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a b s t r a c t

This paper considers nonparametric identification of nonlinear dynamic models for panel data with
unobserved covariates. Including such unobserved covariates may control for both the individual-
specific unobserved heterogeneity and the endogeneity of the explanatory variables. Without specifying
the distribution of the initial condition with the unobserved variables, we show that the models are
nonparametrically identified from two periods of the dependent variable Yit and three periods of the
covariate Xit . The main identifying assumptions include high-level injectivity restrictions and require
that the evolution of the observed covariates depends on the unobserved covariates but not on the
lagged dependent variable. We also propose a sieve maximum likelihood estimator (MLE) and focus on
two classes of nonlinear dynamic panel data models, i.e., dynamic discrete choice models and dynamic
censoredmodels.We present the asymptotic properties of the sieveMLE and investigate the finite sample
properties of these sieve-based estimators through a Monte Carlo study. An intertemporal female labor
force participation model is estimated as an empirical illustration using a sample from the Panel Study of
Income Dynamics (PSID).

Crown Copyright© 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

There are very few papers that provide full nonparametric iden-
tification of panel data models in the existing literature. This paper
provides sufficient conditions for nonparametric identification of
nonlinear dynamic models for panel data with unobserved covari-
ates. These models take into account the dynamic processes by al-
lowing the lagged value of the dependent variable as one of the
explanatory variables as well as containing observed and un-
observed permanent (heterogeneous) or transitory (serially-
correlated) individual differences. Let Yit be the dependent variable
at period t and Xit be a vector of observed covariates for individual
i. We consider nonlinear dynamic panel data models of the form:

Yit = g (Xit , Yit−1,Uit , ξit) ,

∀i = 1, . . . ,N; t = 1, . . . , T − 1, (1)
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where g is an unknown nonstochastic function, Uit is an unob-
served covariate correlated with other observed explanatory vari-
ables (Xit , Yit−1), and ξit stands for a random shock independent of
all other explanatory variables (Xit , Yit−1,Uit). The focuses of the
above model are on the cases in which the time dimension, T , is
fixed and the cross section dimension, N , grows without bound.
The unobserved covariate Uit may contain two components as fol-
lows:

Uit = Vi + ηit ,

where Vi is the unobserved heterogeneity or the random effects
correlatedwith the observed covariatesXit andηit is an unobserved
serially-correlated component.

If the unobserved heterogeneity Vi is treated as a parameter
for each i, then both Vi and other unknown parameters need to
be estimated for the model (1). When T tends to infinity, the MLE
provides a consistent estimator for Vi and other unknown param-
eters. However, T is fixed and usually small for the panel data
model considered here, and therefore, there are not enough ob-
servations to estimate these parameters. The model suffers from
an incidental parameters problem (Neyman and Scott, 1948). In
this paper, the unobserved heterogeneity, Vi, is treated as an unob-
servable random variable which may be correlated with observed
covariates from the same individual. This correlated random
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effect1 approach (treating Vi as a random variable correlated with
the covariates) allows us to integrate out unobserved variables to
construct sieve MLE. This reduces potential computational bur-
den from the incidental parameters problem for sieve MLE esti-
mators in the estimation.2 The transitory component ηit may be a
function of all the time-varying RHS variables in the history, i.e.,
ηit = ϕ


{Xiτ , Yiτ−1, ξiτ }τ=0,1,...,t−1


for some function ϕ.3 Both

observed explanatory variables Xit and Yit−1 become endogenous
if the unobserved covariate Uit is ignored. In this paper, we pro-
vide assumptions, including high-level injectivity restrictions, un-
der which the distribution of Yit conditional on (Xit , Yit−1,Uit), i.e.,
fYit |Xit ,Yit−1,Uit , is nonparametrically identified. The nonparametric
identification of fYit |Xit ,Yit−1,Uit may lead to that of the general form
of our model (1) under certain specifications of the distribution of
the random shock ξit .

In this paper we adopt the correlated random effect approach
for nonlinear dynamic panel data models without specifying the
distribution of the initial condition. We treat the unobserved co-
variate in nonlinear dynamic panel data models as the latent true
values in nonlinear measurement error models and the observed
covariates as the measurement of the latent true values.4 We then
utilize the identification results in Hu and Schennach (2008a),
where the measurement error is not assumed to be independent
of the latent true values. Their results rely on a unique eigen-
value–eigenfunction decomposition of an integral operator associ-
ated with joint densities of observable variables and unobservable
variables. Hu and Shum (2010) uses an identification technique de-
scribed in Carroll et al. (2010). The two identification strategies are
different although both use the spectral decomposition of linear
operators. The discussion of the difference in the two techniques
can be found in Carroll et al. (2010). The conditional independence
assumptions in Hu and Shum (2010) are more general than those
here but their results require five periods of data in the compara-
ble setting. Our assumptions aremore suitable for panel datamod-
els. Although some of our assumptions are stronger, our estimator
requires only two periods of the dependent variable Yit and three
periods of the covariate Xit . This advantage is important because
semi-nonparametric estimators usually require the sample size to
be large.

The strength of our approach is that we provide nonpara-
metric identification of nonlinear dynamic panel data model
using two periods of the dependent variable Yit and three
periods of the covariate Xit without specifying initial conditions.
The model may be described by, fYit |Xit ,Yit−1,Uit , the conditional dis-
tribution of the dependent variable of interest for an individual
i, Yit , conditional on a lagged value of that variable Yit−1, explana-
tory variables Xit , and an unobserved covariate Uit . We show that
fYit |Xit ,Yit−1,Uit can be nonparametrically identified from a sample
of

Xit+1, Yit , Xit , Yit−1, Xit−1


without parametric assumptions on

1 In several studies, random effect means Vi is a random variable independent of
the explanatory variables. The discussion here is based on definitions on p. 286 of
Wooldridge (2010).
2 The estimation of an individual parameter Vi along with other model

parameters leads to an incidental parameters problem. Our sieve MLE has a feature
of random effect, treating Vi as a random variable and integrating out a composite
unobserved variable to construct a likelihood function. Thus, the proposed sieve
MLE has a computational advantage over a fixed effect approach because the
individual parameter Vi does not appear in the likelihood function.
3 By the definition of ηit ,Uit might not only contain the error terms in panels but

also some unobserved covariates from the past. Hence, Uit denotes an unobserved
covariate in this paper.
4 An ideal candidate for the ‘‘measurement’’ of the latent covariate would be the

dependent variable because it is inherently correlated with the latent covariate.
However, such a measurement is not informative enough when the dependent
variable is discrete and the latent covariate is continuous.
the distribution of the individuals’ dependent variable conditional
on the unobserved covariate in the initial period. The main identi-
fying assumption requires that the dynamic process of the
covariates Xit+1 depends on the unobserved covariate Uit but is in-
dependent of the lagged dependent variables Yit , Yit−1, and Xit−1
conditional on Xit and Uit .

The identification of fYit |Xit ,Yit−1,Uit leads to the identification of
the general formof ourmodel in Eq. (1).Wepresent below twomo-
tivating examples in the existing literature. The specifications in
these two types of models can be used to distinguish between dy-
namic responses to lagged dependent variables, observed covari-
ates, and unobserved covariates. While the state dependence Yit−1
reflects that experiencing the event in one period should affect the
probability of the event in the next period, the unobserved het-
erogeneity Vi represents individual’s inherent ability to resist the
transitory shocks ηit .

Example 1 (Dynamic Discrete-choice Model with an Unobserved Co-
variate). A binary case of dynamic discrete choice models is as fol-
lows:

Yit = 1

X ′

itβ + γ Yit−1 + Vi + εit ≥ 0


with ∀i = 1, . . . , n; t = 1, . . . , T − 1,

where 1 (·) is the 0–1 indicator function and the error εit follows
an AR(1) process εit = ρεit−1 + ξit for some constant ρ. The con-
ditional distribution of the interest is then

fYit |Xit ,Yit−1,Uit =

1 − Fξit


−

X ′

itβ + γ Yit−1 + Uit
Yit

× Fξit

−

X ′

itβ + γ Yit−1 + Uit
1−Yit ,

where Fξit is the CDF of the random shock ξit ,Uit = Vi + ηit , and
ηit = ρεit−1. Empirical applications of the dynamic discrete-choice
model above have been studied in a variety of contexts, such as
health status (Contoyannis et al., 2004; Halliday, 2002), brand loy-
alty (Chintagunta et al., 2001), welfare participation (Chay et al.,
2001), and labor force participation (Heckman and Willis, 1977;
Hyslop, 1999). Among these studies, the intertemporal labor par-
ticipation behavior of married women is a natural illustration of
the dynamic discrete choicemodel. In such amodel, the dependent
variable Yit denotes the t-th period participation decision and the
covariates Xit are the nonlabor income or other observable charac-
teristics in that period. The heterogeneityVi is the unobserved indi-
vidual skill level ormotivation, while the idiosyncratic disturbance
ξit denotes unexpected change of child-care cost or fringe benefit
for married women from working. Heckman (1978, 1981a,b) has
termed the presence of Yit−1 ‘‘true’’ state dependence and Vi ‘‘spu-
rious’’ state dependence.

Example 2 (Dynamic Censored Model with an Unobserved Covari-
ate). In many applications, we may have

Yit = max

X ′

itβ + γ Yit−1 + Vi + εit , 0


with ∀i = 1, . . . , n; t = 1, . . . , T − 1,

with εit = ρεit−1 + ξit . It follows that

fYit |Xit ,Yit−1,Uit = Fξit

−

X ′

itβ + γ Yit−1 + Uit
1(Yit=0)

× fξit

Yit − X ′

itβ − γ Yit−1 − Uit
1(Yit>0) (2)

where Fξit and fξit are the CDF and the PDF of the random shock ξit
respectively. The dependent variable Yit may stand for the amount
of insurance coverage chosen by an individual or a firm’s expendi-
tures on R&D. In each case, an economic agent solves an optimiza-
tion problem and Yit = 0 may be an optimal corner solution. For
this reason, this type of censored regression models is also called
a corner solution model or a censored model with lagged censored
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dependent variables.5 Honoré (1993) and Honoré and Hu (2004)
use a method of moments framework to estimate the model with-
out making distributional assumptions about Vi.

Based on our nonparametric identification results, we propose
a semi-parametric sieve MLE for the model. We show the consis-
tency of our estimator and the asymptotic normality of its para-
metric components. The finite sample properties of the proposed
sieve MLE are investigated through Monte Carlo simulations of
dynamic discrete choice models and dynamic censored models.
Our empirical application focuses on how the labor participation
decisions of married women respond to their previous participa-
tion states, fertility decisions, and nonlabor incomes. We develop
and test a variety of dynamic econometric models using a seven
year longitudinal sample from the Panel Study of IncomeDynamics
(PSID) in order to compare the results with those in Hyslop (1999).
In the empirical application, we examine three different estima-
tion specifications, i.e., a static probit model, a maximum simu-
lated likelihood (MSL) estimator, and the sieve MLE estimator. Our
results find a large significant state dependence of labor force par-
ticipation, smaller significant negative effects on nonlabor income
variables, and also negative effects of children aged 0–2 in the cur-
rent period and past period.

The paper is organized as follows. Section 2 provides a brief
review of studies in the context of dynamic panel data models.
We present the nonparametric identification of nonlinear dynamic
panel data models in Section 3. Section 4 discusses our proposed
sieve MLE. Section 5 provides the Monte Carlo study. Section 6
presents an empirical application describing the intertemporal la-
bor participation of married women. Section 7 concludes. Appen-
dices include proofs of consistency and asymptotic normality of the
proposed sieveMLE and discussions on how to impose restrictions
on sieve coefficients in the sieve MLE.

