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A. Alternative Proof of Theorem 2.1

We provide an alternative proof of the main nonparametric identification result in Theorem

2.1.

We first derive the basic integral equation that needs to be solved. Combining Assump-

tions 2.2(i) and 2.3(i), we can obtain the relationship between the observed density and the

unobserved ones:

fY,X(y, x) =

∫
X ∗
fY,X,X∗(y, x, x

∗)dx∗(1)

=

∫
X ∗

fY,X,X∗(y, x, x
∗)

fX,X∗(x, x∗)
fX,X∗(x, x

∗)dx∗

=

∫
X ∗
fY |X∗(y|x∗)fX,X∗(x, x∗)dx∗

=

∫
X ∗
fη(y −m0(x∗))fX|X∗(x|x∗)fX∗(x∗)dx∗.

Since a characteristic function of any random variable completely determines its probabil-

ity distribution, the above equation is equivalent to

φfY,X=x
(t) ≡

∫
Y
eityfY,X(y, x)dy(2)

=

∫
Y
eity

∫
X ∗
fη(y −m0(x∗))fX|X∗(x|x∗)fX∗(x∗)dx∗dy

=

∫
X ∗

∫
Y
eityfη(y −m0(x∗))dyfX|X∗(x|x∗)fX∗(x∗)dx∗

= φη(t)

∫
X ∗
eitm0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗,

= |φη(t)|
∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗,

for all real-valued t, where φη(t) =
∫
η e

itηfη(η)dη and we define e(t) such that the following

holds φη(t) ≡ |φη(t)|eie(t) and e(t) is the phase of the function. Then Eq. (2) can expressed
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in terms of two real equations:

ReφfY,X=x
(t) = |φη(t)|

∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗,(3)

ImφfY,X=x
(t) = |φη(t)|

∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗.(4)

Without loss of generality, we can make the following assumption:

Assumption A.1. (Locally symmetric range) The range of the regression function {m0(x∗) :

x∗ ∈ X ∗} has an open subset containing zero.

Assumption A.1 is not restrictive because one may always shift the mean of the dependent

variable Y and redefine the regression function accordingly. Also, the range of the regression

is never reduced to a point, by the strict monotonicity imposed by Assumption 2.4.

Using Assumptions A.1 and 2.4 we can rescale the range of the regression function such

that the range is equal to the interval [−c, d] for positive constants c, d and c+d < π. Because

|φη(t)| is continuous at 0 (a property of any characteristic function) and |φ(0)| = 1, we can

find a t̄ ≤ π such that 0 < |φη(t)| < b1 for all t in [0, t̄] and a constant b1. Denote the variance

of the regression error as σ2
η. Choose a constant tu such that

0 < tu < min

{
t̄,

√
2

σ2
η

}
.

Use Eq. (3) to derive an operator equivalence relationship as following: for an arbitrary

h ∈ L2([0, tu])

(LReφfY,X h)(x) =

∫
ReφfY,X=x

(t)h(t)dt,(5)

=

∫
|φη(t)|

∫
X ∗

cos(tm0(X∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗h(t)dt

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(∫
cos(tm0(x∗) + e(t))|φη(t)|h(t)dt

)
dx∗

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(∫
cos(tm0(x∗) + e(t))(∆|φη |h)(t)dt

)
dx∗

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(
Lcosm0,e

∆|φη |h)(x∗)
)
dx∗

=
(
LfX|X∗∆fX∗Lcosm0,e

∆|φη |h
)

(x),

where we have used (i) Eq. (3), (ii) an interchange of the order of integration (justified by

2



Fubini’s theorem), (iii) the definition of ∆|φη | , (iv) the definition of Lcosm0,e
operating on the

function ∆|φη |h, and (v) the definition of LfX|X∗∆fX∗ operating on the function Lcosm0,e
∆|φη |h.

Thus, we obtain

LReφfY,X = LfX|X∗∆fX∗Lcosm0,e
∆|φη | ≡ LfX|X∗∆fX∗LReφfY |X∗

,(6)

We can also express Eq. (4) as the following operator equivalence relationships:

LImφfY,X = LfX|X∗∆fX∗Lsinm0,e
∆|φη | ≡ LfX|X∗∆fX∗LImφfY |X∗

.(7)

Both LReφfY |X∗
and LImφfY |X∗

are bounded linear operators from L2([0, tu]) to L2(X ∗) be-

cause operators in the right hand side are all bounded by Assumption 2.1 and continuity of

characteristic functions.

Our identification technique is to derive a spectral decomposition of an observed integral

operator and show the uniqueness of the decomposition under our assumptions. We can derive

some primitive conditions for the invertibility of the operators LReφfY,X , and LImφfY,X which

are related to the invertibility of the operator LfX|X∗ and the invertibility of the operators

LReφfY |X∗
and LImφfY |X∗

.

Lemma A.1. Assumptions 2.1 and 2.3(ii), L−1
fX|X∗

exists and is densely defined over L2(X ).

The proof of Lemma A.1.1. Because the orthogonal complement of the null space of

LfX|X∗ , denoted N (LfX|X∗ )
⊥, is the closure of the range of L∗fX|X∗

1 and LfX|X∗ is one-to-one

over N (LfX|X∗ )
⊥, L−1

fX|X∗
exists.

Next, we show that the adjoint of LfX|X∗ also admits an integral representation. Because

LfX|X∗ is a bounded linear operator, there exists a unique adjoint operator L∗fX|X∗ such that

〈LfX|X∗ (f1), f2〉 = 〈f1, L
∗
fX|X∗

(f2)〉.

We have

〈LfX|X∗ (f1), f2〉 =

∫
X

∫
X ∗
fX|X∗(x|x∗)f1(x∗)f2(x)dx∗dx.

1Lemma VI. 2.8 in Dunford and Schwartz (1971).
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A direct verification gives the integral representation for L∗fX|X∗ ,

(L∗fX|X∗f2)(x∗) =

∫
fX|X∗(x|x∗)f2(x)dx.(8)

Assumption 2.3(ii) implies that the adjoint operator L∗fX|X∗ is one-to-one. By the part (b) of

Corollaries of Theorem 4.12 in Rudin (1991), the range of LfX|X∗ is dense in L2(X ). Therefore,

L−1
fX|X∗

can be densely defined over L2(X ). QED.

The above result show LfX|X∗ is onto and the injectivity of the operators LfX|X∗ is

directly assumed from the first part of Assumption 2.3(ii). Therefore, L−1
fX|X∗

exists and

L−1
fX|X∗

LfX|X∗ = LfX|X∗L
−1
fX|X∗

= I where I is the identity map from L2(X ∗) to itself. The

discussion hereafter focuses on the conditions for the completeness of Lcosm0,e
, and Lsinm0,e

.

Define ns(t) = 1 − cos(e(t)) =
|φη |−Re(φη)
|φη | as a measure of degree of non-symmetry. If the

distribution of the error term η is symmetric then φη(t) is real-valued and ns(t) = 0 for

t ∈ [0, tu]. Continuity of characteristic functions and Assumption A.1 are sufficient conditions

for the invertibility of the operators Lcosm0,e
, and Lsinm0,e

. We have

Lemma A.2. If Assumption A.1 holds, then each of systems, {cos(tm0(x∗) + e(t))|φη(t)| :

x∗ ∈ X ∗} and {sin(tm0(x∗)+e(t))|φη(t)| : x∗ ∈ X ∗}, is complete over L2([0, tu]). This implies

the operators LReφfY |X∗
and LImφfY |X∗

are both injective from L2([0, tu]) to L2(X ∗).

The injectivity implies the inverses of LReφfY |X∗
and LImφfY |X∗

exist and can defined over

the range of the operators. To show this primitive conditions for the invertibility, we utilize

results from Fourier analysis. We provide the following result of the trigonometric system.2

Lemma A.3. If 1 < p < ∞ and λk is a sequence of distinct real or complex numbers for

which

|λk| ≤ k +
1

2p
, k = 1, 2, 3, ...,(9)

then the sequence {eitλk}∞k=1 is complete in Lp([−π, π]).

We can directly use this neat result to establish the following completeness.

2See Theorem 4 of page 119 in Young (1980).
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Lemma A.4. If the range of the regression function {m0(x∗) : x∗ ∈ X ∗} contains a sequence

of distinct numbers {λ1, λ2, λ3, ...} such that

|λk| ≤ k +
1

4
, k = 1, 2, 3, ...,(10)

then the family of the functions {eitm0(x∗) : x∗ ∈ X ∗} is complete in L2([−π, π]).

Next, we establish the completeness of the two systems: {cos(tm0(x∗)) : x∗ ∈ X ∗} and

{sin(tm0(x∗)) : x∗ ∈ X ∗} over L2([0, tu]).

Lemma A.5. If the range of the regression function {m0(x∗) : x∗ ∈ X ∗} contains a sequence

of distinct numbers {λ1, λ2, λ3, ...} such that

|λk| ≤ k +
1

4
, k = 1, 2, 3, ...,(11)

then the families of the functions {cos(tm0(x∗)) : x∗ ∈ X ∗} and {sin(tm0(x∗)) : x∗ ∈ X ∗} are

complete in L2([0, tu]) for any tu ≤ π.

The proof of Lemma A.5. This proof is established by the claim that the two families

{cos(tλk) : k = 1, 2, 3, ...} and {sin(tλk) : k = 1, 2, 3, ...} are complete over L2([0, π]) with

|λk| ≤ k+ 1
4 , k = 1, 2, 3, ...,. Suppose that

∫
[0,π] cos(tλk)h2(t)dt = 0 for some h2 ∈ L2([0, π]).

