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Abstract

This paper provides sufficient conditions for the nonparametric identification of the

regression function m (·) in a regression model with an endogenous regressor x and an

instrumental variable z. It has been shown that the identification of the regression function

from the conditional expectation of the dependent variable on the instrument relies on the

completeness of the distribution of the endogenous regressor conditional on the instrument,

i.e., f(x|z). We show that (1) if the deviation of the conditional density f(x|zk) from a

known complete sequence of functions is less than a sequence of values determined by

the complete sequence in some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0,

then f(x|z) itself is complete, and (2) if the conditional density f(x|z) can form a linearly

independent sequence {f(·|zk) : k = 1, 2, ...} in some distinct sequence {zk : k = 1, 2, 3, ...}

converging to z0 and its relative deviation from a known complete sequence of functions

under some norm is finite then f(x|z) itself is complete. We use these general results to

provide specific sufficient conditions for completeness in three different specifications of

the relationship between the endogenous regressor x and the instrumental variable z.
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1. Introduction

We consider a nonparametric regression model as follows:

y = m(x) + u, (1)

where y is an observable scalar random variable, and x is a dx × 1 vector of regressors and

may be correlated with a zero mean regression error u. The parameter of interest is the non-

parametric regression function m(·). A dz× 1 vector of instrumental variables z is conditional

mean independent of the regression error u, i.e., E(u|z) = 0, which implies

E[y|z] =

∫ +∞

−∞
m(x)f(x|z)dx, (2)

where the probability measure of x conditional on z is absolutely continuous w.r.t. the

Lebesgue measure.1 We observe a random sample of {y, x, z}, and denote the support of these

random variables as Y, X and Z, respectively. This paper provides sufficient conditions on

the conditional density f(x|z) under which the regression function m (·) is nonparametrically

identified from, i.e., uniquely determined by, the observed conditional mean E[y|z]. We show

that (1) if the deviation of the conditional density f(x|zk) from a known complete sequence

of functions is less than a sequence of values determined by the complete sequence in some

distinct sequence {zk : k = 1, 2, 3, ...} converging to z0, then f(x|z) itself is complete, and (2) if

the conditional density f(x|z) can form a linearly independent sequence {f(·|zk) : k = 1, 2, ...}

for some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0 and its relative deviation

from a known complete sequence of functions under some norm is finite then f(x|z) itself is

complete. Consequently, the regression function m (·) is nonparametrically identified. Our

sufficient conditions for completeness impose no specific functional form on f(x|z), such as

the exponential family.

The nonparametric IV regression model is applicable for a large range of empirical research.

1In this paper, we need to consider E [Y |Z = z], i.e., conditional expectation of Y on the random variable Z
taking value z in its support Z. In other words, we need this conditional expectation to be well-defined even for
the zero-probability event {Z = z}. To avoid any confusion, we assume the conditional expectation E [Y |Z = z]
is a continuous function of z over the support Z. We are not the first study to use the conditional expectation
in this way for completeness. For example, Newey and Powell (2003) show that for exponential families and
normal distribution, the conditional expectations in the definition of completeness can be reduced to be defined
over an open subset of Z. We follow their definition of completeness to require conditional expectations are
defined for some set O ⊆ Z and this paper shows that O can be a distinct converging sequence in Z.
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We provide a few examples in which there may exist an endogenous variable and the model

is applicable. Consider an empirical study for estimating the impact of education on the

female labor supply. The endogeneity may arise in the presence of an ”ability bias” or the

measurement error problem of education. We may use father’s education as an instrumental

variable for woman’s education. Another example is to estimate Engel curves that describe the

allocation of total nondurable consumption expenditure. In the application, total expenditure

can be endogenous and we may use the gross earnings of the household head as an instrument

for total expenditure.

We assume the regression function m (·) is in a Hilbert space H of functions defined on

X the support of regressor x. This paper considers a weighted L2 space L2(X , ω) = {h(·) :∫
X |h(x)|2ω(x)dx <∞} with the inner product 〈f, g〉 ≡

∫
X f(x)g(x)ω(x)dx, where the positive

weight function ω(x) is bounded almost everywhere and
∫
X ω(x)dx <∞.2 The corresponding

norm is defined as: ‖f‖2 = 〈f, f〉. The space L2(X , ω) is complete under the norm ‖ · ‖ and

is a Hilbert space.

One may show that the uniqueness of the regression function m(·) is implied by the

completeness of the family {f(·|z) : z ∈ O} in H, where O ⊆ Z is a subset of Z the support

of z. The set O may be Z itself or some subset of Z. In particular, this paper considers the

completeness with the set O being a distinct converging sequence {zk : k = 1, 2, 3, ...} in Z.

This case corresponds to a sequence of functions {f(·|zk) : k = 1, 2, ...}. We start with the

definition of the completeness in a Hilbert space H.

Definition 1. Denote H ≡ L2(X , ω) as a Hilbert space with the weight function ω. The

family {f(·|z) ∈ H : z ∈ O} for some set O ⊆ Z is said to be complete in H if for all z ∈ O,∫
X
f(x|z)2
ω(x) dx <∞ and for any h (·) ∈ H

∫
X
h(x)f(x|z)dx = 0 for all z ∈ O

implies h(·) = 0 almost surely in X .3 When it is a conditional density function defined on

2We consider the quotient space ∈ L2(R, ω) where the equivalent relation ∼ is that f ∼ g if the set
{x : f(x) 6= g(x)} is a set of measure zero. If the set of elements for which a property does not hold is a set of
measure zero for a probability measure, we use almost surely to indicate the property.

3The integral in the formula makes sense because
∫
X |h(x)f(x|z)|dx =

∫
X |h(x)|ω(x)1/2 f(x|z)

ω(x)1/2
dx ≤(∫

X |h(x)|2ω(x)dx
)1/2 (∫

X
f(x|z)2
ω(x)

dx
)1/2

<∞.
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X × Z, f(x|z) is said to be a complete density.4

The uniqueness (identification) of the regression function m(·) is implied by the complete-

ness of the family {f(·|z) : z ∈ O} in H for some set O ⊆ Z. This sufficient condition may be

shown as follows. Suppose that m(·) is not identified so that there are two different functions

m(·) and m̃(·) in H which are observationally equivalent, i.e., for any z ∈ Z

E[y|z] =

∫
X
m(x)f(x|z)dx =

∫
X
m̃(x)f(x|z)dx. (3)

We then have for some h(x) = m(x)− m̃(x) 6= 0

∫
X
h(x)f(x|z)dx = 0 for any z ∈ Z

which implies that {f(·|z) : z ∈ O} for any O ⊆ Z is not complete in H. Therefore, if

{f(·|z) : z ∈ O} for some O ⊆ Z is complete in H, then m(·) is uniquely determined by E[y|z]

and f(x|z), and therefore, is nonparametrically identified.

This definition implies that the equality in the definition can be rewritten as

0 =

∫
X
h(x)f(x|z)dx =

∫
X
h(x)

f(x|z)
ω(x)

ω(x)dx =

〈
h,
f(·|z)
ω(·)

〉
for all z ∈ O.

Therefore, we use the weighted function f(x|z)
ω(x) instead of f(x|z) in the inner product of the

Hilbert space L2(X , ω), when we consider a complete sequence in the Hilbert space in the

appendix. The definition certainly imposes tail conditions on the conditional density function

f(x|z). On the other hand, because existing complete distribution functions used in this study

are the exponential family and a translated density function with exponentially decaying tails,

the definition is not very restrictive to the nonparametrically extension of completeness from

these existing complete distribution functions.

The completeness introduced in Definition 1 is close to L2- completeness considered in

Andrews (2012) with H = L2(X , fx), where the density fx may be considered as the weight

function ω in L2(X , ω)5. Andrews (2012) provides broad (nonparametric) classes of L2-

4The conditional density function f(x|z) has a two dimensional variation from x and z and we treat it as a
special class of the function form f(x, z) which can have a support like X × Z.

5This is under the assumption that the density function fx exists. Closely related definitions of L2-
completeness can also be found in Florens, Mouchart, and Rolin (1990), Mattner (1996), and San Martin
and Mouchart (2007).

4



complete distributions that can have any marginal distributions and a wide range of strengths

of dependence. The L2-complete distributions are constructed by bivariate density functions

with respect to Fx × Fz which are constructed through orthonormal bases of L2(Fx) and

L2(Fx). Depending on which regularity conditions are imposed on the regression function

m (·), a different version of completeness can be also considered. For example, D’Haultfoeuillle

(2011) considers three different types of completeness including (1) ”standard” completeness,

where h satisfies E(|h(X)|) < ∞, (2) P -completeness, where h is bounded by a polynomial,

and (3) bounded completeness for any bounded h in nonparametric models between the

two variables with an additive separability and a large support condition. D’Haultfoeuillle

(2011) define completeness in terms of dependence condition between x and z such as x =

µ(ν(z) + ε), where µ and ν are mappings and z and ε are independent. The results are

useful in nonparametric regression models with a limited endogenous regressor. Regardless of

whether the support X is bounded or unbounded, such as the unit interval [0, 1] or the real

line R, respectively, the completeness in L2(X , ω) is more informative for identification than

the bounded completeness because a bounded function always belongs to the weighted L2

space L2(X , ω).6 Therefore, we consider L2-completeness with a Hilbert space H = L2(X , ω)

in this paper.

In the extreme case where x and z are discrete, completeness is the same as a no-perfect-

collinearity or a full rank condition on a finite number of distributions of x conditional on

different values of z.7 Our results for continuous variables extend this interpretation. Suppose

that the family of conditional distributions in {f(·|zk) : k = 1, 2, ...} is complete in L2(X , ω).

As shown in Appendix, we can extract a subfamily {f(·|zrk) : k = 1, 2, ...} as a basis in

6In a bounded domain, bounded completeness may also be less informative than L2-completeness. For
instance, consider a function h(x) = x−1/4 over (0,1). Bounded completeness can not distinguish the case that
the difference of two regression functions is h(x), i.e., h(x) = m(x) − m̃(x), where m and m̃ are regression
functions such that y = m(x) + u or y = m̃(x) + u.

7When x, z ∈ {0, 1}, the conditional expectation E[y|z] =
∫
X m(x)f(x|z)dx is equivalent

to

[
E[y|z = 0]
E[y|z = 1]

]T
=

[
m(0)
m(1)

]T [
fx|z(0|0) fx|z(0|1)
fx|z(1|0) fx|z(1|1)

]
. In this binary case, the regression m (·) may be

uniquely determined from observed E[y|z], and f(x|z) if the last matrix is invertible, i.e., two vectors fx|z(·|0)
and fx|z(·|1) are linearly independent

fx|z(·|0) :=

[
fx|z(0|0)
fx|z(1|0)

]
and fx|z(·|1) :=

[
fx|z(0|1)
fx|z(1|1)

]
.

Therefore, completeness is equivalent to no-perfect collinearity among {fx|z(·|i) : i = 1, 2} or the rank condition

on the matrix

[
fx|z(0|0) fx|z(0|1)
fx|z(1|0) fx|z(1|1)

]
.
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L2(X , ω). This basis interpretation implies that (1) there is no exact linear relationship

among the family of the conditional distribution {f(·|zrk) : k = 1, 2, ...} or a conditional

distribution at each point z can not be expressed as a linear combination of others, and

(2) every function in L2(X , ω) can be approximated by linear combinations of the conditional

distributions in {f(·|zrk) : k = 1, 2, ...}. In this general continuous case, a function in L2(X , ω)

may be expressed as an infinite sum of functions and the convergence of the infinite sum is

under the norm ‖ · ‖.

The L2 completeness for the nonparametric regression model (1) implies that identifica-

tion is achieved among functions whose difference with the true one is square integrable w.r.t.

the weighted Lebesgue measure. As an illustration, suppose that m(x) = α+ βx. With com-

pleteness in L2(R, ω), the regression function m can be identified within the set of functions

of the form {α + βx + g(x) : g ∈ L2(R, ω)}. Therefore, under our framework the functional

form of the regression function m may be very flexible. Notice that the function g can’t be

linear over R under bounded completeness, which implies that bounded completeness is not

enough to distinguish the true linear regression function m(x) = α + βx from another linear

function m̃(x) = α̃+ β̃x.

