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Abstract

In this paper, we derive partially identified sets for various nonlinear models

with misclassification errors using sup-norm deviations to relax the condi-

tional independence assumptions required for point identification. We ex-

press these deviations as a perturbation matrix between an observable ma-

trix and an unobserved eigenvalue-eigenvector decomposition. The pertur-

bation theory of the eigenvalues of a diagonalizable matrix then provides

bounds indexed by the upper bound of misreporting probabilities and devia-

tions. As the deviations approach zero, the nonparametric partial identifica-

tion of the nonlinear models with misclassification error becomes the point

identification. We propose a systematic sensitivity analysis to construct the

identified sets incorporating more practical information to determine the

upper bounds of deviations. Our simulations imply that the identified sets

with the recommended upper bounds can cover the true parameters of in-

terest, and conclusions may apply locally rather than globally. Then we

illustrate the partial identification approach by investigating the impact of

misreported schooling on wages.
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1. Introduction

This paper focuses on nonparametric nonlinear models where a discrete covariate X∗ is mea-

sured with an error as X , which is also discrete. The problem of nonlinear models with misclas-

sified covariates has been analyzed in a few studies, including Kane et al. (1999), Walter and

Hui (1980), Ramalho (2002), Bollinger (1996), and Aigner (1973). Under some ideal conditions,

one can nonparametrically point-identify models with misclassification errors. Mahajan (2006)

studies the problem of nonparametrically identifying and estimating regression models with

a misclassified binary regressor using a binary instrument. Lewbel (2007) uses instruments

to solve misclassification in binary treatment effect models. Hu (2008) proposes using instru-

mental variables to identify and estimate nonlinear models with misclassification errors in a

general discrete explanatory variable. Hu (2008) formalizes the identification problems using

matrix notation for the general discrete case, fully exploiting an analogy between a discrete

repeated measurement model and matrix diagonalization. Chen et al. (2009) also adopt the

matrix notation to identify the nonparametric regression model containing misclassified dis-

crete regressor without relying on any additional variable (such as instruments). Their result

relies on the monotonicity of the regression function and a testable rank condition.

Point identification of econometric models often relies on conditional independence assump-

tions, including for models with misclassification errors. The type of conditional independence

assumed has important implications for whether we can achieve point identification. This

paper addresses the identification problem of various nonlinear models with misclassification

errors by gradually relaxing the baseline conditional independence assumptions underlying

point identification.

We adopt Masten and Poirier (2018)’s approach of using sup-norm deviations to relax con-

ditional independence assumptions into conditional partial independence assumptions. The

sup-norm difference represents nonparametric deviations from conditional independence. We

express deviations as a perturbation matrix relating an observable matrix to an unobserved

eigenvalue-eigenvector decomposition using the matrix diagonalization technique in Hu (2008)

and then apply Bauer-Fike perturbation theory of the eigenvalue of a diagonalizable matrix

to analyze identification. We obtain identified sets for nonlinear models with misclassification

errors, including conditional density and regression functions. The width of the identified sets

depends on three factors: the condition number of the matrix of misclassification probabilities,

the matrix norms of the observed data, and the sup-norm of the deviations. Thus, we can index

the identified sets by the upper bound of misreporting probabilities and the deviations for an
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observed sample.

Since a reasonable value for the upper bound of misreporting probabilities may come from

validation studies or economic theories, we regard this value as prior information and incor-

porate it as baseline information into constructing the identified sets. Given a known value

for the upper bound of misreporting probabilities, we propose a systematic sensitivity analysis

with two steps: (1) Impose the identification assumptions on the sensitivity parameter and the

restrictions from probability theory, such as density restrictions. (2) Specify additional desired

conclusions to conduct breakdown frontier analysis. We choose the upper bound for the devi-

ation or sensitivity parameter as the minimum of the two upper bounds from these two steps

to have strong identifying power. Our simulations imply that the outer identified set with the

recommended upper bound covers the true parameters of interest. The partial identification

results rely on the unique solution of a matrix diagonalization technique, which requires: (1)

A distinct eigenvalue restriction on the latent models; and (2) A higher chance of reporting

truthfully.

We conduct simulations to compare partial identification using the proposed approach to

point identification under varying deviations from conditional independence. The nonparamet-

ric bounds show moderate values and cover the truth in most designs, recovering identifying

power lost to deviations and giving reasonably accurate estimates for observed data-however,

inferences far beyond that risk misleading findings. The empirical illustration explores the

sensitivity of the conditional mean log wage to deviations from conditional independence, given

the true schooling levels. The identified sets strictly contain the 95% CI of point estimates,

showing the latter underestimates wage differences by education level due to assuming condi-

tional independence. By systematically exploring sensitivity to deviations from model assump-

tions, we gain insight into where conclusions could be drawn from observed data. The proposed

approach provides a nonparametric characterization of neighborhoods yielding inferences rea-

sonably robust to failures of conditional independence assumptions. However, the approach

can not achieve the global outer identified set, limiting generalizability.

This paper examines conditions under which nonparametric partial identification of nonlin-

ear models with misclassification error approaches point identification as sup-norm deviations

from conditional independence decrease toward zero. As deviations shrink, partial identifica-

tion increasingly approximates point identification. Hu (2008) imposed common restrictions on

misclassification probabilities to point-identify model parameters of interest. However, some

data may contain further information beyond his assumptions, which cannot be readily used

within a point-identified framework. Because the identified sets in our proposed approach are

3



indexed by upper bounds on misreporting probabilities and deviations, we can directly incor-

porate any prior information about misreporting patterns into the analysis. By systematically

exploring sensitivity over a range of plausible bounds, we gain insight into where inferences

may reasonably apply even if the overall outer identified set is unrecoverable.

Our bounding approach relates to and extends the existing set identification literature (e.g.

Manski (2003), Imbens and Manski (2004), Chernozhukov et al. (2007), Magnac and Mau-

rin (2008), Bontemps et al. (2012), Chandrasekhar et al. (2012), Chesher (2013), Masten and

Poirier (2016), Masten and Poirier (2018), Chen et al. (2018), Chen et al. (2021)). Masten

and Poirier (2016) consider three classes of weaker exogeneity assumptions deviating from full

statistical independence. They study identification in nonseparable models under these three

different classes of deviations. The first deviation is based on quantile independence, while the

second and third are based on a distance-from-independence metric using either a conditional

CDF or propensity score. Masten and Poirier (2018) derive identified sets for various treat-

ment effect parameters using the sup-norm of the deviations from conditional independence

of treatment assignment from potential outcomes. Their work develops fully nonparametric

methods for sensitivity analysis using only one sensitivity parameter. In contrast, we can con-

duct a breakdown frontier analysis because our identification sets are represented with a two-

dimensional index. The literature on the breakdown frontier analysis goes back to Horowitz

and Manski (1995), in which they study a measurement error model and index identification

sets by an upper bound of misreporting probabilities. The extensive literature on this includes

Imbens (2003); Manski (2009); Stoye (2010); Gundersen et al. (2012); Kline and Santos (2013);

Manski and Pepper (2018); and Masten and Poirier (2020). Kline and Santos (2013) study a

class of relaxations of the missing-at-random assumption in a missing data model, index the

magnitude of the relaxation, define an identification breakdown point and develop a weighted

bootstrap procedure to conduct inference on the breakdown point. Masten and Poirier (2020)

study a potential outcomes model with a binary treatment where a two-dimensional index pa-

rameterizes relaxations of baseline assumptions. They derive the breakdown frontier for two

kinds of assumptions for a specific conclusion and propose an inference on the multidimensional

breakdown frontier. We apply Masten and Poirier (2020)’s breakdown frontier analysis to se-

lect the upper bounds of deviations and construct identified sets. An economic study similar in

spirit to our own is Aguiar and Serrano (2017) in which they propose an approach to measure

departures from rationality and classify departures corresponding to three anomalies: inatten-

tiveness to changes in purchasing power, money illusion, and violations of the compensated law

of demand.
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The source of set identification problems can often be traced to imposing prior restrictions

on measurement errors. Examples of such bounding techniques in discrete latent variable

models that our approach builds upon include Klepper (1988); Horowitz and Manski (1995);

Black et al. (2000); Molinari (2008); and Adams (2016). Horowitz and Manski (1995) introduce

fully nonparametric methods to obtain informative bounds on the distribution of a contami-

nated random variable, assuming upper bounds on probabilities of misreport. Molinari (2008)

introduces the direct misclassification approach based on the matrix of misclassification prob-

abilities. This approach incorporates any prior information into the analysis through sets of

restrictions on the misclassification probabilities matrix to derive identification regions.

The work of this paper is closely related to Molinari (2003, 2008), which also employs ma-

trix notation to analyze the misclassification of discrete explanatory variables. Molinari (2003,

2008) shows that when the probability of correct report exceeds one-half, bounds on the mean

regression identification region can be estimated. The bounding method differs from the pro-

posed approach because the source of our set identification comes from the continuous relax-

ation of the conditional independence assumptions, and we show how partial identification

becomes point identification.

Section 2 presents partial identification results for misclassification models, including con-

ditional density functions and regression functions under sup-norm deviations. Section 3 de-

velops
p

N−consistent nonparametric estimators for the lower bound of the identification sets

in Section 2. Section 4 proposes a systematic sensitivity analysis and describes a two-step se-

lection procedure to calculate the upper bounds of the sensitivity parameter for identification

regions. Section 5 illustrates identification regions and the systematic sensitivity analysis in

two numerical examples. Section 6 empirically illustrates the estimators for bounds of the

mean log wage across three education categories. Section 7 concludes. The appendix contains

the proofs for all propositions.

2. Partial Identification of Misclassification Models

2.1. Partial Identification of the Latent Density

Let Y represent an observed outcome variable. We define X∗ as an unobserved latent categor-

ical variable subject to misclassification. Assume X∗ takes on the values {1,2,3, ...,K} for some

known positive integer K and denote the support of X∗ as K = {1, ...,K}. Define the conditional
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density of the observed outcome Y on X∗ as

fY |X∗(y|x∗).(1)

We directly observe only the proxy measure X , which provides imperfect information on the la-

tent variable X∗ subject to misclassification error. The misclassification error may be correlated

with X∗ and assume there exists an instrumental variable Z. Without loss of generality, we as-

sume X , Z, and X∗ have the same support K = {1, ...,K}.1 We have {Y , X , Z} for an observable

i.i.d. sample. Lowercase letters will be used to describe particular values of the corresponding

uppercase random variables. To keep things simple, we are not including any extra accurately

measured regressors W in the conditioning set. However, our proposed method can easily be

expanded to take W into account by conditioning on its values. Hu (2008) demonstrates that

the conditional density fY |X∗ is nonparametrically identified under following assumption:

Condition 2.1. (Conditional Independence) The variable (Y , X , Z, X∗) satisfies a conditional

independence assumption as follows

fY X Z|X∗
(
Y , X , Z|X∗)= fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)

,(2)

or

Y ⊥ X ⊥ Z
∣∣∣X∗(3)

We relax the conditional independence assumption rather than imposing it directly. Specif-

ically, we weaken this assumption in the following way:

Assumption 2.1. (Conditional Partial Independence) We define the perturbation or deviation

term from the conditional independence in Equation (2), denoted as d0(Y , X , Z, X∗), as follows:

d0(Y , X , Z, X∗)≡ fY X Z|X∗
(
Y , X , Z|X∗)− fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)

.(4)

There exists a constant h ≥ 0 such that |d0(Y , X , Z, X∗)| ≤ h and
∫

y |d0(y, X , Z, X∗)|dy≤ h.

1There are two measurements X and Z of the latent variable X∗ and as discussed in Hu (2017), one of the
requirements for them is that the cardinality of the supports of X and Z are greater than or equal to that of the
latent variable X∗. We rule out the case that X or Z takes fewer values than X∗. When X or Z is continuous,
we can discretize X or Z to generate new measurements taking the same numbers of possible values as the latent
variable X∗. When X or Z is discrete, and their numbers of possible values are more than X∗, we can regroup them
to share the same number of the support of the latent variable X∗.
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If Y is discrete, the condition
∫

y |d0(y, X , Z, X∗)|d y≤ h implies |d0(Y , X , Z, X∗)| ≤ h. Condi-

tional partial independence allows the conditional joint probability fY X Z|X∗ (Y , X , Z|X∗) to de-

viate from the product of the conditional marginal probabilities fY |X∗ (Y |X∗), fX |X∗ (X |X∗), and

fZ|X∗ (Z|X∗). Note that
∫

y d0(y, X , Z, X∗)d y= fX ,Z|X∗ (X , Z|X∗)− fX |X∗ (X |X∗) fZ|X∗ (Z|X∗). This

term
∫

y d0(y, X , Z, X∗)d y represents the deviation term from the conditional independence of

X and Z given X∗ in which the conditional independence also holds under the conditional inde-

pendence in Equation (2). We refer to the parameter h as the sensitivity parameter. When this

sensitivity parameter h is zero, conditional partial independence reduces to the conditional in-

dependence condition in Condition 2.1. When the value of the sensitivity parameter h is greater

than fY |X∗ (Y |X∗) fX |X∗ (X |X∗) fZ|X∗ (Z|X∗), and 1− fY |X∗ (Y |X∗) fX |X∗ (X |X∗) fZ|X∗ (Z|X∗), the

condition |d0(Y , X , Z, X∗)| ≤ h does not restrict the conditional probability fY X Z|X∗ (Y , X , Z|X∗)

in any way.2 As discussed by Masten and Poirier (2018), we interpret a binding value of our

sensitivity parameter h as imposing a restriction on latent structures or selection on unobserv-

ables, similar to their approach.

Consider the perturbation term from the conditional independence in Assumption 2.1 as

d0(Y , X , Z, X∗)=
(
fY |X ZX∗

(
Y |X , Z, X∗)

fX |ZX∗
(
X |Z, X∗)

fZ|X∗
(
Z|X∗)

(5)

− fY |X ZX∗
(
Y |X , Z, X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗))

+
(
fY |X ZX∗

(
Y |X , Z, X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)

− fY |X∗
(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗))

= fY |X ZX∗
(
Y |X , Z, X∗)

( fX |ZX∗
(
X |Z, X∗)− fX |X∗

(
X |X∗)

) fZ|X∗
(
Z|X∗)

+ ( fY |X ZX∗
(
Y |X , Z, X∗)− fY |X∗

(
Y |X∗)

) fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)

.

The conditions (i) fY |X ZX∗ (Y |X , Z, X∗) = fY |X∗ (Y |X∗) and (ii) fX |ZX∗ (X |Z, X∗) = fX |X∗ (X |X∗)

imply the zero deviation and the conditional independence holds. The condition (i) implies that

the measurement error is nondifferential, that is, X − X∗ does not affect the distribution of

the dependent variable Y conditional on the true value X∗. Relaxing the restriction allows

a possible correlation between the measurement error X − X∗ and the dependent variable Y .

