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ABSTRACT

This paper develops a method of latent binary quantile regression for settings in which
the binary regressand is unobserved and proxied by multiple indicators. We demon-
strate how to identify and estimate parameters for conditional quantiles of the hidden
outcome, prove the strong consistency of the estimator, and run Monte Carlo experi-
ments to verify its finite-sample performance. Our empirical application attempts to
uncover factors affecting the harmony levels within college dormitory rooms. Among
other findings, we discover that sleeping schedule discordance damages relationship.
Both our approach and findings are applicable for management research and practice.

Keywords: Latent Binary Quantile Regression; Latent Maximum Score Estimator;
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I. INTRODUCTION

Entire literatures attempt to operationalize the measurement of vague but meaningful
concepts: health, utility, psychological traits, corporate social responsibility, and so on
(Bridgman, 1927; Feest, 2005). Inherent vagueness aside, another difficulty lies in the
systematic bias of available measurements. For example, a management scientist studying
the harmony of small teams may survey team members, but they are likely to underreport
disharmony.

This paper proposes a method to study such outcome variables when at least 2
available binary measurements satisfy assumptions to be detailed below. In particular, we
generalize binary quantile regression and the associated maximum score estimator of Manski
(1975, 1985) to allow for the measurement error of the binary regressand.

A binary quantile regression model (see Kordas, 2006; Horowitz, 2009; Sherman,
2010, for more formal introductions) works with a latent continuous regressand, and
an observed binary regressand which takes the value of 1 or 0 depending on whether
the continuous regressand is positive or not: e.g., the difference in utility levels of
two options and the associated dichotomous decision. By assumption, observations are
independent and identically distributed (assumed throughout the paper), and a quantile
of the continuous regressand conditional on regressors is a linear function of them.1 The
classical maximum score estimator consistently recovers the parameters of the function,
without making distributional assumptions – in particular, allowing for unknown patterns
of heteroskedasticity and nonexistence of error moments.

The estimator and its extensions have found success in empirical analysis of residential
mobility (Bartik, Butler, and Liu, 1992), credit card ownership (Bult, 1993), work-trip
mode (Horowitz, 1993b), food purchase (Blackburn, Harrison, and Rutström, 1994),
brand choice (Briesch, Chintagunta, and Matzkin, 2002), wireless service preferences
(Bajari, Fox, and Ryan, 2008), athlete-team matching (Yang, Shi, and Goldfarb, 2009),
faculty-office matching (Baccara et al., 2012), FCC spectrum auction (Fox and Bajari,
2013), university-industry collaboration (Mindruta, 2013; Banal-Estañol, Macho-Stadler,
and Pérez-Castrillo, 2018), online advertiser-publisher matching (Wu, 2015), bank mergers

1When the continuous regressand is observed, this is the standard quantile regression model of Koenker
and Bassett (1978). See Koenker and Hallock (2001) for an excellent review.
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(Akkus, Cookson, and Hortacsu, 2016), company research alliances (Mindruta, Moeen,
and Agarwal, 2016), executive-firm matching (Pan, 2017), sourcing (Fox, 2018), lending
relationships (Schwert, 2018), and physician collaboration network (Linde, 2019), among
others. All of them involve choice-based binary regressands, and the latent continuous
regressands are decision utility.

Our latent binary quantile regression allows the binary regressand to be latent. It takes
the value of 1 or 0 depending on whether the continuous regressand exceeds a threshold
(not necessarily 0). There are at least 2 binary measurements each of which takes the value
of 1 whenever the binary regressand is 1, but otherwise may fail to takes the value of 0. In
other words, we allow for misclassification but only in one direction. How restrictive this
assumption is depends on the application and measurements available, and Remark 2
details reasons why it may hold in many research settings including our application.

Under regularity assumption, we demonstrate how to achieve a closed-form
identification of the conditional distribution of the latent binary regressand, and how
the parameters of the linear conditional quantile function are identified up to scale (Lewbel,
2019). Accordingly, we develop a two-step estimation procedure: nonparametric kernel-
based estimation of the conditional distribution of the latent binary regressand, followed
by a step that seeks to find a maximizer of the latent score function, analogue of the score
function used as the criterion function for the maximum score estimator. We call such a
maximizer the latent maximum score estimator, and prove its strong consistency.

We also show how to utilize more than 2 measurements. The age of big data presents
ample opportunities to apply our method: different measurements can come from
administrative data, psychological experiments, survey, etc. Monte Carlo experiments
showcase how misclassification would cause systematic bias if we were to use the
traditional maximum score estimator, and that the latent maximum score estimator
addresses the issue and performs as expected.

Our approach is further applied to study the factors determining the harmony level
of small groups, an application of interest to management scientists.2 We surveyed
graduating seniors of a Chinese university,3 where most students stayed in the same

2The current editorial statement of the Organizations Department of the journal states that it “welcomes
submissions relevant to the internal operations and design of firms and other organizations,” and in
particular, “those that examine the dynamics of groups and teams.”

3We agreed not to publicize the name of the university as a precondition for the data collection. Lin,
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dormitory rooms for four years, and asked each student whether his/her room had been
harmonious for the past four years. The answers serve as multiple measures.

Accordingly, we run latent binary quantile regression to analyze the impact of gender,
ethnicity, having siblings, poverty, education in liberal arts, difference in past wake-up
time, and room size, on conditional quantiles of group harmony level across a spectrum of
quantiles. Among other findings, it is revealed that greater variance in past wake-up time
consistently predicts lower group harmony. To the best of our knowledge, the current
paper is the first regression analysis of the determinants of group harmony.4

Our approach builds upon an influential literature on measurement error, which is
too vast to review (an incomplete list of summaries includes Fuller, 1987; Wansbeek
and Meijer, 2000; Bound, Brown, and Mathiowetz, 2001; Hausman, 2001; Hyslop and
Imbens, 2001; Carroll et al., 2006; Chen, Hong, and Nekipelov, 2011; Schennach, 2016; Hu,
2017). Measurement error in discrete variables are called misclassification and treated
by various authors: e.g., Bollinger (1996); Hausman, Abrevaya, and Scott-Morton (1998);
Hsiao and Sun (1998); Lewbel (2000); Li, Trivedi, and Guo (2003); Cameron et al. (2004);
Lewbel (2007); Molinari (2008); Meyer and Mittag (2017); Ura (2018); Yanagi (2019); Ura
(2021). We borrow many insights from that literature, as well as the tradition of taking
advantage of multiple measurements to achieve identification (e.g., Hausman et al., 1991;
Li and Vuong, 1998; Li, 2002; Li and Hsiao, 2004; Schennach, 2004, 2007; Hu, 2008; Hu and
Schennach, 2008; Hu and Shum, 2012; Feng and Hu, 2013; Bonhomme, Jochmans, and
Robin, 2016; Gillen, Snowberg, and Yariv, 2019). It should also be noted that the seminal
method of Hausman et al. (2021) tackles the problem of classical measurement error in
(observed) regressands of quantile regressions (Koenker and Bassett, 1978).