Then we can extend the function h2 to an even function in L2([−π, π]) by h2(−x) = h2(x).

It follows that
∫

[−π,0] cos(tλk)h2(t)dt =
∫

[0,π] cos(tλk)h2(t)dt = 0 and
∫

[−π,0] sin(tλk)h2(t)dt =

−
∫

[0,π] sin(tλk)h2(t)dt. Thus,
∫

[−π,π] cos(tλk)h2(t)dt = 0 and
∫

[−π,π] sin(tλk)h2(t)dt = 0. This

implies
∫

[−π,π][cos(tλk) + i sin(tλk)]h2(t)dt =
∫

[−π,π] e
itλkh2(t)dt = 0. The cosine part of the

claim can be ensured by the completeness of {eitλk : k = 1, 2, 3, ...} over L2([−π, π]) with

|λk| ≤ k+ 1
4 , k = 1, 2, 3, ..., in Lemma A.4. The sine part of the claim can be reached by the

observation that we can extend a function h3 over [0, π] to an odd function over [−π, π] by

h3(−x) = −h3(x). Therefore, we have reached the families of the functions {cos(tm0(x∗)) :

x∗ ∈ X ∗} and {sin(tm0(x∗)) : x∗ ∈ X ∗} are complete in L2([0, tb]) because if a family is

complete for functions over [0, π], then it is complete over [0, tb] with tb < π. QED.

The above gives the invertibility of the operators Lcosm0,e
, and Lsinm0,e

under the sym-

metric distribution of the regression error η, i.e., e(t) = 0 ∀t. Next, we try to generalize

the invertibility or completeness of the symmetric case to a non-symmetric case. Comparing

the function in the symmetric case cos(tm0(x∗)) with the function in the non-symmetric case
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cos(tm0(x∗) + e(t)) suggests that we can look into a situation where e(t) is under ”small”

perturbations around zero (symmetry; e(t) = 0 ∀t) and investigate what restrictions on the

range of e(t) leads to invertibility of operators. In this way, questions about ”small” per-

turbations can be regarded as questions about the stability of completeness because we have

already provided a sufficient condition for the symmetric case in Lemma A.5. We will adopt a

stability criterion to study completeness. The following result can be found in Young (1980).3

Lemma A.6. Let {bk} be a complete sequence for a Hilbert space (H, ‖ · ‖), and suppose that

{fk} is sequence of elements of H such that

‖
n∑
k=1

ck(bk − fk)‖ ≤ λ‖
n∑
k=1

ckbk‖

for some constant 0 ≤ λ < 1, and all choices of the scalar {c1, c2, c3, ..., cn}, Then {fk} is

complete for H.

Lemma A.6 is based on the fact that a bounded linear operator T on a Banach space is

invertible whenever ‖I − T‖ < 1 because the inverse operator of T can exist by the formula

T−1 =
∞∑
k=0

(I − T )k.4 Define ns(t) = 1 − cos(e(t)) =
|φη |−Re(φη)
|φη | as a measure of degree of

non-symmetry. If the distribution of the error term η is symmetric then φη(t) is real-valued

and ns(t) = 0. The following result provides an upper bound on the absolute values of ns(t)

and it will be used to prove Lemma A.2.

Lemma A.7. For t ∈ [0, tu], ns(t) is nonnegative and its maximum is less than 1 .

The proof of Lemma A.7. Suppose φs(t) is the characteristic function of a random vari-

able s. If s has zero expectation and finite variance σ2
s , then the real part of the characteristic

function satisfies the following inequality,5

Reφs(t) ≥ 1− σ2
s t

2

2
.(12)

Because η has zero expectation, we can apply the result. By the definition of tu, we obtain

Reφη(t) ≥ 1−
σ2
ηt

2

2
> 1−

σ2
ηt

2
u

2
> 0 for t ∈ [0, tu].(13)

3See Problem 2 in page 41. The result is stated for a Banach space and the dense property. Here we adopt
Hilbert space version by an important consequence of the Hahn-Banach theorem and the Riesz representation
theorem that the dense property is equivalent to the completeness in a Hilbert space.

4The result is like ordinary numbers: if |1− t| < 1, then t−1 exists. More discussions can be found in Young
(1980).

5See Theorem 2.3.2 of page 89 in Ushakov (1999).
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This implies 0 < cη <
Re(φη)
|φη | ≤ 1 for some positive constant cη over [0, tu] and then 0 ≤

ns(t) = 1− Re(φη)
|φη | < 1− cη for t ∈ [0, tu]. QED.

Applying the stability criterion and Lemma A.7 to Lemma A.5 under Assumptions A.1

and 2.4, we can prove Lemma A.2.

The proof of Lemma A.2. First, if the range contains any open set with zero, we can

always pick a sequence of distinct numbers {±λ1,±λ2,±λ3, ...} such that |λk| ≤ k+ 1
4 , k =

1, 2, 3, .... We use subsequence of this sequence of distinct numbers to show that {cos(tλk) cos(e(t)) :

k = 1, 2, 3, ...} is complete for L2([0, tu]) by applying Lemma A.6 to bk(t) = cos(tλk) and

fk(t) = cos(tλk) cos(e(t)) with |λk| ≤ k + 1
4 , k = 1, 2, 3, .... Write ck(bk(t) − fk(t)) =

ns(t)ck cos(tλk) for some constant ck. By Lemma A.7, |ns(t)| < λ < 1 for t ∈ [0, tu] for some

constant λ. For all choices of the scalars {c1, c2, c3, ..., cn},

‖
n∑
k=1

ck(bk(·)− fk(·))‖ = ‖ns(·)
n∑
k=1

ckbk(·)‖ < λ‖
n∑
k=1

ckbk(·)‖,(14)

with λ < 1. Because {cos(tλk) : k = 1, 2, 3, ...} is complete by Lemma A.5, {cos(tλk) cos(e(t)) :

k = 1, 2, 3, ...} is complete by the stability criterion in Lemma A.6.

The next step is to show {cos(tλ + e(t)) : λ = ±λ1,±λ2,±λ3, ...} is complete over

L2([0, tu]). Suppose that there exists h2 such that
∫

cos(tλk + e(t))h2(t)dt = 0, ∀λ =

±λ1,±λ2,±λ3, ..... Recall that cos(tλ + e(t)) = cos(tλ) cos(e(t)) − sin(tλ) sin(e(t)). Plug-

ging λ = λ1 and λ = −λ1 back to
∫

cos(tλk + e(t))h2(t)dt = 0 and then summing up

those two identities, we obtain
∫

cos(tλ1) cos(e(t))h2(t)dt = 0. Applying the same derivation

to ±λ2,±λ3, ..., yields
∫

cos(tλk) cos(e(t))h2(t)dt = 0, k = 1, 2, 3, .... Since we have shown

{cos(tλk) cos(e(t)) : k = 1, 2, 3, ...} is complete, it follows that h2 = 0 which proves that

completeness of {cos(tm0(x∗) + e(t)) : x∗ ∈ X ∗}. Since |φη(t)| 6= 0 for [0, tu] by continuity

, {cos(tm0(x∗) + e(t))|φη(t)| : x∗ ∈ X ∗} is also complete. As for the sine part, in a sim-

ilar manner, we first show {sin(tλk) cos(e(t)) : k = 1, 2, 3, ...} is complete by the stability

criterion in Lemma A.6 and then utilize |φη(t)| 6= 0 for [0, tu] and the identities sin(tλk +

e(t)) = sin(tλk) cos(e(t)) + cos(tλk) sin(e(t)) and sin(−tλk + e(t)) = − sin(tλk) cos(e(t)) +

cos(tλk) sin(e(t)) to show the completeness of {sin(tm0(x∗) + e(t))|φη(t)| : x∗ ∈ X ∗}. QED.

In order to provide the onto property of the operators LReφfY |X∗
and LImφfY |X∗

, we need

a variant of the stability result as in Lemma A.6. To provide the result, we introduce the

following notations and statements. Any function f in a Hilbert space can be expressed as
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a linear combination of the basis function with a unique sequence of scalars {c1, c2, c3, ...}.

Therefore, we can consider cn as a function of f . In fact, cn (·) is the so-called coefficient

functional.6

Definition A.1. If {f1, f2, f3, ...} is a basis in a Hilbert space H, then every function f in H

has a unique series {c1, c2, c3, ...} such that

f =

∞∑
n=1

cn(f)fn.

Each cn is a function of f . The functionals cn (n = 1, 2, 3, ...) are called the coefficient

functionals associated with the basis {f1, f2, f3, ...}. Because cn is a coefficient functional

from H to R. Define its norm by

‖cn‖ = sup {|cn(f)| : f ∈ H, ‖f‖ ≤ 1} .

The following results regarding the coefficient functionals are from Theorem 3 in section

6 in Young (1980).

Lemma A.8. If {f1, f2, f3, ...} is a basis in a Hilbert space H. Define cn as coefficient

functionals associated with the basis. Then, there exists a constant M such that

(15) 1 ≤ ‖fn‖ · ‖cn‖ ≤M,

for all n.

Lemma A.9. Denote H as a Hilbert space. Suppose that

i) the sequence {ek (·) : k = 1, 2, ...} is a basis in a Hilbert space H;

ii) the sequence {fk (·) : k = 1, 2, ...} in H is ω−independent;

iii)
∑∞

n=1
‖fk(·)−ek(·)‖
‖ek(·)‖ <∞.

Then, the sequence {fk(·) : k = 1, 2, ...} is a basis in H.

Proof of Lemma A.9: Consider for any function f ∈ H

f =
∞∑
n=1

cn(f)en,

6The introduction of coefficient functional can be found in the page 22 of Young (1980).

