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Abstract
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1 Introduction

An important family of economic problems involves solving the dynamic discrete

choice model (DDC), where an agent chooses the optimal decision in each period to

maximize her lifetime utility. This type of model brings significant computational

challenges for those with high-dimensional state space that contains many continuous

state variables. Discretizing continuous state variables results in an inaccurate ap-

proximation of the true modeling process and posts a non-negligible coding burden.

At the same time, looping over the huge amount of grid points for the state variables

to calculate the value function makes computation infeasible for solving complicated

models. In addition, many interesting dynamic models involve unobservable hetero-

geneity. Unsurprisingly, it is even more challenging to handle a complicated dynamic

model with unobserved state variables, especially when these unobserved variables

are time-varying and continuous.

To deal with this problem, this paper proposes a unified estimation framework,

embedding policy gradient methods (Sutton et al., 1999) from the reinforcement learn-

ing literature into the well-established indirect inference method (Gourieroux et al.,

1993) in economics to estimate dynamic discrete choice models with potentially a

large state space and various types of unobserved state variables. We use the full

model solution method that contains two layers of loops. In the outer loop, we use

the Simulated Method of Moments (SMM) to search over the deep parameter space

to minimize the distance between the simulated moments and data moments. In the

inner loop, we solve for the optimal policy given the current structural parameters.

Instead of using the traditional dynamic programming method to solve for the op-

timal policy function, we take advantage of the policy gradient methods by directly

parametrizing the optimal policy function and adopting the policy gradient theorem

(Sutton et al., 1999) to update the policy parameters until convergence. By doing so,

we obtain a mapping from the structural parameters to the optimal policy function

parameters, which allows us to estimate the structural parameters with significantly

reduced computational burden, since it allows us to avoid looping over all the grid

points of the state variables, discretizing the state variables, or calculating the value

function.

In addition to estimating dynamic discrete choice models with fully observed state

space, our method can also be used for estimating models with partially observed
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state variables. Building on the non-parametric identification results in Hu and Shum

(2012), we show that our proposed algorithm provides a convenient way to estimate

dynamic discrete choice models with continuous and time-varying unobserved state

variables for those that satisfy the invertibility assumption required in their paper.

Our method is suitable for models that satisfy the identification assumptions in Hu

and Shum (2012), since we can directly adopt their non-parametric identification

results that the full model is identified using four consecutive periods of data by

targeting relevant moments in the outer loop, while in the inner using policy gradient

method to solve for the optimal policy function and simulating the lifetime path

for individuals to generate targeted moments. Therefore, our proposed algorithm

serves as an easy-to-implement framework to conduct inference for dynamic discrete

choice models with various types of unobserved state variables, where discretization

of unobserved state variables is no longer necessary as this algorithm is able to handle

continuous unobserved state variables.

In this paper, we start by proposing the algorithm for estimating dynamic discrete

choice models with fully observed state space. After introducing our method, we then

compare it with the traditional dynamic programming backward induction method

by looking at a toy version of the Rust bus engine replacement model (Rust, 1987).

We show that the policy gradient method is able to generate an optimal policy func-

tion that is similar to the one obtained using dynamic programming. Moreover, the

simulation results show that our proposed algorithm can recover the true parameters

reasonably well. Building upon this simple model, we then study a more complicated

dynamic discrete choice model with fully observed high-dimensional state space that

contains continuous state variables and stochastic transitional models. We conduct

simulation studies to demonstrate that our method produces estimates that are cen-

tered around the true values, while also significantly reducing computational time

compared to the dynamic programming method. In addition, the precision loss is

minimal compared to the traditional method. Therefore, this Monte Carlo study

provides evidence that our method is able to estimate complicated dynamic discrete

choice models with high-dimensional state space at a much faster speed than tradi-

tional methods while maintaining similar levels of precision.

In the main results section, we focus on dynamic discrete choice models with par-

tially observed state space, introducing an algorithm rooted in reinforcement learning

for estimation. Leveraging the identification framework outlined in Hu and Shum
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(2012), our algorithm simultaneously updates structural and transitional model pa-

rameters by targeting four consecutive data periods using the Simulated Method of

Moments in the outer loop. Within the inner loop, we employ the policy gradient

method to estimate optimal policy function parameters conditioned on the current

structural and transitional model parameters. In essence, the algorithm contains

three parameter sets: optimal policy functions, structural parameters, and transi-

tional model parameters. By establishing a mapping from the combined set of struc-

tural and transitional model parameters to optimal policy parameters, our approach

effectively identifies these parameters for models that satisfy the assumptions outlined

in Hu and Shum (2012).

To show that our proposed model works well for estimating dynamic discrete

choice models with continuous and time-varying unobserved state variables, we run

a Monte Carlo study by looking at a model that satisfies the assumptions required

in Hu and Shum (2012). We then show that our proposed method is able to de-

rive estimates that are closely centered around the true values at a reasonably fast

computational speed in the presence of continuous and time-varying unobserved het-

erogeneity. To compare with existing algorithms, we turn to a special case of DDCs

with time-invariant and discrete unobservables. We use the same model as the one

in Arcidiacono and Miller (2011) and show that our method performs as well as the

method proposed by Arcidiacono and Miller (2011) with a shorter time of computa-

tion. Finally, we conduct an empirical study using the dynamic household bargaining

fertility model with time-varying and continuous unobserved Pareto weights that

follow an AR(1) process in the model. We show that the estimation results make in-

tuitive sense in terms of model implications. In summary, we show that our method

is applicable to different dynamic models and results in good estimates with reduced

computational burden.

Our Contributions We consider this paper to have mainly three contributions.

Firstly, this method proposed a convenient inference framework for dynamic models

with continuous and time-varying unobserved variables, solving the issue that it is

nontrivial to estimate this type of models 1. Current popular methods estimate the

reduced-form CCP using the EM algorithm for dynamic models with unobserved

1Although this paper mainly focuses on dynamic discrete choice models, our proposed method
can be easily extended to dynamic models with continuous choice variables by choosing the proper
policy function parametrization.
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state space. However, this type of method is not suitable for dealing with continuous

and time-varying unobserved state variables. Our proposed method fills this gap by

parametrizing the optimal policy as a function of both observed and unobserved state

variables, either discrete or continuous, and identifying the structural parameters by

targeting moments satisfying the identification requirements in Hu and Shum (2012).

Our method makes discretization of unobserved state variables unnecessary, able to

accommodate a richer set of models with a flexible structure of unobserved state

space.

Secondly, our proposed method significantly reduces the computational burden

for complicated dynamic models with large state space and many continuous vari-

ables, while suffering from limited loss of precision in estimation results. Unlike the

traditional methods that require looping over all possible state space to calculate

value functions in order to derive the policy function, our proposed method directly

parametrizes the policy function and leverages the policy gradient theorem to up-

date the policy parameters, avoiding the iterations over huge state space, resulting

in significant time-saving in computation. In addition, different from the traditional

methods where discretization of continuous state variables is required, our proposed

method can directly work with continuous state variables, avoiding approximation

through interpolation over grid points. Lastly, our method can handle complicated

dynamic models. For instance, when the model has no finite dependence assumption

(Hotz et al., 1994), the proposed method is still able to handle this situation.

Lastly, we provide a unified framework for estimating dynamic discrete choice

models of various types by adopting the popular policy gradient method from the

reinforcement learning literature and combining it with the simulated method of mo-

ments. If using traditional methods, there will be big differences in whether the model

has unobservables or not. Different estimation techniques will be used for different

scenarios. Using our proposed method, on the other hand, the same set of algorithms

can be adapted to different groups of models, making the inference structure easy to

implement.

Related Literature This paper relates to the large literature of estimating dy-

namic discrete choice models (Rust, 1987; Hotz and Miller, 1993; Hotz et al., 1994;

Aguirregabiria and Mira, 2007; Arcidiacono and Jones, 2003; Arcidiacono and Miller,

2011; Gallant et al., 2018) and the literature on the identification of models with un-

5



observed heterogeneity (Kasahara and Shimotsu, 2009; Hu and Shum, 2012; Hwang,

2024). Our paper differs in that we focus on the estimation of the dynamic discrete

choice models with unobserved state variables, combining the policy gradient method

from the reinforcement learning literature with indirect inference. While Gallant et al.

(2018) also can estimate models with continuous and serially correlated unobserved

state variables, they do not have any identification arguments. On the contrary, we

build on the non-parametric identification results in Hu and Shum (2012) and show

that our method can estimate models with very flexible conditions, including those

with time-varying continuous and endogenous unobserved state variables.

Our paper is also related to the big stream of literature on reinforcement learn-

ing. Reinforcement learning is a sub-field under machine learning, where the goal of

reinforcement learning is to find an optimal behavior strategy for the agent to obtain

optimal rewards. This method has been widely adopted in artificial intelligence and

operations research. However, reinforcement learning has received limited attention

in economics. In particular, we focus on offline reinforcement learning (RL) (Lange

et al., 2012), in which a policy (a sequence of actions) model is reinforced, by the feed-

back from the offline (previously collected) data including individuals’ longitudinal

observations and choices, to optimize sequential decisions that maximize a reward.

Finally, our paper is mostly related to the literature on the policy gradient method.

Since proposed by Sutton et al. (1999), policy gradient methods in reinforcement

learning (RL) have been extensively studied and utilized across many tasks due to

their adaptability and straightforward implementation schemes (Kakade, 2001; Silver

et al. (2014), Silver et al. (2014)). This method has been successfully applied to

many fields, such as robotics and artificial intelligence (Peters and Schaal, 2006; Yu

et al., 2017), auto driving (Li et al., 2022), and sequential medicine decisions (Jin

et al., 2023). The policy gradient methods aim at modeling and optimizing the

policy directly. The policy is usually modeled with a parameterized function with

respect to θ, πθ(a|s). The value of the reward (objective) function depends on this

policy and then various algorithms can be applied to optimize for the best reward.

Using the policy gradient theorem by Sutton et al. (1999), the gradient of the value

function can be transferred into the gradient of the policy function, thus providing a

closed form for updating the policy parameters. In addition, our paper is related to

the growing literature on estimating partially observable Markov decision processes

(POMDPs) using policy gradient methods (Hong et al., 2023).
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The rest of the paper is organized as follows. Section 2 introduces our proposed

algorithm for dynamic discrete choice models with fully observed state space and

provides Monte Carlo evidence to validate the effectiveness of our proposed method.

Section 3 contains the main result of estimating dynamic discrete choice models with

unobserved state space using our proposed method. In Section 4, we focus on a special

case of a dynamic discrete choice model with fixed and discrete unobserved state

variables and compare our method with existing methods. We present an empirical

study in Section 5 for a dynamic model with time-varying and continuous unobserved

state variables. Finally, Section 6 concludes this paper.