As for the condition (ii), it implies that the misclassification error in X is independent of the

instrumental variable Z conditional on X∗. When the instrument Z is a repeated measurement

2The condition
∣∣d0(Y , X , Z, X∗)

∣∣ ≤ h implies that −h < fY X Z|X∗
(
Y , X , Z|X∗) −

fY |X∗
(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)< h which is equivalent to −h+ fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)<

fY X Z|X∗
(
Y , X , Z|X∗) < h + fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗)

. When h takes these values,
−h + fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗) < 0 and h + fY |X∗

(
Y |X∗)

fX |X∗
(
X |X∗)

fZ|X∗
(
Z|X∗) > 1, the

restriction from h is not binding for fY X Z|X∗
(
Y , X , Z|X∗)

.
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of X∗, relaxing the restriction allows a possible correlation between the measurement error X−
X∗ and the measurement error Z−X∗. Thus, we can decompose the perturbation term into two

components: (1) Deviation due to differential measurement error (relaxing condition (i)), and (2)

Deviation due to dependent misclassification error (relaxing condition (ii)). Relaxing the two

conditions allows modeling differential measurement error and dependent misclassification,

which are important relaxations for practical applications.

Next, we introduce matrix notations to express the deviations as a perturbation matrix

relating an observable matrix to an unobserved eigenvalue-eigenvector decomposition. Multi-

plying Equation (4) by fX∗ (x∗) and summing over the support of X∗ yields the following.

∑
x∗

d0(Y , X , Z, x∗) fX∗
(
x∗

)= fY X Z (Y , X , Z)−
∑
x∗

fY |X∗
(
Y |X∗)

fX |X∗
(
X |X∗)

f
(
Z, x∗

)
.(6)

Define d1(Y , X , Z) = ∑
x∗

d0(Y , X , Z, x∗) fX∗ (x∗) and for each y, define the K ×K matrix Md(y) as

follows

Md(y)=


d1(y,1,1) · · · d1(y,K ,1)

...

d1(y,1,K) · · · d1(y,K ,K)


K×K

.(7)

Because |d1(Y , X , Z)| ≤∑
x∗
|d0(Y , X , Z, x∗)| fX∗ (x∗)≤ h by Assumption 2.1, every entry of the ma-

trix Md(y) is less than or equal to h.

Given y, define the following matrices:

MyX Z =


fY X Z(y,1,1) · · · fY X Z(y,K ,1)

... · · · ...

fY X Z(y,1,K) · · · fY X Z(y,K ,K)


K×K

,(8)

MX∗Z =


fX∗Z(1,1) · · · fX∗Z(K ,1)

... · · · ...

fX∗Z(1,K) · · · fX∗Z(K ,K)


K×K

,(9)

D y|X∗ =


fY |X∗(y|1) 0 · · · 0

... fY |X∗(y|k)
... 0

0 · · · 0 fY |X∗(y|K)


K×K

,(10)
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MX |X∗ =


fX |X∗(1|1) · · · fX |X∗(K |1)

... · · · ...

fX |X∗(1|K) · · · fX |X∗(K |K)


K×K

,(11)

MX Z =


fX Z(1,1) · · · fX Z(K ,1)

... · · · ...

fX Z(1,K) · · · fX Z(K ,K)


K×K

.(12)

With the above notation, given each y we can write out Equation (6) by the matrix expression

Md(y)= MyX Z −MX∗ZD y|X∗ MX |X∗ .(13)

Summing over all y, we have

Md = MX Z −MX∗Z MX |X∗ ,(14)

where Md = ∫
y Md(y)d y. The (i, j) entry of the matrix Md is

∫
y d1(y, i, j)d y which is bounded by

|∫y
∑
x∗

d0(y, i, j, x∗) fX∗ (x∗)d y| ≤∑
x∗

∫
y |d0(y, i, j, x∗)|d yfX∗ (x∗)≤ h by Assumption 2.1. Thus, every

matrix entry Md is less than or equal to h.

Rewrite Equations (13) and (14) as

MX∗ZD y|X∗ MX |X∗ = MyX Z −Md(y),(15)

MX∗Z MX |X∗ = MX Z −Md.(16)

To relate the magnitude of deviation matrices to our sensitivity parameter h, we introduce and

define a matrix norm.3 The set of all K ×K square matrices over R is denoted by MK . Denote

∥x∥∞ = max{|x1|, ..., |xK |} as the max norm (l∞−norm) for a vector x in RK . Any matrix in MK

induces a linear operator from RK to RK for a basis in RK , and for A ∈ MK define a corresponding

operator norm or a matrix norm as follows:

|||A||| = sup
{∥Ax∥∞

∥x∥∞
: x ∈RK with x ̸= 0

}
.(17)

The above matrix norm |||·||| is induced by the l∞−norm on RK and has the following important

3For reference, our definition of the matrix norm in this section follows the treatment in Chapter 5 of Matrix
Analysis by Horn and Johnson (2013).
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expression:

|||A||| = max
1≤i≤K

K∑
j=1

|ai j|.(18)

where A = [ai j]1≤i, j≤K and this is the maximum row sum matrix norm for A ∈ MK .4 Since every

entry of the matrix Md(y) is less than h, applying the result in Equation (18) to Md(y) yields

|||Md(y)||| ≤ Kh.(19)

Similarly, we obtain

|||Md||| ≤ Kh.(20)

To ensure the invertibility of MX∗Z through Equation (16), we will make the following

assumptions and restrict the sensitivity parameter h.

Assumption 2.2. Assume that (i) MX Z is invertible and h < 1
K |||M−1

X Z |||
≡ hI ;

(ii) MX |X∗ is invertible.

Combining Assumption 2.2(i) with Equation (20) yields |||Md||| < 1
|||M−1

X Z |||
and MX Z −Md is

invertible under the result in Lemma A.1 for the inverse of a perturbed matrix. The invert-

ibility of MX Z in Assumption 2.2(i) is testable and can be verified empirically. Applying these

assumptions, the matrix relationship described in Equations (15) and (16) gives rise to the

following eigenvalue-eigenvector decomposition:

M−1
X |X∗D y|X∗ MX |X∗ = (MX Z −Md)−1 (

MyX Z −Md(y)
)
.(21)

Applying Lemma A.1 to MX Z −Md, we have

(MX Z −Md)−1 ≡ M−1
X Z +Bd,(22)

where Bd =
∞∑

i=1
(M−1

X Z Md)nM−1
X Z . Use the notation to rewrite Equation (21) as

M−1
X |X∗D y|X∗ MX |X∗︸ ︷︷ ︸

a diagonal structure

= M−1
X Z MyX Z︸ ︷︷ ︸

observable

+Ph
y (d),(23)

4The result is in Example 5.6.5 of Horn and Johnson (2013).
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where Ph
y (d)=−M−1

X Z Md(y)+Bd
(
MyX Z −Md(y)

)
. Notice the perturbation matrix Ph

y (d) related

to the deviation matrices Md(y) and Md and the matrices Md(y) and Md are relatively small if

h is small. Our partial identification strategy incorporates observed information to determine

properties of the latent distribution without imposing conditional independence assumptions.

While the left-hand side of Equation (23) connects to the latent model, the right-hand side

of Equation (23) relates to the matrices of the observed densities and the deviation matrices.

Identification of the properties of our latent model relies on conditions imposed on the latent

eigenvalue-eigenvector structure M−1
X |X∗D y|X∗ MX |X∗ . Specifically, these conditions require: (1)

An assumption ruling out eigenvalues of M−1
X |X∗D y|X∗ MX |X∗ with multiplicity greater than 1.

(2) An assumption ensuring an ordering of the eigenvectors of M−1
X |X∗D y|X∗ MX |X∗ .

Assumption 2.3. (Distinct Eigenvalues) For each y, fY |X∗(y|x∗ = i) ̸= fY |X∗(y|x∗ = j) for all

i ̸= j.

Assumption 2.4. (Ordering of Eigenvectors) For some constant 0 ≤ λ < 1
2 , define the upper

bound on the probabilities of misreport

∑
j ̸=i

fX |X∗( j|i)≤λ ∀i,(24)

which is equivalent to the lower bound on the probabilities of correct report

fX |X∗(i|i)≥ 1−λ> 0 ∀i.(25)

Assumption 2.3 suffices to ensure distinct eigenvalues,5 while Assumption 2.4 determines

the ordering of the corresponding eigenvectors. Therefore, the eigenvalue-eigenvector decom-

position in the latent structure M−1
X |X∗D y|X∗ MX |X∗ is identified. Assumption 2.4 requires that

eigenvectors or row vectors of MX |X∗ is identified by the largest entry in that row. If the largest

entry of an eigenvector of MX |X∗ is the jth entry, that eigenvector is equal to the jth row of

the matrix MX |X∗ . Assumption 2.4 implies that MX |X∗ is strictly diagonally dominant and

invertible. Thus, we do not need Assumption 2.2(ii) when Assumption 2.4 is assumed. In

other words, Assumption 2.4 restricts that the probabilities of truthful reporting always exceed
5A sufficient condition more general than Assumption 2.3 is that there exists a function ω(·), such that

E
[
ω(y)|x∗ = i

] ̸= E
[
ω(y)|x∗ = j

]
for all i ̸= j. Multiplying both sides of Equation (6) by ω(Y ) and integrating over

Y yields an equation analogous to Equation (13), Md(ω(y)) = Mω(y)X Z − MX∗ZDE[ω(y)|X∗]MX |X∗ , where we re-
place each term with its weighted integral counterpart. Proceeding as in the derivation of Equation (23), we ob-
tain the eigenvalue-eigenvector decomposition M−1

X |X∗DE[ω(y)|X∗]MX |X∗ = M−1
X Z Mω(y)X Z+Eω(y)(d), where Eω(y)(d)

represents deviations. In this decomposition, E
[
ω(y)|X∗ = k

]
is an eigenvalue, but the eigenvectors in MX |X∗ are

unchanged from Equation (23). Therefore, according to Assumption 2.3, the eigenvalues E
[
ω(y)|X∗ = k

]
of this

decomposition are distinct.
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misreporting probabilities. This assumption is credible and consistent with various validation

studies. For example, misclassification probabilities of the self-reported employment status in

Poterba and Summers (1995) and Bound et al. (2001), and misclassification probabilities of the

self-reported education attainment in Kane et al. (1999) satisfy this assumption. Horowitz and

Manski (1995) and Molinari (2003, 2008) also adopt the assumption and assume a known lower

bound on the probabilities of correct report is available.

Equation (23) represents deviations as a perturbation matrix relating an observable ma-

trix to an unobserved eigenvalue-eigenvector decomposition. This framework aligns with the

perturbation theory of eigenvalues for diagonalizable matrices, allowing us to approximate

unobserved eigenvalues using observed, solvable information. Specifically, we will apply the

Bauer-Fike theorem6 to derive bounds for deviations of eigenvalues of the perturbed matrix in

Equation (23) from appropriately chosen eigenvalues of the observable matrix.

Theorem 2.1. (Bauer-Fike Perturbation Theorem) Let A ∈ MK be diagonalizable with A =
SΛS−1 and Λ = diag(ρA1, ...,ρAK ). Suppose E ∈ MK . If ρ is an eigenvalue of A + E, then

there is some eigenvalue ρAk of A for which

|ρ−ρAk| ≤ |||S||| · |||S−1||| · |||E||| = κ(S)|||E|||,

where κ(·) is the condition number with respect to the matrix norm ||| · |||.

For a given y, define

A = M−1
X |X∗D y|X∗ MX |X∗ ,(26)

E =−Ph
y (d).(27)

Then, A+E = A−Ph
y (d) = M−1

X Z MyX Z , and the corresponding matrices S, Λ, and the condition

number κ(S) are

S = M−1
X |X∗ ,(28)

Λ= D y|X∗ ,(29)

κ(S)= |||M−1
X |X∗ ||| · |||MX |X∗ |||.(30)

We apply Theorem 2.1 to provide perturbation bounds for the eigenvalues of the matrix A

in Equation (26), based on the condition number in Equation (30) and perturbation matrix

6The result comes from Theorem 6.3.2 in Horn and Johnson (2013).
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−Ph
y (d). Specifically, κ(S) quantifies the degree of misclassification, with larger values indicat-

ing more severe misclassification. Additionally, |||Ph
y (d)||| signifies how well the conditional par-

tial independence approximates the conditional independence characterized by h, with smaller

values denoting a closer approximation. Therefore, if the probability of truthful reporting is

high (λ close to 0), then κ(S) approaches 1. In this case, small perturbations in Ph
y (d) will

result in only minor deviations in the eigenvalues. In order to analyze the bounds of κ(S), we

adopt Assumption 2.4 and obtain the specific restriction for κ(S) in Proposition A.1. Denote

dEy = min
i, j

| fY |X∗ (y|x∗=i)− fY |X∗ (y|x∗= j)|−ϵ
2 > 0 for some ϵ> 0. The bounded ranges of key parameters

are summarized in the following Proposition.

Proposition 2.1. Under the assumption of a discrete, finite support for Y and Assumptions

2.1, 2.2(i), 2.3, and 2.4, we analyze the effects of a small perturbation Ph
y (d) in Equation (23)

on the diagonal structure using the eigenvalues of M−1
X Z MyX Z . Specifically, if a small perturba-

tion Ph
y (d) satisfies the bound |||Ph

y (d)||| ≤ dEy
κλ

, then there exists distinct perturbed eigenvalues

ρ1, ...,ρK of M−1
X Z MyX Z , with ρk for k = 1, ...,K satisfying:

fY |X∗
(
y|x∗ = k

) ∈ (
max

{
ρk −κλ ·Ph

y ,0
}
,min

{
1,ρk +κλ ·Ph

y

})
,(31)

where κλ = 1
(1−λ)(1−2λ) and Ph

y = |||M−1
X Z |||Kh+ |||M−1

X Z |||2Kh
1−|||M−1

X Z |||Kh

(|||MyX Z |||+Kh
)

is an upper bound

for |||Ph
y (d)|||.

Bauer-Fike theorem in Theorem 2.1 also postulates that the eigenvalues of A+E lie in the

union of the discs Dk where each Dk is centered at ρAk and possesses a radius of κ(S)|||E||| for

k = 1, ...,K . The result does not preclude the possibility that several eigenvalues of A+E lie in

some disc Dk0 for a particular k0. If the radius of each disc is strictly less than one-half of the

minimum distances between these eigenvalues of A, then only one eigenvalue of A +E lie in

one of the discs. In order to correctly identify the model, it is essential to ensure that the degree

of deviation is not greater than the distance, and this means that we must avoid mixing the

perturbed eigenvalues inside one of the discs. Otherwise, the perturbed eigenvalues cannot be

uniquely associated with their original eigenvalues. We apply the discussion to a perturbation

matrix relation in Equation (23) to acquire the condition |||Ph
y (d)||| ≤ dEy

κλ
and this helps to sepa-

rate fY |X∗ (y|x∗) for different true values of x∗. As a result, one could easily identify fY |X∗ (y|x∗)

at each x∗ by examining at the location of the perturbed eigenvalues of M−1
X Z MyX Z . Define the

sup value of the separation restriction as hS ≡ sup
{
h : Ph

y <
min

i, j

∣∣ fY |X∗ (y|x∗=i)− fY |X∗ (y|x∗= j)
∣∣

2κλ

}
. If

h < hS, then |||Ph
y (d)||| ≤ Ph

y <
min

i, j

∣∣ fY |X∗ (y|x∗=i)− fY |X∗ (y|x∗= j)
∣∣

2κλ
= 1

κλ

min
i, j

∣∣ fY |X∗ (y|x∗=i)− fY |X∗ (y|x∗= j)
∣∣

2 and

13



this implies that |||Ph
y (d)||| ≤ dEy

κλ
for some dEy. Therefore, our proposed bound requires that the

sensitivity parameter h is strictly smaller than hS, h < hS, and the separation restriction could

be slight because it results from the matrix perturbation theory. This indicates the localized

nature of the bounds. In the simulation section, the bounds under the separation restriction

still suffice to cover the true parameter values, and they are limited in how precisely they could

represent the population. Their localization around the truth suggests our bounds may apply

in a neighborhood of conditional independence, but caution is needed in extrapolating findings

far from that neighborhood.

