and (8) summarize all the restrictions implied by the model in any three consecutive periods. Combining the two
equations allows us to disentangle S i − SK and ∆V t+1. Specifically, in the first step, we separate beliefs S i − SK from
ex-ante values ∆V t+1 using Eq. (6), which enables us to represent the ex-ante value as a function of the beliefs. For this
purpose, we make the following assumption.

Assumption 4. There exists one action i, i ̸= K such that the (J − 1) × (J − 1) belief matrix S i − SK is full rank.

To better understand the full rank condition, we explore the restrictions imposed on the model by this assumption. If
J = 2, i.e., x ∈ {1, 2}, the full rank condition is simplified as s(x′

= 1|x = 1, i) ̸= s(x′
= 1|x = 1, K ). This implies

that the agent believes that her different actions would affect the state transition differently. In case of J ≥ 3, the full
rank condition restricts the J − 1 belief differences Si(x) − SK (x), x = 1, . . . , J − 1, to be linearly independent. This full
rank condition guarantees that given a set of beliefs, there exists a unique set of ex-ante value functions ∆V t+1 that is
consistent with the data based on Eq. (6). That S i − SK has full rank is sufficient but not necessary for identification.

Under Assumption 4, the first difference of ex-ante value functions ∆V t+1 can be expressed explicitly in a closed form,

∆V t+1 = β−1
[S i − SK ]

−1∆ξt,i,K , t = 2, . . . , T . (9)

The recursive relationship in Eq. (8), together with the closed-form expression above, allows us to obtain a moment
condition with subjective beliefs being the only unknowns. That is,

β−1[S i − SK
]−1

∆ξt−1,i,K = −∆ log pt,K + S̃K
[
S i − SK

]−1
∆ξt,i,K , t = 3, . . . , T . (10)

3 We refer to Magnac and Thesmar (2002) and Abbring and Daljord (2020) for the identification of the discount factor β .
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Stacking all the conditions for time t = 3, . . . , T leads to the following equation:[̃
SK [S i − SK ]

−1, −β−1
[S i − SK ]

−1
]
∆ξi,K = ∆ log pK , (11)

here ∆ log pK ≡

[
∆ log p2,K , ∆ log p3,K , . . . , ∆ log pT−1,K

]
, with dimensions being (J − 1) by (T − 2), captures all first

differences of log CCPs over time, and ∆ξi,K ≡

[
∆ξ1i,K
∆ξ2i,K

]
≡

[
∆ξ3,i,K ∆ξ4,i,K . . . ∆ξT ,i,K
∆ξ2,i,K ∆ξ3,i,K . . . ∆ξT−1,i,K

]
, with dimensions being

(2J − 2) by (T − 2), collects all the first differences of log ratios of CCPs. Note that the dimensions of S̃K and S i − SK are
both (J − 1) by (J − 1). The conditions (11) provide a direct link between the first differences of the log ratios of CCPs
and the subjective beliefs. Identification of beliefs relies on the variation of the first differences of log ratios of CCPs over
time, which is summarized in matrix ∆ξi,K . To recover the unknown subjective beliefs from Eq. (11), sufficient variation
in the first differences of log ratios of CCPs is required. Such requirements are satisfied under the following assumption.

Assumption 5A. (a) The number of periods is sufficiently large, T ≥ 2J . (b) The matrix ∆ξi,K is of full row rank.

This assumption is imposed on the observed CCPs and thus is empirically testable. Eq. (11) is a linear system with each
row of the two matrices S̃K [S i − SK ]

−1 and S i − SK being the unknowns. Note that each row of the unknown matrix has
J −1 parameters while each cell of three consecutive periods of data (e.g., ∆ξt,i,K , ∆ξt−1,i,K , and ∆ log pt,K involve periods
t − 1, t , and t + 1) provides one restriction to the unknown row parameters. Solving this linear system requires (1) the
number of restrictions (T −2) is no less than the number of parameters 2(J −1), which implies T ≥ 2J; and (2) the matrix
of data ∆ξi,K is of full row rank.4

Under Assumption 5A, we can get a closed-form solution for the belief matrices S̃K and S i − SK from Eq. (11). Note
that belief matrix S̃K describes subjective beliefs for choice K in a state x ∈ {1, 2, . . . , J − 1} relative to state J . Without
further restrictions, we are unable to fully identify subjective beliefs conditional on choice K from the identified matrix
SK . To achieve identification, we impose the following assumption to pin down the belief vector for the reference state J ,
i.e., SK (J).

Assumption 6A. There exists a state x ∈ {1, 2, . . . , J} under which agents’ subjective beliefs about the state transition
are known for action K .

The restriction of known subjective beliefs imposed in Assumption 6A is only required to hold for a certain state and
action. Without loss of generality, we assume SK (J) is known. A sufficient condition for the known SK (J) is that agents
hold rational expectations for action K in state J and the econometrician knows this fact. Subjective beliefs need to be
partially known due to the nature of DDC models. Specifically, the CCP for any action does not depend solely on its
choice-specific value; rather, it depends on the choice-specific values of all actions relative to a reference action, say, K .
These relative choice-specific values further rely on beliefs for i relative to K . This implies that partially known beliefs are
necessary to identify subjective beliefs for all actions and states. One possibility for relaxing this assumption is to explore
other restrictions to the model, e.g., the relationship between subjective beliefs and objective transitions.

We consider an example where a single woman makes dynamic labor participation decisions (to work or not work).
The state variable is her income (high, medium, or low), and she has to form beliefs regarding her household future income
given current household income and her working status, i.e., the income transition. The assumption of partially known
beliefs in this context is reasonable: women with low income who are not working have a very good understanding of
their income in the future because in that scenario their only income source is some social welfare programs. Thus, the
subjective beliefs are the same as their objective counterparts, conditional on low income and non-working.

Under Assumption 6A, we can identify the subjective beliefs matrix associated with action K , SK . Consequently, the
matrix S i is identified from S i − SK . The identification results of the ex-ante value difference ∆V t and belief matrices S i
and SK can be used to identify belief matrices for actions i′ ̸= i and i′ ̸= K using Eq. (6) of action i′, which does not require
any further assumptions. We summarize our identification results as follows.

Theorem 1. Suppose that Assumptions 1–4, 5A, and 6A hold. Then the subjective beliefs s(x′
|x, a) for x, x′

∈ {1, 2, . . . , J} and
a ∈ {1, 2, . . . , K } are identified as a closed-form function of the CCPs, pt (a|x), for t = 1, 2, . . . , T , T ≥ 2J .

The identification results in Theorem 1 require at least 2J consecutive periods of observations or 2J − 2 cells of three
consecutive periods. This requirement could be restrictive in some empirical applications, especially when the state space
is large. Next we present an alternative strategy where J + 1 periods of data are sufficient for identification.

Assumption 5B. (a) The number of periods observed is not smaller than J + 1, i.e., T ≥ J + 1. (b) The matrix
(∆ξ1i,K )

′
⊗ (β S̃K ) − (∆ξ2i,K )

′
⊗ I is of full column rank.

4 Assumption 5A(b) guarantees that when T = 2J or T > 2J , ∆ξ has an inverse or a right inverse, respectively.
i,K
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ssumption 6B. There exists an action a = K such that agents’ subjective beliefs about the state transition conditional
n this action are known.

he matrix (∆ξ1i,K )
′
⊗(β S̃K )−(∆ξ2i,K )

′
⊗I is of size (T−2)·(J−1) by (J−1)·(J−1), where I is a J−1 by J−1 identity matrix, and

denotes the Kronecker product. Assumption 5B is similar to the full rank condition 5A: both require sufficient variation
n CCPs over time, and both are empirically testable. Under Assumption 6B, there are J − 1 unknown parameters in the
inear system (11). Following the discussion of Assumption 5A, we need T − 2 ≥ J − 1, i.e., T ≥ J + 1 to solve the linear
ystem if SK is known. Once β S̃K is known, Assumption 5B(b) imposes restrictions on the observed log ratios of CCPs,
ξ1i,K , and ∆ξ2i,K .
Assumption 6B requires that the belief matrix associated with action K is known; i.e., SK is known, which is stronger

han Assumption 6A. For example, we consider a dynamic investment problem, where an agent chooses whether to invest
n the stock market or to save in a savings account. The decision is based on her subjective beliefs about the transition of
he state variable, wealth. Accumulated wealth in the future conditional on the current wealth and the action of saving
hould be very straightforward to predict. That is, agents have rational expectations if they put their money in a savings
ccount. In contrast, because of market volatility accumulated future wealth is more difficult to predict if the agent chooses
o invest.

In the following theorem, we state the identification result under Assumptions 5B and 6B. We omit the proof because
t is similar to the proof of Theorem 1.

heorem 2. Suppose that Assumptions 1–4, 5B, and 6B hold. Then the subjective beliefs s(x′
|x, a) for x, x′

∈ {1, 2, . . . , J} and
a ∈ {1, 2, . . . , K − 1} are identified as a closed-form function of the CCPs, pt (a|x), t = 1, 2, . . . , T , T ≥ J + 1.

Theorems 1–2 demonstrate that it is indeed difficult to disentangle agent beliefs from preferences by observing only
their choices over time. Even if beliefs and preferences are time-invariant, identification still requires a sufficiently large
number of periods. Moreover, subjective beliefs cannot be point identified unless beliefs are partially known. Theorems 1–
2 illustrate the trade-off between normalization of subjective beliefs and the requirement on the data.5 In particular, if we
have more information regarding subjective beliefs, identification will require fewer time periods of data. This is especially
helpful in the empirical applications where the state variable takes a large number of values.

In Theorems 1–2, we neither impose restrictions on the continuation value nor require the observation of data in
the terminal period. Naturally, if the data for the terminal period are available, and we are willing to assume that the
continuation value at the terminal period is zero, then we can achieve identification of the subjective beliefs using fewer
periods of data. That is, we can identify the flow utility using the CCP at the terminal period. With identification of the
flow utility, there is no need to control for its impact on the log ratio of CCPs by taking difference. Therefore, the fact
that the flow utility is identified separately reduces the required number of periods by one. We leave the details of the
identification to Appendix.

Remark 1. Given that the discount factor and the distribution of the unobserved state variable are known, and that
subjective beliefs are identified, we can non-parametrically identify the utility function relative to action K , i.e., ua(x) −

uK (x), following Magnac and Thesmar (2002). Furthermore, the discount factor can be identified if we are willing to impose
a stronger normalization condition (Assumption 6B) and rank condition (Assumption 5A). This is because the discount
factor affects the log ratio of CCPs in a similar way as the belief difference Si − SK does in the key equation (4) and more
restrictions on beliefs under a stronger normalization provide identifying power for the discount factor β . Specifically, we
first identify S̃K [S i − SK ]

−1 and β−1
[S i − SK ]

−1 separately from Eq. (11). We then can identify S i − SK with Assumption 6B
that S̃K is known. Consequently, both beliefs S i and discount factor β are identified.

4. Identification with additional state variables

The identification strategy in Section 3 relies on the stationarity of beliefs and preferences. In this section, we extend
the identification argument to the case where an additional state variable evolves independently from the state variables
that agents hold subjective beliefs. Specifically, suppose there exists an additional state variable w, which is also discrete,
w ∈ {1, 2, . . . ,M}. We impose the following assumptions on the transition of w.

Assumption 7. (a) The observed state variables x and w evolve independently, and the transition of w is exogenous, i.e,

f (x′, w′
|x, w, a) = f (x′

|x, a)f (w′
|w).

(b) Agents believe that state variables x and w evolve independently and have rational expectations on the evolution of w.

s(x′, w′
|x, w, a) = s(x′

|x, a)s(w′
|w) = s(x′

|x, a)f (w′
|w). (12)

5 Although the subjective beliefs in Theorems 1–2 are identified under the assumption that beliefs are partially known, the results could be
mportant and useful in testing whether the assumption of rational expectations is valid.
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In addition to the independence of transitions, Assumption 7(a) restricts the state variable w to be at the ‘‘macro level’’
such that agents’ actions have no impact on its transition. This restriction can be relaxed in the infinite horizon framework.
Assumption 7(b) imposes two restrictions on agents’ subjective beliefs. First, agents correctly predict that the two state
variables are evolving independently. Second, agents have rational expectations about the transition of state variable w.6
Note that the independence of the transitions for state variables x and w in Assumption 7(a) is often assumed in the
iterature (e.g., see the applications of DDC models reviewed in Aguirregabiria and Mira, 2010). The assumption of the
nalyst knowing the transition of w can be rationalized by the fact that agents often have better understanding of the
ransition of some variables than of others. Especially if w is a macro-level variable and its transition does not depend on
gent choice, agents’ subjective beliefs about its transition could be accurate (see e.g., Manski, 2004).
In Assumption 7, the variable w is excluded from the subjective beliefs s(x′

|x, a). This is necessary because our objective
is to identify subjective beliefs on x. If w also affects agent subjective beliefs about x, then the number of unknowns
increases at the same order as the cardinality of the support of w, and there is no benefit from adding this additional
state variable.

4.1. Identification of finite horizon models

In the finite horizon framework, both time and the additional state variable, w, can change CCPs without affecting
subjective beliefs under Assumption 7. Therefore, the identification of beliefs is easier than the case where we only rely
on time. We first rewrite the log ratio of CCPs in period t with the additional state variable.

