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A. Alternative Proof of Theorem 2.1

We provide an alternative proof of the main nonparametric identification result in Theorem
2.1.

We first derive the basic integral equation that needs to be solved. Combining Assump-
tions 2.2(i) and 2.3(i), we can obtain the relationship between the observed density and the

unobserved ones:

(1) fY,X(yax) = fY7X’X*(y,l',l'*)dl'*
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Since a characteristic function of any random variable completely determines its probabil-

ity distribution, the above equation is equivalent to

(2) Oty x—o(t) = /y '™ fy x (y, x)dy
= [ [y = mola ) i ol - o dy
-/ ”yfny mo(a*))dy fx x- (2la") fc- () da®
= 60(0) [ € e ol e (0o
= lon(0)] [ f e (ala) s (a7

for all real-valued ¢, where ¢,(t) f e f,(n)dn and we define e(t) such that the following
holds ¢, (t) = |¢n(t)|e?*® and e(t) is the phase of the function. Then Eq. can expressed
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in terms of two real equations:

(3) Regpy ., (1) = [0y (t)] /X _cos(tmo(z”) + e(t)) fx x- (2la”) fx- (27)da”,
(4) Imoyy ., (t) = |¢y()] /X sin(tmo(z") + e(t)) fx|x- (x]2") fx- (z")da™.

Without loss of generality, we can make the following assumption:

Assumption A.1. (Locally symmetric range) The range of the regression function {mg(x™*) :

x* € X*} has an open subset containing zero.

Assumption [A 1] is not restrictive because one may always shift the mean of the dependent
variable Y and redefine the regression function accordingly. Also, the range of the regression
is never reduced to a point, by the strict monotonicity imposed by Assumption 2.4.

Using Assumptions and 2.4 we can rescale the range of the regression function such
that the range is equal to the interval [—c, d] for positive constants ¢, d and c+d < 7. Because
|¢n(t)| is continuous at 0 (a property of any characteristic function) and |¢(0)| = 1, we can
find a ¢ < 7 such that 0 < |¢,(t)| < by for all ¢ in [0,¢] and a constant b;. Denote the variance

of the regression error as a . Choose a constant t,, such that

_ 2
O<tu<min{t, 2}.
Tn

Use Eq. to derive an operator equivalence relationship as following: for an arbitrary

h € L2([0,t.])

6) (Lhosyy W)@) = [ Beoyy o, (o)t
= [164(0) [ costtmalox*) + et - (ala™) - (a*)da* Bty

"/
i/
/ Fxix (2]2) fxoe (27) (Leospg o Ajg, ) (7)) da*

= <LfX\X* Afx* LCOSmO,eA|¢n\h> (.%'),

/ Fxix (2]2®) fx (2 cos(tmo(x )+e(t))|¢n(t)\h(t)dt> dz*

/ Ixix=(@]a") fx (@ cos(tmo(x )+e(t))(A|¢n|h)(t)dt> dz*

where we have used (i) Eq. (3)), (ii) an interchange of the order of integration (justified by



Fubini’s theorem), (iii) the definition of Ay |, (iv) the definition of L operating on the

A, h-

COSmy),e

function Ay, |k, and (v) the definition of Ly x«Afy. operating on the function L

COSmy),e

Thus, we obtain

(6) LR€¢fY,X - LfX\X* AfX*LCOSmo,eAWn\ = LfX\X* Afx* LRequY‘X* ’

We can also express Eq. as the following operator equivalence relationships:

(7) L1m¢fY,X - LfX\X*AfX* LSiﬂmo,eAWn\ = LfX\X* Afx* L1m¢fy‘x*'

Both LRe¢lex* and le¢fy|x* are bounded linear operators from L2([0,t,]) to £2(X*) be-
cause operators in the right hand side are all bounded by Assumption 2.1 and continuity of
characteristic functions.

Our identification technique is to derive a spectral decomposition of an observed integral
operator and show the uniqueness of the decomposition under our assumptions. We can derive
some primitive conditions for the invertibility of the operators L Redy, and L Iméyy which

are related to the invertibility of the operator L Fx|xr and the invertibility of the operators

LRed)fY\X* and le(bfy‘x* .
Lemma A.1. Assumptions 2.1 and 2.3(i), L;;lx* exists and is densely defined over L2(X).

The proof of Lemma [A1]1. Because the orthogonal complement of the null space of

Ly x+» denoted N'(Lyy .. )+, is the closure of the range of L}X‘X* and Ly, .. is one-to-one
1 o7-1 .

over N (Lyy ) Lf;qx* exists.

Next, we show that the adjoint of L Fx|xe also admits an integral representation. Because

L - isa bounded linear operator, there exists a unique adjoint operator L}X‘X* such that

<LfX\X* (f1)> f2> = <f17 L}X‘X* (f2)>

We have

(Lfgx-(f1): f2) = / Fxxo(@]2®) fi(2%) fo(z)da* da.

X JX*

'Lemma VI. 2.8 in [Dunford and Schwartz| (1971).



A direct verification gives the integral representation for L?xp(*’

(®) (L e £ = [ Frixe(ala) o)

Assumption 2.3(ii) implies that the adjoint operator L}Xlx* is one-to-one. By the part (b) of
Corollaries of Theorem 4.12 in Rudin (1991)), the range of Ly x is densein L2(X). Therefore,
L;}ilx* can be densely defined over £2(X). QED.

The above result show fo\ «» is onto and the injectivity of the operators fo\ e 18

directly assumed from the first part of Assumption 2.3(ii). Therefore, L;)ilx* exists and

—1
Ixx+

discussion hereafter focuses on the conditions for the completeness of Lcos,, ., and L

Ligix = LfX\X*L_l = I where [ is the identity map from £2(X*) to itself. The

Ix)x+
$illmg e -
Define ns(t) = 1 — cos(e(t)) = W as a measure of degree of non-symmetry. If the
distribution of the error term 7 is symmetric then ¢,(t) is real-valued and ns(t) = 0 for
t € [0,t,]. Continuity of characteristic functions and Assumption are sufficient conditions

for the invertibility of the operators Lcosmo,e, and L We have

Sinmg e *

Lemma A.2. If Assumption holds, then each of systems, {cos(tmo(z*) + e(t))|d,(t)] :
z* € X*} and {sin(tmo(z*) +e(t))|ey(t)] : z* € X*}, is complete over L2([0,t,]). This implies
the operators LRe(}SfY\X* and L]md)leX* are both injective from L2([0,t,]) to L2(X*).

The injectivity implies the inverses of Lgq¢ fy s and Lyne fy e exist and can defined over
the range of the operators. To show this primitive conditions for the invertibility, we utilize

results from Fourier analysis. We provide the following result of the trigonometric systemﬂ

Lemma A.3. If 1 < p < oo and A is a sequence of distinct real or complex numbers for

which
9) Ml <kt k=123
kl = 2p7 — Ly Ly 5.y

then the sequence {e™+}2° is complete in LP([—m,T]).

We can directly use this neat result to establish the following completeness.

2See Theorem 4 of page 119 in [Young (1980).



Lemma A.4. If the range of the regression function {mo(z*) : z* € X*} contains a sequence

of distinct numbers {1, A2, A, ...} such that
1
(10) Ml <k+70 k=123,

then the family of the functions {0 ") : 2* € X*} is complete in L([—m,7]).

Next, we establish the completeness of the two systems: {cos(tmg(z*)) : 2* € X*} and
{sin(tmg(x*)) : * € X*} over L2([0,ty]).

Lemma A.5. If the range of the regression function {mg(z*) : x* € X*} contains a sequence

of distinct numbers {1, A, As, ...} such that
1

then the families of the functions {cos(tmy(x*)) : 2* € X*} and {sin(tmo(z*)) : x* € X*} are

complete in L2([0,t,]) for any t, < 7.

The proof of Lemma This proof is established by the claim that the two families
{cos(t\y) : k = 1,2,3,..} and {sin(t\z) : k = 1,2,3,...} are complete over £2([0,]) with
M| <k+%, k=1,2,3,... Suppose that f[OJr] cos(tA)ha(t)dt = 0 for some hy € L2([0, 7).
Then we can extend the function hs to an even function in £2([—n,7]) by hao(—2) = ha(x).
It follows that f[ 0] cos(tAg)ha(t)dt = f[o ] COS (tAg)h2(t)dt = 0 and f[ 0] sin(t\g)ho(t)dt =

_f[o 1 S(tAR)ha(t)dt. Thus, f[,,, £ CO8(tAk)ha(t)dt = 0 and f[*ﬂ,ﬂ] sin(tAg)he(t)dt = 0. This
implies f[ jlcos(tAk) + dsin(tAe)]ho(t)dt = f[—mr] ek hy(t)dt = 0. The cosine part of the
claim can be ensured by the completeness of {e®* : k = 1,2,3,...} over £2([—7,7]) with
M| < k+ %, k=1,2,3,...,in Lemma The sine part of the claim can be reached by the
observation that we can extend a function hz over [0, 7] to an odd function over [—m, 7| by
hs(—xz) = —hs(z). Therefore, we have reached the families of the functions {cos(tmg(z*)) :
r* € X*} and {sin(tmg(x*)) : * € X*} are complete in £2([0,1,]) because if a family is

complete for functions over [0, 7], then it is complete over [0, ;] with ¢, < w. QED.