2. Related studies

In the econometric literature, there are two approaches to tack-
ling the unobserved heterogeneity Vi: random effects and fixed ef-
fects. In the fixed effect approach, much attention has been
devoted to linear models with an additive unobserved effect. The
problem can be solved by first applying an appropriate transfor-
mation to eliminate the unobserved effect and then implement-
ing instrument variables (IV) in a generalized method of moments
(GMM) framework. Anderson and Hsiao (1982), Arellano and Bond
(1991), Arellano and Bover (1995) and Ahn and Schmidt (1995)
employ an IV estimator on a transformation equation through first-
differencing. Eliminating the unobserved effects is notably more
difficult in nonlinear models, and some progress has been made in
this area. Rasch (1960) and Chamberlain (1980, 1984) consider a
conditional likelihood approach for logit models. Honoré and Kyr-
iazidou (2000) generalize the conditional probability approach to
estimate the unknown parameters without formulating the distri-
bution of the unobserved individual effects or the probability dis-
tribution of the initial observations for certain types of discrete
choice logit models. Their results rely on matching the explana-
tory variables in different time-periods. Honoré (1993), Hu (2002)
and Honoré and Hu (2004) obtain moment conditions for esti-
mating dynamic censored regression panel data models. Altonji
and Matzkin (2005) develop two estimators for panel data models
with nonseparable unobservable errors and endogenous explana-
tory variables.

5 This setting rules out certain types of data censoring. For example, if the
censoring is due to top-coding, then it makes sense to consider a lagged value of
the latent variable, i.e., Y ∗

it = X ′

itβ + γ Y ∗

it−1 + vi + εit and Yit = max[Y ∗

it , ct ]. This
top-coded dynamic censored model has been considered in Hu (2000, 2002).
On the other hand, it is often appealing to take a random ef-
fect specification by making assumptions on the distribution of
the individual effects. The main difficulty of this approach is the
so-called initial condition problem.6 With a relatively short panel,
the initial conditions have a very strong impact on the entire path
of the observations, but they may not be observed in the sam-
ple. One remedy to this problem is to specify the distribution
of the initial conditions given the unobserved heterogeneity. The
drawbacks of this approach are that the corresponding likelihood
functions typically involve high order integration and that mis-
specification of the distributions generally results in inconsistent
parameter estimates. The associated computational burden of high
order integration has been reduced significantly by recent ad-
vances in simulation techniques.7 Hyslop (1999) analyzes the in-
tertemporal labor force participation behavior of married women
using maximum simulated likelihood (MSL) estimator to simulate
the likelihood function of dynamic probit models with a nontrivial
error structure. Wooldridge (2005) suggests a general method for
handling the initial condition problem by using a joint density con-
ditional on the strictly exogenous variables and the initial condi-
tion. Honoré and Tamer (2006) relax the distributional assumption
of the initial condition and calculate bounds on parameters of in-
terest in panel dynamic discrete choice models. Evdokimov (2009)
considers a nonparametric panel data model with nonadditive un-
observed heterogeneity: Yit = m (Xit , Vi) + εit where individual-
specific effects are allowed to be correlated with the covariates in
an arbitrary manner. That model has a different focus from ours
since our model includes lags of the endogenous dependent vari-
able Yit−1 and a nonadditive εit .

While the proposed model (1) focuses on nonlinear dynamic
panel data models, there are several studies on panel data models
that are close in spirit to our work. Chernozhukov et al. (2009)
derive bounds for marginal effects in nonlinear panel models
and show that they can tighten rapidly as the number of time
series observations grows. They also provide two novel inference
methods that produce uniformly valid confidence regions in large
samples. Hoderlein and White (2009) consider identification of
marginal effects in general nonseparable models with unrestricted
correlated unobserved effects and without lagged dependent
variables, even if there are only two time periods. Arellano and
Bonhomme (2009) provide a characterization of the class of
weights for nonlinear panel data models that produce first-order
unbiased estimators. Although the focus of themodels in this paper
is on the fixed time dimension, the results can be generalized
to large T cases. The recent large-T literature for dynamic panel
models can be found in Hahn and Kuersteiner (2004), Carro (2007)
and Fernández-Val (2009).

6 The random effect approach for dynamic models requires the specification on
the initial conditions of the process. Specifically, consider a special case of our
model (1), dynamic discrete choice models without observed covariates Xit , in the
following form:

Yit = 1 (γ Yit−1 + Vi + ξit ≥ 0) .

Then the conditional distribution fYit |Yit−1,Vi can be specified and the corresponding
likelihood function has the structure

L =


fYi0 |Vi

T−1
t=1

fYit |Yit−1,Vi fVidvi,

where fYi0 |Vi denotes the marginal probability of Yi0 given Vi . If the process is not
observed from the start then the initial state for individual i, yi0 cannot be assumed
fixed. However, it is not clear how to derive the initial condition fYi0 |Vi from fYit |Yit−1,Vi
so it could be internally inconsistent across different time periods if the evolution
of these two process cannot be connected. Heckman (1981b) suggested the use of
a flexible functional form to approximate the initial conditions.
7 See Gourieroux and Monfort (1993), Hajivassiliou (1993), Hajivassiliou and

Ruud (1994) and Keane (1993) for the reviews of the literature.
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In this paper, we provide nonparametric identification of non-
linear dynamic panel data models with unobserved covariates,
show that the models are identified using only two periods of the
dependent variable Yit and three periods of the covariate Xit with-
out initial conditions assumptions, and propose a sieve MLE esti-
mator. The advantages of our results include that the point
identification results are nonparametric and global, the model is
quite general compared with the existing ones and makes use of
the recently developed techniques, and the proposed sieve esti-
mator is known to be convenient in computation. Meanwhile, our
results have their disadvantages. The general nonparametric iden-
tification requires high-level technical assumptions. In particular,
the injectivity assumption is not testable and its implication is still
an active research area. The proposed sieve estimator also has its
known shortcomings, such as the difficulty in choosing nuisance
parameters.

3. Nonparametric identification

3.1. Main assumptions

In this section, we present the assumptions under which the
distribution of the dependent variable Yit conditional on Yit−1, co-
variates Xit , and the unobserved covariate Uit , i.e., fYit |Xit ,Yit−1,Uit , is
nonparametrically identified. As discussed above, some of our as-
sumptions are high-level because we are providing nonparametric
identification of the model. We have the following assumption.

Assumption 3.1 (Exogenous Shocks).

fYit |Xit ,Yit−1,Xit−1,Uit = fYit |Xit ,Yit−1,Uit .

A sufficient condition for Assumption 3.1 is that the random
shock ξit is independent of ξiτ for any τ ≠ t and {Xiτ ,Uiτ } for
any τ ≤ t . Given Eq. (1), the condition fYit |Xit ,Yit−1,Xit−1,Uit =

fYit |Xit ,Yit−1,Uit holds if the random shock ξit is independent of the
covariate Xit−1. This assumption can be called an exogenous shocks
condition. As shown in the two examples above, this sufficient
assumption has been used in many existing studies.

Both ξit and Uit are scalar unobservables in the latent variable
formulation of the dependent variable Yit and account for the
particular error structure in the formulation. While ξit is an
exogenous random shock in period t,Uit = Vi + ηit is the sum of
the time-invariant heterogeneity and a function of all time-varying
variables in the past.

The exogeneity of ξit can be relaxed to allow some dependence
between ξit and (Xit , Yit−1). For example, for somepositive function
h, write ξit = h (Xit , Yit−1)

1/2 eit for an exogenous random shock
eit with unit variance. Hence, ξit contains heteroskedasticity and
Var(ξit |Xit , Yit−1) = h (Xit , Yit−1). In this case, the conditional
distribution of the interest in Example 1 changes into

fYit |Xit ,Yit−1,Uit =


1 − Fξit


−

X ′

itβ + γ Yit−1 + Uit


h (Xit , Yit−1)
1/2

Yit

× Fξit


−

X ′

itβ + γ Yit−1 + Uit


h (Xit , Yit−1)
1/2

1−Yit

.

Making ξit heteroskedastic generalizes the functional form of the
dynamic panel data models considered in this paper. However, for
simplicity we assume ξit is exogenous with a constant variance.

The existence of the exogenous random shock ξit in the error
term of the latent variable formulation means that (Xit , Yit−1)
fully capture the dynamics conditional on Uit since further lags
of Yit−1 or lags of Xit are not important once (Xit , Yit−1,Uit) have
been controlled for. To some extent, Assumption 3.1 has assumed
dynamic completeness since

fYit |Xit ,Yit−1,Uit = fYit |Xit ,Yit−1,Uit ,Xit−1,Yit−2,Uit−1,...,Xi1,Yi0,Ui1 ,

t = 1, . . . , T − 1,

and once Uit is controlled for no past values of Xit or Yit−1 appear in
the conditional density in the RHS of the above equation.

We simplify the evolution of the observed covariates Xit as
follows.

Assumption 3.2 (Covariate Evolution). The evolution of the ob-
served covariates satisfies the equation fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit =

fXit+1|Xit ,Uit .

Note that the assumption can be written as Xit+1⊥(Yit , Yit−1,
Xit−1)|(Xit ,Uit) and the lagged effects of Yit such as Yit−1, Yit−2, . . .
enter the evolution of Xit+1 through the unobserved covariate Uit .
A sufficient condition for Assumption 3.2 is that Xit+1 is strictly
exogenous and follows a first order Markov, conditional on Uit .
Another sufficient condition for Assumption 3.2 is constituted of
three steps, (i) (Markov evolution of Xit+1) fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit
= fXit+1|Yit ,Xit ,Uit , (ii) (No impact of ξit on Xit+1) fXit+1|Yit ,Yit−1,Xit ,Uit
= fXit+1|Yit−1,Xit ,Uit , and (iii) (Limited feedback) fXit+1|Yit−1,Xit ,Uit =

fXit+1|Xit ,Uit .
The first step (i) is a Markov-type assumption

fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit = fXit+1|Yit ,Xit ,Uit , which implies that the
evolution of the observed covariate Xit+1 only depends on all
the explanatory variables in the previous period (Yit , Xit ,Uit). The
implication of the Markov assumption is that while the time-
varying component of Uit , ηit , captures all the serially-correlated
variation in the process of Xit+1, the corresponding time-invariant
component Vi controls the time-invariant part of Xit+1. If Xit+1
contains a time-invariant component other than Vi then the
Markov assumption may fail. For example, suppose that we have8

Xit+1 = ρXit + Wi + Vi + vit ,

where vit are i.i.d., and a latent Wi is not perfectly correlated with
Vi. In this case, givenUit , Xit−1 will contain some information about
Wi, even given Xit . Thus, Xit−1 can be informative on Xit+1 given
(Yit , Xit ,Uit) and theMarkov condition does not hold. However, the
composite error Uit is a scalar unobservable in the latent variable
formulation of the dependent variable Yit and should also take
account of the variation of Xit . If the time-varying component of
Uit contains vit and its time-invariant component has Wi + Vi,
the Markov assumption may hold. Our assumption rules out the
situation that the evolution of Xit depends on other time-invariant
element not in the latent variable formulation of Yit .

The second step (ii) is that conditional on Yit−1, Xit andUit , Xit+1
is independent of the exogenous shock ξit . Since Uit is a function
of all past shocks {ξiτ }τ<t , this step only excludes the immediate
effect of the current shock ξit on the future covariate Xit+1.9 This
implies that fXit+1|Xit ,Yit−1,Uit ,ξit = fXit+1|Xit ,Yit−1,Uit . The third step (iii)
is a limited feedback assumption, i.e., fXit+1|Xit ,Yit−1,Uit , = fXit+1|Xit ,Uit
which rules out direct feedback from the lagged dependent
variable Yit−1 on the future value of the observed covariate Xit+1.
The effect of Yit−1 on Xit+1 is indirectly through Xit , and Uit .

8 We thank an anonymous referee for suggesting this example.
9 The assumption imposes some restriction to regressors in panel data setting.

For example, suppose that Uit = Vi . The assumption that Xit+1 is independent
of ξit given Xit and Vi implies that E[Xit+1ξit ] = 0. If the future covariate Xit+1
is predetermined, in the sense that E[Xit+1ξis] ≠ 0 for s < t + 1 and zero
otherwise, then the assumption fails when the Xit+1 is predetermined. However,
the assumption permits a weaker version of a predetermined variable such as
E[Xit+1ξis] ≠ 0 for s < t and zero otherwise.
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Overall, Assumption 3.2 implies that conditional on Xit and
Uit , Xit+1 is independent of the exogenous shock ξit . In otherwords,
conditional on the past information, the future covariate Xit+1 rules
out the immediate effect of the current shock ξit of the dependent
variable Yit .