The following two examples of complete f(x|z) are from Newey and Powell (2003) (See

their Theorem 2.2 and 2.3 for details.8):

Example 1: Suppose that the distribution of x conditional on z is N(a + bz, σ2) for

σ2 > 0 and the support of z contains an open set, then E[h(x)|z = z1] = 0 for any z1 ∈ Z

implies h(·) = 0 almost surely in X ; equivalently, {f(·|z) : z ∈ Z} is complete.9

Another case where the family {f(x|z) : z ∈ O} is complete in H is that f(x|z) belongs to an

exponential family as follows:

Example 2: Let f(x|z) = s(x)t(z) exp [µ(z)τ(x)], where s(x) > 0,the mapping from x→

τ(x) is one-to-one in x, and support of µ(z), Z, contains an open set, then E[h(x)|z = z1] = 0

for any z1 ∈ Z implies h(·) = 0 almost surely in X ; equivalently, the family of conditional

density functions {f(·|z) : z ∈ Z} is complete.

8Theorem 2.2 and 2.3 in Newey and Powell (2003) do not specify which functional space the completeness
is discussed. The definition of the completeness on page 141 of Lehmann (1986) also does not specify the
functional space. However, he starts to specify the property of completeness for all bounded functions and call
it boundedly complete on page 144.

9In this paper, if we try to use a notation for a point, we would put a low subscript such as z0 and declare
it is a point.
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These two examples show the completeness of a family {f(x|z) : z ∈ O}, where O is an open

set. In order to extend the completeness to general density functions, we further reduce the

set O from an open set to a countable set with a limit point, i.e. a converging sequence in

the support Z.

This paper focuses on the sufficient conditions for completeness of a conditional density.

These conditions can be used to obtain global or local identification in a variety of models in-

cluding the nonparametric IV regression model (see Newey and Powell (2003); Darolles, Fan,

Florens, and Renault (2011); Hall and Horowitz (2005); Horowitz (2011)), semiparametric IV

models (see Ai and Chen (2003); Blundell, Chen, and Kristensen (2007)), nonparametric IV

quantile models (see Chernozhukov and Hansen (2005); Chernozhukov, Imbens, and Newey

(2007); Horowitz and Lee (2007)), measurement error models (see Hu and Schennach (2008);

An and Hu (2012); Carroll, Chen, and Hu (2010); Chen and Hu (2006)), random coefficient

models (see Hoderlein, Nesheim, and Simoni (2012)), and dynamic models (see Hu and Shum

(2012); Shiu and Hu (2013)), etc. We refer to D’Haultfoeuille (2011) and Andrews (2012) for

more complete literature reviews. On the other hand, Canay, Santos, and Shaikh (2013) con-

sider hypothesis testing problem concerns completeness and they show that the completeness

condition is, without further restrictions, untestable.

There are cases where identification and consistent estimation are relatively straightfor-

ward and not related to completeness. In the nonstationary dependent case, identification

can be achieved because of the nonstationary nature of the regressor, which can act as its

own instrument. (see Wang and Phillips (2009), Wang and Phillips (2014), and Wang and

Phillips (2007)). In the microeconometric context, identification can also be achieved by infill

and spatial shifting nonstationarity (see Phillips and Su (2011)). Finally, in threshold re-

gression cases thresholding parameters are identifiable and consistently estimable in spite of

endogeneity of the regressor (see Yu and Phillips (2014)).

In this paper, we provide sufficient conditions for the completeness of a general condi-

tional density without imposing particular functional forms. We first show the set O of the

family {f(·|z) : z ∈ O} in the definition of completeness can be as small as a converging

sequence {zk : k = 1, 2, 3, ...} for some known complete families. This implies that the family{
fx|z(·|zk)/ω(·) : k = 1, 2, ...

}
can form a complete sequence in a Hilbert space with the weight

function ω. We then use the stability properties of complete sequences in a Banach space and
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a Hilbert space (section 9 and 10 of chapter 1 in Young (2001) and Gurarij and Meletidi

(1970)) to show that (1) if the deviation of the conditional density f(x|zk) from a known

complete sequence of functions is less than a sequence of values determined by the complete

sequence in some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0, then f(x|z) itself is

complete, and (2) if the conditional density f(x|z) can form a linearly independent sequence

{f(·|zk) : k = 1, 2, ...} for some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0 and

its relative deviation from a known complete sequence of functions under some norm is finite

then f(x|z) itself is complete.

Another observation is that this stability property of completeness is actually consistent

with a result in Canay, Santos, and Shaikh (2013) that a distribution for which completeness

fails can be arbitrarily close to distributions for which completeness holds. Notice that Canay,

Santos, and Shaikh (2013) approach f(X,Z) by a sequence of step functions (with a finite

number of ”steps”). The limit may be a complete function but each step function in the

sequence can’t be complete. Each of the step function in their sequence corresponds to a

truncated sequence {f1, f2, . . . , fK} with fk = fX|Z(.|Z = zk) for some finite K in our paper.

The limit of this sequence {f1, f2, . . . , fK} is {fk}k=1,2,... , which may be complete. But the

truncated sequence {f1, f2, . . . , fK} is not complete with a continuous X. The key issue is

approximation to f(X,Z) from both dimensions of X and Z . If f(X,Z) is only approximated

by step functions of X, but not of Z , completeness may still hold because a sequence of step

functions, such as the so-called Haar sequence, may still be complete.

We apply the general results to show the completeness in three scenarios. First, we extend

Example 1 to a general setting. In particular, we show the completeness of f(x|z) when x

and z satisfy for some function µ (·) and σ (·)

x = µ(z) + σ (z) ε with z ⊥ ε.

Second, we consider a general control function

x = h(z, ε) with z ⊥ ε,

and provide conditions for completeness of f(x|z) in this case. Third, our results imply that
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the completeness of a multidimensional conditional density, e.g.,

f(x1, x2|z1, z2),

may be reached by completeness of two conditional densities of lower dimension, i.e.,f(x1|z1)

and f(x2|z2).

This paper is organized as follows: section 2 provides sufficient conditions for complete-

ness; section 3 applies the main results to the three cases with different specifications of the

relationship between the endogenous variable and the instrument; section 4 concludes the

paper and all the proofs are in the appendix.

2. Sufficient Conditions for Completeness

In this section, we show that (1) if the deviation of the conditional density f(x|zk) from

a known complete sequence of functions is less than a sequence of values determined by the

complete sequence in some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0, then f(x|z)

itself is complete, and (2) if the conditional density f(x|z) can form a linearly independent

sequence {f(·|zk) : k = 1, 2, ...} for some distinct sequence {zk : k = 1, 2, 3, ...} converging to

z0 and its relative deviation from a known complete sequence of functions under some norm

is finite then f(x|z) itself is complete. We start with the introduction of two well-known

complete families in Examples 1 and 2. Notice that these completeness results are established

on an open set O instead of a countable set with a limit point, i.e., a converging sequence. In

order to extend the completeness to a new function f(x|z), we first establish the completeness

on a sequence of zk.

As we will show below, the completeness of an existing sequence {g(x|zk) : k = 1, 2, ...} is

essential to show the completeness for a new function f(x|z). An important family of condi-

tional distributions which admit completeness is the exponential family. Many distributions

encountered in practice can be put into the form of exponential families, including Gaussian,

Poisson, Binomial, and certain multivariate form of these. Another family of conditional

distribution which implies completeness is in the form of a translated density function, i.e.,

g(x|z) = g(x− z).10

10The term used here is according to a definition on page 182 of Rudin (1987), where the translate of f is
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Based on the existing results, such as in Examples 1 and 2 in the introduction, we may

generate complete sequences from the exponential family or a translated density function.

We start with an introduction of a complete sequence in the exponential family. Example 2

shows the completeness of the family {g(·|z) : z ∈ O}, where O is an open set in Z. In the

next lemma, we reduce the set O from an open set to a countable set with a limit point, i.e.

a converging sequence in Z.11

Lemma 1. Suppose that X is a connected set. Denote O as an open set in Z ⊂ R. Let

{zk : k = 1, 2, ...} be a sequence of distinct zk ∈ O converging to z0 in the open set O. Define

g(x|z) = s(x)t(z) exp [µ(z)τ(x)]

on X × Z with s(·) > 0 and t(·) > 0 are continuous positive functions. Suppose that g(·|z) ∈

L1(X ) for z ∈ O and

i) µ (·) is continuous differentiable with µ′ (z0) 6= 0;

ii) τ(·) is C1-diffeomorphism from X to τ(X ).12

Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(X , ω), where the weight function

ω(x) satisfies
∫
X
s(x)2 exp[2(µ(z0)τ(x)+δ|τ(x)|)]

ω(x) dx <∞ for some δ > 0.

Proof: See the appendix.

The restrictions on the weight function is mild and there are many potential candidates.

For example, suppose τ(·) > 0, since O is open and µ (·) is continuous with µ′ (z0) 6= 0, there

exists some z̃ ∈ O and δ > 0 such that µ(z0)τ(x) + δ|τ(x)| < µ(z̃)τ(x). One particular choice

of the weight function is ω(x) = s(x) exp [µ(z̃)τ(x)].

Another case where the completeness of g(x|z) is well studied is when g(x|z) = fε (x− z) ,

which is usually due to a translation between the endogenous variable x and instrument z as

follows

x = z + ε with z ⊥ ε.

Example 1 implies that the family {g(·|z) ∈ H : z ∈ O} is complete if O is an open set in Z

defined as f(x− z) for all x and a given z.
11It is important to show the completeness of a family defined on a countable set because all the statistical

asymptotics are based on an infinitely countable number of observations, i.e., the sample size approaching
infinity, instead of a continuum of observations, for example, all the possible values in an open set.

12Given two open connected sets X and Y , a map f from X to Y is called a C1-diffeomorphism if f is a
bijection and both f : X → Y and its inverse f−1 : Y → X are continuously differentiable.

10



and ε is normal. Again, we show the completeness still holds when the set O is a converging

sequence. We summarize the results as follows.

Lemma 2. Denote O as an open set in Z. Let {zk : k = 1, 2, ...} be a sequence of distinct

zk ∈ O converging to z0 in the open set O. Define

g(x|z) = fε(x− z)

on R × Z and set some positive constants ci for i = 1, 2, 3, and δi > 0 for i = 1, 2, 3, 4, 5.

Suppose that ∣∣∣fε(x− z)e−δ1z2∣∣∣ < c1e
−δ2(x−c2z)2e−δ3x

2
(4)

and

0 <

∣∣∣∣∫ ∞
−∞

eitzfε(x− z)e−δ1z
2
dz

∣∣∣∣ < c3e
−δ4t2e−δ3x

2
(5)

for all t ∈ R. Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(R, ω), where the

weight function ω(x) satisfies ω(x) = e−δ
′x2 for some δ′ ∈ (0, δ3) .

In particular, define H0(z), H1(z), ... as Hermite polynomials and q0(x), q1(x), ... as func-

tions of x. Suppose fε(ε) = cεp(ε)e
− ε2

2σ2 for some σ2 < 1 such that the positive function

p satisfies p((1 − σ2)x + σ2z) =
∞∑
j=0

qj(x)Hj(z) where the sum is absolute convergent and∑
|qj(x)||Hj(z)| < cpe

δpx2e
z2

4 for some small δp = 1
4

(
1
σ2 − 1

)
. Then, the family {g(·|zk) =

fε(· − zk) : k = 1, 2, ...} is complete in L2(R, ω), where ω(x) = e−δ
′x2 for some δ′ ∈ (0, δp).

Proof: See the appendix.

While Eq. (4) is a tail condition for the weighted density function, Eq. (5) implies that the

characteristic function of the weighted density function is not equal to zero on the real line

and that the function has exponentially decaying tails. The distribution of ε may be normal

with zero mean and variance σ2, or a distribution with PDF, fε(ε) = cεε
2e−

ε2

2σ2 for σ2 < 1.

