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Nonparametric Identification and Semiparametric
Estimation of Classical Measurement Error Models

Without Side Information
S. M. SCHENNACH and Yingyao HU

Virtually all methods aimed at correcting for covariate measurement error in regressions rely on some form of additional information (e.g.,
validation data, known error distributions, repeated measurements, or instruments). In contrast, we establish that the fully nonparametric
classical errors-in-variables model is identifiable from data on the regressor and the dependent variable alone, unless the model takes a very
specific parametric form. This parametric family includes (but is not limited to) the linear specification with normally distributed variables
as a well-known special case. This result relies on standard primitive regularity conditions taking the form of smoothness constraints and
nonvanishing characteristic functions’ assumptions. Our approach can handle both monotone and nonmonotone specifications, provided the
latter oscillate a finite number of times. Given that the very specific unidentified parametric functional form is arguably the exception rather
than the rule, this identification result should have a wide applicability. It leads to a new perspective on handling measurement error in
nonlinear and nonparametric models, opening the way to a novel and practical approach to correct for measurement error in datasets where it
was previously considered impossible (due to the lack of additional information regarding the measurement error). We suggest an estimator
based on non/semiparametric maximum likelihood, derive its asymptotic properties, and illustrate the effectiveness of the method with a
simulation study and an application to the relationship between firm investment behavior and market value, the latter being notoriously
mismeasured. Supplementary materials for this article are available online.
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1. INTRODUCTION

Nonlinear regression models in which both the dependent
and independent variables are measured with error have
received considerable attention over the last few decades (see,
e.g., Carroll et al. 2006). This so-called classical nonlinear
errors-in-variables model takes the following form.

Model 1. Let y, x, x∗,�x,�y be scalar real-valued random
variables related through

y = g(x∗) + �y

x = x∗ + �x,

where only x and y are observed while all remaining variables
are not and satisfy the following assumption:

Assumption 1. The variables x∗, �x, �y, are mutually in-
dependent, E [�x] = 0, and E [�y] = 0 (with E [|�x|] < ∞
and E [|�y|] < ∞).

A well-known result is that when the function g (x∗) is linear
while x∗, �x, and �y are normal, the model is not identified
(see, e.g., Fuller 1987), although the regression coefficients can
often be consistently bounded (Klepper and Leamer 1984). This
lack of point identification for what is perhaps the most natural
regression model has long guided the search for solutions to
the errors-in-variables problem toward approaches that rely on
additional information (beyond x and y), such as instruments,
repeated measurements, validation data, known measurement
error distribution, etc. (e.g., Hausman et al. 1991; Li and Vuong
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1998; Newey 2001; Wang and Hsiao 2003; Schennach 2004a, b,
2007; Hu and Schennach 2008; Hu and Ridder 2012, among
many others).

Nevertheless, since the seminal works of Geary (1942) and
Reiersol (1950), a large number of authors (e.g., Kendall and
Stuart 1979; Pal 1980; Kapteyn and Wansbeek 1983; Cardoso
and Souloumiac 1993; Hyvärinen and Oja 1997; Cragg 1997;
Lewbel 1997; Dagenais and Dagenais 1997; Erickson and
Whited 2000; Ikeda and Toyama 2000; Erickson and Whited
2002; Beckmann and Smith 2004; Bonhomme and Robin 2009;
Bonhomme and Robin 2010, and the many references therein)
have exploited independence assumptions (as in Assumption 1
above) to develop alternative methods to identify linear errors-
in-variables models and related linear factor models, typically
based on the idea that higher-order moments of x and y provide
sufficient information to secure identification in the presence
of nonnormally distributed variables. Extensions to paramet-
ric polynomial models by using selected higher-order moments
have also been considered in Chesher (1998) and Kenny and
Judd (1984). Some nonlinear factor models have also been con-
sidered in Bauer (2005), Yalcin and Amemiya (2001), and Jutten
and Karhunen (2003), however, this strand of the literature has
largely bypassed the question of identification or has focused on
specific cases (such as nonlinear models that can be reduced to
linear ones by a suitable transformation). In fact, the question of
completely characterizing the set of identifiable models in fully
nonparametric settings, while fully exploiting the information
provided by the joint distribution of all the observable variables
to avoid the need for additional information, remains wide open.

We demonstrate that the answer to this long-standing open
question turns out to be surprisingly simple, although proving
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so is not. Under fairly simple and natural regularity conditions, a
specification of the form g(x∗) = a + b ln(ecx∗ + d) is the only
functional form that is not guaranteed to be identifiable. Even
with this specification, the distributions of all the variables must
have very specific forms to evade identifiability of the model. As
expected, this parametric family includes the well-known linear
case (with d = 0) with normally distributed variables. Given
that this very specific unidentified parametric functional form
is arguably the exception rather than the rule, our identification
result should have a wide applicability. This leads to a new
perspective on handling measurement error in nonlinear and
nonparametric models, opening the way to a novel and practical
approach to correct for measurement error in datasets where
it was previously considered impossible (due to the lack of
additional information regarding the measurement error).

Based on this identification result, we suggest a correspond-
ing estimator and derive its asymptotic properties. We illustrate
the effectiveness of the method via a simulation study and an
application to the relationship between firm investment behav-
ior and market value, the latter being notoriously mismeasured.
This application revisits, in general nonlinear settings, the anal-
ysis of Erickson and Whited (2000), a well-known successful
example of the use of higher-order moments to address mea-
surement error issues in linear models.

