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Introduction

Economic problems often involve solving dynamic discrete choice models (DDCs),
where agents make optimal decisions over time

DDCs pose computational challenges due to high-dimensional state spaces with
continuous variables

Discretizing continuous variables leads to inaccurate approximations and coding burdens

Looping over grid points for state variables makes computation infeasible for
complex models

Many dynamic models include unobservable heterogeneity, further complicating
computation
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What This Paper Does

Propose an estimation framework, embedding policy gradient methods from
reinforcement learning into indirect inference methods to estimate DDCs with

a large state space
various types of unobserved state variables

Our method contains two layers of loops

In the outer loop, use the Simulated Method of Moments to update deep parameters
In the inner loop, solve for the optimal policy using policy gradient methods

Build on identification results in Hu and Shum (2012), propose a simple algorithm to
estimate DDCs with continuous and time-varying unobserved state variables

The simulation-based algorithm makes it suitable to be combined with indirect inference
Reach identification by targeting the moments implied by the identification results in
Hu and Shum (2012)
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Contributions and Findings

Proposed a convenient inference framework for dynamic models with continuous and
time-varying unobserved variables

Solving the issue that it is nontrivial to estimate this type of models
Discretization of variables not needed for our method

This method significantly reduces the computational burden for dynamic models
with large state space and many continuous variables

Maintain similar level of precision
Allow for estimation of more complicated models

Form a unified framework for estimating dynamic discrete choice models of various
types

Easy to implement
Similar structure for models with or without unobservables
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Contributions and Findings (Cont’d)

Table: Comparison Between Existing Methods and Our Proposed Methods

Model Existing Methods RL + Indirect inference
S : continuous, ob-
served

Full solution estimation using
Indirect Inference (with dis-
cretization)

A dynamic fertility model with
both discrete and continuous
choices

S : continuous, un-
observed

Rust bus model with continu-
ous and time-varying unobserv-
ables

S : discrete, ob-
served

NFXP Algorithm Toy Rust bus model with dis-
crete state variables

S : discrete, unob-
served

Two-step EM algorithm Rust bus model with unob-
served heterogeneity

7 / 51



Introduction RL Estimation of DDCs with Fully Observed State Space RL Estimation for DDCs with Unobserved State Variables Conclusion

This Paper in the Related Literature

Estimation of dynamic discrete choice models and identification of models with
unobserved heterogeneity

Rust (1987), Hotz and Miller (1993), Hotz et al. (1994), Aguirregabiria and Mira (2007),

Arcidiacono and Jones (2003), Arcidiacono and Miller (2011), Kasahara and Shimotsu (2009),

Hu and Shum (2012), Hwang (2024), Gallant et al. (2018)

Our paper: focuses on the estimation of the dynamic discrete choice models,
combining the policy gradient method from the reinforcement learning literature with
indirect inference. Able to deal with complicated models with time-varying and
continuous unobservables using existing identification results

Reinforcement learning and policy gradient methods
Lange et al. (2012), Sutton et al. (1999), Kakade (2001), Silver et al. (2014), Peters and

Schaal (2006), Yu et al. (2017), Li et al. (2022), Jin et al. (2023), Hong et al. (2023)

Our paper: focus on the estimation of the structural model, while these papers only
care about figuring out the optimal policy
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Model Environment

A structural dynamic model with a process {X t , Jt}
X t ∈ Rd : observed state variables that evolve over time
Jt ∈ {0, 1}: agent’s choice variable in period t

Researchers observe a panel dataset of an i.i.d sample of{
(X 1, J1), (X 2, J2), ..., (XT , JT )

}
for many agents

Transitional model fX t |X t−1,Jt−1
is known or can be estimated using the data

Flow utility/period reward of the agent: U(X t , Jt ; θ)

The agent’s objective: choose a sequence of
{
J1, J2, ..., JT

}
to maximize the

lifetime utility
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Reinforcement Learning + Indirect Inference Algorithm

Intuition: our algorithm contains two loops

Outer loop: use Simulated Method of Moments to update structural parameters
Inner loop: conditional on the structural parameters, use Policy Gradient Method to
update policy function parameters

Key: parametrize the choice variable Jt as a function of the state variables:
πγ(θ)(Jt |X t):