Our derivation of Lemma 2 in the appendix shows that positive polynomial scaled Gaussian

densities can satisfy Eqs. (4) and (5).

The form of p in the statement provides a nonparametric functional form. The restrictions

on p are easy to verify when p is a polynomial. Suppose p is a polynomial of degree dp. Because

|(1− σ2)x+ σ2z| ≤ (1− σ2)|x|+ σ2|z| and polynomials of |x|, |z| are bounded by exponential

functions of |x|, |z|, |p((1− σ2)x+ σ2z)| ≤ Ceδ′2x2eδ′3z2 for some choices of small δ′2, and δ′3.
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The conditions (4) and (5) imply that the weighted density function fε(x−z)e−δ1z
2

admits

an analytic expansion on a strip of the complex plane (we can set h0(x) = 1 almost surely

in Eq. (16) and then g̃(z) ≡
∫
R fε(x − z)e−δ1z

2
dx). Follow the proof of Lemma 2, w →∫

e−iwtφg̃(t)dt is differentiable on a strip of the complex plane). The conditions is rather

restrictive and is essential to obtain completeness of a countable family {g(·|zk) = fε(· − zk) :

k = 1, 2, ...} in the location model, by using the uniqueness of analytic functions on a set with

a limit point. A related assumption can be found in Proposition 2.3 of D’Haultfoeuille (2011).

With the complete sequences explicitly specified in Lemma 1 and 2, we are ready to extend

the completeness to a more general conditional density f(x|z).

We will apply three different types of the stability results in Hilbert spaces to obtain

the completeness, the first two are only involved with a small perturbation of a complete

sequence and the third one is linked to an added structure of a Hilbert space, an orthonormal

basis. The existence of such stability is based on two facts: (1) completeness is preserved by

an invertible operator and (2) a bounded linear operator T on a Hilbert space is invertible

whenever ‖I − T‖op < 1, where ‖·‖op is an operator norm. Our first two sufficient conditions

for completeness are summarized as follows:

Theorem 1. Denote H ≡ L2(X , ω). Suppose f(·|z) and g(·|z) are conditional densities. For

every z ∈ Z, let f(·|z) and g(·|z) be in the Hilbert space H of functions defined on X with

norm ‖ · ‖. Set N (z0) = {z ∈ Z : ‖z − z0‖ < ε for some small ε > 0}⊆ Z as an open neigh-

borhood for a point z0 such that

i) for every sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0, the corre-

sponding sequence {g(·|zk) : k = 1, 2, ...} is complete in a Hilbert space H;

ii) there exists a complete sequence {g(·|zk) : k = 1, 2, ...} such that f(·|z) satisfies

n∑
k=1

‖ck(g(·|zk)/ω(·)− f(·|zk)/ω(·))‖ < λ
n∑
k=1

‖ckg(·|zk)/ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, ..., cn (n = 1, 2, 3, ...).

Then, the family {f(·|z) : z ∈ N (z0)} is complete in H.

Proof: See the appendix.

Theorem 2. Denote H ≡ L2(X , ω). Suppose f(·|z) and g(·|z) are conditional densities. For

every z ∈ Z, let f(·|z) and g(·|z) be in the Hilbert space H of functions defined on X with
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norm ‖ · ‖. Set N (z0) = {z ∈ Z : ‖z − z0‖ < ε for some small ε > 0}⊆ Z as an open neigh-

borhood for a point z0 such that

i) for every sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0, the corre-

sponding sequence {g(·|zk) : k = 1, 2, ...} is complete in a Hilbert space H;

ii) there exists a sequence of positive numbers {Ck : k = 1, 2, ...} which depends on the nor-

malized sequence { g(·|zk)/ω(·)
‖g(·|zk)/ω(·)‖ : k = 1, 2, ...} such that

n∑
k=1

Ckεk < 1 for a sequence of positive

numbers {εk : k = 1, 2, ...} and

∥∥∥∥ g(·|zk)/ω(·)
‖g(·|zk)/ω(·)‖

− f(·|zk)/ω(·)
∥∥∥∥ < εk.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in H.

Proof: See the appendix.

Theorem 2 implies that a new complete sequence always exists, although its distance from

the existing complete sequence is determined by that sequence. The second stability criteria

related to an orthonormal basis is the following.

Theorem 3. Denote H ≡ L2(X , ω). For every z ∈ Z, let f(·|z) and g(·|z) be condi-

tional densities in the Hilbert space H of functions defined on X with norm ‖ · ‖. Set

N (z0) = {z ∈ Z : ‖z − z0‖ < ε for some small ε > 0}⊆ Z as an open neighborhood for a

point z0 such that

i) for every sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0, the corre-

sponding sequence {g(·|zk) : k = 1, 2, ...} is complete in a Hilbert space H;

ii) there exists a complete sequence {g(·|zk) : k = 1, 2, ...} such that the corresponding sequence

{f(·|zk) : k = 1, 2, ...} satisfies that

∞∑
k=1

∥∥∥vgk − vfk∥∥∥2∥∥vgk∥∥2 <∞,

where for h ∈ {g, f}, the sequence of functions vhk is defined as vh1 (·) = h(·|z1)/ω(·),..., vhk (·) =

h(·|zk)/ω(·)−
k−1∑
j=1

〈h(·|zrk )/ω(·),vhj (·)〉
〈vhj (·),vhj (·)〉

vhj , and that for any finite subsequence {zki : i = 1, 2, ..., I}

13



{f(·|zki) : i = 1, 2, ..., I} is linearly independent, i.e.,

I∑
i=1

cif(x|zki) = 0 for all x ∈ X implies ci = 0.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in H.

Proof: See the appendix.

This theorem utilizes the structure of an inner product that allows length and angle in

a Hilbert space. We show that if the distance between the two corresponding orthogonal

sequence is finite and the new sequence is linearly independent, then the new sequence is

complete.

Condition i) provides complete sequences, which may be from Lemma 1 and 2. Condition

ii) requires that the total sum of relative quadratic deviation from the orthogonal sequence{
vgk : k = 1, 2, ...

}
constructed by {g(·|zrk)/ω(·) : k = 1, 2, ...} and an orthogonal sequence{

vfk : k = 1, 2, ...
}

constructed by {f(·|zrk)/ω(·) : k = 1, 2, ...} is finite.

The linear independence in condition iii) imposed on {f(·|zk)} implies that there are no

redundant terms in the sequence in the sense that no term can be expressed as a linear com-

bination of some other terms. Because a weight function is positive, the linear independence

of {f(·|zk)} is equivalent to the linear independence of {f(·|zk)/ω(·)}. For simplification, we

use an ordered sequence zk. When the support of f(·|zk) is the whole real line for all zk, a

sufficient condition for the linear independence is that

lim
x→−∞

f(x|zk+1)

f(x|zk)
= 0 for all k, (6)

which implies limx→−∞
f(x|zk+m)
f(x|zk) = 0 for any m ≥ 1 and for all x. If

∑I
i=1 cif(x|zki) = 0 for

all x ∈ (−∞,+∞), we may have

−c1 =

I∑
i=2

ci
f(x|zki)
f(x|zk1)

.

The limit of the right-hand side is zero as x → −∞ so that c1 = 0. Similarly, we may show

c2,c3, ..., cI = 0 for all i by induction. Notice that the exponential family satisfies Eq. (6) for
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appropriate choices of µ, τ and a sequence. When the support X is bounded, for example,

X = [0, 1], the condition (6) may become

lim
x→0

f(x|zk+1)

f(x|zk)
= 0 for all k. (7)

For example, the Corollary (Müntz) on page 91 in Young (2001) implies that the family

of function {xz1 , xz2 , xz3 , ...} is complete in L2([0, 1]) if
∞∑
k=1

1
zk

= ∞. This family also sat-

isfies the condition (7) for a strictly increasing {zk}. For an existing function g(x|z) > 0,

we may always have f(x|z) = f(x|z)
g(x|z) × g(x|z). If the existing sequence {g(·|zk)} satisfies

Eq. (6), i.e., limx→−∞
g(x|zk+1)
g(x|zk) = 0, then the condition 0 <

(
limx→−∞

f(x|zk)
g(x|zk)

)
< ∞ im-

plies limx→−∞
f(x|zk+1)
f(x|zk) = 0 or linear independence of {f(·|zk)}. Furthermore, when f(x|z) =

h(x|z)×g(x|z), the condition (6) is implied by limx→−∞
g(x|zk+1)
g(x|zk) = 0 and

(
limx→−∞

h(x|zk+1)
h(x|zk)

)
<

∞.

Suppose the function f(x|z) is differentiable with respect to the variable x up to any finite

order for all the zk in the sequence. We may consider the so-called Wronskian determinant

as follows:

W (x) = det


f(x|zk1) f(x|zk2) ... f(x|zkI )

f ′(x|zk1) f ′(x|zk2) ... f ′(x|zkI )

... ... ... ...

d(I−1)

dx(I−1) f(x|zk1) d(I−1)

dx(I−1) f(x|zk2) ... d(I−1)

dx(I−1) f(x|zkI )


(8)

If there exists an x0 such that the determinant W (x0) 6= 0 for every {zki : i = 1, 2, ..., I}, then

{f(·|zk)} is linear independent.

Another sufficient condition for the linear independence is that the so-called Gram determi-

nantGf is not equal to zero for every {zki : i = 1, 2, ..., I} , whereGf = det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
.

This condition does not require the function has all the derivatives.

We summarize these results on the linear independence as follows:

Lemma 3. The sequence {f(·|zk)} corresponding to a sequence {zk : k = 1, 2, ...} of distinct

zk ∈ N (z0) converging to z0 is linearly independent if one of the following conditions hold:

1)
∑I

i=1 cif(x|zki) = 0 for all x ∈ X implies ci = 0 for all I.

2) for all k, limx→−∞
f(x|zk+1)
f(x|zk) = 0 or limx→x0

f(x|zk+1)
f(x|zk) = 0 for some x0;
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Figure 1: An example of g(x|z) and f(x|z) in Theorem 2.

3) there exists an x0 such that the determinant W (x0) 6= 0 for every {zki : i = 1, 2, ..., I} .

In particular, dk

dxk
F0(0) 6= 0 for k = 1, 2, ... if f(x|z) = d

dxF0(µ(z)τ(x)) with µ′(z0) 6= 0,

τ(0) = 0.

4) for every {zki : i = 1, 2, ..., I}, det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
6= 0.

Proof: See the appendix.

In order to illustrate the relationship between the complete sequence {g(·|zk)} and the

sequence {f(·|zk)}, we present numerical examples of these two functions as follows. Theorem

4 in Gurarij and Meletidi (1970) also shows that if a sequence {fn : n = 1, 2, 3, ...} satisfies

‖fn − xn‖ < εn for any εn such that lim εna
n = 0 for every positive a then the sequence

is also complete. Thus, we may consider g(x|z) = xz and f(x|z) = xz + z−zx2 and then

{f(·|z) : z ∈ Z} is complete for Z = R. Figure 1 presents a 3D graph of g(x|z) and f(x|z) for

(x, z) in [0, 1] × [1, 4] to illustrate the relationship between the complete sequence {g(·|zk)}

and the sequence {f(·|zk)}.

Other than using the stability results in Gurarij and Meletidi (1970), Dostanić (1996)

provides more sufficient conditions for completeness.13

Lemma 4. Let ϕ ∈ C1[0, π] be an injective complex-valued function satisfying the conditions

13This is Theorem 2 in Dostanić (1996).
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ϕ(0) ∈ R, ϕ(π) ∈ R, and ϕ(0)ϕ(π) < 0 for Im(ϕ(x)) > 0 for x ∈ (0, π). If −1/4 ≤ a ≤ 1/4

then the systems {Im(ϕ(x))n+a}∞n=0 and {Re(ϕ(x))n+a}∞n=1∪{1} are complete in Lp(0, π)(p ≥

1).

Suppose that f1(·) > 0 and f2(·) > 0. For b ∈ (0, π), consider an injective complex-valued

function as

ϕ(x) = (x− b)f1(x) + ix(π − x)f2(x).