2. IDENTIFICATION RESULT

Our identification result will rely on the mutual independence
of the model error, the measurement error, and the true regressor
(Assumption 1). While such an assumption is arguably strong,
it already underlies the extensive and still growing literature
on higher-order moments in linear errors-in-variables models
(e.g., Reiersol 1950; Kendall and Stuart 1979; Pal 1980; Cragg
1997; Lewbel 1997; Dagenais and Dagenais 1997; Erickson
and Whited 2000, 2002; Bonhomme and Robin 2009, 2010).
Moreover, even in the measurement error literature that exploits
side information, independence assumptions are extremely
common (see, e.g., the monograph by Carroll et al. 2006 for
a review). On a more fundamental level, the dimensionality of
the observables in this problem is only 2 (x and y), while the
dimensionality of the unobservables is 3 (�x, �y, and x∗).
Hence, it is impossible to construct a well-behaved mapping
(i.e., other than “fractal” mappings) between the observable
and the unobservable distributions without introducing some
type of assumption that reduces the dimensionality of the
unobservables. Independence achieves this by letting us factor
the joint distribution of �x, �y, and x∗ as products of functions
of fewer variables. It is possible that other dimension-reducing
assumptions could be concocted, but few, if any, would have
the transparency and simplicity of independence assumptions
(except perhaps in the case of purely discrete mismeasured
regressors (Chen, Hu, and Lewbel 2009), where dimensionality
issues can be assumed away with sufficiently strong rank con-
ditions, because all unknown distributions can be characterized
by a finite number of unknowns, unlike the continuous case
treated in the present article). Independence is also the most
logical extension of the existing literature on the topic.

Beyond independence, we also need a few basic regularity
conditions.

Assumption 2. E[eiξ�x] and E[eiγ�y] do not vanish for any
ξ, γ ∈ R, where i = √−1.

The type of assumption regarding the so-called characteristic
function has a long history in the deconvolution literature (see,
e.g., Fan 1991; Schennach 2004a, and the references therein).
The only commonly encountered distributions with a vanishing
characteristic function are the uniform and the triangular distri-
butions. We also need a slightly weaker but similar assumption
on x and y.

Assumption 3. (i) E[eiξx∗
] �= 0 for all ξ in a dense subset of

R and (ii) E[eiγg(x∗)] �= 0 for all γ in a dense subset of R (which
may be different than in (i)).

Unlike Assumption 2, this Assumption does allow for these
characteristic functions to vanish at points, although not over
intervals. This assumption is only needed if one wishes to re-
cover the distribution of the errors (�x, �y). Also note that
both Assumptions 2 and 3 are implied by the Assumption that
E[eiξx] �= 0 and E[eiγy] �= 0 everywhere, an assumption that
testable, since it involves observables.

Assumption 4. The distribution of x∗ admits a uniformly
bounded density fx∗ (x∗) with respect to the Lebesgue measure
that is supported on an interval (which may be infinite).

Assumption 5. The regression function g(x∗) is continuously
differentiable over the interior of the support of x∗.

These are standard smoothness constraints.

Assumption 6. The set χ = {x∗ : g′(x∗) = 0} has at most a
finite number of elements x∗

1 , . . . , x∗
m. If χ is nonempty, fx∗ (x∗)

is continuous and nonvanishing in a neighborhood of each x∗
k ,

k = 1, . . . , m.

This assumption allows for nonmonotone specifications, but
rules out functions that are constant over an interval (not reduced
to a point) or that exhibit an infinite number of oscillations.
This is sufficiently flexible to encompass most specifications
of practical interest. Excluding functions that are constant over
an interval parallels the assumption of nonzero slope made in
linear models (Reiersol 1950) and is therefore difficult to avoid.
Without Assumptions 5 and 6, it is difficult to rule out extremely
complex and pathological joint distributions of x and y. In partic-
ular, one could imagine an extremely rapidly oscillating g (x∗),
where nearly undetectable changes in x∗ yield changes in y that
are virtually observationally indistinguishable from genuine er-
rors in y.

Our main result can then be stated as follows, after we recall
the following convenient concept.

Definition 1. We say that a random variable r has an F factor
if r can be written as the sum of two independent random vari-
ables (which may be degenerated), one of which has the dis-
tribution F. (This is related to the concept of a decomposable
characteristic functions, see Lukacs 1970, sec. 5.1. We allow for
degenerate factors here to simplify the statement of the theorem
below.)

Theorem 1. Let Assumptions 1–6 hold. There are three mu-
tually exclusive cases.
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1. g(x∗) is not of the form

g(x∗) = a + b ln(ecx∗ + d) (1)

for some constants a, b, c, d ∈ R. Then, fx∗ (x∗) and
g (x∗) (over the support of fx∗ (x∗)) and the distributions
of �x and �y in Model 1 are identified.

2. g (x∗) is of the form (1) with d > 0 (A case where d < 0
can be converted into a case with d > 0 by permuting the
roles of x and y). Then, neither fx∗ (x∗) nor g (x∗) in Model
1 are identified iff x∗ has a density of the form

fx∗ (x∗) = A exp(−BeCx∗ + CDx∗)(eCx∗ + E)−F (2)

with C ∈ R, A,B,D,E, F ∈ [0,∞) and �y has a
Type I extreme value factor (whose density has the
form fu (u) = K1 exp (K2 exp (K3u) + K4u) for some
K1,K2,K3,K4 ∈ R).

3. g (x∗) is linear (i.e., of the form (1) with d = 0). Then,
neither fx∗ (x∗) nor g (x∗) in Model 1 are identified iff x∗

is normally distributed and either �x or �y has a normal
factor.

This identification result establishes when the knowledge of
the joint distribution of the observable variables y and x uniquely
determines the unobservable quantities of interest: g (x∗) and
the distributions of x∗, �x, and �y. In other words, it provides
conditions under which there cannot be two different models that
generate the same joint distribution of the observable variables
x and y. Intuitively, this result is made possible by the fact
that the observable quantity (the joint density of x and y) is
a function of two variables while the unobservable quantities
(g (x∗), and the marginal distribution of x∗, �x, �y) are all
functions of one variable. The former thus “contains” much
more information than the latter, so it is intuitively natural that
it should be possible to recover the unobservables from the
observables alone. The phrasing of Cases 2 and 3 should make
it clear that the conclusion of the theorem remains unchanged if
one focuses on identifying g (x∗) only and not fx∗ (x∗), because
the observationally equivalent models ruling out identifiability
have different regression functions in all of the unidentified
cases.