Pr(Jt = 1|X t ;γ(θ)) =
exp(X tγ(θ))

1+ exp(X tγ(θ))

Choice of functional form is flexible; as long as the derivative w.r.t the parameters have
closed-form
Highly nonlinear parametrization can be applied inside the logistic function
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Reinforcement Learning + Indirect Inference Algorithm (Cont’d)

V (γ(θ)): reward function that depends on the policy parameter γ(θ)

Move γ toward the direction suggested by the gradient ∇γV (γ(θ)):

γq+1 = γq + sq∇γV (γq(θ))

Nontrivial to calculate ∇γV (γq(θ)) as it involves the action and the stationary
distribution of states

Use Policy Gradient Theorem (Sutton and Barto (2018)):

∇γV (γ) = EX

[
EJ

[
Qπγ(X , J)∇γlogπγ(J |X )

]]
Qπγ(X , J): state-action value function of the policy πγ

Gradient of the value function transferred to the gradient of the policy function
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Algorithm for DDCs with Fully observed State Space: Flow Chart

Figure: Flow chart for the Inner Loop of the RL + Indirect inference Algorithm for Models
With Fully Observed State Space
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Algorithm for DDCs with Fully observed State Space (Part I)

Pr(Jt = 1|X t ;γ(θ)) =
exp(X tγ(θ))

1+ exp(X tγ(θ))
(1)
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Algorithm for DDCs with Fully observed State Space (Part II)

15 / 51



Introduction RL Estimation of DDCs with Fully Observed State Space RL Estimation for DDCs with Unobserved State Variables Conclusion

Algorithm for DDCs with Fully observed State Space (Part III)
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Reinforcement Learning Estimation: A Toy Model Monte Carlo Study

Use the proposed approach to estimating a simplified Rust bus engine replacement
model (Rust 1987)

The transition of the mileage when Jit = 0 is deterministic:

Xit = Xit−1 + 1 if Xit−1 < M

Xit = Xit−1 if Xit−1 = M,

When Jit = 1,Xit = 0

The flow utility in each period is:

U(Xit , Jit) = u(Xit , Jit ; θ1, θ2) + ϵjt

= −θ1Xit − θ2I(Jit = 1) + ϵjt ,

The agent’s problem:

V (Xit , ϵjt) = max
Jit∈{0,1}

{
u(Xit , Jit ; θ1, θ2) + ϵjt + βE

[
V (Xit+1, ϵjt+1)|Xit , Jit

]}
.
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Simulation and Estimation Details

Use Algorithm 1–Algorithm 3. Parametrize the choice probability as a function of
the state variables:

Pr(Jt = 1|Xt , t;γ) =
exp(γ0 + γ1t + γ2Xt + γ3tXt)

1+ exp(γ0 + γ1t + γ2Xt + γ3tXt)
.

Moments to match: the empirical probability of bus engine replacement conditional
on the time and mileage pair: (t,X )

Simulate data for 500 buses who live for 20 periods and make decisions in each
period

Structural parameters (θ1, θ2) to estimate
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Convergence of Lifetime Reward Over Iterations

(a) Iteration number=10000 (b) Iteration number=50000

Figure: Convergence of Lifetime Reward Under Different Iterations
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Estimation Results for Simulation Study

Table: Comparison of Optimal Policy Function Between Different Methods

Method Mean(Rep.) Mean(Rep.) Mean(Rep.) Lifetime Value
X < 6 X ≥ 6

Reinforcement learning 0.1642 0.0959 0.4730 -15.88
Backward induction 0.1696 0.1278 0.5148 -15.34

Table: Estimation Results for the Simulation Study

Parameter True Value Est. Value (RL+II) Est. Value (NFXP)
θ1 0.3 0.2922 0.2619

(0.0545) (0.0084)

θ2 5.2 5.1302 5.2623
(0.2345) (0.1198)

20 / 51



Introduction RL Estimation of DDCs with Fully Observed State Space RL Estimation for DDCs with Unobserved State Variables Conclusion

Estimating a Dynamic Fertility Model with High-Dimensional State Space

Focus on a dynamic collective fertility model with fully observed state space

Couple in a household j interacts using a cooperative framework with limited
commitment