2 Reinforcement Learning Estimation of DDCs with

Fully Observed State Space

In this section, we discuss our proposed algorithm for estimating the dynamic discrete

choice models with fully observed state space. Consider a structural dynamic model

with a process
{
X t, Jt

}
, where X t ∈ Rd stands for the observed state variables that

evolve over time and Jt ∈ {0, 1} is the agent’s choice variable in period t 2. We assume

that the researcher observes a panel dataset consisting of an i.i.d random sample of{
(X1, J1), (X2, J2), ..., (XT , JT )

}
for many agents i. Assume that the transitional

model fXt|Xt−1,Jt−1 is known or can be pre-estimated using the data. The flow utility

of the agent in period t is denoted by U(X t, Jt;θ), where θ is the set of parameters

that determines the period-reward for the agent. The agent’s objective is to choose

a sequence of
{
J1, J2, ..., JT

}
to maximize her lifetime value.

Intuitively, our algorithm mainly contains two loops. In the outer loop, we use

the Simulated Method of Moments and search over the structural parameter space

to find the set of parameters that can match the simulated moments with the data

moments. In the inner loop, we condition on the structural parameters in the current

outer loop and use the Policy Gradient Method from reinforcement learning to update

the policy function parameters. After the convergence of the inner loop, we obtain a

mapping from the deep parameters in the outer loop to the optimal policy function

parameters in the inner loop. After the convergence of the outer loop, we can then

obtain the estimates for the structural parameters.

2We assume Jt is a binary choice variable for simplicity here. Our method can be used for
estimating dynamic models with multi-level categorical or even continuous choice variables.
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The key step of the algorithm, as suggested by the policy gradient method, is to

parametrize the choice variable Jt as a function of the state variables, denoted by

πγ(θ)(Jt|X t). Specifically, we assume:

Pr(Jt = 1|X t;γ(θ)) =
exp(X tγ(θ))

1 + exp(X tγ(θ))
, (2.1)

where γ(θ) stands for the policy function parameters that depend on the structural

parameters θ. We use a logistic function to parametrize the policy function for a

binary choice variable. For a continuous choice variable, a regression function with

a normal error term can be used instead. We assume a linear relationship between

the state variables Xt and parameters γ, which is common in practice, but the

parametrization πγ(Jt|X t) can be flexible. For example, higher-order terms of Xt

or historical state variables Xt− k can be included. As long as the gradient with

respect to the parameters has a closed-form solution, this approach will work. Recent

research in deep reinforcement learning (François-Lavet et al., 2018) uses deep neural

networks to parametrize the policy function, enabling it to handle large state spaces

in dynamic models.

Let V (γ(θ)) denote the reward function that depends on the policy parameter

γ(θ). Using gradient ascent, we can move γ toward the direction suggested by the

gradient ∇γV (γ(θ)) to find the best for that produces the highest return:

γq+1 = γq + sq∇γV (γq(θ)),

where q denotes the current iteration number, and sq is a hyper-parameter that

governs the step size of the update. It is nontrivial to calculate∇γV (γq(θ)) because it

involves the action and the stationary distribution of states following the target section

behavior, both are indirectly or indirectly determined by πγ(θ)(Jt|X t). Luckily, we

can use the policy gradient theorem to simplify the derivative of the objective function

to a function that does not involve the derivative of the state distribution. As proved

in Sutton and Barto (2018), the policy gradient theorem states that:

∇γV (γ) = EX

[
EJ

[
Qπγ (X, J)∇γ logπγ(J |X)

]]
,

where Qπγ (X, J) is the state-action value function of the policy πγ . In other words,

the gradient of the value function can be transferred to the gradient of the policy

function, ∇γ logπγ(J |X), which becomes tractable now. The expectations are taken
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over the choice probability of J and the transitional probability of the state variables.

In the algorithm of searching for the optimal γ, we use Monte Carlo simulation to

calculate the expectations.

Building on the policy gradient method, we propose an algorithm that combines it

with indirect inference to estimate structural parameters in dynamic discrete choice

models. The policy gradient method aims to find the optimal policy, which is an

intermediate step in our goal of estimating structural parameters. Our algorithm has

two layers: the inner loop uses the policy gradient method to solve for the optimal

policy, while the outer loop estimates the structural parameters by matching data

moments with simulated moments using SMM. Figure 1 presents the flow chart for

the inner loop of our proposed method. The policy function in the inner loop depends

on the structural parameter in the outer loop, creating a mapping from structural

parameters to optimal policy parameters. In the inner loop, we parameterize the pol-

icy function γ(θ), simulate individual trajectories, and calculate the policy gradient.

The value function gradient is then used to update the policy function parameters.

In the outer loop, we use the optimal policy parameters γ∗(θ) to simulate trajectories

and estimate the structural parameters by matching moments. The policy gradi-

ent method and SMM complement each other as both involve simulating individual

life-cycle paths.

Figure 1: Flow chart for the Inner Loop of the RL + Indirect inference Algorithm for
Models With Fully Observed State Space

Algorithm A.1–Algorithm A.3 in Appendix A summarize our proposed method

in detail. After presenting our proposed algorithm for estimating DDCs with fully

observed state space, we perform two sets of Monte Carlo simulations. First, we

validate the effectiveness of our method in accurately recovering the true parameters.

Second, we demonstrate the computational advantages of our method over full-model
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solution methods when estimating models with large state spaces.

In the first Monte Carlo simulation, we estimate a toy version of the Rust bus

engine replacement model (Rust, 1987) using our RL + indirect inference method

and compare the results with the NFXP algorithm. Model details and simulation

results are in Section 1 of the Supplementary Appendix. We estimate the structural

parameters (θ1, θ2) using Algorithm A.1–Algorithm A.3. First, we show rapid con-

vergence of the lifetime reward during the inner loop iterations, indicating effective

policy updates. Second, the policy table compares the RL-based optimal policy with

the exact solution from backward induction, demonstrating similar engine replace-

ment probabilities and lifetime values. Finally, the estimation table shows results

closely aligned with the true values, comparable to the NFXP method. This simu-

lation demonstrates the effectiveness of our method in estimating DDCs with a fully

observed state space.

In the second Monte Carlo simulation, we extend our study to dynamic discrete

choice models (DDCs) with large state spaces and continuous variables, focusing on

a dynamic collective fertility model with a fully observed state space. Model setup,

simulation details, and results are in Section 2 of the Supplementary Appendix. The

model tracks various state variables for both the husband and wife each period and

includes discrete fertility and continuous leisure and consumption choices. Unlike

traditional methods that discretize continuous variables like wages, our method han-

dles them directly. We follow Algorithm A.1–Algorithm A.3 and target 59 moments,

including working hours and fertility outcomes. We compare results with full-model

solutions using backward induction. The estimation results show that our method

provides estimates close to the true parameters while reducing computational burden,

demonstrating the effectiveness of our method in estimating complex DDCs.

In summary, by conducting the two sets of Monte Carlo simulations, we have

demonstrated the effectiveness of our proposed method in recovering the true pa-

rameters in DDCs with fully observed state space, with results comparable to the

traditional methods such as the NFXP algorithm. Most importantly, we show that

using this method can significantly reduce the computational burden of DDCs with

large state space and at the same time avoid the discretization of any continuous state

variables. In the next section, we move to our main results, where we show that our

proposed method is able to be accommodated for estimating DDCs with unobserved

state variables.
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3 Reinforcement Learning Estimation of DDCs with

Unobserved State Variables

Dynamic models with unobserved heterogeneity have long been an important topic

in economics. Estimation of dynamic models with unobserved state variables can

be tricky, especially with time-varying unobservables. Motivated by these empirical

needs, in this section, we apply our method one step further and focus on dynamic

discrete choice models with time-varying continuous unobserved state variables. We

show that when the model satisfies the assumptions listed in Hu and Shum (2012),

our proposed RL + indirect inference method is able to recover the true parameters.

We first discuss the model setup and assumptions required for identification, and

we focus on a Rust model (Rust, 1987) with extensions and verify that it satisfies

all the required assumptions. Then we discuss our proposed method for estimating

these dynamic discrete models with continuous unobserved state variables and show

how we apply this method to estimate the Rust model with this kind of unobserved

variable. Finally, we present the estimation results for our Monte Carlo study and

demonstrate that our method works well for estimating this type of model.

3.1 Model Identification

Consider a structural dynamic model with a process
{
Xt, S

∗
t , Jt

}
, where Xt stands

for the observed state variable(s) and S∗
t denotes the time-varying unobserved state

variables (USVs), which are potentially observed by agents but not available to

econometrician. Jt ∈ {0, 1} is the agent’s choice variable in period t. We assume

that researchers observe a panel dataset consisting of an i.i.d random sample of{
(X1, J1), (X2, J2), ..., (XT , JT )

}
for many agents. For each agent i,{

(X1, J1, S
∗
1), (X2, J2, S

∗
2), ..., (XT , JT , S

∗
T )
}

is independently and randomly drawn from a bounded continuous distribution

f(X1,J1,S∗
1 ),(X2,J2,S∗

2 ),...,(XT ,JT ,S∗
T ).

The assumptions are as follows:

Assumption 1. (i) First-order Markov : fXt,Jt,S∗
t |Xt−1,Jt−1,S∗

t−1,Ω<t−1 = fXt,Jt,S∗
t |Xt−1,Jt−1,S∗

t−1
,

where Ω<t−1 = {Xt−2, ..., X1, Jt−2, ..., J1, ..., S
∗
t−2, ..., S

∗
1}.
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(ii) Limited feedback: fXt,Jt|Xt−1,Jt−1,S∗
t ,S

∗
t−1

= fXt,Jt|Xt−1,Jt−1,S∗
t
.

Assumption 2. Invertibility. Let Vt ≡ gt(Wt), where Wt = {Xt, Jt}. The function
gt : R2 → R. Denote the supports of Vt and Wt as Vt and Wt, respectively. Let
LVt−2,w̄t−1,w̄t,Vt+1 denote the linear operator that maps from the LP space of functions
of Vt+1 to the LP splace of functions of Vt−2. There exists variable(s) Vt such that
(i) for any wt ∈ Wt , there exists a wt−1 ∈ Wt−1 and a neighborhood N 2 around
(wt, wt−1) such that, for any (w̄t, w̄t−1) ∈ N 2, LVt−2,w̄t−1,w̄t,Vt+1 is one-to-one.
(ii) for any wt ∈ Wt, LVt+1|wt,S∗

t
is one-to-one. x (iii) for any wt−1 ∈ Wt−1, LVt−2,wt−1,Vt

is one-to-one.

