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Abstract

This paper provides sufficient conditions for the nonparametric identification of the

regression function m (·) in a regression model with an endogenous regressor x and an in-

strumental variable z. It has been shown that the identification of the regression function

from the conditional expectation of the dependent variable on the instrument relies on

the completeness of the distribution of the endogenous regressor conditional on the instru-

ment, i.e., f(x|z). We provide sufficient conditions to extend known complete distribution

functions to complete nonparametric families without imposing a specific functional form.

We show that if the conditional density f(x|z) can form a linearly independent sequence

and coincides with an known complete density at a limit point in the support of z, then

f(x|z) itself is complete, and therefore, the regression function m (·) is nonparametrically

identified. We use this general result to provide specific sufficient conditions for complete-

ness in three different specifications of the relationship between the endogenous regressor

x and the instrumental variable z.
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1. Introduction

We consider a nonparametric regression model as follows:

y = m(x) + u, (1)

where the regressor x may be correlated with a zero mean regression error u. The param-

eter of interest is the nonparametric regression function m(·). An instrumental variable z is

conditional mean independent of the regression error u, i.e., E(u|z) = 0, which implies

E[y|z] =

∫ +∞

−∞
m(x)f(x|z)dx, (2)

where the probability measure of x conditional on z is absolutely continuous w.r.t. the

Lebesgue measure. We observe a random sample of {y, x, z}, which take values in the state

spaces Y, X and Z, respectively. This paper provides sufficient conditions on the conditional

density f(x|z) under which the regression function m (·) is nonparametrically identified from,

i.e., uniquely determined by, the observed conditional mean E[y|z]. We show that if the condi-

tional density f(x|z) can form a linearly independent sequence and coincides with an existing

complete density at a limit point in the support of z under appropriate assumptions, then

f(x|z) itself is complete, and consequently, the regression function m (·) is nonparametrically

identified. Our sufficient conditions for completeness impose no specific functional form on

f(x|z), such as the exponential family.

We assume the regression function m (·) is in a Hilbert space H of functions defined on

X the support of regressor x. This paper considers a weighted L2 space L2(X , ω) = {h(·) :∫
X |h(x)|2ω(x)dx <∞} with the inner product 〈f, g〉 ≡

∫
X f(x)g(x)ω(x)dx, where the positive

weight function ω(x) is bounded almost everywhere and
∫
X ω(x)dx <∞. The corresponding

norm is defined as: ‖f‖2 = 〈f, f〉. The completion of L2(X , ω) under the norm ‖ · ‖ is a

Hilbert space.

One may show that the uniqueness of the regression function m(·) is implied by the

completeness of the family {f(·|z) : z ∈ O} in H, where O ⊆ Z is a subset of Z the support

of z. The set O may be Z itself or some subset of Z. In particular, this paper considers

the completeness with the set O being a sequence {zk : k = 1, 2, 3, ...} in Z. This case
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corresponds to a sequence of functions {f(·|zk) : k = 1, 2, ...}. We start with the definition of

the completeness in a Hilbert space H.

Definition 1. Denote H as a Hilbert space. The family {f(·|z) ∈ H : z ∈ O} for some set

O ⊆ Z is said to be complete in H if for any h (·) ∈ H

∫
X
h(x)f(x|z)dx = 0 for all z ∈ O

implies h(·) = 0 almost everywhere in X . When it is a conditional density function defined

on X × Z, f(x|z) is said to be a complete density.1

The completeness introduced in Definition 1 is close to L2- completeness considered in An-

drews (2011) with H = L2(X , fx), where the density fx may be considered as the weight func-

tion ω in L2(X , ω)2. Andrews (2011) constructs broad (nonparametric) classes of L2-complete

distributions that can have any marginal distributions and a wide range of strengths of de-

pendence. Depending on which regularity conditions are imposed on the regression function

m (·), a different versions of completeness can be also considered. For example, D’Haultfoeuille

(2011) considers bounded completeness in a nonparametric model between the two variables

with an additive separability and a large support condition. Regardless of whether the support

X is bounded or unbounded, such as the unit interval [0, 1] or the real line R, respectively,

the completeness in L2(X , ω) is more informative for identification than the bounded com-

pleteness because a bounded function always belongs to the weighted L2 space L2(X , ω).3

Therefore, we consider L2-completeness with a Hilbert space H = L2(X , ω) in this paper.

In the extreme case where x and z are discrete, completeness is the same as a no-perfect-

collinearity or a full rank condition on a finite number of distributions of x conditional on

different values of z. Our results for continuous variables extend this interpretation. Suppose

that the family of conditional distributions in {f(·|zk) : k = 1, 2, ...} is complete in L2(X , ω).