The proof of this result (outlined in the Appendix and detailed
in Section A of the supplementary material) proceeds in five
broad steps:

1. We reduce the identification problem of a model with
errors along x and y into the equivalent problem of finding
two observationally equivalent models, one having errors
only along the x-axis and one having errors only along the
y-axis.

2. We rule out a number of pathological cases in which the
error distributions do not admit densities with respect
to the Lebesgue measure by showing that such occur-
rences would actually imply identification of the model
(in essence, any nonsmooth point gives away the shape of
the regression function).

3. We show that any point of nonmonotonicity in the regres-
sion function makes it impossible to find two distinct but
observationally equivalent models, because any extremum
in the regression function introduces a nonsmooth point

in the density of some observable variables and arguments
similar to point 2 can be invoked.

4. We derive necessary conditions for lack of identification
that take the form of differential equations involving all
densities. This establishes that the large class of models
where these equations do not hold are identified.

5. Cases that do satisfy the differential equations are then
systematically checked to see if they yield valid densi-
ties for all variables, thus pointing toward the only cases
that are actually not identified and securing necessary and
sufficient conditions for identifiability.

It is somewhat unexpected that in a fully nonparametric set-
ting, the nonidentified family of regression functions would still
be parametric with such a low dimension (only four adjustable
parameters). It is perhaps not entirely surprising that in the a pri-
ori difficult case of normally distributed regressors, most non-
linear specifications are actually identified, since nonlinearity
necessarily destroys normality of some of the variables. While
our findings regarding linear regressions (Case 3) coincide with
Reiersol (1950), the functional forms in the other nonidentified
models (Case 2) are hardly trivial and would have been difficult
to find without a systematic approach such as ours. Section B of
the supplementary material provides independent verification of
Case 2 and shows that the constants a, b, c, d,A,B,C,D,E, F

can all be set so as to yield two distinct but observationally
equivalent models with proper densities.

An interesting feature of Case 2 is that there are only two ob-
servationally equivalent models in this case and they are disjoint:
one has the form (1) with d = d1 < 0 and the other, d = d2 > 0
but models with d ∈ ]d1, d2[ are not observationally equivalent.
One cannot smoothly go from one model to another observa-
tionally equivalent one without going through models that are
not observationally equivalent. Hence, Theorem 1 implies that
the model is locally identified in Cases 1 and 2. Moreover, in
Case 2, it is usually easy to rule out one of the two possible
models based on simple considerations regarding the process
being studied. One of the two models (with d < 0) has a ver-
tical asymptote while the other (with d > 0) has a horizontal
asymptote. The vertical asymptote is usually incompatible with
any reasonable model, since it implies an infinite response to a
finite cause. Hence, the only real situation of practical concern
could possibly be the linear specification of Case 3. We will
return to the linear case when discussing estimation.

In summary, Theorem 1 shows that the errors-in-variables
model is identified for virtually all commonly used specifi-
cations: exponential, sine, cosine, polynomial (not reduced to
a line), logistic, etc. Theorem 1 can be straightforwardly ex-
tended to include perfectly observed covariates w, simply by
conditioning all densities (and expectations) on these covari-
ates. Theorem 1 then establishes identification of fx∗|w (x∗|w)
and g (x∗, w) ≡ E [y|x∗, w] and therefore of fx∗,w (x∗, w) =
fx∗|w (x∗|w) fw (w).

3. ESTIMATION

Assumption 1 implies that the observable density fyx (y, x)
is related to the unobservable regression function of interest
g (x∗) and the densities of the unobserved variables: fx∗ (x∗),
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f�y (�y), f�x (�x) via the following integral equation

fyx (y, x) =
∫

f�y(y − g(x∗))f�x(x − x∗)fx∗ (x∗)dx∗. (3)

Since our identification result provides conditions under
which this equation admits a unique (functional) solution
(g, fx∗ , f�y, f�x), this suggests an analog estimator maximiz-
ing the likelihood associated with the density fyx(y, x), in which
the shape of all unknown functions on the right-hand side of (3)
are jointly optimized. To implement this idea in practice, for
a given iid sample (yi, xi)ni=1 , we employ a sieve maximum
likelihood estimator (Shen 1997) based on the equation

g = arg max
g

sup
(f1,f2,f3)

1

n

n∑
i=1

ln
∫

f1(yi − g(x∗))f2(xi − x∗)

× f3(x∗)dx∗, (4)

where the max and sup are taken over suitably restricted sets of
functions and g is regression function of interest, while f1,f2,
and f3, respectively, denote the densities of the model error,
the measurement error, and the true regressor. The restrictions
include (i) constraints that the densities integrate to one and
(ii) zero-mean constraints on the error densities. Also, all four
unknown functions g, f1, f2, and f3 are represented by trun-
cated series, with the number of terms in the series increasing
with sample size. In our simulations and application below, we
rely on a Hermite orthogonal series, which offers the advantage
that all required integrals (e.g., in Equation (4)) can be carried
out analytically. As is well known in the theory of nonparamet-
ric likelihoods, such sample-size-dependent restrictions on the
number of terms in the series approximations are necessary to
regularize the behavior of the estimator and achieve consistency.
These restrictions are detailed in the asymptotic analysis. As an
alternative to truncated series, one is free to employ flexible
functional forms or even parametric models. Our identification
result guarantees that the solution is (asymptotically) unique
regardless of the choice of approximation scheme. Given this
guarantee of a unique solution, it is not surprising that our likeli-
hood function turns out to be rather well behaved, thus enabling
us to employ a standard numerical optimization routine to max-
imize it: an L-BFGS quasi-Newton algorithm (Nocedal 1980).