Assumption 3. Uniqueness of spectral decomposition. For any wt ∈ Wt and any
s∗t ̸= s̃∗t , there exists a wt−1 ∈ Wt−1 and corresponding neighborhood N r with wt ̸=
wt, wt−1 ̸= wt−1: (i) 0 < k(wt, wt, wt−1, wt−1, s

∗
t ) < C <∞ for any s∗t ∈ S∗

t and some
constant C;
(ii) k(wt, wt, wt−1, wt−1, s

∗
t ) ̸= k(wt, wt, wt−1, wt−1, s̃

∗
t ), where

k(wt, wt, wt−1, wt−1, s
∗
t ) =

fWt|Wt−1,S∗
t
(wt|wt−1, s

∗
t )fWt|Wt−1,S∗

t
(wt|wt−1, s

∗
t )

fWt|Wt−1,S∗
t
(wt|wt−1, s∗t )fWt|Wt−1,S∗

t
(wt|wt−1, s∗t )

. (3.1)

Assumption 4. Monotonicity and normalization. For any wt ∈ Wt, there exists a
known functional G such that G[fVt+1|Wt,S∗

t
(·|wt, s

∗
t )] is monotonic in s∗t .

We normalize s∗t = G[fVt+1|Wt,S∗
t
(·|wt, s

∗
t )].

Applying Theorem 1 in Hu and Shum (2012), we have that

Lemma 1. Under Assumptions 1-4, we have that:
fXt,S∗

t |Jt−1,Xt−1,S∗
t−1

is identified from fJt+1,Xt+1,Jt,Xt,Jt−1,Xt−1,Jt−2,Xt−2,Jt−3,Xt−3.
Initial condition fXt−3,S∗

t−3,Jt−3 is identified from fJt+1,Xt+1,Jt,Xt,Jt−1,Xt−1,Jt−2,Xt−2,Jt−3,Xt−3.

Lemma 1 states that, a total of five consecutive periods of observed state variables

and choice variables are needed to non-parametrically identify the conditional distri-

bution fXt,S∗
t |Jt−1,Xt−1,S∗

t−1
. At the same time, with the assumption that the initial

distributions of X and S∗ are independent, we can also identify the initial condition

fXt−3,S∗
t−3,Jt−3 using the same set of observed state and choice variables.

3.1.1 A Rust Model with Extensions

Consider Rust (1987) bus engine replacement problem, where a bus operator period-

ically replaces buses’ engines to minimize the expected cost of operating the buses.

The choice variable Jit ∈ {0, 1} is whether to replace the engine or not in each period

t for bus company i. The state variable Xit ∈ R is the accumulated mileage for bus
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i. We extend the original model to incorporate an unobserved state variable Sit ∈ R,
which is the condition of the bus i at time t. A higher Sit implies a better bus condi-

tion, which results in a lower cost for doing maintenance work for the bus and a faster

accumulation in mileage. In summary, the condition of the bus is an unobservable

state variable that affects both the expected operating cost and the transition of the

mileage for the bus. For notational simplicity, the individual index i will be sup-

pressed when understood from the context. We introduce the data-generating model

in detail below.

We assume the transitional process for the bus condition S∗
t is fully exogenous

and follows an AR(1) process:

S∗
t = λ1S

∗
t−1 + νt; νt ∼ N(0, σ2

2) (3.2)

The transitional process for the mileage Xt if Jt = 0 is:

Xt+1 = Xt

[
1 + λ3exp(ηt+1 + λ2S

∗
t+1)

]
, fηt+1(η) = exp(η − eη) (3.3)

When the engine is not replaced (Jt = 0), Xt+1 accumulates based on last period’s

mileage Xt and the increment depends on the parameters (λ2, λ3), a random shock

ηt+1 ∈ R that follows an extreme value distribution, and the condition of the bus,

S∗
t+1, at time period of t + 1. Equation 3.3 implies that the condition of the bus

raises the accumulation of mileage. The higher S∗
t is, the faster the mileage will

accumulate since the bus will be driven more often for longer trips. Notice that we

assume S∗
t is realized before Xt, so that Xt depends on S∗

t . Moreover, we also assume

the initial mileage X1 > 0, such that Xt > 0 for all t, and we have that for given

Xt, Xt+1 ∈ (Xt,+∞).

The transitional process for mileage Xt if Jt = 1 is:

p(Xt+1|Xt, Jt, β2) = β2exp(−β2Xt+1) (3.4)

When the bus engine is replaced (Jt = 1), Xt+1 does not depend on the previous

mileage or the condition of the bus anymore and instead follows an exponential dis-

tribution with the parameter β2. This assumption is to capture the fact that the Rust

bus engine model has limited dependence. When engine replacement happens, the

accumulation of the mileage in the next period restarts, without depending on the

historical path anymore. To satisfy the assumption that Xt > 0 for all t, we assume
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the mileage follows an exponential distribution with a parameter β2 after the engine

replacement, instead of directly becoming zero after the engine is replaced.

The initial values of state variables (S∗
1 , X1) are independent and have the following

distributions:

S∗
1 ∼ N(α1, σ

2
1); X1 ∼ exp(β1), (3.5)

where we assume the condition S∗
t in the initial period t = 1 follows a Normal dis-

tribution with mean α1 and variance σ2
1; whereas the mileage Xt in the initial period

t = 1 follows a exponential distribution with the parameter of β1.

The flow utility in period t is specified as follows:

U(Xt, Jt, S
∗
t , ϵjt) = u(Xt, Jt, S

∗
t ; θ1, θ2, θ3) + ϵjt

= −θ1Xtexp(−S∗
t )− θ2I(Jt = 1) + θ3S

∗
t + ϵjt,

(3.6)

where ϵjt is a discrete-choice-specific idiosyncratic shock that follows the type I ex-

treme value distribution, which affects the engine-change decision.

The utility function reflects that a lower value of St indicates worse bus conditions,

leading to higher maintenance costs. To capture this, we include an interaction term

between Xt and exp(−St), representing the impact of bus condition on maintenance

costs at mileage Xt. Additionally, the cost of replacing the engine is represented

by −θ2 × I(Jt = 1) in the utility function. Lastly, we assume that bus condition

directly influences the utility, with better bus condition providing positive utility to

the company, along with reducing maintenance costs for a given mileage.

Each period, a bus company chooses whether to replace the bus engine or not to

maximize its discounted future value. The value function of the bus company is:

V (Xt, S
∗
t , ϵjt) = max

Jt∈{0,1}

{
u(Xt, Jt, S

∗
t ; θ1, θ2, θ3) + ϵjt + βE[V (Xt+1, S

∗
t+1, ϵjt+1)|Xit, Sit, Jt]

}
(3.7)

In order to adopt our algorithm to estimate this model, we first need to show

that the model satisfies Assumption 1–Assumption 4 in Section 3.1. When Jt = 1,

the transitional model of Xt can be directly estimated using Xt+1|Xt, Jt = 1, and

the transitional model of S∗
t does not involve Jt. Therefore, when proving that each

assumption is satisfied, we focus on the case when Jt = 0. As long as we can show

that when Jt = 0 the model is identified, we can conclude that the whole model is
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identified. Detailed proof for the four assumptions is shown in Appendix B.

Having proved that all the four assumptions are satisfied, we can apply Lemma 1

to reach identification, where fXt,S∗
t |Jt−1,Xt−1,S∗

t−1
and the initial condition fXt−3,S∗

t−3,Jt−3

are identified from the joint distribution of five consecutive periods of observed state

variables and choice variables fJt+1,Xt+1,Jt,Xt,Jt−1,Xt−1,Jt−2,Xt−2,Jt−3,Xt−3 .

3.2 RL + Indirect Inference Estimation

In this section, we discuss how our proposed method can be accommodated to esti-

mate DDCs with unobserved state variables. Similar to the case without unobserved

state variables, the first step is to parametrize the choice variable as a function of

both the observed and unobserved state variables:

Pr(Jt = 1|Xt, S
∗
t , t;γ) =

exp(γ0 + γ1t+ γ2Xt + γ3S
∗
t )

1 + exp(γ0 + γ1t+ γ2Xt + γ3S∗
t )
. (3.8)

We use the logistic model as the link function due to the binary choice variable,

and apply a simple linear model to describe how state variables affect the interme-

diate value. More complex models can be used to capture the nonlinear relationship

between state variables and choice variables.

Figure 2 shows the flow chart of our proposed method. Similar to Figure 1, the

algorithm contains two layers of loops, where the outer loop searches over the pa-

rameter space by matching the data moments and the simulated moments and, given

the set of parameters in the current outer loop, the inner loop solves for the optimal

policy using the policy gradient method, by forward simulating the lifetime trajectory

of each individual and update the policy parameters using stochastic gradient descent

method. Different from the algorithm in Section 2 for fully observed dynamic models,

now we both have unknown structural parameters θ and unknown transitional model

parameters ξ to estimate. To summarize, we have three sets of parameters now:

{γ,θ, ξ}, which stands for the policy function parameters, the structural parameters,

and the transitional model parameters. The algorithm in the inner loop updates γ,

conditional on not only θ but also ξ. The key of our method is that, in the outer

loop of the Simulated Method of Moments, we search over the combined parameter

space for {θ, ξ} by targeting moments consistent with the identification results in

Lemma 1. Because of the identification results in Hu and Shum (2012), we only need

to match moments of observed state variables and choice variables to identify θ and
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ξ separately. At the same time, however, we need to match the moments of four

periods’ observed data to identify the parameters.

Figure 2: Flow chart for the RL + Indirect inference Algorithm with Unobserved
State Variables

We present detailed algorithms for our method in Algorithm 1–Algorithm 3. Sim-

ilar to Algorithm A.1–A.3, the algorithm has two loops: the outer loop searches the

parameter space by matching data and simulated moments, while the inner loop solves

for the optimal policy using the policy gradient method. This is done by forward sim-

ulating individual trajectories and updating policy parameters via stochastic gradient

descent. Unlike the algorithm in Section 2 for fully observed dynamic models, we now

estimate both structural parameters θ and transitional model parameters ξ. Thus,

we have three sets of parameters: γ,θ, ξ, representing policy function, structural,

and transitional model parameters. In the outer loop of the Simulated Method of

Moments, we search over the combined parameter space for θ, ξ, targeting moments

consistent with the identification results in Lemma 1. The inner loop updates γ,

conditional on both θ and ξ. The reason why our proposed algorithm can separately

estimate θ and ξ relies on the identification results in Hu and Shum (2012).

Algorithm 1 shows the steps of conducting forward simulation for obtaining an

individual’s lifetime trajectory. The input of policy parameter γ depends on both the

structural parameter θ and ξ. Since S∗ is unknown, the first step is to sample S∗
i1

using the initial distribution of S∗ that depends on the initial distribution parameter.