8



where cn(f) is the coefficient functional corresponding to the basis {en}. It is clear that cn(f)

is a linear function of f . We mimic the proof of Theorem 12 in Young (1980). Consider∥∥∥∥∥
∞∑
n=1

cn(f) (en − fn)

∥∥∥∥∥ ≤
∞∑
n=1

‖cn(f) (en − fn)‖

≤

( ∞∑
n=1

‖en − fn‖ ‖cn‖

)
‖f‖

≤

( ∞∑
n=1

‖en − fn‖
‖en‖

‖en‖ ‖cn‖

)
‖f‖

≤ M

( ∞∑
n=1

‖en − fn‖
‖en‖

)
‖f‖ ,

where we have used (i) the triangle inequality, (ii) the definition of functional, and (iii) Lemma

A.8, 1 ≤ ‖en‖ ‖cn‖ ≤ M . Applying the condition (iii)
∑∞

n=1
‖en−fn‖
‖en‖ < ∞ to the above

inequality suggests that the infinite sum
∑∞

n=1 cn(f) (en − fn) is absolutely converge. Hence,

define an operator T : H → H as

Tf =
∞∑
n=1

cn(f) (en − fn) .

It is clear that T is linear. Since cn(en) = 1 and ck(en) = 0 for k 6= n, we have

Ten =

∞∑
n=1

cn(en) (en − fn) = en − fn.

The relationship above implies that the linear operator T is bounded if

∞∑
n=1

‖en − fn‖
‖en‖

<∞,

which is the condition (iii). We then show that T is a compact operator. Set

TNf =

N∑
n=1

cn(f) (en − fn) .
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Start with

‖(T − Tn)f‖ =

∥∥∥∥∥
∞∑

n=N+1

cn(f) (en − fn)

∥∥∥∥∥
≤

∞∑
n=N+1

‖cn(f) (en − fn)‖

≤

( ∞∑
n=N+1

‖en − fn‖ ‖cn‖

)
‖f‖ .

Follow the previous derivation of ‖
∑∞

n=1 cn(f) (en − fn)‖, we can obtain

‖(T − Tn)f‖ ≤M

( ∞∑
n=N+1

‖en − fn‖
‖en‖

)
‖f‖ .

This implies that ‖(T − Tn)‖ ≤M
(∑∞

n=N+1
‖en−fn‖
‖en‖

)
. Assumption iii) of Lemma 10 suggests

that ‖T − Tn‖ → 0. Since each TN has finite dimensional range and ‖T − TN‖ → 0 as N →∞,

T is an compact operator.7

Next, we show that Ker(I − T ) = {0}, i.e., (I − T ) is invertible. Consider

0 = (I − T ) f

= f −
∞∑
n=1

cn(f) (en − fn)

=

∞∑
n=1

cn(f)en −
∞∑
n=1

cn(f)en +

∞∑
n=1

cn(f)fn

=
∞∑
n=1

cn(f)fn

Since {fn (·)} is an ω−independent sequence, we have cn(f) = 0 for all n, and therefore,

0 = (I − T ) f implies f = 0.

Therefore, T is a compact operator defined in a Hilbert space H with Ker(I − T ) = {0}.

Since T is bounded, (I − T ) is also bounded. By the Fredholm alternative, this shows that

(I − T ) is a bounded invertible operator.8 Clearly, we have (I − T ) en = fn. Consider any

h ∈ H. Then, (I − T )−1h has an unique series expression (I − T )−1h =
∞∑
n=1

cnen since

{en (·)} is a basis. Since (I − T ) is bounded, applying (I − T ) to the expression above results

7If an bounded linear operator T is the limit of operators of finite rank, then T is compact. See Exercise
13 on page 112 in Rudin (1991).

8See the Fredholm alternative in Rudin (1991), Exercise 13 on page 112.
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in h =
∞∑
n=1

cnfn. This series expansion is unique because {fn (·)} is ω-independent. The

argument above shows that every element h ∈ H has a unique series expansion in terms of

fn. Thus, {fn (·)} is also a basis for H. QED

Lemma A.10. If Assumptions A.1 and 2.4 hold, then each of systems, {cos(tm0(x∗)+e(t)) :

t ∈ [0, tu]} and {sin(tm0(x∗) + e(t)) : t ∈ [0, tu]}, is complete over L2(X ∗). This implies that

the inverse operators L−1
ReφfY |X∗

and L−1
ImφfY |X∗

exist and are densely defined over L2(X ∗).

The proof of Lemma A.10. Set ek(w) = cos(tkw) and fk(w) = cos(tkw − tkc + e(tk)).

Define the relative deviation as ‖ek(·)−fk(·)‖
‖ek(·)‖ . By Lemma A.5, we can have the completeness

of the system, {cos(tkw) : k = 1, 2, 3, ...} over L2([0, c+ d]) for a sequence of distinct numbers

{t1, t2, t3, ...} ⊂ [0, tu] converging to 0 such that ‖ek(·)−1‖
‖ek(·)‖ < 1/2k and ‖1−fk(·)‖

‖ek(·)‖ < 1/2k. The

existence of such subsequence comes from tk → 0 as k → ∞ and the relative deviation is

continuous and has zero value at 0. Because a complete sequence contain a subsequence as

a basis, we can extract a subsequence {ts1, ts2, ts3, ...} such that {cos(tskw) : k = 1, 2, 3, ...}

is a basis over L2([0, c + d]). According to the second Theorem in Erdös and Straus (1953),

any linearly independent sequence in a normed space contains an ω− independent subse-

quence. Because {cos(tkw − tkc + e(tk)) : k = 1, 2, 3, ...} is linear independent for any se-

quence of distinct numbers {t1, t2, t3, ...}9, we can extract a subsequence {tl1, tl2, tl3, ...} such

that {cos(tlkw − tlkc + e(tlk)) : k = 1, 2, 3, ...} is ω− independent. Next, we try to ap-

ply Lemma A.9 to bsk(w) = cos(tskw) and flk(w) = cos(tlkw − tlkc + e(tlk)) with the total

deviation
∑∞

k=1
‖bsk(·)−flk(·)‖
‖bsk(·)‖ =

∑∞
k=1

‖bsk(·)−1‖
‖bsk(·)‖ + ‖1−flk(·)‖

‖bsk(·)‖ < ∞. Therefore, the sequence

{cos(tlkw − tlkc + e(tlk)) : k = 1, 2, 3, ...} contain a basis and then the sequence is complete

over L2([0, c + d]). Similarly, we can use the completeness of {sin(tkw) : k = 1, 2, 3, ...} to

show the system {sin(tkw − tkc+ e(tk)) : k = 1, 2, 3, ...} is complete over L2([0, c+ d]).

Suppose there exists h ∈ L2(X ∗) such that
∫
X ∗ cos(tkm0(x∗) + e(tk))h(x∗)dx∗ = 0 for k =

1, 2, 3, .... By the monotonicity in Assumption 2.4, we can do the change of the variables be-

tween x∗ and w using w = m0(x∗)+c. This yields
∫

[0,c+d] cos(tkw−tkc+e(tk))
h(m−1

0 (w−c))
m′0(m−1

0 (w−c))dw =

0 for k = 1, 2, 3, .... The completeness of {cos(tkw− tkc+e(tk)) : k = 1, 2, 3, ...} and the mono-

tonicity of m implies h = 0 and then we achieve the completeness of {cos(tm0(x∗)+e(t)) : t ∈

[0, tu]} over L2(X ∗). Similarly, we have the completeness of {sin(tm0(x∗) + e(t)) : t ∈ [0, tu]}

over L2(X ∗).
9The 2, 4,..., 2(K-1) times differentiation of these functions can be expressed as a Vandermonde matrix

whose determinant is non-zero and this leads to linear independence of the system.
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Following the derivation in Lemma A.1, we know the adjoint operators of LReφfY |X∗
and

LImφfY |X∗
are as the following:

L∗ReφfY |X∗
: L2(X ∗)→ L2([0, tu]) with (L∗cosm0,e

h)(t) =

∫
cos(tm0(x∗) + e(t))|φη(t)|h(x∗)dx∗,

L∗ImφfY |X∗
: L2(X ∗)→ L2([0, tu]) with (L∗sinm0,e

h)(t) =

∫
sin(tm0(x∗) + e(t))|φη(t)|h(x∗)dx∗.

The completeness of the systems {cos(tm0(x∗) + e(t)) : t ∈ [0, tu]} and {sin(tm0(x∗) + e(t)) :

t ∈ [0, tu]} and 0 < |φη(t)| < b1 for all t in [0, tu] implies these adjoint operators L∗ReφfY |X∗

and L∗ImφfY |X∗
are one-to-one from L2(X ∗) to L2([0, tu]). By the part (b) of Corollaries of

Theorem 4.12 in Rudin (1991), the ranges of LReφfY |X∗
and LImφfY |X∗

are dense in L2(X ∗).10

This implies that the inverse operators L−1
ReφfY |X∗

and L−1
ImφfY |X∗

exist and are densely defined

over L2(X ∗). QED.

The completeness results in Lemma A.2 imply the injectivity of LReφfY |X∗
and LImφfY |X∗

while Lemma A.10 gives the onto property of these operators. Therefore, the operators

invertible with L−1
ReφfY |X∗

LReφfY |X∗
= LReφfY |X∗

L−1
ReφfY |X∗

= I and L−1
ImφfY |X∗

LImφfY |X∗
=

LImφfY |X∗
L−1
ImφfY |X∗

= I, where I is the identity map from L2([0, tu]) to itself.