The above gives the invertibility of the operators Lcosm0,67 and Lsinmo,e under the sym-
metric distribution of the regression error 7, i.e., e(t) = 0 Vi. Next, we try to generalize
the invertibility or completeness of the symmetric case to a non-symmetric case. Comparing

the function in the symmetric case cos(tmg(z*)) with the function in the non-symmetric case



cos(tmg(x*) + e(t)) suggests that we can look into a situation where e(t) is under ”small”
perturbations around zero (symmetry; e(t) = 0 V¢) and investigate what restrictions on the
range of e(t) leads to invertibility of operators. In this way, questions about ”"small” per-
turbations can be regarded as questions about the stability of completeness because we have
already provided a sufficient condition for the symmetric case in Lemma We will adopt a
stability criterion to study completeness. The following result can be found in Young (1980)E|

Lemma A.6. Let {b;} be a complete sequence for a Hilbert space (H, | -||), and suppose that
{fr} is sequence of elements of H such that

1Y~ exor = f) |l < A e
k=1 P

for some constant 0 < X\ < 1, and all choices of the scalar {c1,co,c3,...,cn}, Then {fi} is

complete for H.

Lemma is based on the fact that a bounded linear operator 7" on a Banach space is
invertible whenever || — T'|| < 1 because the inverse operator of 7' can exist by the formula
T-! = § (I —T)kf| Define ns(t) = 1 — cos(e(t)) = W as a measure of degree of
non—synllgri%try. If the distribution of the error term 7 is symmetric then ¢, (t) is real-valued
and ns(t) = 0. The following result provides an upper bound on the absolute values of ns(t)

and it will be used to prove Lemma,
Lemma A.7. Fort € [0,t,], ns(t) is nonnegative and its mazimum is less than 1 .

The proof of Lemma [A.7] Suppose ¢4(t) is the characteristic function of a random vari-
able s. If s has zero expectation and finite variance o2, then the real part of the characteristic

function satisfies the following inequahtyﬂ

(12) Reu(t) > 1- 20

Because 7 has zero expectation, we can apply the result. By the definition of ¢,,, we obtain

a% 2 U%ti

3See Problem 2 in page 41. The result is stated for a Banach space and the dense property. Here we adopt
Hilbert space version by an important consequence of the Hahn-Banach theorem and the Riesz representation
theorem that the dense property is equivalent to the completeness in a Hilbert space.

4The result is like ordinary numbers: if |1 —¢| < 1, then t~! exists. More discussions can be found in [Young
(1980).

®See Theorem 2.3.2 of page 89 in [Ushakov| (1999).



Re(¢n)
|Pn]

ns(t) =1-— %ﬁ”) <1—¢,fortel0t,). QED.

This implies 0 < ¢, < < 1 for some positive constant ¢, over [0,t,] and then 0 <

Applying the stability criterion and Lemma [A7] to Lemma under Assumptions
and 2.4, we can prove Lemma [A72]

The proof of Lemma First, if the range contains any open set with zero, we can
always pick a sequence of distinct numbers {1, £X2, £ A3, ...} such that [A\gx| < k+ i, k=
1,2,3,.... We use subsequence of this sequence of distinct numbers to show that {cos(tAg) cos(e(t)) :
k = 1,2,3,..} is complete for £2([0,t,]) by applying Lemma to bi(t) = cos(tA;) and
fiu(t) = cos(tAg)cos(e(t)) with [A\y| < k43, k = 1,2,3,.... Write cx(bi(t) — fi(t)) =
ns(t)cg cos(tA;) for some constant ¢. By Lemma [A.7] |ns(t)] < A <1 for ¢ € [0,,] for some

constant A. For all choices of the scalars {c1, ca, ¢, ..., cn },

n

(14) 1D~ erbr() = fel )l = llns() Y erbe()l < A ewbi()]ls
k=1 k=1 k=1

with A < 1. Because {cos(t\;) : k = 1,2,3, ...} is complete by Lemmal[A.5| {cos(tAx) cos(e(t)) :
k=1,2,3,...} is complete by the stability criterion in Lemma

The next step is to show {cos(tA + e(t)) : A = £A1,E+A2, £A3,...} is complete over
£%([0,t,]). Suppose that there exists ho such that [cos(tAy + e(t))ha(t)dt = 0, VA =
A1, Eho, £As, e Recall that cos(tA + e(t)) = cos(tA) cos(e(t)) — sin(tA)sin(e(t)). Plug-
ging A = A\ and A = —)\; back to [cos(t\; + e(t))ha(t)dt = 0 and then summing up
those two identities, we obtain [ cos(tA1) cos(e(t))ha(t)dt = 0. Applying the same derivation
to £Ag, £ A3, ..., yields [cos(tAg)cos(e(t))ha(t)dt = 0, k = 1,2,3,.... Since we have shown
{cos(tAg) cos(e(t)) : k = 1,2,3,...} is complete, it follows that he = 0 which proves that
completeness of {cos(tmo(z*) + e(t)) : * € X*}. Since |¢,(t)| # 0 for [0,t,] by continuity
, {cos(tmo(z*) + e(t))|py(t)] : * € A*} is also complete. As for the sine part, in a sim-
ilar manner, we first show {sin(tA;)cos(e(t)) : k = 1,2,3,...} is complete by the stability
criterion in Lemma and then utilize |¢,(t)| # 0 for [0,t,] and the identities sin(t\, +
e(t)) = sin(tAx) cos(e(t)) + cos(t ;) sin(e(t)) and sin(—t g + e(t)) = —sin(tAg) cos(e(t)) +
cos(tAx) sin(e(t)) to show the completeness of {sin(tmo(z*) + e(t))|¢y(t)| : z* € X*}. QED.

In order to provide the onto property of the operators Lgeq fy e and Lyme fy e W€ need
a variant of the stability result as in Lemma To provide the result, we introduce the

following notations and statements. Any function f in a Hilbert space can be expressed as



a linear combination of the basis function with a unique sequence of scalars {cy, ¢, c3,...}.
Therefore, we can consider ¢, as a function of f. In fact, ¢, (-) is the so-called coefficient

functional

Definition A.1. If {f1, fa, f3,...} is a basis in a Hilbert space H, then every function f in H

has a unique series {ci,ca,cs, ...} such that

F=Y"calf) fu-

n=1

Each ¢y, is a function of f. The functionals ¢, (n = 1,2,3,...) are called the coefficient
functionals associated with the basis {fi, fa, fs,...}. Because ¢, is a coefficient functional

from H to R. Define its norm by

lenll = sup{lea(£)]: fe M, [fI <1}

The following results regarding the coefficient functionals are from Theorem 3 in section

6 in [Young (1980]).

Lemma A.8. If {f1, f2, f3,...} is a basis in a Hilbert space H. Define ¢, as coefficient

functionals associated with the basis. Then, there exists a constant M such that
(15) L< fall - llenll < M,

for all n.

Lemma A.9. Denote H as a Hilbert space. Suppose that
i) the sequence {ex (-) : k = 1,2,...} is a basis in a Hilbert space H,;
ii) the sequence {fy (-) : k =1,2,...} in H is w—independent;
iii) Yopy M eOl < oo,
Then, the sequence {fi(-) : k =1,2,...} is a basis in H.