Combining observed state variables Xi1 and sampled unobserved state variable S∗
i1,

we can sample the choice Ji1 using the policy function in Equation 3.8, conditional on

the policy parameter γ. After these steps, we obtained the state and choice variables
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in the first period. We can then move to the second period by using the transitional

models of S∗ and X, given the transitional model parameters ξ 3. Similar to the first

period, we can then use the policy function in Equation 3.8 to sample the choice in

this period, given (X̂i2, Ŝ
∗
i2) and the policy parameters γ∗(θ, ξ). We can continue the

same procedure and move forward to simulating the individual’s lifetime trajectory.

Algorithm 2 discusses the procedure of using stochastic gradient descent for op-

timizing γ. This part is similar to Algorithm A.2, except that the state space now

contains unobserved variables S∗, and γ now depends on both θ and ξ. When

simulating the individual’s lifetime trajectory, we follow Algorithm 1 to generate

D̂i = (Ŝi, X̂ i, Ĵ i) that contains both unobserved, observed, and choice variables. We

can then calculate the lifetime value and the gradient of the policy function and use

the policy gradient theorem to calculate the gradient of the value function to update

the policy function parameters γ.

Finally, Algorithm 3 presents the outer loop of conducting indirect inference for es-

timating structural parameters and transitional model parameters. Unlike Algorithm

A.3 where we only need to estimate structural parameters θ, here we also need to

estimate ξ because we cannot observe the transitional process of the unobserved state

variable S∗. Therefore, embedding Algorithm A.3 and Algorithm 1 inside the loop,

the algorithm minimizes the distance between the data and the simulated moments

by choosing θ and ξ at the same time. In order to separately identify these two sets

of parameters, we need to adopt the identification results in Lemma 1, where we use

the joint distribution of (Jt+1, Xt+1, Jt, Xt, Jt−1, Xt−1, Jt−2, Xt−2, Jt−3, Xt−3) to iden-

tify fXt,S∗
t |Jt−1,Xt−1,S∗

t−1
and the initial condition fXt−3,S∗

t−3,Jt−3 . Therefore, the targeted

moments should contain at least five consecutive periods of observed state variables

and choice variables in order to separately identify θ and ξ.

3.2.1 Estimation of the Rust Model Using RL + Indirect Inference Method

In this section, we discuss how to adopt our proposed method above to estimate

this dynamic discrete choice model with continuous and time-varying unobserved

state variables. The first step is to parametrize the choice variable as a function

of observed and unobserved state variables using Equation 3.8. The second step is

to parametrize the transitions of the observed and unobserved state variables and

the initial distributions of the observed and unobserved state variables according to

3Notice that we assume S∗ is realized before X does. Hence, Xt depends on S∗
t , not S

∗
t−1.
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Algorithm 1 Forward Simulation for Obtaining Individual’s Lifetime Trajectory

1: Input: policy parameters γ(θ, ξ), utility parameters θ, transitional model pa-
rameter ξ, initial state Xi1 for individual i

2: Sample Ŝ∗
i1 using the initial distribution of S∗ given ξ

3: Sample Ĵi1 using Equation 3.8 given (Xi1, Ŝ
∗
i1;γ(θ, ξ))

4: Sample Ŝ∗
i2 using the transitional model of S∗ given (Ŝ∗

i1; ξ)

5: Sample X̂i2 using the transitional model of X given (X̂i1, Ĵi1, Ŝ
∗
i2; ξ)

6: Sample Ĵi2 using Equation 3.8 given (X̂i2, Ŝ
∗
i2;γ(θ, ξ))

7: for t = 3, . . . , T do
8: Sample Ŝ∗

it, X̂it, and Ĵit conditional on θ, ξ, and γ(θ, ξ)
9: end for
10: Obtain the final dataset D̂i = (Ŝi, X̂ i, Ĵ i)

11: Output: lifetime trajectory D̂i for individual i

Algorithm 2 Stochastic Gradient Descent for optimizing γ

1: Input: initial value γ0 for the policy parameters γ, deep parameters θ, transi-
tional model parameter ξ, step size sq, batch size I, initial state {X11, X21, ..., XI1}
from the batch data DI .

2: Initialize: γ1 ← γ0

3: for q = 1, . . . , Q do
4: for i = 1, 2, . . . , I do
5: Obtain D̂i = (Ŝi, X̂ i, Ĵ i) following the procedure in Algorithm 1

6: Calculate the lifetime value Vi(γq) and gradient ∇γ log(
∏

t>=1 π(Ĵit|Ŝ∗
it, X̂it, t;γ))

7: end for
8: Average the lifetime value and gradient: V (γq) :=

1
I

∑I
i=1 Vi(γq);

9: ∇γ log(
∏

t>=1 π(Jt|Ŝ∗
t , X̂t, t;γ)) :=

1
I

∑I
i=1∇γ log(

∏
t>=1 π(Ĵit|Ŝ∗

it, X̂it, t;γ))

10: Update ∇γV (γq)← V (γq)∇γ log(
∏

t>=1 π(Jt|Ŝ∗
t , X̂t, t;γ))

11: Update γq+1 ← γq + sq∇γV (γq)
12: end for
13: Output: γ∗ = γq∗
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Algorithm 3 Indirect Inference for estimating θ and ξ

1: Input: initial value θ0, initial value ξ0; initial state {X11, X21, ..., XN1} from data
D; data moments κ.

2: Initialize: θ1 ← θ0; ξ1 ← ξ0
3: for k = 1, . . . , K do
4: Calculate γ∗(θk, ξk) following Algorithm 2
5: for i = 1, 2, . . . , N do

Obtain D̂i = (Ŝi, X̂ i, Ĵ i) using γ∗(θk, ξk) following Algorithm 1
6: end for
7: Calculate simulated moments κ̂ using (X̂, Ĵ) according to targeted moments
8: (θk+1, ξk+1) ← min Dis(κ, κ̂)
9: end for
10: Output: θ∗ = θk∗ , ξ

∗ = ξk∗

Equation 3.2–Equation 3.5. Since we can observe X1 and Xt+1|Jt = 1 from the

data, we pre-estimate (β1, β2) directly from the data. We use (β̂1, β̂2) to denote the

estimated parameters, and for identification purposes we normalize (λ2 = 0.8, λ3 =

0.2) in Equation 3.3. Combining these together, we obtain the initial distribution for

X1 and transitional process of the mileage as follows:

S∗
1 ∼ N(α1, σ

2
1); X1 ∼ exp(β̂1), (3.9)

The transitional process for mileage Xit is:{
Xt+1 = Xt

[
1 + 0.2exp(ηt+1 + 0.8S∗

t+1)
]

if Jt = 0; fηt+1(η) = exp(η − eη)

p(Xt+1|Xt, Jt, β̂2) = β2exp(−β̂2Xt+1) if Jt = 1
.

(3.10)

With the pre-estimated and normalized parameters, we have seven remaining

parameters to be estimated structurally. Out of the seven parameters, three of them

are utility parameters, and four of them are transitional model parameters. We follow

Algorithm 1–Algorithm 3 to estimate these parameters.

In Algorithm 1, the input of the algorithm includes the policy parameters γ∗ =

(γ0, γ1, γ2, γ3), the utility function parameters θ = (θ1, θ2, θ3), and the transitional

model parameters ξ = (α1, σ1, σ2, λ1). We also need to obtain the initial mileage X1

for the individual directly from the data since it is observed. Given all the structural

parameters, transitional model parameters, and initial observed state variables, we

can simulate the lifetime trajectory of the individual.
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Firstly, we sample the initial unobserved state variable Ŝ∗
i1 from the initial dis-

tribution in Equation 3.9, given the parameter (α1, σ
2
1). Secondly, we sample the

choice variable Ĵi1 from the policy function in Equation 3.8, given the first period’s

state variables (Xi1, Ŝ
∗
i1) and the policy function parameters γ∗(θ, ξ). Here, the de-

pendence of γ∗ on (θ, ξ) means that the optimal policy function parameters depend

on the structural parameters of the model. Up till now, we have obtained the state

and choice variables in the first period: (Xi1, Ŝ
∗
i1, Ĵi1). We move forward to the sec-

ond period by using the transitional models for X and S∗. Specifically, we sample

Ŝ∗
i2 using Equation 3.2 given last period’s unobserved state variable Ŝ∗

i1 and tran-

sition parameters (λ1, σ2). At the same time, we sample X̂i2 using Equation 3.10,

given last period’s state and choice variables (X̂i1, Ŝ
∗
i1, Ĵi1) and transition parameters

(λ2, β̂2). Finally, with the observed and unobserved state variables obtained in the

second period, we use Equation 3.8 again to sample Ĵi2, conditional on (X̂i2, Ŝ
∗
i2) and

policy function parameters γ∗(θ, ξ). Using the same strategy, we continue moving

forward and sample for (Ŝ∗
it, X̂it, Ĵit) for the remaining period until time T . This re-

sults in the final simulated dataset D̂i = (Ŝi, X̂ i, Ĵ i), where Ŝi = {Ŝ∗
i1, Ŝ

∗
i2, ..., Ŝ

∗
iT},

X̂ i = {X̂i1, X̂i2, ..., X̂iT}, and Ĵ i = {Ĵi1, Ĵi2, ..., ĴiT}.
The inner loop of our algorithm contains the Stochastic Gradient Descent algo-

rithm to optimize the policy function parameters γ as shown in Algorithm 2, and

the outer loop of our algorithm adopts Simulated Method of Moments to estimate

structural parameters θ and ξ following Algorithm 3. Our goal is to find the set of pa-

rameters (θ∗, ξ∗) to minimize the distance between the simulated and data moments.

Therefore, our criterion function is a normalized metric of the distance between κ and

κ̂, where κ stands for the corresponding data moments. Notice that since we do not

observe S in the real data, it is not included in the moments that we try to match.

Only (X̂, Ĵ) will be used in the SMM for estimating the structural parameters.

What remains to be discussed is the choice of moments to match in the SMM to

estimate parameters in Algorithm 3. Using the result in Lemma 1, we target five con-

secutive periods of state and choice variables to non-parametrically identify the transi-

tional model of f(Xt, S
∗
t |Jt−1, Xt−1, S

∗
t−1) and the initial condition f(Xt−3, S

∗
t−3, Jt−3).

We match the regression coefficients, mean, standard deviation, and correlation mo-

ments for the five periods of state and choice variables. Details of the targeted mo-

ments are provided in Section 1 of the Online Appendix.
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3.3 Monte Carlo Evidence: Simulation Results

We simulate data for 1000 buses that live for 10 periods and make decisions in each

period. The data is generated by deriving the value functions at each state using

backward induction. Since both the unobserved state variable S∗
t and the observed

state variable Xt are continuous, we need to discretize them before solving the full

model. We discretize S∗
t into 5 grid points and discretize Xt into 20 grid points. We

use S∗ and X∗ to denote the discretized version of S∗ and X. Since neither of S∗
t

and Xt has stationary distributions over time, the grid points for S∗
t and Xt are time-

dependent, resulting in 5× 10 = 50 grid points for S∗ and 20× 10 = 200 grid points

for X. After getting the discretized S∗ and X, we use sampling methods to calculate

the transitional matrix of Pr(S∗
t+1|S∗

t ) and Pr(X∗
t+1|X∗

t , S
∗
t , Jt). The dimension of

Pr(S∗
t+1|S∗

t ) is 9×5×5 and the dimension of Pr(X∗
t+1|X∗

t , S
∗
t , Jt) is 9×20×20×5×2.