The rest of the paper unfolds as follows. Section II introduces the latent binary quantile
regression model. Section III explains an identification strategy. Section IV introduces
the latent maximum score estimator and proves its strong consistency. Section V explains
how to utilize more than 2 measurements. Section VI conduct Monte Carlo experiments
to examine the finite sample performance of our estimator. Section VII describes the

Tang, and Yu (2020) study the same population of students.
4Such dearth is surprising to us. Social network researchers study enemy links, e.g., via the social balance

theory (Heider, 1958), and, in general, how various factors influence social interaction (Jackson, 2008; Goyal,
2012; Borgatti, Everett, and Johnson, 2018; Jackson, 2019).
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application of our method to the study of small group harmony. Section VIII concludes
and discusses future research.

II. The Model

In the latent binary quantile regression model, Y◦ is a latent continuous outcome variable, e.g.,
the harmony level of a small group in our empirical exercise. Two observable variables
(Y1,Y2) are binary measurements, e.g., survey answers to the question of whether a group
is harmonious. Section V treats cases of more than 2 measurements. Probabilistically, they
tend to take the value of 1 when Y◦ is high, and otherwise tend to take the value of 0. A
K × 1 vector X summarizes explanatory variables or regressors.

Assumption 1 rules out severe underreporting: there is a sufficiently large constant C ∈ R
such that when Y◦ is above C, neither measurement takes the value of 0.

Assumption 1. There exists C ∈ R such that P(Y1 = 0 | Y◦ ≥ C) = P(Y2 = 0 | Y◦ ≥ C) = 0.

Instead of Assumption 1, our method works equally well with a symmetric “no severe
overreporting assumption,” which states that there exists a sufficiently small constant C′ ∈ R
such that when Y◦ is below C′, neither measurement takes the value of 1.

Assumption 1′. There exists C′ ∈ R such that P(Y1 = 1 | Y◦ ≤ C′) = P(Y2 = 1 | Y◦ ≤ C′) = 0.

Remark 1. The rest of the paper assumes Assumption 1, not Assumption 1′. When the latter holds
instead, we can define Y† B −Y◦, Y3 B 1−Y1, and Y4 B 1−Y2, and recognize that Assumption
1 now holds with Y†, Y3, Y4, and −C′ taking the place of Y◦, Y1, Y2, and C respectively. The
analysis can thus proceed with these new variables. Our approach fails when, with respect to any
C ∈ R, one measurement can be overreported and the other can be underreported.

Remark 2. It must be emphasized that only one of the two assumptions above needs to hold
for our method to apply. There are several important reasons why one might fail but not the
other. First, for instance, when a measurement is self-reported, “social desirability biases” may
be unidirectional (Bound, Brown, and Mathiowetz, 2001): e.g., there was no clear incentive for a
subject in a sufficiently harmonious group to report disharmony, while the opposite is not true due
to a general disinclination to report disharmony. Second, incomplete record or imperfect memory
may also affect a measurement in one direction but not the other: e.g., a sufficiently harmonious
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group should not have an administrative record of severe conflicts, but “absence of evidence does
not mean evidence of absence;” in a study of health, a sufficiently healthy person should not be
diagnosed with a severe illness, but the absence of such a diagnosis is not the same as good health.
Indeed, the Introduction lists past applications of binary quantile regression where regressands are
binary decisions, and it might as well happen that such decisions are recorded inaccurately in a
way that satisfies our assumptions.5

Define Y∗∗ B Y◦ − C. Because C is a constant, Y∗∗ is an equally valid outcome variable
of interest, serving as our regressand. Our model with respect to a fixed quantile τ ∈ (0, 1)
has

Qτ(Y∗∗ | X) = X′βτ,

where βτ is our primal estimands, a fixed K × 1 vector in a parameter space Bτ ⊂ RK; and
Qτ(Y∗∗ | X) denotes the τ-quantile of Y∗∗ conditional on X.

Remark 3. Defining ετ B Y∗∗−Qτ(Y∗∗ | X), we obtain a linear regression form as Y∗∗ = X′βτ+ετ,
where the conditional τ-quantile of the error term is Qτ(ετ | X) = 0. So conditional
heteroskedasticity is allowed. Also, βτ is allowed to vary across quantiles. This is a standard
“quantile regression model” (Koenker and Bassett, 1978; Koenker and Hallock, 2001) except that
Y∗∗ is unobserved.

Let 1{ · } be an indicator function which takes the value of 1 or 0 depending on whether
a statement is true or false, and define

Y∗ B 1{Y◦ ≥ C} = 1{Y∗∗ ≥ 0}.

So Y∗ equals 1 if Y∗∗ ≥ 0 and 0 otherwise. We call Y∗ a latent binary regressand.

Remark 4. Suppose Y∗ is not latent but observed. This becomes a classical “binary quantile
regression model” (Horowitz, 2009, Chapter 4). Manski (1975, 1985)6 applies the analogy principle
to define the classical “score function” on RK:

S0
τ(b) =

1
n

n∑
i=1

(Y∗i + τ − 1) · 1{XT
i b ≥ 0}. (1)

5For example, for work-trip mode (Horowitz, 1993b), a self-report might underreport automobile due to
social desirability biases, and an administrative record of parking might also underreport because a worker
can park elsewhere.

6He works with the case of α = 0.5. See Kordas (2006) for the general case.
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A classical “maximum score estimator” β̂0
τ of βτ maximizes S0

τ(·):

β̂0
τ ∈ B̂0

τ B arg max
b∈Bτ: |b1|=1

S0
τ(b),

where the restriction |b1| = 1 (or an alternative restriction such as fixing the Euclidean norm
||b|| = 1) is necessary because βτ is only identified up to scale. Manski (1985) proves its “strong
consistency” under appropriate regularity conditions, i.e.,

sup
β̂0
τ∈B̂0

τ

∣∣∣∣∣∣β̂0
τ − β

0
τ

∣∣∣∣∣∣ a.s.
→ 0.