In the following examples, we consider the estimation of a
parametric regression model, that is, Model 1 with g (x∗) =
m (x∗; θ ), where the function m (x∗; θ ) is known up to a param-
eter vector θ . However, the densities of the unobserved variables
�x,�y, and x∗ are treated nonparametrically. The rationale for
this approach is that the convergence rate of a fully nonpara-
metric measurement error model can be very slow, while our
semiparametric approach enables root n consistency for the pa-
rameter vector of interest, making the approach practical for
typically available sample sizes. The use of a parametric regres-
sion specification also parallels the focus of the vast majority
of the empirical literature, while the nonparametric treatment
of the distributions of �x,�y, and x∗ frees researchers from
having to assume specify parametric forms for quantities that do
not need to be specified in traditional, measurement error-free,
regressions. Hence, the proposed method offers a direct sub-
stitute to conventional regression analysis when measurement
error is suspected. Our asymptotic theory can be adapted to

other semiparametric context, for instance, leaving g (x∗) fully
nonparametric but focusing on semiparametric functionals of it
(such as average derivatives).

Even though g (x∗) and the densities of the errors are unknown
a priori, in practice, there is no real need to worry about checking
the functional form restrictions of Theorem 1. First, as explained
in Section 2, as soon as a vertical asymptote in g (x∗) can be
ruled out, the nonlinear nonidentified case is of little concern
and only the linear case remains a potential issue. Next, we
observe that if the true model were “too close” to the linear
unidentified case for the method to be useful, the likelihood
function in (4) would be very flat near its maximum, resulting in
very large standard errors. Theorem 1 is nevertheless practically
useful: it indicates that the approach is certainly worth trying,
since the cases leading to lack of identification are so special
and rare. But ultimately, what determines whether this approach
leads to useful inference in practice in a given application is the
magnitude of the estimated standard errors on the parameters of
interest.

Section C of the supplementary material presents a formal
asymptotic analysis of this estimator with suitable regularity
conditions for consistency as well as root n consistency and
asymptotic normality of an estimator of θ . See Newey (2001),
Mahajan (2006), Hu and Schennach (2008), and Carroll, Chen,
and Hu (2010a), among others, for other examples of the use
of sieve maximum likelihood in measurement error models and
Schennach (2009) and Carroll, Chen, and Hu (2010b) for fur-
ther details, and an extensive discussion of the practical use of
sieves in this context. It should be noted that root n consistency
and asymptotic normality should not be taken for granted in
this context—this ideal can only be reached under smoothness,
moment existence, and dominance conditions that imply that
the estimator admits an asymptotically linear representation in
a neighborhood of the truth. Such conditions may be difficult to
ascertain formally in applications, because the data generating
process is not exactly known. If in doubt, practitioners could
try the estimator at a few sample sizes to check if the variances
estimates indeed scale as n−1, which would be a good indication
that the asymptotic regime has been reached and that it behaves
as expected by the theory.

The practical implementation of the method requires the se-
lection of suitable smoothing parameters: the number of terms in
each of the truncated series approximations. The construction of
a general data-driven smoothing parameter selection procedure
and a formal proof of its asymptotic validity is beyond the scope
of this article. Nevertheless, our asymptotic theory provides very
useful guidance regarding the choice of the smoothing param-
eters in practice. In a semiparametric context, our asymptotic
theory implies that the limiting distribution of the estimator is
identical for a wide range of rates of change of the smoothing
parameters with sample size (since our assumptions do not re-
quire a specific rate but instead take the form of upper and lower
bounds on these rates). In fact, not only are the limiting dis-
tributions identical, but the difference between two estimators
obtained with different choices of smoothing parameters that
satisfy our assumptions is asymptotically negligible (relative to
the n−1/2 leading term of their asymptotic expansion). This sug-
gests that a very direct way to check if a choice of smoothing
parameter is appropriate is to simply check the sensitivity of the
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results to variations in the smoothing parameters. The region,
in smoothing parameter space, yielding estimates that are the
least sensitive to given small changes in smoothing parameter
values very likely points to valid smoothing parameter choices.
Choices outside of that region will tend to either exhibit marked
randomness if too many terms in the series are kept (due to
increased variance) or exhibit a marked systematic trend if too
few terms in the series are kept (due to an increased bias). In-
sensitivity to smoothing parameter selection (near the optimal
choice) represents another advantage of the use of a semipara-
metric model (instead of fully nonparametric one) and we rely
on it in our simulations and empirical application below.

4. SIMULATIONS

We consider a nonlinear regression model as follows:

y = m(x∗; θ ) + �y

x = x∗ + �x.

The latent variable x∗ is drawn from a mixture of two normal
distributions 0.6N (0, 1) + 0.4N (0.2, 0.25), and the regression
error �y has a normal distribution N (0, 0.9). The measure-
ment error �x has a de-meaned extreme value distribution
F�x(�x) = 1 − exp(− exp(2�x − γ�x)) with γ�x = 0.5772.
Moreover, the right-hand side variables (�y,�x, x∗) are mutu-
ally independent. In the simulation, we draw a random sample
{yi, xi, x

∗
i }i=1,...,n based on this model for n = 3000.

We use the Hermite orthogonal series as our sieve basis func-
tions. Let pn (·) be the Hermite orthogonal series. We have

pn(x) =
√

1√
πn!2n

Hn(x)e− x2

2 ,

where H0(x) = 1, H1(x) = 2x, and Hn+1(x) = 2xHn(x) − 2n

Hn−1(x). The sieve expressions of the nonparametric densities
are

f1(�y) =
⎡⎣ k�y∑

i=0

β
�y

i pi(�y)

⎤⎦2

,

f2(�x) =
[

k�x∑
i=0

β�x
i pi(�x)

]2

,

and

f3(x∗) =
[

kx∑
i=0

βx
i pi(x

∗)

]2

.

The smoothing parameters are k�y, k�x , and kx . One can

show that the restriction
∫

f1(�y)d�y = 1 implies
∑k�y

i=0[β�y

i ]2

= 1, and similarly for β�x
i and βx

i . Furthermore, the
zero mean assumption

∫
�yf (�y)d�y = 0 implies that∑k�y−1

i=0

√
2(i + 1)β�y

i β
�y

i+1 = 0, and similarly for β�x
i .