Remark 2.1. We impose the restriction |||Ph
y (d)||| ≤ dEy

κλ
to make h sufficiently small, thereby en-

suring that each fY |X∗(y|x∗ = k) uniquely corresponds to the interval of the perturbed eigenvalue

ρk without overlaps in the intervals
(
ρk −κλ ·Ph

y ,ρk +κλ ·Ph
y

)
. If fY |X∗(y|x∗) is strictly increas-

ing in x∗ for each y, we can mitigate the potential overlap problem by considering the sequential

dependence of the following intervals:

fY |X∗(y|x∗ = 1) ∈
(
max

{
λ1 −κλ ·Ph

y ,0
}
,λ1 +κλ ·Ph

y

)
fY |X∗(y|x∗ = 2) ∈

(
max

(
fY |X∗(y|x∗ = 1),λ2 −κλ ·Ph

y

)
,λ2 +κλ ·Ph

y

)
...

fY |X∗(y|x∗ = K) ∈
(
max

(
fY |X∗(y|x∗ = K −1),λK −κλ ·Ph

y

)
,min

{
1,λK +κλ ·Ph

y

})
The condition that fY |X∗(y|·) increases for each y can be substituted with the condition that the

expected value E [Y |x∗] is strictly increasing in x∗. However, the notation fY |X∗(y|x∗ = 1) within

the bounds for fY |X∗(y|x∗ = 2) is not conventionally valid because it tries to use the result of a set

interval as a direct variable. We prefer a direct mathematical one without referencing the actual

density bounds from previous intervals.

Conversely, we can adjust the handling of overlaps in eigenvalue intervals so that overlaps

are included in the interval of a lower eigenvalue. This approach may be appropriate in sce-

narios where specific modeling choices or assumptions support that lower x∗ values should have

broader intervals. Assuming that E [Y |x∗] is strictly increasing in x∗, we adapt the bounds on

the densities to accommodate overlaps at lower x∗ values as follows:

fY |X∗(y|x∗ = 1) ∈
(
max

{
λ1 −κλ ·Ph

y ,0
}
,λ1 +κλ ·Ph

y

)
fY |X∗(y|x∗ = 2) ∈

(
max

(
λ1 +κλ ·Ph

y ,λ2 −κλ ·Ph
y

)
,λ2 +κλ ·Ph

y

)
...

14



fY |X∗(y|x∗ = K) ∈
(
max

(
λK−1 +κλ ·Ph

y ,λK −κλ ·Ph
y

)
,min

{
1,λK +κλ ·Ph

y

})
This formulation ensures that each x∗ value’s density bounds effectively encapsulate potential

overlaps from preceding intervals, aligning with the increasing trend of fY |X∗(y|x∗).

Remark 2.2. Proposition 2.1 shows that the bounds center at distinct eigenvalues, ρ1, ...,ρK

and the width of the bounds is close to 2κλ ·Ph
y . Given a fixed upper bound on the probabilities of

misreport λv, define the max value of the choices of these sensitivity parameters as hE ≡max
{
h :

Ph
y ≤

min
i, j

∣∣ρ i−ρ j

∣∣
2κλv

}
. For any sensitivity parameter h between 0 and hE, the bounds

(
max

{
ρx∗ −

κλv ·Ph
y ,0

}
,min

{
1,ρx∗ +κλv ·Ph

y

})
does not intersect the bounds of ρ j for j ̸= x∗. The bounds in

Equations (31) using λv and h strictly less than hE are disjoint. When h exceeds hE, some of the

bounds using λv and Ph
y may overlap with other bounds and this is a conflict with the distinct

eigenvalue condition in Assumption 2.3.

Remark 2.3. The width of bounds is influenced by κλ and Ph
y . The term κλ, which changes

in response to the misclassification parameter λ, and Ph
y , which varies with the sensitivity

parameter h associated with conditional partial independence, impact the bounds differently.

κλ has a lower bound, while Ph
y diminishes to zero as h approaches zero. Furthermore, since

the derivatives of κλ and Ph
y with respect to λ and h are positive across their respective do-

mains, κλ increases when 0 ≤ λ < 1/2, and Ph
y increases when h ∈ [0,hI ). Setting λ = 0 elim-

inates measurement error, resulting in X∗ = X, κλ = 1, and point identification of the model,

regardless of h’s value. The deviation term in the Assumption 2.1 would reduce to d0(Y , X , Z)≡
fY Z|X (Y , Z|X )− fY |X (Y |X ) fZ|X (Z|X ) . However, even in this scenario, the bounds described in

Proposition 2.1 become
(
max

{
ρk −Ph

y ,0
}
,min

{
1,ρk +Ph

y

})
for each k which vary with h and do

not reduce to a singleton. This contrasts with the behavior of h, which can lead to a singleton

bound if set to h = 0.

Remark 2.4. The analysis using partial identification could be more precise. The accuracy of

the pivotal Equation (23) depends on the degree to which conditional independence is violated.

Under Assumptions 2.3 and 2.4, the conditional density function fY |X∗ (y|x∗ = k) corresponds

to the k-th largest eigenvalue of the combined observed and perturbation matrices as described

in the right-hand side of Equation (23). To refine the partial identification, we can analyze the

spectrum of eigenvalues for M−1
X Z MyX Z +Ph

y (d). Define the set of all possible deviation terms as

Dh = d0(Y , X , Z, X ) :
∣∣d0(Y , X , Z, X )∣∣≤ h,

∫
y |d0(y, X , Z, X∗)|d y≤ h. The procedure for achieving

a sharp partial identification involves: (i) Selecting a deviation d from Dh and calculating the
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eigenvalues of M−1
X Z MyX Z+Ph

y (d) for this d. (ii) Iterating this process for each element in Dh. (iii)

Aggregating the results by taking the union of all calculated eigenvalues across d ∈ Dh, which

establishes sharp bounds for the density fY |X∗ (y|x∗). Consequently, the bounds depend on the

set of all potential values from Dh and the matrix MX |X∗ . However, the outer identification sets

specified in Equations (31) hinge solely on the parameters h and λ.

There are two potential reasons why the bounds in Proposition 2.1 may not be sharp: (a)

applying the Bauer-Fike theorem may not yield sharp results.7 (b) the bounds κλ and Ph
y are

estimated for the condition number κ(M−1
X |X∗) and the norm |||Ph

y (d)||| respectively.

Next, we present partial identification results for the conditional cumulative distribution

function (CDF) of continuous or discrete outcomes given the latent variable. We focus on the

continuous case here, with the discrete case addressed similarly. Let FỸ |X∗( ỹ|x∗)= ∫ ỹ
−∞ fY |X∗(y|x∗)d y.

Integrating out Y in Equation (6) over the domain (−∞, ỹ) yields

∑
x∗

(∫ ỹ

−∞
d0(y, X , Z, x∗)d y

)
fX∗

(
x∗

)
(32)

=
(∫ ỹ

−∞
fY X Z (Y , X , Z)d y

)
−∑

x∗

(∫ ỹ

−∞
fY |X∗

(
y|x∗)

d y
)

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
.

Define dF1( ỹ, X , Z)=∑
x∗

(∫ ỹ
−∞ d0(y, X , Z, x∗)d y

)
fX∗ (x∗). Given ỹ, define the following matrices:

MdF ( ỹ)=


dF1( ỹ,1,1) · · · dF1( ỹ,K ,1)

...

dF1( ỹ,1,K) · · · dF1( ỹ,K ,K)


K×K

,

MF ỹ X Z =


∫ ỹ
−∞ fY X Z (y,1,1)d y · · · ∫ ỹ

−∞ fY X Z (y,K ,1)dy
... · · · ...∫ ỹ

−∞ fY X Z (y,1,K)d y · · · ∫ ỹ
−∞ fY X Z (y,K ,K)d y


K×K

,

DF ỹ|X∗ =


∫ ỹ
−∞ fY |X∗ (y|x∗ = 1)d y · · · 0

...
... 0

0 0
∫ ỹ
−∞ fY |X∗ (y|x∗ = K)d y


K×K

.

We have |||MdF ( ỹ)||| ≤ Kh because the (i, j) entry of the matrix MdF ( ỹ) is bounded through

|∑
x∗

(∫ ỹ
−∞ d0(y, j, i, x∗)d y

)
fX∗ (x∗) | ≤ ∑

x∗

∫
y |d0(y, i, j, x∗)|d yfX∗ (x∗) ≤ h by Assumption 2.1. With

7Eigenvalues can be less sensitive to perturbations than the bound suggests, mainly when the perturbations are
structured in a way that the theorem does not account for specifically. In practice, this means the actual change in
eigenvalues due to perturbations might be significantly smaller than the upper bound predicted by Bauer-Fike.
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these matrix notations, we can write Equation (32) as

MX∗ZDF ỹ|X∗ MX |X∗ = MF ỹ X Z −MdF ( ỹ),(33)

which is similar to the matrix equation in Equation (15). We also have the matrix equation

(16). By applying the invertibility of MX Z −Md and Equation (22) to the matrix relationship in

Equation (33), we obtain the following eigenvalue-eigenvector decomposition:

M−1
X |X∗DF ỹ|X∗ MX |X∗︸ ︷︷ ︸
a diagonal structure

= (MX Z −Md)−1 (
MF ỹ X Z −MdF ( ỹ)

)
(34)

= M−1
X Z MF ỹ X Z︸ ︷︷ ︸
observable

+Ph
F ỹ

(d),

where Ph
F ỹ

(d) =−M−1
X Z MdF ( ỹ)+Bd

(
MF ỹ X Z −MdF ( ỹ)

)
. Therefore, we obtain a matrix structure

similar to Equation (23) and can apply the partial identification method in Proposition 2.1 using

the Bauer-Fike perturbation result (Theorem 2.1).

Assumption 2.5. (Distinct Eigenvalues) Assume FỸ |X∗( ỹ|x∗ = i) ̸= FỸ |X∗( ỹ|x∗ = j) for all i ̸= j

and ỹ.

Let dF ỹ =min
i, j

|FỸ |X∗ ( ỹ|x∗=i)−FỸ |X∗ ( ỹ|x∗= j)|−ϵ
2 > 0 for some ϵ> 0.

Proposition 2.2. Under Assumptions 2.1, 2.2(i), 2.4, and 2.5, for given ỹ, if a small pertur-

bation Ph
F ỹ

(d) satisfying |||Ph
F ỹ

(d)||| ≤ dF ỹ
κλ

, then there exist distinct eigenvalues ρF1, ...,ρFK of

M−1
X Z MF ỹ X Z satisfying: for each k = 1, ...,K,

FỸ |X∗( ỹ|x∗ = k) ∈
(
max

{
ρFk −κλ ·Ph

F ỹ
,0

}
,min

{
1,ρFk +κλ ·Ph

F ỹ

})
,(35)

where κλ = 1
(1−λ)(1−2λ) and Ph

F ỹ
= |||M−1

X Z |||Kh+ |||M−1
X Z |||2Kh

1−|||M−1
X Z |||Kh

(|||MF ỹ X Z |||+Kh
)

is an upper bound

for |||Ph
F ỹ

(d)|||.

Remark 2.5. Given a user-specified function G(·), multiplying Equation (6) by G(y) and sum-

ming over the support of Y yields

∑
x∗

(∫
G(y)d0(y, X , Z, x∗)d y

)
fX∗

(
x∗

)
(36)

=
(∫

G(y) fY X Z (Y , X , Z)d y
)
−∑

x∗

(∫
G(y) fY |X∗

(
y|x∗)

d y
)

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
.

17



The above equation can be expressed using matrix notation similar to Equation (33). The ma-

trix expression enables us to generalize Proposition 2.2 and investigate partial identification for

E(G(y)|x∗). By doing so, we can provide the bounds for E(G(y)|x∗).

2.2. Partial Identification of Regression Functions

Within the model framework outlined in Subsection 2.1, the conditional mean outcome given

X∗ for the variables Y , X , Z, and X∗ can be expressed as:

E(Y |X∗).(37)

For point identification of non-linear regression models with misclassification, Mahajan (2006)8

assumes the following condition:

Condition 2.2. (Conditional Independence between X and Z) The variable (X , Z, X∗) satisfies

a conditional independence assumption as follows

fX ,Z|X∗
(
X , Z|X∗)= fX |X∗

(
X |X∗)

fZ|X∗
(
Z|X∗)

,(38)

or

X ⊥ Z
∣∣∣X∗(39)

We relax the abovementioned condition and consider the following assumption, similar to

Assumption 2.1.

Assumption 2.6. (Conditional Partial Independence Between X and Z) The perturbation or

deviation from conditional independence in Equation (38) can be expressed as:

d̃0(X , Z, X∗)≡ fX ,Z|X∗
(
X , Z|X∗)− fX |X∗

(
X |X∗)

fZ|X∗
(
Z|X∗)

.(40)

There exists a constant h ≥ 0 satisfying
∣∣∣d̃0(X , Z, X∗)

∣∣∣≤ h.

We can replicate the derivation employed for partially identifying the latent density in

Subsection 2.1 to obtain partial identification of the conditional functions.

8Mahajan (2006) studies the identification and estimation in nonparametric regression models with a misclassi-
fied binary regressor, but in this subsection, we still focus on a general misclassified discrete regressor.
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Assumption 2.7. (Conditionally Mean Independent of the Outcome)

E(Y |X , Z, X∗)= E(Y |X∗).(41)

Assumption 2.8. Assume that MX Z is invertible and h < 1
K |||M−1

X Z |||
.

Assumption 2.9. (Distinct Eigenvalues) Assume E [Y |x∗ = i] ̸= E [Y |x∗ = j] for all i ̸= j.

Define

MyX Z =


E(Y |1,1) fX Z (1,1) · · · E(Y |K ,1) fX Z (K ,1)

... · · · ...