The function satisfies the conditions in Lemma 4 so by the lemma the system of functions

{(x(π − x)f2(x))n+a}∞n=0 and {((x − b)f1(x))n+a}∞n=1 ∪ {1} are complete in Lp(0, π)(p ≥ 1)

for a ∈ [−1/4, 1/4]. This implies the two functions on (0, π)× R, h1(x|z) ≡ (x(π − x)f2(x))z

and h2(x|z) ≡ ((x− b)f1(x))z are complete in Lp(0, π)(p ≥ 1).

3. Applications

We consider three applications of our main results: first, we show the sufficient conditions

for the completeness of f(x|z) when x = µ(z) + σ (z) ε with z ⊥ ε; second, we consider the

completeness with a general control function x = h(z, ε); finally, we show how to use our

results to transform a multivariate completeness problem to a single variable one.

3.1. Extension of the convolution case

Lemma 2 provides a complete sequence when x = z + ε. Using Theorems 1, 2 and 3, we may

provide sufficient conditions for the completeness of f(x|z) when the endogenous variable x

and the instrument z satisfy a general heterogeneous structure as follows:

x = µ(z) + σ (z) ε with z ⊥ ε.

Without loss of generality, we set

µ(z) = z.

We summarize the result as follows:

Lemma 5. For every z ∈ Z ⊂ R, let f(·|z) be in L1 (R). Suppose that there exists a point z0

with its open neighborhood N (z0)⊆ Z such that
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i) set fε(·) = f(·|z0) and the function fε satisfies the restrictions (4) and (5) in Lemma 2 for

some positive constants ci for i = 1, 2, 3, and δi > 0 for i = 1, 2, 3, 4, 5;

ii) there exists {f(·|zk) : k = 1, 2, ...} satisfies that one of the following conditions holds:

1) σ (z) = 1 for ‖z − z0‖ < ε for some small ε > 0;

2) σ (z) satisfies

n∑
k=1

∥∥∥∥ck(fε (· − zk) /ω(·)− 1

σ (zk)
fε

(
· − zk
σ (zk)

)
/ω(·))

∥∥∥∥ < λ

n∑
k=1

‖ckfε (· − zk) /ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, ..., cn (n = 1, 2, 3, ...);

3) there exists a sequence {Ck : k = 1, 2, ...} which depends on the normalized sequence

{ fε(·−zk)/ω(·)
‖fε(·−zk)/ω(·)‖ : k = 1, 2, ...} such that

n∑
k=1

Ckεk < 1 for a sequence of positive numbers

{εk : k = 1, 2, ...} and

∥∥∥∥ fε (· − zk) /ω(·)
‖fε (· − zk) /ω(·)‖

− 1

σ (zk)
fε

(
· − zk
σ (zk)

)
/ω(·)

∥∥∥∥ < εk,

4) σ (z) satisfies

∞∑
k=1

∥∥∥vfk − vfσk ∥∥∥2∥∥∥vfk∥∥∥2 <∞,

where vfk and vfσk are defined as in Theorem 3 with f(x) = fε(x − z)/ω(·) and fσ(x) =

1
σ(z)fε

(
x−z
σ(z)

)
/ω(·), and that for any finite subsequence {zki : i = 1, 2, ..., I}, the family of func-

tions

{
1

σ(zki)
fε

(
·−zki
σ(zki)

)
: i = 1, 2, ..., I

}
is linearly independent.

Then, the family {f(·|z) : z ∈ Z} is complete in L2 (R, ω), where the weight function ω(x)

satisfies ω(x) = e−δ
′x2 for some δ′ ∈ (0, δ3) .

The first part of Lemma 5 implies that one may always make a convolution sequence

coincide with a complete sequence in Lemma 2 at an open neighborhood of a limit point

and provides more complete families. The rest of Lemma 5 is to provide sufficient conditions

for the completeness under a small perturbation of the deviations defined in Theorems 1, 2,

and 3. The first case immediately provides the completeness of the normal distribution with

heteroskedasticity which is more flexible than the normal distribution with homoskedasticity.

Suppose ε ∼ N(0, 1) and φ is a standard normal PDF. Then, by Lemma 5 we have the family{
f(x|z) = 1

σ(z)φ
(
x−z
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R, ω) if σ (z) = 1 for ‖z − z0‖ < ε
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for some small ε > 0. This result is new to the literature and provides the identification for

models with heteroskedasticity. Therefore, our results have shown many complete DGPs that

are not previously known. Another point to emphasize is that we only need the restrictions

of Lemma 2 to hold for fε(·) = f(·|z0) at an open neighborhood of the limit point z0 not over

all z. Any distribution containing a normal factor, say a convolution of normal and another

distribution, satisfies this tail restriction.

We may then consider the nonparametric identification of a regression model

y = α+ βx+ u, E[u|z] = 0, (9)

with x = z+σ (z) ε and ε ∼ N(0, 1). Here the true regression function m(x) is linear, which is

unknown to researchers. We have shown that the family
{
f(x|z) = 1

σ(z)φ
(
x−z
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R, ω) if σ (z) = 1 for ‖z − z0‖ < ε for some small ε > 0, which implies the

above linear model is uniquely identified among all the functions in L2(R, ω). Notice that the

bounded completeness is not enough for such an identification.

3.2. Completeness with a control function

We then consider a general expression of the relationship between the endogenous variable x

and the instrument z. Let a control function describe the relationship between an endogenous

variable x and an instrument z as follow:14

x = h(z, ε), with z ⊥ ε. (10)

We consider the case where x and ε have the support R. Denote cdf of ε as F (ε). It is

well known that the function h is related to the cdf Fx|z as h(z, ε) ≡ F−1x|z (F (ε) |z) when the

inverse of Fx|z exists and h is strictly increasing in ε. Given the function h, we are interested

in what restrictions on h are sufficient for the completeness of the conditional density f(x|z)

implied by Eq. (10).

Lemma 6. Let N (z0) ⊆ Z ⊂ R be an open neighborhood of some z0 ∈ Z and Eq. (12) hold

with h(z0, ε) = ε, where the distribution function of ε, fε, satisfies
∫
R |fε (ε)|2 dε < ∞, and

14Here we call h the control function without assuming that the IV z is independent of (u, ε) as in the usual
control function approach.
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the conditions in Lemma 2 with a weight function ω. Suppose that

i) for z ∈ N (z0), the function h(z, ε) is strictly increasing in ε and twice differentiable in z

and ε;

ii) there exists {f(·|zk) ≡ ∂
∂xFε

(
h−1(z, x)

)
=
∣∣ ∂
∂xh

−1(zk, ·)
∣∣ fε (h−1(zk, ·)) : k = 1, 2, ...} satis-

fies one of the following conditions:

1) h(z, ε) = cz + ε, for a constant c 6= 0 and z satisfying ‖z − z0‖ < ε for some small

ε > 0;

2) f(·|zk) satisfies

n∑
k=1

‖ck(fε (· − zk) /ω(·)− f(·|zk)/ω(·))‖ < λ

n∑
k=1

‖ckfε (· − zk) /ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, ..., cn (n = 1, 2, 3, ...);

3) there exists a sequence {Ck : k = 1, 2, ...} which depends on the normalized sequence

{ fε(·−zk)/ω(·)
‖fε(·−zk)/ω(·)‖ : k = 1, 2, ...} such that

n∑
k=1

Ckεk < 1 for a sequence of positive numbers

{εk : k = 1, 2, ...} and

∥∥∥∥ fε (· − zk) /ω(·)
‖fε (· − zk) /ω(·)‖

− f(·|zk)/ω(·)
∥∥∥∥ < εk,

4) f(·|zk) satisfies

∞∑
k=1

∥∥∥vfk − vfzk ∥∥∥2∥∥∥vfk∥∥∥2 <∞,

where vfk and vfzk are defined as in Theorem 3 with f(·) = fε(·−z)/ω(·) and fz(·) = f(·|z)/ω(·),

and that for any finite subsequence {zki : i = 1, 2, ..., I}, {f(·|zki) : i = 1, 2, ..., I} is linearly

independent.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2(R, ω).

Proof: See the appendix.

Condition i) guarantees that the conditional density f(x|z) is continuous in both x and

z around z0. The condition h(z0, ε) = ε is not restrictive because one may always redefine

ε. Therefore, f(x|z) satisfies f(x|z0) = fε (x). The first part of Lemma 6 implies that

key sufficient assumptions for the completeness of f(x|z) implied by the control function in

Equation (10) is that the control function h is locally linear around a neighborhood of a limit
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point in the support of z. Our results may provide sufficient conditions for completeness with

a general h. For example, suppose c 6= 0, and small ε > 0, we may have

h (z, ε) =

 cz + ε if z ∈ (z0 − ε, z0 + ε),

z + ez−z0ε+
∑J

j=0 (z − z0)2j hj (ε) else .

where hj (·) are increasing functions. The function h may also have a nonseparable form such

as

h (z, ε) =

 cz + ε if z ∈ (z0 − ε, z0 + ε),

z + ln
[
(z − z0)2 + exp(ε)

]
else .

3.3. Multivariate completeness

When the endogenous variable x and the instrument z are both vectors, our main results in

Theorems 1 and 3 still applies. In other words, our results can be extended to the multivariate

case straightforwardly. In this section, we show that one can use Theorems 1, 2, and 3 to

reduce a multivariate completeness problem to a single variate one. Without loss of generality,

we consider x = (x1, x2), z = (z1, z2), X = X1 × X2, and Z = Z1 × Z2. One may show that

the completeness of f(x1|z1) and f(x2|z2) implies that of f(x1|z1) × f(x2|z2). Theorems

1, 2, and 3 then imply that if conditional density f(x1, x2|z1, z2) has a small deviation from

f(x1|z1)×f(x2|z2) at some converging sequence in Z under the deviations defined in Theorems

1, 2, and 3 then f(x1, x2|z1, z2) is complete. We summarize the results as follows:

Lemma 7. Denote H = L2(X , ω) as a Hilbert space. For every z ∈ Z = Z1×Z2, let fx|z(·|z)

be in the Hilbert space H of functions defined on X = X1 × X2 with norm ‖ · ‖. The weight

function is a multiplicative product of weight functions of Hilbert spaces defined on X1 and

X2, i.e., ω(x1, x2) = ω(x1)ω(x2).
15 Suppose that there exists a point z0 = (z10, z20) with its

open neighborhood N (z0)⊆ Z such that

i) for every sequence {zk : k = 1, 2, 3, ...} of distinct zk ∈ N (z0) converging to z0, the

corresponding sequence {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are

complete in Hilbert spaces H of functions defined on X1 and X2;

ii) there exists {f(·|zk) : k = 1, 2, ...} satisfies that one of the following conditions holds:

15A simple example of this type of weight functions is ω(x1, x2) = e−(a1x
2
1+a2x

2
2) = e−a1x

2
1e−a2x

2
2 =

ω(x1)ω(x2), where a1, a2 > 0.
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1) fx|z(·, ·|z1, z2) = fx1|z1(·|z1)fx2|z2(·|z2) for ‖z1− z10‖ < ε1 and ‖z2− z20‖ < ε2 for small

ε1, ε2 > 0;

2) fx|z(·|zk) satisfies

n∑
k=1

∥∥ck(fx1|z1(·|zk1)/ω(·)fx2|z2(·|zk2)/ω(·)− fx|z(·, ·|zk1, zk2)/ω(·, ·))
∥∥

< λ

n∑
k=1

∥∥ckfx1|z1(·|zk1)/ω(·)fx2|z2(·|zk2)/ω(·)
∥∥

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, ..., cn (n = 1, 2, 3, ...);

3) there exists a sequence {Ck : k = 1, 2, ...} which depends on the normalized sequence

{ fx1|z1 (·|zk1)/ω(·)fx2|z2 (·|zk2)/ω(·)
‖fx1|z1 (·|zk1)/ω(·)fx2|z2 (·|zk2)/ω(·)‖

: k = 1, 2, ...} such that
n∑
k=1

Ckεk < 1 for a sequence of positive

numbers {εk : k = 1, 2, ...} and

∥∥∥∥∥ fx1|z1(·|zk1)/ω(·)fx2|z2(·|zk2)/ω(·)∥∥fx1|z1(·|zk1)/ω(·)fx2|z2(·|zk2)/ω(·)
∥∥ − fx|z(·, ·|zk1, zk2)/ω(·, ·)

∥∥∥∥∥ < εk,

4) fx|z(·|zk) satisfies

∞∑
k=1

∥∥∥vfz1z2k − vfzk
∥∥∥2∥∥∥vfk∥∥∥2 <∞,

where v
fz1z2
k and vfzk are defined as in Theorem 3 with fz1z2(·) = fx1|z1(·|zk1)/ω(·)fx2|z2(·|zk2)/ω(·)

and fz(·) = fx|z(·|z)/ω(·, ·), and that {f(·|zki) : i = 1, 2, ..., I} is linearly independent for any

finite subsequence {zki : i = 1, 2, ..., I}.