After the discretization of continuous state variables, we can solve the optimal policy

for each state by starting from the last period and moving to the first period. With

the optimal policy, we then start each bus engine in the first period by sampling

from the initial distribution for X and S and forward-simulating the choices until

period 10. When calculating the expected value in each period conditional on the

last period’s state and choice variables, we adopt the simulated transitional matrices

Pr(S∗
t+1|S∗

t ) and Pr(X∗
t+1|X∗

t , S
∗
t , Jt). Summarizing the dimensions of the problem,

we have 2 choices (changing the engine or not), 10 periods of data, 5 unobserved

states, and 30 possible mileages in each period. The number of states is therefore

2× 10× 5× 20 = 2, 000.

With the generated data, we use the proposed algorithm in Section 3.2.1 to es-

timate the seven structural parameters. Following the proposed method, we pre-

estimate β1 and β2 directly from the data and normalize (λ2 = 0.8, λ3 = 0.2). The

remaining three utility parameters and four transitional model parameters are esti-

mated using the reinforcement learning + indirect inference method. When running

Algorithm 2, we set the step size sq = 10−4 and choose the batch size I = 1. When

running Algorithm 3, we use the 111 moments specified in Section 1 of the Online

Appendix in the procedure of SMM, where we use the standard errors of the moments

as the weighting matrix when calculating the criterion function for minimization.

Table 1 presents the estimation results for the simulation study. There are seven

parameters in total to estimate, with three of them being the utility function param-

eters and four of them being transitional-model parameters. The second, fourth, and
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fifth columns in the table present three sets of true parameters that generated the

data. The third, fifth, and last columns show the corresponding estimation results

for each set of true parameters, where we present the mean and standard deviations

of the estimated parameters in 400 simulations. For all of the three estimations, we

use 5000 iterations when calculating the optimal policy function in each outer loop

of deep parameters.

For the three sets of estimations, we tried different combinations of utility param-

eters to check whether our algorithm can recover the true parameters under various

true values while holding the transitional model parameters unchanged. From the

table, it is obvious that in all three sets of simulations, our method produces esti-

mates centered around the true values. All the 21 true parameters fall within the

95% confidence interval of the estimated values. This simulation result serves as evi-

dence that our method can reasonably recover the underlying utility and transitional

model parameters, even with the presence of time-varying continuous unobserved

state variables.

4 DDCs with Discrete Unobserved Heterogeneity:

A Special Case

After discussing the general case of dynamic discrete choice models with time-varying

and continuous state variables, in this section, we look at a special case that is often

seen in reality: a finite mixture model. We adopt a smilar model setup to the simula-

tion study in Arcidiacono and Miller (2011) and compare our estimation results with

the results in their paper to validate that our method works well for this special case.

We focus on the classic Rust bus engine problem (Rust, 1987) with an unobserved

state variable S∗
t ∈ {1, 2} that is assumed to be discrete and fixed over time. Other

than S∗
t , the state space also contains an observed variable Xt, which is the accu-

mulated mileage of the bus. The model has one binary choice variable, Jt ∈ {0, 1},
which denotes the engine replacement decision.

The flow utility in period t is presented in Equation 4.1. The payoff of keeping

the current engine (Jt = 0), depends on both the unobserved state variable S∗
t and

accumulated mileage Xt of the bus. S
∗
t can be interpreted as the condition of the bus

engine, where S∗
t = 1 denotes a bad condition and S∗

t = 2 denotes a good condition

of the bus engine. Therefore, by directly letting S∗
t enter the utility function, we
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Table 1: Estimation Results for Simulation Study: Continuous Unobserved State
Variables

Parameters True (1) Est. (1) True (2) Est. (2) True (3) Est. (3)

Utility parameters

θ1 0.5 0.494 1 1.072 1 1.067

(0.057) (0.078) (0.080)

θ2 5 4.857 5 4.869 5 4.996

(0.502) (0.531) (0.563)

θ3 2 2.011 2 1.833 3 2.816

(0.458) (0.398) (0.383)

Transitional process parameters

α1 1 0.976 1 0.985 1 0.978

(0.093) (0.096) (0.092)

σ1 1 0.980 1 0.976 1 0.962

(0.090) (0.101) (0.100)

λ1 0.5 0.432 0.5 0.486 0.5 0.488

(0.063) (0.067) (0.067)

σ2 0.2 0.184 0.2 0.218 0.2 0.211

(0.038) (0.039) (0.039)
Note: This table presents the estimation results for the simulation study for the Rust bus engine
model with a time-varying continuous unobserved state variable. We fix λ2 to be 0.8. There are 7
remaining structural parameters to be estimated, where the top panel of the table presents the 3
utility parameters and the bottom panel presents the 4 parameters in the transitional model. The
sample size of the data set is 1000 bus companies × 10 time periods. We test for three sets of
parameters, where the second, fourth, and sixth columns show the true parameters, and the third,
fifth, and last columns present the corresponding mean and standard deviations of the estimation
results in 400 simulations. 5000 iterations are used to estimate the optimal policy function in each
inner loop.

are assuming that S∗
t = 2 can bring more utility to the bus company than S∗

t = 1.

In addition, we assume that maintenance costs increase linearly with accumulated

mileage up to 25 and then flatten out. This is denoted by θ1min{Xt, 25} in the utility

function. For simplicity, we normalize the flow utility to zero when the engine is
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replaced (Jt = 1).

u(Xt, S
∗) =

{
θ0 + θ1min{Xt, 25}+ θ2S

∗
t if Jt = 0

0 if Jt = 1
. (4.1)

Mileage Xt accumulates in increments of 0.125. The accumulation of the mileage

depends on both the decision to replace the engine Jt, and the previous mileage Xt.

When Jt = 0, the probability of Xt+1 conditional on Xt is denoted in Equation 4.2:

f(Xt+1|Xt) =

{
exp(−(Xt+1 −Xt))− exp(−(Xt+1 + 0.125−Xt)) if Xt+1 ≥ Xt

0, otherwise
.

(4.2)

This implies that the mileage transition follows a discrete analog of an exponential

distribution. The reason for using a discrete version of an exponential distribution is

to avoid discretizing any continuous state space variable. When engine replacement

happens (Jt = 1), then Xt+1 = 0 with probability = 1. This is to assume that the

problem has limited dependence, with mileage going to zero with certainty if the

engine is replaced.

In terms of S∗
t , we assume that the initial value of S∗

t = 1 with probability π0:

S∗
1 =

{
1 with probability π0

2, with probability 1− π0

, (4.3)

and S∗
t stays constant over time.

Since this model is a simple special case of the model in Section 3 and it satisfies the

assumptions in Hu and Shum (2012), we can follow similar arguments in Section 3 that

a total of four consecutive periods of observed state variables and choice variables are

needed to non-parametrically identify the conditional distribution fXt,S∗
t |Jt−1,Xt−1,S∗

t−1
.

At the same time, we can also identify the initial condition fXt−2,S∗
t−2,Jt−2 using the

same set of observed state and choice variables.

To adopt our proposed method to estimate this model, the first step is again

to parametrize the choice variable as a function of observed and unobserved state

variables using Equation 3.8. We use the same functional form as in Section 3, since

it makes no difference whether S∗ is discrete or continuous, fixed or time-varying in

our algorithm. Therefore, we use the same parametric function for the policy function

in these two cases. We have three utility parameters (θ0, θ1, θ2) to be estimated using
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the method. Again, we follow Algorithm 1–Algorithm 3 in Section 3 to estimate these

parameters.

In Algorithm 1, the input includes the policy parameter γ∗ = (γ0, γ1, γ2, γ3), the

utility function parameters θ = (θ0, θ1, θ2), and the initial distribution parameter for

S∗
t : ξ = π0. We obtain the initial mileage X1 for the individual directly from the data.

Given all the structural parameters and initial observed state variables, we simulate

the lifetime trajectory for each individual. Firstly, we sample the initial unobserved

state variable Ŝ∗
i1 from the initial distribution in Equation 4.3, given the parameter

π0. We then sample the choice variable Ĵi1 from the policy function in Equation 3.8,

given the first period’s state variables (Xi1, Ŝ
∗
i1) and the policy function parameters

γ∗(θ, ξ). Hence, we have obtained the state and choice variables in the first period:

(Xi1, Ŝ
∗
i1, Ĵi1). We move forward to the second period by using the transitional models

for Xt. Specifically, we can sample X̂i2 using Equation 4.2, given last period’s state

and choice variables (X̂i1, Ĵi1). Notice that the transitional model of X does not

contain any unknown parameters and S∗ stays constant over time. With the observed

and unobserved state variables obtained in the second period, we use Equation 3.8

again to sample Ĵi2, conditional on (X̂i2, Ŝ
∗
i2) and policy function parameters γ∗(θ, ξ).

Using the same strategy, we continue moving forward and sample for (Ŝ∗
it, X̂it, Ĵit) for

the remaining periods until time T . This results in the simulated dataset D̂i =

(Ŝi, X̂ i, Ĵ i), where X̂ i = {X̂i1, X̂i2, ..., X̂iT}, and Ĵ i = {Ĵi1, Ĵi2, ..., ĴiT}.
The inner loop of our algorithm contains the Stochastic Gradient Descent algo-

rithm to optimize the policy function parameters γ as shown in Algorithm 2, and

the outer loop of our algorithm adopts Simulated Method of Moments to estimate

structural parameters θ and ξ following Algorithm 3. Our goal is to find the set

of parameters to minimize the distance between the simulated and data moments.

Therefore, our criterion function is a normalized metric of the distance between κ

and κ̂, where κ stands for the corresponding data moments. Since we do not ob-

serve S∗ in the real data, it is not included in the moments that we try to match.

Only (X̂, Ĵ) will be used in the SMM for estimating the structural parameters. What

remains to be discussed is the choice of moments to match in the SMM to estimate pa-

rameters in Algorithm 3. We target the same moments as used in Section 3, including

regression coefficients, mean, standard deviation, and the correlation moments.