Define LK1 as

LK1 = L−1
ReφfY |X∗

LImφfY |X∗

by the existence of L−1
ReφfY |X∗

over L2(X ∗) by Lemma A.10. We can elicit simpler represen-

tations of the operator LK1 under Assumption A.1. Furthermore, this simpler representation

of LK1 implies the angle function e(t) is identified.

Lemma A.11. If Assumption A.1 holds, then LK1 is a multiplier operator such that (LK1h)(t) =

tan(e(t))h(t) or (LK1h)(t) =
Imφη(t)
Reφη(t) h(t) for t ∈ [0, tu].

The proof of Lemma A.11. By the definition of LK1 , we have LReφfY |X∗
LK1 = LImφfY |X∗

,

i.e.
∫

cos(tm0(x∗) + e(t))|φη(t)|(LK1h)(t)dt =
∫

sin(tm0(x∗) + e(t))|φη(t)|h(t)dt for all h(t) ∈

L2([0, tu]). Since {m0(x∗) : x∗ ∈ X ∗} contains an open set with zero, there exists a se-

quence of distinct numbers {±λ1,±λ2,±λ3, ...} in the range. We can plug m0(x∗) = λk and

m0(x∗) = −λk for all k ∈ {1, 2, 3, ...} into the equation and then sum up those plugged e-

quations. Using two identities, cos(tλk + e(t)) + cos(−tλk + e(t)) = 2 cos(tλk) cos(e(t)) and

10The statement of the part (b) of Corollaries of Theorem 4.12 in Rudin (1991) is the following: Suppose X
and Y are Banach spaces, and T is a bounded linear operator from X to Y . Then the range of T is dense in
Y if and only if its adjoint T ∗ is one-to-one.
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sin(tλk + e(t)) + sin(−tλk + e(t)) = 2 cos(tλk) sin(e(t)), we obtain

2

∫
cos(tλk) cos(e(t))|φη(t)|(LK1h)(t)dt = 2

∫
cos(tλk) sin(e(t))|φη(t)|h(t)dt.(16)

Rearranging the term, we have∫
cos(tλk)|φη(t)| [cos(e(t))(LK1h)(t)− sin(e(t))h(t)] dt = 0.(17)

By the completeness of the system {cos(tλk) : k = 1, 2, 3, ...} and |φη(t)| 6= 0 over [0, tu], we

have (LK1h)(t) = tan(e(t))h(t) =
Imφη(t)
Reφη(t) h(t). QED.

We now are ready to prove the main theorem.

Alternate proof of Theorem 2.1. We start with the operator equivalence relationships

in Eqs. (6) and (7):

LReφfY,X = LfX|X∗∆fX∗Lcosm0,e
∆|φη | ≡ LfX|X∗∆fX∗LReφfY |X∗

,

LImφfY,X = LfX|X∗∆fX∗Lsinm0,e
∆|φη | ≡ LfX|X∗∆fX∗LImφfY |X∗

,

Those operator equivalence relationships may not provide enough information to derive

the spectral decomposition of the operator of interest. In order to solicit more useful operator

equivalence relationships, we take derivative with respect to t in Eq. (2). It gives that

∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗(18)

+ i

(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

+ i|φη(t)|
∫
X ∗
ei(tm0(x∗)+e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗.

13



We split Eq. (18) into a real part and an imaginary part:

Re
∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗(19)

−
(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

− |φη(t)|
∫
X ∗

sin(tm0(x∗) + e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗,

Im
∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗
(20)

+

(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

+ |φη(t)|
∫
X ∗

cos(tm0(x∗) + e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗.

We define operators as follows:

LRe ∂
∂t
φfY,X

: L2([0, tu])→ L2(X ) with (LRe ∂
∂t
φfY,X

h)(x) =

∫
Re

∂

∂t
φfY,X=x

(t)h(t)dt,(21)

LIm ∂
∂t
φfY,X

: L2([0, tu])→ L2(X ) with (LIm ∂
∂t
φfY,X

h)(x) =

∫
Im

∂

∂t
φfY,X=x

(t)h(t)dt,(22)

∆∂|φη | : L
2([0, tu])→ L2([0, tu]) with (∆∂|φη |h)(t) =

(
∂

∂t
|φη(t)|

)
h(t),(23)

∆∂e : L2([0, tu])→ L2([0, tu]) with (∆∂eh)(t) =

(
∂

∂t
e(t)

)
h(t),(24)

∆m0 : L2(X ∗)→ L2(X ∗) with (∆m0h)(x∗) = m0(x∗)h(x∗).(25)

Similarly to the derivation in Eq. (3), we can obtain operator equivalence relationships to

Eqs. (19) and (20) as the following:

LRe ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lcosm0,e
∆∂|φη | − LfX|X∗∆fX∗Lsinm0,e

∆|φη |∆∂e(26)

− LfX|X∗∆fX∗∆m0Lsinm0,e
∆|φη |,

LIm ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lsinm0,e
∆∂|φη | + LfX|X∗∆fX∗Lcosm0,e

∆|φη |∆∂e(27)

+ LfX|X∗∆fX∗∆m0Lcosm0,e
∆|φη |.

Define ∆∂ ln |φη | : L2([0, tu]) → L2([0, tu]) with (∆∂ ln |φη |h)(t) =

(
∂
∂t
|φη(t)|
|φη(t)|

)
h(t). The
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following derivation is dedicated to the identification of

LA = L−1
ReφfY |X∗

∆m0LReφfY |X∗
,

where L−1
ReφfY |X∗

exists and is densely defined over L2(X ) by Lemma A.10. We will show LA

is identified and use it to construct a spectral decomposition. Note that the invertibility of

the operators LReφfY,X and LImφfY,X is equivalent to the invertibility of operators, LfX|X∗ ,

LReφfY |X∗
, and LImφfY |X∗

and the boundedness of fX∗ . While Assumption 2.3(ii) and Lem-

ma A.1.1 permits the invertibility of LfX|X∗ , Lemma A.2, and Lemma A.10 guarantee the

invertibility of LReφfY |X∗
, and LImφfY |X∗

. The boundedness is ensured by Assumption 2.1.

Post-multiplying L−1
ReφfY |X∗

to Eq. (6) yields

LReφfY,XL
−1
ReφfY |X∗

= LfX|X∗∆fX∗ ,

which is justified by Lemma A.10. Use this relation to rewrite Eq. (26) as

LRe ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lcosm0,e
∆∂|φη | − LfX|X∗∆fX∗Lsinm0,e

∆|φη |∆∂e

− LfX|X∗∆fX∗∆m0Lsinm0,e
∆|φη |,

=

[
LReφfY,XL

−1
ReφfY |X∗

]
Lcosm0,e

∆∂|φη | −
[
LReφfY,XL

−1
ReφfY |X∗

]
Lsinm0,e

∆|φη |∆∂e

−
[
LReφfY,XL

−1
ReφfY |X∗

]
∆m0Lsinm0,e

∆|φη |,

= LReφfY,X

[
L−1
ReφfY |X∗

Lcosm0,e
∆∂|φη | − L

−1
ReφfY |X∗

Lsinm0,e
∆|φη |∆∂e

− L−1
ReφfY |X∗

∆m0Lsinm0,e
∆|φη |

]
Because LReφfY,X is injective by the injectivity of operators, LfX|X∗ , LReφfY |X∗

, and fX∗ ,
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L−1
ReφfY,X

LReφfY,X = I. This implies

LB1 ≡ L−1
ReφfY,X

LRe ∂
∂t
φfY,X

(28)

=
(
Lcosm0,e

∆|φη |
)−1

Lcosm0,e
∆∂|φη | −

(
L−1
ReφfY |X∗

Lsinm0,e
∆|φη |

)
∆∂e

−
(
L−1
ReφfY |X∗

∆m0LReφfY |X∗

)(
L−1
ReφfY |X∗

Lsinm0,e
∆|φη |

)
= ∆∂ ln |φη | − LK1∆∂e − LALK1 ,

where we have used LReφfY |X∗
L−1
ReφfY |X∗

= I. Similar, using Eqs. (7) and (27), we obtain

LB2 ≡ L−1
ImφfY,X

LIm ∂
∂t
φfY,X

(29)

=
(
Lsinm0,e

∆|φη |
)−1

Lsinm0,e
∆∂|φη | +

(
L−1
ImφfY,X

Lcosm0,e
∆|φη |

)
∆∂e

+

(
L−1
ImφfY |X∗

LReφfY |X∗

)(
L−1
ReφfY |X∗

∆m0Lcosm0,e
∆|φη |

)
= ∆∂ ln |φη | + L−1

K1
∆∂e + L−1

K1
LA.

We eliminate the operator LA in Eqs. (28) and (29) by applying LK1 to the left and right

sides of Eq. (29) and then adding with Eq. (28):

LC = LB1 + LK1LB2LK1

= ∆∂ ln |φη | − LK1∆∂e + LK1∆∂ ln |φη |LK1 + ∆∂eLK1

= ∆∂ ln |φη | + LK1∆∂ ln |φη |LK1 ,(30)

where we have used LK1∆∂e = ∆∂eLK1 which is justified by Lemma A.11. Note that LHS

are observable and ∆∂ ln |φη | is the unobservable operators in RHS. Applying the observed

operator LC in Eq. (30) to the constant function 1 and using Lemma A.11 yields

(LC1)(t) =
∂
∂t |φη(t)|
|φη(t)|

+ tan(e(t))2
∂
∂t |φη(t)|
|φη(t)|

(31)

= (1 + tan(e(t))2)
∂
∂t |φη(t)|
|φη(t)|

.