Proof of Lemma Consider for any function f € H

[= ch(f)env

n=1

5The introduction of coefficient functional can be found in the page 22 of [Young] (1980).



where ¢, (f) is the coefficient functional corresponding to the basis {e, }. It is clear that ¢, (f)

is a linear function of f. We mimic the proof of Theorem 12 in [Young (1980). Consider

>l en= £l < Do lenl) (en =
n=1 n=1
Ien — fall ||cn||> £

len]]
Hen ful

where we have used (i) the triangle inequality, (ii) the definition of functional, and (iii) Lemma

AN
AA
8 ||M8

||e — Jall
0 llenll leall | 171

IN

A8 1 < |len| llen]] < M. Applying the condition (iii) > 2 len=rnl < 5 to the above

n=1"Tlenl

inequality suggests that the infinite sum » 7 ¢, (f) (e, — fn) is absolutely converge. Hence,

define an operator T : H — H as
Tf= ch(f) (en — fn) -
n=1

It is clear that T is linear. Since ¢y (ey,) =1 and cx(e,) = 0 for k # n, we have

o0

Tep, = ch(en) (en — fn) = €n — fn-

n=1

The relationship above implies that the linear operator 71" is bounded if

Z”e — fall <o
b
el

which is the condition (iii). We then show that 7" is a compact operator. Set

N
TNf = ch(f) (en - fn) .
n=1



Start with

[e.e]

Z cn(f) (en — fn)
n=N-+1

Z [en(f) (en — f)ll

n=N+1

< ( > llen = ful ||Cn||> £

n=N+1

(T —=To)fl =

IN

Follow the previous derivation of |37 | ¢n(f) (en — fn)|l, we can obtain

(T = To) fI| < M( > He”_f"”> £l

e Tl

This implies that ||(T' — T,)|| < M (ZZO:NH ”eﬁ;ﬂ”” ) Assumption iii) of Lemma 10 suggests
that ||T" — T,|| — 0. Since each Ty has finite dimensional range and ||T' — T || — 0 as N — oo,
T is an compact operatorm

Next, we show that Ker(I —T) = {0}, i.e., (I — T) is invertible. Consider

0 = (I-DT)f
= =Y el en— fu)
n=1
= Y alDen— en(Dent+ Y cnlf)fn
n=1 n=1 n=1
n=1

Since {fn (-)} is an w—independent sequence, we have ¢,(f) = 0 for all n, and therefore,
0= ([ —T)f implies f = 0.

Therefore, T' is a compact operator defined in a Hilbert space H with Ker(I —T) = {0}.
Since T' is bounded, (I —T') is also bounded. By the Fredholm alternative, this shows that
(I —T) is a bounded invertible operatorﬁ Clearly, we have (I —T')e,, = f,. Consider any
h € H. Then, (I — T) 'h has an unique series expression (I — T)"1h = § Cney since

n=1

{en (-)} is a basis. Since (I — T') is bounded, applying (I —T") to the expression above results

If an bounded linear operator T is the limit of operators of finite rank, then T is compact. See Exercise
13 on page 112 in [Rudin| (1991)).
8See the Fredholm alternative in [Rudin| (1991, Exercise 13 on page 112.
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oo

in h = Y ¢pfn. This series expansion is unique because {f, ()} is w-independent. The
n=1

argument above shows that every element h € H has a unique series expansion in terms of

fn. Thus, {f, (-)} is also a basis for H. QED

Lemma A.10. If Assumptions[A.1 and 2.4 hold, then each of systems, {cos(tmo(z*)+e(t)) :
t € [0,t,]} and {sin(tmo(z*) + e(t)) : t € [0,t,]}, is complete over L2(X*). This implies that

the inverse operators LE; and Ll_r;qs exist and are densely defined over L2(X*).

Y| X* Y| X*

The proof of Lemma [A. 10} Set ex(w) = cos(tpw) and fr(w) = cos(tyw — txc + e(ty)).

Define the relative deviation as W By Lemma [A.5] we can have the completeness

of the system, {cos(tpw) : k = 1,2,3,...} over L2(]0,c+d]) for a sequence of distinct numbers
{t1,ta,t3,...} C [0,t,] converging to 0 such that ”T"“(z)'w < 1/2F and Hl\l fé“g I < 1/2%. The
existence of such subsequence comes from ¢, — 0 as k — oo and the relative deviation is
continuous and has zero value at 0. Because a complete sequence contain a subsequence as
a basis, we can extract a subsequence {ts1,ts2,ts3,...} such that {cos(tsw) : & = 1,2,3,...}
is a basis over £2(]0,c + d]). According to the second Theorem in Erdés and Straus| (1953),
any linearly independent sequence in a normed space contains an w— independent subse-
quence. Because {cos(tyw — txc + e(tx)) : k = 1,2,3,...} is linear independent for any se-
quence of distinct numbers {t1, ta, t3, }EL we can extract a subsequence {t;1,t;2, 3, ...} such
that {cos(tjzw — tige + e(tix)) + k = 1,2,3,...} is w— independent. Next, we try to ap-
ply Lemma to bsk(w) = cos(tspw) and flk( ) = cos(tyw — type + e(t)) with the total
deviation > 77, M =30, ”b b =Gl oo Therefore, the sequence

Tbsrk (] bsk )H Tosrk ()]
{cos(tyzw — tixe + e(tix)) : k = 1,2,3, } contain a basis and then the sequence is complete

over L2([0,c + d]). Similarly, we can use the completeness of {sin(tzw) : k = 1,2,3,...} to
show the system {sin(tpw — tyc + e(ty)) : k = 1,2,3,...} is complete over £2([0, ¢ + d]).
Suppose there exists h € £2(X*) such that [,. cos(tgmo(z*) + e(ty))h(z*)da* = 0 for k =

1,2,3,.... By the monotonicity in Assumption 2.4, we can do the change of the variables be-

h(mg 1(w <))
g e 1 =
0 for k =1,2,3,.... The completeness of {cos(tyw —trc+e(ty)) : k =1,2,3,...} and the mono-

tween z* and w using w = mgo(z*)+c. This yields f[o el cos(tyw—trc+e(ty))

tonicity of m implies h = 0 and then we achieve the completeness of {cos(tmg(z*)+e(t)) : t €
[0,%,]} over £2(X*). Similarly, we have the completeness of {sin(tmg(z*) +e(t)) : t € [0,t,]}
over L2(X*).

°The 2, 4,..., 2(K-1) times differentiation of these functions can be expressed as a Vandermonde matrix
whose determinant is non-zero and this leads to linear independence of the system.
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Following the derivation in Lemma we know the adjoint operators of Lpge fyxe and

Lime Fy i are as the following:

Lies sy L L2(X%) = L£2([0, ) with (i, h)(t) = / cos(tmo(z*) + e(t))|on(t)| h(z*)da™,

COSmy),e

Silmg,e

L?W,«Y‘X*  L2(X*) — £%([0,t,]) with (L2 h)(t) = /sin(tmo(:v*) +e(t))| oy (t)|h(x™)dz™.

The completeness of the systems {cos(tmo(z*) +e(t)) : t € [0,1,]} and {sin(tmo(z*) + e(?)) :

t € [0,t,]} and 0 < |¢,(t)] < by for all ¢t in [0,t,] implies these adjoint operators LEed)f
Y| X*

and L, are one-to-one from L£2(X*) to £2([0,t,]). By the part (b) of Corollaries of

Y|X*
Theorem 4.12 in [Rudin| (1991)), the ranges of LRe¢leX* and L1m¢lex* are dense in ,CQ()(*)H
This implies that the inverse operators L}_%i é;

over L2(X*). QED.

and Ll_nl1 b5 exist and are densely defined

Y| X* Y| X*

The completeness results in Lemma imply the injectivity of Lpreg Iy ixe and Lyne fyixe
while Lemma [ATI0] gives the onto property of these operators. Therefore, the operators

. . . -1 _ -1 _ —1 _

invertible with LR@‘WY‘X* LRe‘z’fy\x* = LRe¢lex* LR€¢fy|X* = I and le¢fY|X* led,leX* =
-1 . . . . 2 .

L]mqgfy‘x* LImd)fY\X* = I, where I is the identity map from £([0,t,]) to itself.

Define Lk, as

_ -1
Lk, = LReqsz‘X* L[mqsfy‘x*

by the existence of L;zi b5 over £L2(X*) by Lemma [A.10,. We can elicit simpler represen-
Y|X*

tations of the operator Lk, under Assumption [A.T} Furthermore, this simpler representation

of Lk, implies the angle function e(t) is identified.

Lemma A.11. If Assumption[A.1 holds, then L, is a multiplier operator such that (Lk, h)(t) =

tan(e(t))h(t) or (Lk, h)(t) = ;fj;g))h(t) fort €[0,t,).

The proof of Lemma By the definition of L, , we have LRe¢fy|x* Lg, = LIm(bfY\X* ,
Le. [cos(tmo(z*) + e(t))|py(t)|(Li, h)(t)dt = [ sin(tmo(z*) + e(t))|dy(t)|h(t)dt for all h(t) €
L£2([0,t,]). Since {mg(z*) : ¥* € X*} contains an open set with zero, there exists a se-
quence of distinct numbers {£A1, £\, A3, ...} in the range. We can plug mo(z*) = Ay and
mo(x*) = =g for all k£ € {1,2,3,...} into the equation and then sum up those plugged e-
quations. Using two identities, cos(tA; + e(t)) + cos(—tA\x + e(t)) = 2cos(tAx) cos(e(t)) and

10T he statement of the part (b) of Corollaries of Theorem 4.12 in |[Rudin| (1991) is the following: Suppose X
and Y are Banach spaces, and T is a bounded linear operator from X to Y. Then the range of T is dense in
Y if and only if its adjoint T™ is one-to-one.
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sin(tA\x + e(t)) + sin(—tAg + e(t)) = 2 cos(tAg) sin(e(t)), we obtain

(16) 2 / cos(tAr) cos(e(t))|én(t)| (L, h) (t)dt = 2 / cos(tAg) sin(e(t))|én (1) h(t)dt.