We simulate data for 1000 buses that live for 30 periods and make decisions in

each period. The data is generated by deriving the value functions at each state using
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backward induction, where we solve for the optimal policy for each state by starting

from the last period and moving to the first period. With the optimal policy, we start

each bus in the first period by assuming Xi1 = 0 and sample S∗
i using Equation 4.3

and then forward-simulate the choices until period 30. After getting the lifetime path

for each bus company, we keep the last 20 periods, which results in a final dataset

of 1000× 20 observations. Summarizing the dimensions of this problem, there are 2

choices, 20 periods of data, 2 unobserved states, and 201 possible mileages, resulting in

20×2×201 = 8, 040 number of states. With the generated data, we use the proposed

algorithm in Section 3 to estimate the three structural parameters. When running

Algorithm 2, we set the step size sq = 10−4 and choose the batch size I = 1. When

running Algorithm 3, we target the moments specified in Section 3 in the procedure

of SMM, where we use the standard errors of the moments as the weighting matrix

when calculating the criterion function for minimization.

Table 2 presents the estimation results for the simulation study. There are three

structural parameters in total to estimate. The second column presents the data-

generating parameters for the simulation study. The third column shows estimation

results using Arcidiacono and Miller (2011)’s two-step EM algorithm. The last two

columns present results using our proposed reinforcement learning methods with dif-

ferent iteration numbers for solving the optimal policy function. To match the estima-

tion setting used in Arcidiacono and Miller (2011), we calculate mean and standard

deviations using 50 simulations. The first observation is that all of the three estima-

tion results are performing well in terms of centering around the true values. The two

estimation results from our proposed methods are both very close to the underlying

data-generating parameters, as the two-step EM algorithm does. In terms of compu-

tational time, our proposed method with an iteration number equal to 5000 costs a

relatively shorter time of computation than the two-step EM algorithm. The com-

putational advantage can be enhanced with more complicated models having larger

state space. At the same time, the loss in precision is limited compared to the tradi-

tional method. This result shows that even using iterations of 5000 can lead to robust

estimates, of which the computational burden is reduced, without much sacrifice from

the precision of estimation. Therefore, our method is validated in estimating DDCs

with unobserved heterogeneity. In addition, our method has advantages over Arcidi-

acono and Miller (2011)’s two-step EM algorithm since the two-step EM algorithm

is not suitable for estimating dynamic discrete choice models with continuous unob-
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served state variables. A procedure of discretizing the unobserved state variables is

needed before running their algorithm. In comparison, our method is general enough

to be applied to dynamic models with both discrete and continuous unobserved state

variables, using the same algorithm for these different cases. Therefore, when the un-

derlying true data-generating process features continuous unobserved state variables,

our method is easy to implement in this scenario while maintaining the underlying

continuous structure of the unobserved state variable.

Table 2: Estimation Results for Simulation Study: Discrete Unobserved State Vari-
ables

Parameters DGP Est. (CCP) Est. (RL+II) Est. (RL+II)

5000 20000

Utility parameters

θ0 (intercept) 2 2.0344 1.9606 1.9888

(0.1394) (0.1803) (0.1755)

θ1 (mileage) -0.15 -0.1481 -0.1579 -0.1565

(0.0057) (0.0242) (0.0204)

θ2 (unobs. state) 1 1.0412 1.0055 0.9910

(0.1129) (0.0868) (0.1031)

Time (minutes) 0.6553 0.3983 1.15
Note: Mean and standard deviations for 50 simulations. The observed data consists of 1000 buses
for 20 periods. The Column CCP presents estimation results using Arcidiacono and Miller 2011’s
two-step EM algorithm. The rest columns show the estimation results using RL+Indirect Inference
methods with different iteration numbers for solving the optimal policy function. The initial values
for the estimated parameters are (1.8, -0.17, 0.9, 0.45).

5 Empirical Application: A Dynamic Fertility Model

with Time-Varying Unobserved Pareto Weights

In this section, we run an empirical application with a dynamic model with continuous

and time-varying unobserved state variables. Specifically, we focus on a dynamic

collective fertility model with a partially observed state space, where the couple in

a household j interact using a cooperative framework with limited commitment. In
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each period t, they choose private consumption, working hours, and a binary birth

decision. We assume that before 2016, the couple was allowed to have at most one

child. In 2016, the Two-Child Policy came as a shock for the agents, after which they

could have two children if they wanted. The policy shock will have an impact on both

the utility function through the penalty term for excess birth and the wage process.

The Pareto weight updates in a reduced-form way depending on the relative wage

and therefore is affected by the policy change. This empirical application is based

on the model presented in the first chapter of Yang (2024), where the Pareto weight

updating process differs. Below, we discuss the key aspects of the model.

Preferences Let g ∈ {f,m} denote the wife and the husband in the household.

The couple’s individual flow utility depends on private consumption, leisure, and two

fertility-related terms as shown in the following equation:

u(cgt , l
g
t , nt, ñ

g
t ) = α1lnc

g
t + α2lnl

g
t − α3((nt − ñg

t ))
2 − pt × I(nt > 1), (5.1)

where pt is the penalty for having excess birth that depends on the strictness of the

policy, and the couple suffers a quadratic utility loss if the actual number of children

is not equal to their ideal number of children.

The household flow utility is a sum of the individual utility weighted by the Pareto

weight θt, plus a discrete-choice-specific random preference shock:

U(cft , l
f
t , c

m
t , l

m
t , bt, nt, ñ

f
t , ñ

m
t , θt) = θtu(c

f
t , l

f
t , nt, ñ

f
t ) + (1− θt)u(c

m
t , l

m
t , nt, ñ

m
t ) + ϵbt,

(5.2)

where the idiosyncratic shock ϵbt follows the type I extreme value distribution.

Wage Process and Childcare Costs we assume an exogenous wage process logwit

for men and women, and an exogenous childcare cost structure X t:

logwt = ztβ + ut, ut = vt + ϵt, vt = ρ · vt−1 + ξt

ϵt ∼ N(0, σ2
ϵ ), ξt ∼ N(0, σ2

ξ ).
(5.3)

X t = [τQ(n), (1− τ)Q(n)]. (5.4)

Equation 5.3 shows the observed and unobserved parts of the wage process, where

the unobserved part contains a persistent component that follows an AR(1) process
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and a measurement error. The total childcare cost Q(n) is an increasing function in

the number of children n, and the wife bears τ proportion of the total cost, as shown

in Equation 5.4.

Pareto Weight Updating We assume the Pareto weight for women in the house-

hold is a continuous measure that is unobserved and varies over time. Specifically,

we assume the transition process of the Pareto weights θt is:

π1 = α4(ω̃
f
1 − ω̃m

1 ) + ν1, ν1 ∼ N(0, σ2
1),

πt = α5πt−1 + α6

[
(wf

t − ω̃f
t )− (wm

t − ω̃m
t )

]
+ ν2, ν2 ∼ N(0, σ2

2),

θt = exp(πt)/(1 + exp(πt)),

(5.5)

where (ω̃f
t , ω̃

m
t ) denotes the wife and the husband’s expected wage at time t at the

time of marriage, whereas (wf
t , w

m
t ) is the realized true wage for wife and husband

at time t. The initial Pareto weight in the first period is decided by the difference

in the expected wage at the time of marriage plus a normal error term. The higher

the wife’s expected wage at t = 1 is than the husband’s expected wage, the larger

the wife’s Pareto weight will be in the first period. Therefore, we would expect α4

to be positive. When t ≥ 2, the Pareto weight follows an AR(1) process, equaling

to α5πt−1 plus two shock terms. The first shock term is related to the difference

in the realized wage shocks for the wife and the husband. If the wife has a large

positive shock in her realized wage compared to her husband, her Pareto weight will

increase due to this change. On the other hand, if the husband enjoys a large positive

wage shock compared to the wife, then the wife’s Pareto weight should decrease.

Therefore, we should expect α6 to be positive as well. We use this specification to

capture the impact of the labor market outcomes on the intra-household decision

weights. The final step is to transfer πt into a value between 0 and 1 using a logit

form. The resulting θt is the time-varying Pareto weight for the wife in the dynamic

household bargaining model. To summarize, the dynamic lifecycle model has limited

commitment, featuring a changing Pareto weight that is unobserved in the data.

The Couple’s Problem In each period, the couple chooses private consumption,

working hours, and a binary choice of whether to give birth, subject to budget and
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time constraints. The state and choice variables of the couple are:

Ωt = {Af
t , E

f , Em, tM , tP , S, w
f
t , w

m
t , nt−1, ñ

f
t , ñ

m
t , θt},

qt = {cft , cmt , h
f
t , h

m
t , bt}.

(5.6)

The state space consists of the age of the wife Af
t , the couple’s education levels

{Ef , Em}, the year they get married tM , the age of the wife when the policy change

happened tP , the strictness of the One-Child policy for the province the couple is in

S, wages of the couple {wf
t , w

m
t }, the number of children from last period nt−1, and

the couple’s ideal number of children θt respectively, and the Pareto weight of the

wife within the household. The choice variables include the two private consumption

levels and working hours, as well as the binary fertility choice.

Finally, the joint problem the couple solves subject to budget and time constraints

is:

Vt(Ωt) = max
qt

θtu(c
f
t , l

f
t , nt, ñ

f
t ) + (1− θt)u(c

m
t , l

m
t , nt, ñ

m
t ) + ϵbt + βEt[Vt+1(Ωt+1)]

cft + cmt =
(
wf

t h
f
t + wm

t h
m
t − Ct(nt)

)
· e(n)

lgt + hg
t = h̄g − xg

t (nt), g ∈ {f,m}.
(5.7)

Impact of the policy change The policy relaxation that happened during the

lifetime of the couple has two effects on their dynamic optimization problem. Firstly,

the penalty for having more than one child, denoted as pt in Equation 5.1, is a positive

number before the policy change but becomes zero after the relaxation. Secondly, as

shown in the Pareto weight updating section, women’s intra-household bargaining

power decreases from 0.4 to 0.3 after the policy change. We assume that the policy

comes as a shock to the couple, requiring them to resolve the whole dynamic problem

after the policy relaxation.

We estimate the dataset with 1583 couples and 11 time periods from the age of

20 to the age of 40, where each period contains two years. We pre-estimate the wage

process for men and women and the childcare time and monetary cost functions from

the data. The remaining parameters are (α1, α2, α3, p1, p2, α4, α5, α6, σ1, σ2), where the

first five ones are utility function parameters, while the last five ones are transitional

model parameters for the unobserved Pareto weight. We use the algorithm that is
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similar to Algorithm 1 – Algorithm 3 in Section 3. The algorithm has two main loops,

where the outer loop searches over the parameter space for the 10 parameters to match

the simulated moments with the data moments, and the inner loop iteratively updates

the policy function parameters using the policy gradient method given the current

structural parameters in the outer loop. Using the same identification argument as

in Section 3, we identify the parameters in the equation for the latent Pareto weight

using five periods’ state and choice data. Following the same strategy in Equation

??, we target the regression coefficients where we regress birth decisions on other

variables, gathering five periods as a whole.