In addition, we consider three related estimators. One is the
infeasible nonlinear regression of y on x∗:

θ̂nls = arg max
θ

n∑
i=1

− [yi − m(x∗
i ; θ )]2,

which would be the best estimator, under homoscedasticity,
if x∗ were hypothetically available in the sample. Another

estimator is naive nonlinear least squares (NLS), which ignores
the measurement error, as follows:

θ̂nnls = arg max
θ

n∑
i=1

− [yi − m(xi ; θ )]2 .

This estimator should give us the largest bias. Finally, we con-
sider the sieve-based instrumental variable estimator of Hu and
Schennach (2008), denoted θ̂HS, which is consistent in the pres-
ence of measurement error, but requires the availability of an
instrument. To ensure a meaningful comparison, we specialized
θ̂HS to the case where all the error terms and x∗ are mutually
independent (as assumed for θ̂sieve), for otherwise, allowing for
general form of heteroscedasticity in θ̂HS would have caused
an efficiency penalty relative to θ̂sieve. We would expect θ̂HS

to have properties roughly similar to θ̂sieve, but probably with
smaller standard errors, since it exploits additional information
(the instrument). In this case, we use, as an instrument, a re-
peated measurement with a normally distributed measurement
error of variance 0.4. (Note that the variance of the first mea-
surement error is 0.41, so both measurement are about equally
informative.)

We consider six specifications of the regression function

case 1: m(x; θ ) = θ1x + θ2e
x,

case 2: m(x; θ ) = θ1x + θ2x
2,

case 3: m(x; θ ) = θ1x + θ2/(1 + x2),

case 4: m(x; θ ) = (x2 + θ1)(x + θ2),

case 5: m(x; θ ) = ln(1 + θ1x + θ2x
2),

case 6: m(x; θ ) = θ1x + θ2 ln(1 + x2).

For each specification, we estimate the model using the three
estimators with 400 randomly generated samples of 3000 ob-
servations. We report the mean, standard deviations (std. dev.),
and squared root of mean square error (RMSE) of the four
estimators θ̂sieve, θ̂HS, θ̂nls, and θ̂nnls. The smoothing parameters
are chosen, as motivated in the previous section, by identifying
a region where the estimates are not very sensitive to variations
in the smoothing parameter (i.e., when changes in the means
of the point estimates are small relative to their standard devia-
tions, where both quantities are estimated via averages over the
randomly generated samples). The smoothing parameters are
kept constant across the randomly generated samples. (Section
D.1 of the supplementary material reports smoothing parameter
sweeps that illustrate this procedure.)

As shown in Table 1, the biases of θ̂sieve, θ̂nls, and θ̂HS are small
compared with θ̂nnls, because they are consistent. The variances
of θ̂sieve and θ̂HS should be the largest of the four due to the
nonparametric approximation. Nevertheless, the sieve estimator
θ̂sieve is preferable over the naive estimator in terms of mean
squared errors. The comparison between θ̂sieve and θ̂HS is instruc-
tive, as it reveals that although θ̂sieve is generally less efficient
than θ̂HS (as expected), it is often able to approach the RMSE of
θ̂HS, even though it relies on less information (no instrument).
This indicates that our approach offers a very practical alterna-
tive to instrumental variable-based methods. Section D.2 of the
supplementary material reports similar results for a smaller sam-
ple of only 500 observations that indicate that the bias-reducing
power of the method remains down to such sample sizes
(although the variance of all estimators obviously increases).
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Table 1. Simulation results. For each estimator, we report the mean, the standard deviation (std. dev.), and the square root of the mean squared
error (RMSE) of the estimators averaged over all 400 replications. The sample size is 3000. The selected smoothing parameters are k�y = 5,

k�x = 5, kx = 6

θ1 = 1 θ2 = 1

Parameter (=true value) Mean Std. dev. RMSE Mean Std. dev. RMSE

Case 1: m(x; θ ) = θ1x + θ2e
x

Ignoring measurement error (meas. error) 0.415 0.081 0.590 0.739 0.053 0.267
Accurate data 1.001 0.028 0.028 1.000 0.010 0.010
Hu and Schennach (2008) 0.883 0.115 0.164 1.037 0.097 0.104
Sieve MLE 1.059 0.213 0.221 0.925 0.145 0.163

Case 2: m(x; θ ) = θ1x + θ2x
2

Ignoring meas. error 0.755 0.031 0.246 0.537 0.028 0.463
Accurate data 1.001 0.021 0.021 1.002 0.011 0.012
Hu and Schennach (2008) 0.942 0.082 0.100 0.926 0.089 0.116
Sieve MLE 0.961 0.062 0.073 0.937 0.060 0.087

Case 3: m(x; θ ) = θ1x + θ2/(1 + x2)
Ignoring meas. error 0.631 0.022 0.370 1.037 0.028 0.046
Accurate data 1.000 0.020 0.020 1.000 0.023 0.023
Hu and Schennach (2008) 1.008 0.032 0.033 1.015 0.027 0.031
Sieve MLE 0.959 0.080 0.089 1.053 0.038 0.065

Case 4: m(x; θ ) = (x2 + θ1)(x + θ2)
Ignoring meas. error −0.302 0.079 1.305 1.625 0.284 0.687
Accurate data 1.000 0.017 0.017 1.000 0.012 0.012
Hu and Schennach (2008) 1.055 0.115 0.127 1.077 0.166 0.183
Sieve MLE 1.080 0.145 0.166 1.089 0.150 0.174

Case 5: m(x; θ ) = ln(1 + θ1x + θ2x
2)

Ignoring meas. error 0.512 0.033 0.489 0.456 0.028 0.545
Accurate data 1.001 0.048 0.048 1.000 0.045 0.045
Hu and Schennach (2008) 1.092 0.083 0.125 1.123 0.130 0.179
Sieve MLE 0.844 0.120 0.197 0.966 0.067 0.075