E(Y |1,K) fX Z (1,K) · · · E(Y |K ,K) fX Z (K ,K)


K×K

.(42)

Using the matrix notation, we can express the conditional partial independence in Assumption

2.6 similar to Equations (15) and (16) for Proposition 2.1. Consider

MX∗ZD y|X∗ MX |X∗ = MyX Z − M̃d

MX∗Z MX |X∗ = MX Z − M̃d2 ,

where the definition of the matrices here can be found in the proof of Proposition 2.3. Given

this matrix expression, we can now utilize it to examine the following:

M−1
X |X∗D y|X∗ MX |X∗ = (

MX Z − M̃d2

)−1 (
MyX Z − M̃d

)
≡ M−1

X Z MyX Z +Ph
y (d),

where
(
MX Z − M̃d2

)−1 ≡ M−1
X Z + B̃d, and Ph

y (d)=−M−1
X Z M̃d + B̃d

(
MyX Z − M̃d

)
. This formulation

displays an analogous matrix structure as Equation (23); consequently, the Bauer-Fike pertur-

bation result (Theorem 2.1) can be exploited accordingly. Let d̃ ≡ min
i, j

|E[Y |x∗=i]−E[Y |x∗= j]|−ϵ
2 > 0

for some ϵ> 0.

Proposition 2.3. Under Assumptions 2.4, 2.6, 2.7, 2.8, and 2.9, if a small perturbation Ph
y (d)

satisfying |||Ph
y (d)||| ≤ d̃

κλ
, then there exist distinct eigenvalues ρ̃1, ..., ρ̃K of the matrix M−1

X Z MyX Z

satisfying: for each k = 1, ...,K,

E
[
Y |x∗ = k

] ∈ (
ρ̃k −κλ ·Ph

y , ρ̃k +κλ ·Ph
y

)
,(43)

where κλ = 1
(1−λ)(1−2λ) and Ph

y = |||M−1
X Z |||Kh+ |||M−1

X Z |||2Kh
1−|||M−1

X Z |||Kh

(|||MyX Z |||+K2h|E(Y )|) is an upper
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bound for |||Ph
y (d)|||.

3. Estimation

This paper focuses on partial identification. We briefly discuss estimating the lower and upper

bounds of the identification regions in Section 2. These regions have closed-form solutions and

center at distinct eigenvalues of a combination of observed density matrices. Their dispersion

depends on the upper bound of misclassification probabilities, λ, and a sensitivity parameter,

h. We will describe an estimation method to calculate the identification regions in Proposition

2.1. An analogous approach prevails for additional identification regions in Section 2.

For a particular y, Proposition 2.1 provides the following identification regions:

(
max

{
ρk −κλ ·Ph

y ,0
}
,min

{
1,ρk +κλ ·Ph

y

})
for k = 1, ...,K .(44)

The lower and upper bounds of the identification regions are known functionals of the terms,

ρk, and κλ ·Ph
y . We propose nonparametric estimators for these two terms and then derive their

p
N-consistency and asymptotic results. We then apply a delta method for directionally differ-

entiable functionals in Fang and Santos (2019) to provide a bootstrap procedure to construct

asymptotic confidence bands for the bounds.

The lower and upper bounds constitute a specified function of the matrices of the joint distri-

butions, MyX Z and MX Z , with a defined prior λ and h. Define γ0 =
(
vec(MyX Z)T ,vec(MX Z)T)T ∈

R2K2
for a given y, where vec(A) signifies the vector encompassing the entries of matrix A in

a column vector. As delineated in Andrew et al. (1993), the distinct eigenvalues of M−1
X Z MyX Z ,

ρ1, ...,ρK , can be explicitly denoted as ρk =φe
y
(
x∗ = k,γ0

)
for k = 1, ...,K , where φe

y(·, ·) constitutes

a specified well-behaved analytic function. Subsequently, denote φd
y (λ,h,γ0)= κλ ·Ph

y . Since the

matrix norms in Ph
y are applied to non-negative densities, φd

y (λ,h,γ0) is well-defined for suffi-

ciently small h. Let φL
y
(
x∗,γ0;λ,h

) ≡ φe
y
(
x∗,γ0

)−φd
y (λ,h,γ0) and φU

y
(
x∗,γ0;λ,h

) ≡ φe
y
(
x∗,γ0

)+
φd

y (λ,h,γ0). Then, for each k = 1, ...,K , the lower and upper bounds of the identification region

can be written as follows:

max
{
ρk −κλ ·Ph

y ,0
}
=max

{
φL

y
(
x∗ = k,γ0;λ,h

)
,0

}
=φmax

(
φL

y
(
x∗ = k,γ0;λ,h

))
,(45)

min
{
1,ρk +κλ ·Ph

y

}
=min

{
1,φU

y
(
x∗ = k,γ0;λ,h

)}=φmin
(
φU

y
(
x∗ = k,γ0;λ,h

))
,(46)

where φmax
(
θ
) = max

{
θ,0

}
, and φmin

(
θ
) = min

{
1,θ

}
. The lower and upper bounds constitute
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compositions of the max and min operators, φmax and φmin, in conjunction with φL
y and φU

y

respectively. The bounds do not constitute typical Hadamard differentiable mappings of γ0

because the min and max operators are not Hadamard differentiable.

We propose nonparametric plug-in estimators to estimate these bounds. We first employ a

nonparametric technique to evaluate the observed densities fY X Z and fX Z and concentrate on

the case where the variable Y is discrete. Suppose that 1(·) signifies an indicator function and

the function K (·) constitutes a defined kernel function with bandwidth hb. Given an observed

i.i.d. sample {yi, xi, zi}n
i=1, construct the following density estimators:

f̂Y X Z(y, x, z)= 1
n

n∑
i=1

1(yi = y)1(xi = x)1(zi = z),(47)

f̂X Z(x, z)= 1
n

n∑
i=1

1(xi = x)1(zi = z).(48)

Let v = (y, x, z). For a given y, the infinite-dimensional parameter γ0 can be estimated non-

parametrically applying γ̂n(v) = (
vec(M̂yX Z)T ,vec(M̂X Z)T)T

, where M̂yX Z and M̂X Z constitute

estimators for MyX Z and MX Z respectively utilizing the nonparametric density estimators

f̂Y X Z and f̂X Z for their entries. Therefore, we assess these bounds by plug-in estimators

φmax
(
φL

y
(
x∗, γ̂n;λ,h

))
and φmin

(
φU

y
(
x∗, γ̂n;λ,h

))
. In the remainder of this section, we will be

examining the asymptotic properties of φmax
(
φL

y
(
x∗, γ̂n;λ,h

))
. It is worth noting that the same

approach applies to φmin
(
φU

y
(
x∗, γ̂n;λ,h

))
as well. We will first derive the limiting distribu-

tion of φL
y
(
x∗, γ̂n;λ,h

)
and then implement the functional delta method in Fang and San-

tos (2019) for the max operator φmax to show convergence in distribution of our estimator

φmax
(
φL

y
(
x∗, γ̂n;λ,h

))
.

Each element of γ̂n constitutes a nonparametric frequency-based estimator at some point.

We can directly apply the outcomes of the asymptotic normality of the nonparametric frequency

density estimator in Li and Racine (2003) and Li and Racine (2007) to reach the asymptotic

normality of the element of γ̂n in a pointwise sense.

Lemma 3.1. Let γ0q be the q−th element of γ0 and γ̂nq is the corresponding estimator in γ̂n.

Suppose the density γ0q has three times bounded continuous derivatives. Given an observed

i.i.d. sample {yi, xi, zi}n
i=1 with the support of v is finite, we have

p
n(γ̂nq(ṽ)−γ0q(ṽ)) d−→ N(0,γ0q(ṽ)(1−γ0q(ṽ))),(49)

where ṽ is an interior point of density.
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Assumption 3.1. For any vector c ∈ R2K2
, the fixed linear combination of the coordinates of

γ̂n(v)− γ0(v) converges to a normal distribution, i.e.,
p

nc′(γ̂n(v)− γ0(v)) d−→ N(0, c′Ωc), where

Ω= n limn→∞ E
[
(γ̂n −E[γ̂n])(γ̂n −E[γ̂n])T

]
.

Under Assumption 3.1, we can utilize the Cramer-Wold theorem to deduce the subsequent

asymptotic distribution of γ̂n(v)−γ0(v).

Lemma 3.2. Under Assumption 3.1 and the conditions in Lemma 3.1, we have

p
n(γ̂n(v)−γ0(v)) d−→ N(0,Ω),(50)

where Ω= n limn→∞ E
[
(γ̂n −E[γ̂n])(γ̂n −E[γ̂n])T

]
.

Next, we define the pathwise derivative of φL
y
(
x∗,γ;λ,h

)
at the direction [γ−γ0] evaluated

at γ0, and this can be defined as

dφL
y
(
x∗,γ0;λ,h

)
dγ

[γ−γ0]≡
dφL

y
(
x∗,γ0 +τ[γ−γ0];λ,h

)
dτ

∣∣∣∣
τ=0

a.s.

The pathwise derivative can be denoted as the ordinary derivative through

dφL
y
(
x∗,γ0 +τ[γ−γ0];λ,h

)
dτ

=
∂φL

y
(
x∗,γ0 +τ[γ−γ0];λ,h

)
∂γT × (γ−γ0).

Applying the delta method to the asymptotic outcome in Lemma 3.2, we attain an asymptotic

normality for φL
y
(
x∗, γ̂n;λ,h

)
.

Proposition 3.1. Under Assumption 3.1 and the prerequisites in Lemma 3.1, we have

p
n
(
φL

y
(
x∗, γ̂n;λ,h

)−φL
y
(
x∗,γ0;λ,h

)) d−→ N(0,Ω̃),(51)

where Ω̃= E
[(

∂φL
y

(
x∗,γ0;λ,h

)
∂γT

)
Ω

(
∂φL

y

(
x∗,γ0;λ,h

)
∂γT

)T]
.

We can regard the lower bound estimator φmax
(
φL

y
(
x∗, γ̂n;λ,h

))
as a Hadamard directional

differentiability of the mapping linking the term φL
y
(
x∗, γ̂n;λ,h

)
. As discussed in Fang and

Santos (2019), the limiting distribution of φmax
(
φL

y
(
x∗, γ̂n;λ,h

))
depends only on two key con-

ditions: (i) The directional derivative φmax, and (ii) The limiting distribution of φL
y
(
x∗, γ̂n;λ,h

)
.

The map φmax is Hadamard directionally differentiable at θ0 by the existence of the directional
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derivative of φmax as

φ
′
max;θ0

(h)=


h if θ0 > 0

max
{
h,0

}
if θ0 = 0

0 if θ0 < 0

(52)

for any h ∈ R. On the other hand, the asymptotic distribution of φL
y
(
x∗, γ̂n;λ,h

)
is presented

in Proposition 3.1. Therefore, Assumptions 1 and 2 in Fang and Santos (2019) hold and we

can apply the functional delta method for Hadamard directionally differentiable mappings in

Theorem 2.1 in Fang and Santos (2019) to show convergence in distribution of the lower bound

estimator.

Proposition 3.2. Under Assumption 3.1 and the conditions in Lemma 3.1, we obtain

p
n
(
φmax

(
φL

y
(
x∗, γ̂n;λ,h

))−φmax
(
φL

y
(
x∗,γ0;λ,h

))) d−→φ
′
max;θ0

(N(0,Ω̃))(53)

, where

φ
′
max;θ0

(N(0,Ω̃))=


N(0,Ω̃) if φL

y
(
x∗,γ0;λ,h

)> 0

max
{
N(0,Ω̃),0

}
if φL

y
(
x∗,γ0;λ,h

)= 0

0 if φL
y
(
x∗,γ0;λ,h

)< 0

.(54)

Although we obtain the asymptotic distribution of the lower bound, we do not utilize this

distribution for making inferences because it would be difficult to obtain analytical asymptotic

confidence intervals. We propose a bootstrap procedure to make inferences on the estimated

bound. This approach is straightforward to approximate the asymptotic distribution. Let γ̂∗n
denote a bootstrap estimate drawn from the nonparametric bootstrap distribution of γ̂n. Since

φmax
(
φL

y
(
x∗,γ;λ,h

)
is Hadamard differentiable, by Theorem 3.1 of Fang and Santos (2019), the

limiting distribution of
p

n
(
φL

y
(
x∗, γ̂n;λ,h

)−φL
y
(
x∗,γ0;λ,h

))
can be consistently estimated by

the nonparametric bootstrap

p
n
(
φL

y
(
x∗, γ̂∗n;λ,h

)−φL
y
(
x∗, γ̂n;λ,h

))
.(55)

Then, by Theorem 3.2 of Fang and Santos (2019), we employ

φ
′
max;θ0

(
p

n
(
φL

y
(
x∗, γ̂∗n;λ,h

)−φL
y
(
x∗, γ̂n;λ,h

))
)(56)
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to estimate the distribution of φ
′
max;θ0

(N(0,Ω̃)) in Proposition 3.2.

4. Systematic Sensitivity Analysis

To empirically examine the partial failure of conditional independence, we must ascertain an

appropriate upper bound for h and evaluate the value utilizing empirical data. In this section,

we provide a detailed delineation of an algorithm that summarizes the steps in calculating an

upper bound for the sensitivity parameter h whose identification region would encompass the

true parameters of interest, including the true density or the regression function in Section

2. Although the width of the identification regions is indexed by λ and h, the upper bound

on the probabilities of misreport λ often has constraints from many possible sources such as

validation studies, economic theory, and social behaviors, etc. Molinari (2008) assumes that the

researcher has a known λ and regards it as baseline information. We adopt a similar approach

regarding λ as an input furnished by validation studies to calculate identification regions.

For a minimal set of premises, the derivation of the upper bound for the sensitivity parame-

ter comprises two stages. The first step involves imposing the identification assumptions on the

sensitivity parameter h, and the constraints arising from probability theory. In the second step,

we follow the approach of Masten and Poirier (2020) to execute breakdown frontier analysis.

The breakdown frontier analysis necessitates specifying additional desired conclusions. For

simplicity, we only contemplate one additional conclusion and derive the weakest combinations

of the identification assumptions indexed by λ and h, which conduce to the conclusion. The

breakdown frontier is a curve of λ and h, signifying the weakest combinations. After solving

for h in the weakest combinations, we arrive at an expression for the breakdown frontier in

terms of λ. Since λ is available from validation studies, this does impose some constraints on

the sensitivity parameter h. We find that the range of the sensitivity parameter is the inter-

section of the two ranges from the first step and the second step, and the upper bound for the

range is determined by taking the minimum of the two upper bounds from these two steps.

4.1. Breakdown Frontier Analysis

This section comprises a breakdown frontier analysis for the identification sets of the condi-

tional CDF in Proposition 2.2 and the regression functions in Proposition 2.3. In both cases, we

relax the conditional independence assumptions and deduce the identification sets as a function

of the parameter λ and the sensitivity parameter h or h. Thus, there may exist trade-offs be-

tween the upper bound of the misclassification probabilities and relaxations of the conditional
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independence assumptions in drawing a particular conclusion.