Our linear independence interpretation implies that (1) there is no exact linear relationship

1The conditional density function f(x|z) has a two dimensional variation from x and z and we treat it as a
special class of the function form f(x, z) which can has a support like X × Z.

2This is under the assumption that the density function fx exists. Closely related definitions of L2-
completeness can also be found in Florens, Mouchart, and Rolin (1990), Mattner (1996), and San Martin
and Mouchart (2007).

3In a bounded domain, bounded completeness may also be less informative than L2-completeness. For
instance, consider a function h(x) = x−1/4 over (0,1). Bounded completeness can not distinguish the case that
the difference of two regression function is h(x), i.e., h(x) = m(x)− m̃(x).
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among the family of the conditional distribution {f(·|zk) : k = 1, 2, ...} or a conditional

distribution at each point z can not be expressed as a linear combination of others, and (2)

every function in L2(X , ω) can be expressed in terms of linear combinations of the conditional

distributions in {f(·|zk) : k = 1, 2, ...}. In this general continuous case, the linear combination

may be a sum of an infinite number of functions.

The L2 completeness for the nonparametric regression model (1) suggests that identifica-

tion is achieved among functions whose difference with the true one is square integrable w.r.t.

the weighted Lebesgue measure. As an illustration, suppose that m(x) = α+ βx. With com-

pleteness in L2(R, ω), the regression function m can be identified within the set of functions

of the form {α + βx + g(x) : g ∈ L2(R, ω)} Therefore, under our framework the functional

form of the regression function m may be very flexible. Notice that the function g can’t be

linear over R under bounded completeness, which implies that bounded completeness is not

enough to distinguish the true linear regression function m(x) = α + βx from another linear

function m̃(x) = α̃+ β̃x.

The uniqueness (identification) of the regression function m(·) is implied by the complete-

ness of the family {f(·|z) : z ∈ O} in H for some set O ⊆ Z. This sufficient condition may be

shown as follows. Suppose that m(·) is not identified so that there are two different functions

m(·) and m̃(·) in H which are observationally equivalent, i.e., for any z ∈ Z

E[y|z] =

∫
X
m(x)f(x|z)dx =

∫
X
m̃(x)f(x|z)dx. (3)

We then have for some h(x) = m(x)− m̃(x) 6= 0

∫
X
h(x)f(x|z)dx = 0 for any z ∈ Z

which implies that {f(·|z) : z ∈ O} for any O ⊆ Z is not complete in H. Therefore, if

{f(·|z) : z ∈ O} for some O ⊆ Z is complete in H, then m(·) is uniquely determined by E[y|z]

and f(x|z), and therefore, is nonparametrically identified.

The following two examples of complete f(x|z) are from Newey and Powell (2003) (See

their Theorem 2.2 and 2.3 for details.4):

4Theorem 2.2 and 2.3 in Newey and Powell (2003) do not specify which functional space the completeness
is discussed. The definition of the completeness in page 141 of Lehmann (1986) also does not specify the
functional space. However, he starts to specify the property of completeness for all bounded functions and call
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Example 1: Suppose that the distribution of x conditional on z is N(a + bz, σ2) for

σ2 > 0 and the support of z contains an open set, then E [h(·)|z] = 0 for any z ∈ Z implies

h(x) = 0 almost everywhere in X ; equivalently, {f(x|z) : z ∈ Z} is complete .

Another case where the {f(x|z) : z ∈ O} is complete in H is that f(x|z) belongs to an

exponential family as follows:

Example 2: Let f(x|z) = s(x)t(z) exp [µ(z)τ(x)], where s(x) > 0, τ(x) is one-to-one in

x, and support of µ(z), Z, contains an open set, then E [h(·)|z] = 0 for any z ∈ Z implies

h(x) = 0 almost everywhere in X ; equivalently, the family of conditional density functions

{f(x|z) : z ∈ Z} is complete.

These two examples show the completeness of a family {f(x|z) : z ∈ O}, where O is an open

set. In order to extend the completeness to general density functions, we further reduce the

set O from an open set to a countable set with a limit point, i.e. a converging sequence in

the support Z.

This paper focuses on the sufficient conditions for completeness of a conditional density.