ξt,i,K (x, w) ≡
[
ui(x, w) + β

∑
x′,w′

Vt+1(x′, w′)f (w′
|w)s(x′

|x, i)
]

−
[
uK (x, w) + β

∑
x′,w′

Vt+1(x′, w′)f (w′
|w)s(x′

|x, K )
]
.

≡ ui(x, w) − uK (x, w) + β(Si(x) − SK (x))V t+1F (w), (13)

where F (w) ≡ [Pr(w′
= 1|w), . . . , Pr(w′

= M|w)]′ is a M × 1 vector of probabilities for future state w′ conditional on w,
and V t is the (J − 1) × M ex-ante value matrix with the (j, k)-th element being the value of x = j relative to x = J with
w = k, i.e., V t ≡ [Vt (x = j, w = k) − Vt (x = J, w = k)]j,k, for j = 1, . . . , J − 1 and k = 1, . . . ,M .

Following an identification argument similar to that in Section 3, we assume that preferences are time-invariant so as
to rule out the impact of flow utility on the log ratio of CCPs over time. By slight abuse of notation, we use ∆ξt,i,K (x, w)
to represent the first difference of the log ratios of CCPs when we have the additional state variable w. That is,

∆ξt,i,K (x, w) ≡ ξt,i,K (x, w) − ξt−1,i,K (x, w)

≡ β[Si(x) − SK (x)]∆V t+1F (w), (14)

where ∆V t+1 ≡ V t+1 − V t is the first difference of V t+1, so it is a (J − 1) × M matrix. The equation above indicates that
the change over time in the log ratio of CCPs conditional on states x and w is determined by the belief difference for state
x, the difference of the ex-ante value functions, and the transition for w.

We collect the moment conditions in (14) with J − 1 values of x and all values of w to construct the following matrix
equation.

∆ξt,i,K ≡ β
[
S i − SK

]
∆V t+1Fw, (15)

where the matrix of the first difference of log ratios of CCPs ∆ξt,i,K is defined similarly to the vector of the first difference
of log ratios of CCPs in Section 3 with the (j, k)-th element being the first difference of log ratio of CCPs for x = j and
w = k, i.e, ∆ξt,i,K ≡ [∆ξt,i,K (x = j, w = k)]j,k, where j = 1, . . . , J − 1 and k = 1, . . . ,M , and matrix Fw captures the
overall transition matrix of w, i.e., Fw ≡ [F (w = 1), . . . , F (w = M)]. The equation above is the matrix version of Eq. (14).

Following the identification argument in Section 3, we also explore the recursive relation of the value function over
time to provide additional restrictions on beliefs. By imposing the full rank condition on S i−SK (Assumption 4), combined
with the recursive property of the ex-ante value function, we obtain the condition with beliefs being the only unknowns
as follows.[̃

SK [S i − SK ]
−1, −β−1

[S i − SK ]
−1
]
∆ξi,K = ∆ log pKFw, (16)

where ∆ log pK collects all first difference CCPs over time and across states and is defined as in the previous section; ∆ξi,K
collects all first differences of the log ratio of CCPs over time and across states, and it is defined similarly to ∆ξi,K below

Eq. (11) with adjustment using the transition of state w, i.e., ∆ξi,K ≡

[
∆ξ3,i,KFw ∆ξ4,i,KFw . . . ∆ξT ,i,KFw

∆ξ2,i,K ∆ξ3,i,K . . . ∆ξT−1,i,K

]
. The

matrix of the first differences of the log ratio of CCPs, ∆ξi,K , is of dimension (2J − 2) ×
(
M · (T − 2)

)
.

6 We can relax this assumption such that s(w′
|w) ̸= f (w′

|w), but s(w′
|w) is known to the econometrician.
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Eq. (16), similar to Eq. (11), is the key identification equation where variations of CCPs are from time and different val-
es of w. The following assumption concerns the requirements on time and the state variable w to achieve identification.

ssumption 5C. (a) The number of observed periods, T , and the cardinality of the additional state variable’s support, M ,
atisfy M(T − 2) ≥ 2J − 2. (b) The matrix ∆ξi,K is of full row rank.

ssumption 5C(a) requires that the total number of time periods T is not less than 2 + (2J − 2)/M , which can be much
smaller than J if M is large. A comparison of (16) and (11) indicates that the additional state variable augments the number
of restrictions from 1 to M for any given state value x, while the number of unknown parameters is still 2(J − 1). Solving
the linear system (16) requires the number of restrictions to be relative large, i.e., M(T − 2) ≥ 2J − 2, and the matrix
∆ξi,K is of full row rank, which is empirically testable.

Under Assumption 5C, we follow the identification strategy in Section 3 to identify all of the subjective beliefs with
some normalization. Let ⌈y⌉ denote the minimum integer greater than or equal to y. The results are summarized in the
following theorem.

Theorem 3. Suppose that Assumptions 1–4, 5C, 6A, and 7 hold. Then the subjective beliefs s(x′
|x, a) for x, x′

∈ {1, 2, . . . , J}
and a ∈ {1, 2, . . . , K − 1} are identified as a closed-form function of the CCPs, pt (a|x), for t = 1, . . . , T , T ≥ ⌈

2J−2
M ⌉ + 2.

In Theorem 3 the required number of periods of data reveals complementarity of the additional state variable and time, in
terms of providing variation for identification: the required number of periods of data decreases in the cardinality of the
additional state variable’s support. Moreover, the number of periods required for identification may not depend on the
cardinality of the support of x, J . For example, in the case of M = J , four periods of data are sufficient for identification;
if M ≥ 2J − 2, three periods are sufficient for identification. The fewer periods of data required for identification in
Theorem 3 is of great importance in those empirical applications where the state variable may take a large number of
possible values.

4.2. Identification of infinite horizon models

The identification strategy in Section 4.1 cannot be directly extended to the infinite horizon framework because CCPs
are time-invariant. Instead, we mainly explore variation of CCPs across values of w. For identification, we need to control
the impact of flow utility on CCPs when we change the additional state variable w. This is achieved by imposing exclusion
restrictions on utility, which are summarized in the following assumption.

Assumption 8. (a) The utility function for choice a = K is normalized, uK (x, w) = 0 for any x and w. (b) There exist at
east J − 1 pairs of values for the additional state variable w, such that ∀i ̸= K , ∀x ∈ X ,

ui(x, w
j
1) = ui(x, w

j
2), j = 1, . . . , J − 1, (17)

here wj
≡ {w

j
1, w

j
2} is the jth pair of {w1, w2}.

ssumption 8(a), the normalization assumption, is widely imposed in the literature of DDC models and discrete games
ecause we can only identify the relative flow utility (Rust, 1994). The exclusion restrictions in Assumption 8(b) have
een exploited in the existing literature (see e.g., Abbring and Daljord, 2020). Note that our identification requires that
here exist J − 1 such pairs, which indicates that the state variable w takes at least J values, i.e., M ≥ J . Moreover, the
− 1 pairs can be different across actions.
Because of the stationarity in the infinite horizon framework, we drop the index of time in the notation. The log ratio

f CCPs can be rewritten as

ξi,K (x, w) ≡ ui(x, w) − uK (x, w) + β(Si(x) − SK (x))V F (w), (18)

here Si(x), SK (x),V , and F (w) are defined analogously to that in Eq. (13).
Unlike in finite horizon models, we cannot rely on variations in the log ratio of CCPs over time to identify beliefs.

nstead, we explore variations in the log ratio of CCPs across the special pairs wj. Under Assumption 8, ui(x, w)−uK (x, w)
s invariant for any such pairs; therefore, we have

∆ξi,K (x, wj) ≡ ξi,K (x, w
j
1) − ξi,K (x, w

j
2)

= β(Si(x) − SK (x))V [F (wj
1) − F (wj

2)]

≡ β(Si(x) − SK (x))V∆F (wj), (19)

here ∆F (wj) ≡ F (wj
1) − F (wj

2) is of dimension M × 1, captures the difference in transition conditional on the future
alue of the pair wj.
Recall that for finite horizon models in Theorem 3, we rely on both a relationship similar to Eq. (19) and the recursive

ature of the first difference of the value functions ∆V t for identification. However, such a strategy is infeasible for
nfinite horizon models because there does not exist a similar recursive relationship for the value function V due to its
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stationarity. Thus, we need to recover the unknown V , which depends on both preferences and beliefs, to identify beliefs
Si(x) − SK (x) from Eq. (19).

We show in the following lemma that V is identified if the subjective beliefs associated with the reference action K
re known, i.e., Assumption 6B holds, and the preference associated with this reference action is normalized.

emma 1. Under Assumptions 1–3, 6B, 7, and 8(a), the value function V (x, w) is identified for all x and w.

We sketch the proof of Lemma 1 here and leave the details to Appendix. Under Assumption 8(a), we can express the
x-ante value function V (x, w) as

V (x, w) = − log pK (x, w) + vK (x, w)

= − log pK (x, w) + uK (x, w) + β
∑
x′,w′

V (x′, w′)f (w′
|w)s(x′

|x, K )

= − log pK (x, w) + β
∑
x′,w′

V (x′, w′)f (w′
|w)s(x′

|x, K ). (20)

Intuitively, we could keep iterating this equation to approximate the ex-ante value V (x, w) by collecting all of the terms:
− log pK (x, w), SK , and f (w′

|w), where the first term is observed, and the other two are assumed to be known under
Assumptions 6B and 7, respectively. Essentially, the ex ante value V (x, w) is a fixed point in the equation above and
can be solved directly as a closed-form function of − log pK (x, w), SK , and f (w′

|w). Once the ex-ante value function is
identified, the subjective belief vector Si(x) is the only unknown in Eq. (19). We show next that J − 1 equations in (19)
provide sufficient variation for us to identify Si(x), i ̸= K .

To better understand the conditions required for identification and to obtain a closed-form expression for subjective
beliefs, we stack Eq. (19) for all x and all the J − 1 pairs of w into the following matrix equation.

∆ξi,K (x) = β(Si(x) − SK (x))V∆F , (21)

where ∆ξi,K (x) ≡ [∆ξi,K (x, w1), . . . , ∆ξi,K (x, wJ−1)] is of dimension 1 × (J − 1), and ∆F , defined analogously to ∆ξi,K , is
of dimension M × (J − 1).

According to Eq. (21), Si(x) can be identified if there is sufficient variation in (21), which is guaranteed by the following
assumption.

Assumption 5D. The (J − 1) × (J − 1) matrix V∆F has full rank.

This assumption is empirically testable because we can identify the value function from CCPs directly. Assumption 5D
is equivalent to assuming that value matrix V and transition matrix ∆F for the state variable w are full row rank
and full column rank, respectively. This requires that both the J − 1 rows, V (x = j, w = k) − V (x = J, w = k), for
x = 1, 2, . . . , J − 1, k = 1, 2, . . . ,M and the J − 1 transition vector, F (wj

1) − F (wj
2), for j = 1, 2, . . . , J − 1 are linearly

independent. Under this assumption, we can identify the beliefs associated with action i as

Si(x) = SK (x) + β−1∆ξi,K (x)
[
V∆F

]−1
. (22)

Note that the result above applies to all actions, so we can identify the beliefs associated with other actions analogously.
We summarize the results of identification for the infinite horizon case as follows.

Theorem 4. Suppose that Assumptions 1–3, 5D, 6B, 7–8 are satisfied. Then the subjective beliefs s(x′
|x, a) for x, x′

∈

{1, 2, . . . , J} and a ∈ {1, 2, . . . , K − 1} are identified as a closed-form function of the CCPs, p(a|x, w), the objective state
transition f (w′

|w), and the belief of SK (x).

Recall that Assumption 7 requires the state transition of w to be independent of agents’ action a. This restriction can be
relaxed, and Theorem 4 still holds if agent actions do affect the transition of w. The derivation is similar to Theorem 4,
so we omit it in the paper.

Remark 2. The identification argument of Theorem 4 can be readily applied to the finite horizon model if J − 1 pairs
of w exist as in Assumption 8(a), and at least the last two periods of data are observed. Specifically, in finite horizon
models, we can follow the identification procedure of Theorem 4 with appropriate adjustments to the assumptions for
identifying agent beliefs in two steps. First, we recover ex-ante value functions Vt for t = T − 1 and T using the recursive
relationship under Assumption 8(b) (preference normalization). Second, we use the relationship among CCPs, beliefs, and
the identified value function for period T − 1, which is similar to Eq. (22), to identify the beliefs. In summary, we only
need the last two periods of data to identify agent beliefs, which improves the result in Theorem 3 in terms of data
requirements.