Rearranging the term, we have

(17) /Cos(t)\k)|gbn(t)| [cos(e(t))(Lx, h)(t) —sin(e(t))h(t)] dt = 0.

By the completeness of the system {cos(t\;) : k = 1,2,3,...} and |¢,(t)| # 0 over [0,%,], we

have (L, h)(t) = tan(e(t) h(t) = Feitd h(t). QED.

We now are ready to prove the main theorem.

Alternate proof of Theorem 2.1. We start with the operator equivalence relationships

in Egs. @ and :

LRegsy, v = Lixx=BpxnLoosmg,e Djog| = Lipxxe Dpn LReos,

Lfmdﬁfy,x = LfX\X*AfX* LSiHMO,eAWn\ = LfX\X* AfX* le‘ﬁfy\x*7

Those operator equivalence relationships may not provide enough information to derive
the spectral decomposition of the operator of interest. In order to solicit more useful operator

equivalence relationships, we take derivative with respect to ¢ in Eq. . It gives that

0 0 - .
(18) &gbfy,xzz (t) — (at’%(m) /X* 6z(tm0(:€ )-‘re(t))leX* (x|$*)fX* ($*)d$*
0 , .
+i (&te(t)> |6y ()] /X e mole O fy e (afa®) e () da”

wilon(O)] [ O (o) e ol e 0o

13



We split Eq. into a real part and an imaginary part:

(19) Reon (0= (160(0]) [ costtmala®) + ) - (ala) - (0)o"
= (e 180001 [ sinfema(a") + ) i el - ()"
~160,(0)] [ sinftma(a®) + e)moe) iy (ala -

(20
m g )= (Grlon(0 ) [ sin(emola®) 4 e(0) (el (a7

+ (;ﬁdﬂ) ’¢n(t)| /X* cos(tmo(z*) + e(t))fx\x* (z|2*) fxo (2*)da*

+ ¢ (8)] /X cos(tmo(z") + e(t))mo(z) fx|x+ (x]") fx- (27)dz™.

We define operators as follows:

59, Y, X

22 Ligg, L0.0]) — L) with (L, W) = [ ImZoy, . (00

@D Lp.gs, LA0t]) = L2(X) with (Lp.p,, (@) = / Re%qﬁfyxzx(t)h(t)dt,

ot ¢fy,x

23) Doga £2(10.0]) = £2([0.0]) with (B 1)) = (510000 ) 1),

o))

24) Do (0.4, £(0.4,]) with (Bach)(0) = ( 7o) Ao

(25) Ay : L2(X%) = L2(X*) with (Amyh)(*) = mo(z*)h(z?).

Similarly to the derivation in Eq. , we can obtain operator equivalence relationships to

Eqgs. and as the following:

(26) LRe%gbeX = LfX\X*AfX*LCOSmo»eAa‘d)n‘ - LfX\X*AfX* LSinmo,eAWn\Aae
- LfX\X* AfX* AmOLSinmo@A\‘ﬁﬂ’
(27) LIm%qbfY’X = LfX\X* Afx* LSiHmO,eABMJU\ + LfX\X* AfX*LCOSmo,eAWn\Aae

+ fo\x* AfX*AmOLCOSmoyeAWM'

9
Define Agin (o, ¢ L2(10,t]) = L£2([0,8,]) with (Agp s, h)(E) = (aﬁfz&”) h(t). The
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following derivation is dedicated to the identification of

La=L3! A

Reqﬁfy‘x* mOLR€¢fy‘X* ’

where LE; " exists and is densely defined over £2(X) by Lemma [A.10, We will show L4
Y| X*

is identified and use it to construct a spectral decomposition. Note that the invertibility of

the operators Lpgee fy x and Lppg v x is equivalent to the invertibility of operators, L Fx|xe
LReo fyixe? and Ly fy e and the boundedness of fx+. While Assumption 2.3(ii) and Lem-
ma 1 permits the invertibility of Ly, .., Lemma and Lemma guarantee the

invertibility of Lpgeg Fyix? and Lrp,g Frixe The boundedness is ensured by Assumption 2.1.

Post-multiplying L;%i o5 to Eq. (ﬁ) yields
Y| X*

—1
LR€¢fY,X LRed)fY‘X* = LfX\X* AfX*’

which is justified by Lemma Use this relation to rewrite Eq. as

LRe%qﬁfY’X = LfX|X* Afx* LCOSmo,eA3|¢n\ - LfX\X* Afx*LSinmo,EAkﬁn|A36

- LfX\X*AfX* Ay L A\dh;\’

Simg e
_ -1 —1 .
a l:LRed)fY,X LRe¢fY|X*:| LCOSmO&AaWW‘ o |:LR€¢fY,X LRe‘Wy\X* Lsmmo’eAl(b"‘Aae
-1
o |:LRe¢fY,X LRe¢leX*:| AmOLSinmoﬂA“f’ﬂ’

_ -1 —1 .
= LREQSfy’X |:LR€¢fY|X* Lcosmo,eA3|¢n| - LRe¢fY\x* lenmo,eA|¢n|Aae

—1
o LRe(bfY‘X* Amo LSian’eA¢n:|

Because LR€¢fyx is injective by the injectivity of operators, LfX‘X*, LR€¢lex*, and fx«,
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-1 .. .
L, b1y x Lpeg fex = I. This implies

(28) Lp, = LE@WYXLR@%WY,X

-1 _1
= (Leosmo.e Bjogl) Leosmg. Dojoy| — <LRe¢fYX*LSiana€A¢n|> Roe

—1 -1
o <LRe¢fy|X* Am'OIJRerfYX*) <LR€¢fy| * Slnm09A|¢n>

= Ao |g,| — LryDoe — LaLlk,,
where we have used Lgeq Fy i LE; y = I. Similar, using Egs. (ﬂ) and , we obtain
Y|X*

(29) Lp, =L}

L, »
Im¢ypy, x “Imgdry

_ . -1
= (Lt e Dioyt) " Loty e Dojon] + (Lfmfy,XLwSmo,eAwm) Ae

—1 —1
+ <le¢fYX* LRe¢fY|X* ) (LR6¢fYX* AmOLCOSm076A¢U|>

= Aoinjg,| + L;(}Aae + L;éLA.

We eliminate the operator L4 in Egs. and by applying Ly, to the left and right
sides of Eq. and then adding with Eq. :

Lc = Lp, + Lk, L, Lk,
= Ao |g,| — Ly Doe + L, Ao |g, L, + Doelk,

(30) = Doy + LE1 Dom oy LKy

where we have used Ly, Ag. = ApeLk, which is justified by Lemma Note that LHS
are observable and Agy, g, is the unobservable operators in RHS. Applying the observed
operator L¢ in Eq. to the constant function 1 and using Lemma yields

Gilon(t)] Silon(t)]
(31) (Le1)(t) = 252108 4 tan(e(t))? 20—
| (2)] |6 (0]
Silon(®)]
= (1 4 tan(e(t))?) 222
|69 ()]
rl
Because Lk, , and therefore e(t), are identified, this implies that both o qlsf?t()? | is identified. It
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follows that L4 is identified from Eq. as follows:
La=Li, (L, — Domg,)) — Doe-

Pre-multiplying the operator LleX* Ay, to the both sides of the equation LRe¢fY‘X* L=

JAVSN LRqulex* , we have

(32) LRegs, yLa = LpgeDpx-BmoLResy, .-

Post-multiplying the operator LI}i 8

A10) yields

to the both sides of Eq. (justified by Lemma

Y| X*

(33) Liesy,,  Lal g, Lo Afye Ay

Redry

Because AE* and LE‘X* both defined over a dense subset of their domain spaces (As-

sumption 2.1 and Lemma |A.1l1 ), we post-multiply these operators to Eq. (33] to obtain
p ) p ply P q

. -1 71
LReqbf XLALRe¢>fYX = <LRe¢fy LALRe¢fYX*>Afx*LfXX*

Identiﬁed
(34) = Li - Dpe DALl L]

Ix fX|X*

1
= fo\x*A Ly

MO~ fx xx "

The above operator to be diagonalized is defined in terms of observable operators, while the
resulting eigenvalues mq(z*) and eigenfunctions fx|x«(-|z*) (both indexed by x*) provide the
unobserved function of interest including the regression function and the joint distribution of
the joint distribution of the unobserved regressor z* and the observed regressor x. Assump-
tions 2.3(iii) and 2.4 ensure the uniqueness of the spectral decomposition of the observed
operator Eq. 1} Similar to Eq. , we have fy x(y,x) = fx* Ty (Y, o) fx|x+ (w|z*)dz*
and it implies that for any y € Y, (Lyy . fv,x+)(z) = fv,x(y,z). Thus the identification of

Jx|x+ induces the identification of fy x« as follow, for any y € Y,

frx-(y,a") = (LfX|X*fYX)( z%),

where the inverse is justified by the first part of 2.3(ii). Therefore, the densities fy|x- and

fx+ are identified and so is the regression error distribution f,. We have reached our main
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result. QED.