For a fixed ỹm in the support of Y and a fixed p ∈ [0,1], we consider the conclusion that the

proportion of units whose outcomes greater than ỹm is at least p,

P(y≥ ỹm|x∗)≥ p.(57)

Given observed data, we investigate the weakest assumptions that allow us to obtain the con-

clusion. Applying the relation P(y ≥ ỹm|x∗) = 1−P(y < ỹm|x∗) = 1−FỸ |X∗( ỹm|x∗) to the partial

identification result in Proposition 2.2, we obtain the following bounds

P(y≥ ỹm|x∗ = k) ∈
(
1−min

{
1,ρFk +κλ ·Ph

F ỹm

}
,1−max

{
ρFk −κλ ·Ph

F ỹm
,0

})
,(58)

where ρFk is an eigenvalue of M−1
X Z MF ỹm X Z . When ρFk +κλ ·Ph

F ỹm
≥ 1, the lower bound of the

above outer identified set is not informative, and we just set it equal to 0 in this case. Thus, we

consider ρFk +κλ ·Ph
F ỹm

< 1 and the requirement related to the conclusion is

1−ρFk −κλ ·Ph
F ỹm

≥ p.(59)

Denote Ĩ = [0,hI ), where hI = 1
K |||M−1

X Z |||
. The robust region for the conclusion is

RR ỹm (x∗ = k, p)=
{

(λ,h) ∈ [0,1/2)× Ĩ : 1−ρFk − p ≥ κλ ·Ph
F ỹm

}
.

The breakdown frontier is defined as the boundary of the robust region, and then the break-

down frontier for the conclusion is

BF ỹm (x∗ = k, p)=
{

(λ,h) ∈ [0,1/2)× Ĩ : 1−ρFk − p = κλ ·Ph
F ỹm

}
.

In this case, the breakdown frontier is the locus of various points showing different combina-

tions of (λ,h) providing an equal value for a fixed p. Since κλ is increasing with λ and Ph
F ỹm

is also increasing with h, this implies that any relaxation of the upper bounds on the misre-

porting probability requires strengthening the conditional independence assumption in order

to maintain our specific conclusion.

Denote κ(x∗ = k, p,λ) = 1−ρFk−p
κλ

, a positive variable does not depend on h. Solving for h

in the inequality for the robust region 1− ρFk − p ≥ κλ · Ph
F ỹm

with the definition of Ph
F ỹm

in
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Proposition 2.2 yields

κ(x∗ = k, p,λ)

K |||M−1
X Z |||

(
1+κ(x∗ = k, p,λ)+|||M−1

X Z ||| · |||MF ỹm X Z |||
) ≥ h.(60)

For 0≤λ< 1
2 , the analytical expression for the breakdown frontier:

bf ỹm (λ; x∗, p)=
κ(x∗, p,λ)

K |||M−1
X Z |||

(
1+κ(x∗, p,λ)+|||M−1

X Z ||| · |||MF ỹm X Z |||
) .(61)

Given ( ỹm, x∗, p), bf ỹm (λ; x∗, p) is a continuously differentiable function of λ for 0≤ λ< 1
2 . With

the expression in Equation (61), we obtain

BF ỹm (x∗, p)=
{(
λ,bf ỹm (λ; x∗, p)

)
:λ ∈ [0,1/2)

}
.(62)

This curve provides the weakest combinations of the two types of assumptions which lead to the

considered conclusion. The shape of the curve allows us to quantify the trade-off between the

upper bound of the misclassification probabilities and the conditional independence assumption

relaxations.

Next consider the estimation of the breakdown frontier bf ỹm (λ; x∗ = k, p) constituted of ρFk,

MX Z and MF ỹm X Z . For a given ỹm, define γF0 =
(
vec(MF ỹm X Z)T ,vec(MX Z)T)T ∈R2K2

. Similar to

the discussion in Section 3, for each k = 1, ...,K , ρFk, can be explicit expressed as ρFk =φe
ỹm

(
x∗ =

k,γF0
)
, where φe

ỹm
(·, ·) is a known well-behaved analytic function. Therefore, the breakdown

frontier in Equation (61) can be expressed as

bf ỹm (λ; x∗, p)=φbf
ỹm

(λ,γF0; x∗, p)= qd(qκ(φe
ỹm

(
x∗,γF0

)
,λ; p),γF0),(63)

where qd(ζ,γF0) = ζ

K |||M−1
X Z |||

(
1+ζ+|||M−1

X Z |||·|||MFỹm X Z |||
) and qκ(ρ,λ; p) = 1−ρ−p

κλ
. This implies that the

breakdown frontier is the functional φbf
ỹm

(λ,γF ; x∗, p) evaluated at γF0 and we estimate it by a

plug-in estimator φbf
ỹm

(λ, γ̂F ; x∗, p) with an estimator γ̂F for γF0. We use the following nonpara-

metric density estimator for an element of MF ỹm X Z ,

1
n

n∑
i=1

1(yi ≤ ỹm)1(xi = x)1(zi = z),

and denote M̂F ỹm X Z as an estimator for MF ỹm X Z using the nonparametric estimator. For a given

ỹm, we use γ̂Fn = (
vec(M̂F ỹm X Z)T ,vec(M̂X Z)T)T

as an estimator for γF0. Similar to the asymp-
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totic normality result in Lemma 3.2, we can obtain a pointwise asymptotic normality result

for γ̂Fn converging to γF0. Since it is straightforward to see the functional φbf
ỹm

(λ,γF ; x∗, p) is

continuous pathwise differential in a neighborhood of γF0, the pointwise asymptotic normality

result of γ̂Fn will carry over to the functional by the delta method. The limiting distribution of

the plug-in estimator φbf
ỹm

(λ, γ̂F ; x∗, p) has a Gaussian limiting process as Proposition 3.1.

As for the breakdown frontier analysis for the identification sets of the regression functions

in Proposition 2.3, we consider a specific conclusion that E [Y |x∗ = k] ≥ µ for a given value

of x∗ = k and for some µ ∈ R. When the conditional independence between X and Z holds

(h = 0) with an upper bound on the misreporting probability (0 ≤ λ < 1
2 ), the identification set

in Proposition 2.3 collapses to a single point in which we reach point identification. The robust

region of this conclusion is a collection of all values of λ and h such that the lower bound of the

outer identified set E [Y |x∗ = k] exceeds µ. That is

RR(x∗ = k,µ)=
{

(λ,h) ∈ [0,1/2)× Ĩ : ρ̃k −κλ ·Ph
y ≥µ

}
=

{
(λ,h) ∈ [0,1/2)× Ĩ : ρ̃k −µ≥ κλ ·Ph

y

}
.

Since κλ and Ph
y are both positive, the robust region will be empty if ρ̃k < µ, and nonempty if

ρ̃k > µ, where ρ̃k is a value of E [Y |x∗ = k] under the point identifying assumptions. Therefore,

we only focus on ρ̃k >µ. The breakdown frontier for the conclusion that E [Y |x∗ = k]≥µ is

BF(x∗ = k,µ)=
{

(λ,h) ∈ [0,1/2)× Ĩ : ρ̃k −µ= κλ ·Ph
y

}
.

Denote κ(x∗ = k,µ,λ)= ρ̃k−µ
κλ

. Similar to the previous derivation for BF ỹm (x∗, p) with the expres-

sion in Equations (62), we have

BF(x∗,µ)=
{(
λ,bf (λ; x∗,µ)

)
:λ ∈ [0,1/2)

}
,

with the breakdown frontier

bf (λ; x∗,µ)=
κ(x∗,µ,λ)

K |||M−1
X Z |||

(
1+κ(x∗,µ,λ)+|||M−1

X Z ||| · |||MyX Z |||
) .(64)

We can estimate the breakdown frontier bf (λ; x∗,µ) using a plug-in estimator as we do for the

breakdown frontier bf ỹm (λ; x∗ = k, p) for the conditional CDF case in Proposition 2.2 and the

estimator may possess a similar pointwise asymptotic normality result.
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4.2. Two Step Selection Procedure

This section provides a two-step procedure to select possible values for the upper bound of the

sensitivity parameter h. Since validation studies can provide a potential value on the upper

probability of misreporting, we can assume that λ is a known value. For simplicity, we focus on

the sensitivity analysis for the identification sets of the conditional probability fY |X∗ (y|x∗) in

Proposition 2.1.

The First Step:

To construct bounds empirically, given an upper bound of probabilities of misreporting λv we

recommend using a minimum value of three restrictions on the sensitivity parameter in the

derivation of Proposition 2.1, a restriction from obtaining the inverse of a perturbed matrix hI =
1

K |||M−1
X Z |||

, a restriction from the distinct eigenvalue condition hE = max
{
h : Ph

y ≤
min

i, j

∣∣ρ i−ρ j

∣∣
2κλv (S)

}
,

and a restriction from a density restriction hDx∗ ≡max
{
h : Ph

y ≤ ρx∗
κλv

, and Ph
y ≤ 1−ρx∗

κλv

}
. We have

considered three measures of h, hI , hE, and hDk and the first step selection for the upper bound

of h is hR1x∗ ≡min
{
hI ,hE,hDx∗

}
for all x∗.

The Second Step:

As for the breakdown frontier analysis for the identification sets of the probability in Proposi-

tion 2.1, we consider a specific conclusion that fY |X∗ (y|x∗) ≥ p for a given value of (y, x∗) and

for some p ∈ (0,1). Assume that ρk − p > 0. The breakdown frontier for the conclusion is

BFy(x∗ = k, p)=
{

(λ,h) ∈ [0,1/2)× Ĩ : ρk − p = κλ ·Ph
y

}
.

Denote κ(x∗ = k, p,λ)= ρk−p
κλ

. Similar to the previous breakdown frontier analysis for the iden-

tification sets of the regression functions in Proposition 2.3, we obtain

BFy(x∗, p)=
{(
λ,bf y(λ; x∗, p)

)
:λ ∈ [0,1/2)

}
,

with the breakdown frontier

bf y(λ; x∗, p)=
κ(x∗, p,λ)

K |||M−1
X Z |||

(
1+κ(x∗, p,λ)+|||M−1

X Z ||| · |||MyX Z |||
) .(65)

Next, we consider the breakdown frontier bf y(λ; x∗, p) at λv and construct its one-sided lower

confidence interval by a bootstrap method. Denote φ
bf
y (λ,γ0; x∗, p) = bf y(λ; x∗, p), where γ0 =
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(
vec(MyX Z)T ,vec(MX Z)T)T ∈ R2K2

. Suppose γ̂n(v) = (
vec(M̂yX Z)T ,vec(M̂X Z)T)T

is an nonpara-

metric estimator for γ0 by the sample {yi, xi, zi}n
i=1. The plug-in estimator φbf

y (λv, γ̂n; x∗, p) is

an estimator for the breakdown frontier bf y(λ; x∗, p) at λv.

As for the bootstrap one-sided lower confidence interval, first we generate n observations

randomly with replacement from {yi, xi, zi}n
i=1 to obtain a bootstrap data set {y∗i , x∗i , z∗i }n

i=1,

and then calculate bootstrap estimates γ̂∗n j from the resample {y∗i , x∗i , z∗i }n
i=1 for j = 1, ...,B,

where B is the number of bootstrap samples. Next, we compute φ
bf
y (λv, γ̂∗n j; x∗, p) for j =

1, ...,B. For these bootstrap estimators, we sort them into order and use the 100αsth per-

centile of φbf
y (λv, γ̂∗n j; x∗, p) as a lower bound of the 1−αs confidence interval and denote it

as Lby(λv; x∗, p). Thus, the one-sided lower confidence interval of φbf
y (λv, γ̂n; x∗, p) with 1−αs

coverage is

(
Lby(λv; x∗, p),∞

)
.(66)

When the sensitivity parameter h is lower than the lower bound Lby(λv; x∗, p), this implies

approximately 100(1−αs)% of the time, the assumptions under the pair (λv,h) leads us to draw

the conclusion that fY |X∗ (y|x∗ = k) ≥ p. Hence Lby(λv; x∗, p) is a measure of the robustness of

our conclusion to failure of the point identifying assumptions with λv. The second step selection

for the upper bound of h is hR2x∗ = Lby(λv; x∗, p).

When the identification assumptions are maintained, we have used hR1x∗ in the first step

selection as the upper bound of the sensitivity parameter. To incorporate the implications of the

additional conclusion for the identification regions, we consider the case that the upper bound

of the sensitivity parameter h is smaller than the lower bound Lby(λv; x∗, p) and hR1x∗ . Then,

the upper bound of the sensitivity parameter is the minimum of the two upper bounds from

these two steps, i.e. hRx∗ ≡ min
{
hR1x∗ ,hR2x∗

}
for all x∗. When Lby(λv; x∗, p) ≥ hR1x∗ , and the

upper bound of the sensitivity parameter from the additional conclusion gives an identification

region greater than the one from the identification assumptions, there is no identifying power

of the extra conclusion. The simulation study in Section 5 shows that the bounds using λv and

hRx∗ can cover the true values in simulation designs.

5. Simulation Illustration

This section presents two simulation studies exploring the bounds and breakdown frontiers of

the latent density and the regression model under misclassification. Specifically, we consider
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the following setup: We simulate an outcome variable Y and a latent regressor variable X∗ ∈
{0,1}. However, X∗ is not observed directly. Rather, we observe two proxy variables, X and Z,

measured with error as observations of X∗. Given this setup with mismeasured regressors, our

simulation studies investigate the following: (i) The bounds of the conditional density fY |X∗ and

the conditional means of the outcome E [Y |X∗] that can be recovered from the observed data on

(Y , X , Z). (ii) The breakdown frontier analysis for these identification regions. We explore how

the bounds and breakdown frontiers change by varying aspects of the data-generating process

- such as the deviation from the conditional independence - across simulations. Through these

simulation studies, we can understand the effectiveness of our proposed estimation methods.

5.1. Density Case

Consider the outer identified set developed in the density case to a binary choice model with a

mismeasured 0-1 dichotomous explanatory variable X∗. We begin with simulated data for the

binary variables X∗ and Z generated as follows:

p(X∗ = 1)= 0.5, fZ|X∗(0|0) fZ|X∗(1|0)

fZ|X∗(0|1) fZ|X∗(1|1)


2×2

=
 0.8 0.2

0.2 0.8


2×2

.

The data-generating process for the binary outcome Y and mismeasured regressor X is:

X = 1
(−0.25+ X∗+γZ+ux ≥ 0

)
,(67)

Y = 1
(−1.2+0.6X∗+αX +uy ≥ 0

)
,(68)

with ux ∼ N(0,0.22),uy ∼U(0,1), and ux ⊥ (X∗, Z) and uy ⊥ (X , X∗, Z). We consider 10 values

of the parameters (γ,α):

DGP I: (γ,α)= (0,0),

DGP II: (γ,α)= (0,0.15),

DGP III: (γ,α)= (0.15,0),

DGP IV: (γ,α)= (0,0.3),

DGP V: (γ,α)= (0.3,0),

DGP VI: (γ,α)= (0.3,0.3),
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DGP VII: (γ,α)= (0.4,0.4),

DGP VIII: (γ,α)= (0.5,0.5),

DGP IX: (γ,α)= (0.55,0.55),

DGP X: (γ,α)= (0.6,0.6).