Let Lp(X), 1 ≤ p < ∞ stand for the space of function h(·)
with


X

|h(x) |p dx < ∞. Suppose Xt , and Ut be the supports of
the random variables Xit and Uit , respectively. For any 1 ≤ p ≤ ∞

and we define operators as follows: for any given (xit , yit−1),
LXit+1,xit ,yit−1,Xit−1 : Lp(Xt−1) → Lp(Xt+1)

(LXit+1,xit ,yit−1,Xit−1h)(u) =


fXit+1,Xit ,Yit−1,Xit−1

× (u, xit , yit−1, x)h(x)dx,
and for any given xit ,
LXit+1|xit ,Uit : Lp(Ut) → Lp(Xt+1)

(LXit+1|xit ,Uit h)(x) =


fXit+1|Xit ,Uit (x|xit , u)h(u)du.

Assumption 3.3 (Invertibility). For any (xit , yit−1) ∈ Xit × Yit−1,
LXit+1,xit ,yit−1,Xit−1 and LXit+1|xit ,Uit are invertible.
This is a high-level assumption, which is hard to avoid for non-
parametric identification. Intuitively, this assumption guarantees
that the observables contain enough information on the unob-
served covariate Uit and the covariates in period t + 1, Xit+1, de-
pend on Xit . However, the invertibility of LXit+1,xit ,yit−1,Xit−1 , which
is equivalent to a completeness condition on an observed distri-
bution fXit+1,Xit ,Yit−1,Xit−1 , is not testable in a nonparametric setting
with continuous variables as shown in Canay et al. (2011).

If an operator is constructed by a density of independent
variables, the operator certainly fails to be invertible. Since
fXit+1,Xit ,Yit−1,Xit−1 is the density of correlated variables, it pro-
vides at least some justification for the completeness property.10
Thus, the invertibility may require functional form restrictions on
fXit+1,Xit ,Yit−1,Xit−1 . For example, if Xt+1 contains an open set then
fXit+1,Xit ,Yit−1,Xit−1 = φ(Xit−1 − α1Xit+1 − α2Xit − α3Yit−1) sat-
isfies Assumption 3.3 where φ is the standard normal pdf and
αi ≠ 0.11 Besides a linear process, another example may be that
fXit+1,Xit ,Yit−1,Xit−1 belongs to an exponential family. Given a fixed
(xit , yit−1). Suppose that
fXit+1,xit ,yit−1,Xit−1 = s(xit , yit−1, Xit−1)t(Xit+1, xit , yit−1)

× exp [µ(Xit+1, xit , yit−1)τ (xit , yit−1, Xit−1)]
where s(xit , yit−1, Xit−1) > 0, τ (xit , yit−1, Xit−1) is one-to-one in
Xit−1, and support ofµ(Xit+1, xit , yit−1) ∈ Xt+1 is an open set. The-
orem 2.2 in Newey and Powell (2003) shows the family of the joint
density functions {fXit+1,xit ,yit−1,Xit−1 : Xit+1 ∈ Xt+1} is complete
over Lp(Xt−1) for each (xit , yit−1).12 This also implies the invert-
ibility of LXit+1,xit ,yit−1,Xit−1 in Assumption 3.2.

On the other hand, the invertibility of LXit+1|xit ,Uit requires the co-
variates in period t + 1, Xit+1, contains enough information on the
unobserved covariateUit conditional on Xit . Hahn (2001) considers

10 That the variablesXit+1, Xit , Yit−1 , andXit−1 are highly correlated canbe justified
by the fact thatmost variables in economics are correlated across timewhich reveal
a pattern of serial correlation or autocorrelation.
11 The result is from Theorem 2.3 in Newey and Powell (2003). Suppose that the
distribution of x conditional on z is N(a + bz, σ 2) for σ 2 > 0 and the support of
z contains an open set, then the integral operator corresponding to 1

σ
φ( x−a−bz

σ
) is

invertible from Lp(X) to Lp(Z) where φ is the standard normal PDF. There are
more detailed discussions and general conditions for an invertible integral operator
or complete conditional distributions in Lp(X) in Hu and Shiu (2011).
12 The whole statement of the theorem is the following: Let f (x|z) = s(x)t(z)
exp [µ(z)τ (x)],where s(x) > 0, τ (x) is one-to-one in x, and support of µ(z),Z, is an
open set, then E [h(·)|z] = 0 for any z ∈ Z implies h(x) = 0 almost everywhere in X;
equivalently, the family of conditional density functions {f (x|z) : z ∈ Z}is complete
in Lp(X).
a dynamic logit model with individual effects where the regres-
sors include the lag dependent variable, time dummies and pos-
sibly other strictly exogenous variables. He shows that the
semi-parametric information bound for any estimator of the state
dependence coefficient is zero. Our results do not cover the dy-
namic logit model in Hahn (2001) because the invertibility of
LXit+1|xit ,Uit in Assumption 3.3 requires some dependence between
Uit and Xit+1. If Xit+1 only contains time dummies and possibly
other strictly exogenous variables, the condition will fail to hold.
This is intuitive: the existence of a degree of dependence between
Uit and Xit+1 allows us to control the unobservable Uit from the
observable Xit+1. It reflects the methodology of our identification
method that provides an alternativeway to deal with an unobserv-
able term inside a nonlinear econometric model, tackling down an
unobserved effect with an observable correlated covariate instead
of eliminating the unobserved effect by transformations. For exam-
ple, wemay have Xit+1 = Xit +Uit +h(Xit)ϵit , where ϵit is indepen-
dent of Xit and Uit and has a nonvanishing characteristic function
on the real line.We use Xit+1 instead of Yit+1 for the information on
Uit because the dependent variable Yit+1 is discrete and Uit is con-
tinuous in many interesting applications. In that case, the operator
mapping from functions ofUit to those of Yit+1 cannot be invertible.
Additionally, when Yit+1 is continuous, it would be more reason-
able to impose invertibility on the operator mapping from func-
tions of Uit to those of Yit+1, while Uit or Vi is allowed to be
independent of the observed covariates Xit .13 Necessary conditions
for Assumption 3.3 include that fXit+1,Yit−1,Xit |Xit−1 ≠ fXit+1,Yit−1,Xit
and fXit+1|Xit ,Uit ≠ fXit+1|Xit . These necessary conditions rule out the
case where Xit+1 and Xit−1 are independent or Xit+1 and Uit are in-
dependent. In other words, Assumption 3.3 permits the existence
of serial correlation among Xit and correlation between Xit+1
and Uit .

The invertibility of the integral operator LXit+1|xit ,Uit is equivalent
to saying that the family {fXit+1|Xit ,Uit (xit+1|xit , uit) : xit+1 ∈ Xt+1}

is complete over Lp(Ut). Hu and Shiu (2011) showed that if
the conditional density f (x|z) can form a linearly independent
sequence and coincides with a known complete density at a limit
point in the support of z, then f (x|z) itself is complete. They
also provide examples of complete families other than trivial
linear/exponential family cases. For example, suppose φ is the
standard normal pdf, consider

f (x|z) = λ(z)h(x|z)+ [1 − λ(z)]φ(x − z), (3)

which is a mixture of two continuous conditional densities, h and
φ, and the weight λ in the mixture depends on z.14 Sufficient
conditions for the completeness of f (x|z) are (i) limzk→z0 λ(z) = 0;
and (ii) limx→−∞

h(x|zk)
φ(x−zk)

< ∞. Following this result, construct

fXit+1|Xit ,Uit (xit+1|xit , uit) = λ (xit+1) h(xit+1, xit , uit)

+ [1 − λ (xit+1)]φ(xit+1 − ψ(xit)− uit),

with limxit+1,k→xit+1,0 λ (xit+1) = 0 and

(ii) limuit→−∞

h(xit+1,k,xit ,uit )
φ(xit+1,k−ψ(xit )−uit )

< ∞. The completeness of
{fXit+1|Xit ,Uit (xit+1|xit , uit) : xit+1 ∈ Xt+1} implies that the opera-
tor LXit+1|xit ,Uit is invertible. In this case, there is only the tail con-
dition on the function h(xit+1,k, xit , uit) and we can regard h as

13 Assumption 3.3 requires LXit+1 |xit ,Uit is invertible and it demands the unobserv-
able Uit to be correlated with the observed Xit+1 . This case is complementary to the
existing models where Uit is independent of Xit+1 . Honoré and Kyriazidou (2000)
and Honoré and Tamer (2006) identify the parameters under certain assumptions
on the strictly exogenous covariates.
14 The choice of φ is for simplicity. Please see Hu and Shiu (2011) for general
results.
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nonparametric deviation or oscillation from the normal φ. There-
fore, the invertibility of the integral operator LXit+1|xit ,Uit is ap-
propriate in a nonparametric setting. The condition contains a
restriction on the unobservable and it cannot be verified. A way to
justify the condition is invoking the central limit theorem to con-
clude that fXit+1|Xit ,Uit (xit+1|xit , uit) has an approximate normal dis-
tribution and the invertibility permits nontrivial variation around
a normal distribution.

In addition, the invertibility of the operator LXit+1,xit ,yit−1,Xit−1 =

LXit+1|xit ,Uit Lxit ,yit−1,Xit−1,Uit does imply restrictions on the initial
condition through the operator Lxit ,yit−1,Xit−1,Uit . For example, in a
case where Xit and Uit are discrete and the linear operators are
matrices, the invertibility of these operators is equivalent to the
invertibility of corresponding matrices. However, the operators or
matrices may still have a flexible form so that there is no need to
specify the initial condition.

Note that when the unobserved component Uit is continuous,
the invertibility of LXit+1|xit ,Uit implies that the explanatory vari-
ables Xit contain a continuous element Zit . The existence of the
continuous component, Zit , is essential. It is impossible to non-
parametrically identify a distribution of a continuous unobservable
variable only by observed discrete variables. The restriction im-
posed on the continuous Zit+1 guarantees that the explanatory
variables Xit+1 contain enough information to identify unobserved
component Uit . A sufficient condition for identification with con-
tinuous Uit can be obtained from the well-known completeness
property of exponential families.15 Thus, if Uit is an open set, then
Xit+1 must be an open set.16 In the case of the intertemporal labor
force participation behavior of married women, the covariates Xit
contain wage and Uit includes the unobserved individual skill level
or motivation.

Assumption 3.4 (Distinctive eigenvalues). There exists a known
function ω (·) such that E [ω (Yit) |xit , yit−1, uit ] is monotonic in uit
for any given (xit , yit−1).

The function ω (·) may be specified by users, such as ω(y) =

y, ω(y) = I (y > 0), or ω(y) = y2. For example, we may have
ω(y) = I (y = 0) in the two examples above. In both cases,
E [I (Yit = 0) |xit , yit−1, uit ] = Fξit


−

x′

itβ + γ yit−1 + uit

, which

ismonotonic in uit . Assumption 3.4 implies that for all Ûit , Ũit ∈ U,
the set {y : fYit |Xit ,Yit−1,Ûit

≠ fYit |Xit ,Yit−1,Ũit
} for any given (xit , yit−1)

has a positive probability whenever Ûit ≠ Ũit .

Assumption 3.5 (Normalization). For any given xit ∈ Xit , there
exists a known functional G such that G


fXit+1|Xit ,Uit (·|xit , uit)


=

uit .

The functional G may be the mean, the mode, median, or a
quantile. For example, we may have Xit+1 = Xit + Uit + h(Xit)ϵit
with an unknown function h (·) and a zero median indepen-
dent error ϵit . Then Uit is the median of the density function
f(Xit+1−Xit)|Xit ,Uit

(·|xit , uit). The purpose of Assumption 3.5 is to nor-
malize fXit+1|Xit ,Uit to be unique in the spectral decomposition and it
requires the functional G to map the eigenfunction to a real num-
ber. The condition can also be written as G


fXit+1|Xit ,Uit (·|xit , uit)


=

l(uit) for some one–one function l(·) and thus it is not very restric-
tive.

This assumption imposes a restriction on the covariate evolu-
tion. A choice of G depends on how the covariate Xit changes over

15 See Newey and Powell (2003) for details.
16 Assumption 3.3 impose the invertibility of the linear operator LXit+1 |xit ,Uit which
maps from the domain spaceLp(Ut ) to the range spaceLp(Xt+1). The invertibility
implies a cardinality relation, the cardinality of Ut is smaller than the cardinality of
Xt+1 . If Uit takes continuous values, then Xit+1 must continuous values.
time given the unobserved covariate Uit . Hence, observations on
the conditional temporal correlation of Xit may shed a light on
the pick of G. In the case of the intertemporal labor force partic-
ipation behavior of married women, Xit may include annual fam-
ily income, which often varies with the unobserved time-invariant
family characteristics and past economy shock. In this case, setting
G as the mode functional seems appropriate.