B. A Sieve Maximum Likelihood Estimator

Our asymptotic analysis relies on regularity restrictions on the unknown functions to be
estimated. We thus introduce a typical space of smooth functions, i.e., the Holder space.
Given a d x 1 vector of nonnegative integers, a = (ay, ...,aq)” and denote [a] = a1 + ... + aq
and let D* denote the differential operator defined by D¢ = %. Let v denote the
largest integer satisfying v > v and set v = y + p. The Holder space A7(v) of order v > 0
is a collection of functions which are 7 times continuously differentiable on v and the y—th

derivative are Holder continuous with the exponent p. The Hoélder space becomes a Banach

space with the Holder norm, i.e., Vg € A7(v)

D?g(€) — D?g(&))]
35 gllar =sup|g(€)| + max sup
(35) Igllar =suplg(©)l + max_ sup =g

The weighted Holder norm is defined as ||g||a+« = ||g||a~ for g(€) = g(§)w(§) and the corre-
sponding weighted Holder space is A7*(v). Define a weighted Holder ball as A7 (v) = {g €
A" (W)« |lgllave < e <oo}. Let n € R,y > 1, and W € W with W a compact convex subset
in R%. Without loss of generality, we consider strictly increasing m (decreasing m can be

handled simiarly). Define the following sets:

Fi={V () € AZ*[R): fi(-) > 0 and / Si(n)dn =1},
R
Fo={fo(-|) € A (X x X*): fao(-|-) > 0 and f, satisfies Assumption
2.3(ii)&(ii1) and / fo(z|z®)dx =1, for z* € X"},
X
Fz={Vf3() € A (X*): f3(-) > 0and [ fa(a*)da* =1},
X*

Fi= /(55 0, hy) € AJV(X*) : mly(+; 0, hs) > 0},
where m/(+; 6, hy) is the derivative of my(-; 60, hy) with respect to z*. Working with square
roots is a convenient device to enforce positiveness. For maximum generality, we phrase
our estimation result for subsets of those maximal sets F; C Fj, i = 1,2, 3,4, thus allowing

practitioners to impose other constraints that may be known to hold in the population. This

is helpful in cases where the sets F; are too “rich” to allow simple primitive verifications
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of the assumptions of our asymptotic theory while such verification could be possible on
suitably defined subsets F;. With «; > 1, assume that the square roots of the nonparametric
components f,, fx+ and my belong to the spaces, Fi, F3, and Fy respectively, and Fxe1x
belongs to F», and that the parametric vector in the regression function belongs to the space

O.

Assumption B.1. (i) all the assumptions of Theorem 2.1 hold; (ii) /f1(-) € Fi; (iii)
fa() € Fa; (w) /f3()) € F3; (v) VVha(') € Fa.

Set A =0 x Fy X Fa x F3 x Fy and o = (0, f1s, f2, f3s, has), where the lower subscript s
indicates the square roots. Let oy = (o, \/ﬁ, Ixix VI x+, V'ho) denote the true parameter.
Our sieve MLE @, is obtained by maximizing

Gy = arg max Qn(a).

where A" = O x FJ' x F3 x F§ x F} is a sequence of approximation spaces to A, where

n

Q) =2 0 ([ A= mole ) el (e ).

and where {y;, x;}I'_; denotes the observed sample.

This estimator is a direct application of the general semi-parametric sieve MLE presented
by [Shen| (1997), |Chen and Shen| (1998), and |Ai and Chen| (2003)). |Ai and Chen| (2003)) shows
that &, is a consistent estimator, and the parametric component of « has an asymptotically
normal distribution. For completeness, we present all the standard assumptions for consisten-
cy of all unknown parameters and root-n normality of the parametric part in the remainder

of this appendix.

B.1. Consistency and Convergence Rates

In this subsection, we first obtain consistency of the sieve MLE @, for a under a strong norm
Il - IIs, as in Newey and Powell (2003) and |Ai and Chen| (2003). Using the consistency as a
starting point, we then establish that @, converges to ag at a rate faster than n~/4 under a

suitably constructed weaker Fisher norm, || - ||. Define

(36) lells = 161l + ([ f1s

sw | follsw + 1 f3slls. 4 [1Pasls.
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where [|0]| is the Euclidean norm and ||g[s . = supg [g(§)w(§)] with w(§) = (1 + 1€11%) /2,
for some ¢ > 0. The weighting function w is introduced to deal with unbounded support.

Define

to(di) =t fo(die) =t ([ il = molas8) alosle”) oo )ia”)

where d; is a realization of a random variable D = (Y, X)) in the sample.

Assumption B.2. (i) The data {(D;)}-,} are i.i.d.; (ii) The density function of D, fp,
satisfies [w(¢)™2fp(¢)d¢ < oo.
Assumption B.3. (i) 6y € B, a compact subset of R ; (ii) Assumption holds for a

neighborhood of ag under the norm || - ||s.

Assumption B.4. (i) For any o € A, there exists II,a € A" such that ||[Il,a — alls = o(1);

(1) kip — +00 and kin/n — 0 fori=1,2,3,4 as n — +o0.
Definition B.1. ¢p(d;; «) is Hélder continuous with respect to o € A if there exists a mea-
surable function c(D) with E{c(D)?} < co such that, for all a1, s € A, and D, we have

(37) [€p(di; 1) — €p(di; a2)| < c(D)[lar — azlls.

The next assumption ensures ¢p(d;; «) is Holder continuous with respect to o € A.

Assumption B.5. (i) E{|(p(d;;a)|?} is bounded; (ii) There exits a positive measurable func-
tion h(D) with E{h(D)?} < oo such that, for any a1a = (0, fis, f2, f3s, has) and &(e,n, z, 2*) =
[l,wfl(e),wil(n),wfl(:n,:r*),wfl(ac*)]T, we have |hy(ds, @,@)| < h(D), where the function
hi(d;, @, ) is constructed by the path derivatives of In fp(d;; ) and the explicit expression of

hi(d;, &, @) can be found in the proof of Lemma 3.1.
Assumption [B.5|(ii) implies that ¢p(d;; o) is Hélder continuous in o
Lemma B.1. Under Assumptions B.5, we obtain ||ay, — aplls = op(1).

See the online appendix for the proof.
For simplicity, Assumption (z) rules out serially dependent observations and could eas-
ily be relaxed. Assumptions [B.2{#i) and [B.3i) and (ii) are standard conditions imposed for

series approximation. The series approximation can approximate any function with a small
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mean-square error, which holds for power series, wavelets, Fourier series, and splines. Assump-
tion i) states that there is a finite dimensional approximation A™ to A and Assumption
B.4{(i7) imposes that the number of terms in the sieve grows slower than the sample size
to control the variance. Assumption ensures the Holder continuity of the log likelihood
function.

Next, we consider n /4

convergence rates of &, under weaker metrics, which are sufficient
to establish the asymptotic normality and /n-consistency results. We first define the weaker
Fisher metric || - ||p introduced by Ai and Chen (2003). Assume the function space A is

convex. For any v € V, define the pathwise derivative as:

dlp(d;; o) dlp(di; o + Tv)

o [v] I a.s. D.

7=0

For any aq, as € A, the Fisher norm is defined as:

) 2
(33) s — asl EE{(W@ ) }

We make the following assumptions to obtain a rate faster than n=1/4

Assumption B.6. Let k,, be the total number of sieve coefficients in the sieve estimator Qiy,

i€, kn = kin+k3, +ksn+kan. Then, (knn=Y21Inn) x SUDge (RUX x X*UX*) [p* (E)||Z = o(1).

Assumption B.7. (i) There exist a measurable function c(D) with E{c(D)*} < oo such that
Up(di; )| < e(D) for all D and o € A™; (ii) {p(d;; ) € AZ (X x V) with 7 > dim D/2, for
all o« € A™, where dim D 1is the dimension of D.

Assumption B.8. A is convex in ag, and mo(z*;0) is pathwise differentiable at (6y, ho).

Assumption B.9. In N (6, A") = O(ky, In(k,,/d)) where N (6, A™) is the minimum number of

balls with radius § under the || - ||s norm covering A™.

Assumption B.10. There exists c1, co > 0,

dii di;
18 (1 L200) < o —agff < o (1 2200000

holds for all & € A™ with |ja — ap||s = o(1).