However, neither Y∗∗ nor Y∗ is observed. The dataset contains n independent draws,
(Y1

i ,Y
2
i ,Xi)i=1,...,n, from the distribution of (Y1,Y2,X). Note that we abuse notation:

subscripts i and k for X respectively index different observations and regressors.
The next section shows how to identify βτ.

III. The Identification

Given the model above, we first identify the conditional probability function of the latent
binary regressand, P(Y∗ = y | X), where y ∈ {0, 1}.

Denote the support of X by supp(X). Assumption 2 states that conditional on
Y◦ < C and X taking a value in supp(X), the probability of both measurements being
0 is nonnegative. This is almost a trivial requirement for Y1 and Y2 to be relevant
measurements.

Assumption 2. P(Y1 = 0,Y2 = 0 | Y∗ = 0,X = x) > 0 for all x ∈ supp(X).

We impose a standard condition on the multiple measurements (e.g., see Li and Vuong,
1998; Li, 2002; Mahajan, 2006; Hu, 2008; Hu and Schennach, 2008; Arellano and Bonhomme,
2012; Schennach, 2016; Bonhomme, Jochmans, and Robin, 2017; Hu, 2017; Bonhomme,
Lamadon, and Manresa, 2019): they are mutually independent conditional on the latent
binary regressand and regressors.

Assumption 3. Y1
⊥ Y2

| (Y∗,X).

Remark 5. This nontrivial assumption is well accepted in the literature. In our case, there is an
extra justification. If we choose any C′ > C to take the role of C, Assumptions 1 and 2 are still
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valid. So Assumption 3 only needs to hold for one such C′ and Y∗ B 1{Y◦ ≥ C′} for the latent
binary quantile regression framework to apply.

Assumptions 1 to 3 support a closed-form identification of the conditional distribution
of the latent binary regressand.

Proposition 1. Given Assumptions 1 to 3, there is a closed-form identification ofP(Y∗ = 0 | X = x)
for all x ∈ supp(X):

P(Y∗ = 0 | X = x) =
P(Y1 = 0 | X = x) · P(Y2 = 0 | X = x)

P(Y1 = 0,Y2 = 0 | X = x)
. (2)

Proposition 1 allows us to treat P(Y∗ = 0 | X) and

E(Y∗ | X) = P(Y∗ = 1 | X) = 1 − P(Y∗ = 0 | X)

as observables.
We assume an extra rank condition standard for maximum score methods (Horowitz,

2009). Let X−1 B (X2, . . . ,XK), and similarly for any vector.

Assumption 4. The dimension of supp(X) is K. Further, X1 is continuous, and for almost every
x−1 in the projection of supp(X) to the (K − 1)-dimensional space for X−1, the distribution of X1

conditional on X−1 = x−1 has an everywhere positive density.

Our main identification result states that under assumptions above, βτ is identified up
to scale: with the absolute value of the first component of βτ normalized to 1, βτ is exactly
identified. This is the case for all maximum score methods we are aware of (Manski, 1985,
1988; Horowitz, 1992, 2009).

Proposition 2. Given Assumptions 1 to 4 and the normalization |βτ1| = 1, βτ is identified.

The next section defines the latent maximum score estimator for βτ and proves its
strong consistency.

IV. The Estimation

The identification above naturally leads to an estimation procedure with two major steps
corresponding to the two propositions.
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The first major step follows Proposition 1 to estimate the conditional expectation of the
latent binary regressand E(Y∗ | X) in a nonparametric way. Because it follows standard
kernel estimation procedures, we relegate details to Appendix A. The proposed estimator
has a strong uniform consistency property under regularity conditions.

Lemma 1. Given Assumptions 1 to 3 and standard regularity conditions, we have

sup
x∈supp(X)

∣∣∣Ê(Y∗ | X = x) − E(Y∗ | X = x)
∣∣∣ a.s.
→ 0.

The second major step follows Proposition 2 to obtain a practical estimator for βτ that
depends on (Y1

i ,Y
2
i ,Xi)i=1,...,n and not Y∗i s.

We modify the classical score function in Equation (1) to define the latent score function
Sτ : RK

→ R such that for all b ∈ RK,

Sτ(b) =
1
n

n∑
i=1

(
Ê(Y∗i | X = Xi) + τ − 1

)
· 1{XT

i b ≥ 0}. (3)

In other words, we replace Y∗i in the classical score function with its estimated conditional
expectation.

Accordingly, a latent maximum score estimator is defined as

β̂τ ∈ B̂τ B arg max
b∈Bτ: |b1|=1

Sτ(b).

Our main theorem concludes that our latent maximum score estimator is strongly
consistent for the estimands.

Theorem 1. Given the conditions of Lemma 1, Assumption 4, the normalization |βτ1| = 1, and a
compact set B ⊂ RK with Bτ ⊂ B, we have

sup
β̂τ∈B̂τ

∣∣∣∣∣∣β̂τ − βτ∣∣∣∣∣∣ a.s.
→ 0.

For a class of estimators including the maximum score estimators, Kim and Pollard
(1990) establish that, due to the lack of smoothness of the criterion functions, their
convergence rates are 3

√
n, slower than the usual root-n convergence (see Chamberlain,

1986, for an impossibility result for faster rates); and that the limiting distributions are
nonstandard. The standard bootstrap inference is invalid for such estimators (see Manski
and Thompson, 1986; Abrevaya and Huang, 2005; Léger and MacGibbon, 2006, for more
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details), but subsampling (Politis and Romano, 1994; Politis, Romano, and Wolf, 1999) is
shown to be consistent by Delgado, Rodrıguez-Poo, and Wolf (2001). The logic applies to
our latent maximum score estimators (the readers can refer to the papers cited above for
details), so this paper adopts the subsampling approach to obtain the confidence intervals
of our latent maximum score estimator in the empirical exercises.

It must be emphasized that there are a few attractive alternatives for inference. For
instance, Lee and Pun (2006) and Lee and Yang (2020) demonstrate the validity of using
the m-out-of-n bootstrap (Bickel, Götze, and van Zwet, 1997). Dümbgen (1993) and Hong
and Li (2020) respectively propose the rescaled bootstrap and the numerical bootstrap.
Patra, Seijo, and Sen (2018) provide a model-based smoothed bootstrap procedure.
Cattaneo, Jansson, and Nagasawa (2020) achieve consistency of bootstrap-based inference
by altering the shape of the criterion functions defining a large class of estimators.