Remark 3. In some empirical applications, state variables can be decomposed into states (x) that evolve independently
of agents’ actions (e.g., GDP), on which agents hold subjective beliefs, and states (w) whose objective transition
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rocess depends on agents’ actions and is known to agents. One example of the transition process for the latter
ariable is a deterministic function of past actions and/or states (e.g., experience). In the Appendix we show that if
e make these alternative assumptions on state variables instead of Assumption 7, we also can follow the procedure

n Theorem 3 to identify the (action-independent) subjective beliefs in finite horizon models. We summarize the
esult in Theorem A.1 in Appendix. Specifically, we show in Theorem A.1 that: (1) normalization of beliefs such as
ssumptions 6A and 6B are not necessary for identification; and (2) the number of periods of data required for
dentification is ⌈

J−1
M−1⌉ + 2. These results are improvements over Theorem 3, which is based on Assumption 7. The

mprovements are due mainly to the exogenous transition of the ‘‘macro’’ state variable. First, when the beliefs evolve
ndogenously, the useful information for identification is from the relative CCPs to a reference choice, say K . Thus,
ormalization is necessary. However, in the exogenous case, the beliefs do not depend on any actions and a reference
ction is no longer necessary. Both Theorems 3 and A.1 exploit the variations of CCPs over time and across the
dditional state variable w, which greatly reduces data requirements. Nevertheless, exogenous transition of the state
ariable in Theorem A.1 further reduces the number of periods of data from ⌈

2J−2
M ⌉ + 2 to ⌈

J−1
M−1⌉ + 2 (note that

2J−2
M ≥

J−1
M−1 for any M ≥ 2). Specifically, if M ≥ J , we can identify the beliefs using only three consecutive periods of

ata.

emark 4. The result in Remark 3 does not apply to infinite horizon models. In Remark 3, the transition of x is exogenous,
o the log ratio of CCPs across actions is affected by the action-dependent transition of w directly and the action-
ndependent beliefs about x indirectly. For infinite horizon models, it is unclear how we can achieve identification under
uch a setting because the identifying strategies in both Theorems 4 and A.1 fail. First of all, the identification strategy
n Theorem 4 relies on the assumption that the subjective beliefs conditional on the reference action K are known.
his strategy is infeasible because the subjective beliefs to be identified s(x′

|x) are now action-independent. Second, the
pproach in Theorem A.1 is not applicable because there does not exist a recursive relationship for the value function V
ue to its stationarity in infinite horizon models.

. An Extension: Heterogeneous beliefs

Agents may have heterogeneous preferences and/or beliefs about the transition of the same state variable. We prove
n this section that our identification results are applicable to a DDC model with such heterogeneity.

Suppose agents can be classified into H ≥ 2 types, and H is known to the econometrician.7 Let τ ∈ {1, 2, . . . ,H} denote
the unobserved type (heterogeneity). All agents of the same type have the same subjective beliefs and preferences, denoted
as s(x′

|x, a, τ ) and ua(x, τ ), respectively. Similarly, the CCP for agents of type τ in period t is pt (a|x, τ ). An agent’s type is
assumed to be time invariant. We utilize an identification methodology developed in the measurement error literature
i.e., Hu (2008), to prove that the observed joint distribution of state variables and agent actions uniquely determine the
type-specific CCP pt (a|x, τ ) for all t and τ ∈ {1, 2, . . . ,H}. We then apply the results in Sections 3–4 to identify the
eterogeneous beliefs s(x′

|x, a, τ ) and utility functions ua(x, τ ) associated with type τ . We present our analysis for the
inite horizon models, while the result is readily applicable to the infinite horizon case.

We start from the observed CCP pt (a|x), which can be expressed as a weighted average of the H components
t (a|x, τ ).

pt (a|x) =

H∑
τ=1

pt (a|x, τ )q(τ ), (23)

here we assume q(τ |x) = q(x), i.e., the distribution of type τ is predetermined and does not depend on x. Hu (2008)
hows that the unknowns on the right-hand-side of the equation can be nonparametrically identified if there exist two
easurements of the latent type variable τ and a (binary) variable correlated with τ . In our DDC model, we use actions
s the measurements of τ and the state variable as the one correlated with τ . In the rest of this section, we present all
he assumptions under which the CCPs pt (a|x, τ ) are identified and leave the proof in Appendix.8

ssumption 9 (Markov Property). For any given type τ , {at , xt} follows a first-order Markov process.

he first-order Markov property of actions and state variables is widely assumed in the literature of DDC models. A
ufficient condition of this assumption is that the state variable evolves through a first-order Markov process, and an
gent’s decision depends only on the current state. Under Assumption 9, the observed joint distribution of the state

7 The number of types H may be inferred from the data, see e.g., Kasahara and Shimotsu (2009). For ease of exposition, we assume H to be
known.
8 The finite mixture model in Eq. (23) can also be identified using the methodology proposed in Kasahara and Shimotsu (2009). Our method of

identification relies on variation of actions while Kasahara and Shimotsu (2009) utilize variation of the state variable x.
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variables and actions is associated with the unobserved types as follows.

Pr(at+l, . . . , at+1, xt+1, at , xt , at−1, . . . , at−l)

=

H∑
τ=1

Pr(at+l, . . . , at+1|xt+1, τ ) Pr(xt+1, at |xt , τ ) Pr(τ , xt , at−1, . . . , at−l)

=

H∑
τ=1

Pr(at+l, . . . , at+1|xt+1, τ ) Pr(at |xt+1, xt , τ ) Pr(xt+1|xt , τ ) Pr(τ , xt , at−1, . . . , at−l).

In the equation above, the joint distribution of states and actions is expressed as a misclassification model (Hu, 2008),
with the vectors of actions (at+l, . . . , at+1) and (at−1, . . . , at−l) being two measurements for the unobserved types τ . We
require the integer l to satisfy the inequality H ≤ K l, i.e., the number of possible values the two vectors (at+l, . . . , at+1)
and (at−1, . . . , at−l) take is no smaller than the number of types, H . If the latent variable takes more values than its
measurements do, then the model is generally not identifiable.

To apply the identification strategy of eigenvalue–eigenvector decomposition from the measurement error literature,
e.g., Hu (2008), we reduce the number of values (at+l, . . . , at+1) and (at−1, . . . , at−l) take to be the same as the number
of latent types through a known function h(·). Specifically, function h(·) maps the support of (at+l, . . . , at+1) and
(at−1, . . . , at−l), to that of τ . We define the two measurements for the latent type as,

at+ ≡ h(at+l, . . . , at+1),
at− ≡ h(at−1, . . . , at−l). (24)

We exemplify function h(·) as follows. Suppose that we consider a dynamic investment problem where agents choose
whether (or not) to invest in a stock (at ∈ {1, 0}, at = 1 and a = 0 stand for ‘‘invest’’ and ‘‘do not invest’’, respectively).
An agent’s decision depends on both a discrete state variable xt that describes her wealth and her subjective beliefs about
wealth transition based on the return of stock. For illustrative purposes, we assume that all the agents in our analysis
have homogeneous preference but heterogeneous beliefs. The unobserved type captures the accuracy of their subjective
beliefs, i.e., how close they are from the ex-post distribution of returns. The type takes three values: ‘‘more accurate’’,
‘‘accurate’’, and ‘‘less accurate’’, denoted as τ = 1, 2, and 3, respectively. In this setting, H = 3, and it is sufficient to
choose l = 2 such that H = 3 < K l

= 4. The function h(·) maps the support of actions in two consecutive periods,
i.e., {(0, 0), (0, 1), (1, 0), (1, 1)}, to the space of the unobserved types, i.e., {1, 2, 3}. One possible choice of h(·) is

at+ =

⎧⎨⎩
1, if (at+1, at+2) = (0, 0), invest in neither periods
2, if (at+1, at+2) = (0, 1) or (at+1, at+2) = (1, 0), invest in one of the two periods
3, if (at+1, at+2) = (1, 1), invest in both periods.

The other measurement at− can be defined analogously.9
For a given pair (xt , xt+1) ∈ X × X , we define a matrix to summarize the joint distribution of at+ and at−.

Mat+,xt+1,xt ,at− = [Pr(at+ = i, xt+1, xt , at− = j)]i,j .

Our identification requires that the H by H matrix Mat+,xt+1,xt ,at− has full rank.

Assumption 10. For all (xt+1, xt ) ∈ X × X , the rank of the matrix Mat+,xt+1,xt ,at− is H .

In the investment example above, this assumption requires that the three columns of the 3 by 3 matrix Mat+,xt+1,xt ,at−
are linearly independent for any given xt and xt+1. Assumption 10 is empirically testable because it is imposed on a matrix
that is directly estimable from the data. Moreover, we have the flexibility to choose h(·) such that the assumption holds.
This is because the mapping is not unique and the rank of the matrix depends on the construction of at+ and at− through
the mapping.

Following Hu (2008), our identification strategy involves an eigenvalue–eigenvector decomposition of an estimable
matrix, and such a decomposition must be unique for the purpose of identification. The uniqueness requires the
eigenvalues of the decomposition to be distinct. That is guaranteed by the following assumption.

Assumption 11 (Distinct Eigenvalues). For any given (xt+1, xt ) ∈ X × X , there exists a choice k ∈ A such that
Pr(at = k|xt+1, xt , τ ) differs for any two different types.

To investigate the restrictions Assumption 11 imposes to our model, we write the probability Pr(at = k|xt+1, xt , τ ) as:

Pr(at = k|xt+1, xt , τ ) =
Pr(xt+1|xt , at = k) Pr(at = k|xt , τ )∑

at∈A Pr(xt+1|xt , at ) Pr(at |xt , τ )
.

9 It is clear from the example that the choice of h(·) is not unique. As we show in the Appendix, given the assumptions of identification hold,
the choice of h(·) does not affect our estimation results.
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he equality holds because the transition of x given action at , Pr(xt+1|xt , at ), does not depend on agent type τ . An important
implication of the equation above is that if agent actions are binary, then a sufficient condition of Assumption 11 is that
the CCP Pr(at = k|xt , τ ) differs for any two different types. In the investment example discussed above, this sufficient
condition requires that, given financial status in period t , agents with different types would choose to invest (or not) with
ifferent probabilities. This requirement indicates that beliefs of different types need to differ sufficiently such that given
he state variable their CCPs are distinct. It is worth noting that the assumption is required to hold only for an action k
rather than all actions.

The uniqueness of the eigenvalue–eigenvector decomposition also requires that we correctly order all the eigenvalues.
This can be achieved under the assumption below.

Assumption 12 (Monotonicity). For any given xt+1 ∈ X , there exists a known m ∈ {1, 2, . . . , K l
} such that Pr(at+ =

m|xt+1, τ ) is strictly monotonic in τ .

Let us interpret the restriction this assumption imposes to the model by using the investment example again. Suppose
that at+ = (1, 1) satisfies the assumption: Pr(at+ = (1, 1)|xt+1, τ ) is strictly decreasing in τ , then it implies that the
more accurate the subjective beliefs, the higher the probability with which agents choose to invest in both periods of
t + 1 and t + 2. Recall that at+ is defined as h(at+l, . . . , at+1) and the choice of h(·) is not unique. This gives us some
flexibility to choose h(·) such that Assumption 12 holds. The probability Pr(at+ = m|xt+1, τ ) is different from a CCP, thus
Assumption 11 is neither sufficient nor necessary for Assumption 12. In empirical applications, the sufficient conditions
of these two assumptions are often model specific, e.g., see similar assumptions in An et al. (2010) and An (2017).

We summarize the result of identification in the following theorem.

Theorem 5. If Assumptions 9–12 hold, then the type-specific CCPs, pt (at |xt , τ ), are uniquely determined by the joint
istribution Pr(at+l, . . . , at , xt+1, xt , at−1, . . . , at−l), where H ≤ K l.

nce type-specific CCPs pt (at |xt , τ ) are identified, we can proceed to identify both utility and subjective beliefs for each
ype of agents using the results in Sections 3 and 4. The heterogeneity of agents can be in one of the three scenarios: they
ave different subjective beliefs, or preferences, or both. Our identification procedure allows us to recover agent utility
unctions and subjective beliefs for each type, thus we are able to distinguish the three scenarios.

. Estimation and Monte Carlo evidence

In this section, we first discuss the estimation of DDC models with subjective beliefs. Then we present some Monte
arlo evidence for our proposed estimators.

.1. Estimation

Our identification result provides a closed-form solution to the agent subjective beliefs for both finite and infinite
orizon models. One may follow the identification procedure to estimate the subjective beliefs by using a closed-form
stimator. Agent preferences then can be estimated in a second step using the CCP approach based on Hotz and Miller
1993). However, such a closed-form estimator involves inversion of matrices, thus its performance would be unstable if
he matrices are near singular. Alternatively, we propose a maximum likelihood estimator to estimate subjective beliefs
nd agent preferences in one step.
Suppose that we observe in the data n agent actions for T periods, together with the states, denoted as {ait , xit},

i = 1, . . . , n, t = 1, . . . , T . We denote the parameters in utility functions, objective transitions, and subjective beliefs
as θu, θo, and θs, respectively. We first present the likelihood function of the data {ait , xit}.

L(x2, . . . , xT , a1, . . . , aT |x1; θu, θs, θo)

=

n∏
i=1

T∏
t=2

pt (ait |xit; θu, θs)f (xit |xi,t−1, ait−1; θo)p1(ai1|xi1; θu, θs),

where pt (ait |xit; θu, θs) is agent i’s CCPs in period t . The log-likelihood function is additively separable:

L ≡ logL =

n∑
i=1

T∑
t=1

log pt (ait |xit; θu, θs) +

n∑
i=1

T∑
t=2

log f (xit |xit−1, ait−1; θo). (25)

Thus, we can estimate preferences θu and subjective beliefs θs separately from objective transition θo. That is, the
parameters (θu, θs) and θo can be estimated by maximizing the first and second parts of the log-likelihood function above,
respectively. We use θ̂ to denote the estimator of the corresponding parameters θ .