Use RL + indirect inference to show the computational advantage

Model setup

Preferences:

u(cgt , l
g
t , nt , ñ

g
t ) = α1lnc

g
t + α2lnl

g
t − α3((nt − ñgt ))

2 − pt × I(nt > 1)

Household flow utility:

U(c ft , l
f
t , c

m
t , lmt , bt , nt , ñ

f
t , ñ

m
t , θt) = θtu(c

f
t , l

f
t , nt , ñ

f
t ) + (1− θt)u(c

m
t , lmt , nt , ñ

m
t ) + ϵbt
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Model Setup (Cont’d)

Pareto Weight Updating: θt = {0.4, 0.3}, before and after the policy change

The Couple’s Problem

Ωt = {Af
t ,E

f ,Em, tM , tP , S ,w
f
t ,w

m
t , nt−1, ñ

f
t , ñ

m
t , θt},

qt = {c ft , cmt , hft , h
m
t , bt}.

Vt(Ωt) = max
qt

θtu(c
f
t , l

f
t , nt , ñ

f
t ) + (1− θt)u(c

m
t , lmt , nt , ñ

m
t ) + ϵbt + βEt [Vt+1(Ωt+1)]

c ft + cmt =
(
w f
t h

f
t + wm

t hmt − Ct(nt)
)
· e(n)

lgt + hgt = h̄g − xgt (nt), g ∈ {f ,m}.
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Simulation and Estimation Details

Follow Algorithm A.1–Algorithm A.3, parametrize the fertility choice variable bt as a
function of the state space Ωt :

Pr(bt = 1|Ωt ;γ) =
exp(γ0 + Ωtγ)

1+ exp(γ0 + Ωtγ)
,

γ = {γ1, ...,γ12}: the policy function parameters for the 12 state variables.

Simulate for 1583 couples with 11 periods

High-dimensional state space: over 25 millions number of states

Step size = 1× e−4, batch size I = 1, iteration number = 5000

Targeting a total of 58 statistics in the outer loop SMM
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Estimation Results for Simulation Study: Fully Observed State Variables

Parameters Symbol DGP Est. (DP) Est. (RL+II)
Iteration = 5000

Utility Function parameters
Utility from ln(c) α1 8 7.4154 8.1119

(0.1570) (0.3761)

Utility from ln(l) α2 5 5.1471 5.0845
(0.1861) (0.4484)

Dis-utility from not ideal num. of child α3 5 4.4581 4.8470
(0.3568) (0.3468)

Policy parameters
Penalty on excess birth in strict provinces p1 2 1.9454 1.9831

(0.2213) (0.2314)

Penalty on excess birth in loose provinces p2 1 0.9372 1.0990
(0.2227) (0.1798)

Time and Criterion Function Values
Time (minutes) 15.32 2.79

(2.9453) (0.4460)
Criterion function value 0.0072 0.0116

(0.0023) (0.0088)
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Model Environment

A structural dynamic model with a process {Xt ,S
∗
t , Jt}

Xt : observed state variables
S∗
t : time-varying continuous unobserved state variables

Jt ∈ {0, 1}: agent’s choice variable in period t

Researchers observe a panel data set {(X1, J1), (X2, J2), ..., (XT , JT )} for many
agents

For agent i ,
{
(X1, J1,S

∗
1 ), (X2, J2,S

∗
2 ), ..., (XT , JT , S

∗
T )

}
i.i.d drawn from

f(X1,J1,S∗
1 ),(X2,J2,S∗

2 ),...,(XT ,JT ,S
∗
T )
,

which is a bounded continuous distribution
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Identification Assumptions

Assumption 1 (First-order Markov and limited feedback)

(i) First-order Markov : fXt ,Jt ,S∗
t |Xt−1,Jt−1,S∗

t−1,Ω<t−1
= fXt ,Jt ,S∗

t |Xt−1,Jt−1,S∗
t−1

, where

Ω<t−1 = {Xt−2, ...,X1, Jt−2, ..., J1, ...,S
∗
t−2, ...,S

∗
1}.

(ii) Limited feedback : fXt ,Jt |Xt−1,Jt−1,S∗
t ,S

∗
t−1

= fXt ,Jt |Xt−1,Jt−1,S∗
t
.