It should be mentioned that, according to Manski (1985, Corollary 1), the maximum
score estimator based on a single measurement Y1 is consistent when misclassification
is “random,” i.e., when Y1 = Y∗ with probability p > 0 and Y1 = 1 or −1 with the same
probability 0.5(1 − p) ≥ 0.7 If this pattern of randomness is justifiable in an empirical
setting, there is no need to deploy our method.

Remark 6. An alternative latent score function appears to utilize more information for estimation:
for every observation i with min{Y1

i ,Y
2
i } = 0, we know Y∗i = 0 by Assumption 1, so it seems

reasonable to replace Ê(Y∗i | X = Xi) with Y∗i = 0 in Equation (3) for such observations. But
Appendix C shows why this intuitively appealing approach may not be valid.

So far we assume the availability of two measurements, but there are plenty of settings
where more than two are available. The next section introduces one way to apply the
latent binary quantile regression method to those settings.

V. An Extensions to Cases of More Than 2 Measurements

When additional measurements are available, we may utilize them to improve the
efficiency of our estimation. For example, assume that two binary variables (Y3,Y4)
are extra measurements of the latent binary variable Y∗. They satisfy the assumptions

7In his model, Y∗ = −1 is used in place of Y∗ = 0.
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analogous to those for (Y1,Y2), i.e., Assumptions 1-3 holds with superscripts 1 and 2
replaced by 3 and 4 respectively. Possibly, (Y3,Y4) are available only for a subpopulation
with support supp3,4(X).8

Analogously, we may use (Y3,Y4) to estimate the conditional expectation of the latent
binary regressand, Ê3,4(Y∗ | X = x) for any x ∈ supp3,4(X). Denote the original estimate
generated from (Y1,Y2) by Ê1,2(Y∗ | X = x). For any x ∈ supp3,4(X), we estimate
Ê(Y∗ | X = Xi) using the average of Ê1,2(Y∗ | X = Xi) and Ê3,4(Y∗ | X = Xi):

Ê(Y∗ | X = x) =


1
2Ê

1,2(Y∗ | X = x) + 1
2Ê

3,4(Y∗ | X = x) if x ∈ supp3,4(X);

Ê1,2(Y∗ | X = x) if x ∈ supp(X) \ supp3,4(X).
(4)

Analogous to Lemma 1, given the assumptions, we have

sup
x∈supp3,4(X)

∣∣∣Ê3,4(Y∗ | X = x) − E(Y∗ | X = x)
∣∣∣ a.s.
→ 0,

and thus

sup
x∈supp(X)

∣∣∣Ê(Y∗ | X = x) − E(Y∗ | X = x)
∣∣∣ a.s.
→ 0.

Theorem 1 still holds for a latent maximum score estimator using the new Ê(Y∗ | X = x)
from Equation (4). The finite sample performance of the new estimator shall improve
thanks to an more accurate estimate of E(Y∗ | X = Xi) for those observations associated
with (Y3

i ,Y
4
i ).

Similarly, extra pairs of measurements such as (Y5,Y6), if available and satisfying
analogous assumptions, can be utilized to improve the finite sample performance of our
latent maximum score estimator in the same way: we only need to update Ê(Y∗ | X = x)
by taking the average of Ê1,2(Y∗ | X = x), Ê3,4(Y∗ | X = x), and Ê5,6(Y∗ | X = x).

The next section follows the aforementioned procedure to analyze idealized datasets.
For our empirical exercises, the first major estimation step relied on the R package “np”
(Nonparametric Kernel Methods for Mixed Datatypes), and the second step relied on
Gurobi for Matlab in conducting mixed-integer programming. An off-the-shelf personal
computer carried out all tasks.

8For instance, in our empirical exercise, room size is an explanatory variable, so supp3,4(X) only covers
rooms with at least 4 students.
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VI. Monte Carlo Experiments

We run Monte Carlo experiments to assess the finite sample performance of latent binary
quantile regression (LBQR), and compare the results with binary quantile regression (BQR)
which simply uses each measurement as the regressand.

The latent continuous and binary regressands come from the specification

Y∗∗ = β1X1 + β2X2 + β3X3 + ε;

Y∗ = 1{Y∗∗ ≥ 0}.

Here, the regressors X1, X2, and X3 respectively follow the standard normal distribution,
the Bernoulli distribution on {−1, 1}with equal probabilities, and the uniform distribution
on [−1, 1]. The error term ε follows the normal distribution with mean 0 and standard
deviation 1

1+||X||2 conditional on X, so heteroskedasticity is built in. Let β1 = β2 = β3 = 1.
We have

Q0.5(Y∗∗ | X) = β1X1 + β2X2 + β3X3,

so this is a binary median regression setup, with the normalization β1 = 1 and the
estimands being (β2, β3).

Two measurements, Y1 and Y2, are independently distributed conditional on (Y∗,X)
(Assumption 3) such that P(Y1 = 0 | Y∗ = 1,X) = P(Y2 = 0 | Y∗ = 1,X) = 0 (Assumption 1),
and

P(Y1 = 1 | Y∗ = 0,X) = P(Y2 = 1 | Y∗ = 0,X) =
X2 + X3

5
+ 0.4.

Therefore, potential overreporting probabilities fully cover the interval of [0, 0.8] as well
as those estimated probabilities in our empirical application (Section VII).

Given the data generating process above, our experiment adopts a 3 × 3 × 3 factorial
design. The first factor is the sample size: the three levels being 250, 500, and 1000. The
second factor is the numbers of measurements: the levels being 2, 4, and 8. For each of
these nine settings, we draw 200 random samples. For each sample, we calculate two
score functions based on Y1 and Y2 respectively, and estimate one latent score function
through the aforementioned kernel approach (Section V applies when there are more
than 2 measurements); then obtain two maximum score estimators of BQR and one latent

12
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maximum score estimator of LBQR via maximizing the three criterion functions subject
to the normalization β1 = 1. In other words, the third factor is the estimation method.

Table 1 summarizes the performance of BQR and LBQR: for each of the 27 experimental
conditions, there are 200 estimates of (β2, β3), and it reports the average biases and mean
squared errors against the benchmark of (1, 1).

As would be predicted by theory, the average biases of BQR estimates (based on
measurements Y1 or Y2) exhibit no clear signs of trending towards zero: all of them are
larger than 0.2, that is, BQR consistently overestimates the effects of X2 and X3. This
is reasonable: it is assumed that the overreporting probabilities are strictly increasing
functions of two regressors, which gives the false impression that they positively influence
the latent binary and continuous regressands to a significantly greater extent than the
truth. Our LBQR produces uniformly smaller average biases (in absolute values) than
BQR, across all sample sizes and all measurement numbers.