Recall that some elements of subjective beliefs have to be normalized for identification. Without loss of generality, we
assume that agents have rational expectations about some state transition so that we can use the objective transition of
these states in estimation. Under such normalization, we divide the parameters associated with subjective beliefs into
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two parts: θs ≡ (θn
s , θ e

s ), where θn
s and θ e

s are the parameters to be normalized and estimated, respectively. θn
s can be

btained from the estimated objective state transition θ̂o, denoted as θ̂n
s . The parameters of preferences and subjective

eliefs, θ ≡ (θu, θ e
s ), can be estimated through the following maximization,

max
θ

n∑
i=1

T∑
t=1

log pt (ait |xit; θ, θ̂n
s ). (26)

Because the CCP pt (ait |xit; θ, θn
s ) is solved differently for finite horizon models from infinite horizon models, we present

the estimators for the two scenarios separately.

Finite horizon. For a finite horizon model, we use backward induction to solve for the CCPs for each period t . To do so,
we start from the terminal period T , in which the optimal behaviors depend on the continuation value. If we assume that
the continuation value is zero in the terminal period, then the choice-specific value function is the same as the per-period
flow utility. Next, we proceed to period T − 1 and continue the procedure till we reach the first period.

Infinite horizon. In the case of infinite horizon, the dynamic framework is stationary, i.e., the value function and CCPs do
not change over time. For a given set of CCPs, the ex-ante value function can be solved as a fixed-point of a system of
equations. Plugging the ex-ante value function into Eq. (2) for all actions and states, we can further represent the CCPs as
a fixed point in the following mapping,

p = Ψ (p; θu, θs), (27)

where p, a vector of J(K + 1) × 1, collects CCPs for all actions and states, and Ψ (·) represents the fixed point mapping of
this vector.

To estimate θ , we adopt a Nested Pseudo Likelihood Algorithm (NPL) proposed in Aguirregabiria and Mira (2002).
To implement the algorithm, we start with an initial guess p(0) for the CCPs. In the mth (m ≥ 1) step of iteration, our
estimation takes the following two steps.

• Step 1: Given p(m−1), we obtain a pseudo-likelihood estimate of θ , θ̂ (m), which satisfies

θ̂ (m)
= argmax

θ

n∑
i=1

T∑
t=1

log p(m)(ait |xit; θ, θ̂n
s ),

where p(m)(ait |xit; θ ) is an element of p(m) satisfying the mapping p(m)
= Ψ (p(m−1)

; θ, θ̂n
s ).

• Step 2: We update the CCPs by plugging the estimated parameters θ̂ (m) into the mapping

p(m)
= Ψ (p(m−1)

; θ (m), θ̂n
s ).

We iterate these two steps till both p and θ converge. We refer to Kasahara and Shimotsu (2008) for convergence of the
estimator generated from the NPL algorithm to the Maximum likelihood Estimation (MLE). In particular, the NPL estimator
converges to the MLE estimator at a super-linear, but less-than-quadratic, rate.

The difference between our estimator and those in the existing literature lies in the role of subjective beliefs in the
estimation. Specifically, we estimate part of the subjective beliefs θ e

s together with the payoff primitives θu. By contrast,
the existing literature assumes that the subjective beliefs are the same as the objective state transitions, i.e., θs = θo, and
then estimates θs directly from data in the first step and the payoff primitives θu in the second step.

Heterogeneous subjective beliefs. In the case of heterogeneous subjective beliefs (Section 5), we can apply the EM algorithm
proposed in Arcidiacono and Miller (2011) to estimate type-specific preferences and subjective beliefs, as well as the type
probabilities.

Suppose that the number of types H is known to the econometrician. Let θu ≡ (θ1
u , . . . , θH

u ) and θs ≡ (θ1
s , . . . , θH

s ),
where θ τ

u and θ τ
s denote the parameters of preferences and beliefs for type τ , respectively, and θo is defined the same as

before. Let q(τ ) be the population probability of being type τ such that
∑H

τ=1 q(τ ) = 1, and q ≡ (q(1), q(2), . . . , q(H)).
The likelihood function of the data can be represented as

L(x2, . . . , xT , a1, . . . , aT |x1; θu, θs, θo)

=

n∏
i=1

(
H∑

τ=1

q(τ )
T∏

t=2

pt (ait |xit; θ τ
u , θ τ

s )f (xit |xi,t−1, ait−1; θo)p1(ai1|xi1; θ τ
u , θ τ

s )

)

=

n∏
i=1

(
T∏

t=2

f (xit |xi,t−1, ait−1; θo)
H∑

τ=1

q(τ )
T∏

t=1

pt (ait |xit; θ τ
u , θ τ

s )

)
.

Let θn
s and θ e

s be parameters of beliefs to be normalized and estimated, respectively. Let θ ≡ {θu, θ
e
s }. Similar to the

case of homogeneous subjective beliefs, θn
s can be obtained from the estimated objective state transition θ̂o, which is the

same across all types.
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Given the estimate θ̂n
s , we can estimate the parameters θ and q using the EM algorithm as in Arcidiacono and Miller

(2011). Let πiτ denote the probability agent i is of type τ . In the mth iteration, given estimates θ (m−1) and q(m−1), we first
update π

(m)
iτ ,

π
(m)
iτ =

q̂(m−1)(τ )
∏T

t=1 pt (ait |xit; θ (m−1), θ̂n
s )∑H

τ ′=1 q̂(m−1)(τ ′)
∏T

t=1 pt (ait |xit; θ (m−1), θ̂n
s )

. (28)

The type probabilities are updated as:

q(m)(τ ) =
1
n

n∑
i=1

π
(m)
iτ . (29)

Finally, we obtain θ (m) by maximizing the following log likelihood function,

θ (m)
= max

θ

n∑
i=1

H∑
τ=1

T∑
t=1

π
(m)
iτ log

(
pt (ait |xit; θτ , θ̂

n
s )
)

. (30)

We iterate the steps in Eqs. (28)–(30) till both θ and q converge.

6.2. Monte Carlo experiments

In this section, we present some Monte Carlo results to illustrate the finite sample performance of the proposed
estimators. The Monte Carlo experiments are conducted for both finite and infinite horizon models with homogeneous
beliefs.

We consider a binary choice DDC model in both finite and infinite horizon scenarios. First, we set up the payoff
primitives, the objective law of motion, and agent beliefs about the transition of the state variable. Given these primitives,
we solve for agent CCPs by backward induction and contraction mapping in the finite and infinite models, respectively. We
then use the CCPs and objective transition matrices to simulate agent actions and states. Next, we estimate the parameters
of interest, following the proposed procedure of estimation. The objective transition matrices are estimated using MLE,
and the payoff primitives and subjective beliefs are estimated together using MLE and NPL estimators in finite and infinite
horizon cases, respectively.

In the finite horizon case, the per-period utility function is specified as follows.

u(a, x) =

{
ϵ0, if a = 0,
u(x) + ϵ1, if a = 1,

where ϵ0 and ϵ1 are drawn from a mean-zero type-I extreme value distribution. Note that the continuation value at the
terminal period is assumed to be zero. We set J = 3, i.e., the state variable x takes three values, x ∈ {x1, x2, x3}, so we
have three utility parameters: u(x1) = −2, u(x2) = 0.4, and u(x3) = 2.1. The objective transition for the state variable x
conditional on choice a = 0 and a = 1, respectively, is represented by the following 3 × 3 matrices

TR0 =

[0.8 0.1 0.1
0.2 0.6 0.2
0.1 0.19 0.71

]
; TR1 =

[0.2 0.6 0.2
0.5 0.2 0.3
0.2 0.3 0.5

]
.

Let S0 and S1 denote subjective beliefs on the transition conditional on the action 0 and 1, respectively. We consider three
different scenarios for the beliefs: (1) Agents have rational expectations, i.e., S1 = TR1 and S0 = TR0. (2) Agents’ subjective
beliefs about the state transition conditional on action a = 1 are the same as their objective counterparts, i.e., S1 = TR1;
agents’ subjective beliefs about the state transition conditional on action a = 0 deviates from their objective counterparts:

S0 =

[ 0.9 0.05 0.05
0.1 0.8 0.1
0.05 0.095 0.855

]
.

(3) Agents’ subjective beliefs on the transition of one state x = J conditional on action a = 1 are the same as their
objective counterparts, i.e., S1(3) = TR1(3); the beliefs on the rest of the transition deviate from their counterparts and
are expressed as follows:

S0 =

[ 0.9 0.05 0.05
0.1 0.8 0.1
0.05 0.095 0.855

]
, S1 =

[ 0.6 0.3 0.1
0.25 0.6 0.15
0.2 0.3 0.5

]
.

Settings (2) and (3) satisfy Assumptions 6A and 6B, respectively. In these two settings, identification requires J+1 = 4 and
2 ∗ J = 6 periods of data, respectively. For comparability of estimator performance across the two settings, we simulate
the data for 6 periods, regardless of the setting.
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For the infinite horizon setting, the agent choice is binary, and there are two state variables, x and w. Based on the
identification results, the payoff function is assumed as follows

u(a, x, w) =

{
ϵ0, if a = 0;
u1(x) + u2(x)w + ϵ1, if a = 1,

(31)

where ϵ0 and ϵ1 are drawn from a mean-zero type-I extreme value distribution. Both state variables are assumed to be
discrete: x ∈ {x1, x2} and w ∈ {w1, w2, w3, w4}. The utility parameters are u1(x1) = 0.1, u1(x2) = 0.2, u2(x1) = 0.2, and
u2(x2) = −0.2. The objective state transition processes for x, TRx

0, and TRx
1, and for w, TRw

0 , and TRw
1 , are setup as follows.

TRw
0 =

⎡⎢⎣ 0.6 0.2 0.2 0
0.1 0.75 0.15 0
0.04 0.1 0.8 0.06
0.01 0.08 0.1 0.81

⎤⎥⎦ ; TRw
1 =

⎡⎢⎣ 0.7 0.1 0.15 0.05
0.2 0.65 0.05 0.1
0.04 0.01 0.9 0.05
0.02 0.18 0.1 0.7

⎤⎥⎦ ;

TRx
0 =

[
0.6 0.4
0.45 0.55

]
; TRx

1 =

[
0.1 0.9
0.5 0.5

]
,

where the subscripts 0 and 1, respectively, represent a = 0 and a = 1.
Agents have rational expectations about the transition of w but may have subjective beliefs about the transition of x.

We consider two settings for Monte Carlo experiments: (1) Agents have rational expectations; that is, agent beliefs about
the state evolution are the same as their objective counterparts, i.e., Sw

a = TRw
a , S

x
a = TRx

a, a ∈ {0, 1}. (2) Agents’ subjective
beliefs satisfy Assumption 6B, and Sw

a = TRw
a , a ∈ {0, 1} and Sx

1 = TRx
1, while Sx

0 ̸= TRx
0, where

Sx
0 =

[
0.7 0.3
0.3 0.7

]
.

In each of the scenarios, we use sample n = 300, 600, 1000, and 2500, and standard errors are computed from 1000
replications. Before estimation, we check the full rank Assumptions 4 and 5A for our simulated samples and find that the
assumptions hold.

The results of the Monte Carlo experiments for the finite horizon case are presented in Tables 1–4, and for the infinite
horizon case in Tables 5–6. We draw two main findings. First, the proposed estimator performs well across different set-
tings for moderate sample sizes. More importantly, as shown in Tables 1, 3, and 5, our estimates track the true parameters
closely, even when the data are generated from a model with rational expectations. Not surprisingly, in the cases where
agents have rational expectations, the standard errors of our estimates are generally larger than those from imposing the
restriction of rational expectations. Second, failing to account for subjective beliefs may lead to significant estimation bias.
When data are generated from subjective beliefs, the parameters of the utility function estimated by imposing rational
expectations are off the true values. This can be seen in Tables 2 and 4, where estimates of u(x1), u(x2), and u(x3) are
dramatically different from the true parameters. The differences persist as sample sizes increase from 300 to 2500.

7. Empirical illustration: Women’s labor force participation

Now we apply the proposed method to the Panel Study of Income Dynamics (PSID) data and focus on women’s labor
force participation. Female labor supply has been studied extensively in the literature; e.g., see Eckstein and Wolpin (1989)
and Blundell et al. (2016), among others. Instead of providing a thorough analysis of women’s labor force participation,
simply this section is an illustrative application of our identification and estimation results.

We assume that a woman and her husband jointly make a decision on her labor force participation. Their beliefs about
the evolution of their household income affect the wife’s labor participation decisions. Our main objectives here are: (1)
to investigate whether their beliefs deviate from rational expectations; and if yes, (2) to conduct a counterfactual analysis,
analyzing how women’s decisions would change if they were instead to have rational expectations.

We follow Eckstein and Wolpin (1989) in making some key working assumptions in this analysis. First, we simplify
the choice of hours of work to a binary working/non-working decision. Second, we ignore the husband’s labor force
participation decisions. Third, we only consider women older than 38 in order to avoid modeling fertility decisions. Finally,
we take marriage as exogenously given.

7.1. Data

The PSID is a longitudinal survey consisting of a nationally representative sample of over 18,000 individuals living in
5000 families in the United States. The original sample was re-interviewed annually from 1968 to 1997 and biennially
thereafter. The PSID collects data on annual income and female labor force participation for the preceding calendar year.
We only use data collected up to 1997, because our identification strategy relies on variations in CCPs over consecutive
years.