Then, the sequence {fx|z(·, ·|z1, z2) : z ∈ Z} is complete in the Hilbert space H of functions

defined on X1 ×X2.

Proof: See the appendix.

In many applications, it is difficult to show the completeness for a multivariate conditional

density. The results above use Theorems 1, 2, and 3 to extend the completeness for the one-

dimensional sequences {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} to the

multiple dimensional sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...}. The key assumption is that

the endogenous variables are conditionally independent of each other for some value of the

instruments, i.e.

fx|z(·, ·|z10, z20) = fx1|z1(·|z10)fx2|z2(·|z20). (11)
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We may then use the completeness of one-dimensional conditional densities fx1|z1(·|z1k) and

fx2|z2(·|z2k) to show the completeness of a multi-dimensional density fx|z(·, ·|z1k, z2k). There-

fore, Lemma 7 may reduce the dimension as well as the difficulty of the problem.

What we need for the multivariate case (Lemma 7) in Equation (11) includes two steps:

first, we need the independence between x1 and x2 only at z = z0, i.e.,

x1 ⊥ x2 | z = z0; (12)

The second step requires with z0 = (z10, z20)

fx1|z(·|z0) = fx1|z1(·|z10) and fx2|z(·|z0) = fx2|z2(·|z20).

This step is for simplicity and convenience because fx1|z(·|z10, z20) and fx2|z(·|z10, z20) are

already one-dimensional densities and we may re-define the two sequences in condition i) in

Lemma 7 corresponding to fx1|z(·|z0) and fx2|z(·|z0). Such a simplification is particularly

useful when one can find an instrument corresponding to each endogenous variable.

The completeness of a conditional density function f(x|z) implies there exists a sequence

of conditional density function {f(x|zk) : k = 1, 2, 3, ...} as a complete sequence. At these

points zk = (z1k, z2k), an intuitive idea of Lemma 7 is the fact that the tensor product of an

univariate complete sequence are a multivariate complete sequence. With the completeness

of the sequence of product function {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...}, we can utilize

the main perturbation results, Theorems 1, 2, and 3, to extend the result to other sequence

of functions close to the sequence of the product function. At these ”small” perturbation

sequences, {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} can be nonseparable and satisfy the condition

(12). For example, set fx1|z1(x1|z1) = 1
z1
e−x1z1 and fx2|z2(x2|z2) = 1

z2
e−x2z2 where z1, z2 > 0

and x1, x2 ∈ {0}∪R+. Applying the results of Lemma 1 (a generalized version of Example 2) to

these two density functions, we can obtain the completeness of the two families {fx1|z1(·|z1k) :

k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} where z1k and z2k are distinct sequences

converging to 1.

The family of product function {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...}, where fx1|z1(x1|z1) =

1
z1
e−x1z1 and fx2|z2(x2|z2) = 1

z2
e−x2z2 is complete in {0} ∪ R+2 because the family contains a

subfamily as a basis in {0} ∪ R+2. Then, by Theorems 1, 2, and 3 the family of multivariate
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density {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} may be complete when the family is sufficient close

to the family of product functions under the deviations defined in Theorems 1, 2, and 3. On

the other hand, we can use condition ii) 1) to provide more complete families. For small

ε1, ε2 > 0, set Oz = (z10− ε1, z10 + ε1)× (z20− ε2, z10 + ε1). Consider the multivariate density

fx|z(·, ·|z1, z2) =

 fx1|z1(·|z1)fx2|z2(·|z2) if (z1, z2) ∈ Oz,
czk

z1kz2k
e−(x1z1k+x2z2k+(z1k−1)2(z2k−1)2x1x2) else .

where czk is a normalized coefficient, z1, z2 > 0, and x1, x2 ∈ {0} ∪ R+. The family has an

exponential decay tail over R+2 and hence integrable. The family at Oz is the same as the

family of product function {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...}, where fx1|z1(x1|z1) =

1
z1
e−x1z1 and fx2|z2(x2|z2) = 1

z2
e−x2z2 . Lemma 7 implies the sequence {fx|z(·, ·|z1, z2) : z ∈ Z}

is complete.

4. Conclusion

We provide sufficient conditions for the nonparametric identification of the regression func-

tion in a regression model with an endogenous regressor x and an instrumental variable z.

The identification of the regression function from the conditional expectation of the depen-

dent variable is implied by the completeness of the distribution of the endogenous regressor

conditional on the instrument, i.e., f(x|z). Sufficient conditions are then provided for the

completeness of f(x|z) without imposing a specific functional form, such as the exponential

family. We use the results in the stability of complete sequences in Hilbert spaces to show that

(1) if the deviation of the conditional density f(x|zk) from a known complete sequence of func-

tions is less than a sequence of values determined by the complete sequence in some distinct

sequence {zk : k = 1, 2, 3, ...} converging to z0, then f(x|z) itself is complete, and (2) if the

conditional density f(x|z) can form a linearly independent sequence {f(·|zk) : k = 1, 2, ...}

for some distinct sequence {zk : k = 1, 2, 3, ...} converging to z0 and its relative deviation

from a known complete sequence of functions under some norm is finite then f(x|z) itself is

complete. Therefore, the regression function is nonparametrically identified.
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5. Appendix: Proofs

5.1. Preliminaries

Recall this paper considers a weighted L2 space L2(X , ω) = {h(·) :
∫
X |h(x)|2ω(x)dx < ∞}

with the inner product 〈f, g〉 ≡
∫
X f(x)g(x)ω(x)dx. We define the corresponding norm as:

‖f‖2 = 〈f, f〉. The completion of L2(X , ω) under the norm ‖ · ‖ is a Hilbert space, which may

be denoted as H. The conditional density of interest f(x|z) is defined over X ×Z. Let ω be a

weight function. If z only takes values from a countable set in Z then the conditional density

f(x|z) can be used to extend as a sequence of functions {f1, f2, f3, ...} in H with

fk(·) ≡
f(·|zk)
ω(·)

,

where {zk : k = 1, 2, 3, ...} is a sequence in Z. The property of the sequence {fk} determines

the identification of the regression function in (2).

We then introduce the definition of a basis in a Hilbert space.

Definition 2. A sequence of functions {f1, f2, f3, ...} in a Hilbert space H is said to be a basis

if for any h ∈ H there corresponds a unique sequence of scalars {c1, c2, c3, ...} such that

h =

∞∑
k=1

ckfk.

In our proofs, we limit our attention to linearly independent sequences when providing

sufficient conditions for completeness. The linear independence of an infinite sequence is

considered as follows.

Definition 3. A sequence of functions {fn (·)} of a Hilbert space H is said to be ω−independent

if the equality
∞∑
n=1

cnfn (x) = 0 for all x ∈ X

is possible only for cn = 0, (n = 1, 2, 3, ...).

It is obvious that the ω−independence implies that linear independence. But the converse

argument does not hold. A complete sequence may not be ω−independent, but it contains a

basis, and therefore, contains an ω−independent subsequence.
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The identification of a regression function in Equation (2) actually only requires a sequence

{f1, f2, f3, ...} containing a basis, instead of a basis itself. Therefore, we consider a complete

sequence of functions {f1, f2, f3, ...} which satisfies that 〈g, fk〉 = 0 for k = 1, 2, 3... implies

g = 0.

In fact, one can show that a basis is complete. Since every element in a Hilbert space

has a unique representation in terms of a basis, there is redundancy in a complete sequence.

Given a complete sequence in a Hilbert space, we can construct a basis from the complete

sequence. One of the important properties of a complete sequence for a Hilbert space is that

every element can be approximated arbitrarily close by finite combinations of the elements.

We summarize these results as follows.

Lemma 8. (1) A basis in the Hilbert space H is also a complete sequence.

(2) Let W be a closed linear subspace of a Hilbert space. Set W⊥ = {h ∈ H : 〈h, g〉 =

0 for all g ∈W}. Then W⊥ is a closed linear subspace such that, W
⊕
W⊥ = H.

(3) Given a complete sequence of functions {f1, f2, f3, ...} in a Hilbert space H, we can

construct an orthonormal basis {g1, g2, g3, ...} for the Hilbert space H.

Proof of Lemma 8(1): Given a basis {f1, f2, f3, ...} in a Hilbert space H, apply-

ing Gram-Schmidt process to the basis yields an orthonormal sequence {g1, g2, g3, ...} and

span({f1, f2, f3, ...}) = span({g1, g2, g3, ...}). This implies that {g1, g2, g3, ...} is also a basis of

the Hilbert space H and f =
∞∑
k=1

〈f, gk〉gk for any f ∈ H. Suppose that
∫
fk(x)h(x)ω(x)dx = 0

for all k. It follows that 〈h, gk〉 = 0 for all k. Thus, h =
∞∑
k=1

〈h, gk〉gk = 0. {f1, f2, f3, ...} is a

complete sequence. QED.

The proof of Lemma 8(2) can be found as a corollary on page 7 in Zimmer (1990).

Proof of Lemma 8(3): We will construct gk using Gram-Schmidt procedure. First, let

r1 = f1 and g1 = r1
‖r1‖ . Then r2 = fs2 where s2 is the smallest index among {2, 3, 4, ...} such

that g̃2 ≡ fs2−〈fs2 , g1〉g1 6= 0. Denote g2 = g̃2
‖g̃2‖ . Keep the selection process going, in the k-th

step, we have rk = fsk where sk is the smallest index among {sk−1 + 1, sk−1 + 2, sk−1 + 3, ...}

such that g̃k ≡ fsk −
k−1∑
i=1
〈fsk , gi〉gi 6= 0 and gk = g̃k

‖g̃k‖ . This selection procedure produces

two sequences with the same span space, i.e., span({f1, f2, f3, ...}) = span({g1, g2, g3, ...}). In

addition, {g1, g2, g3, ...} is an orthonormal sequence. To prove {g1, g2, g3, ...} is a basis, it is

sufficient to show (i) the completion of span({g1, g2, g3, ...}) = H, and (ii) {g1, g2, g3, ...} is
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ω−independent. Let W be the completion of the subspace span({g1, g2, g3, ...}) under the

norm ‖ · ‖. Let W⊥ = {h ∈ H : 〈h, g〉 = 0 for all g ∈ W}. By Lemma 8 (ii), W
⊕
W⊥ = H.

Since the sequence {f1, f2, f3, ...} is complete and span({f1, f2, f3, ...}) = span({g1, g2, g3, ...})

then W⊥ = {0} and W = H. On the other hand, suppose that
∞∑
k=1

ckgk = 0 for some scalars

c1, c2, c3, .... Because {g1, g2, g3, ...} is an orthonormal sequence, 0 = 〈
∞∑
k=1

ckgk, gi〉 = ci for

i = 1, 2, 3, .... This implies that {g1, g2, g3, ...} is ω−independent. Therefore, the sequence

{g1, g2, g3, ...} is a basis. QED.

Our proofs also need a uniqueness theorem of complex differentiable functions. Let w =

a+ ib, where a, b are real number and i =
√
−1. Define C = {w = a+ ib : a, b ∈ R} and it is

called a complex plane. The complex differentiable function is defined as follows.