Assumption 2 (Invertibility)

Let Vt ≡ gt(Wt), where Wt = {Xt , Jt}. The function gt : R2 → R. Denote the supports of

Vt and Wt as Vt and Wt , respectively. Let LVt−2,w t−1,w t ,Vt+1
denote the linear operator that

maps from the LP space of functions of Vt+1 to the LP splace of functions of Vt−2. There

exists variable(s) Vt such that

(i) for any wt ∈ Wt , there exists a wt−1 ∈ Wt−1 and a neighborhood N 2 around (wt ,wt−1)

such that, for any (w t ,w t−1) ∈ N 2, LVt−2,w t−1,w t ,Vt+1
is one-to-one.

(ii) for any wt ∈ Wt , LVt+1|wt ,S∗
t
is one-to-one.

(iii) for any wt−1 ∈ Wt−1, LVt−2,wt−1,Vt is one-to-one.
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Identification Assumptions (Cont’d)

Assumption 3 (Uniqueness of spectral decomposition)

For any wt ∈ Wt and any s∗t ̸= s̃∗t ,
there exists a wt−1 ∈ Wt−1 and corresponding neighborhood N r with
w t ̸= wt ,w t−1 ̸= wt−1: (i) 0 < k(wt ,w t ,wt−1,w t−1, s

∗
t ) < C < ∞ for any s∗t ∈ S∗

t

and some constant C;
(ii) k(wt ,w t ,wt−1,w t−1, s

∗
t ) ̸= k(wt ,w t ,wt−1,w t−1, s̃

∗
t ), where

k(wt ,w t ,wt−1,w t−1, s
∗
t ) =

fWt |Wt−1,S∗
t
(wt |wt−1, s

∗
t )fWt |Wt−1,S∗

t
(w t |w t−1, s

∗
t )

fWt |Wt−1,S∗
t
(w t |wt−1, s∗t )fWt |Wt−1,S∗

t
(wt |w t−1, s∗t )

.

Assumption 4 (Monotonicity and normalization)

For any wt ∈ Wt , there exists a known functional G such that G [fVt+1|Wt ,S∗
t
(·|wt , s

∗
t )]

is monotonic in s∗t . We normalize s∗t = G [fVt+1|Wt ,S∗
t
(·|wt , s

∗
t )].
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Identification

Applying Theorem 1 in Hu and Shum (2012) , we have that

Lemma

Under Assumptions 1-4, and under the additional assumption that the Markov law of
motion of the state variables is time-invariant, we have that:
(1) fXt ,S∗

t |Jt−1,Xt−1,S∗
t−1

is identified from fJt+1,Xt+1,Jt ,Xt ,Jt−1,Xt−1,Jt−2,Xt−2 .

(2) Initial condition fXt−2,S∗
t−2,Jt−2

is identified from fJt+1,Xt+1,Jt ,Xt ,Jt−1,Xt−1,Jt−2,Xt−2 .

29 / 51



Introduction RL Estimation of DDCs with Fully Observed State Space RL Estimation for DDCs with Unobserved State Variables Conclusion

Monte Carlo Study: A Rust Model with Extensions

Rust (1987) bus engine replacement model with an unobserved state variable

Xt ∈ R: accumulated mileage for bus i
Jt ∈ {0, 1}: bus company’s engine replacement decisions in each period
S∗
t ∈ R: condition of the bus i at time t

S∗
t unobserved to econometricians, affecting both the transition of Xt and the flow

utility in each period:

A higher S∗
t leads to faster accumulation in mileage

A higher S∗
t leads to a lower cost for maintaining the bus engine

S∗
t generates direct utility due to a better condition of the bus
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Transitional Models and Initial Conditions

The transitional process for S∗
t follows an AR(1) process:

S∗
t = λ1S

∗
t−1 + νt ; νt ∼ N(0, σ2

2 )

The transitional process for the mileage Xt if Jt = 0 is:

Xt+1 = Xt

[
1+ λ3exp(ηt+1 + λ2S

∗
t+1)

]
, fηt+1(η) = exp(η − eη)

The transitional process for mileage Xt if Jt = 1 is:

p(Xt+1|Xt , Jt , β2) = β2exp(−β2Xt+1)

The initial values of state variables (S∗
1 ,X1) are independent:

S∗
1 ∼ N(α1, σ2

1 ); X1 ∼ exp(β1)
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Flow Utility and the Bus Company’s Problem

The flow utility in period t is specified as follows:

U(Xt , Jt ,S
∗
t , ϵjt) = u(Xt , Jt ,S

∗
t ; θ1, θ2, θ3) + ϵjt

= −θ1Xtexp(−S∗
t )− θ2I(Jt = 1) + θ3S

∗
t + ϵjt

The value function of the bus company is:

V (Xt ,S
∗
t , ϵjt) = max

Jt∈{0,1}

{
u(Xt , Jt ,S

∗
t ; θ1, θ2, θ3) + ϵjt

+ βE [V (Xt+1, S
∗
t+1, ϵjt+1)|Xit ,Sit , Jt ]

}
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Validating Assumptions

Focus on the case when Jt = 0, since when Jt = 1 the transitional model of Xt can be
directly estimated

Assumption 1 (first-order Markov and limited feedback)

Xt and S∗
t have a Markov structure for the law of motions

Limited feedback is satisfied: S∗
t−1 ⊥⊥ Xt | S∗

t

Assumption 2 (Invertibility)

X4 is a convolution of S∗
4 : log

[
X4 − X3

]
− log(λ3X3) = λ2S

∗
4 + η4

S∗
3 is a convolution of S∗

2 for fixed w2: S
∗
3 = λ1S

∗
2 + ν3

Initial values of the state variables (S∗
1 ,X1) are independently distributed
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Validating Assumptions (Cont’d)

Assumption 3 (Uniqueness of spectral decomposition)

k(w3,w3,w2,w2, s
∗
3 ) = exp

(
− e−λ2s

∗
3 · −(x3 − x3)(x2 − x2)

λ3x2x2

)
, when j3 = 0.

Then we have 0 < k(w3,w3,w2,w2, s
∗
3 ) < C for some finite C , and

k(w3,w3,w2,w2, s
∗
3) ̸= k(w3,w3,w2,w2, s̃

∗
3 )

Assumption 4 (Monotonicity and normalization) We can set G to be

G (x3, j3, s
∗
3 ) = E

[
log

X4 − x3
λ3x3

|x3, j3, s∗3
]
,

and we normalize s∗3 = E
[
logX4−x3

λ3x3
|x3, j3, s∗3

]
.
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Estimating DDCs with Unobserved State Variables Using RL

Parametrize Jt as a function of both the observed and unobserved state variables:

Pr(Jt = 1|Xt , S
∗
t , t;γ) =

exp(γ0 + γ1t + γ2Xt + γ3S
∗
t )

1+ exp(γ0 + γ1t + γ2Xt + γ3S∗
t )

. (2)

Three sets of parameters to estimate:
γ: policy function parameters
θ: structural parameters
ξ: transitional model parameters

Two-layered loop structure:
Outer loop searching for optimal parameters (θ, ξ) using SMM
Inner loop searching for optimal policy parameters γ using policy gradient

Key for identification: target moments in the outer loop that satisfy the
nonparametric identification results in Lemma 1
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Estimating DDCs with Unobserved State Variables Using RL: Flow Chart

Figure: Flow chart for the Inner Loop of the RL + Indirect inference Algorithm for Models
With Unobserved State Variables
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Algorithm for DDCs with Unobserved State Variables (Part I)
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Algorithm for DDCs with Unobserved State Variables (Part II)
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Algorithm for DDCs with Unobserved State Variables (Part III)
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Targeted Moments for SMM

We match the moments based on (Jt+1,Xt+1, Jt ,Xt , Jt−1,Xt−1, Jt−2,Xt−2)
Because of the identification results in Hu and Shum (2012), we only need to match
moments of observed state and choice variables to identify θ and ξ
We need to match the moments of four periods’ observed data for identification

We match on 28 coefficients for the regressions for t ≥ 3

Jt+1 = κ0 + κ1Xt+1 + κ2Jt + κ3Xt + κ4Jt−1 + κ5Xt−1 + κ6Jt−2 + κ7Xt−2 + ϵ1

Jt = κ8 + κ9Xt+1 + κ10Jt+1 + κ11Xt + κ12Jt−1 + κ13Xt−1 + κ14Jt−2 + κ15Xt−2 + ϵ2

Jt−1 = κ16 + κ17Xt+1 + κ18Jt + κ19Xt + κ20Jt+1 + κ21Xt−1 + κ22Jt−2 + κ23Xt−2 + ϵ3