Assumption B.11. For any a € A, there exists Il,a € A" such that |[IL,a — al|p = o(kn™)

and k"' = o(n=1/4%).
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Theorem B.1. If Assumptions hold, then ||@y, — aollr = op(n=174).

See the online appendix for the proof.

Assumption i) and (47) impose a dominance condition and smoothness condition on
¢p(d;; ). Envelope conditions are assumed to restrict a change of the objective function as
the parameters change and secure stochastic equi-continuity. Assumption implies that
the Fisher norm in Eq. is well defined. Assumption requires that the size of the sieve
space A™ does not grow too fast in terms of the covering number. Commonly used sieve spaces,
such as power series, Fourier series, splines, and wavelet linear sieves, satisfy this assumption.
Assumption assumes that the population criterion function is locally equivalent to the
Fisher norm. This condition helps derive the convergence of the parameter and /n-normality
of the parametric component. Assumption controls the approximation error of I, to
o and the selection of k,, such that the error goes to zero uniformly at the rate o,(n~'/4) over

ae A

B.2. Asymptotic Normality

In this section, we consider the asymptotic normality of the parametric component # which
contains the parameter of interest in the regression function. Let V be completion of the
linear space spanned by A — ag under the Fisher norm || - [|p. Then, (V,| - ||r) is a Hilbert

space with the inner product

(one) = B{ (et olon]) (1 totdscole] ) .

and (v,v) = ||lv||p. For any fixed and nonzero A € R%, f\(a — ag) = AT (6 — 6p) is linear in
o — ag and fy(a — ap) is a linear functional on (V| - ||z). Shen! (1997) and jvan der Vaart
(1991)) show that f(a) = AT is a bounded linear functional on V under the operator norm.

That is:

(30) Al sp ez adl
{aed]la—apl>0} Nl —aollp

By the Riesz representation theorem, there exists v* € V such that for any a € A, we
have fy(a — o) = (a — ag,v*). and ||frllF = ||v*]|r. Denote V.= R% x W and W =
FI X F x FE X Fi = (s fx x5V Fx, Vo).

For each component 6; of the parametric component ¢, j = 1,2, ..., dg, define wj € W to
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be the solution to the following minimization problem associated with the denominator of the

operator norm,

_ T
w;-‘ = (fiksjv f2*j7 fgsjv hiisj)

) dlp(d;; o dlp(d;; dlp(d;; a
= arg min E( D( 0) - D( 0)[.]015]_M[f2]
w;i=(f1s,f2,[35,has)T €W dej df1s dfs
_ dﬁD(di;ao)[ ] _ dED(di;a()) [h ] 2
dfss dhys )
Define w* = (w7,...,wj ) and let %fmo)[w*] be the vector with elements (indexed by
j=1,...,dp):
ng(di;Oéo) %1 ng(di;Oéo) * dgp(di;ao) *
af [wr] = dfis [f1s;] + dfs [f35]
dlp(di; o) ;. dlp(di; ao) -, 4
Fis A0) pes 1y PEDARG F0) rpw
df35 [szg] + dh45 [ 45]]7
and
dlp(di; )  dlp(di;ap),
H,«(d;) = — w”].
With these notation,
|l —ag)]? -1

LA = sup =\ (E{Huw (D) Hy-(D)}) " A,

{a€A:||a—ag||>0} Ha - O‘OHF

v* = (vj,v}) € V with v} = (E{Hw*(D)THw*(D))_l A and vj = —w* x vj. In addition,
I(a—ap) = X (0 — 6y) = (a—ap, v*) by the Riesz representation theorem and W[v*] =
H,(d;)vy. This implies that the asymptotic distribution of parametric component §n reduces
to when the linear functional f) is bounded and what is the asymptotic distribution of (a,, —

ag,v*). That is:

n

~ ~ * 1 dl di; Q * _
AT(en—Qo)Z(an—ao,U>:E D(daO)[U]+0p(n 1/2)
=1
— % > AT (E{Hy-(D)" Hye (D)) ™" Hye ()" + 0p(n~112),
=1

and /16, — 00) = N(0, (E{Hy+(D)T Hy(D)}) ).
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We make the following conditions for the \/n—normality of §n which are also conditions

in A1 and Chen| (2003)) and Hu and Schennach| (2008)):

Assumption B.12. (i) E{H,(D)' H,«(D)} is positive-definite and bounded; (ii) 6y €
int(B).

Assumption B.13. There is a v}, = (vy, —Il,w* x v;) € A" — g such that ||v;, — v*||F =

op(n*1/4).

We use the /n consistency results in the previous section to focus on a smaller neigh-
borhood of ag. Define Ny, = {a € A" : |la — aglls = o(1), | — agl|lr = o(n~Y*)} and
No={a € A: a—aols = o(1), o~ aollr = o(n"/*)}.

Assumption B.14. There exits a measurable function h(D) with E{h(D)?} < oo such that,
fOT’ any @1 == (éa fisa fQ? f;)Sv 548)7 we have

’hl(di,@,@” + ‘hg(di,@,a})‘ < h(D),

where the function hy(d;, &, @) is the first path derivatives of In fp(d;; ) in Lemma 3.1 and
ho(d;, &, ) is the term controlling the second path derivatives of In fp(d;; «) in the proof of

Theorem 3.2.

Assumption implies that there exits a non-negative measurable function s with

lim s(d) = 0 such that for all a € N,
0—0

dZKD(D; 5[)

su
D dadaT

aeNy

[ = ag, v"] = WD) - ([l = aol|s)

Assumption B.15. Uniformly over & € Ny and o € Ny,

B d*(p(D; ap)

(40) dadaT

[a — ag, v*] [ — ap, v*]| = o(n™1/?).

dQZD(D; 64)
E[ dada™

Because our estimator takes the form of a single-step semiparametric sieve MLE, the gen-
eral treatment of Shen| (1997)) and (Chen and Shen (1998) can be used to establish asymptotic

normality, root-n consistency, and efficiency under these assumptions.

Theorem B.2. Suppose that «q is identified and Assumptions[B.6{B.11] and[B.13{B.15 hold,
then /n(0, — 0p) = N(0,V~Y) where V. = E{H (D) Hy+(D)} and the matriz V is the

efficient information matriz.
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See the online appendix for the proof.

Assumption [B.12] ensures that the asymptotic variance exists and that the population
parametric component is an interior solution. This assumption also ensures that the esti-
mation problem for 8y is well-posed, which is made possible by a semiparametric treatment.
Assumption [B.13]is a “no asymptotic bias” which means the representor v* can be approx-
imated by the sieve v} with an asymptotically negligible error. Assumption represents
the boundedness and smoothness restrictions of the second pathwise derivative of the log
likelihood function. Assumption controls the higher order terms in terms of asymptotic
expansion. These assumptions control the local quadratic behavior of the criterion difference

are common in the literature on the method of sieve[l]

C. Proofs of Consistency and Asymptotic Normality

The proof of Lemma The consistency result is a direct application of Lemma 3.1 of
Ai and Chen| (2003). and the proof will be provided by checking the conditions in the lemma.
Most conditions are assumed directly in our assumptions and the only thing we have to show
is that ¢p(d;; ) is Holder continuous in a. The difference of £p(d;;-) at a; and ag is given

by

Cp(di;on) — Up(ds; o)
d

= %ED(dzﬁ a12)[on — ag]

d
= ffl)(di; a0 + t(al — ag))

dt t=0"

where aio = (0, fis, fo, f3s, has), a mean value between o and a9, and ais + t(a; — ag) =

(0 + (01 — 02), fis + t(fis1 — fis2), fo + t(for — fo2), f3s + t(f3s1 — f3s2), has + t(hast — has2))-

A detailed discussion of these can be found in [Newey| (1997)), [Shen| (1997), and |Ai and Chen| (2003).
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Consider

d

%fD(di; a1 + tlag — 042))‘

t=0

B 1 dz e 27 —dmo(z*; 0, hy) 0N () P (i

B fD<di;a12>(/X* a1 =m0, ha)) (01 — 02) folwi|2*) f(z*)d
/ 2f1s(yi — mo(2*50, ha)) (f1s1(yi — mo(2™;0, ha)) — frsa(yi — mo(2*;0, ha))) foai|z®) f3(2*)da
/ Fi (i — mo(a*;0,ha)) (fan (xi]2*) — Fanlila™)) Fa(a™)da

/ F1(yi — mo(2*; 0, ha)) fo(wilz™)2 f3s(2*) (f351 (%) — fasa(2")) d*

+/ *f1( mo(z*; 0, 714))_dm0(§;;9’h4)2ﬁ4s(h451 - h432)f2($i|33*)f3(33*)d33*>-
X

Then we can obtain the bounds for Holder continuous as follows:

d
—Ulp(di;an2 + t(ag — 062))‘

’ dt t=0

L d e 7 wdmo(z*6,ha)
< |fD(di§0712)|</X* ‘%fl(yi—mo(m ,9,]14))T 1( )f2($z|$ )fg( )|