Definition 4. Denote Ω as an open set in C. Suppose f is a complex function defined in Ω.

If z0 ∈ Ω and

lim
z→z0

f(z)− f(z0)

z − z0

exists, we denote this limit by f ′(z0) and call it the derivative of f at z0. If f ′(z0) exists for

every z0 ∈ Ω, f is called a complex differentiable (or holomorphic) function in Ω.

To be more precise, f ′(z0) exists if for every ε > 0 there corresponds a δ > 0 such that

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε for all 0 < |z − z0| < δ.

A complex differentiable function has a large number of interesting properties which are

different from a real differentiable function. One of them is the following uniqueness theorem,

as stated in a corollary on page 209 in Rudin (1987).

Lemma 9. If g and f are complex differentiable functions in an open connected set Ω and

if f(z) = g(z) for all z in some set which has a limit point in Ω, then f(z) = g(z) for all

z ∈ Ω.16

16Let E be a subset of a metric space X. A point p in X is a limit point of E if every neighborhood of p
contains a point q 6= p such that q ∈ E.
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5.2. Proofs of completeness of existing sequences

Proof of Lemma 1: Set t(z) = 1 is for simplicity. In order to use the above uniqueness

result of complex differentiable functions, we consider a converging sequence {zk : k = 1, 2, ...}

in Z as the set with a limit point. Since µ (·) is continuous with µ′ (z0) 6= 0 for some limit point

z0 ∈ Z, there exists δ > 0 and a subsequence {zki : i = 1, 2, ...} converging to z0 such that

{µ(zki) : i = 1, 2, ...} ∈ (µ(z0) − δ, µ(z0) + δ) ⊂ µ(N (z0)) be a sequence of distinct numbers

converging to an interior point µ(z0) ∈ µ(N (z0)) and µ(zki)τ(x) < µ(z0)τ(x) + δ|τ(x)| for

i = 1, 2, .... In addition, since g(·|z) ∈ L1(X ) for z ∈ O,

∫
X
s(x) exp [µ(z0)τ(x) + δ|τ(x)|] dx <∞.

Choose a weight function ω(x) satisfying
∫
X
s(x)2 exp[2(µ(z0)τ(x)+δ|τ(x)|)]

ω(x) dx < ∞ and it follows

that
∫
X g(x|z)2/ω(x)dx < ∞ for z ∈ O. Given h0 ∈ L2(X , ω) and pick a positive constant

δ1 such that 0 < δ1 < δ. Let w = a + ib, where a, b are real numbers. Then, check the

integrability of the function s(x)ewτ(x)h0(x) over x ∈ X for a ∈ (µ(z0)− δ1, µ(z0) + δ1). Use

Cauchy-Schwartz inequality to the function,

∣∣∣ ∫
X
s(x)ewτ(x)h0(x)dx

∣∣∣2 (13)

≤
(∫
X

s(x)eaτ(x)

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)eµ(z0)τ(x)+δ1|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)eµ(z0)τ(x)+δ|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)2 exp [2(µ(z0)τ(x) + δ|τ(x)|)]
ω(x)

dx
)(∫

X
|h0(x)|2ω(x)dx

)
<∞.

This implies that a complex function defined as an integral of the function exists and is finite.

Consider the complex function with the following form

f(w) =

∫
X
s(x)ewτ(x)h0(x)dx, (14)
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where the complex variable w is in the vertical strip R ≡ {w : µ(z0) − δ1 < Re (w) <

µ(z0) + δ1}.17 Suppose η ∈ C such that |η| ≤ δ2 and δ1 + δ2 < δ. Given w ∈ R. Consider the

difference quotient of the integrand in Eq. (14), we have

|Q(x, η)| ≡
∣∣∣s(x)e(w+η)τ(x)h0(x)− s(x)ewτ(x)h0(x)

η

∣∣∣
=
∣∣∣s(x)

ewτ(x)
(
eητ(x) − 1

)
η

h0(x)
∣∣∣

≤ s(x)

∣∣∣∣∣ewτ(x)+δ2|τ(x)|δ2

∣∣∣∣∣ ∣∣∣h0(x)
∣∣∣

≤ s(x)

∣∣∣∣∣e(w+δ2)τ(x) + e(w−δ2)τ(x)

δ2

∣∣∣∣∣ ∣∣∣h0(x)
∣∣∣

≤ 2s(x)
eµ(z0)τ(x)+(δ1+δ2)|τ(x)|

δ2

∣∣∣h0(x)
∣∣∣,

where we have used (1) apply the inequality | eaz−1z | ≤
eδ3|a|

δ3
for |z| ≤ δ3 to the factor

(eητ(x)−1)
η ,18 and (2) w ∈ R. The right-hand side is integrable when δ1 + δ2 < δ by a similar

derivation in Eq. (13). It follows from the Lebesgue dominated convergence theorem that

lim
η→0

∫
X
Q(x, η)dx =

∫
X

lim
η→0

Q(x, η)dx =

∫
X
s(x)τ(x)ewτ(x)h0(x)dx.

Therefore, f ′(w) exists and the function f defined through the integral is holomorphic.

The condition
∫
X s(x)eµ(zki )τ(x)h0(x)dx = 0 is equivalent to f(µ(zki)) = 0 by Eq. (14).

This implies that the complex differentiable function f is equal to zeros in the sequence

{µ(zk1), µ(zk2), µ(zk3), ...} which has a limit point µ(z0). Applying the uniqueness theorem

(Lemma 9) quoted above to f results in f(w) = 0 on {w : µ(z0)− δ1 < Re (w) < µ(z0) + δ1}.

If X is a bounded domain, we extend h0 to a function in L2(R, ω) by

h̃0(x) =

 h0(x) if x ∈ X ,

0 otherwise.

We also extend s(x) and τ(x) to functions in R, s̃(x) and τ̃(x) respectively with the following

properties, s̃(x) > 0 and τ̃ ′(x) 6= 0 for every x. In particular, set w = µ(z̃) + it for any real t

17A holomorphic (or analytic) function defined with a similar function form in a strip is also discussed in
the proof of Theorem 1 in Section 4.3 of Lehmann (1986). The proof provided here is close to the proof of
Theorem 9 in Section 2.7 of Lehmann (1986).

18The inequality can be found on page 60 of Lehmann (1986).
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and some z̃ ∈ O such that µ(z̃) ∈ (µ(z0)− δ1, µ(z0) + δ1), we have

f(w) =

∫
X
s(x)eµ(z̃)τ(x)eitτ(x)h0(x)dx = 0

=

∫ ∞
−∞

s̃(τ−1(x))eµ(z̃)xeitxh̃0(τ̃
−1(x))

1

τ̃ ′(x)
dx

≡
∫ ∞
−∞

eitxĥ0(x)dx.

The last step implies that the Fourier transform of ĥ0(x) is zero on the whole real line. In

particular, Eq. (13) implies ĥ0 ∈ L1(R).19 By Lemma 9, for ĥ0 ∈ L1(R) we have ĥ0 = 0 and

therefore the function h0 = 0. This shows that the sequence {g(·|zk) = s(·)t(zk)eµ(zk)τ(·) : k =

1, 2, ...} is complete in L2(X , ω). QED.

Proof of Lemma 2: Choose a sequence of distinct numbers {zk} in the support Z

converging to z0 ∈ Z. The inequality

g(x|zk)2

ω(x)
=
fε(x− zk)2

ω(x)
< c21e

−2δ2(x−c2zk)2e−(2δ3−δ
′)x2e2δ1z

2
k

with δ2 > 0 and 2δ3 > δ′ implies that
∫
R
g(x|zk)2
ω(x) dx < ∞ for all k. Suppose that for some

h0 ∈ L2(R, ω),
∫∞
−∞ h0(x)fε (x− zk) dx = 0. Divide it by eδ1z

2
k and rewrite the equation as

∫ ∞
−∞

h0(x)ω(x)
fε (x− zk) e−δ1z

2
k

ω(x)
dx = 0 for all k. (15)

19Recall that µ(z̃) ∈ (µ(z0)− δ1, µ(z0) + δ1) and ĥ0(x) ≡ s̃(τ−1(x))eµ(z̃)xh̃0(τ̃−1(x)) 1
τ̃ ′(x) . Consider∫ ∞

−∞

∣∣ĥ0(x)
∣∣dx ≤ ∫ ∞

−∞

∣∣∣s̃(τ−1(x))eµ(z̃)xh̃0(τ̃−1(x))
1

τ̃ ′(x)

∣∣∣dx
≤
∫
X
s(x)eµ(z̃)τ(x)

∣∣∣h0(x)
∣∣∣dx

≤
∫
X

s(x)eµ(z0)τ(x)+δ1|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

≤
∫
X

s(x)eµ(z0)τ(x)+δ|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

≤
(∫
X

s(x)2 exp [2(µ(z0)τ(x) + δ|τ(x)|)]
ω(x)

dx
)1/2(∫

X
|h0(x)|2ω(x)dx

)1/2
<∞.

This shows that ĥ0 ∈ L1(R).
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Consider

g (z) ≡
∫ ∞
−∞

h0(x)ω(x)
fε (x− z) e−δ1z2

ω(x)
dx, (16)

which is similar to a convolution and g (zk) = 0 for all k. Because h0 ∈ L2(R, ω), h0ω ∈

L1(R).20 Then, the condition δ′ < δ3 implies the function g is integrable because

∫ ∞
−∞
|g(z)|dz ≤

∫ ∞
−∞

∫
R
|h0(x)|ω(x)

fε (x− z) e−δ1z2

ω(x)
dxdz

=

∫
R
|h0(x)|ω(x)

(∫ ∞
−∞

fε (x− z) e−δ1z2

ω(x)
dz

)
dx

≤
∫
R
|h0(x)|ω(x)c1e

−(δ3−δ′)x2
(∫ ∞
−∞

e−δ2(x−c2z)
2
dz

)
dx

≤ c1
∫
R
|h0(x)|ω(x)dx

(∫ ∞
−∞

e−δ2z
2
dz

)
<∞.

Let φg(t) =
∫∞
−∞ e

itzg (z) dz stand for the Fourier transform of g. We can derive a bound for

φg(t) as follows:

|φg(t)| =

∣∣∣∣∫ ∞
−∞

eitzg (z) dz

∣∣∣∣
=

∣∣∣∣∣
∫ ∞
−∞

eitz
∫
R
h0(x)ω(x)

fε (x− z) e−δ1z2

ω(x)
dxdz

∣∣∣∣∣
≤

∫
R
|h0(x)|ω(x)

∣∣∣∣∣
∫ ∞
−∞

eitz
fε (x− z) e−δ1z2

ω(x)
dz

∣∣∣∣∣ dx
≤ c3

(∫
R
|h0(x)|ω(x)e−(δ3−δ

′)x2dx

)
e−δ4t

2

≤ c3

(∫
R
|h0(x)|ω(x)dx

)
e−δ4t

2

≤ c4e
−δ4|t|, (17)

where we have used (i) an interchange of the order of integration (justified by applying Fubini’s

theorem to the integrable g, (ii) the inequality (5), and (iii) δ′ < δ3. Since h0ω is integrable,

φg(t) is also integrable. Both g and φg(t) are integrable, applying the inversion theorem to g

20Suppose h0 ∈ L2(R, ω). Apply Cauchy-Schwartz inequality,
∫
R

∣∣∣h0(x)ω(x)
∣∣∣dx =∫

R

∣∣∣h0(x)
∣∣∣ω(x)1/2ω(x)1/2dx ≤

(∫
R h0(x)2ω(x)dx

)1/2 (∫
R ω(x)dx

)1/2
<∞. This implies h0ω ∈ L1(R).
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yields that g(z) = 1
2π

∫∞
−∞ e

−itzφg(t)dt. Extend the function g from R to C and define

f(w) =

∫ ∞
−∞

e−itwφg(t)dt,

with

w = z + ib for z, b ∈ R with |b| < r < δ4.

The function f(w) is bounded by using Eq. (17) through

∣∣f(w)
∣∣ =

∣∣∣ ∫ ∞
−∞

e−itwφg(t)dt
∣∣∣ ≤ ∫ ∞

−∞
e|b||t| |φg(t)| dt ≤ c4

∫ ∞
−∞

e−(δ4−|b|)|t| <∞.