3.2. Main identification results

We start our identification with a panel data containing two
periods of the dependent variable Yit and three periods of the
covariate Xit , {Xit+1, Yit , Xit , Yit−1, Xit−1} for i = 1, 2, . . . , n. The
law of total probability leads to

fXit+1,Yit ,Xit ,Yit−1,Xit−1 =


fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit

× fYit |Xit ,Yit−1,Xit−1,Uit fXit ,Yit−1,Xit−1,Uit dUit ,

where we omit the arguments in the density function to make the
expressions concise.

Assumption 3.1 implies

fXit+1,Yit ,Xit ,Yit−1,Xit−1 =


fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit

× fYit |Xit ,Yit−1,Uit fXit ,Yit−1,Xit−1,Uit dUit .

Then, Assumption 3.2 suggests that

fXit+1,Yit ,Xit ,Yit−1,Xit−1 =


fXit+1|Xit ,Uit fYit |Xit ,Yit−1,Uit

× fXit ,Yit−1,Xit−1,Uit dUit . (4)

Based on this equation, we may apply the identification results
in Hu and Schennach (2008a,b) to show that all the unknown
densities on the RHS are identified from the observed density
on the LHS. For any given (yit , xit , yit−1), we define operators as
follows.

LXit+1,yit ,xit ,yit−1,Xit−1 : Lp(Xt−1) → Lp(Xt+1)

(LXit+1,yit ,xit ,yit−1,Xit−1h)(u) =


fXit+1,Yit ,Xit ,Yit−1,Xit−1

× (u, yit , xit , yit−1, x)h(x)dx,

and

Dyit |xit ,yit−1,Uit : Lp(U) → Lp(U)

(Dyit |xit ,yit−1,Uit h)(u) = fYit |Xit ,Yit−1,Uit (yit |xit , yit−1, u)h(u).

Similarly, define

(Lxit ,yit−1,Xit−1,Uit h)(u) =


fXit ,Yit−1,Xit−1,Uit (xit , yit−1, x, u)h(x)dx.

Eq. (4) is equivalent to the following operator relationship:

LXit+1,yit ,xit ,yit−1,Xit−1 = LXit+1|xit ,UitDyit |xit ,yit−1,Uit Lxit ,yit−1,Xit−1,Uit .

Integrating out Yit in Eq. (4) leads to fXit+1,Xit ,Yit−1,Xit−1 =
fXit+1|Xit ,Uit fXit ,Yit−1,Xit−1,Uit dUit , which is equivalent to

LXit+1,xit ,yit−1,Xit−1 = LXit+1|xit ,Uit Lxit ,yit−1,Xit−1,Uit

with (LXit+1,xit ,yit−1,Xit−1h)(u) =

fXit+1,Xit ,Yit−1,Xit−1(u, xit , yit−1, x)

h(x)dx. We may then apply the spectral decomposition results in
Hu and Schennach (2008a,b) to identify fXit+1|Xit ,Uit , fYit |Xit ,Yit−1,Uit ,
and fXit ,Yit−1,Xit−1,Uit from fXit+1,Yit ,Xit ,Yit−1,Xit−1 . Assumptions 3.1–3.3
enable us to have

LXit+1,yit ,xit ,yit−1,Xit−1L
−1
Xit+1,xit ,yit−1,Xit−1

= LXit+1|xit ,UitDyit |xit ,yit−1,Uit L
−1
Xit+1|xit ,Uit

,
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which implies a spectral decomposition of the observed operators
on the LHS. The eigenvalues are the kernel function of the diagonal
operator Dyit |xit ,yit−1,Uit and the eigenfunctions are the kernel func-
tion fXit+1|Xit ,Uit of the operator LXit+1|xit ,Uit . Assumption 3.4make the
eigenvalues distinctive. Since the identification from the spectral
decomposition is only identified up to uit and its monotone trans-
formation, we make a normalization assumption, Assumption 3.5,
to pin down the unobserved covariate uit .

Notice that Theorem 1 in Hu and Schennach (2008a,b) implies
that all three densities fXit+1|Xit ,Uit , fYit |Xit ,Yit−1,Uit , and fXit ,Yit−1,Xit−1,Uit
are identified under the assumptions introduced above. Themodel
of interest is describedby the density fYit |Xit ,Yit−1,Uit .While the initial
condition at period t − 1 is contained in the joint distribution
fXit ,Yit−1,Xit−1,Uit , the evolution of the covariates Xit is described by
fXit+1|Xit ,Uit .

We summarize our identification results as follows:

Theorem 3.1. Under Assumptions 3.1–3.5, the observable joint
distribution fXit+1,Yit ,Xit ,Yit−1,Xit−1 uniquely determines the model
of interest fYit |Xit ,Yit−1,Uit , together with the evolution density of
observed covariates fXit+1|Xit ,Uit and the initial joint distribution
fXit ,Yit−1,Xit−1,Uit .

17

Since the unobserved covariate Uit appearing in fYit |Xit ,Yit−1,Uit
does not have natural units of measurement or it is unclear which
values are appropriate for Uit , the partial effects averaged across
the distribution of Uit are more appealing. The average partial
effects are based on the effect on a mean response after averaging
the unobserved heterogeneity across the population. Theorem 3.1
allows us to obtain the marginal distribution of Uit ,

fUit =


Xit


Yit−1


Xit−1

fXit ,Yit−1,Xit−1,Uit dXitdYitdXit−1.

Suppose that we are interested in the conditional mean of ω (yt),
which is a scalar function of yt . Given (Xit , Yit−1) the average
structural function (ASF) is defined by

ASF(Xit , Yit−1) =


Uit


Yit

ω (yt) fYit |Xit ,Yit−1,Uit dYit


fUit dUit , (5)

whose identification can be shown by Theorem 3.1. Then the
average partial effect (APE) can be defined by taking derivatives
or differences of the above expression (5) with respect to elements
of (Xit , Yit−1). These discussions lead to the following result.

Corollary 3.1. Under Assumptions 3.1–3.5, average structural func-
tion (ASF) defined in Eq. (5) and the average partial effect (APE) can
be identified and estimated by a panel data containing two peri-
ods of the dependent variable Yit and three periods of the covariate
Xit , {Xit+1, Yit , Xit , Yit−1, Xit−1} for i = 1, 2, . . . , n.

3.3. Discussion of assumptions

We discussed the identification assumptions separately in Sec-
tion 3.1 and now we illustrate these assumptions jointly for the
models in Examples 1 and 2. These models can be used to describe
the following economic behaviors. While Yit denotes the t-th pe-
riod labor force participation decision and the amount of insurance
coverage chosen by an individual for Examples 1 and 2 respec-
tively, the covariate Xit is the nonlabor income in both models. As-
sumption 3.1 allows us to separate the exogenous random shock of
the dependent variable in period t, ξit , from all time-varying error

17 The identification techniques are illustrated in Appendix A using a finite
dimensional discrete example where the linear operators are matrices.
term in the past. It follows that ξit andUit can be used to decompose
the particular error structure in the latent variable formulation of
the dependent variable Yit .While ξit is an exogenous random shock
in period t,Uit = Vi + ηit is the sum of the time-invariant het-
erogeneity and a function of all time-varying variables in the past.
This implies that both time-invariant and the past time-varying in-
formation are in Uit , and the observed (Xit , Yit−1) has completely
captured the contemporaneous information of Yit other than ξit .
Hence, the present time-varying shocks of labor force participation
decision or the amount of insurance coverage are independent of
the lagged dependent variables, the nonlabor income, and Uit .

The definition of Uit indicates that conditional on Uit , the
variation of all past shocks before period t {ξiτ }τ<t become trivial.18
Thus, Assumption 3.2 only rules out the immediate effect of the
current shock ξit on the future covariate Xit+1. In the economic
contexts, the assumption reflects the current exogenous shocks
of labor force participation decision or the amount of insurance
coverage do not affect the nonlabor income in the next period.

The linear independence interpretation for the invertibility of
an operator in Hu and Shiu (2011) suggests that the invertibility of
LXit+1,xit ,yit−1,Xit−1 in Assumption 3.3 can be stated as (1) the family
of the joint distributions {fXit+1,Xit ,Yit−1,Xit−1(u, xit , yit−1, x) : u ∈Xt+1} where Xt+1 ⊂ Xt+1 has nontrivial variation over the index
u in Xt+1 in the function space Lp(Xt−1), and (2) the variation is
big enough that every function in Lp(Xt−1) can be approximated
by the distributions in the family. The assumption requires some
dependence of observed covariates over time. If Xit is constant
across time, then it violates the condition. In this case, the serially
correlated nature of Xt over time can provide some support of
statement (1) but statement (2) is the key assumption to make the
invertibility hold.

Next, we discuss the invertibility in Example 1 or the empirical
application using the linear independence interpretation. Recall
that the dynamic discrete-choice model with an unobserved
covariate Uit : Yit = 1


X ′

itβ + γ Yit−1 + Uit + ξit ≥ 0

where Yit

denotes the t-th period participation decision, and Xit is the
wage or income variable in that period. First, the invertibility of
LXit+1,xit ,yit−1,Xit−1 implies that the conditional distribution of wage
or income variables fXit+1,Xit ,Yit−1,Xit−1(u, xit , yit−1, x) over some
subset of Xt+1 can approximate distributions of wage or income
in period t − 1 well and hence, any income or wage distribution
in period t − 1 has been accounted for by this functional
form using the variation in period t + 1. The independence of
income or wage variables over time clearly cause the invertibility
to fail. Second, if the unobserved covariate Uit contains time-
invariant heterogeneity such as motivation or inherent health, the
invertibility of LXit+1|xit ,Uit suggests that given the current income
variable xit the variation of the functional form fXit+1|Xit ,Uit over the
future incomevariables can fully capture the changes ormovement
of unobserved motivation or inherent health.

These two models have a point mass at y = 0, so we can
chooseω(y) = I (y = 0). Assumption 3.4 is automatically satisfied
for these limited dependent variable models. Finally, the covariate
evolution represents the changing of the nonlabor income over
time in these models. As mentioned in Assumption 3.5, the
functional G can be the mean, mode, median, or a quantile. Thus,
one of the conditions for Assumption 3.5 is that the mode of the
distribution of the nonlabor income in the next period conditional
on the current nonlabor income and unobserved covariate uit is
equal to the unobserved covariate. Since the unobserved covariate
Uit contains time-invariant heterogeneity such as motivation or

18 Recall Uit = Vi + ηit and ηit = ϕ

{Xiτ , Yiτ−1, ξiτ }τ=0,1,...,t−1


, ηit is a function

of all time-varying variables in the past.
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inherent health, it means that the value of nonlabor income
that occurs most frequently around the location of true level of
unobserved motivation or inherent health.

Set εit = ρεit−1 +ξit and ξit ∼ N(0, σ 2
ξ ). Consider the following

data generating process (DGP):

Yit = g (β0 + β1Xit + γ Yit−1 + Uit + ξit ≥ 0)

with Uit = Vi + ρεit−1 ∀i = 1, . . . ,N; t = 1, . . . , T − 1, (6)

where g(·) can be the 0–1 indicator function or g(·) = max(0, ·)
and Vi ∼ N(µv, σ 2

v ). The generating process of covariate evolution
has the following form Xit+1 = Xit + h(Xit)ϵit + Uit or

fXit+1|Xit ,Uit (xt+1|xt , u) =
1

h(xt)
fϵ


xt+1 − xt − u

h(xt)


, (7)

where fϵ is a density function that can be specified under different
identification conditions of Assumption 3.5.19 For example, take
fϵ(x) = exp(x − ex) and the mode as the choice of G for
Assumption 3.5. We will use these settings in the Monte Carlo
simulation.