We construct an annual employment profile for each woman between the age of 39 and 60, where 60 is assumed to
be the terminal period of a woman’s labor participation decision: women are typically out of the labor force by age 60,
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able 1
imulation results for a data generating process (DGP) of rational expectations (RE): finite horizon.

Estimates with SB Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1 −2 −2.01 −2.01 −2.00 −2.00 −2.00 −2.00 −2.00 −2.00
(0.25) (0.19) (0.14) (0.09) (0.14) (0.10) (0.08) (0.05)

u2 0.4 0.39 0.40 0.39 0.40 0.40 0.40 0.40 0.40
(0.23) (0.16) (0.13) (0.08) (0.15) (0.10) (0.08) (0.05)

u3 2.1 2.15 2.14 2.12 2.11 2.10 2.10 2.10 2.10
(0.37) (0.26) (0.19) (0.12) (0.20) (0.14) (0.11) (0.07)

S0(1|1) 0.8 0.74 0.74 0.76 0.78
(0.26) (0.24) (0.20) (0.15)

S0(2|1) 0.1 0.16 0.17 0.17 0.14
(0.21) (0.20) (0.18) (0.13)

S0(3|1) 0.1 0.10 0.09 0.08 0.08
(0.14) (0.12) (0.09) (0.07)

S0(1|2) 0.2 0.22 0.21 0.21 0.21
(0.31) (0.29) (0.27) (0.23)

S0(2|2) 0.6 0.43 0.45 0.46 0.50
(0.35) (0.35) (0.33) (0.32)

S0(3|2) 0.2 0.35 0.35 0.33 0.29
(0.32) (0.31) (0.28) (0.23)

S0(1|3) 0.1 0.10 0.09 0.09 0.09
(0.12) (0.10) (0.10) (0.08)

S0(2|3) 0.19 0.21 0.20 0.20 0.20
(0.28) (0.23) (0.21) (0.15)

S0(3|3) 0.71 0.69 0.71 0.71 0.71
(0.24) (0.19) (0.16) (0.10)

S1(1|1) 0.2 0.32 0.31 0.29 0.30
(0.31) (0.29) (0.27) (0.24)

S1(2|1) 0.6 0.39 0.41 0.46 0.47
(0.38) (0.37) (0.36) (0.34)

S1(3|1) 0.2 0.30 0.28 0.25 0.24
(0.29) (0.24) (0.20) (0.16)

S1(1|2) 0.5 0.39 0.39 0.40 0.41
(0.36) (0.32) (0.30) (0.24)

S1(2|2) 0.2 0.24 0.24 0.25 0.27
(0.32) (0.30) (0.30) (0.27)

S1(3|2) 0.3 0.37 0.37 0.35 0.33
(0.34) (0.31) (0.28) (0.21)

Note: GDP is under rational expectations: S0 = T 0 and S1 = T 1 .
Estimation with subjective beliefs is under the normalization S1(x3) = T 1(x3).

e.g., see Eckstein and Wolpin (1989). The number of years observed in the data varies across women. Table 7 summarizes
the frequency of observations by years. As shown there, the 1673 women in our sample are not evenly distributed across
years. About 34% of them appear in 17 years of data; more than half of them appear in over 13 years of data. Table 8
presents the summary statistics of our sample. We aggregated the information for those women who are observed at
least six years (for the purpose of identification), and income is expressed in 1999 dollars. The average household income
was $57,700, with relatively large variation across households and over years. The majority of the women in our sample
were between 42 and 55 years of age, and their average educational attainment was high school. On average (at the
individual-by-year level), 58% of these women were employed at the time of the survey.

7.2. Model specification

Each household in the sample is assumed to maximize its present value of utility over a known finite horizon by
choosing whether the wife works in each discrete time period. The discount factor β is assumed to be 0.95. This framework
fits into a finite horizon model. A household’s flow utility function is assumed to be stationary and is specified as (we
suppress the index t whenever there is no ambiguity)

u(a, x, ϵ) =

{
ϵ0, if a = 0,
u(x) + ϵ1, if a = 1,

where ϵ0 and ϵ1 are drawn from a mean-zero type-I extreme value distribution and are assumed to be independent over
time; a is a binary variable that equals 1 if the wife works, and 0 otherwise; x is the household income.

Analysis of finite horizon DDCs requires assumptions of continuation values in the terminal period. In the existing
literature, a simple approach is to assume the continuation value in the terminal period to be zero, then the choice-specific
value function in the terminal period is the same as the stationary flow utility. This assumption simplifies estimation:
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Table 2
Simulation results for a DGP of subjective beliefs (SB): finite horizon.

Estimates with subjective beliefs Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1 −2 −2.03 −2.02 −2.00 −2.00 −2.29 −2.28 −2.28 −2.28
(0.24) (0.17) (0.13) (0.09) (0.14) (0.10) (0.08) (0.05)

u2 0.4 0.40 0.40 0.39 0.40 0.47 0.47 0.47 0.47
(0.24) (0.17) (0.13) (0.08) (0.14) (0.10) (0.08) (0.05)

u3 2.1 2.13 2.13 2.12 2.11 1.66 1.66 1.66 1.66
(0.34) (0.24) (0.19) (0.12) (0.16) (0.12) (0.09) (0.06)

S0(1|1) 0.9 0.86 0.86 0.88 0.90
(0.20) (0.19) (0.16) (0.12)

S0(2|1) 0.05 0.08 0.09 0.07 0.05
(0.16) (0.15) (0.13) (0.08)

S0(3|1) 0.05 0.06 0.05 0.05 0.05
(0.10) (0.09) (0.07) (0.05)

S0(1|2) 0.1 0.16 0.14 0.15 0.13
(0.25) (0.23) (0.23) (0.19)

S0(2|2) 0.8 0.57 0.60 0.62 0.65
(0.36) (0.34) (0.33) (0.31)

S0(3|2) 0.1 0.27 0.27 0.24 0.22
(0.29) (0.27) (0.23) (0.22)

S0(1|3) 0.05 0.04 0.04 0.04 0.04
(0.06) (0.05) (0.04) (0.03)

S0(2|3) 0.095 0.12 0.10 0.10 0.10
(0.19) (0.14) (0.11) (0.09)

S0(3|3) 0.855 0.84 0.86 0.86 0.86
(0.19) (0.13) (0.10) (0.08)

S1(1|1) 0.6 0.55 0.56 0.57 0.62
(0.32) (0.31) (0.28) (0.22)

S1(2|1) 0.3 0.32 0.34 0.34 0.28
(0.33) (0.32) (0.31) (0.25)

S1(3|1) 0.1 0.12 0.11 0.09 0.10
(0.18) (0.14) (0.11) (0.09)

S1(1|2) 0.25 0.29 0.27 0.28 0.28
(0.29) (0.27) (0.25) (0.22)

S1(2|2) 0.6 0.41 0.42 0.45 0.45
(0.37) (0.36) (0.35) (0.33)

S1(3|2) 0.15 0.31 0.31 0.27 0.27
(0.29) (0.27) (0.25) (0.21)

Note: GDP is under subjective beliefs: S0 ̸= T 0 and S1 ̸= T 1 , but S1(x3) = T 1(x3).
Estimation with subjective beliefs is under the normalization S1(x3) = T 1(x3).

there is no need to estimate the additional predetermined continuation value for the terminal period. However, such
an assumption is not appropriate in our application, because agents are still alive after the last decision period and the
continuation value is likely to be nonzero after they stop working. To better describe agents’ decisions, we allow the
continuation value of the terminal period to be nonzero and specify the choice-specific value function in the terminal
period as:

ũ(a, x, ϵ) =

{
ϵ0, if a = 0,
ũ(x) + ϵ1, if a = 1.

The specification u(x) = ũ(x) is equivalent to a zero continuation value for the terminal period (See Arcidiacono and
Ellickson, 2011).

Note that our identification applies to discrete state variables, but income is continuous. Therefore, we divide the
observed household income into three segments (J = 3):

x =

⎧⎨⎩
1, if household income ≤ $17, 000,
2, if $17, 000 < household income ≤ $150, 000,
3, if household income > $150, 000,

where x = 1, 2, 3 are referred to as low, medium, and high income, respectively. The cutoff of $17,000 is roughly the U.S.
Department of Health & Human Services (HHS) poverty line for a family size of four, and $150,000 is the income level
that leads to a ‘‘good’’ life in America according to a survey of WSL Strategic retail.10

10 Rosenberg, Yuval (2012, March 7), The Fiscal Times. Retrieved from https://www.businessinsider.com/the-basic-annual-income-every-american-
would-need-is-150000-2012-3.

https://www.businessinsider.com/the-basic-annual-income-every-american-would-need-is-150000-2012-3
https://www.businessinsider.com/the-basic-annual-income-every-american-would-need-is-150000-2012-3
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able 3
imulation results for a DGP of RE: finite horizon.

Estimates with subjective beliefs Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1 −2 −2.02 −2.02 −2.01 −2.01 −2.00 −2.00 −2.00 −2.00
(0.21) (0.15) (0.11) (0.07) (0.14) (0.10) (0.08) (0.05)

u2 0.4 0.39 0.40 0.39 0.40 0.40 0.40 0.40 0.40
(0.21) (0.15) (0.11) (0.07) (0.15) (0.10) (0.08) (0.05)

u3 2.1 2.14 2.13 2.12 2.11 2.10 2.10 2.10 2.10
(0.36) (0.24) (0.18) (0.12) (0.20) (0.14) (0.11) (0.07)

S0(1|1) 0.8 0.76 0.76 0.76 0.77
(0.15) (0.12) (0.11) (0.09)

S0(2|1) 0.1 0.17 0.16 0.16 0.15
(0.19) (0.17) (0.16) (0.15)

S0(3|1) 0.1 0.07 0.07 0.07 0.08
(0.08) (0.07) (0.07) (0.06)

S0(1|2) 0.2 0.27 0.25 0.26 0.24
(0.26) (0.26) (0.25) (0.25)

S0(2|2) 0.6 0.48 0.51 0.50 0.52
(0.44) (0.44) (0.44) (0.43)

S0(3|2) 0.2 0.25 0.24 0.24 0.23
(0.20) (0.19) (0.19) (0.18)

S0(1|3) 0.1 0.11 0.11 0.10 0.10
(0.12) (0.11) (0.11) (0.10)

S0(2|3) 0.19 0.20 0.18 0.19 0.19
(0.23) (0.20) (0.19) (0.18)

S0(3|3) 0.71 0.70 0.71 0.71 0.71
(0.17) (0.13) (0.10) (0.09)

Note: GDP is rational expectation: S0 = T 0 and S1 = T 1 .
Estimation allowing for subjective belief is with normalization of S1 , i.e., S1 = T 1 .

Table 4
Simulation results for a DGP of SB: finite horizon.

Estimates with subjective beliefs Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1 −2 −2.01 −2.01 −2.00 −2.01 −1.65 −1.65 −1.64 −1.64
(0.19) (0.14) (0.11) (0.07) (0.13) (0.10) (0.07) (0.04)

u2 0.4 0.40 0.41 0.40 0.41 0.45 0.45 0.44 0.45
(0.20) (0.15) (0.11) (0.07) (0.14) (0.10) (0.07) (0.05)

u3 2.1 2.14 2.13 2.12 2.11 1.72 1.72 1.72 1.72
(0.33) (0.23) (0.18) (0.11) (0.17) (0.12) (0.09) (0.06)

S0(1|1) 0.9 0.88 0.88 0.89 0.89
(0.10) (0.08) (0.06) (0.05)

S0(2|1) 0.05 0.09 0.08 0.08 0.07
(0.12) (0.10) (0.09) (0.08)

S0(3|1) 0.05 0.04 0.04 0.04 0.04
(0.05) (0.04) (0.04) (0.03)

S0(1|2) 0.1 0.25 0.23 0.22 0.19
(0.25) (0.25) (0.24) (0.22)

S0(2|2) 0.8 0.53 0.58 0.59 0.63
(0.43) (0.42) (0.42) (0.39)

S0(3|2) 0.1 0.22 0.20 0.19 0.17
(0.19) (0.19) (0.19) (0.17)

S0(1|3) 0.05 0.05 0.05 0.05 0.05
(0.07) (0.06) (0.06) (0.05)

S0(2|3) 0.095 0.09 0.09 0.09 0.09
(0.13) (0.11) (0.10) (0.09)

S0(3|3) 0.855 0.85 0.86 0.85 0.86
(0.11) (0.08) (0.06) (0.05)

Note: GDP is under the subjective beliefs: S0 ̸= T 0 but S1 = T 1 .
Estimation with subjective beliefs is under the normalization S1 = T 1 .

We impose two assumptions to identify the model. First, we assume that subjective beliefs are homogeneous, even
though women in our sample differ in age and education.11 We believe that homogeneity of subjective beliefs is a

11 We can easily incorporate heterogeneous subjective beliefs in our analysis. However, such an approach would require a larger sample size.
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Table 5
Simulation results for a DGP of RE: infinite horizon.