Table 3 presents the estimation results for the empirical study using our proposed

reinforcement learning method. We present the initial values we use when estimating

the parameters in the third column and show the resulting estimates we obtained

by using the proposed reinforcement learning method for the parameters in the last

column. The standard errors in the bracket are obtained by bootstrapping the whole

data 400 times. When estimating the parameters, we set the iteration number to

5000 for calculating the optimal policy function. As shown in the table, the couple

derives utility from consumption and leisure at the parameters of 8.2012 and 6.2856.

Meanwhile, the couple will suffer from a utility loss if not reaching their ideal number

of children (5.0005). As for the Pareto weight parameters, it is expected that the

difference in the initial expected wage between the wife and the husband has a positive

impact on women’s weights (0.1660). The difference in the wage shocks between the

wife and the husband has an even larger impact on the Pareto weights (0.1786) than

the initial wage difference. For Pareto weights in later periods, the AR(1) parameter

is estimated to be 0.9371, indicating a strong correlation over time. These results

suggest that assuming the Pareto weight remains constant over time is inaccurate, as

it is influenced by exogenous shocks, such as wage fluctuations in the labor market. As

for the policy parameters, the estimated penalty for excess births is (1.9177, 0.6183),

which aligns with our assumption that provinces with stricter fertility policies impose

higher penalties on couples with excess births. The last row of the table shows that

the model estimation takes 4.98 minutes, indicating that the proposed algorithm can

efficiently handle complex models and provide estimates in a relatively short time.
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6 Conclusion

The development of a unified estimation framework, integrating policy gradient meth-

ods from the reinforcement learning literature with the established indirect infer-

ence approach in economics, presents a significant advancement in the estimation

of dynamic discrete choice models (DDCs). By addressing the computational chal-

lenges associated with high-dimensional state spaces and unobserved heterogeneity,

this framework offers a useful solution applicable across various model specifications.

The proposed method effectively mitigates the computational burden inherent in

traditional estimation approaches, particularly in cases where discretization of con-

tinuous state variables and looping over extensive grid points become impractical.

Through the combination of the simulated method of moments (SMM) and policy

gradient methods, the framework solves for the optimal policy by directly parametriz-

ing the optimal policy as a function of the state variables and applying the policy

gradient theorem to update the policy function parameters. By building a mapping

from the structural parameters to the optimal policy function parameters, this algo-

rithm allows an efficient search over the parameter space in the outer loop by matching

the simulated and true data moments, avoiding the calculation of the value function

over massive state space. Our Monte Carlo study shows that the proposed method

is able to reduce the computational time by a large scale compared to the traditional

dynamic programming backward induction method, especially for dynamic models

with high-dimensional state space.

A noteworthy aspect of this approach is its easy adaptability to models with dif-

ferent kinds of partially observed state variables. Leveraging non-parametric identifi-

cation results in Hu and Shum (2012), our proposed framework demonstrates efficacy

in estimating models with continuous, time-varying unobserved state variables, under

conditions outlined in Hu and Shum (2012). This capability underscores its appli-

cability to a wide range of dynamic decision-making scenarios. In addition, our ap-

proach offers distinct advantages over the existing EM algorithm since ours seamlessly

handles both discrete and continuous unobserved variables. This simplifies implemen-

tation while maintaining the integrity of the underlying continuous structure, making

our approach highly effective across various modeling scenarios.

The empirical validation of the proposed method across various model specifica-

tions further validates its usefulness. From simplified toy models to more complex
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dynamic discrete choice models, the framework consistently yields estimates that

closely approximate true parameter values. Notably, the computational efficiency

of the method is evident, with significantly reduced processing time compared to

traditional dynamic programming methods.

In summary, this paper introduces a robust and novel estimation framework for

dynamic discrete choice models, effectively combining insights from reinforcement

learning with established econometric techniques. By streamlining the estimation

process and enhancing computational efficiency, this framework provides a way for a

more comprehensive and simple way of estimating dynamic discrete choice models.
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Table 3: Estimation Results for Empirical Study: Continuous Unobserved State Vari-
ables

Parameters Symbol Initial Value Est. (RL)

Iter. = 5000

Utility parameters

Utility Function parameters

Utility from ln(c) α1 7.6 8.2012

(0.4699)

Utility from ln(l) α2 5.4 6.2856

(0.9487)

Dis-utility from not ideal num. of child α3 4.5 5.0005

(1.0421)

Pareto weight parameters

First period in initial wage diff. α4 0.1355 0.1660

(0.0348)

First period standard deviation σ1 0.5 0.7022

(0.1560)

Later periods AR(1) parameter α5 0.9 0.9371

(0.1329)

Later periods wage shock diff. α6 0.1770 0.1786

(0.0140)

Later periods standard deviation σ2 0.5 0.7341

(0.1464)

Policy parameters

Penalty on excess birth in strict provinces p1 1.2 1.9177

(0.2376)

Penalty on excess birth in loose provinces p2 0.5 0.6183

(0.1798)

Time (minutes) 4.98
Note: Standard errors obtained using Bootstrap for 400 times. The observed data consists of 1583
couples for 11 periods. The column Initial Value presents initial values for each parameter
estimation. The rest of the columns show the estimation results using RL + Indirect Inference
methods with 5000 iterations. The final row shows the time needed for estimating the model. A
total of 100 moments are used for estimation.

34



References

Aguirregabiria, V. and Mira, P. (2007). Sequential estimation of dynamic discrete

games. Econometrica, 75(1):1–53.

Arcidiacono, P. and Jones, J. B. (2003). Finite mixture distributions, sequential

likelihood and the em algorithm. Econometrica, 71(3):933–946.

Arcidiacono, P. and Miller, R. A. (2011). Conditional choice probability estimation

of dynamic discrete choice models with unobserved heterogeneity. Econometrica,

79(6):1823–1867.

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J., et al.

(2018). An introduction to deep reinforcement learning. Foundations and Trends®
in Machine Learning, 11(3-4):219–354.

Gallant, A. R., Hong, H., and Khwaja, A. (2018). A bayesian approach to estimation

of dynamic models with small and large number of heterogeneous players and latent

serially correlated states. Journal of econometrics, 203(1):19–32.

Gourieroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. Journal of

applied econometrics, 8(S1):S85–S118.

Hong, M., Qi, Z., and Xu, Y. (2023). A policy gradient method for confounded

pomdps. arXiv preprint arXiv:2305.17083.

Hotz, V. J. and Miller, R. A. (1993). Conditional choice probabilities and the esti-

mation of dynamic models. The Review of Economic Studies, 60(3):497–529.

Hotz, V. J., Miller, R. A., Sanders, S., and Smith, J. (1994). A simulation estimator

for dynamic models of discrete choice. The Review of Economic Studies, 61(2):265–

289.

Hu, Y. and Shum, M. (2012). Nonparametric identification of dynamic models with

unobserved state variables. Journal of Econometrics, 171(1):32–44.

Hwang, Y. (2024). Identification and estimation of a dynamic discrete choice model

with time-varying unobserved heterogeneity using proxies. Available at SSRN

3535098.

35



Jin, W., Ni, Y., O’halloran, J., Spence, A. B., Rubin, L. H., and Xu, Y. (2023). A

bayesian decision framework for optimizing sequential combination antiretroviral

therapy in people with hiv. Annals of Applied Statistics, 17(4):3035–3055.

Kakade, S. M. (2001). A natural policy gradient. Advances in neural information

processing systems, 14.

Kasahara, H. and Shimotsu, K. (2009). Nonparametric identification of finite mixture

models of dynamic discrete choices. Econometrica, 77(1):135–175.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. In

Reinforcement learning: State-of-the-art, pages 45–73. Springer.

Li, G., Li, S., Li, S., and Qu, X. (2022). Continuous decision-making for autonomous

driving at intersections using deep deterministic policy gradient. IET Intelligent

Transport Systems, 16(12):1669–1681.

Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2219–2225. IEEE.

Rust, J. (1987). Optimal replacement of gmc bus engines: An empirical model of

harold zurcher. Econometrica: Journal of the Econometric Society, pages 999–

1033.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

Deterministic policy gradient algorithms. In International conference on machine

learning, pages 387–395. Pmlr.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradi-

ent methods for reinforcement learning with function approximation. Advances in

neural information processing systems, 12.

Yang, F. (2024). Essays on China’s Population Policies: Impacts and Methodological

Innovations. PhD thesis, Johns Hopkins University.

36



Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence generative

adversarial nets with policy gradient. In Proceedings of the AAAI conference on

artificial intelligence, volume 31.

37



A RL + Indirect Inference Algorithm for Estimat-

ing DDCs with Fully Observed State Space

We discuss our proposed method combining reinforcement learning and indirect infer-

ence method for estimating DDCs with fully observed state space through Algorithm

A.1, A.2, and A.3 below.

Algorithm A.1 discusses the procedure of forward simulation to obtain an agent’s

lifetime trajectory, given the optimal policy function parameters and her initial state

variables. For the initial time period, we can direct sample the agent’s action in this

period using the policy function in Equation 2.1, since we already know the policy

parameters γ∗(θ). After getting Ĵi1, we can move forward to the second period by

sampling X̂ it using the transitional model of the state variables, conditional on X it−1

and Ĵit−1. Similar to the first period, we can then simulate the choice variable Ĵit

by using Equation 2.1 again. Looping over the total T periods results in a complete

lifetime trajectory D̂i for individual i, where D̂i contains the state and the choice

variables.

Algorithm A.2 describes the procedure for conducting stochastic gradient descent

for optimizing the policy function parameter γ. This serves as the inner loop of our

whole algorithm, where the structural parameter θ is given in the outer loop, and the

inner loop is updating γ to find the optimal policy function conditional on the given

structural parameters. We start with some initial values γ0 for the policy parameters,

together with structural parameters θ and the initial state variable {X11, X21, ..., XI1}
from the batch data DI as input. Meanwhile, we choose step size sq for updating the

policy parameters and the batch size I, using which we randomly sample from the

whole dataset to get the batch data DI . After initializing γ, we start the two loops in

the algorithm, where the outer loop contains the iteration of the Stochastic Gradient

Descent algorithm until the convergence of the policy function parameters, and in the

inner loop, we sample the lifetime trajectory D̂i for each couple i following the steps in

Algorithm A.1. Using the simulated lifetime path, we can then calculate the lifetime

value {Vi(γq)} and the policy gradient ∇γ log(
∏

t>=1 π(Ĵit|X̂it, t;γq)). Notice that

these objects depend on γq, which is the policy parameter in the current outer loop

iteration. After obtaining the lifetime values and policy gradients for each individual

in the batch data, the inner loop ends and we begin to calculate the average of the

lifetime values and policy gradients across all individuals in order to calculate the
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gradient of the value function.