It is straightforward to verify the assumptions with the spe-
cific data generating processes except for Assumption 3.3. The in-
vertibility of LXit+1|xit ,Uit is equivalent to the completeness of the
family {fXit+1|Xit ,Uit (xt+1|xt , u) : xt+1 ∈ Xit+1}. When fϵ(x) =

exp(x − ex), the covariate evolution belongs to one of exponen-
tial families and it is complete by Theorem 2.2 in Newey and Pow-
ell (2003). Therefore, LXit+1|xit ,Uit is invertible. Applying the invert-
ibility of LXit+1|xit ,Uit to the integral relation LXit+1,xit ,yit−1,Xit−1 =

LXit+1|xit ,Uit Lxit ,yit−1,Xit−1,Uit implies that the invertibility of
LXit+1,xit ,yit−1,Xit−1 is equivalent to the invertibility of Lxit ,yit−1,Xit−1,Uit .
Utilize Theorem 2.2 in Newey and Powell (2003) again to the fam-
ily {fUit−1|Xit ,Xit−1 =

1
h(xt−1)

fϵ


−u+xt−xt−1
h(xt−1)


: u ∈ Uit−1} for each

given xt and then use it to obtain the completeness of the family
{fXit ,Xit−1,Uit−1(xt , xt−1, u) : u ∈ Uit−1}.20Next, pass the complete-
ness of {fXit ,Xit−1,Uit−1(xt , xt−1, u) : u ∈ Uit−1} to {fXit ,Xit−1,Uit
(xt , xt−1, u) : u ∈ Uit} using an integral equation

fXit ,Xit−1,Uit =


fUit |Uit−1 fXit ,Xit−1,Uit−1dUit−1.

Since Uit = Uit−1 + a normal error, fUit |Uit−1 is a complete distribu-
tion by the normality. We can express the integral equation as an
operator relationship and show the operator using fXit ,Xit−1,Uit as a
kernel is invertible. This implies {fXit ,Xit−1,Uit (xt , xt−1, u) : u ∈ Uit}

is complete and then the family {fXit ,Yit−1,Xit−1,Uit (xt , yt−1, xt−1, u) :

u ∈ Uit} is also complete over Lp(Xit−1). We have reached
LXit+1,xit ,yit−1,Xit−1 is invertible.

4. Estimation

The dynamic panel data model (1) specifies the relationship
between the dependent variable of interest for an individual
i, Yit , and the explanatory variables including a lagged dependent
variable Yit−1, a set of possibly time-varying explanatory variables
Xit , and an unobserved covariate Uit . If we are willing to make a
normality assumption on ξit , then themodel in Example 1 becomes
a probit model and themodel in Example 2 becomes a tobit model.

19 This generating process is also adopted in Hu and Schennach (2008a) and it can
be adjusted to a variety of identification conditions, the mean, the mode, median,
or a quantile.
20 Suppose that h ∈ Lp(Xit−1) and


h(xt−1)fXit ,Xit−1,Uit−1 (xt , xt−1, u)dxt−1 = 0

for any xt . The equation can be rewritten as

h(xt−1)fXit ,Xit−1 fUit−1 |Xit ,Xit−1dxt−1 =

0 for any uit−1 . The completeness of {fUit−1 |Xit ,Xit−1 : u ∈ Uit−1} implies that
h(xt−1)fXit ,Xit−1 = 0 and then h = 0. We obtain the completeness of the family
{fXit ,Xit−1,Uit−1 (xt , xt−1, u) : u ∈ Uit−1} over Lp(Xit−1).
The general specification here covers a number of other dynamic
nonlinear panel data model in one framework.

Given that the random shocks {ξit}
T
t=0 are exogenous, the con-

ditional distribution fYit |Xit ,Yit−1,Uit is a combination of the function
g and the distribution of ξit . In most applications, the function g
and the distribution of ξit have a parametric form. That means the
model may be parameterized in the following form:

fYit |Xit ,Yit−1,Uit (yit |xit , yit−1, uit; θ),

where θ includes the unknown parameters in both the func-
tion g and the distribution of ξit . Under the rank condition in
the regular identification of parametric models, the nonparamet-
ric identification of fYit |Xit ,Yit−1,Uit implies that of the parameter θ ,
and therefore, the identification of the function g and the dis-
tribution of ξit . In general, we may allow θ = (b, λ)T , where
b is a finite-dimensional parameter vector of interest and λ is a
potentially infinite-dimensional nuisance parameter or nonpara-
metric component.21 What is not specified in the model is the
evolution of the covariate Xit , together with the unobserved com-
ponent Uit , i.e., fXit+1|Xit ,Uit , and the initial joint distribution of all
the variables fXit ,Yit−1,Xit−1,Uit . We consider the nonparametric ele-
ments (fXit+1|Xit ,Uit , λ, fXit ,Yit−1,Xit−1,Uit )

T as infinite-dimensional nui-
sance parameters in our semi-parametric estimator.

Our semi-parametric sieveMLE does not require the initial con-
dition assumption for the widely used panel data models, such as
dynamic discrete-response models and dynamic censored mod-
els. In Section 3, we have shown Eq. (4) uniquely determines
(fXit+1|Xit ,Uit , fYit |Xit ,Yit−1,Uit , fXit ,Yit−1,Xit−1,Uit )

T . While the dynamic
panel data model component fYit |Xit ,Yit−1,Uit will be parameterized,
the other components are treated as nonparametric nuisance func-
tions. Eq. (4) implies

α0 ≡ (fXit+1|Xit ,Uit , θ0, fXit ,Yit−1,Xit−1,Uit )
T

= arg max
(f1,θ,f2)T∈A

E ln


f1(xit+1|xit , uit)fYit |Xit ,Yit−1,Uit

× (yit |xit , yit−1, uit; θ)f2(xit , yit−1, xit−1, uit)duit ,

which suggests a corresponding semi-parametric sieve MLE using

an i.i.d. sample

xit+1, yit , xit , yit−1, xit−1

n
i=1

,

αn ≡


f̂1, θ̂ , f̂2

T
= arg max

(f1,θ,f2)T∈An

1
n

n
i=1

ln


f1(xit+1|xit , uit)fYit |Xit ,Yit−1,Uit

× (yit |xit , yit−1, uit; θ)f2(xit , yit−1, xit−1, uit)duit . (8)

The function space A contains the corresponding true densities
and An is a sequence of approximating sieve spaces.

Our estimator is a direct application of the general semi-
parametric sieveMLE in Shen (1997), Chen and Shen (1998), and Ai
and Chen (2003). In the Appendix A, we provide sufficient condi-
tions for the consistency of our semi-parametric estimatorαn and
those for the

√
n asymptotic normality of the parametric compo-

nentb. The asymptotic theory of the proposed sieve MLE and the
detailed development of sieve approximations of the nonparamet-
ric components are also provided in Online Appendix.

21 A partition of θ into finite-dimensional parameters and infinite-dimensional
parameters does not affect our sieveMLE.More examples of a partition can be found
in Shen (1997).



124 J.-L. Shiu, Y. Hu / Journal of Econometrics 175 (2013) 116–131
With the consistency of the semi-parametric estimator αn, a
consistent estimator of the average structural function (ASF) can
be obtained by

ASF(Xt , Yt−1) =


Ut


Yt

ω (yt) fYt |Xt ,Yt−1,Ut

× (yt |xt , yt−1, ut; θ̂ )dYt


f̂2(ut)dut , (9)

where f̂2(Ut) =


Xt


Yt−1


Xt−1

f̂2(Xt , Yt−1, Xt−1,Ut)dXtdYt−1

dXt−1. Thus, the average partial effects of the state dependence at
interesting values of the explanatory variables can be computed by
changes or derivatives of Eq. (9) with respect to Yt−1.

Note that the proposed sieve MLE only needs 3 periods. This
means that when a DGP is generated through the dynamic process
(1), three-periods data are enough to recovery the parameter
of the interest θ . When there are more periods of data, the
approach is still tractable. For example, if T = 4 and we assume
the dynamic panel data specification (1), then estimation results
from periods 1, 2, and 3 should be the same as ones from 2,
3, and 4. If the estimated results are significantly different, we
would suspect model misspecification. Under the assumptions of
stationary and ergodicity, an alternative way to deal with data
more than 3 periods is to transform the data into 3 periods
of data by rearranging them as 3 periods of data and stacking
them into a larger cross-sectional data. For example, suppose that
there are 5 periods of data {Dt ,Dt+1,Dt+2,Dt+3,Dt+4}. It can be
transformed into three observations of three periods of data, i.e.,
{Dt ,Dt+1,Dt+2} , {Dt+1,Dt+2,Dt+3}, and {Dt+2,Dt+3,Dt+4}.

For a model with a larger number of observed covariates, we
can consider a single-index response model with X ′

itβ . That is Xit
is a d-dimensional vector of explanatory variables, and X ′

itβ is the
index, the scalar product of Xit with β , a vector of parameters
whose values are unknown. Since our assumptions do not exclude
time dependence in covariates, time dummies are allowed to be
in Xit . Many widely used parametric models have this form. In
our empirical application, we adopt this approach to deal with
a case of many observed covariates. The part (ii) of Assumption
B.4. Requires that kni/n → 0 for i = 1, λ, 2. Thus, the rate of
convergence depends on the degree of the sieve approximations
since higher degree of sieve spaces provide better approximations.
When Xit is a d-dimensional vector and the index form is not used,
the degree of approximation has to be increased proportionally in
order to get better approximation of these nuisance component,
f1(xt+1|xt , ut; δ1) and f2(xt , yt−1, xt−1, ut; δ2). It follows that the
larger the dimension of Xit , the slower the rate of convergence.
Thus, the curse of dimensionality may be an issue if researchers
are interested in the nuisance component f1(xt+1|xt , ut; δ1)
and f2(xt , yt−1, xt−1, ut; δ2), but the convergence speed of the
parametric part is still root-n.

4.1. Implementation

As we discussed above, we propose a semi-parametric sieve
MLE using an i.i.d. sample {xit+1, yit , xit , yit−1, xit−1} for i = 1, 2,
. . . , n. The unknown densities are associated with the observed
distribution as follows:

fXit+1,Yit ,Xit ,Yit−1,Xit−1 =


fXit+1|Xit ,Uit fYit |Xit ,Yit−1,Uit

× fXit ,Yit−1,Xit−1,Uit dUit .

The parametric part is the model of interest fYit |Xit ,Yit−1,Uit (yit |
xit , yit−1, uit; θ). The two nonparametric nuisance functions in-
clude fXit+1|Xit ,Uit and fXit ,Yit−1,Xit−1,Uit . The sieve MLE transforms a
semi-parametric MLE to a parametric MLE by replacing the non-
parametric nuisance functions with their Fourier approximations.
For example, the sieve estimator for the covariate evolution may
be constructed by the Fourier series as follows:

f1(xt+1|xt , ut; δ1) =

in
i=0

jn
j=0

kn
k=0

δ1,ijkϕ1i(xt+1 − ut)

×ϕ2j(xt)ϕ3k(ut),

where in, jn, kn are smoothing parameters and ϕ1i, ϕ2j, ϕ3k are
known basis functions. Similarly, we may have a sieve approxima-
tion of the initial joint density, f2(xit , yit−1, xit−1, uit; δ2), where δ2
is a vector of all the sieve coefficients. The fact that the parametric
functions f1(xt+1|xt , ut; δ1) and f2(xit , yit−1, xit−1, uit; δ2) are ap-
proximations of probability density functions implies certain re-
strictions on the sieve coefficients (δ1, δ2), which is discussed in
Online Appendix. In the sieve MLE, we may estimate (θ, δ1, δ2) as
a parametric MLE with a density function as follows:

f (xit+1, yit , xit , yit−1, xit−1; θ, δ1, δ2)

=


f1(xit+1|xit , ut; δ1)fYit |Xit ,Yit−1,Uit

× (yit |xit , yit−1, uit; θ)f2(xit , yit−1, xit−1, uit; δ2)duit .

In Online Appendix, we show the consistency and asymptotic
normality as sample size goes to infinity.