Since the right-hand side is finite, then f(w) exists and is finite in R = {z + ib : |b| < r}.

To prove f is analytic (complex differentiable) in R, we consider the difference quotient at a

point w0 = z0 + ib0 in R. For |η| < r1 < r − |b0|,

|Q(t, η)| ≡
∣∣∣e−it(w0+η)φg(t)− e−itw0φg(t)

η

∣∣∣
=

∣∣∣∣∣e−itw0(e−itη − 1)

η
φg(t)

∣∣∣∣∣
≤

∣∣∣∣∣e−itw0er1|t|

r1

∣∣∣∣∣∣φg(t)∣∣∣
≤
∣∣∣eb0ter1|t|

r1

∣∣∣∣∣∣φg(t)∣∣∣
≤ c4

e−(δ4−|b0|−r1)|t|

r1
,

where we have used the inequality | ecz−1z | ≤
er2|c|

r2
for |z| ≤ r2 and Eq. (17). The condition

|b0|+ r1 < r < δ4 makes the right-hand side integrable. Since the quotient is bounded above

by an integrable function, the Lebesgue dominated convergence theorem implies

f ′(w0) = lim
η→0

∫ ∞
−∞

Q(t, η)dt =

∫ ∞
−∞

lim
η→0

Q(t, η)dt = −it
∫ ∞
−∞

e−itw0φg(t)dt.

Because w0 is arbitrary in R, w → f(w) is analytic (complex differentiable) in R = {z + ib :

|b| < r}. Consequently, the fact that f (z) = g (z) equals zero for a sequence {z1, z2, z3, ...}

converging to z0 in Eq. (15) implies that f is equal to zero in R by the uniqueness theorem

cited in the proof of Lemma 1. This implies that f(w) is equal to zero for all w = z on the

32



real line, i.e.,
∫∞
−∞ e

−itzφg(t)dt = 0 for all z ∈ R. Because the function φg(·) is integrable,

this yields φg(t) = 0 for all t.21 That is 0 =
∫
R e

itxh0(x)
(∫∞
−∞ e

it(z−x)fε (x− z) e−δ1z2dz
)
dx

which implies h0(·)
(∫∞
−∞ e

it(z−·)fε (· − z) e−δ1z2dz
)

= 0 a.e.. By Eq. (5), we obtain h0 = 0

a.e.. The family {g(·|z) = fε(· − zk) : k = 1, 2, ...} is complete in L2(R, ω).

As for the case fε(ε) = cεp(ε)e
− ε2

2σ2 for some σ2 < 1, we will show Eqs. (4) and (5) hold.

Write e−
(x−z)2

2σ2 = e
−
(

1
σ2
−1

)
x2

2 e−
(x− z

σ2
)
2

2 e
(1−σ2)z2

2σ4 . Set δ1 = (1−σ2)
2σ4 . It follows that

fε(x− z)e−δ1z
2

= cεp(x− z)e
−(x−z)2

2σ2 e−δ1z
2

= cεp(x− z)e
−
(

1
σ2
−1

)
x2

2 e−
(x− z

σ2
)
2

2 .

Let z̃ = x − z
σ2 and δp = 1

4

(
1
σ2 − 1

)
. Use these notations and p((1 − σ2)x + σ2z̃) =

∞∑
j=0

qj(x)Hj(z̃) to rewrite the above equation:

fε(x− z)e−δ1z
2

= cεp((1− σ2)x+ σ2z̃)e−(
1
σ2
−1)x

2

2 e−z̃
2/2

= cε

∞∑
j=0

qj(x)Hj(z̃)e
−( 1

σ2
−1)x

2

2 e−z̃
2/2

= cε

∞∑
j=0

qj(x)Hj(z̃)e
−2δpx2e−z̃

2/2.

The condition
∑
|qj(x)||Hj(z)| < cpe

δpx2e
z2

4 implies that |fε(x−z)e−δ1z
2 | ≤ cεcpe−δpx

2
e−z̃

2/4.

Hence, the condition (4) is satisfied with δ1 = (1−σ2)
2σ4 , c1 = cp, δ2 = 1

2 , c2 = 1
σ2 , and δ3 = δp.

21See Theorem 9.12 on page 185 in Rudin (1987).
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Next, consider the corresponding Fourier transform in the condition (5):

∣∣∣∣∫ ∞
−∞

eitzfε(x− z)e−δ1z
2
dz

∣∣∣∣ (18)

=

∣∣∣∣∫ ∞
−∞

eit(σ
2x−σ2z̃)cεp((1− σ2)x+ σ2z̃)e−2δpx

2
e−z̃

2/2(σ2)dz̃

∣∣∣∣ (19)

= cεσ
2

∣∣∣∣∣∣eiσ2tx

∫ ∞
−∞

ei(−σ
2t)z̃

∞∑
j=0

qj(x)Hj(z̃)e
−2δpx2 · e−z̃2/2dz̃

∣∣∣∣∣∣ (20)

= cεσ
2 · e−2δpx2

∣∣∣∣∣∣
∞∑
j=0

qj(x)

∫ ∞
−∞

ei(−σ
2t)z̃ ·Hj(z̃)e

−z̃2/2dz̃

∣∣∣∣∣∣ (21)

= cεσ
2e−2δpx

2

∣∣∣∣∣∣
∞∑
j=0

qj(x)F{Hj(z̃)e
−z̃2/2}(−σ2t)

∣∣∣∣∣∣ (22)

≤ cεσ2e−2δpx
2
∞∑
j=0

|qj(x)|
∣∣∣Hj(−σ2t)e−(σ

2t)2/2
∣∣∣ (23)

≤ cεσ2e−2δpx
2
e−(σ

2t)2/2
∞∑
j=0

|qj(x)| ·
∣∣Hj(−σ2t)

∣∣ (24)

≤ cεσ2e−2δpx
2
e−

(σ2t)2

2 · cpeδpx
2
e

(σ2t)2

4 (25)

= cεcpσ
2e−δpx

2 · e
−(σ2t)2

4 = cεcpσ
2e−δpx

2
e−

σ4t2

4 , (26)

where we have used (i) the sum is absolutely convergent, (ii) Hermite polynomials are eigen-

functions of the Fourier transform, F{Hj(z̃)e
−z̃2/2}(t) = (−i)nHj(t)e

−t2/2, and (iii)
∑
|qj(x)||Hj(z)| <

cpe
δpx2e

z2

4 . This implies that the condition (5) is satisfied and Lemma 2 is applicable to the dis-

tribution. We have reached the completeness of the family {g(·|zk) = fε(· − zk) : k = 1, 2, ...}.

QED.

5.3. Proof of Theorem 1

The prototype of the stability result in Theorem 1 comes from Problems 2 on page 41 of

Young (2001) which implies the following sufficient condition for the stability of completeness

in Hilbert spaces.

Lemma 10. Suppose {gk} is a complete sequence for a Hilbert space H. If {fk} is a sequence
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in H such that
n∑
k=1

‖ck(gk − fk)‖ ≤ λ
n∑
k=1

‖ckgk‖ ,

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, ..., cn (n = 1, 2, 3, ...).

Then {fk} is also complete in H.

Applying Lemma 10 to the complete sequence in conditions ii) in Theorem 1, we can

obtain {f(·|zk)/ω(·) : k = 1, 2, ...} is also a complete sequence. Because the weight function

is positive, we have shown the family {f(·|z) : z ∈ N (z0)} is complete in H. QED.

5.4. Proof of Theorem 2

The stability result used for Theorem 2 comes Theorem 1 of Dostanić (1990) which adopted

the results from Gurarij and Meletidi (1970) for Banach spaces. We summarize the stability

results for completeness in Hilbert spaces.

Lemma 11. Let {ek : k = 1, 2, ...} be a complete normalized sequence in a Hilbert space H

with ‖ek‖ = 1. Then there is a sequence {Ck : k = 1, 2, ...} ( Ck > 0) which depends on

{ek : k = 1, 2, ...}, with the following property: for every ε > 0 and e ∈ H, ‖e‖ = 1, there is a

finite linear combination such that

∥∥∥∥∥e−
N∑
k=1

bkek

∥∥∥∥∥ < ε,

and |bk| ≤ Ck for k = 1, 2, ..., N .

Gurarij and Meletidi (1970) used the above lemma to prove the following stability results

for completeness:

Lemma 12. Let {ek : k = 1, 2, ...} be a complete, normalized sequence in a Hilbert space H.

If {εk : k = 1, 2, ...} is a sequence of positive numbers such that
∑∞

k=1Ckεk < 1 (sequence Ck

depends on ek and is given by Lemma 11) and for a sequence {fk : k = 1, 2, ...} satisfies

‖fk − ek‖ < εk,

then the sequence {fk : k = 1, 2, ...} is complete in the Hilbert space H.
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First, applying Lemma 11 to the normalized complete sequence { g(·|zk)/ω(·)
‖g(·|zk)/ω(·)‖ : k = 1, 2, ...}

to ensure the existence of the sequence {Ck : k = 1, 2, ...} in conditions ii) of Theorem 2. Then,

by Lemma 12, the sequence {f(·|zk)/ω(·) : k = 1, 2, ...} is a complete sequence. Because the

weight function is positive, we have shown the family {f(·|z) : z ∈ N (z0)} is also complete in

H. QED.

5.5. Proof of Theorem 3

We prove Theorem 3 in three steps:

1. The quadratic deviation from an orthonormal sequence

{
vgk
‖vgk‖

: k = 1, 2, ...

}
to the cor-

responding sequence

{
vfk
‖vgk‖

: k = 1, 2, ...

}
is defined as

∞∑
k=1

∥∥∥vgk − vfk∥∥∥2∥∥vgk∥∥2 . (27)

We show that if the quadratic deviation from an orthonormal basis to an ω− independent

sequence is finite, then the latter sequence is also a basis. This result is summarized in

Lemma 13 which is Theorem 15 in Young (2001).

2. Condition ii) implies that the quadratic deviation in Eq. (27) is finite for an orthonor-

mal sequence

{
vgk
‖vgk‖

: k = 1, 2, ...

}
constructed by {g(·|zrk)/ω(·) : k = 1, 2, ...} and an

orthogonal sequence

{
vfk
‖vgk‖

: k = 1, 2, ...

}
constructed by {f(·|zrk)/ω(·) : k = 1, 2, ...}.

3. A linearly independent sequence {f(·|zrk)} in a Hilbert space implies linear independence

of the orthogonal sequence

{
vfk
‖vgk‖

: k = 1, 2, ...

}
. The linearly independent sequence{

vfk
‖vgk‖

: k = 1, 2, ...

}
contains an ω−independent subsequence

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
. Fi-

nally, for an orthonormal sequence constructed by a complete sequence
{
g(·|zrkl )/ω(·)

}
in a Hilbert space and the ω−independent sequence

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
, Eq. (27) and

Lemma 13 imply that the sequence

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
is complete in a Hilbert space,

and therefore, {f(·|z) : z ∈ N (z0)} is complete.
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Step 1: We prove that if the quadratic deviation from an orthonormal basis to an ω−

independent sequence is finite, then the latter sequence is also a basis. This result is Theorem

15 in Young (2001) and summarized in the following lemma.

Lemma 13. Suppose that

i) the sequence {en (·) : n = 1, 2, ...} is an orthonormal basis in a Hilbert space H;

ii) the sequence {fn (·) : n = 1, 2, ...} in H is ω−independent;

iii)
∑∞

n=1 ‖fn (·)− en (·) ‖2 <∞.

Then, the sequence {fn(·) : n = 1, 2, ...} is a basis in H.