Because LK1 , and therefore e(t), are identified, this implies that both
∂
∂t
|φη(t)|
|φη(t)| is identified. It
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follows that LA is identified from Eq. (29) as follows:

LA = LK1

(
LB2 −∆∂ ln |φη |

)
−∆∂e.

Pre-multiplying the operator LfX|X∗∆fX∗ to the both sides of the equation LReφfY |X∗
LA =

∆m0LReφfY |X∗
, we have

LReφfY,XLA = LfX|X∗∆fX∗∆m0LReφfY |X∗
.(32)

Post-multiplying the operator L−1
ReφfY |X∗

to the both sides of Eq. (32) (justified by Lemma

A.10) yields

LReφfY,XLAL
−1
ReφfY |X∗

= LfX|X∗∆fX∗∆m0 .(33)

Because ∆−1
fX∗

and L−1
fX|X∗

both defined over a dense subset of their domain spaces (As-

sumption 2.1 and Lemma A.1.1 ), we post-multiply these operators to Eq. (33) to obtain

LReφfY,XLAL
−1
ReφfY,X︸ ︷︷ ︸

Identified

=

(
LReφfY,XLAL

−1
ReφfY |X∗

)
∆−1
fX∗

L−1
fX|X∗

= LfX|X∗∆fX∗∆m0∆−1
fX∗

L−1
fX|X∗

(34)

= LfX|X∗∆m0L
−1
fX|X∗

.

The above operator to be diagonalized is defined in terms of observable operators, while the

resulting eigenvalues m0(x∗) and eigenfunctions fX|X∗(·|x∗) (both indexed by x∗) provide the

unobserved function of interest including the regression function and the joint distribution of

the joint distribution of the unobserved regressor x∗ and the observed regressor x. Assump-

tions 2.3(iii) and 2.4 ensure the uniqueness of the spectral decomposition of the observed

operator Eq. (32). Similar to Eq. (1), we have fY,X(y, x) =
∫
X ∗ fY,X∗(y, x

∗)fX|X∗(x|x∗)dx∗

and it implies that for any y ∈ Y, (LfX|X∗fY,X∗)(x) = fY,X(y, x). Thus the identification of

fX|X∗ induces the identification of fY,X∗ as follow, for any y ∈ Y,

fY,X∗(y, x
∗) = (L−1

fX|X∗
fY,X)(x∗),

where the inverse is justified by the first part of 2.3(ii). Therefore, the densities fY |X∗ and

fX∗ are identified and so is the regression error distribution fη. We have reached our main
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result. QED.

B. A Sieve Maximum Likelihood Estimator

Our asymptotic analysis relies on regularity restrictions on the unknown functions to be

estimated. We thus introduce a typical space of smooth functions, i.e., the Hölder space.

Given a d × 1 vector of nonnegative integers, a = (a1, ..., ad)
T and denote [a] = a1 + ... + ad

and let Da denote the differential operator defined by Da = ∂[a]

∂ξ
a1
1 ...∂ξ

ad
d

. Let γ denote the

largest integer satisfying γ > γ and set γ = γ + p. The Hölder space Λγ(ν) of order γ > 0

is a collection of functions which are γ times continuously differentiable on ν and the γ−th

derivative are Hölder continuous with the exponent p. The Hölder space becomes a Banach

space with the Hölder norm, i.e., ∀g ∈ Λγ(ν)

(35) ‖g‖Λγ = sup
ξ∈ν
|g(ξ)|+ max

a1+...+ad=γ
sup

ξ 6=ξ′∈ν

|Dag(ξ)−Dag(ξ′)|
‖ξ − ξ′‖pE

.

The weighted Hölder norm is defined as ‖g‖Λγ,ω ≡ ‖g̃‖Λγ for g̃(ξ) ≡ g(ξ)ω(ξ) and the corre-

sponding weighted Hölder space is Λγ,ω(ν). Define a weighted Hölder ball as Λγ,ωc (ν) ≡ {g ∈

Λγ,ω(ν) : ‖g‖Λγ,ω ≤ c <∞}. Let η ∈ R, γ1 > 1, and W ∈ W withW a compact convex subset

in Rdw . Without loss of generality, we consider strictly increasing m (decreasing m can be

handled simiarly). Define the following sets:

F̃1 = {
√
f1(·) ∈ Λγ1,ωc (R) : f1(·) ≥ 0 and

∫
R
f1(η)dη = 1},

F̃2 = {f2(·|·) ∈ Λγ1,ωc (X × X ∗) : f2(·|·) ≥ 0 and f2 satisfies Assumption

2.3(ii)&(iii) and

∫
X
f2(x|x∗)dx = 1, for x∗ ∈ X ∗},

F̃3 = {
√
f3(·) ∈ Λγ1,ωc (X ∗) : f3(·) ≥ 0 and

∫
X ∗
f3(x∗)dx∗ = 1},

F̃4 = {
√
m′4(·; θ, h4) ∈ Λγ1,ωc (X ∗) : m′4(·; θ, h4) > 0},

where m′4(·; θ, h4) is the derivative of m4(·; θ, h4) with respect to x∗. Working with square

roots is a convenient device to enforce positiveness. For maximum generality, we phrase

our estimation result for subsets of those maximal sets Fi ⊆ F̃i, i = 1, 2, 3, 4, thus allowing

practitioners to impose other constraints that may be known to hold in the population. This

is helpful in cases where the sets F̃i are too “rich” to allow simple primitive verifications
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of the assumptions of our asymptotic theory while such verification could be possible on

suitably defined subsets Fi. With γ1 > 1, assume that the square roots of the nonparametric

components fη, fX∗ and m′0 belong to the spaces, F1, F3, and F4 respectively, and fX∗|X

belongs to F2, and that the parametric vector in the regression function belongs to the space

Θ.

Assumption B.1. (i) all the assumptions of Theorem 2.1 hold; (ii)
√
f1(·) ∈ F1; (iii)

f2(·) ∈ F2; (iv)
√
f3(·) ∈ F3; (v)

√
h4(·) ∈ F4.

Set A = Θ×F1 ×F2 ×F3 ×F4 and α ≡ (θ, f1s, f2, f3s, h4s), where the lower subscript s

indicates the square roots. Let α0 ≡ (θ0,
√
fη, fX|X∗ ,

√
fX∗ ,

√
h0) denote the true parameter.

Our sieve MLE α̂n is obtained by maximizing

α̂n = arg max
α∈An

Q̂n(α).

where An ≡ Θ×Fn1 ×Fn2 ×Fn3 ×Fn4 is a sequence of approximation spaces to A, where

Q̂n(α) =
1

n

∑n

i=1
ln

(∫
X ∗
f1(yi −m0(x∗; θ̃))f2(xi|x∗)f3(x∗)dx∗

)
.

and where {yi, xi}ni=1 denotes the observed sample.

This estimator is a direct application of the general semi-parametric sieve MLE presented

by Shen (1997), Chen and Shen (1998), and Ai and Chen (2003). Ai and Chen (2003) shows

that α̂n is a consistent estimator, and the parametric component of α has an asymptotically

normal distribution. For completeness, we present all the standard assumptions for consisten-

cy of all unknown parameters and root-n normality of the parametric part in the remainder

of this appendix.

B.1. Consistency and Convergence Rates

In this subsection, we first obtain consistency of the sieve MLE α̂n for α0 under a strong norm

‖ · ‖s, as in Newey and Powell (2003) and Ai and Chen (2003). Using the consistency as a

starting point, we then establish that α̂n converges to α0 at a rate faster than n−1/4 under a

suitably constructed weaker Fisher norm, ‖ · ‖. Define

(36) ‖α‖s = ‖θ‖E + ‖f1s‖s,ω + ‖f2‖s,ω + ‖f3s‖s,ω + ‖h4s‖s,ω
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where ‖θ‖E is the Euclidean norm and ‖g‖s,ω ≡ supξ |g(ξ)ω(ξ)| with ω(ξ) = (1 + ‖ξ‖2E)−ς/2,

for some ς > 0. The weighting function ω is introduced to deal with unbounded support.

Define

`D(di;α) = ln fD(di;α) = ln

(∫
X ∗
f1(yi −m0(x∗; θ̃))f2(xi|x∗)f3(x∗)dx∗

)
,

where di is a realization of a random variable D ≡ (Y,X) in the sample.

Assumption B.2. (i) The data {(Di)
n
i=1} are i.i.d.; (ii) The density function of D, fD,

satisfies
∫
ω(ζ)−2fD(ζ)dζ <∞.

Assumption B.3. (i) θ0 ∈ B, a compact subset of Rdθ ; (ii) Assumption B.1 holds for a

neighborhood of α0 under the norm ‖ · ‖s.

Assumption B.4. (i) For any α ∈ A, there exists Πnα ∈ An such that ‖Πnα− α‖s = o(1);

(ii) ki,n → +∞ and ki,n/n→ 0 for i = 1, 2, 3, 4 as n→ +∞.

Definition B.1. `D(di;α) is Hölder continuous with respect to α ∈ A if there exists a mea-

surable function c(D) with E{c(D)2} <∞ such that, for all α1, α2 ∈ A, and D, we have

|`D(di;α1)− `D(di;α2)| ≤ c(D)‖α1 − α2‖s.(37)

The next assumption ensures `D(di;α) is Hölder continuous with respect to α ∈ A.