Similarly, LBQR produces smaller mean squared errors than BQR across all sample
sizes and all measurement numbers except for one instance (for β3 in the single case of 250
observations and 8 measurements). The mean squared errors from LBQR also show clear
signs of trending towards zero as the sample size increases, though at a rate slower than the
conventional root-n convergence; this is expected by the theory. Adding measurements
also substantially reduces mean square errors, so Section V appears to be a reasonable
approach of utilizing more than 2 measurements.

The next section empirically investigates the influencing factors of the harmony levels
of small groups, running LBQR with real-life data.

VII. An Application to Group Harmony

VII.A. The Background and Data Description

Group assignment and its effects have been well researched (e.g., Gale and Shapley, 1962;
Sacerdote, 2001; Bhattacharya, 2009; Calvó-Armengol, Patacchini, and Zenou, 2009; Epple
and Romano, 2011; Sacerdote, 2011; Lin, Tang, and Yu, 2020, among many). But we have
yet to find regression analysis on the determinants of group harmony in the literature.
This paper attempts to fill the gap. We first describe the data.

3,982 students enrolled in a Chinese university in 2015. Administrators manually
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assigned them to 955 dormitory rooms, each designed to house 3, 4, or 6 students.
The assignment followed the reformative guideline of randomizing and maximizing the
diversity of home province, ethnicity, and major within rooms. Most students stayed put
for four years: by the end of June 2019, 3,569 still lived in the same dormitory rooms
originally assigned to them.9

In June 2019, the Commission of Student Affairs of the university, in collaboration
with one of the authors, designed an online survey for all 3,933 students who were still
with the university. Administrators distributed survey links and requested all students
to finish the survey, and also provided administrative records of students’ demographic
information, room assignments, and other information.10 Using the dataset, Lin, Tang,
and Yu (2020) study the interdependence of roommates’ volunteering decisions.

Measurements of group harmony come from the 10th question of the survey: “Have
the interactions among all residents of your first dormitory room been harmonious in
the past four years?” The response rate was 96.21%. 951 (out of 955) dormitory rooms
have at least 2 measurements and no missing variables. Among them, 824 have at least 4
measurements, and only 36 have 6. Based on Section V, 2 or 4 measurements are randomly
drawn out of available candidates: Harmony ι for ι = 1, 2, 3, 4. Conflicting measurements
appeared in 356 rooms out of 951, i.e., 37.43% rooms have reports of both harmony and
disharmony. This stands as compelling evidence that misclassification is a valid concern.

For each room, the regressors we consider include Female (whether all residents were
female), Minority (whether at least one resident was non-Han Chinese), Sibling (whether at
least one resident had at least one sibling)11, Poverty (whether at least one resident received
allowances for students from low-income families), Arts (whether at least one resident
took the liberal-arts type of the college entrance examination instead of the sciences type),
and Room-Size (the number of original residents). In addition, Wake-Up is the standard

949 left the university (as dropouts, transfer students, or army recruits), 183 decided to live off campus,
and only 181 changed rooms. We learned that students needed approvals to change rooms or live off
campus, but were discouraged from doing so; this is common practice in China. Thanks to this feature,
attrition bias is most likely small in our study.

10The AEA RCT Registry number is AEARCTR-0004296. The public URL for the trial is
http://www.socialscienceregistry.org/trials/4296.

11An alternative is the proportion of residents who had at least one sibling, which exacerbates the curse
of dimensionality for nonparametric estimations. Similarly, Poverty and Arts are dummy variables instead
of continuous ones.
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deviation of the second answer to Question 4: “In high school years, roughly speaking,
on average, at what time did you go to bed? At what time did you wake up?”12 All the
regressors are arguably exogenous because they were determined before students arrived
on campus and started to interact with roommates. Table 2 reports summary statistics.

Table 2: Summary Statistics

Mean Std. Dev.
Female 0.692 0.462

Minority 0.229 0.421
Sibling 0.763 0.425
Poverty 0.492 0.500

Arts 0.766 0.424
Wake-Up 0.504 0.391

Room-Size 4.105 0.692
Harmony 1 0.869 0.338
Harmony 2 0.843 0.364
Harmony 3 0.850 0.358
Harmony 4 0.877 0.328

VII.B. Regression Analysis

In this application, the latent continuous regressand is the harmony level of a group
Harmony** and the binary one is the harmony indicator Harmony*.

Our latent binary quantile regression framework makes three key assumptions beyond
regularity conditions. First, the observations (corresponding to rooms) are largely
independent and identically distributed. It is not our view that each room is isolated
from others; however, we consider the assumption a first-order approximation.13 Second,
Assumption 1 rules out underreporting. As Section II shows, we effectively assume
that there exists a sufficiently high cutoff C that students in more harmonious rooms

12We allowed them to report decimal numbers – e.g., 22.5 means 22:30 p.m.
13The principle of mixing students in each room inadvertently reduced interaction between roommates

outside the room significantly: they usually took different classes and pursued different career goals (the
university also offered few elective courses which are open to students from different majors). As a first
approximation, we ignore interactions across different rooms within a dorm.
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never reported disharmony, which, in our view, is a reasonable approximation to reality.
Third, Assumption 3 requires measurements be independent conditional on Harmony*
and regressors. To this end, we used a red color to make it clear in our instruction: “You
must answer these questions independently and truthfully as soon as possible. And do
not discuss the details with anybody before the survey ends.”

We run latent binary quantile regression to study the impacts of aforementioned
regressors. Instead of assuming |βτ1| = 1, we apply the normalization of ‖βτ‖ = 1, which
enables us to sensibly compare effects of all regressors across different quantiles. Table
3 reports the estimation results at the 0.25, 0.5, and 0.75 quantiles. Hypothesis testing is
based on subsampling.14

Table 3: The Estimation Results

Quantile 0.25 0.5 0.75
Female -0.051 0.025 -0.086

Minority 0.955*** -0.004 -0.691***
Sibling 0.019 0.027 0.143
Poverty -0.201** -0.008 -0.066

Arts -0.020 -0.955*** -0.686***
Wake-Up -0.122*** -0.103** -0.074

Room-Size 0.074** 0.142*** 0.078
Intercept 0.154 -0.238 0.093***

Notes: ***Significant at the 99% level; **95%; *90%.