5. Monte Carlo evidence

In this section we present a Monte Carlo study that investigates
the finite sample properties of the proposed sieve MLE estimators
in the two different settings, dynamic discrete choice models and
dynamic censored models. We start with the specification of the
models as follows.
Semi-parametric dynamic probit models

First, we adopt a parametric assumption for εit . Suppose that εit
has a stationary AR(1) with an independent Gaussian white noise
process, εit = ρεit−1 + ξit , ξit ∼ N(0, 1/2). Denote Φξit and φξit
as the CDF and PDF of the independent error ξit , respectively. We
have

fYit |Xit ,Yit−1,Uit = Φξit


X ′

itβ + γ Yit−1 + Uit
Yit

×

1 − Φξit


X ′

itβ + γ Yit−1 + Uit
1−Yit ,

with Uit = Vi + ρεit−1.
The density fYit |Xit ,Yit−1,Uit is fully parameterized and θ only con-

tain the parametric component b = (γ , β)T . We approximate
fXit+1|Xit ,Uit , and fXit ,Yit−1,Xit−1,Uit by truncated series in the estima-
tion. The estimator of average structural function (ASF) in the dy-
namic probit model is

ASF(Xt , Yt−1) =


Ut

Φξit


X ′

tβ + γ Yt−1 + Ut

f2(Ut)dUt , (10)

which represents the conditional mean of ω (yt) = yt .
Semi-parametric dynamic tobit models

We also assume that εit has a stationary AR(1) with an indepen-
dent Gaussian white noise process, εit = ρεit−1 + ξit . This gives

fYit |Xit ,Yit−1,Uit =

1 − Φξit


X ′

itβ + γ Yit−1 + Uit
1(Yit=0)

×φξit (yit − X ′

itβ − γ Yit−1 − Uit)
1(Yit>0)

=


1 − Φ


X ′

itβ + γ Yit−1 + Uit

σξ

1(Yit=0)

×


1
σξ
φ


yit − X ′

itβ − γ Yit−1 − Uit

σξ

1(Yit>0)

, (11)
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and the parameter is θ = b = (γ , β, σ 2
ξ )

T . Since ξit ∼ N(0, σξ ),

EYt [yt |Xt , Yt−1,Ut ] = Φ


X ′
tβ+γ Yt−1+Ut

σξ


(X ′

tβ + γ Yt−1 + Ut) +

σξφ


X ′
tβ+γ Yt−1+Ut

σξ


. The estimator of ASF in the dynamic tobit

model is

ASF(Xt , Yt−1)

=


Ut


Φ


X ′
tβ + γ Yt−1 + Ut

σξ


(X ′

tβ + γ Yt−1 + Ut)

+ σξφ


X ′
tβ + γ Yt−1 + Ut

σξ


f2(Ut)dUt . (12)

The data generating process for dynamic discrete choicemodels
and dynamic censored models in the Monte Carlo experiments are
according to the following processes respectively:

Yit = 1 (β0 + β1Xit + γ Yit−1 + Uit + ξit ≥ 0)

with Uit = Vi + ρεit−1 ∀i = 1, . . . ,N; t = 1, . . . , T − 1 (13)

and

Yit = max {β0 + β1Xit + γ Yit−1 + Uit + ξit , 0}

with Uit = Vi + ρεit−1 ∀i = 1, . . . ,N; t = 1, . . . , T − 1 (14)

where Vi ∼ N(1, 1/2). To construct the sieve MLE, it is necessary
to integrate out the unobserved covariate Uit . Here Uit has an
unbounded domain (−∞,∞) and we adopted Gauss–Hermite
quadrature for approximating the value of the integral. We
consider the mode condition for Assumption 3.5 and use fϵ(x) =

exp(x − ex) in Eq. (7) for all simulated data. In addition, we set
h(x) = 0.3 exp(−x) to allow heterogeneity and assume the initial
observation (y0, x0) and the initial component ξ0 (=ϵi0) equal to
zero. As discussed in Section 3.3, these data generating processes
satisfy the identification Assumptions 3.1–3.5.

We consider five different values of (γ , σ 2
ξ , ρ) in the experi-

ments, (γ , σ 2
ξ , ρ) = (0, 0.5, 0), (0, 0.5, 0.5), (1, 0.5, 0), (1, 0.5,

0.5), (1, 0.5,−0.5), and the parameters of the intercept and the
exogenous variable are held fixed: β0 = 0 and β1 = −1. In sum-
mary, the data generating processes are as follows:

DGP I : (β0, β1, γ , σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0)

DGP II : (β0, β1, γ , σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0.5)

DGP III : (β0, β1, γ , σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0)

DGP IV : (β0, β1, γ , σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0.5)

DGP V : (β0, β1, γ , σ
2
ξ , ρ) = (0,−1, 1, 0.5,−0.5).

The first two DGPs are not state dependent (γ = 0) while the rest
are state dependent with γ = 1. A sample size N = 500 is consid-
ered.22 To secure a more stationary sample, the sampling data are
drawn over T = 7 periods but only last three periods are utilized.
Hundred simulation replications are conducted at each estimation.

Table 1 presents simulation results under the semi-parametric
probit model. The simulation results of DGP I (only allows for
unobserved heterogeneity) show small standard deviations exist
in the structural model coefficients (β0, γ ) comparing to the
benchmark estimator. For DGP II, the results have downward bias
in the structural model coefficient β1. In addition, with nontrivial
transitory component (ρ ≠ 0) in DGP II, the standard deviations
of (β0, β1, γ ) are not much different from DGP I. As for DGPs
with nontrivial state dependence, bias for (β0, β1, γ ) for these

22 Simulation results for other two different sample sizes, N = 250, 1000 are
online.
Table 1
Monte Carlo simulation of the semi-parametric probit model (n = 500).

DGP Parameters
β0 β1 γ

DGP I: True value 0 −1 0
Mean benchmark −0.033 −1.011 0.059
Median benchmark 0.017 −1.016 0.008
Standard deviation 0.387 0.065 0.452

Mean estimate 0.008 −0.994 −0.013
Median estimate 0.010 −1.006 −0.002
Standard deviation 0.086 0.103 0.108

DGP II: True value 0 −1 0
Mean benchmark 0.015 −1.013 0.024
Median benchmark 0.006 −1.011 0.021
Standard deviation 0.125 0.065 0.101

Mean estimate −0.003 −1.010 0.007
Median estimate −0.012 −1.004 0.011
Standard deviation 0.087 0.095 0.110

DGP III: True value 0 −1 1
Mean benchmark 0.002 −1.004 0.998
Median benchmark −0.001 −1.005 0.997
Standard deviation 0.134 0.071 0.093

Mean estimate 0.008 −0.991 0.997
Median estimate 0.016 −0.994 1.000
Standard deviation 0.093 0.105 0.106

DGP IV: True value 0 −1 1
Mean benchmark −0.052 −0.999 1.056
Median benchmark −0.014 −1.000 1.015
Standard deviation 0.412 0.055 0.411

Mean estimate −0.005 −1.005 1.008
Median estimate 0.003 −1.024 1.010
Standard deviation 0.092 0.104 0.121

DGP V: True value 0 −1 1
Mean benchmark 0.012 −1.010 1.000
Median benchmark 0.001 −1.011 1.001
Standard deviation 0.112 0.066 0.096

Mean estimate −0.001 −0.996 0.996
Median estimate 0.012 −1.002 0.982
Standard deviation 0.112 0.095 0.093

Note: The simulated date has 7 periods but only last 3 periods are used to construct
the sieve MLE in the semi-parametric probit model. The benchmark estimator is
an unfeasible MLE using the unobserved covariate Uit . Standard deviations of the
parameters are computed by the standard deviation of the estimates across 100
simulations and called (simulation) standard deviations.

DGPs is around 0.01 or less and their standard deviations are
around 0.1. The coefficient estimators of γ in these DGPs have very
small bias for all sample sizes, which means that our estimation
for state dependence is very precise among processes with serial
correlation (ρ ≠ 0). In general, the means and medians of
(β1, γ ) are very close to each other, reflecting little skewness in
their respective distributions. Table 2 shows the simulation of the
average partial effects in dynamic probit models in these DGPs.
When there is no state dependence (DGP I & II), the estimates for
average partial effects do not varymuchwith the lagged value Yt−1.
However, when DGPs contain state dependence, the difference in
the average responses are up to 0.12. Results using the benchmark
estimator have much larger standard deviations than ones using
the proposed estimator.

Table 3 reports the results of estimates for the semi-parametric
tobit model. In the tobit model, there is negative bias in β1
for all DGPs. In tobit case, we have additional parameters to
estimate, σ 2

ξ . There is upward bias of the parameter in all DGPs
and their standard deviations are a little bit higher in DGPs with
nontrivial state dependence. For these DGPs with positive state
dependence, estimation results of γ show that there is small bias
and precision is within 0.05. Also, the means and medians of all
model parameters are not much different, reflecting low degree of
skewness in distributions. Table 4 shows the results of the average
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Table 2
Simulation of average structural functions in the probit model (n = 500).

State dependence Average structural functions

DGP I: Yt−1 = 0 Mean benchmark 0.281
Standard deviation (0.214)

Mean estimate 0.574
Standard deviation (0.029)

Yt−1 = 1 Mean benchmark 0.281
Standard deviation (0.214)

Mean estimate 0.572
Standard deviation (0.035)

DGP II: Yt−1 = 0 Mean benchmark 0.307
Standard deviation (0.216)

Mean estimate 0.582
Standard deviation (0.029)

Yt−1 = 1 Mean benchmark 0.307
Standard deviation (0.216)

Mean estimate 0.580
Standard deviation (0.034)

DGP III: Yt−1 = 0 Mean benchmark 0.301
Standard deviation (0.219)

Mean estimate 0.572
Standard deviation (0.021)

Yt−1 = 1 Mean benchmark 0.640
Standard deviation (0.204)

Mean estimate 0.696
Standard deviation (0.028)

DGP IV: Yt−1 = 0 Mean benchmark 0.265
Standard deviation (0.220)

Mean estimate 0.584
Standard deviation (0.036)

Yt−1 = 1 Mean benchmark 0.587
Standard deviation (0.233)

Mean estimate 0.707
Standard deviation (0.045)

DGP V: Yt−1 = 0 Mean benchmark 0.282
Standard deviation (0.203)

Mean estimate 0.586
Standard deviation (0.036)

Yt−1 = 1 Mean benchmark 0.614
Standard deviation (0.218)

Mean estimate 0.717
Standard deviation (0.048)

Note: The average structural functions are reported at the mean value of the
explanatory variable and two different outcomes of Yt−1 , 0 and 1. Standard
deviations of these average structural functions are computed by the standard
deviation of the estimates across 100 simulations and called (simulation) standard
deviations. The true values of ASF are computed using the unobserved covariate
Uit . Average partial effects of Yt−1 can be obtained by taking differences of average
structural functions at Yt−1 = 0, and Yt−1 = 1.

partial effects in dynamic tobit models. There are larger standard
deviations of average structural functions and state dependence
in DGPs with positive state dependence. Similar to the results in
Table 2, results using the benchmark estimator have much larger
standard deviations than ones in the proposed estimator.

In some estimation results of parameters, the simulation stan-
dard deviation is smaller for the proposed semi-parametric esti-
mator than for the benchmark parametric MLE. An explanation for
this observation is that we have adopted Gauss–Hermite quadra-
ture for approximating the value of the integral in the sieve MLE
and the distribution of theweights of Gauss–Hermite quadrature is
close to a normal distribution. On the other hand, in our simulation
design, the unobserved covariate Uit is normally distributed. This
may reduce the simulated standard deviation because in this case
the weight function used in numerical integration has the same
functional form as a normal PDF.

There are two nuisance parameters, fXt+1|Xt ,Ut and fXt ,Yt−1,Xt−1,Ut ,
in our Monte Carlo simulation and we use Fourier series to
Table 3
Monte Carlo simulation of semi-parametric tobit model (n = 500).