These conditions can be used to obtain global or local identification in a variety of models in-

cluding the nonparametric IV regression model (see Newey and Powell (2003); Darolles, Fan,

Florens, and Renault (2011); Hall and Horowitz (2005); Horowitz (2011)), semiparametric IV

models (see Ai and Chen (2003); Blundell, Chen, and Kristensen (2007)), nonparametric IV

quantile models (see Chernozhukov and Hansen (2005); Chernozhukov, Imbens, and Newey

(2007); Horowitz and Lee (2007)), measurement error models (see Hu and Schennach (2008);

An and Hu (2009); Carroll, Chen, and Hu (2010); Chen and Hu (2006)), random coefficient

models (see Hoderlein, Nesheim, and Simoni (2010)), and dynamic models (see Hu and Shum

(2009); Shiu and Hu (2010)), etc. We refer to D’Haultfoeuille (2011) and Andrews (2011) for

more complete literature reviews. On the other hand, Canay, Santos, and Shaikh (2011) con-

sider hypothesis testing problem concerns completeness and they show that the completeness

condition is, without further restrictions, untestable.

In this paper, we provide sufficient conditions for the completeness of a general conditional

density without imposing particular functional forms. If we consider the set O in Definition

1 as a sequence {zk : k = 1, 2, 3, ...} in Z, then the completeness is determined by a sequence

of functions {f(·|zk) : k = 1, 2, ...}. In a Hilbert space, a complete sequence contains a

it boundedly complete in page 144.
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subsequence as a basis. Then, we utilize the results related to the stability of bases in Hilbert

space (section 10 of chapter 1 in Young (1980)) to show that a linearly independent sequence

is complete if its relative deviation from a complete sequence of function is finite. We then

show that two sequences of density functions have a finite deviation when they have the same

limit. Based on this observation, we may deviate from the existing complete density function

without losing the completeness.

We apply the general results to show the completeness in three scenarios. First, we extend

Example 1 to a general setting. In particular, we show the completeness of f(x|z) when x

and z satisfy for some function µ (·) and σ (·)

x = µ(z) + σ (z) ε with z ⊥ ε.

Second, we consider a general control function

x = h(z, ε) with z ⊥ ε,

and provide conditions for completeness of f(x|z) in this case. Third, our results imply that

the completeness of a multidimensional conditional density, e.g.,

f(x1, x2|z1, z2),

may be reached by the completeness of two conditional densities of lower dimension, i.e.,f(x1|z1)

and f(x2|z2).

This paper is organized as follows: section 2 provides sufficient conditions for complete-

ness; section 3 applies the main results to the three cases with different specifications of the

relationship between the endogenous variable and the instrument; section 4 concludes the

paper and all the proofs are in the appendix.

2. Sufficient Conditions for Completeness

In this section, we show that a sequence {f(·|zk)} is complete if it can form a linearly inde-

pendent sequence and coincides with a complete sequence {g(·|zk)} at a limit point z0. We

start with the introduction of two well-known complete families in Examples 1 and 2. Notice
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that these completeness results are established on an open set O instead of a countable set

with a limit point, i.e., a converging sequence. In order to extend the completeness to a new

function f(x|z), we first establish the completeness on a sequence of zk.

As we will show below, the completeness of an existing sequence {g(x|zk) : k = 1, 2, ...} is

essential to show the completeness for a new function f(x|z). An important family of condi-

tional distributions which admit completeness is the exponential family. Many distributions

encountered in practice can be put into the form of exponential families, including Gaussian,

Poisson, Binomial, and certain multivariate form of these. Another family of conditional

distribution which implies completeness is in the form of a translated density function, i.e.,

g(x|z) = g(x− z).5

Based on the existing results, such as in Examples 1 and 2 in the introduction, we may

generate complete sequences from the exponential family or a translated density function.

We start with an introduction of a complete sequence in the exponential family. Example 2

shows the completeness of the family {g(·|z) : z ∈ O}, where O is an open set in Z. In the

next lemma, we reduce the set O from an open set to a countable set with a limit point, i.e.

a converging sequence in Z.6

Lemma 1. Denote O as an open set in Z. Let {zk : k = 1, 2, ...} be a sequence of distinct

zk ∈ O converging to z0 in the open set O. Define

g(x|z) = s(x)t(z) exp [µ(z)τ(x)]

on X × Z with s(·) > 0 and t(·) > 0. Suppose that g(·|z) ∈ L1(X ) for z ∈ O and

i) µ (·) is continuous with µ′ (z0) 6= 0;

ii) τ(·) is monotonic over X .

Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(X , ω), where the weight

function ω(x) satisfies
∫
X
s(x)2 exp[2(µ(z0)τ(x)+δ|τ(x)|)]

ω(x) dx <∞ for some δ > 0.

Proof: See the appendix.