Assumption B.5. (i) E{|`D(di;α)|2} is bounded; (ii) There exits a positive measurable func-

tion h̃(D) with E{h̃(D)2} <∞ such that, for any ᾱ12 = (θ̄, f̄1s, f̄2, f̄3s, h̄4s) and ω̄(ε, η, x, x∗) ≡[
1, ω−1(ε), ω−1(η), ω−1(x, x∗), ω−1(x∗)

]T
, we have |h1(di, ᾱ, ω̄)| < h̃(D), where the function

h1(di, ᾱ, ω̄) is constructed by the path derivatives of ln fD(di;α) and the explicit expression of

h1(di, ᾱ, ω̄) can be found in the proof of Lemma 3.1.

Assumption B.5(ii) implies that `D(di;α) is Hölder continuous in α.

Lemma B.1. Under Assumptions B.1-B.5, we obtain ‖α̂n − α0‖s = op(1).

See the online appendix for the proof.

For simplicity, Assumption B.2(i) rules out serially dependent observations and could eas-

ily be relaxed. Assumptions B.2(ii) and B.3(i) and (ii) are standard conditions imposed for

series approximation. The series approximation can approximate any function with a small
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mean-square error, which holds for power series, wavelets, Fourier series, and splines. Assump-

tion B.4(i) states that there is a finite dimensional approximation An to A and Assumption

B.4(ii) imposes that the number of terms in the sieve grows slower than the sample size

to control the variance. Assumption B.5 ensures the Hölder continuity of the log likelihood

function.

Next, we consider n−1/4 convergence rates of α̂n under weaker metrics, which are sufficient

to establish the asymptotic normality and
√
n-consistency results. We first define the weaker

Fisher metric ‖ · ‖F introduced by Ai and Chen (2003). Assume the function space A is

convex. For any v ∈ V̄ , define the pathwise derivative as:

d`D(di;α)

dα
[v] ≡ d`D(di;α+ τv)

dτ

∣∣∣∣
τ=0

a.s. D.

For any α1, α2 ∈ A, the Fisher norm is defined as:

(38) ‖α1 − α2‖2F ≡ E

{(
d`D(di;α0)

dα
[α1 − α2]

)2
}
.

We make the following assumptions to obtain a rate faster than n−1/4.

Assumption B.6. Let kn be the total number of sieve coefficients in the sieve estimator α̂n,

i.e., kn = k1,n+k2
2,n+k3,n+k4,n. Then, (knn

−1/2 lnn)× supξ∈(R∪X×X ∗∪X ∗) ‖pkn(ξ)‖2E = o(1).

Assumption B.7. (i) There exist a measurable function c(D) with E{c(D)4} <∞ such that

|`D(di;α)| ≤ c(D) for all D and α ∈ An; (ii) `D(di;α) ∈ Λτ,ωc (X × Y) with τ > dimD/2, for

all α ∈ An, where dimD is the dimension of D.

Assumption B.8. A is convex in α0, and m0(x∗; θ̃) is pathwise differentiable at (θ0, h0).

Assumption B.9. lnN(δ,An) = O(kn ln(kn/δ)) where N(δ,An) is the minimum number of

balls with radius δ under the ‖ · ‖s norm covering An.

Assumption B.10. There exists c1, c2 > 0,

c1E

(
ln
fD(di;α0)

fD(di;α)

)
≤ ‖α− α0‖2F ≤ c2E

(
ln
fD(di;α0)

fD(di;α)

)
holds for all α ∈ An with ‖α− α0‖s = o(1).

Assumption B.11. For any α ∈ A, there exists Πnα ∈ An such that ‖Πnα−α‖F = o(k−µ1
n )

and k−µ1
n = o(n−1/4).

21



Theorem B.1. If Assumptions B.1-B.11 hold, then ‖α̂n − α0‖F = op(n
−1/4).

See the online appendix for the proof.

Assumption B.7(i) and (ii) impose a dominance condition and smoothness condition on

`D(di;α). Envelope conditions are assumed to restrict a change of the objective function as

the parameters change and secure stochastic equi-continuity. Assumption B.8 implies that

the Fisher norm in Eq. (38) is well defined. Assumption B.9 requires that the size of the sieve

spaceAn does not grow too fast in terms of the covering number. Commonly used sieve spaces,

such as power series, Fourier series, splines, and wavelet linear sieves, satisfy this assumption.

Assumption B.10 assumes that the population criterion function is locally equivalent to the

Fisher norm. This condition helps derive the convergence of the parameter and
√
n-normality

of the parametric component. Assumption B.11 controls the approximation error of Πnα to

α and the selection of kn such that the error goes to zero uniformly at the rate op(n
−1/4) over

α ∈ A.

B.2. Asymptotic Normality

In this section, we consider the asymptotic normality of the parametric component θ which

contains the parameter of interest in the regression function. Let V̄ be completion of the

linear space spanned by A− α0 under the Fisher norm ‖ · ‖F . Then,
(
V̄ , ‖ · ‖F

)
is a Hilbert

space with the inner product

〈v1, v2〉 ≡ E
{(

d

dα
`D(di;α0)[v1]

)(
d

dα
`D(di;α0)[v2]

)}
,

and 〈v, v〉 = ‖v‖F . For any fixed and nonzero λ ∈ Rdθ , fλ(α − α0) ≡ λT (θ − θ0) is linear in

α − α0 and fλ(α − α0) is a linear functional on
(
V , ‖ · ‖F

)
. Shen (1997) and van der Vaart

(1991) show that f(α) ≡ λT θ is a bounded linear functional on V̄ under the operator norm.

That is:

|‖fλ‖| ≡ sup
{α∈A:‖α−α0‖>0}

|fλ(α− α0)|
‖α− α0‖F

<∞.(39)

By the Riesz representation theorem, there exists v∗ ∈ V̄ such that for any α ∈ A, we

have fλ(α − α0) = 〈α − α0, v
∗〉. and ‖fλ‖F = ‖v∗‖F . Denote V̄ = Rdθ × W and W ≡

Fn1 ×Fn2 ×Fn3 ×Fn4 − (
√
fη, fX|X∗ ,

√
fX∗ ,

√
h0).

For each component θj of the parametric component θ, j = 1, 2, ..., dθ, define w∗j ∈ W to
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be the solution to the following minimization problem associated with the denominator of the

operator norm,

w∗j ≡ (f∗1sj , f
∗
2j , f

∗
3sj , h

∗
4sj)

T

= arg min
wj=(f1s,f2,f3s,h4s)T∈W

E

(
d`D(di;α0)

dθj
− d`D(di;α0)

df1s
[f1s]−

d`D(di;α0)

df2
[f2]

− d`D(di;α0)

df3s
[f3s]−

d`D(di;α0)

dh4s
[h4s]

)2

.

Define w∗ = (w∗1, ..., w
∗
dθ

) and let d`D(di;α0)
df [w∗] be the vector with elements (indexed by

j = 1, . . . , dθ):

d`D(di;α0)

df
[w∗j ] =

d`D(di;α0)

df1s
[f∗1sj ] +

d`D(di;α0)

df2
[f∗2j ]

+
d`D(di;α0)

df3s
[f∗3sj ] +

d`D(di;α0)

dh4s
[h∗4sj ],

and

Hw∗(di) ≡
d`D(di;α0)

dTθ
− d`D(di;α0)

df
[w∗].

With these notation,

‖fλ‖2 = sup
{α∈A:‖α−α0‖>0}

|fλ(α− α0)|2

‖α− α0‖F
= λT

(
E{Hw∗(D)THw∗(D)}

)−1
λ,

v∗ ≡ (v∗θ , v
∗
h) ∈ V with v∗θ =

(
E{Hw∗(D)THw∗(D)

)−1
λ and v∗h = −w∗ × v∗θ . In addition,

fλ(α−α0) = λ′ (θ − θ0) = 〈α−α0, v
∗〉 by the Riesz representation theorem and d`D(di;α0)

dα [v∗] =

Hw∗(di)v
∗
θ . This implies that the asymptotic distribution of parametric component θ̂n reduces

to when the linear functional fλ is bounded and what is the asymptotic distribution of 〈α̂n−

α0, v
∗〉. That is:

λT
(
θ̂n − θ0

)
= 〈α̂n − α0, v

∗〉 =
1

n

n∑
i=1

d`D(di;α0)

dα
[v∗] + op(n

−1/2)

=
1

n

n∑
i=1

λT
(
E{Hw∗(D)THw∗(D)

)−1
Hw∗(di)

T + op(n
−1/2),

and
√
n(θ̂n − θ0)→ N(0,

(
E{Hw∗(D)THw∗(D)}

)−1
).
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We make the following conditions for the
√
n−normality of θ̂n which are also conditions

in Ai and Chen (2003) and Hu and Schennach (2008):

Assumption B.12. (i) E{Hw∗(D)THw∗(D)} is positive-definite and bounded; (ii) θ0 ∈

int(B).

Assumption B.13. There is a v∗n = (v∗θ ,−Πnw
∗ × v∗θ) ∈ An − α0 such that ‖v∗n − v∗‖F =

op(n
−1/4).

We use the
√
n consistency results in the previous section to focus on a smaller neigh-

borhood of α0. Define N0n ≡ {α ∈ An : ‖α − α0‖s = o(1), ‖α − α0‖F = o(n−1/4)} and

N0 ≡ {α ∈ A : ‖α− α0‖s = o(1), ‖α− α0‖F = o(n−1/4)}.

Assumption B.14. There exits a measurable function h(D) with E{h(D)2} <∞ such that,

for any ᾱ1 = (θ̄, f̄1s, f̄2, f̄3s, h̄4s), we have

|h1(di, ᾱ, ω̄)|+ |h2(di, ᾱ, ω̄)| ≤ h(D),

where the function h1(di, ᾱ, ω̄) is the first path derivatives of ln fD(di;α) in Lemma 3.1 and

h2(di, ᾱ, ω̄) is the term controlling the second path derivatives of ln fD(di;α) in the proof of

Theorem 3.2.