Case 6: m(x; θ ) = θ1x + θ2 ln(1 + x2)
Ignoring meas. error 0.662 0.019 0.339 0.722 0.029 0.279
Accurate data 1.000 0.020 0.020 0.997 0.029 0.029
Hu and Schennach (2008) 0.988 0.061 0.062 0.791 0.171 0.270
Sieve MLE 0.915 0.059 0.104 0.979 0.054 0.058

While the nonlinear (d �= 0) nonidentified case poses little
problem in practice (as explained at the end of Section 2), it is
instructive to investigate how the sieve estimator behaves as one
approaches the linear (d = 0) unidentified case. Table 2 shows
that failure of identification is readily detected via the associated
sharp increases in the standard errors, as expected from the fact

Table 2. Study of the behavior of the estimator near a nonidentified
case

θ2 Std. dev. θ1

2.0 0.11
1.5 0.10
1.0 0.09
0.5 0.12
0.0 0.30

NOTE: We use the specification m(x∗, θ) = θ1x
∗ + θ2(x∗)2 with x∗ ∼ N(0.08, 0.4), �x ∼

N(0, 0.41), �y ∼ N(0, 0.9), and θ1 = 1. We consider a range of values of θ2 and calculate
the corresponding standard errors of estimates of θ1. Note how the latter increase drastically
as we reach the nonidentified case (θ2 = 0). The sample size is 3000 while the number of
replications used to compute the standard errors is 400.

that for a locally unidentified model, the likelihood function is
locally flat.

5. APPLICATION

Many studies have followed the seminal works by Brainard
and Tobin (1968) and Tobin (1969) on firm investment and the
so-called q theory. The theory simply states that a firm will invest
if the ratio of the market values of the firm’s capital stock to its
replacement value, the Tobin’s q, is larger than one. The intuition
behind the q theory is that a firm should invest when it expects
investment to be profitable based on an efficient asset markets’
valuation of the firm (Grunfeld 1960). Despite its strong theo-
retical footing, the Tobin’s q theory largely appeared to fail to
explain both cross-section and time-series data, until Erickson
and Whited (2000) observed that the q theory has, in fact, good
explanatory power regarding investments once one allows for
the presence of measurement error in q. Our application builds
upon Erickson and Whited’s notable result, by establishing that
the applicability of their finding extends beyond the linear re-
gression model they used. Allowing for nonlinear specifications
is an important extension, for two reasons. First, there is clear
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Table 3. Investment versus Tobin’s q; 400 bootstrap replications used; sample size is 2948. “pctl” denotes percentiles

m(x; θ ) = θ1x + θ2 ln(1 + θ3x)

Point est. Std. dev. Median 5th pctl 95th pctl

Parameter θ1

Naive ordinary least squares (OLS) 0.015 0.0015 0.015 0.012 0.017
Erickson and Whited (2000) 0.034 0.005 N/A N/A N/A
Ignoring meas. error −0.021 0.0039 −0.021 −0.028 −0.015
Sieve MLE −0.031 0.0058 −0.032 −0.042 −0.023

Parameter θ2

Ignoring meas. error 0.55 0.055 0.54 0.47 0.64
Sieve MLE 0.81 0.081 0.81 0.69 0.96

Parameter θ3

Ignoring meas. error 0.098 0.00034 0.098 0.097 0.098
Sieve MLE 0.099 0.00059 0.098 0.097 0.099

evidence of nonlinear response of firm investment to q (e.g.,
Barnett and Sakellaris 1998). Second, measurement error and
nonlinearity (and the associated risk of model misspecification)
often manifest themselves in similar ways (Chesher 1991), so
that only a method robust to both aspects can disentangle them.

Erickson and Whited (2000) argued that instruments are dif-
ficult to find in this application and therefore employ a “higher-
order moment” approach in a linear setting. The present article
generalizes this approach, thus making it possible to consider q
theory in a nonlinear setting with measurement errors. Adopting
a nonlinear version of Erickson and Whited’s specification, we
describe the relationship between investment and Tobin’s q as

yi = m(x∗
i , θ ) + z′

iμ + �yi (5)

xi = x∗
i + εi,

where yi is an investment divided by replacement value of
the capital stock, xi is the mismeasured version of Tobin’s q
(denoted by x∗

i ), and �yi, εi are disturbances. The variable zi

contains the covariates, specifically, zi = (1, z1i , di, di × z1i)T ,

where z1i is a cash flow divided by replacement value of the
capital stock and di is a 0–1 indicator of whether firm i is fi-
nancially constrained. θ is the parameter of interest, while μ

is the nuisance parameter associated with the covariates. As in
Erickson and Whited (2000), the three variables �yi , εi , and
(x∗

i , zi) are assumed mutually independent with �yi εi having
zero mean. In this generalized model, only yi, xi , and zi are ob-
served and the regression function m (·, ·) is assumed known up
to the parameter θ to be estimated. Although our identification
theory is fully nonparametric, a parametric estimation strategy
is used here, given the size of the available sample. We use the
specification

m(x∗; θ ) = θ1x
∗ + θ2 ln(1 + θ3x

∗), (6)

as it nests the linear case and provides flexibility regarding
the curvature while maintaining monotonicity, an economi-
cally plausible characteristic (unlike a polynomial with the
same number of parameters). Specification (6) is also in good
agreement with a local nonparametric regression of yi on xi

(the mismeasured Tobin q) based on the flexible specifica-
tion yi = β1xi + β2x

2
i + β3x

3
i + β4x

4
i + z′

iμy + �yi , which is
highly suggestive. Of course, using the mismeasured Tobin q

in this preliminary specification analysis assumes that the mea-
surement error is not sufficiently severe to completely alter the
shape of the specification (in particular, the presence of a loga-
rithmic tail).