Step 2: First, by Lemma 8(3), we can extract a convergence subsequence {r1, r2, r3, ...}

such that the orthogonal basis constructed by the basis {g(·|zrk)/ω(·) : k = 1, 2, ...} is given

by

vg1(·) = g(·|zr1)/ω(·),

vg2(·) = g(·|zr2)/ω(·)− 〈g(·|zr2)/ω(·), v1(·)〉
〈v1(·), v1(·)〉

vg1(·),

...

vgk(·) = g(·|zrk)/ω(·)−
k−1∑
j=1

〈
g(·|zrj )/ω(·), vj(·)

〉
〈vj(·), vj(·)〉

vgj (·),

....

We can normalize the orthogonal basis to obtain an orthonormal basis as {vgk(·)/‖vgk(·)‖ : k =

1, 2, ...}. The orthogonal basis constructed by the basis {f(·|zrk)/ω(·) : k = 1, 2, ...} is the

following sequence

vf1 (·) = f(·|zr1)/ω(·),

vf2 (·) = f(·|zr2)/ω(·)− 〈g(·|zr2)/ω(·), v1(·)〉
〈v1(·), v1(·)〉

vf1 (·),

...

vfk (·) = f(·|zrk)/ω(·)−
k−1∑
j=1

〈
g(·|zrj )/ω(·), vj(·)

〉
〈vj(·), vj(·)〉

vfj (·),

....
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This implies
∞∑
k=1

‖ vgk(·)
‖vgk(·)‖

− vfk (·)
‖vgk(·)‖

‖2 <
∞∑
k=1

∥∥∥vgk−vfk∥∥∥2
‖vgk‖

2 < ∞ by Condition ii). This implies the

sequence { vfk (·)
‖vgk(·)‖

: k = 1, 2, ...} is quadratically close to the orthonormal basis { vgk(·)
‖vgk(·)‖

: k =

1, 2, ...}.

Step 3: By the construction of

{
vfk
‖vgk‖

: k = 1, 2, ...

}
and linear independence of {f(·|zk) :

k = 1, 2, ...} in Condition iii),

{
vfk
‖vgk‖

: k = 1, 2, ...

}
is also linear independent. According to the

second Theorem in Erdös and Straus (1953), any linearly independent sequence in a normed

space contains an ω− independent subsequence. We obtain an ω− independent subsequence{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
.

We then show that the ω− independent subsequence

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
is complete

in the Hilbert space H. Since the sequence
{
zrkl

}
corresponding to

{
f̃(·|zrkl )

}
is a subse-

quence of {zk} and also converges to z0, condition i) implies that the corresponding sequence

{g(·|zrkl )/w(·)} is complete in the Hilbert space defined on X . This implies the orthonor-

mal sequence constructed by a complete sequence
{
g(·|zrkl )/ω(·)

}
and

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}

also satisfies Eq. (27). Lemma 13 implies that

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
is a basis and thus{

vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
is complete. By the construction of

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
, the complete-

ness of

{
vfkl∥∥∥vgkl∥∥∥ : l = 1, 2, ...

}
implies that the family {f(·|z) : z ∈ N (z0)} is also complete.

QED.

5.6. Proof of the linear independence

Proof of Lemma 3(3): We have for z > 0 and 0 ∈ X

f(x|z) =
d

dx
F0(z × x)
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with

W (0) = ΠI
i=1

(
zki

d(i)F0(0)

dx(i)

)
× det


1 1 ... 1

zk1 zk2 ... zkI

... ... ... ...

(zk1)I−1 (zk2)I−1 ... (zkI )
I−1


.

According to the property of the Vandermonde matrix, the determinant W (x) is not equal to

zero when F0(x) has all the nonzero derivative at x = 0 and zk are nonzero and distinctive.

We may also generalize the above argument to show {f(·|zk)} is linear independent with

f(x|z) =
d

dx
F0(µ(z)τ(x))

where µ′(z) 6= 0 and τ(·) is monotonic with τ(0) ≡ 0. While the restriction µ′(z) 6= 0

guarantees that µ(zk) are different for a distinct sequence {zk} around z0, the condition τ(·)

is monotonic ensures that the linear independence for any x is the same as that for any

τ(x). If
I∑
i=1

cif(·|zki) = 0, then it is equivalent to
I∑
i=1

ci
d
dxF0(µ(zki)τ(·)) = 0. This implies

I∑
i=1

ci
d
dxF0(µ(zki)τ) = 0 for all τ ∈ τ(X ). Thus, we may show the determinant of W (x) of the

function f(x|z) is nonzero at x = 0. QED.

5.7. Proof of completeness in applications

Proof of Lemma 5: Since fε(·) = f(·|z0) satisfies inequalities (4) and (5) in Lemma 2,

we may generate a complete sequence {g(x|zk) = f (x− zk|z0) = fε(x − zk) : k = 1, 2, ...}

satisfying condition i) in Theorems 1, 2, and 3. Then, we will show that the family {f(·|z) :

z ∈ Z} is complete if the one of conditions in condition ii) 1), condition ii) 2), condition ii)

3), and condition ii) 4) are satisfied. First, the results in condition ii) 2), condition ii) 3),

and condition ii) 4) are direct applications of Theorems 1, 2, and 3. As for the results in

condition ii) 1), pick some distinct sequence {zk : k = 1, 2, ...} such that zk converging to

z0 and ‖zk − z0‖ < ε. Then, we have (1) {fε (· − zk) : k = 1, 2, ...} satisfies condition i) in
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Theorem 2 by condition i) and Lemma 2, and (2)

∥∥∥∥ fε (· − zk) /ω(·)
‖fε (· − zk) /ω(·)‖

− 1

‖fε (· − zk) /ω(·)‖
1

σ (zk)
fε

(
· − zk
σ (zk)

)
/ω(·)

∥∥∥∥ = 0,

because σ (zk) = 1 for k = 1, 2, .... Theorem 2 implies that {fε
(
·−zk
σ(zk)

)
: z ∈ Z} is complete

in L2 (R, ω). QED.

Proof of Lemma 6: We take distinct zk → z0 such that |zk − z0| < ε. Consider the

sequence {g(x|zk) = fε (x− zk) : k = 1, 2, ...}. This implies that g(x|z0) = fε (x) = f(x|z0)

because h(z0, ε) = ε. In addition, the assumptions of ε imply {g(·|zk) : k = 1, 2, ...} is

complete in L2(R, ω) for the weight function ω by Lemma 2. Then the complete sequence

{g(·|zk) : k = 1, 2, ...} satisfies the condition i) in Theorems 1, 2, and 3.

We may check that the family {f(x|zk) =
∣∣ ∂
∂xh

−1(zk, x)
∣∣ fε (h−1(zk, x)

)
: k = 1, 2, ...} is in

L2(R, ω). Consider for some constant c1 and z ∈ N (z0)

∫
R
|f(x|z)|2 dx =

∫
R

∣∣∣∣∂h−1(z, x)

∂x
fε
(
h−1(z, x)

)∣∣∣∣2 dx
=

∫
R

∣∣∣∣∣
(
∂h(z, ε)

∂ε

)−1
fε (ε)

∣∣∣∣∣
2
∂h(z, ε)

∂ε
dε

=

∫
R

∣∣∣∣∂h(z, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

≤ c1
∫
R

∣∣∣∣∂h(z0, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

=
c1
C

∫
R
|fε (ε)|2 dε <∞

The last step is because conditions i) and the assumption of ε imply
∣∣∣∂h(z0,ε)∂ε

∣∣∣ > C > 0 and∫
R |fε (ε)|2 dε < ∞. That means f(x|z) ∈ L2(R) for z ∈ N (z0). Since the weight function is

bounded, f(x|z) ∈ L2(R, ω) for z ∈ N (z0).

Similar to the proof of Lemma 5, the results in condition ii) 2), condition ii) 3), and

condition ii) 4) are direct applications of Theorems 1, 2, and 3, these results imply that

completeness of {f(·|z) : z ∈ N (z0)} in L2 (R, ω). As for the results in condition ii) 1), for z

such that ‖z − z0‖ < ε, f(·|z) =
∣∣ ∂
∂xh

−1(z, ·)
∣∣ fε (h−1(z, ·)) = fε (· − cz). Because c 6= 0, czk

is also a converging sequence. Then, the assumptions of ε also imply {f(·|zk) : k = 1, 2, ...} is

complete in L2(R, ω) by Lemma 2. We have the completeness of {f(·|z) : z ∈ N (z0)}. QED.
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Proof of Lemma 7: Without loss of generality, we consider x = (x1, x2), z = (z1, z2),

X = X1 × X2, and Z = Z1 × Z2. Condition i) implies that {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and

{fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in their corresponding Hilbert spaces.

We then show the sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...} is complete because

{fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in corresponding

Hilbert spaces. Using the property of the weight function, we obtain

∫ ∫
h(x1, x2)f(x1|z1)f(x2|z2)dx1dx2

=

∫ ∫
h(x1, x2)

f(x1|z1)f(x2|z2)
ω(x1, x2)

ω(x1, x2)dx1dx2

=

∫ (∫
h(x1, x2)

f(x1|z1)
ω(x1)

ω(x1)dx1

)
f(x2|z2)
ω(x2)

ω(x2)dx2

=

∫ (∫
h(x1, x2)f(x1|z1)dx1

)
f(x2|z2)dx2

≡
∫
h′ (x2, z1) f(x2|z2)dx2.

If the LHS is equal to zero for any (z1, z2) ∈ Z1×Z2, then for any given z1
∫
h′ (x2, z1) f(x2|z2)dx2

equals to zero for any z2. Since f(x2|z2) is complete, we have h′ (x2, z1) = 0 for almost sure

x2 ∈ X2 and any given z1 ∈ Z1. Furthermore, for any given x2 ∈ X2, h
′ (x2, z1) = 0

for any z1 ∈ Z1 implies h(x1, x2) = 0 for almost sure x1 ∈ X1. Therefore, the sequence

{fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...} is complete. Thus, we have a family of functions

satisfying the condition i) in Theorems 1, 2, and 3. Because its corresponding condition in

the condition ii) in Theorems 1, 2, and 3 are assumed directly in condition ii) 2), condition

ii) 3), and condition ii) 4), respectively, the sequence {fx1,x2|z1,z2(·, ·|z1k, z2k) : k = 1, 2, 3, ...}

is complete in these conditions. As for the first part, we can regard it as a special case of the

third part with zero deviation in a converging sequence. We have reached our claim. QED.

References

Ai, C., and X. Chen (2003): “Efficient Estimation of Models with Conditional Moment

Restrictions Containing Unknown Functions,” Econometrica, 71(6), 1795–1843.

An, Y., and Y. Hu (2012): “Well-posedness of Measurement Error Models for Self-reported

41



Data,” Journal of Econometrics, 168(2), 259–269.

Andrews, D. (2012): “Examples of L2-Complete and Boundedly-Complete Distributions,”

Cowles Foundation for Research in Economics.

Blundell, R., X. Chen, and D. Kristensen (2007): “Semi-nonparametric IV Estimation

of Shape-Invariant Engel Curves,” Econometrica, 75(6), 1613.

Canay, I., A. Santos, and A. Shaikh (2013): “On the Testability of Identification in Some

Nonparametric Models with Endogeneity,” Econometrica, 81(6), 2535–2559.

Carroll, R., X. Chen, and Y. Hu (2010): “Identification and Estimation of Nonlinear

Models Using Two Samples with Nonclassical Measurement Errors,” Journal of Nonpara-

metric Satistics, 22(4), 379–399.

Chen, X., and Y. Hu (2006): “Identification and Inference of Nonlinear Models Using Two

Samples With Arbitrary Measurement Errors,” Cowles Foundation Discussion Paper No.

1590.

Chernozhukov, V., and C. Hansen (2005): “An IV Model of Quantile Treatment Effects,”

Econometrica, 73(1), 245–261.

Chernozhukov, V., G. Imbens, and W. Newey (2007): “Instrumental Variable Estima-

tion of Nonseparable Models,” Journal of Econometrics, 139(1), 4–14.

Darolles, S., Y. Fan, J. Florens, and E. Renault (2011): “Nonparametric Instrumental

Regression,” Econometrica, 79(5), 1541–1565.

D’Haultfoeuille, X. (2011): “On the Completeness Condition in Nonparametric Instru-

mental Problems,” Econometric Theory, 1, 1–12.
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