Assumption B.14 implies that there exits a non-negative measurable function s with

lim
δ→0

s(δ) = 0 such that for all α ∈ N0n,

sup
ᾱ∈N0

∣∣∣∣d2`D(D; ᾱ)

dαdαT
[α− α0, v

∗]

∣∣∣∣
t=0

≤ h(D) · s(‖α− α0‖s)

Assumption B.15. Uniformly over ᾱ ∈ N0 and α ∈ N0n,

E

[
d2`D(D; ᾱ)

dαdαT
[α− α0, v

∗]− d2`D(D;α0)

dαdαT
[α− α0, v

∗]

]
= o(n−1/2).(40)

Because our estimator takes the form of a single-step semiparametric sieve MLE, the gen-

eral treatment of Shen (1997) and Chen and Shen (1998) can be used to establish asymptotic

normality, root-n consistency, and efficiency under these assumptions.

Theorem B.2. Suppose that α0 is identified and Assumptions B.6-B.11 and B.12-B.15 hold,

then
√
n(θ̂n − θ0) ⇒ N(0, V −1) where V = E{Hw∗(D)THw∗(D)} and the matrix V is the

efficient information matrix.
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See the online appendix for the proof.

Assumption B.12 ensures that the asymptotic variance exists and that the population

parametric component is an interior solution. This assumption also ensures that the esti-

mation problem for θ0 is well-posed, which is made possible by a semiparametric treatment.

Assumption B.13 is a “no asymptotic bias” which means the representor v∗ can be approx-

imated by the sieve v∗n with an asymptotically negligible error. Assumption B.14 represents

the boundedness and smoothness restrictions of the second pathwise derivative of the log

likelihood function. Assumption B.15 controls the higher order terms in terms of asymptotic

expansion. These assumptions control the local quadratic behavior of the criterion difference

are common in the literature on the method of sieve.11

C. Proofs of Consistency and Asymptotic Normality

The proof of Lemma B.1. The consistency result is a direct application of Lemma 3.1 of

Ai and Chen (2003). and the proof will be provided by checking the conditions in the lemma.

Most conditions are assumed directly in our assumptions and the only thing we have to show

is that `D(di;α) is Hölder continuous in α. The difference of `D(di; ·) at α1 and α2 is given

by

`D(di;α1)− `D(di;α2)

=
d

dα
`D(di; ᾱ12)[α1 − α2]

=
d

dt
`D(di; ᾱ12 + t(α1 − α2))

∣∣∣
t=0

,

where ᾱ12 = (θ̄, f̄1s, f̄2, f̄3s, h̄4s), a mean value between α1 and α2, and ᾱ12 + t(α1 − α2) =

(θ̄ + t(θ1 − θ2), f̄1s + t(f1s1 − f1s2), f̄2 + t(f21 − f22), f̄3s + t(f3s1 − f3s2), h̄4s + t(h4s1 − h4s2)).

11A detailed discussion of these can be found in Newey (1997), Shen (1997), and Ai and Chen (2003).
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Consider

d

dt
`D(di; ᾱ12 + t(α1 − α2))

∣∣∣
t=0

=
1

fD(di; ᾱ12)

(∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
(θ1 − θ2)f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2f̄1s(yi −m0(x∗; θ̄, h̄4))
(
f1s1(yi −m0(x∗; θ̄, h̄4))− f1s2(yi −m0(x∗; θ̄, h̄4))

)
f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4)) (f21(xi|x∗)− f22(xi|x∗)) f̄3(x∗)dx∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2f̄3s(x

∗) (f3s1(x∗)− f3s2(x∗)) dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s(h4s1 − h4s2)f̄2(xi|x∗)f̄3(x∗)dx∗

)
.

Then we can obtain the bounds for Hölder continuous as follows:

∣∣∣ d
dt
`D(di; ᾱ12 + t(α1 − α2))

∣∣∣
t=0

≤ 1

|fD(di; ᾱ12)|

(∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1(ε)f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗
× ‖θ1 − θ2‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1(η)f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗‖f1s1 − f1s2‖s,ω

+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1(xi, x
∗)f̄3(x∗)

∣∣∣dx∗‖f21 − f22‖s,ω

+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2f̄3s(x
∗)ω−1(x∗)

∣∣∣dx∗‖f3s1 − f3s2‖s,ω

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1(x∗)f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗‖h4s1 − h4s2‖s,ω

)
≤ 1

|fD(di; ᾱ12)|

(∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1(ε)f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1(η)f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1(xi, x
∗)f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2f̄3s(x
∗)ω−1(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1(x∗)f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗)‖α1 − α2‖s

≡ h1(di, ᾱ, ω̄)‖α1 − α2‖s,

(41)
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where ω̄(ε, η, x, x∗) ≡
[
1, ω−1(ε), ω−1(η), ω−1(x, x∗), ω−1(x∗)

]T
. Therefore, Assumption B.5(ii)

implies

|`D(Di;α1)− `D(Di;α2)| ≤ h̃(Di)‖α1 − α2‖s,

and `D(di;α) is Hölder continuous in α.

The proof of Theorem B.1. We prove the results by checking the conditions in Theorem

3.1 in Ai and Chen (2003). As discussed in Hu and Schennach (2008), our single-step semi-

parametric sieve MLE is simpler than the setup in Ai and Chen (2003) because we do not need

to estimate the conditional mean as a function of the unknown parameter. The assumptions

in Theorem 3.1 in Ai and Chen (2003) are directly being assumed, we obtain the consistency

result.

The proof of Theorem B.2. The likelihood function fD(di;α) has a similar expression as

the likelihood function in Hu and Schennach (2008) which applied Theorem 1 of Shen (1997) to

establish an asymptotic normality result. The proof there can directly apply to our case. We

prove the results by showing an envelope condition on the second derivative of the likelihood

function (Assumption B.14). Set ᾱ1 = (θ̄, f̄1s, f̄2, f̄3s, h̄4s) and vn = Πn(α − α0 − v∗) =

([vn]θ, [vn]f1s , [vn]f2 , [vn]f3s , [vn]h4s). Consider the second derivative of pathwise derivative as

follows ∣∣∣∣ sup
α∈N0n

d2`D(di; ᾱ1)

dαdαT
[vn, α− α0]

∣∣∣
≤ sup
α∈N0n

∣∣∣∣ 1

fD(di; ᾱ1)

d2fD(di; ᾱ1)

dαdαT
[vn, α− α0]

− d`D(di; ᾱ1)

dα
[vn]

d`D(di; ᾱ1)

dα
[α− α0]

∣∣∣∣
≤ sup
α∈N0n

(∣∣∣∣ 1

fD(di; ᾱ1)

d2fD(di; ᾱ1)

dαdαT
[vn, α− α0]

∣∣∣∣
+

∣∣∣∣d`D(di; ᾱ1)

dα
[vn]

∣∣∣∣∣∣∣∣d`D(di; ᾱ1)

dα
[α− α0]

∣∣∣∣).
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We divide this into three terms and find the bounds for them. Consider

d`D(di; ᾱ1)

dα
[α− α0]

=
1

fD(di; ᾱ1)

(∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
(θ − θ0)f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2f̄1s(yi −m0(x∗; θ̄, h̄4))
(
f1s(yi −m0(x∗; θ̄, h̄4))−

√
fη(yi −m0(x∗; θ̄, h̄4))

)
f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))

(
f2(xi|x∗)− fX|X∗(xi|x∗)

)
f̄3(x∗)dx∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2f̄3s(x

∗)
(
f3s(x

∗)−
√
fX∗(x

∗)
)
dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s(h4s −

√
h0)f̄2(xi|x∗)f̄3(x∗)dx∗

)
.

Therefore, similar to the derivation of the Hölder continuity in the proof of Lemma B.1, we

obtain ∣∣∣∣d`D(di; ᾱ1)

dα
[α− α0]

∣∣∣∣ ≤ h1(di, ᾱ, ω̄)‖α1 − α2‖s,

and ∣∣∣∣d`D(di; ᾱ1)

dα
[vn]

∣∣∣∣ ≤ h1(di, ᾱ, ω̄)‖vn‖s,

where h1(di, ᾱ, ω̄) is defined in Equation (41).
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Expanding out the term 1
fD(di;ᾱ1)

d2fD(di;ᾱ1)
dαdαT

[vn, α− α0]:

1

fD(di; ᾱ1)

d2fD(di; ᾱ1)

dαdαT
[vn, α− α0]

=
1

fD(di; ᾱ1)

(∫
X ∗

d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2θ
[vn]θ(θ − θ0)f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2
d

dη

(
f̄1s ·

(
f1s −

√
fη

))
(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
[vn]θf̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
[vn]θ

(
f2(xi|x∗)− fX|X∗(xi|x∗)

)
f̄3(x∗)dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
[vn]θf̄2(xi|x∗)2f̄3s(x

∗)
(
f3s(x

∗)−
√
fX∗(x

∗)
)
dx∗

+

∫
X ∗

d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
[vn]θ2h̄4s(h4s −

√
h0)f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2
(
f1s −

√
fη

)
(yi −m0(x∗; θ̄, h̄4))[vn]f1sf2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2f̄1s(yi −m0(x∗; θ̄, h̄4))[vn]f1s
(
f2(xi|x∗)− fX|X∗(xi|x∗)