We consider four estimators (see Table 3): the naive lin-
ear least squares, Erickson and Whited’s “minimum distance
GMM4” estimator, naive NLS, and the proposed sieve maxi-
mum likelihood estimation (MLE). For the sieve MLE, we use
the Hermite polynomial-based sieve described in Section 4, with
k�y = 5, k�x = 6, kx = 6. These settings were found by grad-
ually increasing the number of terms in the each series until we
found a choice of truncation where the point estimates were the
least sensitive to changes of ±1 in the number of terms in the
series. To carry out the search, we initially increased all trun-
cations parameters simultaneously until a preliminary optimum
was found. From this preliminary result, we then increased one
parameter at a time to find the optimal parameter choice reported
here. To save space and avoid confusion, we do not report here
the alternative estimates obtained with suboptimal truncation
choices.

Standard deviations of all the estimators, as well as the 5th,
50th, and 95th percentiles of their sampling distributions, were
obtained using the bootstrap in the usual way: 400 bootstrap
samples of a size equal to the original sample (n = 2948) were
drawn (with replacement) from the original sample. Each boot-
strap sample was used to obtain a point estimate and the resulting
400 point estimates were used to compute the relevant statis-
tics (std. dev. and appropriate percentiles). We expect the boot-
strap to be applicable in this context, since our semiparametric
asymptotic theory establishes that our estimator is asymptoti-
cally equivalent to a sample average with finite variance under
suitable regularity conditions. The validity of the bootstrap for
nonlinear functionals that satisfy this condition has been es-
tablished previously under quite general conditions (see, e.g.,
Bickel and Freedman 1981; Politis, Romano, and Wolf 1999,
chap. 1.6). In fact, the use of the bootstrap for semiparametric
Sieve Maximum Likelihood estimators has precedents in the
literature (Chen and Ibrahim 2007).

To account for the presence of covariates, we condition the
densities in the sieve on the covariate zi . By independence, the
sieves describing the distributions of the disturbances are unaf-
fected by this conditioning. The distribution of x∗

i conditional
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Figure 1. Investment (normalized by replacement value of capital
stock) as a function of Tobin’s q, as estimated by various techniques.
The online version of this figure is in color.

on zi is modeled as

fx∗,z(x
∗
i |zi) = fe(x∗

i − z′
iλ),

where λ is a parameter vector and fe (·) is a univariate density
represented by a Hermite polynomial-based sieve. The role of zi

as a Tobin’s q shifter parallels its role as an investment shifter in
(5). Note that the parameter λ can be straightforwardly estimated
via a linear regression on the model

xi = z′
iλ + ei + �xi,

where ei is disturbance (whose density is fe) and ei + �xi has
zero mean and is independent from zi .

Figure 1 shows that both the naive linear and nonlinear re-
gression considerably underestimate the magnitude of the effect
of Tobin’s q on investments, relative to the two measurement
error-corrected estimators (Erickson and Whited’s “minimum
distance GMM4” linear estimator and our nonlinear sieve esti-
mator described above).

The magnitude of the effect of Tobin’s q according to our non-
linear estimator is broadly comparable to Erickson and Whited’s
result. Our analysis therefore corroborates their main result un-
der more general conditions. This is an important robustness
check, because a nonlinear regression that neglects measure-
ment errors exhibits significant “saturation” at high values of
Tobin’s q, which seems to indicate that the explanatory power
of Tobin’s q is not as large as a linear model would suggest.
However, our analysis in fact clearly shows that this saturation
is not large enough to invalidate Erickson and Whited’s result,
once we correct for measurement error. Interestingly, the linear
and nonlinear result differ more sharply in level before mea-
surement error correction than after. This fact is consistent with
the observation by Chesher (1991) that not properly accounting
for measurement error can often lead to spurious nonlinearities.

Although accounting for nonlinearity turns out to not affect
broad features of the model, such as the explanatory power
of Tobin’s q, it significantly affects some specific aspects. For
instance, the true elasticity d (ln y) /d (ln x∗) varies from 0.92
to 0.66 as x∗ ranges from 1 to 5 (which roughly represents the
range of the bulk of the data). This significant elasticity change
cannot be captured with a linear model (whose elasticity remains
1 at all x∗, by construction).

6. CONCLUSION

This article answers the long-standing question of the identifi-
ability of the nonparametric classical errors-in-variables model
with a rather encouraging result, namely, that only a specific
four-parameter parametric family of regression functions may
exhibit lack of identifiability. We show that estimation can be ac-
complished via a nonparametric maximum likelihood approach
and derive a suitable asymptotic theory. The effectiveness of the
method is illustrated with a simulation study and an empirical
application. We revisit Erickson and Whited’s important find-
ing that “Tobin’s q” has good explanatory power regarding firm
investments when one allows for the presence of measurement
error in a linear model. We find that nonlinearities are impor-
tant in this application but that Erickson and Whited’s main
conclusions are nevertheless robust to their presence.

APPENDIX: OUTLINE OF PROOF OF THEOREM 1

This Appendix presents a heuristic outline of the arguments leading
to Theorem 1. Technical details can be found in the formal proof
provided in Section A of the supplementary material.

The joint characteristic function of x and y, defined as E[eiξxeiγy],
is known to convey the same information as the joint distribution of x
and y. Under Model 1, we have

E[eiξxeiγy] = E[eiξx∗
eiγg(x∗)eiξ�xeiγ�y].