Estimates with subjective beliefs Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1(x1) 0.1 0.08 0.09 0.09 0.09 0.10 0.11 0.10 0.10
(0.16) (0.11) (0.08) (0.06) (0.17) (0.12) (0.09) (0.06)

u1(x2) 0.2 0.21 0.21 0.21 0.20 0.20 0.20 0.20 0.20
(0.18) (0.12) (0.10) (0.07) (0.18) (0.13) (0.10) (0.06)

u2(x1) 0.2 0.16 0.16 0.17 0.18 0.20 0.20 0.20 0.20
(0.09) (0.08) (0.07) (0.06) (0.06) (0.05) (0.03) (0.02)

u2(x2) −0.2 −0.18 −0.17 −0.19 −0.20 −0.20 −0.20 −0.20 −0.20
(0.10) (0.08) (0.08) (0.07) (0.07) (0.05) (0.04) (0.02)

S0(1|1) 0.6 0.84 0.81 0.77 0.71
(0.33) (0.33) (0.36) (0.36)

S0(2|1) 0.45 0.30 0.29 0.37 0.44
(0.44) (0.42) (0.44) (0.43)

Note: GDP is under rational expectations: Sx
0 = T x

0 and Sx
1 = T x

1 .
Estimation with subjective beliefs is under the normalization Sx

1 = T x
1 .

Table 6
Simulation results for a DGP of SB: infinite horizon.

Estimates with subjective beliefs Estimates with rational expectations

True N = 300 N = 600 N = 1000 N = 2500 N = 300 N = 600 N = 1000 N = 2500

u1(x1) 0.1 0.09 0.09 0.09 0.10 0.11 0.11 0.11 0.11
(0.16) (0.11) (0.09) (0.06) (0.17) (0.12) (0.09) (0.06)

u1(x2) 0.2 0.21 0.19 0.19 0.19 0.19 0.18 0.19 0.19
(0.17) (0.13) (0.10) (0.07) (0.17) (0.13) (0.10) (0.06)

u2(x1) 0.2 0.18 0.19 0.19 0.19 0.22 0.22 0.22 0.22
(0.09) (0.08) (0.07) (0.06) (0.06) (0.04) (0.03) (0.02)

u2(x2) −0.2 −0.20 −0.20 −0.21 −0.21 −0.23 −0.22 −0.23 −0.23
(0.10) ( 0.09) (0.09) (0.08) (0.06) (0.05) (0.04) (0.02)

S0(1|1) 0.7 0.81 0.77 0.76 0.72
(0.33) (0.35) (0.34) (0.31)

S0(2|1) 0.3 0.28 0.33 0.36 0.35
(0.42) (0.43) (0.43) (0.40)

Note: GDP is under subjective beliefs: Sx
0 ̸= T x

0 but Sx
1 = T x

1 .
Estimation with subjective beliefs is under the normalization Sx

1 = T x
1 .

Table 7
Distribution of observations (by number of years).
# years 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# obs 101 109 135 105 102 104 102 94 89 94 79 91 85 85 80 71 147
cum % 6.04 12.55 20.6 26.9 33.0 39.2 45.3 50.9 56.3 61.9 66.6 72.0 77.1 82.2 87.0 91.2 100

Table 8
Descriptive statistics.

# of observations Mean Std. Dev. 5-th pctile median 95-th pctile

Age 22, 941 48.84 5.96 40 49 59
Education† 22, 941 3.98 1.84 0 4 7
Annual income (10K $) 22, 941 5.77 6.02 0.67 4.81 13.31
Employment 22, 941 .58 .49 0 1 1

Note: The number of observations is aggregated at individual-by-year level. Income is in 1999 dollars. Education is
classified into nine groups. 1: 0–5 grades; 2: 6–8 grades; 3: some high school; 4: completed high school; 5: 12 grades
plus non-academic training; 6: college, no degree; 7: college, bachelors degree; 8: college, advanced or professional
degree, some graduate work; 9: not reported.

reasonable first-order approximation because we only focus on women between ages 39 to 60. Arguably, they are
sufficiently experienced that age and eduction would not significantly affect their subjective beliefs. Second, we assume
that subjective beliefs about the future income distribution for those high-income households with a working wife,
i.e., s(x′

|x = 3, a = 1), is known to be the same as the objective transition observed in the data. This normalization is
equired for identification as stated in Assumption 6A. We impose this restriction because the future income for a high-
ncome household with a working wife is less uncertain than in the other cases. For example, high-income households
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able 9
stimates of subjective, objective beliefs and preference parameters.

Transition (a = 0) Transition (a = 1) Preference

Low Medium High Low Medium High Stationary Ending

sub.
Low 1.000 0.000 0.000 0.748 0.249 0.003 −0.611 −0.686

(0.000) (0.000) (0.000) (0.169) (0.181) (0.075) (0.238) (0.160)
Medium 0.150 0.850 0.000 0.000 1.000 0.000 0.224 0.111

(0.058) (0.186) (0.156) (0.000) (0.000) (0.000) (0.049) (0.112)
High 0.000 0.999 0.001 – – – 0.335 0.132

(0.049) (0.186) (0.168) – – – (0.169) (0.580)

obj.
Low 0.749 0.249 0.002 0.754 0.244 0.001 −0.243 −0.748

(0.015) (0.015) (0.001) (0.017) (0.017) (0.001) (0.086) (0.146)
Medium 0.069 0.921 0.011 0.039 0.947 0.015 0.413 0.149

(0.004) (0.004) (0.002) (0.002) (0.003) (0.002) (0.041) (0.099)
High 0.007 0.237 0.756 0.002 0.294 0.704 0.496 0.272

(0.005) (0.037) (0.037) (0.002) (0.032) (0.033) (0.200) (0.472)

Note: The columns ‘‘ending‘‘ and ‘‘stationary’’ are corresponding to the estimates of flow utility in the terminal period and other periods,
respectively.

may not qualify for some social welfare programs as low-income households do, so it is relatively easier for high-income
households to predict their future income if the wife works.

7.3. Estimation results

To estimate the model, we use the setting described in Theorem 1, where identification requires at least 2J = 6 periods
f observations. Thus, for our sample we retain those who appear in at least six periods.
Table 9 presents the estimation results of both subjective beliefs and rational expectations, and the preferences.12 The

op panel provides estimates of transition matrices and parameters of utility under subjective beliefs. For comparison, the
ottom panel displays estimates obtained by imposing the assumption of rational expectations, for which the parameters
re estimated by using maximum likelihood directly on the data. Table 9 reveals discrepancies between subjective beliefs
ersus rational expectations. We formally test whether the two sets of transition matrices are the same—i.e., whether
ouseholds hold rational expectations about income transitions—by using a Wald test. Conditional on both non-working
nd working status, we reject at the 1% significance level the null hypothesis that subjective beliefs and their objective
ounterparts are equal. The results indicate that agents do not have perfect foresight about income transition. This implies
hat our understanding of agents’ working decisions under the assumption of rational expectations could be misleading.
e also use the Wald test to determine whether households’ subjective beliefs vary conditional on the wife’s working

tatus. We find that at the 1% significance level subjective beliefs of households with a working wife differ significantly
rom those with a non-working wife. We further conduct a similar Wald test for the objective transitions of income and
btain similar results. These results demonstrate that agents are sophisticated enough to predict the different impacts of
heir actions on income transitions, even though they do not have rational expectations.

Next we test whether households’ subjective beliefs are stationary or not over time. The women in our sample range
rom 39 to 60, so there are 21 periods (years), except for the terminal period. Because identification requires at least 6
eriods of observations, we divide the whole sample period into three equal stages: age 39 to 45; age 46 to 52; and age
3 to 59. Let θ1s, θ2s, and θ3s denote the parameters of subjective beliefs in the three stages, respectively. We assume that
ouseholds are not aware of the future change in beliefs when they make decisions, and that their preferences do not
hange over time.
Note that normalization is required for each set of subjective beliefs. We use the objective transition in the same state

o pin down the subjective beliefs for high-income households with a working wife, i.e., s(x′
|x = 3, a = 1). We jointly

stimate the flow utility, continuation value in the ending period, and the three different sets of subjective beliefs by
aximizing the likelihood function. Let θ ≡ (θu, θ e

1s, θ
e
2s, θ

e
3s) be the parameters of preferences and subjective beliefs, the

og-likelihood function is

Qn(θ ) = max
θ

n∑
i=1

(
60∑

t=53

log pt (ait |xit; θu, θ
e
3s, θ̂

n
s ) +

52∑
t=46

log pt (ait |xit; θu, θ
e
2s, θ̂

n
s )

+

45∑
t=39

log pt (ait |xit; θu, θ
e
1s, θ̂

n
s )

)
, (32)

12 Before estimating the model parameters, we test the rank of the observed matrix ∆ξ and find that it is full rank, i.e., Assumption 5A holds.
i,K



Y. An, Y. Hu and R. Xiao / Journal of Econometrics 222 (2021) 645–675 667
where θn
s is obtained from the estimated objective state transition by using all of the data. Based on the estimates of θ̂ ,

we can use the Likelihood-Ratio (LR) test to check the stationarity of agents’ subjective beliefs, where the null hypothesis
is

H0 : θ e
1s = θ e

2s = θ e
3s.

The LR test statistic is

LR = 2 · (Qn(θ̂ ) − Qn(θ̃ )), (33)

where θ̂ and θ̃ are the MLE estimates of θ under the alternative and null hypothesis, respectively. Because θ e
js, j =

1, 2, 3 contain 10 independent parameters, the LR test statistic is asymptotically distributed according to a chi-squared
distribution with a degree of freedom of 20. We find that the p-value of the test is 0.084. Thus we fail to reject the null
hypothesis that subjective beliefs are stationary at a significance level of 5%. However, we stress that these findings are
based on the ad hoc assumption that beliefs are unchanged for each phase and women are unaware of the change in their
subjective beliefs in the future. While these findings are useful for us to justify Assumption 2(b), one should be cautious
in using the results as evidence against learning.

There are two important observations from the estimated transition matrices in Table 9. First, households with a
non-working wife are overly pessimistic about their income transitions; those with a working wife are less so. For
example, among medium-income households with a non-working wife, agents expect their household income to stay in
the medium category with probability 0.85 and to drop into the low income category with probability 0.15. By contrast,
the objective transition probabilities for income staying at medium, dropping to low, or increasing to high are 0.92, 0.07,
and 0.01, respectively. A similar pattern can be seen for households of low and high income. On the other hand, for
households with a working wife, subjective beliefs are very close to the objective transition probabilities, even though
rational expectations are rejected as we described above. This finding demonstrates that deviation of subjective beliefs
from rational expectations is action dependent. Since investigation of expectation formation is beyond the scope of this
paper, we leave this to future work.

Second, agents have ‘‘asymmetric’’ beliefs about their income transitions. In households with a non-working wife,
agents of medium-income households believe that income will remain at medium with probability 0.85, which is about
0.07 below the corresponding objective probability. However, agents of high-income households are more pessimistic:
they believe with almost certainty that income will drop to medium, while the objective probability of this drop is
just 0.24. This finding is consistent with survey data suggesting asymmetric beliefs of agents. For example, Heimer
et al. (2019) find discrepancies between surveyed mortality expectations and actuarial statistics from the Social Security
administration, and these discrepancies differ across age groups.

Under both subjective beliefs and rational expectations, estimated preferences share a similar pattern: women prefer
to work if their household income is medium or high; they prefer not to work if their current income is low. This
may be because women in low-income households likely have less educational attainment, and consequently face less
attractive job options. This may explain a reluctance to work. Our estimates of agent preferences indicate that the utility
of the terminal period is different from the flow utility under both rational and subjective beliefs. This implies that the
continuation value after the terminal period is not zero, at least for this dataset.

Next, we investigate how the discrepancies between subjective and rational expectations affect women’s labor force
participation. For this purpose, we conduct a counterfactual analysis, using the estimates in Table 9 to simulate CCPs and
to compute percentage differences under subjective and rational expectations. The results presented in Table 10 suggest:
(1) having rational expectations would decrease labor participation; and (2) the impact of subjective beliefs on labor
participation choice is heterogeneous. Regardless of household income level, women with rational expectations would be
less likely to work. However, this disparity decreases as the women approach age 60. The difference in CCPs between the
two sets of beliefs for women in low-income households is about three times that of those in the medium and high-income
categories. For example, at age 57, the percentage difference of CCPs for low, medium, and high-income categories are
12.8%, 4.4%, and 3.7%, respectively. This counterfactual analysis has important policy implications. If a policymaker aims
to promote labor participation of women, then providing them with accurate information about income transitions would
not work, because there is already an oversupply of labor due to their subjective beliefs.

8. Concluding remarks

This paper studies DDC models with agents holding subjective beliefs about the state transition; these beliefs may
be different from the objective transition probabilities observed in the data. We show that agents’ subjective beliefs
and preferences are nonparametrically identified in both finite and infinite horizon cases. The identification in both the
infinite and finite horizon frameworks relies on exclusion restrictions. We propose estimating the model using a maximum
likelihood estimator, and we present Monte Carlo evidence to illustrate that our estimator performs well with mid-sized
samples. Applying our methodology to PSID data, we illustrate that households do not hold rational expectations about
their income transitions. The discrepancies between their subjective beliefs and the objective transition probabilities may
lead to a significant difference in women’s labor force participation. Our estimates also shed light on how subjective beliefs
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Table 10
Simulated conditional choice probabilities.