)
f̄3(x∗)dx∗

+

∫
X ∗

2f̄1s(yi −m0(x∗; θ̄, h̄4))[vn]f1s f̄2(xi|x∗)2f̄3s(x
∗)
(
f3s(x

∗)−
√
fX∗(x

∗)
)
dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
(θ − θ0)[vn]f2 f̄3(x∗)dx∗

+

∫
X ∗

2
(
f̄1s ·

(
f1s −

√
fη

))
(yi −m0(x∗; θ̄, h̄4))[vn]f2 f̄3(x∗)dx∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))[vn]f22f̄3s(x

∗)
(
f3s(x

∗)−
√
fX∗(x

∗)
)
dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s(h4s −

√
h0)[vn]f2 f̄3(x∗)dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dθ
(θ − θ0)f̄2(xi|x∗)2f̄3s(x

∗)[vn]f3sdx
∗

+

∫
X ∗

2
(
f̄1s ·

(
f1s −

√
fη

))
(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2f̄3s(x

∗)[vn]f3sdx
∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))

(
f2(xi|x∗)− fX|X∗(xi|x∗)

)
2f̄3s(x

∗)[vn]f3sdx
∗

+

∫
X ∗
f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2

(
f3s(x

∗)−
√
fX∗(x

∗)
)

[vn]f3sdx
∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s(h4s −

√
h0)f̄2(xi|x∗)2f̄3s(x

∗)[vn]f3sdx
∗

+

∫
X ∗

d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
2h̄4s[vn]h4s(θ − θ0)f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

2
d

dη

(
f̄1s ·

(
f1s −

√
fη

))
(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s[vn]h4s f̄2(xi|x∗)f̄3(x∗)dx∗
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+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s[vn]h4s

(
f2(xi|x∗)− fX|X∗(xi|x∗)

)
f̄3(x∗)dx∗

+

∫
X ∗

d

dη
f̄1(yi −m0(x∗; θ̄, h̄4))

−dm0(x∗; θ̄, h̄4)

dh
2h̄4s[vn]h4s f̄2(xi|x∗)2f̄3s(x

∗)
(
f3s(x

∗)−
√
fX∗(x

∗)
)
dx∗

+

∫
X ∗

d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2h
2h̄4s[vn]h4s(h4s −

√
h0)f̄2(xi|x∗)f̄3(x∗)dx∗

)
.

Letting
[
ω−1(ε), ω−1(η), ω−1(x, x∗), ω−1(x∗)

]
≡
[
ω−1
θ , ω−1

1 , ω−1
2 , ω−1

34

]
, this term can be
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bounded:∣∣∣∣ 1

fD(di; ᾱ1)

d2fD(di; ᾱ1)

dαdαT
[vn, α− α0]

∣∣∣∣
≤ 1

fD(di; ᾱ1)

(∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2θ
ω−1
θ ω−1

θ f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗‖[vn]θ‖s‖θ − θ0‖s

+

∫
X ∗

∣∣∣2 d
dη
f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1

1

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)f̄3(x∗)dx∗‖f1s −

√
fη‖s‖[vn]θ‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)f̄3(x∗)dx∗‖ d

dη
f1s −

d

dη

√
fη‖s‖[vn]θ‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ ω−1

2 f̄3(x∗)
∣∣∣dx∗‖[vn]θ‖s‖f2(xi|x∗)− fX|X∗(xi|x∗)‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ [vn]θf̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
× ‖[vn]θ‖s‖f3s(x

∗)−
√
fX∗(x

∗)‖s

+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
ω−1
θ 2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗‖[vn]θ‖s‖h4s −
√
h0‖s

+

∫
X ∗

∣∣∣2ω−1
1 ω−1

1 f2(xi|x∗)f̄3(x∗)
∣∣∣dx∗‖f1s −

√
fη‖s‖[vn]f1s‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 ω−1

2 f̄3(x∗)
∣∣∣dx∗‖[vn]f1s‖s‖f2 − fX|X∗‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖[vn]f1s‖s‖f3s −
√
fX∗‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ ω−1

2 f̄3(x∗)
∣∣∣dx∗‖θ − θ0‖s‖[vn]f2‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 ω−1

2 f̄3(x∗)
∣∣∣dx∗‖f1s −

√
fη‖s‖[vn]f2‖s

+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1
2 2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖[vn]f2‖s‖f3s −
√
fX∗‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 ω

−1
2 f̄3(x∗)

∣∣∣dx∗‖h4s −
√
h0‖s‖[vn]f2‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖θ − θ0‖s‖[vn]f3s‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖f1s −
√
fη‖s‖[vn]f3s‖s

+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1
2 2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖f2 − fX|X∗‖s‖[vn]f3s‖s
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+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2ω−1
34 ω

−1
34

∣∣∣dx∗‖f3s −
√
fX∗‖s‖[vn]f3s‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖h4s −
√
h0‖s‖[vn]f3s‖s

+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
2h̄4sω

−1
θ ω−1

34 f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗‖[vn]h4s‖s‖θ − θ0‖s

+

∫
X ∗

∣∣∣2 d
dη
f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1

1

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗‖f1s −
√
fη‖s‖[vn]h4s‖s

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))
dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗‖ d
dη
f1s −

d

dη

√
fη‖s‖[vn]h4s‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 ω

−1
2 f̄3(x∗)

∣∣∣dx∗‖[vn]h4s‖s‖f2 − fX|X∗‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗‖[vn]h4s‖s‖f3s −
√
fX∗‖s

+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2h
2h̄4sω

−1
34 ω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗‖[vn]h4s‖s‖h4s −
√
h0‖s

)
.
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The definition of the norm leads to the following bound:

∣∣∣∣ 1

fD(di; ᾱ1)

d2fD(di; ᾱ1)

dαdαT
[vn, α− α0]

∣∣∣∣
(42)

≤ 1

fD(di; ᾱ1)

(∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2θ
ω−1
θ ω−1

θ f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣2 d
dη
f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1

1

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)f̄3(x∗)dx∗

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)f̄3(x∗)dx∗

‖ ddηf1s − d
dη

√
fη‖s

‖f1s −
√
fη‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ ω−1

2 f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ [vn]θf̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
ω−1
θ 2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣2ω−1
1 ω−1

1 f2(xi|x∗)f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 ω−1

2 f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ ω−1

2 f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 ω−1

2 f̄3(x∗)
∣∣∣dx∗
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+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1
2 2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 ω

−1
2 f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dθ
ω−1
θ f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1
1 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))ω−1
2 2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣f̄1(yi −m0(x∗; θ̄, h̄4))f̄2(xi|x∗)2ω−1
34 ω

−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

dθdh
2h̄4sω

−1
θ ω−1

34 f̄2(xi|x∗)f̄3(x∗)
∣∣∣dx∗

+

∫
X ∗

∣∣∣2 d
dη
f̄1s(yi −m0(x∗; θ̄, h̄4))ω−1

1

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣2f̄1s(yi −m0(x∗; θ̄, h̄4))
dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗ ‖ ddηf1s − d
dη

√
fη‖s

‖f1s −
√
fη‖s

+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 ω

−1
2 f̄3(x∗)

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d
dη
f̄1(yi −m0(x∗; θ̄, h̄4))

dm0(x∗; θ̄, h̄4)

dh
2h̄4sω

−1
34 f̄2(xi|x∗)2f̄3s(x

∗)ω−1
34

∣∣∣dx∗
+

∫
X ∗

∣∣∣ d2

d2η
f̄1(yi −m0(x∗; θ̄, h̄4))

d2m0(x∗; θ̄, h̄4)

d2h
2h̄4sω

−1
34 ω

−1
34 f̄2(xi|x∗)f̄3(x∗)

∣∣∣dx∗)‖[vn]‖s‖α− α0‖s

≡ h2(di, ᾱ, ω̄)‖[vn]‖s‖α− α0‖s

Then Assumption B.14 guarantees the envelope condition and help us to control the linear

approximation of the likelihood function near α0.

D. Proofs related to estimation

Lemma D.1. Consider the finite-dimensional sieve representation:

(43) f2(x|x∗) =

k2,n∑
i=1

k2,n∑
j=1

β2ijpi(x)pj(x
∗).

34



where the pi, i = 1, 2, . . . form an orthonogal basis of L2(X ) while the pj , j = 1, 2, . . . form an

orthonogal basis of L2(X ∗). The condition

(44)

∫
f2(x|x∗)h(x∗)dx∗ = 0 ∀x ∈ X ⇒ h(x∗) = 0,

for functions h in the space spanned by the pj, for j = 1, . . . , k2,n, is equivalent to imposing

that the square coefficient matrix [β2ij ]k2,n×k2,n is invertible.

Proof We also have a sieve expressions for h as

h(x∗) =

k2,n∑
k=1

γkpk(x
∗).

Substituting this sieve expression and Equation (43) into Equation (44) and then applying

the orthogonality of {pj(x∗) : j = 1, 2, 3, ...} yields

0 =

∫ k2,n∑
i=1

k2,n∑
j=1

β2ijpi(x)pj(x
∗)

k2,n∑
k=1

γkpk(x
∗)

 dx∗,(45)

=

k2,n∑
i=1

k2,n∑
j=1

β2ijγjpi(x).(46)

Because {pi(x) : i = 1, 2, 3, ...} is an orthonormal basis, it follows that

0 =

k2,n∑
j=1

β2ijγj for all i.

We can express the above relation using a matrix notation as

[0]k2,n×1 = [β2ij ]k2,n×k2,n [γj ]k2,n×1 .

If the square coefficient matrix [β2ij ]k2,n×k2,n is invertible, then the vector of coefficients

[γj ]k2,n×1 = 0. This implies that h(x∗) = 0.
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