When (γ,α) = (0,0), we have Y ⊥ X ⊥ Z|X∗, satisfying the conditional independence assump-

tion. For γ ̸= 0, fX |ZX∗(X |Z, X∗) ̸= fX |X∗(X |X∗), and for α ̸= 0, fY |X X∗(Y |X , X∗) ̸= fY |X∗(Y |X∗).

Therefore, deviating (γ,α) from (0,0) represents a failure of the conditional independence as-

sumption. To measure the deviation from conditional independence in each DGP, we define hM

as the maximum difference between the true joint density fY X Z|X∗(Y , X , Z|X∗) and the product

fY |X∗(Y |X∗) fX |X∗(X |X∗) fZ|X∗(Z|X∗):

hM =max{h : h = | fY X Z|X∗(Y , X , Z|X∗)− fY |X∗(Y |X∗) fX |X∗(X |X∗) fZ|X∗(Z|X∗)|}.

Estimating hM for each DGP, Table 1 shows that hM increases with the parameters (γ,α) that

directly induce deviation. hM increases more rapidly with γ due to the stronger effect of Z on

X . The bounds depends on λ and h. Since X∗ is observed in the simulations, we estimate

λ̂=max1≤i≤K
∑

j ̸=i f̂X |X∗( j|i), where f̂X |X∗ is a nonparametric frequency estimator of fX |X∗ . We

find λ̂ increases with γ but not α. To derive bounds, we set λ = 0.1 for tractability. We use

the first step of systematic sensitivity analysis to determine appropriate upper bounds hR1x∗

on h for each DGP. For DGPs I-VI, the distinct eigenvalue condition limits hR1x∗ = hE. For

DGPs VII-X, the density restriction limits hR1x∗ = hDx∗ . We estimate hS, the largest deviation

from conditional independence that satisfies the separation restriction in Proposition 2.1. hS is

larger than hR1x∗ in all simulations, so the separation restriction does not bind in the first step

selection. The estimated hS is much smaller than hM for all DGPs. Since hS represents the

largest perturbation the separation restriction allows, our bounds could only locally capture

how the data distribution informs the parameters of interest. The bounds do not fully reflect

the extent of deviation from conditional independence, as measured by hM . We define h0 as the

smallest h that yields an outer identified set covering the true density fY |X∗(1|1). Since X∗ is

observed, we can compute h0. We find hR1x∗ ≥ h0 for all DGPs, so the bounds cover the truth.

In summary, by increasing (γ,α) across DGPs, we find: (1) hM increases, indicating greater

deviation from conditional independence; (2) either distinct eigenvalue or density restrictions

determine h bounds; and (3) the resulting bounds still cover the true densities. Our results

guide us on when our bound method can be applied despite failures of conditional independence.
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To conduct a breakdown frontier analysis in the second step selection, we impose an addi-

tional assumption that the conditional mean E[Y |X∗ = 1] ≥ µ = 0.15. Proposition 2.1 implies

the identification set for fY |X∗(1|1)= E[Y |X∗ = 1] is:

(
max

{
ρ2 −κλ ·Ph

1 ,0
}
,min

{
1,ρ2 +κλ ·Ph

1

})
,

where ρ2 is a point estimation for fY |X∗(1|1) and Ph
1 is the misclassification matrix evaluated

at y= 1. An informative lower bound is:

ρ2 −κλ ·Ph
1 ≥µ.

It follows that the breakdown frontier for a given λ is:

bf (λ;µ)=
κ(µ,λ)

K ||M−1
X Z ||(1+κ(µ,λ)+||M−1

X Z ||||MyX Z ||)
,

where κ(µ,λ)≡ ρ2−µ
κλ

.

In Table 2, we estimate the breakdown frontier bf (λ;µ) at λ= 0.1, the breakdown frontier

bf (λ;µ) at λ= 0, the 95% one-sided lower confidence interval of bf (λ= 0.1;µ), the recommended

upper bound hRx∗ , etc. Only in DGPs I, III, and V, the upper bounds for the sensitivity param-

eter from the breakdown frontier analysis (using the lower bound of the 95% one-sided lower

confidence interval of bf (λ= 0.1;µ)) is less than hR1x∗ and this implies that there is identifying

power of the conclusion to construct bounds. For most DGPs, hRx∗ > h0, so bounds at hRx∗ cov-

ered the truth, suggesting the bounds are quite robust to failures of conditional independence

despite their lack of sharpness.

Figure 1 shows the breakdown frontier analysis results for DGPs I-VI. The horizontal axis

indicates λ, the upper bound on misclassification probabilities. The vertical axis indicates h,

the degree of deviation from conditional independence. The breakdown frontiers slope neg-

atively, indicating a diminishing rate of substitution between relaxing the assumptions on λ

and h. Greater measurement error λ implies less deviation h from conditional independence

is needed to conclude, and vice versa. The upper bound hBF0 is the maximum h that allows

the conclusion when λ = 0 (no measurement error). hRx∗ , the recommended upper bound on

h, equal hR2∗
x

for DGPs I, III and V but hR1∗
x

for DGPs II, IV and VI. The breakdown frontier

analysis illuminates how the identifying power comes from jointly relaxing both assumptions.

There are trade-offs in how much one can perturb the model before losing the ability to draw a
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meaningful conclusion. The specific trade-off depends on the data-generating process. Compar-

ing hBF0 to hM and hRx∗ ≥ h0 suggests the approach can identify a neighborhood of the outer

identified set, recovering part of the truth even moderately far from conditional independence.

However, extrapolating too far risks misleading inferences.

Figure 2 shows estimated bounds for fY |X∗(1|1) using the bounds in Proposition 2.1 with

λ= 0.1 and h ∈ [0,hRx∗], under conditional partial independence. We examine how the bounds

change with increasing failure of conditional independence across DGPs I-VI by varying (γ,α).

The cyan stars show point estimates that assume conditional independence, while the blue

stars show the true fY |X∗(1|1) values. As expected, the stars separate more with greater de-

parture from conditional independence. For DGPs I, III, and V, the distances between the stars

increase with γ, rising from 0.025 to 0.071 as γ increased from 0 to 0.3. For DGPs I, II, and

IV, the stars remained close as α increases from 0 to 0.3, with γ= 0. For all DGPs, the bounds

using λ= 0.1 and hRx∗ cover the true fY |X∗(1|1) values. Despite failures of conditional indepen-

dence, our recommended nonparametric bounds yield reasonable estimates of the truth. The

results show that the approach can recover part of the identifying power lost by deviations

from conditional independence. The bounds expand as needed to continue covering the truth.

However, the stars also separate more, highlighting the bias from relying on point estimates

that falsely assume conditional independence. This tension suggests standard methods may

apply locally, but extrapolating too far risks misleading inferences – especially if deviations are

moderate to large. Comparing the bounds to hM for each DGP provides a sense of how much

the approach can recover while yielding valid conclusions for that population. The bounds re-

flect the data sufficiently to represent part of the truth, giving useful information even when

conditional independence fails.

5.2. Regression Case

The DGP for the proxy X is:

X = 1
(−0.25+0.5X∗+γZ+ux ≥ 0

)
,

where ux ∼ N(0,0.22), ux ⊥ (X∗, Z), p(X∗ = 1) = 0.5, and the conditional probability matrix for

Z given X∗ is:

 0.6 0.4

0.4 0.6

 .
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The DGP for the outcome Y is:

Y =−4.5+5X∗+ε,

where ε ∼ U(−1/2,1/2). The model satisfies Assumption 2.7, and γ ̸= 0 represents failure of

conditional independence, i.e. fX |ZX∗(X |Z, X∗) ̸= fX |X∗(X |X∗). We consider nine values of γ:

DGP I: γ= 0,

DGP II: γ= 0.2,

DGP III: γ= 0.3,

DGP IV: γ= 0.4,

DGP V: γ= 0.45,

DGP VI: γ= 0.5,

DGP VII: γ= 0.55,

DGP VIII: γ= 0.6,

DGP IX: γ= 0.625.

The deviation from conditional independence is measured by:

h̃M =max
{
h : h = | fX Z|X∗(X , Z|X∗)− fX |X∗(X |X∗) fZ|X∗(Z|X∗)|

}
.

Table 3 reports the estimated h̃M and λ̂ for each DGP. As expected, both increase with γ. We

set λ= 0.1 as in the density case. Table 3 shows the first estimates hI , hE, hS, and hR1x∗ . For

all DGPs, hE ≤ hS and the distinct eigenvalue restriction limits hR1x∗ = hE. In summary, this

simulation design systematically varies the degree of deviation from conditional independence

by increasing γ across DGPs. We find that the measured deviation h̃M and misclassification

probability λ rose with greater departure from the model assumption. However, the distinct

eigenvalue restriction still determines the first upper bound hR1x∗ for all DGPs.

We consider the additional conclusion for the second selection step that E[Y |X∗ = 0] ≥ µ =
−6 to evaluate breakdown frontiers. Table 4 gives the results. Only for DGP I, the breakdown

frontier analysis yield a smaller h bound (hRx∗) than hR1x∗ . For all DGPs, hRx∗ > h0, so the

bounds cover the true conditional means. Figure 3 shows the breakdown frontier plots, similar

to Figure 1. The frontiers slope negatively, indicating decreasing marginal rates of substitution

between relaxing λ and h. More measurement error required less deviation from conditional
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independence, and vice versa, to conclude. For DGP I, the additional conclusion provided mean-

ingful identifying power by yielding a hRx∗ bound smaller than the hR1x∗ bound. For all DGPs,

while hRx∗ > h0 ensures the conclusions remain valid, the differences between hRx∗ and hM

highlight a lack of sharpness. The breakdown frontier of the regression case exhibits similar

patterns to the density case.

Figure 4 shows identified sets for E[Y |X∗ = 0] under Assumption 2.6 (conditional partial

independence) using the bounds in Proposition 2.3. The cyan stars indicate point estimates

assuming full conditional independence, while the blue stars show the true E[Y |X∗ = 0] values.

For DGPs II, III, and IV, the stars are far apart when γ ̸= 0, indicating bias from relying on

estimates that falsely assume conditional independence. The bounds begin covering the truth

once hRx∗ > h0. Since hRx∗ > h0 for all DGPs, the bounds span the true E[Y |X∗ = 0] values.

The results show that our nonparametric bounds also perform well for the regression case.

However, the separation between the stars highlights the risk of misleading inferences from the

point identification method that does not account for such deviations. The differences between

hRx∗ and h̃M suggest the bounds are not fully sharp, only locally capturing the data-generating

process. While yielding reasonably accurate sets, caution is needed in interpreting findings too

far from the values used in the analysis. The bounds provide useful information on E[Y |X∗ =
0] for neighborhoods of the data distribution utilized but may not represent the entire outer

identified set globally.

6. Empirical Application

This section applies the developed estimator to a regression model to investigate the impact

of schooling on wages in which the true education level of each individual is subject to misre-

porting error.9 We use the dataset in Kane et al. (1999), which contains wages and education

levels from the National Longitudinal Study of 1972 (NLS-72) and the Postsecondary Education

Transcript Study (PETS). Consider a measurement model of a wage equation as follows:

Y = E(Y |X∗)+U ,(69)

where Y represents log wage, X∗ symbolizes the true education level, and U constitutes a re-

gression error. We observe two measurements of the true education level X∗, namely the self-

9We are grateful to Professor Ruli Xiao at Indiana University for providing some MATLAB codes and other
materials in this section.
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reported education attainment X and the transcript-recorded education attainment Z.10 Indi-

viduals are more likely to report the same educational attainment as the one in the transcript.

Table 5 reports summary statistics for the three education categories in transcript-recorded

and self-reported education attainments. When analyzing the data, we have categorized it into

three different education categories: High School, Some College, and Bachelor. Individuals

with more schooling in transcript-recorded or self-reported education attainments appear to

have higher wages.

Our approach to analyzing the relationship between wages and schooling is to consider the

partial identification for the regression model under misclassification in Proposition 2.3. The

advantage of the approach is relaxing conditional independence by using conditional partial

independence between the self-reported education attainment X and the transcript-recorded

education attainment Z in Assumption 2.6. Rewrite the perturbation equation (40) in this

empirical application as

d̃0(X , Z, X∗)≡ (
fX |ZX∗

(
X |Z, X∗)− fX |X∗

(
X |X∗))

fZ|X∗
(
Z|X∗)

.(70)

If fZ|X∗ (Z|X∗) > 0, the variation of the conditional partial independence between X and Z

is reduced to the variation of fX |ZX∗ (X |Z, X∗)− fX |X∗ (X |X∗) which reflects the marginal im-

pact of adding the extra conditioning variable Z into the conditional probability fX |X∗ (X |X∗).

That is, given (X , X∗), fX |ZX∗(X |Z, X∗) depends on the transcript-recorded education attain-

ment Z. More precisely, reporting behavior of education attainment conditional on the actual

education level fluctuates when there is additional information on transcript-recorded educa-

tion attainment. For instance, consider the probabilities of reporting for high-school individ-

uals at another transcript-recorded education attainment, such as f (X |Z = High School, X∗ =
High School) and f (X |Z = Bachelor, X∗ = High School). If f (X = Bachelor|Z = Bachelor, X∗ =
High School) > f (X = Bachelor|Z = High School, X∗ = High School), this indicates there is a

tendency for overreporting when there is a discrepancy in the transcript-recorded education

attainment. Therefore, our approach permits the variation to integrate information on the

transcript-recorded education attainment on probabilities of misreporting. Assumption 2.4 in

which people are more willing, conditional on their education, to tell the truth rather than lie.

It can be observed that Assumption 2.4 is in line with the findings of Kane et al. (1999) (Table 5,

p. 18). According to the research, individuals with various education levels are likely to provide

10The wage in Kane et al. (1999) are limited to observations reporting wages between $1.50 and $80.00 per hour
in 1986 and there may exist measurement error problems in it. However, we focus on the case of misreporting in a
categorical variable with more than two measures and assume the dataset provides accurate wage measures.
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accurate self-reports of their educational attainment, with probabilities greater than or close

to 0.92. Based on the research, the probability of accurate self-reports of educational attain-

ment is high among individuals with various education levels. Therefore, the upper bound of

misreporting educational attainments is reasonable, given that the sum of conditional proba-

bilities for misreporting is less than or equal to 0.08. We will specify λv = 0.08 for the sensitivity

analysis in Section 4 to compute identification regions. Assumption 2.7 asserts that the condi-

tional mean of log wage given that the true education level is unaffected by the self-reported

education attainment X and the transcript-recorded education attainment Z. Assumption 2.9

guarantees that the conditional means of log wage given the true education levels differ across

varying levels.

Table 6 reports point estimates of mean log wage on the three education categories and their

standard errors using the estimator in Hu (2008). The maintained conditional independence

assumption of the point estimates is that reporting behavior of educational attainment does

not depend on the transcript-recorded education attainment when the true education level is

known. The results in Table 6 show that the mean log wage of High School is less than the

mean log wage of Some College by about 2.208−2.025= 0.183 while the mean log wage of Some

College is less than mean log wage of Bachelor about 2.446−2.208= 0.238. The wage differences

between education categories increase with the education level.