The estimates for the effects of Wake-Up are consistently negative, and, at the 0.25 and
0.5 quantiles, statistically significant at the 0.05 level. In other words, sleeping schedule
discordance (greater variation in wake-up times) predicts less harmony. For colleges, this
means putting students with similar sleeping schedules promotes dormitory harmony.
For companies, this might indicate the necessity of more research on how to avoid noise
and disturbance in office.

The estimates for the effects of Poverty and Arts are also consistently negative, half of
which are significant at the 0.05 level. For organizations striving for diversity, equity, and

14We randomly draw 1,000 subsamples with (block) size, b = n4/5 (Politis, Romano, and Wolf, 1999). There
is no established method for computing p-values for maximum score estimators.
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inclusion, one policy implication is the need for targeted team building mechanisms to
promote group harmony. The effects of Room-Size are consistently positive and mostly
significant, so smaller groups are less harmonious (here, group membership is not self-
selected). Less inference can be made regarding other regressors.

VIII. CONCLUDING REMARKS

Heraclitus famously said, “the hidden harmony is better than the obvious.” To uncover
the hidden harmony of small groups, this paper harnesses the obvious, i.e., the reports
from group members regarding whether it is harmonious or not.

Building upon the classical binary quantile regression model (Manski, 1985, 1975), we
assume that the binary regressand is latent. Given multiple measurements of the binary
regressand and a set of assumptions, parameters of latent binary quantile regression are
identified up to scale, and the latent maximum score estimator is strongly consistent. We
illustrate its finite sample performance in Monte Carlo experiments, and confirm that it
effectively corrects the bias caused by misclassification.

We apply the econometric method to examine how different factors affect group
harmony. Using reports from college roommates as multiple measurements, we find that
across different quantiles, the standard deviation of all roommates’ high-school wake-up
time is consistently and negatively correlated with higher conditional quantiles of group
harmony level, among other findings.

The method we develop is applicable to a wide variety of research topics, as pointed
out in the Introduction. For management research, our method is particularly suitable for
studying teamwork: many important aspects of teams are hard to measure, but surveys
of team members naturally endow researchers with multiple measurements, which may
be used to apply our method.

As our first attempt at addressing the latency of the binary regressand for binary
quantile regression, this paper uses the original approach of Manski (1975, 1985) as a
natural starting point. For example, there are extensions in the spirit of the methods
of Manski (1975), Matzkin (1993), Fox (2007), and Ouyang, Yang, and Zhang (2020),
for multinomial choices; the methods of Han (1987), Sherman (1993), Abrevaya (2000),
and Krief (2014) for more general regression functions; the methods of Manski (1987),
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Kyriazidou (1997), Honoré and Kyriazidou (2000), and Thomas (2006) for discrete choice
panel data; the methods of Manski and Tamer (2002) and Wan and Xu (2014) for interval
data and games of incomplete information; the methods of Moon (2004) and De Jong
and Woutersen (2011) for time series; the method of Chen (2010) for censored quantile
regression; the matching maximum score estimator of Fox (2010, 2018) for transferable
utility matching games; the method of Chen, Lee, and Sung (2014) which accommodates
decision under uncertainty; and the method of Chen and Lee (2018) for variable selection.

In addition, it is straightforward to generalize our estimator to a smoothed latent
maximum score estimator (Horowitz, 1992, 1993a,b, 2002; Kordas, 2006; Chen, Gao, and
Li, 2018), by replacing the latent score function for calculating the estimator with a smooth
approximation. At the cost of making slightly stronger distributional assumptions, we can
obtain faster rates of convergence and asymptotic normality, and use standard bootstrap
for inference. We can also generalize, for instance, the Bayesian approach of Benoit and
Van den Poel (2012), the local non-linear least squares approach of Blevins and Khan
(2013), the local polynomial smoothing approach of Chen and Zhang (2015), and the
Laplacian approach of Jun, Pinkse, and Wan (2017), all of which improve estimation in
important aspects. It is also meaningful to generalize the assumption of binary reports to
allow for ordered discrete choice, given that Likert-type scales are popular (Likert, 1932).
These are all left for future research.

APPENDIX

A. The First Step of the Estimation Procedure

Appendix A explains how to estimate E(Y∗ | X) using a kernel method.
Without loss of generality, assume that all regressors are continuous.15 Following

Rosenblatt (1956) and Li and Racine (2007, Chapter 1), let K0(·) be a valid univariate

15When regressors are mixed (remember that Assumption 4 dictates the existence of at least one continuous
regressor), to estimate joint distributions, Li and Racine (2007) examine the frequency-based approach in
Chapter 3 and the smooth approach in Chapter 4. Our paper follows the latter (see Aitchison and Aitken,
1976; Li and Racine, 2004; Racine and Li, 2004; Li and Racine, 2007, 2008, for discussions of the merits of
different approaches).
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kernel function such as the standard normal kernel with K0(v) = 1
√

2π
e−

1
2 v2 for any v ∈ R.

We estimate µ(x), the joint probability density function of X valued at any x ∈ RK, as

µ̂(x) B
1

nh1 . . . hK

n∑
i=1

K

(Xi − x
h

)
,

where h = (h1, . . . , hK) > 0 collects nuisance bandwidth parameters selected through cross-
validation, and K (·) is a “product kernel function” satisfying K

(
Xi−x

h

)
B

∏K
k=1K0

(
Xik−xk

hk

)
.

Silverman (1978) and Giné and Guillou (2002) provide standard regularity conditions16

for the strong uniform consistency of the kernel estimate, that is, for

sup
x∈RK

∣∣∣µ̂(x) − µ(x)
∣∣∣ a.s.
→ 0,

(as n→∞, where n is suppressed from µ̂n and other expressions for simplicity).
Then, based on the smooth approach to nonparametric estimation in the presence of

discrete variables, we estimate f (y1, y2, x), the joint density of (Y1,Y2,X) valued at (y1, y2, x),
for any y1, y2

∈ {0, 1} and x ∈ RK, as

f̂ (y1, y2, x) B
1

nh′1 . . . h
′

K

n∑
i=1

K

(Xi − x
h′

)
· λ

1{Y1
i ,y1

}

1 · (1 − λ1)1{Y1
i =y1

}
· λ

1{Y2
i ,y2

}

2 · (1 − λ2)1{Y2
i =y2

},

where h′ = (h′1, . . . , h
′

K) > 0 collects bandwidth parameters, and λ1, λ2 ∈ (0, 1) are also
nuisance parameters which approach 0 as n goes to infinity. Similarly, under standard
regularity conditions (Li and Ouyang, 2005; Mason and Swanepoel, 2015), we have

sup
y1,y2∈{0,1}; x∈RK

∣∣∣ f̂ (y1, y2, x) − f (y1, y2, x)
∣∣∣ a.s.
→ 0.