DGP Parameters
β0 β1 γ σ 2

ξ

DGP I: True value 0 −1 0 0.5
Mean benchmark 0.001 −1.002 −0.023 0.502
Median benchmark −0.003 −1.003 0.002 0.502
Standard deviation 0.103 0.064 0.289 0.084

Mean estimate 0.007 −1.006 0.002 0.525
Median estimate 0.006 −0.992 0.009 0.523
Standard deviation 0.092 0.111 0.103 0.031

DGP II: True value 0 −1 0 0.5
Mean benchmark −0.013 −0.994 −0.009 0.494
Median benchmark −0.003 −0.991 −0.009 0.496
Standard deviation 0.088 0.049 0.128 0.065

Mean estimate 0.001 −1.009 0.017 0.526
Median estimate −0.014 −1.009 0.019 0.524
Standard deviation 0.112 0.096 0.098 0.030

DGP III: True value 0 −1 1 0.5
Mean benchmark 0.001 −1.004 1.002 0.499
Median benchmark 0.004 −1.000 1.000 0.500
Standard deviation 0.096 0.057 0.052 0.052

Mean estimate 0.015 −1.011 0.989 0.528
Median estimate 0.014 −1.003 0.994 0.526
Standard deviation 0.100 0.112 0.114 0.035

DGP IV: True value 0 −1 1 0.5
Mean benchmark −0.001 −1.006 1.004 0.501
Median benchmark −0.002 −1.013 1.001 0.506
Standard deviation 0.084 0.056 0.047 0.051

Mean estimate 0.007 −1.015 0.988 0.501
Median estimate 0.017 −1.023 0.986 0.523
Standard deviation 0.093 0.103 0.101 0.036

DGP V: True value 0 −1 1 0.5
Mean benchmark 0.001 −1.007 1.005 0.502
Median benchmark 0.003 −1.003 1.007 0.505
Standard deviation 0.072 0.045 0.057 0.055

Mean estimate −0.002 −1.030 0.997 0.528
Median estimate 0.008 −1.026 0.996 0.527
Standard deviation 0.108 0.099 0.120 0.035

Note: The simulated date has 7 periods but only last 3 periods are used to construct
the sieve MLE in the semi-parametric tobit models. The benchmark estimator is
an unfeasible MLE using the unobserved covariate Uit . Standard deviations of the
parameters are computed by the standard deviation of the estimates across 100
simulations and called (simulation) standard deviations.

approximate the evolution density and the square root of the initial
joint distribution. Since a higher dimensional sieve space is con-
structed by tensor product of univariate sieve series, approxima-
tion series can be formed from several univariate Fourier series. In
the semi-parametric probit model, while in the approximation of
the evolution densities we use three univariate Fourier series with
the number of term, in = 5, jn = 2, and kn = 2, in the approxima-
tion of the initial joint distribution we have in = 5, jn = 2, kn = 2,
and ln = 2.23 While a formal selection rule for these smooth-
ing parameters would be desirable, it is difficult to provide a gen-
eral guideline. From our experience, the estimation of the finite-
dimensional parameters θ is not very sensitive to these smoothing
parameters. If one cares about estimation of nonparametric den-
sity functions, one should pick the smoothing parameters to min-
imize the approximate mean squared errors of the estimator. In
the Monte Carlo study, this is relatively easy to do because the
true values are known. But in empirical applicationswhere the true
values of the parameters are unknown, it is still a difficult task. A
rule of thumb is to pick the smoothing parameters such that the
estimates are not sensitive to small variations in the smoothing

23 The numbers of term, in, jn , and kn represent the length of three univariate
Fourier series. See Online Appendix for details.
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Table 4
Simulation of average effects in tobit model (n = 500).

Average structural functions State dependence

DGP I: Mean benchmark 0.171 Mean benchmark 0.314
Standard deviation (0.243) Standard deviation (0.253)

Mean estimate 0.357 Mean estimate 0.399
Standard deviation (0.080) Standard deviation (0.069)

DGP II: Mean benchmark 0.131 Mean benchmark 0.263
Standard deviation (0.164) Standard deviation (0.210)

Mean estimate 0.360 Mean estimate 0.407
Standard deviation (0.096) Standard deviation (0.086)

DGP III: Mean benchmark 0.474 Mean benchmark 1.189
Standard deviation (0.353) Standard deviation (0.519)

Mean estimate 0.620 Mean estimate 1.016
Standard deviation (0.146) Standard deviation (0.187)

DGP IV: Mean benchmark 0.437 Mean benchmark 1.116
Standard deviation (0.353) Standard deviation (0.537)

Mean estimate 0.652 Mean estimate 1.045
Standard deviation (0.106) Standard deviation (0.143)

DGP V: Mean benchmark 0.468 Mean benchmark 1.159
Standard deviation (0.361) Standard deviation (0.535)

Mean estimate 0.655 Mean estimate 1.073
Standard deviation (0.149) Standard deviation (0.180)

Note: The average structural functions are reported at the mean value of the
explanatory variable including the lagged dependent variable. Standard deviations
of these estimation results are computed by the standard deviation of the estimates
across 100 simulations and called (simulation) standard deviations. Average partial
effects of Yt−1 or state dependence can be obtained by taking the derivative of ASF
at means. The true values of ASF and state dependence are computed using the
unobserved covariate Uit .

parameter.24 While the Fourier approximations to the evolution
density fXt+1|Xt ,Ut have the density restriction and the identifica-
tion restriction, there exists only a density restriction for the ap-
proximations to the square root of the initial joint distribution
f 1/2Xt ,Yt−1,Xt−1,Ut

using Fourier basis.25 The semi-parametric sieveMLE
using this construction does not encounter any negative integral
inside the logarithm in Eq. (8) in our Monte Carlo study. As for the
semi-parametric tobit model, we have similar choices of approxi-
mation series. The detailed sieve expression of these nuisance pa-
rameters can be found in Online Appendix.

The standard deviations can be computed from bootstraps
from draws of the original sample. The use of nonparametric
bootstrap provides an asymptotically valid standard deviations for
the sieve MLE estimate for the finite dimensional parameters θ .
The discussion of the consistency of the ordinary nonparametric

24 There is no justified general rule on the choice of number of series terms. For
each smoothing parameter, a minimum choice of number of terms is 2 because
a sieve series with each smoothing parameter less than 2 is too restrictive and
may not approximate well. Thus, each smoothing parameter should be at least
2. Start with an approximation series whose smoothing parameter is 2 in each
univariate series and construct a corresponding likelihood to conduct Monte Carlo
experiment. If the result of the simulation based on the approximation series is
not satisfactory, then try to add more terms. In this case, we added more terms
in p1i and qi while fixing other univariate series because it is easier to add terms
in one particular univariate series without changing the whole structure of the
approximation series. If this does not work well then do the adding and fixing step
to other univariate series. The process can continue to an approximation series
whose smoothing parameter is at least 3 in each univariate series. Therefore, the
search procedure is complete and help us determine the number of series terms. In
addition, a discussion in Hu and Schennach (2008a) suggests that a suitable choice
of the smoothing parameters lies between short series and long series where the
smoothing bias and the statistical noise dominate respectively.
25 Anapproximation series to a positive density functionmay takenegative values.
A natural log value of a negative value is infinity and thismaymake the construction
of log likelihood function infeasible. Using an approximation series to the square
root of the initial joint distribution yields a positive approximation to the positive
density function.
bootstrap for θ can be found in Chen et al. (2003). Set Zti =

(Xit+1, Yit , Xit , Yit−1, Xit−1) and then define a moment function as
m(Zt , θ, f1, f2) = ln f (xt+1, yt , xt , yt−1, xt−1; θ, δ1, δ2), where

f (xt+1, yt , xt , yt−1, xt−1; θ, δ1, δ2)

=


f1(xt+1|xt , ut; δ1)fYt |Xt ,Yt−1,Ut (yt |xt , yt−1, ut; θ)

× f2(xt , yt−1, xt−1, ut; δ2)dut .

The notation connects the proposed sieve MLE to the setting in
Chen et al. (2003). Sufficient conditions for the bootstrap validity
in Chen et al. (2003) include the identification of a parameter, the
approximation of a sequence of sieve spaces to infinite dimensional
parameters, and the regularity conditions of the moment function.
These conditions are close to conditions of the consistency and
asymptotic normality in the Appendix B of Online Appendix.26 In a
sieve related estimation method, Ai and Chen (2003) also adopted
bootstrap standard deviations as standard deviations of their sieve
minimum distance estimator in the simulation study.

In summary, the Monte Carlo study shows that our semi-
parametric sieve MLE performs well with a finite sample since
mean and median estimates are close to the true values with rea-
sonable standard deviations.

6. Empirical example

In this section, we apply our estimator to a dynamic discrete
choice model, which describes the labor force participation
decisions of married women given their past participation state
and other covariates. The advantage of our estimator is that
our model may include (i) arbitrary and unspecified correlated
random effects between unobserved time-invariant factors such
as skill level or motivation and time-varying X ′

its and (ii) we
require no initial conditions assumption.27 Hyslop (1999) also
studied a similar empirical model with less general assumptions
but specified parametric forms of the unobserved heterogeneity Vi
and AR(1) time dependence ρ of the transitory error component
εit . Since these two terms are not separately identified from our
main result Theorem 3.1, the empirical study here will focus on
the parameters of exogenous explanatory variables and lagged
dependent variable not the distributions of the error terms. On
the other hand, these estimations might not be comparable across
specifications, because of the estimator-specific normalizations in
binary choice models. Since the average partial effect is identified
in Corollary 3.1, the empirical study also focuses on comparable
average partial effects.

26 For example, we have Assumption B.5 for that ln fZt (zt ;α) is Hölder continuous
and Chen et al. (2003) provided Hölder continuity as one of primitive sufficient
assumptions for their bootstrap result. Therefore, wemay not need to impose extra
assumptions on the validity of bootstrapping standard errors.
27 In Hyslop (1999), a correlated random-effects (CRE) specification for vi is

vi =

T
s=0

(δ1s · (#Kids0-2)is + δ2s · (#Kids3-5)is

+ δ3s · (#Kids6-17)is)+

T−1
s=0

δ4s · ymtis + ηi,

where ymtis is i’s transitory nonlabor income in year s. An alternative CRE specifica-
tion can be

vi = δ1 · (#Kids0-2)i + δ2 · (#Kids3-5)i
+ δ3 · (#Kids6-17 )i + δ4 · ȳmti + ηi,

where x̄i =
T

t=0 xit .
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6.1. Specifications and estimation results

According to a theoretical model in Hyslop (1999), the labor
force participation decisions of married women depend on
whether or not their market wage offer exceeds their reservation
wage, which in turn may depend on their past participation state.
Suppose Yt is the t-th period participation decision,Wt is thewage,
andW ∗

0t is a reservation wage. Then period t participation decision
can be formulated by

Yt = 1(Wt > W ∗

0t − γ Yt−1) (15)

where 1(·) denotes an indicator function that is equal to 1 if the
expression is true and 0 otherwise. An empirical reduced form
specification for Eq. (15) is as follows:

Yit = 1(X ′

itβ + γ Yt−1 + Uit + ξit > 0)
∀i = 1, . . . ,N; t = 1, . . . , T − 1

where Xit is a vector of observed demographic and family structure
variable, Uit captures the effects of unobserved factors, and β and
γ are parameters. There are two latent sources for the unobserved
term Uit :

Uit = Vi + ρεit−1

where Vi is an individual-specific component, which captures
unobserved time invariant factors possibly correlated with the
time-varying X ′

its such as skill level or motivation; εit is a serially
correlated error term, which captures factors such as transitory
wage movements.

In order to provide comparison of the estimators developed in
this paper and by Hyslop (1999), we also use the data related to
waves 12–19 of the Michigan Panel Survey of Income Dynamics
from the calendar years 1979–85 to study married women’s
employment decisions. The seven-year sample consists of women
aged 18–60 in 1980, continuously married, and the husband is a
labor force participant in each of the sample years. A woman is
defined to be a labor market participant if she works for money
any time in the sample year.28 We obtain a sample having 1752
married women.29

As the identification of the models hinges on assumptions in
Section 3, a careful discussion of them in this labor force appli-
cation is necessary, while we realize that testing these assump-
tions is not feasible as discussed before. Assumption 3.1 is a
model specification and it implies that regardless of whatever is
in Xit , Yit−1, and Uit , enough information has been included so that
further lags of participation decision and the explanatory vari-
ables including nonlabor income, fertility status, etc., do not mat-
ter for explaining the current participation decision Yit directly.
Assumption 3.3 imposes functional form restrictions on the co-
variate evolution and the initial joint distribution. Assumption 3.4
in the empirical application may be E [I (Yit = 0) |xit , yit−1, uit ] =

Fξit

−

x′

itβ + γ yit−1 + uit

, which is decreasing in uit . Since uit

can represent or contain unobserved heterogeneity such as indi-
vidual ability or motivation, the assumption suggests that the con-
ditional expectation of the absence from labor force decreaseswith
ability ormotivation. Our choice ofG in Assumption 3.5 is themode
since the covariate Xit contains income variables. In Current Popu-
lation Survey (CPS), it was found that the mode of misreported in-
come conditional on true income is equal to the true income (see

28 A standard definition of a participant is that an individual reports both positive
annual hours worked and annual earnings. Hyslop (1995) provided a description
of the extent of aggregation bias which results from ignoring intra-year labor force
transition.
29 Hyslop (1995) obtains a sample consisted of 1812 observations. The descriptive
statistics of our sample is very close to Hyslop (1995).
Bound and Krueger (1991) and Chen et al. (2008). Using the mode
conditionmay relieve concerns onmeasurement errors. Obviously,
this is not the only choice of the functional G. As discussed before,
we may use mean or median as well.