"91 —92”3

+

_|_

2f1s(yi — mo(2*;0, ha))w™ () fa(zilz") f3(2")

*Hflsl - flsQHs,w

Fiyi — mo(*;0, ha))w ™ (i, 2%) fa(2¥)

_I_

[ fo1 — fo2llsw

Filyi — mo(2*;0, ha)) fo(wi|z*)2 fas (x)w™ (07 |da* || f3s1 — f3s2llsw

W%;swl (") fo@ila™) f3(=")

+

iﬁ(y — mo(a*;0, b))

* H h4sl - h452 ‘s,w)

- dz,am (/ ‘d ;97’34»6“"(“?;9’}”) o) folwila™) fo(a") | da

$*

2 f1s(yi — mo(z*; 0, ha))w ™ (n) fo(zs]2*) f3(2*)|d

iy = mo(@; 0, h4)) o (i|27) 2 fss (27w ™ (27) | da”

d - .~ - dmo(z*;0,h
— filys — mo( ﬂj@)M

D
/
[ [R = mola® 8. ha))e wa) o) o
o,
/

o 2hysw (2%) fo(2i|2*) f3(2*) |dx

) o — aslls
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where w(g,n, z, x*) = [l,wfl(&?),wil(n),wfl(x,m*),wil(a:*)]T. Therefore, Assumptionii)

implies
10p(Di; 1) — £p(Dy; )| < h(Dy)||or — a5,

and /p(d;; ) is Holder continuous in a.

The proof of Theorem We prove the results by checking the conditions in Theorem
3.1 in |Ai and Chen| (2003)). As discussed in [Hu and Schennach| (2008)), our single-step semi-
parametric sieve MLE is simpler than the setup in|Ai and Chen| (2003) because we do not need
to estimate the conditional mean as a function of the unknown parameter. The assumptions
in Theorem 3.1 in |Ai and Chen| (2003) are directly being assumed, we obtain the consistency

result.

The proof of Theorem The likelihood function fp(d;; a) has a similar expression as
the likelihood function in/Hu and Schennach (2008) which applied Theorem 1 of |Shen| (1997)) to
establish an asymptotic normality result. The proof there can directly apply to our case. We
prove the results by showing an envelope condition on the second derivative of the likelihood
function (Assumption . Set a1 = (0, fis, f2, f3s, has) and v, = Il (a — ag — v*) =
([vnles [vnl 1oy [Vn] o [Vn] f3s5 [Un]ha, ). Consider the second derivative of pathwise derivative as
follows

s dQED(di;dl)
ae/\/p()n dadaT

[V, 0 — ao]‘

< oup | Pl o
aeNon | [D(diz @)  dada®
B ng(;l;; aj) o] dﬂp(jci; ) [ — o)
1 2 ey
= ki, ( Pl oo
. ’deD(j;, ) W[a — o] )
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We divide this into three terms and find the bounds for them. Consider

de(di; 0_51)
do

- fD<dla></X civﬁ(%’ —mo(2"; 6, ha)) _dmO(Cf; 000 go) Fa(ala) ol da®

[ — ]

+/ 2f1s(yi — mo(2*;0, hy)) (fls(yi —mo(z*;0, ha)) — /fo(yi — mo(z*; 0, B4))> folwi|z*) f3(z*)dz*
o

+ - Filyi —mo(x*;0, ha)) (falwilz™) = fxix=(@ilz*)) fa(z*)da*

i o5 8, ha)) a(aila)2fas(w) (ao(e®) = v/ P 27)) da®

+ /X (Z]fl(yi —mo(z";0, ha)) —dmo(;;? - h4)2714s(h45 - \/hio)f2(l‘i|$*)f3(x*)dx*>.

Therefore, similar to the derivation of the Holder continuity in the proof of Lemma [B.1] we

obtain
dlp(d;; AL
‘13(041)[@_@0] < ha(di, &, @)|ar — s,
da
and
dlp(d;; & n
‘ D(daal)[””] < ha(di, @, @) onlls,

where hi(d;, @,) is defined in Equation .
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Expanding out the term o0

1

1 d*fp(di;on)
p(di;a1) dadaT

[Un, @ — ]

d?fp(di; an)

fp(di; an) dadaT [n; & = o]

- Ddlz, 1>< f1< mﬂ<f*;9’ﬁ4>>W[vn1ew%)ﬁ(mﬂx*)ﬁ(m*)dﬁ
2 (i (o V) im0, ) OO o
f( —mo(z *;9,h4))_dm0(;;9’h4) [wnlo (folzile®) — fxix(@i|z*)) fo(a*)de

\\\\\\\\\\\\\\\\\\

—dmo(z*;0, hy)

~ = d?mo(z*;0, hy) . z 3
fl( (.Z' ;(9, h4))W[Un]92h4s(h4s - \/%)f?(xz‘x*)ffﬂ(x*)dx

(fls - m) (v = mo(a*30, ha))onl .. fo(aila®) fo(a®)do”
2f15<1 mo(a*30, ha))loal p, (fol@ila®) = Fxix-(eile")) fo(a)da”

2ol = o 0, Ba)) ol Faleale )2 5s(5) (f @) = V(0 ) o
—dmo(z*;0, hy)
do

(fls : <f15 - \/ﬁ)) (yi — mo(z*; 0, ha))[vn] 1, f3(x*)dx”*

fl(y mo(a*30, ha))[val p2f3u(2") (frs(a®) = v/ Fx-(a")) da”

d - . = = —dmo(x*;0,hy) - FooaN gk
[ s = mo(as 0 R gk (= )] o

—dmo (.%'*; 9, ?L4)
do

[ 2(fis (1 = V) ) (= mofars6,7) Pl )2 foo " ol g "
)

7]01( mo(l‘ 9 h4))

(0 — 00)[vn] s, f3 (2" )da*

*fl(yz' —mo(z*;0, hy)) (0 — 00) foxi|z™)2 f3s (") [n] g3, da*

fl(yi —mo(a*; 0, ha)) (fo(wila®) = fxx (@il 2*)) 2f35(x")[vn] fs, da*

[ R = molws 6,7 Pl (fon(a”) = VI (0)) Dol o
~——dmo(z*;0, hy)

a;fl(yz‘ —mo(z*;0, hy)) dh7 22Ny (has — /o) (il %) 2 f35 (27 [0n] 1, da™

a2 - d?mo(z*;0, hy)

%ﬁ(y mo(a*30, he) S22 vy, (0~ 0) o) fo(a”)da”

—dmo(ac*' é 54)

2* (fls . (fls - \/ﬁ)) (yi — mo(2*; 0, ha)) dh7 2 2R [V hy, fo(zil2®) f3(2
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d - 0 7 —d *7§7B 7 * * Fo( % *
4 [ = molats 8. =g o, (el L (o) (o)
b [l (w0, T g o, B2l (funle) - Vo)) o

2  Pmo(ei B R - o
[ o Pl ol S g o (i~ V) e o) ).

Letting [w™(e),w ™ (n),w (2, 2*),w H(z*)] = [wgl,wfl,wgl,w;f], this term can be
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bounded:

1 d? fp(d;; ay)
fo(di;an) dadaT

i o i

[Un, ¢ — ]

d*mo(*; 6, ha)

o T — ol 0.5 = G S b o) o) ool 10 ol

Q
_ dmo(x*;0,hg) _q - N F
+ 2%&9@ mo(z*; 0, ha))w 1°<d94) wy ' falwi|z) fa(x)da™|| frs — /Follslfonlolls
_ e 7dmx*;§,ﬁ 4= N d
+ [ |2fis(i = mo(a ;9,h4>>w11°(d94>w91f2<xi|x Vala®da g s = 2o/ Fallllfvaloll

dmo(x*;é, 714) . . . . .
Aol 0 10) 1 )| ol folaida®) — e (ol s

dmO (ZE*7 év 54)
do

d . o
%fl(yi —mo(z*; 0, hy))

+

_l’_

*

C;j7f1(yi —mo(z*;0, ha)) wgl[Un]afz(fi|$*)2f§s($*)wsll)dﬂf*

[[vnlallsll f3s(z*) — / fx= (%)l

2 2 *. 0 T
dd2 f1(y; mo(fv*;9,h4))Ww9_12h4sw§41f2(%|$*)f3( ")
I fis = vV Fallslval f.lls

2f1s(yi — mo(z*; 0, ha))wy 'wy ! f3(z*)

[Un ollsllhas — v/ holls

+
><\ X

2w twr ! fa(wil2") fa(2")