Jt−2 = κ24 + κ25Xt+1 + κ26Jt + κ27Xt + κ28Jt−1 + κ29Xt−1 + κ30Jt+1 + κ31Xt−2 + ϵ3

We also match on the mean, standard deviation, and correlation matrix of
(Jt+1,Xt+1, Jt ,Xt , Jt−1,Xt−1, Jt−2,Xt−2) for t ≥ 3

A total of 72 moments to match in the SMM model
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Simulation and Estimation Details

Simulation Setting

Simulate data for 1000 buses who lives for 10 periods

Using backward induction to solve for agent’s optimal choice
Discretize S∗

t into 5 grid points
Discretize Xt into 20 grid points
10 periods × 5 unobserved states × 20 mileages: 1000 states

Forward simulation following the continuous model setting, given the obtained
optimal policy function

Estimation setting

Pre-estimate β1 and β2, normalize λ3 = 0.2

Step size sq = 1× e−4, batch size I = 1, policy iteration = 5000

State variables normalized by mean and std. in the policy function

Remaining 8 parameters to estimate
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Simulation Results: Continuous Unobserved State Variables

Parameters True (1) Est. (1) True (2) Est. (2) True (3) Est. (3)
Utility parameters

θ1 0.5 0.454 1 1.041 1 1.059
(0.034) (0.080) (0.065)

θ2 5 4.696 5 5.023 10 9.425
(0.285) (0.769) (0.714)

θ3 2 1.740 2 1.840 2 1.705
(0.302) (0.350) (0.269)

Transitional process parameters
α1 1 0.974 1 0.938 1 0.952

(0.061) (0.075) (0.057)

σ1 1 0.976 1 0.939 1 0.943
(0.050) (0.091) (0.070)

λ1 0.5 0.544 0.5 0.439 0.5 0.473
(0.085) (0.057) (0.071)

λ2 0.8 0.760 0.8 0.748 0.8 0.746
(0.064) (0.078) (0.058)

σ2 0.2 0.164 0.2 0.139 0.2 0.144
(0.019) (0.059) (0.057)
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DDCs with Discrete Unobserved Heterogeneity: A Special Case

Focus on the popular setting: a finite mixture model

Consider the Rust bus engine problem with a fixed and discrete unobserved variable

S∗ ∈ {1, 2}: condition of the bus that is fixed over time
Xt : observed discrete accumulated mileage
Jt ∈ {0, 1}: engine replacement decision

Compare with the results in Arcidiacono and Miller (2011)

Follow similar simulation setting as in their paper using the extended Rust model

A special case under the general framework proposed for RL estimation for DDCs
with unobserved state variables
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Model Setup

The flow utility is:

u(Xt ,S
∗) =

{
θ0 + θ1min{Xt , 25}+ θ2S

∗ if Jt = 0
0 if Jt = 1

.

When Jt = 0, the transitional model for Xt is:

f (Xt+1|Xt) =

{
exp(−(Xt+1 − Xt))− exp(−(Xt+1 + 0.125− Xt)) if Xt+1 ≥ Xt

0, otherwise
.

Xt accumulates in increments of 0.125
Xt+1 = 0 when Jt = 1

S∗ = 1 with probability π0, and S∗ = 2 with probability 1− π0
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Estimation Using RL + Indirect Inference method

Parametrize Jt as a function of both the observed and unobserved state variables:

Pr(Jt = 1|Xt , S
∗
t , t;γ) =

exp(γ0 + γ1t + γ2Xt + γ3S
∗)

1+ exp(γ0 + γ1t + γ2Xt + γ3S∗)
. (3)

Estimate (γ, θ, ξ) following Algorithm 1-3

In the outer loop, use SMM to update {θ0, θ1, θ2,π0} by matching the 72 moments
In the inner loop

Conditional on {θ0, θ1, θ2,π0} in the outer loop
Conduct forward simulation using S’s initial distribution, X’s transitional process, and
policy function equation (3)
Use policy gradient theorem to update {γ0,γ1,γ2,γ3}