Sub. belief. Rational exp. Percentage diff.

x = 1 x = 2 x = 3 x = 1 x = 2 x = 3 x = 1 x = 2 x = 3

t = 55 0.423 0.599 0.614 0.351 0.563 0.581 −17.1% −6.1% −5.3%
t = 56 0.414 0.594 0.610 0.351 0.562 0.581 −15.2% −5.3% −4.6%
t = 57 0.402 0.587 0.604 0.351 0.561 0.582 −12.8% −4.4% −3.7%
t = 58 0.388 0.579 0.597 0.351 0.560 0.582 −9.6% −3.2% −2.4%
t = 59 0.371 0.568 0.584 0.351 0.558 0.583 −5.2% −1.7% −0.2%
t = 60 0.335 0.528 0.533 0.335 0.528 0.533 0.0% 0.0% 0.0%

Note: The percentage difference is defined as
[
CCPs (sub. belief.) − CCPs (rational. exp.)

]
/CCPs (sub. belief.).

ffect agents’ dynamic decisions and what policies would be appropriate for improving labor market participation among
omen.
A direction for future research is to relax some important assumptions in this paper, e.g., invariant subjective beliefs,

nd to incorporate learning into the model. While our method is introduced in the context of discrete choice, it may be
ossible to extend it to dynamic models with continuous choice, e.g., life-cycle consumption problems. We are considering
hese possibilities for future work.

ppendix. Proofs

This section provides proofs for all the identification results.

.1. Proof of Theorem 1

The proof of Theorem 1 is sketched in the main text. Therefore, we only provide proofs for the main steps used to
erive Theorem 1.

erivation of Eq. (4). To derive the matrix representation of the log ratio of CCPs, we first rewrite the summation of the
alue function in a matrix representation, taking into account the construction of the belief vector. That is,

J∑
x′=1

Vt+1(x′)s(x′
|x, a) =

J−1∑
x′=1

Vt+1(x′)s(x′
|x, a) + βVt+1(J)

[
1 −

J−1∑
x′=1

s(x′
|x, a)

]
=

J−1∑
x′=1

[
Vt+1(x′) − Vt+1(J)

]
s(x′

|x, a) + βVt+1(J).

≡ Sa(x)V t+1 + βVt+1(J). (A.1)

Consequently, the log ratio of CCPs for any t can be represented as:

ξt,i,K (x) ≡ log
(

pt,i(x)
pt,K (x)

)
=
[
ui(x) − uK (x)

]
+ β

∑
x′

Vt+1(x′)
[
s(x′

|x, i) − s(x′
|x, K )

]
= ui(x) − uK (x) + β

[
Si(x) − SK (x)

]
V t+1. (A.2)

Derivation of Eq. (7). We derive the recursive relationship of value functions over time. We first express the ex-ante value
function using the choice-specific value function vt,K (x) with an adjustment of − log pt,K (x). Specifically, the ex-ante value
function at t can be expressed as

Vt (x) = − log pt,K (x) + vt,K (x)

= − log pt,K (x) + uK (x) + β
∑
x′

Vt+1(x′)s(x′
|x, a)

= − log pt,K (x) + uK (x) + βSK (x)V t+1 + βVt+1(J).

onsequently, the ex-ante value function for state x ∈ X , x ̸= J relative to J in period t can be represented as

Vt (x) − Vt (J) =
[
− log pt,K (x) + uK (x) + βSK (x)V t+1 + βVt+1(J)

]
−
[
− log pt,K (J) + uK (J) + βSK (J)V t+1 + βVt+1(J)

]
= −

[
log p (x) − log p (J)

]
+
[
u (x) − u (J)

]
+ β

[
S (x) − S (J)

]
V .
t,K t,K K K K K t+1
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We stack the equation above for all state x, x ̸= J and obtain the following matrix form.

V t ≡

⎛⎜⎝ Vt (1) − Vt (J)
Vt (2) − Vt (J)

. . .

Vt (J − 1) − Vt (J)

⎞⎟⎠
= −

⎛⎜⎝ log pt,K (1) − log pt,K (J)
log pt,K (2) − log pt,K (J)

. . .

log pt,K (J − 1) − log pt,K (J)

⎞⎟⎠+

⎛⎜⎝ uK (1) − uK (J)
uK (2) − uK (J)

. . .

uK (J − 1) − uK (J)

⎞⎟⎠+ β

⎛⎜⎝ SK (1) − SK (J)
SK (2) − SK (J)

. . .

SK (J − 1) − SK (J)

⎞⎟⎠V t+1

≡ − log pt,K + uK + S̃KV t+1,

here log pt,K and uK are defined similarly to V t , and S̃K ≡
[
SK (1)−SK (J), SK (2)−SK (J), . . . , SK (J−1)−SK (J)

]′. Consequently,
we have the following recursive relationship of ex-ante value functions over time.

V t = − log pt,K + uK + S̃KV t+1. (A.3)

dentification of beliefs associated with other actions. In what follows, we show that the subjective beliefs associated with
ther actions i′, i′ ̸= i and i′ ̸= K , can be identified. First we show that the ex ante value functions ∆V t+1 can be identified
or period t = 2, . . . , T − 1 through Eq. (6) with the belief matrices S i and SK being identified.

∆ξt,i,K = β[S i − SK ]∆V t+1. (A.4)

e augment this equation into a matrix form:

∆ξ2i,K = β[S i − SK ]∆V 2, (A.5)

ote that ∆ξ2i,K =

[
∆ξ2,i,K ∆ξ3,i,K . . . ∆ξT−1,i,K

]
and ∆V 2

≡

[
∆V 2, ∆V 3, . . . ∆V T−1

]
. The matrix ∆ξ2i,K ,

ize of (J − 1) × (T − 2), is full row rank because it is one part of the matrix ∆ξi,K , size of 2(J − 1) × (T − 2), is full row
ank. The full rank Assumption 4 allows us to identify ∆V 2 as β−1

[S i − SK ]
−1∆ξ2i,K .

We then can identify the beliefs for action i′, i′ ̸= i and i′ ̸= K as follows.

∆ξ2i′,K = β[S i′ − SK ]∆V 2

= β[S i′ − SK ]β−1
[S i − SK ]

−1∆ξ2i,K

↔ S i′ − SK = ∆ξ2i′,K [∆ξ2i,K ]
+
[S i − SK ]

↔ S i′ = SK + ∆ξ2i′,K [∆ξ2i,K ]
+
[S i − SK ] (A.6)

he first equality holds due to equation eq: identify i’ for all other choices i′ ̸= i, K . The second equality plugging in the
dentified ∆V 2. The third equality holds with [∆ξ2i,K ]

+ being the right inverse of the matrix ∆ξ2i,K .

.2. Proof of Theorem 2

First we stack all moment conditions involving the log ratios of CCPs in Eq. (10) in the following matrix representation:

S̃K [S i − SK ]
−1∆ξ1i,K − β−1

[S i − SK ]
−1∆ξ2i,K = ∆ log pK .

hen the belief matrix associated with action K is known, we can rewrite the equation above in the following
ectorization expression:

vec(∆ log pK ) = vec (̃SK [S i − SK ]
−1∆ξ1i,K ) − vec(β−1

[S i − SK ]
−1∆ξ2i,K )

= [(∆ξ1i,K )
′
⊗ (̃SK )]vec([S i − SK ]

−1) − β−1
[(∆ξ2i,K )

′
⊗ I]vec([S i − SK ]

−1)

= [(∆ξ1i,K )
′
⊗ (̃SK ) − β−1(∆ξ2i,K )

′
⊗ I]vec([S i − SK ]

−1), (A.7)

here [(∆ξ1i,K )
′
⊗ (̃SK ) − β−1(∆ξ2i,K )

′
⊗ I] is a (T − 2) · (J − 1) by (J − 1) · (J − 1) matrix. Identification requires

(∆ξ1i,K )
′
⊗ (β S̃K ) − (∆ξ2i,K )

′
⊗ I] is of full column rank, which implicitly imposes the restriction T − 2 ≥ J − 1. Again, the

ull rank condition is empirically testable.

.3. Identification with the terminal period

In this subsection, we show that the model can be identified using fewer periods of data than the one required in
heorems 1–2 if data on the terminal period are available, i.e., T is the terminal period.
If we assume that the continuation value in the terminal period is zero, agents do not need to form beliefs for the

uture at the terminal period. Thus, CCPs in the terminal period allow us to identify the relative preference [u (x)−u (x)],
i K
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egardless agents have subjective or rational expectations. Once the flow utility is identified by using CCPs in the terminal
eriod, the impact of preference on the log ratio of CCPs is known. Consequently, we do not need to eliminate the utility
o identify subjective beliefs as in Theorems 1–2. Specifically, we rewrite Eq. (4) as:

ηt,i,K (x) ≡ ξt,i,K (x) − [ui(x) − uK (x)]

= β[Si(x) − SK (x)]V t+1, (A.8)

here ηt,i,K (x) is identified because the utility difference ui(x) − uK (x) is identified. We collect all variations of ηt,i,K (x)
ver time in the following matrix:

ηi,K ≡

[
η2,i,K η4,i,K . . . ηT ,i,K
η1,i,K η3,i,K . . . ηT−1,i,K

]
,

here ηt,i,K is defined analogously to the matrix collecting all log ratio of CCPs ∆ξt,i,K . Similar to Theorems 1–2, we can
identify the subjective beliefs by imposing a rank condition stated in the following:

Assumption A.3.1. (a) The number of periods observed is not smaller than 2J − 1, i.e, T ≥ 2J − 1. (b) The matrix ηi,K is
of full row rank.

Similar to Assumptions 5A and 5B, Assumption A.3.1 is also testable. We summarize the identification result in the
following corollary to Theorem 1.

Corollary 1. Suppose that Assumptions 1–4, A.3.1, and 6A hold. Then the subjective beliefs s(x′
|x, a) for x, x′

∈ {1, 2, . . . , J}
and a ∈ {1, 2, . . . , K } are identified as a closed-form function of the CCPs, pt (a|x), for t = 1, . . . , T , where T ≥ 2J − 1.

Corollary 1 shows that 2J − 1 periods of data (versus 2J periods required in Theorem 1) are sufficient for identification if
the terminal period of data are available.

Analogously, if the terminal period is observed and Assumption 6B is imposed, i.e., SK is known, we can improve upon
Theorem 2 by identifying the model with J −1 periods of data. We provide some brief discussions on the identification as
the procedure is similar to that of Corollary 1 . First of all, utility function can be recovered from the choice in the terminal
period. Using this information and the known subjective beliefs SK , we can identify value function V t for t = 1, 2, . . . , T .
To identify the beliefs S i, we only need to use Eq. (A.8) with S i being the only unknown. We define

η̃i,K ≡

[
η1,i,K , η2,i,K , . . . , ηT ,i,K

]
,

which is an observed (J − 1) × T matrix. A testable full rank condition is necessary for identification.

Assumption A.3.2. (a) The number of periods observed is not smaller than J − 1, i.e., T ≥ J − 1. (b) The matrix η̃i,K is of
full row rank.

We present the identification result under Assumption A.3.2 as a corollary to Theorem 2:

Corollary 2. Suppose that Assumptions 1–4, A.3.2, and 6B hold. Then the subjective beliefs s(x′
|x, a) for x, x′

∈ {1, 2, . . . , J}
and a ∈ {1, 2, . . . , K }, are identified as a closed-form function of the CCPs, pt (a|x) for t = 1, . . . , T , where T ≥ J − 1

A.4. Proof of Theorem 3

This section provides all necessary proofs for Theorem 3.

Derivation of Eq. (13). To derive the matrix representation of the log ratio of CCPs, we first rewrite the summation of the
value function in a matrix representation, taking into account the construction of the belief vector. That is,

J∑
x′=1

M∑
w′=1

Vt+1(x′, w′)s(x′
|x, a)f (w′

|w)

=

J−1∑
x′=1

M∑
w′=1

Vt+1(x′, w′)s(x′
|x, a)f (w′

|w) + β

M∑
w′=1

Vt+1(J, w′)f (w′
|w)
[
1 −

J−1∑
x′=1

s(x′
|x, a)

]
=

J−1∑
x′=1

M∑
w′=1

[
Vt+1(x′, w′) − Vt+1(J, w′)

]
s(x′

|x, a)f (w′
|w) + β

M∑
w′=1

Vt+1(J, w′)f (w′
|w).

≡

M∑
w′=1

Sa(x)Vt+1(w′)f (w′
|w) + β

M∑
w′=1

Vt+1(J, w′)f (w′
|w)
≡ Sa(x)V t+1F (w) + V t+1,w, (A.9)
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where

Vt+1(w) ≡ [Vt+1(x = 1, w) − Vt+1(J, w), . . . , Vt+1(x = J − 1, w) − Vt+1(J, w)]′,
F (w) = [f (w′

= 1|w), . . . , f (w′
= M|w)]′,

V t+1 ≡ [Vt+1(w = 1), . . . , Vt+1(w = M)],

V t+1,w ≡ β

M∑
w′=1

Vt+1(J, w′)f (w′
|w).