_l’_

+

Monlprallsllfe = Fxpxells

*

_|_

2 oy — (w58, )y (a2 o (2 it | o o] o sl s = /P s

d - . o~ = dmo(z*;0,hy) _

i = mofa:0.ha) T SR )
115 = V/Fallsl ol s

Falys = mo(a*s 0, ha))ry 2 fos @)ooz | o o] o s s = /s

d 0. hy) -

dmo(@”;9, ha) “Voas — v/hollallonl

7 2h48w3;11w51f3(
d r * —1r7 * o * — *
%f1(yi —mo(z ﬁﬁ@)Twelfz(wi!J? )2 f3s(x )w341‘d95 10 — Ooll sl [vn] g5, Ils

+

*116 = ollsllTon] £ 15

*

2f1s(yi — mo(2*; 0, hy))wy twy * f3(2*)

+

*

_l’_

+

d - .
%fl(yi —mo(x*; 6, hy))

*

= = dmo(x*;é, h4)

_l’_

+

2 sy =m0l 0, ) Jor Pl )2 o (2 g L s = v/ Fols el s s

*

J1(yi —mo(z*; 0, 54))w2_12f58(96*)w3;11’dl’*\lfé — Fxx+ sl [vn] g5, |ls

_l’_
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+

*

_|_

*

+

*

_|_

*

+

*

+

*

_|_

*

+

><\><\><\><\><\><\><\><\

*

fi(yi — mo(z*; 6, B4))f2(fﬂz'|fﬁ*)2w§41w9;f)dl‘*llf&%s =V x|lsll[vn] g5 s

d - v~ dmo(z*0,hy) - Ko ok — *
— f1(yi —mo(2™;0, h4))()(cm4)2h4sw341f2(wi\x )2 fas(z*)wi |da* || has — v/ holl sl [vn] g, |1 s

a2 - e a o owAmo(z0,he) - 1 45 N
dTnfl(yi — mo(z ;9’h4))0c(l9dh4)2h43w9 Yosd fo(l®) f3(x

d - « AT _ dmo(x*;§,714)
Q%fls(yi —mo(x*; 0, hy))w; IT

dmo(z*;0,hy) -  _ = KN /%

S0 ) o Pl o)

dmo(x*;é,fu)
dh

d - A7 wdm 2 0,hy) - - o *
*fl(yi—mo(ﬂf ;0,h4))W2h45w341f2(xi\x )2 f3s5(2" )wsy ’dw 1 [wn)has Isll f3s =V fxels

d2 ez 7 dmo(z*; 0, hy)
o ol — (a8, ST o el = Vil ).

~—

da*|[[onlna. 5116 = bolls

2haswiy fo(ila) fa(2™)|da™ | frs =/ Fallsll [valna, s

~—

2 f1s(yi — mo(z*; 0, hy))

d d
e~ %\/ﬁ!\sH[vn]msHs

2B4SW3;11W51f3($*)

d - £ 77 *
%fl(yi —mo(z*; 0, hy)) [Un]haa sl f2 = Fxx-lls

2hyswiy wig fo(zilz®) f3(z*)
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The definition of the norm leads to the following bound:

(42)
1 deD(di;O_él)[v o — ax]
fodiar)  dada™ 5 0
1 d? - o - o dPmo(z*0,hy) | - W\ Tk *
SfD(d“Oél)</X* %fl(yz‘ — mo(z 397h4))0(d204)009 lwg 1f2(95i’33 )f3(x")|dx
d - _ i dmo(z*:6,hy) 4 - KN T L\ g
[ s = motas 8 IR o) oo
= = d d
- - _ dmg(a:*;ﬁ,h4) 17 = ”dT;fls_dT]\/ﬁHS
+ 2f15(yi — mo (%50, ha) oy ' ———"—Lwy ! fo(wila®) fa(z*)da*
. ' df ’ 115 = v/ Falls
d - _—dmo(z*;0,hs) | 1. . .
+ ) dfnfl(yi—mo(x*;e,hzl)) o 7 4)w0 1w2 1f3(x )|dx
d - .~ - dmo(z*;0,hy) = WNe kY, — *
b [ i A = mola's 8, PO ol 20 do

d? ~—dPmo(x*;0, hy)

%fl(yi —mo(2*;6, hy)) dz*

_|_

wy '2haswsy folwila®) fa(z")

*

2wy twi ! fa(@|z®) f3(2*) |da*

*

2f1s(yi — mo(z*; 0, ﬁ4))wf1w51f3(x*) dz*

+

*

_|_

2 1o s — (w0, )y ol )2 oo (2 i da”

*

—~ = dmo(x*;e_, 54) 1

d r * —1r7 * *
%f1(yz—mo(w ;0,h4)) 70 wy 'wy ! fa(x”) |da

_l’_

*

dx*

+

+
e L e e e T

2 f1s(yi — mo(z*; 0, ha))wy twy ! f3(z*)

*
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+ f1(yi — mo(x*; 0, 54))w512fg5(a¢*)w§f dx*

d - x AT dmO(x*7§7B4) 7 — —1r7 * *
+ . %fl (Z/z - m()(w 707 h4)) dh 2h45w341WQ 1f3(f£ ) dx

d - v = = dmo(z*50,hy) 4 e a N
+ %fl(yi —mo(z*; 0, h4))0(d€4)w9 Lto(zi|2*)2 35 (x )w341‘d:c

_|_

2f15(yi — mo(2%; 0, ha))wy ' fol@]z*)2 f3s(x*)wi) ’daz*

*

fi(ys — mo(z*; 6, 54))w2_12f5s(33*)w3;11‘d95*

_|_

*

f1(yi — mo(z*; 6, ﬁ4))f2(%|ﬂf*)2w§41“’§41)d$*

+

*

d - v~ dmo(z*;0,hg) - i K\ o oy, — *
%fl(yi —mo(z™; 0, h4))W2h4sw341f2(33i‘$ )2 f3s( )W341 dx

d? - . AT Pmo(z*:0,ha) 1 4 N F s .
dTnfl(yZ —mo(x ;9’h4))0c(19dh4)2h45w9 1w341f2(xi|x ) fa(x™)|dx

d - o7 7 vy, —1dmo(z*; 0, ha)
Q%fls(yi —mo(x ;0,h4))w1 IT

dmo(z*; 0, hy)

+

*

_I_

2545(03_41]?2(~Ti‘$*)f3($*) dz*

& f— A,

*

2 f1s(yi — mo(2*;0, ha)) 2hyswiy fo(w|a*) f3(x*) |do

+

. dh | fis = /Falls
d - e = = dm x*;é,ﬁ - 1 17 o« N
+ ) %fl(yi —mq(z*; 0, h4))0(6m4)2h4sw341‘*’2 1f3($ )|dx
d - ~_ dmo(z*;0,hs) 4 K\ kY, — *
+ %fl(yi—mo(fv*;ﬂ h4))W2h4sw341f2($z‘\x )2 f35( )w341’d37

d72 = ' 0T d2m0(x*;§, 54)
d’h

+

*

2hyswiy wig fo(zila®) f3(2*)

_I_

daz*)nwnsna ~aolls

ha(di, @, @)[[on][|s[le = aolls

Then Assumption guarantees the envelope condition and help us to control the linear

approximation of the likelihood function near «y.

D. Proofs related to estimation

Lemma D.1. Consider the finite-dimensional sieve representation:
k2,n k?,n

(43) Fol2®) =D Boigpi()p; ().

i=1 j=1
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where the p;,i = 1,2,... form an orthonogal basis of L?(X) while the pj,J=1,2,... form an
orthonogal basis of L?>(X*). The condition

(44) /fg(:v\x*)h(x*)dx* =0Vzx e X = h(z") =0,
for functions h in the space spanned by the pj, for j = 1,...,kan, is equivalent to imposing
that the square coefficient matriz [52”'],{2’”%27” is invertible.

Proof We also have a sieve expressions for h as
kZ,n

h(z*) = pr(z").
k=1

Substituting this sieve expression and Equation into Equation and then applying
the orthogonality of {p;(z*) : j =1,2,3,...} yields

ka.n k2.n kan
(45) 0= [ [ 03 saumins(an) | | 3oty | o,
i=1 j=1 k=1
k2,n kQ,n
(46) =3 Bayvpi(x).
i=1 j=1

Because {p;(z) :i =1,2,3,...} is an orthonormal basis, it follows that
k2,n
0= Z ,Bgij"}/j for all 4.

Jj=1

We can express the above relation using a matrix notation as

[O:Ik?2’n><1 = [/Bzij]k‘gﬁnXk‘z,n [ij]k‘z,nxl :

If the square coefficient matrix [Ba;;] is invertible, then the vector of coefficients

kQ,nXkQ,n

[Vilk, . x1 = 0. This implies that h(z*) = 0.
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