Since P(Y1 = y1,Y2 = y2
| X = x) =

f (y1,y2,x)
µ(x) for all x ∈ supp(X), we accordingly estimate

the conditional joint probability function of the two measurements as

P̂(Y1 = y1,Y2 = y2
| X = x) B

f̂ (y1, y2, x)
µ̂(x)

,

for any y1, y2
∈ {0, 1} and x ∈ supp(X) (Hardle, Janssen, and Serfling, 1988; Li and

Racine, 2007, Chapter 5). In practice, supp(X) may be unknown; and we only calculate
P̂(Y1 = y1,Y2 = y2

| X = Xi) for i = 1, . . . ,n and any y1, y2
∈ {0, 1}, because these are all we

need for the latent maximum score estimator. The strong uniform consistency of µ̂(x) and

16The conditions are technical and precisely stated in those papers. To avoid distraction from our main
messages, we refer to the cited papers.
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f̂ (y1, y2, x) implies that under standard regularity conditions,

sup
y1,y2∈{0,1}; x∈supp(X)

∣∣∣P̂(Y1 = y1,Y2 = y2
| X = x) − P(Y1 = y1,Y2 = y2

| X = x)
∣∣∣ a.s.
→ 0.

Note that the conditional joint probability function of the two measurements can also
be estimated in a parametric way via standard bivariate Probit or Logit regressions, when
the parametric distributional assumptions on the corresponding error terms are justifiable.

Finally, we obtain P̂(Y∗ = 0 | X = x), the estimator for the conditional probability of the
latent binary regressand Y∗ taking the value of 0, based on the closed-form identification
in Proposition 1. Specifically, on the right-hand side of Equation (2), the first half and
second half of the denominator can be respectively expressed as

P(Y1 = 0 | X = x) = P(Y1 = 0,Y2 = 1 | X = x) + P(Y1 = 0,Y2 = 0 | X = x);

P(Y2 = 0 | X = x) = P(Y1 = 1,Y2 = 0 | X = x) + P(Y1 = 0,Y2 = 0 | X = x).

So the formula can be expressed in terms of P(Y1 = y1,Y2 = y2
| X = x) with y1, y2

∈ {0, 1}.
To obtain P̂(Y∗ = 0 | X = x), we only need to replace such P(Y1 = y1,Y2 = y2

| X = x)
in the formula with P̂(Y1 = y1,Y2 = y2

| X = x). Then the estimator for the conditional
expectation of the latent binary regressand is Ê(Y∗ | X = x) B 1 − P̂(Y∗ = 0 | X = x).

B. Main Proofs

Proof of Proposition 1. According to our model setup, two measurements (Y1,Y2) and all
regressors X are observable. So we know that the joint conditional probability function,
P(Y1 = y1,Y2 = y2

| X = x), where y1, y2
∈ {0, 1} and x ∈ supp(X), is identified from the

observables. For simplicity, we suppress “conditional on X = x for all x ∈ supp(X)” in
what follows.

We have for all y1, y2
∈ {0, 1},

P(Y1 = y1,Y2 = y2) =
∑

y∈{0,1}

P(Y1 = y1,Y2 = y2
| Y∗ = y) · P(Y∗ = y)

=
∑

y∈{0,1}

P(Y1 = y1
| Y∗ = y) · P(Y2 = y2

| Y∗ = y) · P(Y∗ = y),

where the first equality follows from the law of total probability and the second from
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Assumption 3. Assumption 1 tells us that P(Y j = 0 | Y∗ = 1) = 0 for all j ∈ {0, 1}. Hence,

P(Y1 = 1,Y2 = 0) = P(Y1 = 1 | Y∗ = 0) · P(Y2 = 0 | Y∗ = 0) · P(Y∗ = 0); (5)

P(Y1 = 0,Y2 = 1) = P(Y1 = 0 | Y∗ = 0) · P(Y2 = 1 | Y∗ = 0) · P(Y∗ = 0); (6)

P(Y1 = 0,Y2 = 0) = P(Y1 = 0 | Y∗ = 0) · P(Y2 = 0 | Y∗ = 0) · P(Y∗ = 0). (7)

By Bayes’ theorem, Assumption 1 further tells us that for all j ∈ {0, 1},

P(Y∗ = 1 | Y j = 0) =
P(Y j = 0 | Y∗ = 1) · P(Y∗ = 1)

P(Y j = 0)
= 0. (8)

Equation (5) gives us

P(Y1 = 1 | Y∗ = 0) =
P(Y1 = 1,Y2 = 0)

P(Y2 = 0 | Y∗ = 0) · P(Y∗ = 0)

=
P(Y1 = 1,Y2 = 0)

P(Y∗ = 0 | Y2 = 0) · P(Y2 = 0)

=
P(Y1 = 1,Y2 = 0)
P(Y2 = 0)

,

(9)

where the second equality follows from Bayes’ theorem, and the third from Equation (8).
Note that Assumption 2 ensures positive denominators. Equation (6) implies an equality
symmetric to Equation (9):

P(Y2 = 1 | Y∗ = 0) =
P(Y1 = 0,Y2 = 1)
P(Y1 = 0)

. (10)

So we can derive from Equation (7) that

P(Y∗ = 0) =
P(Y1 = 0,Y2 = 0)

P(Y1 = 0 | Y∗ = 0) · P(Y2 = 0 | Y∗ = 0)

=
P(Y1 = 0,Y2 = 0)

(1 − P(Y1 = 1 | Y∗ = 0)) · (1 − P(Y2 = 1 | Y∗ = 0))

=
P(Y1 = 0,Y2 = 0) · P(Y1 = 0) · P(Y2 = 0)

(P(Y2 = 0) − P(Y1 = 1,Y2 = 0)) · (P(Y1 = 0) − P(Y1 = 0,Y2 = 1))

=
P(Y2 = 0) · P(Y1 = 0)
P(Y1 = 0,Y2 = 0)

,

where the third equality follows from Equations (9) and (10). This gives us the closed-form
identification. �
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Proof of Proposition 2. By Proposition 1, E(Y∗ | X) = P(Y∗ = 1 | X) is identified. According
to the model setup,

P(Y∗ = 1 | X = x) = P(ετ ≥ −X′βτ | X = x) = 1 − P(ετ < −X′βτ | X = x).