Consequently, the log ratio of CCPs in period t can be represented as:

ξt,i,K (x, w) ≡ log
(

pt,i(x, w)
pt,K (x, w)

)
=
[
ui(x, w) − uK (x, w)

]
+ β

∑
x′

M∑
w′=1

Vt+1(x′)
[
s(x′

|x, i) − s(x′
|x, K )

]
f (w′

|w)

=
[
ui(x, w) − uK (x, w)

]
+ β

[
Si(x) − SK (x)

]
V t+1F (w). (A.10)

Derivation of Eq. (16). Under the assumption that S i − SK is invertible, we consider (15) for both t and t + 1,

∆V t+1Fw = β−1(S i − SK )−1∆ξt,i,K ,

∆V tFw = β−1(S i − SK )−1∆ξt−1,i,K . (A.11)

We then follow similar argument to the case without the additional state variable w to derive the recursive relationship
of the first differences of ex-ante value functions. First of all, we can represent the ex-ante value function using the
choice-specific value function vt,K (x, w) with an adjustment of the corresponding CCPs, i.e., − log pt,K (x, w).

Vt (x, w) = − log pt,K (x, w) + vt,K (x, w)

= − log pt,K (x, w) + uK (x, w) + β

J∑
x′=1

M∑
w′=1

Vt+1(x′, w′)s(x′
|x, K )f (w′

|w)

= − log pt,K (x, w) + uK (x, w) + βSK (x)V t+1F (w) + V t+1,w.

The ex-ante value relative to the reference state x = J for any w is

Vt (x, w) − Vt (J, w)
=
[
− log pt,K (x, w) + uK (x, w) + βSK (x)V t+1F (w) + V t+1,w

]
−
[
− log pt,K (J, w) + uK (J, w) + βSK (J)V t+1F (w) + V t+1,w

]
= −

[
log pt,K (x, w) − log pt,K (J, w)

]
+
[
uK (x, w) − uK (J, w)

]
+ β

[
SK (x) − SK (J)

]
V t+1F (w)

By the construction of V t , we stack Vt (x, w) − Vt (J, w) for x ∈ {1, 2, . . . , J − 1} and all w,

V t =

⎛⎜⎝ Vt (1, 1) − Vt (J, 1) Vt (1, 2) − Vt (J, 2) . . . Vt (1,M) − Vt (J,M)
Vt (2, 1) − Vt (J, 1) Vt (2, 2) − Vt (J, 2) . . . Vt (2,M) − Vt (J,M)

. . .

Vt (J − 1, 1) − Vt (J, 1) Vt (J − 1, 2) − Vt (J, 2) . . . Vt (J − 1,M) − Vt (J,M)

⎞⎟⎠
≡ − log pt,K + uK + β S̃KV t+1Fw,

where log pt,K and uK are analogously defined to V t . Taking the first difference of the equation above, we have the
following recursive relationship, which is similar to (8)

∆V t = −∆ log pt,K + β S̃K∆V t+1Fw, (A.12)

where ∆V t ≡ V t − V t−1, and ∆ log pt,K is defined in the same way as V t . Multiplying Fw to both sides of the equation
above,

∆V tFw = −∆ log pt,K Fw + β S̃K∆V t+1FwFw.

Plugging matrices ∆V tFw and ∆V t+1Fw from (A.11) into the equation above leads to the following moment condition
with beliefs being the only unknowns:

β−1(S − S )−1∆ξ = −∆ log p F + S̃ (S − S )−1∆ξ F .
i K t−1,i,K t,K w K i K t,i,K w
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quivalently, we have[̃
SK [S i − SK ]

−1, −β−1
[S i − SK ]

−1
][

∆ξt,i,KFw

∆ξt−1,i,K

]
= ∆ log pt,KFw,

where
[

∆ξt,i,KFw

∆ξt−1,i,K

]
is a (2J − 2) by M matrix.

A.5. Proof of Theorem 4

Proof of Lemma 1. Note that the ex-ante value function can be represented as

V (x, w) = − log pK (x, w) + β
∑
x′,w′

V (x′, w′)f (w′
|w)s(x′

|x, K ).

With a slight abuse of notation, we have the following matrix representation,

V = − log pK + β ŜKVFw

where V ≡ {V (x = i, w = j)}i,j is a J ×M matrix, pK is defined analogously. ŜK ≡ {s(x′
= j|x = i, K )}i,j is a J × J matrix. To

erive a closed-form expression for the ex-ante value function, we first vectorize the matrix expression in the following.

vec(V ) = vec(− log pK + β ŜKVFw)
= vec(− log pK ) + β[F ′

w ⊗ ŜK ]vec(V )

s a result,

vec(V ) =
[
I − β(F ′

w ⊗ ŜK )
]−1

vec(− log pK ). (A.13)

ote that
[
I − β(F ′

w ⊗ ŜK )
]
is invertible without imposing any restrictions.

.6. Proof in Remark 3

We consider identification of subjective beliefs under an alternative assumption to Assumption 7 on the transition of
tate variables. In particular, the state evolution satisfies the following conditions.

ssumption A.6.1. (a) The observed state variables x and w evolve independently, i.e,

f (x′, w′
|x, w, a) = f (x′

|x, a)f (w′
|w, a) = f (x′

|x)f (w′
|w, a),

here f (w′
|w, a) is the w’s evolution process .

b) Agents believe that the state variables x and w evolve independently and have rational expectations on the evolution
f w.

s(x′, w′
|x, w, a) = s(x′

|x)s(w′
|w, a) = s(x′

|x)f (w′
|w, a). (A.14)

nder Assumption A.6.1, we can represent the log ratio of CCPs in period t as

ξt,i,K (x, w) ≡
[
ui(x, w) + β

∑
x′,w′

Vt+1(x′, w′)f (w′
|w, i)s(x′

|x)
]

−
[
uK (x, w) + β

∑
x′,w′

Vt+1(x′, w′)f (w′
|w, K )s(x′

|x)
]
.

≡ ui(x, w) − uK (x, w) + βS(x)V t+1
[
Fi(w) − FK (w)

]
, (A.15)

here S(x) ≡ [s(x′
= 1|x), . . . , s(x′

= J|x)], V t is a J by M − 1 matrix with its (k, j)-th element being Vt (x = k, w =

) − Vt (x = k, w = M), and Fa(w) ≡ [f (w′
= 1|w, a), . . . , f (w′

= M − 1|w, a)]′ excluding the state w′
= M because they

um up to be 1. The first difference of log ratio of CCPs is

∆ξt,i,K (x, w) ≡ ξt,i,K (x, w) − ξt−1,i,K (x, w)
≡ βS(x)∆V t+1

[
Fi(w) − FK (w)

]
,

he matrix representation of the equation above is

∆ξt,i,K ≡ βS∆V t+1
[
F i − FK

]
, (A.16)

here ∆ξt,i,K is a J by M − 1 matrix with its (k, j)-th element being ∆ξt,i,K (x = k, w = j), S ≡ [S(x = 1), S(x = 2), . . . ,
(x = J)]′, and F i ≡ [Fi(w = 1), . . . , Fi(w = M − 1)]. We then represent the value function recursively by backward
nduction, ˜
V t = − log pt,K + uK + βSV t+1FK ,
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where F̃K is defined analogously to S̃K , and the first difference of value function also has a recursive representation

∆V t = −∆ log pt,K + βS∆V t+1F̃K . (A.17)

he derivation of the above equation is analogous to that in Eq. (A.12), so we skip the detail here.
To separate the unknown value function from the subjective beliefs, we need to impose the following rank conditions,

hich is similar to that in Assumption 4.

ssumption A.6.2. Both S and F i − FK have full rank.

Note that F i−FK is a knownM−1 byM−1 matrix, so the full rank assumption is empirically testable. With this full rank
ondition, we can represent the first difference of the ex ante value function in the following closed-form representation
f beliefs:

∆V t+1 = β−1S−1∆ξt,i,K
[
F i − FK

]−1
.

lugging this closed-form representation of the first difference of ex ante value function into its recursive relationship and
earranging term leads to the following moment conditions with beliefs being the only unknowns:

β−1∆ξt−1,i,K
(
F i − FK

)−1
= S

[
−∆ log pt,K + ∆ξt,i,K

(
F i − FK

)−1F̃K

]
. (A.18)

ote that the equation above holds for t = 3, 4, . . . , T . We stack all the T − 2 equations and have

S

⎛⎜⎜⎜⎜⎜⎝

[
−∆ log p3,K + ∆ξ3,i,K

[
F i − FK

]−1F̃K

]′

...[
−∆ log pT ,K + ∆ξT ,i,K

[
F i − FK

]−1F̃K

]′

[1, 1, . . . , 1]

⎞⎟⎟⎟⎟⎟⎠

′

  
A

=

⎛⎜⎜⎜⎜⎜⎝
β−1

[
∆ξ3,i,K

(
F i − FK

)−1
]′

...

β−1
[
∆ξT ,i,K

(
F i − FK

)−1
]′

[1, 1, . . . , 1]

⎞⎟⎟⎟⎟⎟⎠

′

  
B

, (A.19)

here A and B are both J by (T − 2)(M − 1)+ 1 matrices, and [1, 1, . . . , 1] is a 1× J vector of ones, which is included to
use the fact that every row of the beliefs S is a total probability so it adds up to be 1.

Assumption A.6.3. Matrix A has a full row rank.

Assumption A.6.3 implicitly requires that (T − 2)(M − 1) + 1 ≥ J . This assumption imposes restrictions to time period T
and the possible values w takes, M . Under this assumption, the right inverse of matrix A exists and we denote it as A+.
We apply the right inverse A+ to (A.19) to get a closed-form solution for S:

S = BA+ (A.20)

Theorem A.1. Under Assumptions 1–3, A.6.1, A.6.2, and A.6.3, the subjective beliefs s(x′
|x) for x, x′

∈ {1, 2, . . . , J} are
identified as a closed-form function of the CCPs pt (a|x, w) and the objective state transition ft (w′

|w, a) for t = 1, 2, . . . , T ,
where T ≥ ⌈∗⌉

J−1
M−1 + 2.

A.7. Proof of Theorem 5

The first-order Markov process {at , xt , τ } indicates

Pr(at+, xt+1, at , xt , at−) =

H∑
τ=1

Pr(at+|xt+1, τ ) Pr(xt+1, at |xt , τ ) Pr(τ , xt , at−),

=

H∑
τ=1

Pr(at+|xt+1, τ ) Pr(at |xt+1, xt , τ ) Pr(xt+1|xt , τ ) Pr(τ , xt , at−), (A.21)

where at+ = h(at+l, . . . , at+1) and at− = h(at−1, . . . , at−l).
Note that we have reduced the support of at+l, . . . , at+1 to be the same as that of τ by the mapping h(·). We define

the following matrices for given xt , xt+1 and at = k,

Mat+,xt+1,k,xt ,at− =

[
Pr(at+ = i, xt+1, k, xt , at− = j)

]
i,j

Mat+,xt+1,τ =

[
Pr(at+ = i|xt+1, τ = j)

]
i,j

Mτ ,xt ,at− =

[
Pr(τ = i, xt , at− = j)

]

i,j
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Dxt+1,k|xt ,τ = diag
{
Pr(xt+1, k|xt , τ = 1), . . . , Pr(xt+1, k|xt , τ = L)

}
Dk|xt+1,xt ,τ = diag

{
Pr(k|xt+1, xt , τ = 1), . . . , Pr(k|xt+1, xt , τ = L)

}
.

Eq. (A.21) can be rewritten as the following matrix form,

Mat+,xt+1,k,xt ,at− = Mat+|xt+1,τDk|xt+1,xt ,τDxt+1,k|xt ,τMτ ,xt ,at− . (A.22)

Similarly, we have

Mat+,xt+1,xt ,at− = Mat+|xt+1,τDxt+1|xt ,τMτ ,xt ,at− , (A.23)

where the matrices are defined analogously to those in (A.22) based on the following equality
K∑

at=1

Pr(at+, xt+1, at , xt , at−)

=

H∑
τ=1

Pr(at+|xt+1, τ )
[ K∑
at=1

Pr(xt+1, at |xt , τ )
]
Pr(τ , xt , at−)

=

H∑
τ=1

Pr(at+|xt+1, τ ) Pr(xt+1|xt , τ ) Pr(τ , xt , at−).

We use the first-order Markov property of {xt , at} to simply Pr(xt+1|xt , τ , at−) as Pr(xt+1|xt , τ ).
Under Assumption 10, the matrix Mat+,xt+1,xt ,at− for any given xt+1 and xt has full rank. The equation above implies

that Mat+|xt+1,τ , Dxt+1|xt ,τ and Mτ ,xt ,at− are all invertible. We take inverse of (A.23) and multiply it from right to (A.22)

Mat+,xt+1,k,xt ,at−M
−1
at+,xt+1,xt ,at− = Mat+|xt+1,τDxt+1,k|xt ,τD

−1
xt+1|xt ,τM

−1
at+,xt+1,τ

= Mat+|xt+1,τDk|xt+1,xt ,τM
−1
at+,xt+1,τ , (A.24)

The equation above shows an eigenvalue–eigenvector decomposition of an observed matrix on the left-hand side.
Assumptions 11 and 12 guarantee that this decomposition is unique. Therefore, the eigenvector matrix Mat+|xt+1,τ ,
i.e., Pr(at+|xt+1, τ ) is identified. We can recover the matrix Mτ ,xt ,at− from (A.23). The distribution f (xt+1, at |xt , τ ), and
therefore Pr(at |xt , τ ) = pt (at |xt , τ ) by integrating out xt+1, can then be identified from Eq. (A.21) due to the invertibility
of matrix Mat+,xt+1,τ .
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