Table 7 presents the estimation results of the bounds of mean log wage across the three

education categories at the verified probability of misreporting λv = 0.08. For the given mis-

classification probability, we merely conduct the first step selection in subsection 4.2 and do not

impose any additional conclusion for the second step selection because Assumption 2.9 already

provides the desired constraints on the conditional mean of log wage given the true education

level. In the regression model, there is no density limitation, and the range of the sensitivity

parameter from the first step selection is hR1 = hE. The empirical recommendation for the

sensitivity parameter h of the bounds in Table 7 is 8.549×10−4. The selection of the sensitivity

parameters generally leads to the bounds in Table 7 being disjoint. Although the recommended

value is small, the corresponding bounds and their 95% confidence intervals in Table 7 across

different education attainments are significantly wider than the 95% confidence intervals of the

point estimator in Table 6. The wider intervals imply that the recommended value is statisti-

cally significantly different from zero and the corresponding bounds provide meaningful ranges

of mean log wage when the assumption of conditional independence is not holding. It is cru-

cial to understand that h primarily measures the extent to which the conditional independence

assumption is relaxed within the model. Although the small magnitude of h might initially
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suggest a minimal deviation from conditional independence, its fundamental role in this em-

pirical context is to signify whether the assumption holds rather than quantify its degree of

relaxation. The modest size of h in this instance complicates its interpretation as a marker of

varying degrees of assumption relaxation. Therefore, while h is instrumental in indicating the

presence of deviation from conditional independence, it does not provide a granular measure of

the extent of this deviation.

While precision is lost relative to point estimates under ideal assumptions, partial identi-

fication provides sensible ranges reflecting uncertainty from model deviations. Incorporating

sensitivity analysis provides more realistic and informative bounds rather than relying on im-

plausible assumptions for mathematical convenience. This allows better-calibrated predictions

and decisions than misleading point estimates under flawed assumptions. There are the worst-

case bounds for the wage differentials between the education categories which represent the

widest possible range of values for wage difference by educational attainment level. While

the worst wage differential from High School to Some College is 2.329-1.906=0.423, the worst

wage differentials from Some College to Bachelor is 2.559-2.102=0.457. On the other hand, the

worst wage differentials from High School to Some College and from Some College to Bachelor

using the 95% confidence intervals of the point estimator are 2.230-2.005=0.225 and 2.464-

2.186=0.278 respectively.

The point estimator underestimates the wage difference by educational attainment levels.

In all estimation results, wage difference by educational attainment level increases with the

education level. Figure 5 plots the 95% confidence intervals of the point estimator, the bounds,

and their 95% confidence intervals at the education categories. Both 95% confidence intervals

of the point estimator and the bounds are symmetric intervals centered at the point estimator

for all educational attainments. However, the centers of the 95% confidence interval of the

bounds at High School, and Some College, are 2.017 (smaller than the point estimator 2.025),

and 2.216 (larger than the point estimator 2.208), respectively. While the mean log wage of

individuals in High School has a more extended spread below the point estimator, the mean log

wage spread of individuals in Some College has a longer spread above the point estimator. The

indicates little asymmetry in the distributions of the bounds at High School, and Some College.

7. Conclusion

In this paper, we relax the baseline conditional independence assumptions of the point iden-

tifications to derive identified sets for various nonlinear models when a discrete explanatory
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variable is subject to misclassification error. We use sup-norm deviations to weaken the con-

ditional independence assumptions, and the deviations can be expressed as a perturbation

matrix between an observable matrix and an eigenvalue-eigenvector decomposition. Then,

we apply the perturbation theory of the eigenvalue of a diagonalizable matrix to provide the

bounds of the nonlinear models with misclassification error, and the upper bound of misreport-

ing probabilities and deviations can index the bounds. Treating the upper bound of misreport-

ing probabilities as baseline information and input provided by validation studies, we propose

a systematic sensitivity analysis to select the upper bounds of the deviation to construct iden-

tified sets. The selection procedure requires two steps. The first step involves imposing the

identification assumptions on the sensitivity parameter and the restrictions coming from prob-

ability theory. The second step is specifying additional desired conclusions for a breakdown

frontier analysis. The upper bound for the deviation is the minimum of the two upper bounds

from these two steps. Our simulation results suggest that the identified sets using the recom-

mended upper bounds of the sensitivity parameter can cover the true parameters of interest.

The empirical illustration provides meaningful ranges for the potential values of the mean log

wage parameters. Though wider, the bounds likely contain the true values and are informative

for prediction/decision tasks.

The partial identification results rely on those distinct restrictions on the latent data-

generating process and on misreporting probabilities (higher chance of reporting truthfully). As

the deviations approach zero, the nonparametric partial identification of the nonlinear models

with misclassification error becomes the point identification. It may be useful for researchers to

consider any prior information they have regarding the misreporting pattern when analyzing

data. By doing so, they can incorporate this information directly into their partial identifica-

tion analysis, which is indexed by the upper bound of misreporting probabilities and deviations.

This approach can improve the analysis’s accuracy and reliability, leading to more insightful

and meaningful results. The systematic sensitivity analysis uses prior information and ob-

served data to determine an upper bound on deviations ensuring reasonably accurate conclu-

sions, at least for neighborhoods of values utilized. However, caution is needed to interpret too

far beyond that, as the identified set remains unknown.

A. Proofs

It is worth mentioning that the condition number of the misclassification probability matrix is

defined as κ(MX |X∗) = |||M−1
X |X∗ ||| · |||MX |X∗ |||, and this information plays a crucial role in deter-
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mining the perturbation bound. Our research has revealed that the condition number of the

misclassification probability matrix depends on the specific restriction outlined in Assumption

2.4.

Proposition A.1. (Bounds for κ(MX |X∗)) Under Assumption 2.4, the possible values for the

condition number κ(MX |X∗) is

1≤ κ(MX |X∗)≤ 1
(1−λ)(1−2λ)

≡ κλ,(71)

where 0≤λ< 1
2 is a constant defined in Assumption 2.4.

Proof of Proposition A.1: Assumption 2.4 implies the following inequality

fX |X∗(i|i)> ∑
j ̸=i

fX |X∗( j|i) ∀i.(72)

This ensures that MX |X∗ is strictly diagonally dominant and every main diagonal entry of

MX |X∗ is nonzero. Denote IK as the K × K identity matrix and the K × K diagonal matrix

DX |X∗ = diag( fX |X∗(1|1), ..., fX |X∗(K |K)). Consider a row scaling away matrix D−1
X |X∗ MX |X∗

which has all 1s on its main diagonal and its (i, j) element is fX |X∗ ( j|i)
fX |X∗ (i|i) for j ̸= i. Then, the

matrix

B ≡ [bi jw]= IK −D−1
X |X∗ MX |X∗(73)

has all 0s on the main diagonal, and bi jw =− fX |X∗ ( j|i)
fX |X∗ (i|i) . Consider the maximum row sum matrix

norm of B,

|||B||| = max
1≤i≤K

∑
j ̸=i

fX |X∗( j|i)

fX |X∗(i|i) .(74)

Applying the triangle inequality to Equation (73) yields

|||D−1
X |X∗ MX |X∗ ||| = |||IK − (IK −D−1

X |X∗ MX |X∗)||| ≤ 1+|||B|||.(75)

Assumption 2.4 implies |||B||| ≤ λ
1−λ < 1 for λ ∈ [0,1/2). This implies that IK −B = D−1

X |X∗ MX |X∗
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is nonsingular with11

M−1
X |X∗DX |X∗ = (IK −B)−1 =

∞∑
j=0

B j.(76)

It follows that

|||M−1
X |X∗DX |X∗ ||| ≤

∞∑
j=0

|||B||| j = 1
1−|||B||| .(77)

Combining the inequalities in Equations (75) and (77) with the submultiplicativity of the ma-

trix norm yields the upper bound of κ(MX |X∗)

κ(MX |X∗)= |||M−1
X |X∗ ||| · |||MX |X∗ |||(78)

= |||
(
M−1

X |X∗DX |X∗
)
D−1

X |X∗ ||| · |||DX |X∗
(
D−1

X |X∗ MX |X∗
)
|||(79)

≤ |||M−1
X |X∗DX |X∗ ||| · |||D−1

X |X∗ ||| · |||DX |X∗ ||| · |||D−1
X |X∗ MX |X∗ |||(80)

≤ |||D−1
X |X∗ ||| · |||DX |X∗ ||| · 1+|||B|||

1−|||B|||(81)

≤
max

i
fX |X∗(i|i)

min
i

fX |X∗(i|i) ·
1+|||B|||
1−|||B|||(82)

≤ 1
(1−λ)(1−2λ)

,(83)

where we have used that |||B||| < λ
1−λ and lower bounds on the probabilities of correct report in

Equation (25), i.e., min
i

fX |X∗(i|i)≥ 1−λ.

As for the lower bound of κ(MX |X∗), consider

1= |||IK ||| = |||M−1
X |X∗ MX |X∗ ||| ≤ |||M−1

X |X∗ ||| · |||MX |X∗ ||| = κ(MX |X∗).(84)

Q.E.D.

Proof of Proposition 2.1: We have formalized the conditional partial independence in As-

sumption 2.1 using matrix notation in Equations (15) and (16). We first show that Assumption

2.2(i) implies that MX Z −Md is invertible. To find the existence of the inverse term, we adopt

the following result of approximating the inverse of a perturbed matrix from Horn and Johnson

(2013).12

11Corollary 5.6.16 in page 351 of Horn and Johnson (2013): If ||| · ||| is a matrix norm, and if |||A||| < 1, then IK −A

is nonsingular and
(
IK − A

)−1 =
∞∑
j=0

A j .

12The result can be found on page 381 of Horn and Johnson (2013).
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Lemma A.1. Let ||| · ||| be a matrix norm. Consider an invertible matrix A, subject to a small

perturbation ∆A. If |||A−1∆A||| < 1, then A+∆A is invertible and

(A+∆A)−1 = A−1 +B,(85)

where B =
∞∑

i=1
(−A−1∆A)n A−1, and |||B||| ≤ |||A−1|||·|||A−1|||·|||∆A|||

1−|||A−1∆A||| .

Because the matrix norm is a submultiplicative, we have |||M−1
X Z Md||| ≤ |||M−1

X Z ||| · |||Md||| ≤
|||M−1

X Z |||Kh by Equation (20). Under Assumption 2.2(i), |||M−1
X Z Md||| < 1. Then, the inverse

matrix (MX Z −Md)−1 exists by Lemma A.1 and this implies MX∗Z is invertible by Equation

(16) and the invertibility of MX |X∗ in Assumption 2.4. In addition, (MX Z −Md)−1 = M−1
X Z +Bd,

where

|||Bd||| ≤
|||M−1

X Z ||| · |||M−1
X Z ||| · |||Md|||

1−|||M−1
X Z Md|||

≤ |||M−1
X Z |||2Kh

1−|||M−1
X Z |||Kh

.(86)

The perturbation matrix Ph
y (d) is expressed in terms of the observed matrices MX Z , MyX Z

and the perturbation matrices Md(y) and Md. Since the deviation matrices Md(y) and Md are

relatively small when h is small, the perturbation matrix Ph
y (d) is also relatively small for a

small h. The perturbation matrix Ph
y (d) can be bounded by

|||Ph
y (d)||| ≤ |||−M−1

X Z Md(y)+Bd
(
MyX Z −Md(y)

) |||(87)

≤ |||M−1
X Z Md(y)|||+ |||Bd|||

(|||MyX Z |||+ |||Md(y)|||)
≤ |||M−1

X Z |||Kh+ |||M−1
X Z |||2Kh

1−|||M−1
X Z |||Kh

(|||MyX Z |||+Kh
)≡ Ph

y ,

where we have used the inequalities in Equations (19) and (86). Notice that Ph
y (d) = 0 if h = 0.

The equation (23) implies that the eigenvalue-eigenvector decomposition M−1
X |X∗D y|X∗ MX |X∗ is

close to the observable matrix M−1
X Z MyX Z under Assumption 2.1.

Next, we apply the Bauer-Fike theorem in Theorem 2.1 to the matrix equation (23) using the

notations from Equations (26)-(30). Under Assumptions 2.3, and 2.4, M−1
X |X∗D y|X∗ MX |X∗ has

a unique eigenvalue-eigenvector decomposition with distinct eigenvalues
{

fY |X∗ (y|x∗ = 1), ...,

fY |X∗ (y|x∗ = K)
}

for given y. If ρ is an eigenvalue of M−1
X Z MyX Z for given y, then for given y we

claim that there exists a unique eigenvalue ρ∗ ∈
{

fY |X∗ (y|x∗ = 1), ..., fY |X∗ (y|x∗ = K)
}

for which

|ρ−ρ∗| ≤ κλ ·Ph
y .(88)
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Suppose the claim is false. Under the perturbation result in Theorem 2.1, there would exist

ρ∗1 ̸= ρ∗2 ∈
{

fY |X∗ (y|x∗ = 1), ..., fY |X∗ (y|x∗ = K)
}

such that

|ρ−ρ∗1 | ≤ κλ ·Ph
y ≤ dEy,(89)

|ρ−ρ∗2 | ≤ κλ ·Ph
y ≤ dEy.(90)

This implies

|ρ∗1 −ρ∗2 | ≤ |ρ−ρ∗1 |+ |ρ−ρ∗2 | ≤ 2dEy,(91)

which contradicts the definition of dEy. We have reached the claim, and we can label the eigen-

value of M−1
X Z MyX Z corresponding to the eigenvalue fY |X∗ (y|x∗ = k) as ρk and |ρk− fY |X∗ (y|x∗ = k) | ≤

dEy. As for the distinctness of ρk,k = 1, ...,K , given y, consider for k1 ̸= k2 ∈
{
1, ...,K

}
∣∣∣ fY |X∗

(
y|x∗ = k1

)− fY |X∗
(
y|x∗ = k2

)∣∣∣
=

∣∣∣ fY |X∗
(
y|x∗ = k1

)−ρk1 +ρk1 −ρk2 +ρk2 − fY |X∗
(
y|x∗ = k2

)∣∣∣
≤

∣∣∣ fY |X∗
(
y|x∗ = k1

)−ρk1

∣∣∣+ ∣∣∣ρk1 −ρk2

∣∣∣+ ∣∣∣ρk2 − fY |X∗
(
y|x∗ = k2

)∣∣∣.
This implies that

∣∣∣ρk1 −ρk2

∣∣∣≥ ∣∣∣ fY |X∗
(
y|x∗ = k1

)− fY |X∗
(
y|x∗ = k2

)∣∣∣
−

∣∣∣ fY |X∗
(
y|x∗ = k1

)−ρk1

∣∣∣− ∣∣∣ρk2 − fY |X∗
(
y|x∗ = k2

)∣∣∣
> 2dEy −dEy −dEy = 0,

where we have used the definition of dEy. Q.E.D.