Since Qτ(ετ | X) = 0, we further have

P(Y∗ = 1 | X = x) T 1 − τ⇐⇒ X′βτ T 0.

Without loss of generality, let βτ1 = 1, and b B (1, b−1) , βτ be a false parameter value
vector that also satisfies the normalization, and

T1(b) B
{
x ∈ RK : x′βτ < 0 ≤ x′b

}
;

T2(b) B
{
x ∈ RK : x′b < 0 ≤ x′βτ

}
.

If P(X ∈ T1(b)) > 0, then b is observationally distinguishable from βτ: we can find a subset
of supp(X) with positive probability such that βτ entails P(Y∗ = 1 | X = x) < 1 − τ and
b entails P(Y∗ = 1 | X = x) ≥ 1 − τ. Similarly, if P(X ∈ T2(b)) > 0, b is observationally
distinguishable from βτ. Thus, βτ is identified if

P(X ∈ T1(b) ∪ T2(b)) > 0,

for all possible b , βτ.
But for any b , βτ, since b1 = βτ1 = 1,

T1(b) =
{
x ∈ R : −x′

−1b−1 ≤ x1 < −x′
−1βτ,−1

}
;

T2(b) =
{
x ∈ R : −x′

−1βτ,−1 ≤ x1 < −x′
−1b−1

}
.

By the second part of Assumption 4, P(X ∈ T1(b)) > 0 as long as −x′
−1b−1 < −x′

−1βτ,−1; and
P(X ∈ T2(b)) > 0 as long as −x′

−1βτ,−1 < −x′
−1b−1. Thus βτ is identified if

P(X′
−1b−1 = X′

−1βτ,−1) < 1,

which holds because the first half of Assumption 4 rules out an exact linear relation among
the components of X. �

Proof of Theorem 1. For any b ∈ B, let the population score function be defined as the
expectation of the classical score function

S0
τ(b) B E(S0

τ(b)) = E
[
(Y∗ + τ − 1) · 1{XTb ≥ 0}

]
= E

[
(E(Y∗ | X) + τ − 1) · 1{XTb ≥ 0}

]
, (11)
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where the first equality follows from the definition in Equation (1) and the second follows
from the law of iterative expectation. We can mechanically follow Manski (1985) to
demonstrate that S0

τ(·) attains its maximum at βτ given the restriction of |b1| = 1 (his
Lemma 3) and that S0

τ(·) is continuous (his Lemma 5).
Define the hypothetical latent score function on B:

SH
τ (b) =

1
n

n∑
i=1

(
E(Y∗ | X = Xi) + τ − 1

)
· 1{XT

i b ≥ 0}.

The gap between the latent score function and the hypothetical one converges to 0 almost
surely, uniformly over b ∈ B:

sup
b∈B: |b1|=1

∣∣∣Sτ(b) − SH
τ (b)

∣∣∣ = sup
b∈B: |b1|=1

∣∣∣∣∣1n
n∑

i=1

(
Ê(Y∗ | X = Xi) − E(Y∗ | X = Xi)

)
· 1{XT

i b ≥ 0}
∣∣∣∣∣

≤ sup
b∈B: |b1|=1

1
n

n∑
i=1

∣∣∣Ê(Y∗ | X = Xi) − E(Y∗ | X = Xi)
∣∣∣ · 1{XT

i b ≥ 0}

≤ sup
b∈B: |b1|=1

1
n

n∑
i=1

sup
x∈supp(X)

∣∣∣Ê(Y∗ | X = x) − E(Y∗ | X = x)
∣∣∣ · 1

= sup
x∈supp(X)

∣∣∣Ê(Y∗ | X = x) − E(Y∗ | X = x)
∣∣∣

a.s.
→ 0,

where the first line follows from the definitions and the last line follows from Lemma 1.
Now we show that the hypothetical latent score function converges to the population

score function almost surely, uniformly over b ∈ B. A family of functions indexed by
b ∈ RK,

F B
{

fb : RK
→ R

∣∣∣ b ∈ RK and fb(x) = xTb for all x ∈ RK
}
,

forms a finite-dimensional vector space, so by Lemma 2.6.15 in Van Der Vaart and Wellner
(1996), it is a VC-subgraph class of functions.17 By their Lemma 2.6.18 (viii) and (vi),
another family derived from F ,

F
′ B

{
fb : RK

→ R
∣∣∣ b ∈ RK and fb(x) = (E(Y∗ | X = x) + τ − 1) · 1{xTb ≥ 0} for all x ∈ RK

}
,

is VC-subgraph. By their Theorem 2.6.7 (see the comments below),F ′ satisfies the uniform

17VC stands for Vapnik-Čhervonenkis.
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entropy condition. Hence, according to their Theorem 2.5.2, F ′ is a Donsker class, and
thus a Glivenko-Cantelli class (Van Der Vaart and Wellner, 1996, Page 82). We thus have

sup
b∈B: |b1|=1

|SH
τ (b) − S0

τ(b)| a.s.
→ 0.

Given the two uniform strong convergence results above, we know that the latent score
function converges to the population score function almost surely, uniformly over b ∈ B:

sup
b∈B: |b1|=1

∣∣∣Sτ(b) − S0
τ(b)

∣∣∣ a.s.
→ 0.

Analogous to the proof of strong consistency by Manski (1985), we have established all
three major conditions for applying Theorem 2 in Manski (1983). The strong consistency
of β̂τ follows. �

C. An Alternative Latent Score Function

Formally, Remark 6 proposes an alternative latent score function S̃τ : RK
→ R such that for

all b ∈ RK,

S̃τ(b) =
1
n

n∑
i=1

(
min{Y1

i ,Y
2
i } · Ê(Y∗i | X = Xi) + τ − 1

)
· 1{XT

i b ≥ 0}.

The difference between the values of the latent score function and the alternative one
at each b ∈ RK is

Sτ(b) − S̃τ(b) =
1
n

n∑
i=1

(
1 −min{Y1

i ,Y
2
i }
)
· Ê(Y∗i | X = Xi) · 1{XT

i b ≥ 0},

which in general converges to a strictly positive number, not zero. The proof of the strong
consistency of the latent maximum score estimator (Theorem 1) relies on the fact that the
latent score function converges to the population score function of Equation (11) almost
surely, uniformly over b ∈ B. The alternative latent score function thus cannot converges
to the population score function almost surely, uniformly over b ∈ B.
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