We then focus on Assumption 3.2. The discussion of the
assumption in Section 3 suggests that it imposes the key restriction
that conditional on Xit and Uit , Xit+1 is independent of the
exogenous shock ξit and the lagged effects of Yit enter the
evolution of Xit+1 through Uit . The regressors of interest in this
empirical application are the nonlabor income variables and the
fertility variables. There are several scenarios for the exogenous
participation shock ξit . First, if ξit denotes the measurement error,
then the conditional independence between ξit and the future
nonlabor income and fertility variables is plausible. Second, if ξit
represents luck in labor markets such as unexpected change of
child-care cost or fringe benefit for married women fromworking,
the assumption rules out the immediate effect of the current
shock ξit on the future nonlabor income and fertility variables.
This implies that married women do not adjust their nonlabor
income and fertility variables to the latest participation shock
ξit but consider all other past period information. If there was
a negative shock on participation, married women’s nonlabor
income and fertility decisions would wait one period to respond
to it. Therefore, Assumption 3.2 may be plausible in our model
of the intertemporal labor force participation behavior of married
women. Nevertheless, Assumption 3.2 does rule out the possible
correlation between the fertility decisions in Xit+1 and a negative
shock on labor force participation ξit even conditioning on the
fertility decisions in the previous period in Xit . While the lagged
effects of Yit enter the evolution of Xit+1 indirectly here, our
identification strategy still applies with fXit+1|Yit ,Xit ,Yit−1,Xit−1,Uit =

fXit+1|Xit ,Yit−1,Uit in Assumption 3.2 if Yit−1 has direct influence on
Xit+1. This alternative specification implies that the labor force
participation in period t − 1 affect married women’s future
nonlabor income and fertility decisions.

We then apply the sieve MLE method introduced in Sections 4
and 5 and maintain a single-index form and a mode condition.
The estimation results for the various models of labor force
participation are presented in Table 5 which includes estimates
from static probit models with random effect (column 1), a
maximum simulated likelihood (MSL) estimator30 (column 2),
and the sieve MLE estimator (column 3) for dynamic models.
All specifications include unrestricted time effects, a quadratic in
age, race, years of education, permanent and transitory nonlabor
income ymp and ymt , current realizations of the number of children
aged 0–2, 3–5, and 6–17, and lagged realizations of the number of
children aged 0–2.31 While the first two estimators are estimated
using full seven years of data, the last one is estimated over
three periods of data. In addition, the last estimator is for the
dynamic model without an initial condition specification. The
static probit model is estimated by MSL with 200 replications. It
allows for individual-specific random effects but ignores possible
dynamic effects of the past employment and potential correlation
between the unobserved heterogeneity and the regressors. The
estimation results of coefficients andAPEs indicate that permanent
nonlabor income has a significantly negative effect, transitory
income reduces the contemporaneous participation, and preschool
children have substantially negative effect. In addition, the

30 A detailed discussion of MSL estimators can be found in Hyslop (1999). There
are more specifications in the paper. Here we only compare the models allowing
the three sources of persistence.
31 The labor earnings of the husband are used as a proxy for nonlabor income.
Permanent nonlabor income ymp is estimated by the sample average, and transitory
income ymt is measured as deviations from the sample average.
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Table 5
Estimates of married women’s participation outcomes.

Static probit + RE (1) MSL, RE AR(1) + SD(1) (2) Semi-parametric probit (3)
Coefficient APE Coefficient APE Coefficient APE

yt−1 – – 1.117 0.325 1.089 0.225
– – (0.528) (0.015) (0.077) (0.014)

ymp −0.312 −0.070 −0.007 −0.002 −0.221 −0.048
(0.045) (0.005) (0.017) (0.001) (0.012) (0.003)

ymt −0.106 −0.024 −0.004 −0.001 −0.106 −0.023
(0.026) (0.002) (0.028) (0.001) (0.056) (0.001)

#Kid0-2t−1 −0.022 −0.005 −0.117 −0.036 −0.055 −0.012
(0.010) (0.001) (0.013) (0.002) (0.048) (0.001)

#Kid0-2t −0.330 −0.070 −0.380 −0.112 −0.316 −0.065
(0.021) (0.005) (0.145) (0.006) (0.061) (0.004)

#Kid3-5t −0.400 −0.086 −0.206 −0.062 −0.137 −0.029
(0.015) (0.007) (0.027) (0.003) (0.028) (0.002)

#Kid6-17t −0.120 −0.028 −0.056 −0.018 −0.062 −0.014
(0.011) (0.002) (0.037) (0.001) (0.011) (0.001)

Cov. parameters

σ 2
v 0.786 – 0.313 – – –

(0.071) – (0.323) – – –

ρ – – −0.146 – – –
– – (0.140) – – –

Note: Bootstrap (simulation) standard errors are reported in parentheses, using 100 bootstrap replications. Themodels in the first two columns are estimated using full seven
years of data but the last two columns are estimated over three-period data. APEs are reported by taking derivatives or differences of ASF at the sample mean of (xt , yt−1).
variance of unobserved heterogeneity is 0.786. We now turn to
dynamic specifications. The specifications in the MSL estimator
contain random effects, a stationary AR(1) error component, and
first-order state dependence (SD(1)). The estimated coefficients
and APEs share a similar pattern. The APE estimates show a
large and significant first-order state dependence effect reduces
the labor force participation probability by about 0.325. The
addition of SD(1) and AR(1) error component greatly reduced the
effects of nonlabor income variables (−0.002 and −0.001) and the
contemporaneous fertility variables like #Kid3-5t and #Kid6-17t .
But the estimated effects of younger kids in the past and current
periods #Kid0-2t−1 and #Kid0-2t have stronger negative effects
on the probability of women’s participation decisions (−0.036 and
−0.112). Including state dependence and serial correlation error
component reduce the error variance (0.313) due to unobserved
heterogeneity. The estimated AR(1) coefficient ρ is −0.146.32

The results also show that first-order state dependence has
a significant positive effect on the probability of participation
(0.225). There exists a strong dependence between married
women’s current labor force participation and past labor force par-
ticipation, and relaxing the initial condition assumption increase
the negative effects of nonlabor income variables and their signifi-
cance in the dynamicmodels. Permanent income and transitory in-
come both reduce the probability of participation but the effect of
permanent nonlabor income has substantially greater magnitude.

The fertility variables in the estimation are generally similar
to those in column (1) and (2) but with smaller magnitude. That
is, each of them has a significantly negative effect on married
women’s current labor force participation status, and younger chil-
dren have stronger effect than older. In our semi-parametric probit
estimator, the unobservedheterogeneity and theAR(1) component
have been mixed into the unobserved covariate Uit . They are not
identified so there are not any estimation results.

32 A correlated random-effects (CRE) is adopted in Hyslop (1999) to test the
exogeneity of fertility with respect to participation decisions. His results show that
there is no evidence against the exogeneity of fertility decision in dynamic model
specifications.
In comparison to the results across specifications allowing for
CRE, AR(1), and SD(1), using unspecified CRE and avoiding ini-
tial conditions have significant effect on the estimation. The APE
estimates find a larger significant negative effects on nonlabor
income variables (−0.048 and −0.002 vs. −0.023 and −0.001, re-
spectively) and negative effects of children aged 0–2 in the current
period and past period which decreases by 42% (from −0.112 to
−0.065) and decline by 66% (from−0.036 to−0.012) respectively.

7. Conclusion

This paper presents the nonparametric identification of nonlin-
ear dynamic panel data models with unobserved covariates. We
show that the models are identified using only two periods of the
dependent variable Yit and three periods of the covariate Xit with-
out initial conditions assumptions.Wepropose a sieveMLE estima-
tor, which is applied to two examples, a dynamic discrete-choice
model and a dynamic censoredmodel. Both of them allow for three
sources of persistence, ‘‘true’’ state dependence, unobserved indi-
vidual heterogeneity (‘‘spurious’’ state dependence), and possible
serially correlated transitory errors.Monte Carlo experiments have
shown how to deal with specific implementation issues and the
sieveMLE estimators performwell for thesemodels. Our sieveMLE
is shown to be root n consistent and asymptotically normal. Finally,
we apply our estimator to an intertemporal female labor force par-
ticipation model using a sample from the Panel Study of Income
Dynamics (PSID).

Appendix A. Identification in the discrete case

We will show how to utilize the identification techniques in
Section 2 for the discrete case. The discrete case refers to that the
variables Xit and Uit is discrete:

Xit ∈ Xt ≡ {1, 2, . . . , J1} and Uit ∈ U ≡ {1, 2, . . . , J2}.

In this finite dimensional discrete example, linear integral oper-
ators are matrices, which might be useful to give some intuition
about how the identification is achieved. For simplicity, assume
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that J1 = J2 = J . Based on Eq. (4) which is the consequence of
Assumptions 3.1 and 3.2, the key equation of the discrete case is

fXit+1,Yit ,Xit ,Yit−1,Xit−1 =

J
Uit=1

fXit+1|Xit ,Uit fYit |Xit ,Yit−1,Uit

× fXit ,Yit−1,Xit−1,Uit . (16)

Given (yit , xit , yit−1), define J-by-J matrices

LXit+1,yit ,xit ,yit−1,Xit−1 =

fXit+1,Yit ,Xit ,Yit−1,Xit−1

× (u, yit , xit , yit−1, x)]u,x
LXit+1,xit ,yit−1,Xit−1 =


fXit+1,Xit ,Yit−1,Xit−1(u, xit , yit−1, x)


u,x

LXit+1|xit ,Uit =

fXit+1|Xit ,Uit (x|xit , u)


x,u

Lxit ,yit−1,Xit−1,Uit =

fXit ,Yit−1,Xit−1,Uit (xit , yit−1, x, u)


u,x

and a J-by-J diagonal matrix
Dyit |xit ,yit−1,Uit

=

fYit |Xit ,Yit−1,Uit (yit |xit , yit−1, 1) 0 0
0 · · · 0
0 0 fYit |Xit ,Yit−1,Uit (yit |xit , yit−1, J)


.

Using these matrices, Eq. (16) can be expressed into a matrix nota-
tion as

LXit+1,yit ,xit ,yit−1,Xit−1 = LXit+1|xit ,UitDyit |xit ,yit−1,Uit Lxit ,yit−1,Xit−1,Uit . (17)

Integrating out Yit in Eq. (16) leads to

fXit+1,Xit ,Yit−1,Xit−1 =

J
uit=1

fXit+1|Xit ,Uit fXit ,Yit−1,Xit−1,Uit (18)

which is equivalent to

LXit+1,xit ,yit−1,Xit−1 = LXit+1|xit ,Uit Lxit ,yit−1,Xit−1,Uit . (19)

Assumption 3.3 guarantees that the above matrix LXit+1,xit ,yit−1,Xit−1
is invertible. It follows that

LXit+1,yit ,xit ,yit−1,Xit−1L
−1
Xit+1,xit ,yit−1,Xit−1

= LXit+1|xit ,UitDyit |xit ,yit−1,Uit L
−1
Xit+1|xit ,Uit

.

The observed matrix on the LHS has a matrix factorization, the
product of a diagonalmatrixwith amatrix of eigenvectors. Unique-
ness of the factorization requires the distinct eigenvalues and nor-
malization of the unobserved covariate Uit . Assumptions 3.4 and
3.5 are imposed to make these conditions hold. Since the eigenval-
ues and eigenvectors in the matrix factorization are fYit |Xit ,Yit−1,Uit
and fXit+1|Xit ,Uit respectively, the identification of the model is
reached. By Eq. (17), the initial joint distribution fXit ,Yit−1,Xit−1,Uit is
also identified.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2013.03.001.
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