Assumption 1 then implies that

E[eiξxeiγy] = E[eiξx∗
eiγg(x∗)]E[eiξ�x]E[eiγ�y]. (A.1)

To see when the model is not identified from the observed joint dis-
tribution of x and y, we seek an alternative observationally equivalent
model (denoted with ∼ and satisfying the same assumptions as the
original model) that also satisfies:

E[eiξxeiγy] = E[eiξ x̃∗
eiγ g̃(̃x∗)]E[eiξ�x̃]E[eiγ�ỹ]. (A.2)

Equating (A.1) and (A.2) and rearranging yields

E[eiξx∗
eiγg(x∗)]

E[eiξ�x]

E[eiξ�x̃]
= E[eiξ x̃∗

eiγ g̃(̃x∗)]
E[eiγ�ỹ]

E[eiγ�y]
,

where we have used Assumption 2. In the formal proof, we show
that, under our assumptions and if E[|�x|] ≥ E[|�x̃|], the ratios
E[eiξ�x]/E[eiξ�x̃] and E[eiγ�ỹ]/E[eiγ�y] form valid characteristic
functions that we denote by E[eiξ�x̄] and E[eiξ�ȳ], respectively, where
�x̄ and �ȳ are new, implicitly defined, random variables. (The re-
quirement E[|�x|] ≥ E[|�x̃|] can always be met by permuting the
two models if necessary.) The resulting equation

E[eiξx∗
eiγg(x∗)]E[eiξ�x̄] = E[eiξ x̃∗

eiγ g̃(̃x∗)]E[eiξ�ȳ]

effectively states the observational equivalence between two models,
one with independent errors along “x” only:

ȳ = g(x∗)

x̄ = x∗ + �x̄,

and one with independent errors along “y ” only:

ȳ = g̃(̃x∗) + �ȳ

x̄ = x̃∗

(note that, in general, x̄ and ȳ differ from the original variables x
and y).

Next, we impose observational equivalence via the joint density
of x̄ and ȳ, expressed in terms of the two alternative models.
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Denoting densities by f with appropriate subscripts, we have, by
independence between �ȳ and x̄, f̃x̄,ȳ (x̄, ȳ) = f̃x̄,�ȳ (x̄, ȳ − g̃ (x̄)) =
f̃�ȳ|x̄ (ȳ − g̃ (x̄) |x̄) f̃x̄ (x̄) = f̃�ȳ (ȳ − g̃ (x̄)) fx̄ (x̄). Proceeding sim-
ilarly for fx̄,ȳ (x̄, ȳ), the equality fx̄,ȳ (x̄, ȳ) = f̃x̄,ȳ (x̄, ȳ) can be
written as

f�x̄ (x̄ − h (ȳ)) fȳ (ȳ) = f̃�ȳ (ȳ − g̃ (x̄)) fx̄ (x̄) , (A.3)

where h (ȳ) denotes the inverse of g (x̄). (In the formal proof, we estab-
lish that this inverse exists and that the above densities with respect to
the Lebesgue measure exist, posses a sufficient number of derivatives,
and are nonvanishing whenever needed. Otherwise, either the assump-
tions of the model are violated or the lack of regularity actually lead
to identification of the model—for instance, a jump in f̃�ȳ or a point
mass in the distribution of �ȳ immediately give away the shape of the
regression function.) After rearranging and taking logs, we obtain

ln f̃�ȳ (ȳ − g̃ (x̄)) − ln f�x̄ (x̄ − h (ȳ)) = ln fȳ (ȳ) − ln fx̄ (x̄) .

Computing the mixed derivative ∂2/∂x̄∂ȳ cancels the right-hand-side
and yields

−g̃′ (x̄) F̃ ′′
�ȳ (ȳ − g̃ (x̄)) + h′ (ȳ) F ′′

�x̄ (x̄ − h (ȳ)) = 0

or

F̃ ′′
�ȳ (ȳ − g̃ (x̄))

F ′′
�x̄ (x̄ − h (ȳ))

= h′ (ȳ)

g̃′ (x̄)
, (A.4)

where F ≡ ln f with the corresponding subscripts and arguments
while primes denote univariate derivatives. Taking logs again and
noting that the right-hand side can again be canceled by applying a
mixed derivative, we have

∂2

∂x̄∂ȳ
ln F̃ ′′

�ȳ (ȳ − g̃ (x̄)) − ∂2

∂x̄∂ȳ
ln F ′′

�x̄ (x̄ − h (ȳ)) = 0.

(The ln is defined for negative arguments by viewing it as a complex-
valued function and selecting the same branch on each side of the
equality.) After rearranging, we have

(ln F̃ ′′
�ȳ (ȳ − g̃ (x̄)))′′

(ln F ′′
�x̄ (x̄ − h (ȳ)))′′

= h′ (ȳ)

g̃′ (x̄)
, (A.5)

where the notation (ln F̃ ′′
�ȳ(ȳ − g̃(x̄)))′′ stands for (ln F̃ ′′

�ȳ (u))′′|u=ȳ−g̃(x̄).
Equating (A.4) and (A.5) and rearranging yields

(ln F̃ ′′
�ȳ (ȳ − g̃ (x̄)))′′

F̃ ′′
�ȳ (ȳ − g̃ (x̄))

= (ln F ′′
�x̄ (x̄ − h (ȳ)))′′

F ′′
�x̄ (x̄ − h (ȳ))

.

Since each side of the equality depends on a different argument
(ȳ − g̃ (x̄) vs. x̄ − h (ȳ)) that can be set to arbitrarily different val-
ues, each side must be constant, unless the two models coincide (i.e.,
h (·) is the inverse of not only g (·) but also g̃ (·)). This fact can be used
to set up separate differential equations for F̃�ȳ and for F�x̄ that can be
solved analytically. The general solution to this differential equation
leads to Case 2 in the theorem while Case 3 arises as a special case when
some quantities happen to vanish. These solutions can then be used to
recover h (·), g̃′ (·), fx̄ (·), and fȳ (·) via (A.4) and (A.3) and provide the
functional forms such that the model is not identified. Case 1 of the the-
orem covers the situation where the above construction is not possible
and there consequently exists no pair of distinct models that are obser-
vationally equivalent, thus showing that the model is then identified.

SUPPLEMENTARY MATERIALS

The supplementary material provides a formal proof of The-
orem 1 (Section A), an explicit example illustrating Case 2 of
Theorem 1 (Section B), a formal asymptotic analysis of this
estimator with suitable regularity conditions for consistency as

well as root n consistency and asymptotic normality of a semi-
parametric estimator of the regression function (Section C) and
additional simulations illustrating smoothing parameter selec-
tion (Section D.1) and performances at smaller sample size
(Section D.2).

[Received October 2011. Revised October 2012.]
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