Using the average lifetime value and the average policy gradient, we can proceed

to get ∇γV (γq), adopting the policy gradient theorem. Finally, in each of the outer

loop iterations, we update the policy function parameter γq+1 by adding the policy

gradient normalized by the step size onto the previous γq. We repeat this process until

γ converges. The final output of the algorithm contains the parameters we obtained

in the final iteration of the outer loop, which is defined as the optimal policy function

parameter, conditional on the structural parameters θ.

Finally, Algorithm A.3 shows the outer loop of the whole algorithm that adopts

indirect inference (Simulated Method of Moments) to estimate structural parameters

θ. The input of the algorithm includes initial values θ0 for the parameters to estimate,

the initial state variable Xi1 from the data for each couple i, and the data moments

κ we plan to target for estimating the deep parameters. The loop k = 1, ..., K

stands for the iterations of updating the structural parameters by minimizing the

criterion function value. In each iteration, we calculate the optimal policy function

parameters γ(θk) following the procedure in Algorithm A.2, given the parameter θk

in the current iteration. Using the policy function parameters, we then simulate the

lifetime trajectory D̂i for each couple i in the data, following Algorithm A.1. Having

obtained the simulated data path for all individuals, we are able to calculate the

simulated aggregate moments κ̂ for these targeted moments. Our goal is to find the

set of parameters to minimize the distance between the simulated moments and real

data moments. Hence, our criterion function is a normalized metric of the distance

between κ and κ̂, where κ stands for the corresponding data moments.

Combining Algorithm A.1–Algorithm A.3, our proposed method is able to update

the inner and outer loops together, which results in both a mapping from the struc-

tural parameter to the optimal policy function parameter and the optimal structural

parameter to minimize the distance between the simulated and true data moments.

Therefore, it allows a convenient and time-saving estimation of the dynamic discrete

choice models.
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Algorithm A.1 Forward Simulation for Obtaining Individual i’s Lifetime Trajectory

1: Input: policy parameters γ(θ), utility parameters θ, initial state X i1 for indi-
vidual i

2: Sample Ĵi1 using Equation 2.1 , given γ(θ) and X i1

3: for t = 2, . . . , T do
4: Sample X̂ it using fXt|Xt−1,Jt−1

5: Sample Ĵit Equation 2.1 , conditional on γ(θ) and X̂ it

6: end for
7: Obtain the final dataset D̂i = (X̂ i, Ĵ i)

8: Output: lifetime trajectory D̂i for individual i

Algorithm A.2 Stochastic Gradient Descent for optimizing γ

1: Input: initial value γ0 for the policy parameters γ, deep parameters θ, step size
sq, batch size I, initial state {X11, X21, ..., XI1} from the batch data DI .

2: Initialize: γ1 ← γ0

3: for q = 1, . . . , Q do
4: for i = 1, 2, . . . , I do
5: Obtain D̂i = (X̂ i, Ĵ i) following the procedure in Algorithm A.1

6: Calculate the lifetime value Vi(γq) and gradient ∇γ log(
∏

t>=1 π(Ĵit|X̂it, t;γ))
7: end for
8: Average the lifetime value and gradient across individuals:

V (γq) :=
1
I

∑I
i=1 Vi(γq); ∇γ log(

∏
t>=1 π(Ĵt|X̂t, t;γ)) :=

1
I

∑I
i=1∇γ log(

∏
t>=1 π(Ĵit|X̂it, t;γ))

9: ∇γV (γq)← V (γq)∇γ log(
∏

t>=1 π(Ĵt|X̂t, t;γ))
10: γq+1 ← γq + sq∇γV (γq)
11: end for
12: Output: γ∗ = γq∗

Algorithm A.3 Indirect Inference for estimating θ

1: Input: initial value θ0, initial state {X11, X21, ..., XN1} from data D; data mo-
ments κ.

2: Initialize: θ1 ← θ0

3: for k = 1, . . . , K do
4: Calculate γ∗(θk) following Algorithm A.2
5: for i = 1, 2, . . . , N do

Obtain D̂i = (X̂ i, Ĵ i) using γ∗(θk) following Algorithm A.1
6: end for
7: Calculate simulated moments κ̂ using (X̂, Ĵ) according to targeted moments
8: θk+1 ← min Dis(κ, κ̂)
9: end for
10: Output: θ∗ = θk∗
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B Proof for the Model Satisfying the Identifica-

tion Assumptions

In this section, we show that the model in the Monte Carlo simulation in Section

3.1.1 satisfies the four assumptions required by Hu and Shum (2012) to obtain the

identification result. Assumption 2 is satisfied for this model because the law of

motions has a Markov structure, where both Xt and S∗
t do not depend on historical

values if already conditional on Xt−1 and S∗
t−1. Limited feedback is also satisfied since

we assume in our model that S∗
t realizes before Xt, and Xt depends on S∗

t in period

t. Therefore, conditional on S∗
t , there is no additional effect from S∗

t−1 on Xt. In

summary, the two conditions in this assumption are satisfied by our model.

Since we are focusing on the stationary case in the model, we label the four

observed periods of data as t = 1, 2, 3, 4 without loss of generosity. As long as we

can establish the injectivity of the operators LX1,w2,w3,X4 , LX4|w3,S∗
3 ,
and LX1,w2,X3 , it

is sufficient to prove that Assumption 2 holds in our model. We only need to have

injectivity for LX4|w3,S∗
4
, Dw3|w2,S∗

3
, LS∗

3 |w2,S∗
2
and LS∗

2 ,w2,X1 .

The diagonal operator Dw3|w2,S∗
3
has the kernel function:

fw3|w2,S∗
3
= fx3,j3|x2,j2,S∗

3

= fj3|x2,j2,x3,S∗
3
fx3|x2,j2,S∗

3

= fj3|x3,S∗
3
fx3|x2,j2,S∗

3
.

(B.1)

It is obvious that fj3|x3,S∗
3
is nonzero along its support and fx3|x2,j2,S∗

3
is nonzero along

its support as well. Therefore, we have that Dw3|w2,S∗
3
is injective.

From Equation 3.3, we know that X4 is a convolution of S∗
4 , for every x3 when

j3 = 0. This is because from Equation 3.3, we have log
[
X4 − X3

]
− log(λ3X3) =

λ2S
∗
4 + η4. Therefore, applying the result in the convolution literature, we have that

LX4|w3,S∗
4
is injective. Similarly, Equation 3.2 implies that S∗

3 is a convolution of S∗
2

for fixed w2, since S∗
3 = λ1S

∗
2 + ν3. Therefore, we can also reach the conclusion that

LS∗
3 |w2,S∗

2
is injective according to the findings in the convolution literature.

Our model has the special case that the condition of the bus S∗
t evolves exogenously

and does not involve the choice variable Jt. Together with the assumption that the

initial values of the state variables (S∗
1 , X1) are independently distributed, these two

conditions guarantee the injectivity of LS∗
2 ,w2,X1 .

Having proved that the four linear operators are injective, we have shown that
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Assumption 2 is satisfied.

As shown in Equation B.1, the density fW3|W2,X∗
3
factors as follows:

fW3|W2,X∗
3
= fJ3|X3,S∗

3
fX3|X2,J2,S∗

3
. (B.2)

Plug Equation B.2 into Equation 3.1, we have

k(w3, w3, w2, w2, s
∗
3)

=
fJ3|X3,S∗

3
(j3|x3, s

∗
3)fX3|X2,J2,S∗

3
(x3|x2, j2, s

∗
3) · fJ3|X3,S∗

3
(j3|x3, s

∗
3)fX3|X2,J2,S∗

3
(x3|x2, j2, s

∗
3)

fJ3|X3,S∗
3
(j3|x3, s∗3)fX3|X2,J2,S∗

3
(x3|x2, j2, s∗3) · fJ3|X3,S∗

3
(j3|x3, s∗3)fX3|X2,J2,S∗

3
(x3|x2, j2, s∗3)

=
fX3|X2,J2,S∗

3
(x3|x2, j2, s

∗
3) · fX3|X2,J2,S∗

3
(x3|x2, j2, s

∗
3)

fX3|X2,J2,S∗
3
(x3|x2, j2, s∗3) · fX3|X2,J2,S∗

3
(x3|x2, j2, s∗3)

.

(B.3)

Therefore, to have unique eigenvalues, we need to have fJ3|X3,S∗
3
> 0 for all X3 since

this term gets canceled out from the numerator and denominator of the eigenvalues.

We have that fJ3|X3,S∗
3
> 0 is true due to the assumption that the discrete-choice-

specific error term ϵjt in the utility function (Equation 3.6) follows the type I extreme

value distribution.

From Equation 3.3, we have

fX3|X2,J2,S∗
3
(x3|x2, 0, s

∗
3) =

1

x3 − x2

exp
[
log

x3 − x2

λ3x2

− λ2s
∗
3 − e

log
x3−x2
λ3x2

−λ2s∗3
]

=
exp[−λ2s

∗
3]

λ3x2

exp[−e−λ2s∗3
x3 − x2

λ3x2

]

(B.4)

Plugging Equation B.4 into Equation B.3, we have

k(w3, w3, w2, w2, s
∗
3) = exp

(
− e−λ2s∗3 · −(x3 − x3)(x2 − x2)

λ3x2x2

)
, when j3 = 0.

We set λ2 = 0.8, λ3 = 0.2. Given these parameters and the functional form of the

eigenvalue, it is easy to show that 0 < k(w3, w3, w2, w2, s
∗
3) < C for some finite C, and

k(w3, w3, w2, w2, s
∗
3) ̸= k(w3, w3, w2, w2, s̃

∗
3) since k(w3, w3, w2, w2, s

∗
3) is monotone in

s∗3. Therefore, we have shown that Assumption 3 is satisfied.

We set Vt = Xt for all t. From Equation 3.3, we have

log
[X4 − x3

λ3x3

]
= η4 + λ2s

∗
4.
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Therefore, we have

E
[
log

X4 − x3

λ3x3

|x3, j3, s
∗
3

]
= E(η4) + λ2E[S∗

4 |s∗3] (B.5)

Plugging Equation 3.2 into Equation B.5, we get

E
[
log

X4 − x3

λ3x3

|x3, j3, s
∗
3

]
= E(η4) + λ2λ1s

∗
3, (B.6)

which is monotonic in s∗3. Therefore, we can set G to be

G(x3, j3, s
∗
3) = E

[
log

X4 − x3

λ3x3

|x3, j3, s
∗
3

]
,

and we normalize s∗3 = E
[
logX4−x3

λ3x3
|x3, j3, s

∗
3

]
. Therefore, we have shown that As-

sumption 4 is satisfied by our model.
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