Proof of Proposition 2.2: By synthesizing the matrix equations in Equations (16) and (33),

the eigenvalue-eigenvector decomposition in Equation (34) is attained, M−1
X |X∗DF ỹ|X∗ MX |X∗ =

(MX Z −Md)−1 (
MF ỹ X Z −MdF ( ỹ)

)= M−1
X Z MF ỹ X Z+Ph

F ỹ
(d). By replicating the derivation employed

in the proof of Proposition 2.1, an upper bound on Ph
F ỹ

(d) emerges, as follows:

|||Ph
F ỹ

(d)||| = |||−M−1
X Z MdF ( ỹ)+Bd

(
MF ỹ X Z −MdF ( ỹ)

) |||(92)

≤ |||M−1
X Z |||Kh+ |||M−1

X Z |||2Kh

1−|||M−1
X Z |||Kh

(|||MF ỹ X Z |||+Kh
)≡ Ph

F ỹ
.(93)
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Therefore, the conclusions of Proposition 2.2 can be attained by employing the proof strategy of

Proposition 2.1. Q.E.D.

Proof of Proposition 2.3: Let us begin by considering the conditional partial independence

assumption stated in Assumption 2.6. We can multiply Equation (40) by E(Y |X∗)c and sum

over the support of X∗ and this yields

∑
x∗

d̃0(X , Z, x∗)E(Y |x∗) fX∗
(
x∗

)
(94)

=∑
x∗

E(Y |x∗) fX ZX∗
(
X , Z, x∗

)−∑
x∗

E
(
Y |x∗)

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
=∑

x∗
E(Y |X , Z, x∗) fX ZX∗

(
X , Z, x∗

)−∑
x∗

E
(
Y |x∗)

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
= E(Y |X , Z) fX Z (X , Z)−

∑
x∗

E
(
Y |x∗)

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
,

where we have used Equation (41) in Assumption 2.7. We can express the equation in matrix

notation by defining the K ×K matrix M̃d as follows:

M̃d =


d̃1(1,1) · · · d̃1(K ,1)

...

d̃1(1,K) · · · d̃1(K ,K)


K×K

,(95)

where d̃1(X , Z) ≡ ∑
x∗

d̃0(X , Z, x∗)E(Y |x∗) fX∗ (x∗). Based on Assumption 2.6, we can infer that

|d̃1(X , Z)| ≤ ∑
x∗
|d̃0(X , Z, x∗)||∫y yfY X∗(y, x∗)dy| ≤ Kh|E(Y )|, each element of the matrix M̃d is

less than Kh|E(Y )|. By the definition of the matrix norm in Equation (18), we obtain

|||M̃d||| ≤ K2h|E(Y )|.(96)

Define the following matrix:

D y|X∗ =


E (Y |x∗ = 1) 0 · · · 0

... E (Y |x∗ = k)
... 0

0 · · · 0 E (Y |x∗ = K)


K×K

.(97)

The matrix expression of Equation (94) is

M̃d = MyX Z −MX∗ZD y|X∗ MX |X∗ .(98)
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After analyzing Equation (40) and multiplying it by fX∗ (X∗), and then summing over the

support of X∗, we have

∑
x∗

d̃0(X , Z, x∗) fX∗
(
x∗

)= f (X , Z)−
∑
x∗

fX |X∗
(
X |X∗)

fZX∗
(
Z, x∗

)
.(99)

Define d̃2(X , Z)=∑
x∗

d̃0(X , Z, x∗) fX∗ (x∗) and define the K ×K matrix M̃d2 as follows

M̃d2 =


d̃2(1,1) · · · d̃2(K ,1)

...

d̃2(1,K) · · · d̃2(K ,K)


K×K

.(100)

The matrix expression of Equation (99) is

M̃d2 = MX Z −MX∗Z MX |X∗ .(101)

By Assumption 2.6, |d̃2(X , Z)| ≤ ∑
x∗
|d̃0(X , Z, x∗)| fX∗ (x∗) ≤ h

∑
x∗

fX∗ (x∗) = h, every entry of the

matrix M̃d2 is less than h. Similar to the inequality in Equation (96), we have

|||M̃d2 ||| ≤ Kh.(102)

We apply Lemma A.1 with Assumption 2.8 to address the existence of the inverse matrix(
MX Z − M̃d2

)−1
and this yields

(
MX Z − M̃d2

)−1 = M−1
X Z + B̃d,(103)

where |||B̃d||| ≤ |||M−1
X Z |||·|||M−1

X Z |||·|||M̃d2 |||
1−|||M−1

X Z M̃d2 |||
. Similar to the derivation of the bounds for Bd in Equation

(86), we obtain |||M−1
X Z M̃d2 ||| ≤ |||M−1

X Z ||| · |||M̃d2 ||| ≤ |||M−1
X Z |||Kh and then

|||B̃d||| ≤
|||M−1

X Z |||2Kh

1−|||M−1
X Z |||Kh

.(104)

As explicated in the proof of Proposition 2.1, the invertibility of MX Z−M̃d2 and the invertibility

of MX |X∗ in Assumption 2.4 ensures MX∗Z is invertible. Thus, we can combine the matrix

relationship in Equations (98) and (101) as

M−1
X |X∗D y|X∗ MX |X∗ = (

MX Z − M̃d2

)−1 (
MyX Z − M̃d

)
.(105)
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Put the relation in Equation (103) back to Equation (105),

M−1
X |X∗D y|X∗ MX |X∗ = (

M−1
X Z + B̃d

)(
MyX Z − M̃d

)
(106)

= M−1
X Z MyX Z −M−1

X Z M̃d + B̃d
(
MyX Z − M̃d

)
.

Define the perturbation between the observable matrix M−1
X Z MyX Z and the eigenvalue-eigenvector

decomposition M−1
X |X∗D y|X∗ MX |X∗ to be

Ph
y (d)= M−1

X Z MyX Z︸ ︷︷ ︸
observable

−M−1
X |X∗D y|X∗ MX |X∗︸ ︷︷ ︸

a diagonal structure

(107)

=−M−1
X Z M̃d + B̃d

(
MyX Z − M̃d

)
.(108)

The perturbation matrix is bounded by

|||Ph
y (d)||| ≤ |||M−1

X Z M̃d + B̃d
(
MyX Z − M̃d

) |||(109)

≤ |||M−1
X Z M̃d|||+ |||B̃d|||

(|||MyX Z |||+ |||M̃d|||
)

≤ |||M−1
X Z |||Kh+ |||M−1

X Z |||2Kh

1−|||M−1
X Z |||Kh

(|||MyX Z |||+K2h|E(Y )|)≡ Ph
y .

Assume the condition in Assumption 2.9 to avoid repeated eigenvalues, and maintain the order-

ing of the eigenvectors by Assumption 2.4 to identify the eigenvalue-eigenvector decomposition

in M−1
X |X∗D y|X∗ MX |X∗ . To apply Theorem 2.1 to the regression models with misclassification

error, we use

Ã = M−1
X |X∗D y|X∗ MX |X∗ ,(110)

Ã+Ph
y (d)= M−1

X Z MyX Z .(111)

In this application, the corresponding diagonal matrix is D y|X∗ and the matrix of eigenvectors

is the misclassification probability matrix MX |X∗ . The condition number is the same as the

condition number κ(MX |X∗) which is bounded by

1≤ κ(MX |X∗)≤ κλ,(112)

where the upper bound κλ is defined in Equation (71) for Theorem A.1. Q.E.D.
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Table 1: Measures of Sensitivity Parameter in Binary Choice Models

n = 1000 hM λ̂ hI hE hS hDx∗ hR1x∗ h0

DGP I: (γ,α)= (0,0) 0.016 0.100 2.382 0.008 0.008 0.011 0.008 0.001

DGP II: (γ,α)= (0,0.15) 0.021 0.100 2.382 0.009 0.009 0.011 0.009 0.001

DGP III: (γ,α)= (0.15,0) 0.039 0.161 2.230 0.008 0.009 0.011 0.008 0.003

DGP IV: (γ,α)= (0,0.3) 0.016 0.100 2.382 0.010 0.010 0.010 0.010 0.001

DGP V: (γ,α)= (0.3,0) 0.076 0.209 2.131 0.008 0.009 0.012 0.008 0.004

DGP VI: (γ,α)= (0.3,0.3) 0.087 0.209 2.131 0.011 0.012 0.012 0.011 0.004

DGP VII: (γ,α)= (0.4,0.4) 0.137 0.256 2.050 0.012 0.012 0.012 0.012 0.004

DGP VIII: (γ,α)= (0.5,0.5) 0.184 0.291 1.997 0.012 0.013 0.008 0.008 0.004

DGP IX: (γ,α)= (0.55,0.55) 0.207 0.311 1.969 0.013 0.013 0.007 0.007 0.005

DGP X: (γ,α)= (0.6,0.6) 0.221 0.313 1.966 0.013 0.013 0.004 0.004 0.004

Note: The definitions of the measures can be found in subsection 5.1.

Table 2: Measures of Sensitivity Parameter From Breakdown Frontier Analysis

n = 1000 bf (λ= 0.1;µ) hBF0 C.I. of bf (λ= 0.1;µ) hRx∗ hRx∗ > h0?

DGP I: (γ,α)= (0,0) 0.009 0.012 (0.007,∞) 0.007 Yes

DGP II: (γ,α)= (0,0.15) 0.012 0.016 (0.010,∞) 0.009 Yes

DGP III: (γ,α)= (0.15,0) 0.008 0.011 (0.006,∞) 0.006 Yes

DGP IV: (γ,α)= (0,0.3) 0.015 0.020 (0.013,∞) 0.010 Yes

DGP V: (γ,α)= (0.3,0) 0.008 0.011 (0.006,∞) 0.006 Yes

DGP VI: (γ,α)= (0.3,0.3) 0.015 0.020 (0.013,∞) 0.011 Yes

DGP VII: (γ,α)= (0.4,0.4) 0.017 0.022 (0.015,∞) 0.012 Yes

DGP VIII: (γ,α)= (0.5,0.5) 0.019 0.025 (0.016,∞) 0.008 Yes

DGP IX: (γ,α)= (0.55,0.55) 0.019 0.026 (0.017,∞) 0.007 Yes

DGP X: (γ,α)= (0.6,0.6) 0.020 0.027 (0.018,∞) 0.004 No

Note: The 95% confidence intervals of the breakdown frontiers at λ= 0.1 are computed by the bootstrap estimates
across 1000 simulations. Denote hBF0 as the breakdown frontier bf (λ;µ) at λ= 0.
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Figure 1: The Illustration of the Breakdown Frontiers of Binary Choice Models
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Figure 2: The Illustration of the Bounds of Binary Choice Models
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Table 3: Measures of Sensitivity Parameter in Regression Models

n = 2000 h̃M λ̂ hI hE hS hR1x∗ h0

DGP I: γ= 0 0.004 0.113 5.144 0.005 0.005 0.005 0.001

DGP II: γ= 0.2 0.079 0.228 3.127 0.009 0.013 0.009 0.003

DGP III: γ= 0.3 0.126 0.305 2.747 0.011 0.016 0.011 0.004

DGP IV: γ= 0.4 0.169 0.374 2.519 0.012 0.019 0.012 0.005

DGP V: γ= 0.45 0.184 0.398 2.453 0.012 0.020 0.012 0.005

DGP VI: γ= 0.5 0.194 0.415 2.412 0.012 0.021 0.012 0.005

DGP VII: γ= 0.55 0.202 0.428 2.380 0.013 0.021 0.013 0.005

DGP VIII: γ= 0.6 0.206 0.434 2.366 0.013 0.021 0.013 0.005

DGP IX: γ= 0.625 0.206 0.434 2.366 0.013 0.021 0.013 0.005

Note: The definitions of the measures can be found in subsection 5.1.

Table 4: Measures of Sensitivity Parameter From Breakdown Frontier Analysis

n = 2000 bf (λ= 0.1;µ) hBF0 C.I. of bf (λ= 0.1;µ) hRx∗ hRx∗ > h0?

DGP I: γ= 0 0.004 0.005 (0.002,0.004) 0.002 Yes

DGP II: γ= 0.2 0.011 0.014 (0.009,0.011) 0.009 Yes

DGP III: γ= 0.3 0.014 0.018 (0.012,0.014) 0.011 Yes

DGP IV: γ= 0.4 0.016 0.021 (0.014,0.016) 0.012 Yes

DGP V: γ= 0.45 0.016 0.021 (0.015,0.016) 0.012 Yes

DGP VI: γ= 0.5 0.017 0.022 (0.015,0.017) 0.012 Yes

DGP VII: γ= 0.55 0.017 0.022 (0.016,0.017) 0.013 Yes

DGP VIII: γ= 0.6 0.017 0.023 (0.016,0.017) 0.013 Yes

DGP IX: γ= 0.625 0.017 0.023 (0.016,0.017) 0.013 Yes

Note: The 95% confidence intervals of the breakdown frontiers at λ= 0.1 are computed by the bootstrap
estimates across 1000 simulations. Denote hBF0 as the breakdown frontier bf (λ;µ) at λ= 0.
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Figure 3: The Illustration of the Breakdown Frontiers of Regression Models
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Figure 4: The Illustration of the Bounds of Regression Models

56



Table 5: Sample Proportions and Mean Log Wages in 1986

Sample Proportions:
Self-Reported Schooling:

Transcript-recorded High School Some College Bachelor Row Total

High School 0.288 0.060 0.015 0.362

Some College 0.034 0.250 0.025 0.309

Bachelor 0.000 0.005 0.324 0.329

Column Total 0.322 0.332 0.363 1.000

Mean Log Wages in 1986:
Self-Reported Schooling:

Transcript-recorded High School Some College Bachelor Row Total

High School 2.026 2.104 2.330 2.051
(0.497) (0.494) (0.609) (0.506)

Some College 2.118 2.206 2.375 2.210
(0.453) (0.488) (0.516) (0.492)

Bachelor 2.460 2.310 2.446 2.444
(0.350) (0.417) (0.495) (0.494)

Column Total 2.036 2.188 2.436 2.229
(0.495) (0.490) (0.502) (0.524)

1. Educational attainment was measured in 1979, and average log hourly wages were
observed in 1986. The sample size is 9261. 2. Source: NLS-72 and PETS.
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Table 6: Estimation of Mean Log Wage

High School Some College Bachelor

Point Estimation E(Y |X∗) 2.025∗∗∗ 2.208∗∗∗ 2.446∗∗∗

(0.010) (0.011) (0.009)

95% Confidence Interval (2.005,2.045) (2.186,2.230) (2.428,2.464)

1. Standard errors (calculated by bootstrap) are in parentheses. 2. Symbols ∗∗∗
indicate that the test is significant at a level of 1%.

Table 7: The Bounds of Mean Log Wage of True Education

High School Some College Bachelor

Bound (1.934,2.116) (2.116,2.299) (2.355,2.537)

95% C.I. of Bound (1.906,2.129) (2.102,2.329) (2.334,2.559)

Sensitivity Parameter hR1 8.568×10−4

Note: Bootstrap estimates compute the 95% confidence intervals of the bounds across
1000 simulations.
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Figure 5: The Illustration of the Bounds of Mean Log Wage
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