Identification is guaranteed by Lemma 1 and the choice of targeting moments
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Simulation and Estimation Details

Simulation Setting

Simulate data for 1000 buses who lives for 30 periods

Assume Xi1 = 0 for all i
Keep the last 20 periods of data after simulation

Using backward induction to solve for agent’s optimal choice

20 periods × 2 unobserved states × 201 mileages: 8,040 states

Estimation setting

Step size sq = 1× e−4, batch size I = 1, try different policy iteration numbers

State variables normalized by mean and std. in the policy function

Report three structural utility parameters
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Simulation Results: Discrete Unobserved State Variables

Parameters DGP Est. (CCP) Est. (RL+II) Est. (RL+II)
5000 20000

Utility parameters
θ0 (intercept) 2 2.0344 1.9606 1.9888

(0.1394) (0.1803) (0.1755)

θ1 (mileage) -0.15 -0.1481 -0.1579 -0.1565
(0.0057) (0.0242) (0.0204)

θ2 (unobs. state) 1 1.0412 1.0055 0.9910
(0.1129) (0.0868) (0.1031)

Time (minutes) 0.6553 0.3983 1.15
Note: Mean and standard deviations for 50 simulations. The observed data consists of 1000 buses for
20 periods. The column CCP presents estimation results using Arcidiacono and Miller 2011’s two-step
EM algorithm. The rest columns shows the estimation results using RL+Indirect Inference methods
with different iteration numbers for solving the optimal policy function. The initial values for the
estimated parameters are (1.8, -0.17, 0.9, 0.45).
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Empirical Application
A Dynamic Fertility Model with Time-Varying Unobserved Pareto Weights

The transitional process of the Pareto weights θt becomes unobserved and follows

π1 = α4(ω
f
1 − ωm

1 ) + ν1, ν1 ∼ N(0, σ2
1 ),

πt = α5πt−1 + α6

[
(w f

t − ωf
t )− (wm

t − ωm
t )

]
+ ν2, ν2 ∼ N(0, σ2

2 ),

θt = exp(πt)/(1+ exp(πt)),

The Pareto weight follows an AR(1) process inside the link function

Other model elements the same as in the fully observed case

Adopt Algorithm 1–Algorithm 3 for estimation

Five utility parameters (α1, α2, α3, p1, p2) and five transitional process parameters
(α4, σ1, α5, α6, σ2) to be estimated
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Empirical Application Results

Table: Estimation Results for Empirical Study: Continuous Unobserved State Variables

Parameters Symbol Initial Value Est. (RL)
Iter. = 5000

Utility parameters
Utility Function parameters
Utility from ln(c) α1 7.6 7.0041

(0.2348)

Utility from ln(l) α2 5.4 4.9224
(0.2582)

Dis-utility from not ideal num. of child α3 2.7 1.8271
(0.1129)

Pareto weight parameters
First period in initial wage diff. α4 0.1355 0.1473

(0.0239)

First period standard deviation σ1 0.5 0.4113
(0.0188)

Later periods AR(1) parameter α5 0.9 0.8370
(0.0188)

Later periods wage shock diff. α6 0.1770 0.1668
(0.0197)

Later periods standard deviation σ2 0.5 0.1224
(0.0188)

Parameters Symbol Initial Value Est. (RL)
Iter. = 5000

Utility parameters
Policy parameters
Penalty on excess birth in strict provinces p1 1 0.9547

(0.5596)

Penalty on excess birth in loose provinces p2 0.5 0.4405
(0.2370)

Time and Criterion Function Values
Time (minutes) 5.05
Criterion function value 4.60 0.011
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Conclusion

Our framework merges reinforcement learning’s policy gradient methods with
economics’ indirect inference, revolutionizing dynamic discrete choice model
estimation

It reduces computational burden linked to high-dimensional state spaces by directly
parametrizing the policy function

Adaptable to models with partially observed state variables, leveraging
non-parametric identification results in Hu and Shum (2012)

Empirically validated across diverse models
Yields accurate estimates for models with unobserved state variables
Outperforms traditional methods in computational efficiency

Introduces a robust estimation framework for DDCs, blending reinforcement learning
insights with econometric techniques to offer a comprehensive and efficient
estimation approach
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