5The term used here is according to a definition in page 182 of Rudin (1987), where the translate of f is
defined as f(x− z) for all x and a given z.

6It is important to show the completeness of a family defined on a countable set because all the statistical
asymptotics are based on an infinitely countable number of observations, i.e., the sample size approaching
infinity, instead of a continuum of observations, for example, all the possible values in an open set.
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The restrictions on the weight function is mild and there are many potential candidates.

For example, since O is open and µ (·) is continuous with µ′ (z0) 6= 0, there exists some z̃ ∈ O

such that µ(z0)τ(x) + δ|τ(x)| < µ(z̃)τ(x) for δ > 0. One particular choice of the weight

function is ω(x) = s(x)2 exp [2µ(z̃)τ(x)].

Another case where the completeness of g(x|z) is well studied is when g(x|z) = fε (x− z) ,

which is usually due to a translation between the endogenous variable x and instrument z as

follows

x = z + ε with z ⊥ ε.

Example 1 suggests that the family {g(·|z) ∈ H : z ∈ O} is complete if O is an open set in Z

and ε is normal. Again, we show the completeness still holds when the set O is a converging

sequence. We summarize the results as follows.

Lemma 2. Denote O as an open set in Z. Let {zk : k = 1, 2, ...} be a sequence of distinct

zk ∈ O converging to z0 in the open set O. Define

g(x|z) = fε(x− z)

on R×Z. Suppose that g(·|z) ∈ L1(R) for z ∈ O and the Fourier transform φε of fε satisfies

0 < |φε(t)| < Ce−δ|t| (4)

for all t ∈ R and some constants C, δ > 0.

Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(R, ω), where the weight

function ω(x) satisfies
∫
X

exp(−2δ′|x|)
ω(x) dx <∞ for some δ′ ∈ (0, δ).

Proof: See the appendix.

Equation (4) implies that the characteristic function is not equal to zero on the real line

and that the characteristic function has exponentially decaying tails. For example, the dis-

tribution of ε may be normal, Cauchy, or their convolutions with other distributions. The

restriction on the weight function is also mild. For example, we may pick ω(x) = 1/(1 + x2).

With the complete sequences explicitly specified in Lemma 1 and 2, we are ready to extend

the completeness to a more general conditional density f(x|z). Our sufficient conditions for

completeness are summarized as follows:
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Theorem 1. Suppose f(·|z) and g(·|z) are conditional densities. For every z ∈ Z, let

f(·|z) and g(·|z) be in a Hilbert space H of functions defined on X with norm ‖ · ‖. Sup-

pose that there exists a point z0 with its open neighborhood N (z0) ≡ {z ∈ Z : ‖z − z0‖ <

ε for some small ε > 0}⊆ Z such that

i) for every sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0, the corre-

sponding sequence {g(·|zk) : k = 1, 2, ...} is complete in a Hilbert space H;

ii) g(·|z) is continuous at z0 and ‖g(·|z0)‖ > 0 such that the relative deviation D(z) =

‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is well-defined and Lipschitz continuous in z on N (z0) and f(·|z) coincides with

g(·|z) at z0 in H, i.e.,

‖f(·|z0)− g(·|z0)‖ = 0;

iii) there exists a sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0 such

that the sequence {f(·|zk) : k = 1, 2, ...} is linearly independent, i.e.,

I∑
i=1

cif(x|zki) = 0 for all x ∈ X implies ci = 0 for all I.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in H.

Proof: See the appendix.

Condition i) provides complete sequences, which may be from Lemma 1 and 2. Condition

ii) requires that the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is Lipschitz continuous in z on

N (z0). When the Hilbert space H is the L2 (X , ω), the relative deviation D(z) is Lipschitz

continuous if ‖g(·|z0)‖ > 0 and the first-order derivatives ∂
∂zf (·|z) and ∂

∂zg (·|z) are also in

L2 (X , ω) for z ∈ N (z0).
7 In the proof of Theorem 1, we show that the Lipschitz continuity of

D(z) implies that there exists a sequence {zk} converging to z0 such that the total deviation

from the sequence {g(·|zk)} to {f(·|zk)} is finite, i.e.,

∞∑
k=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

<∞. (5)

Intuitively, this condition implies that the sequence {f(·|zk)} is close to a complete sequence

{g(·|zk)} so that the former sequence may also be complete.

The linear independence in condition iii) imposed on {f(·|zk)} implies that there are

7The proof of this claim is provided in the appendix.
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no redundant terms in the sequence in the sense that no term can be expressed as a linear

combination of some other terms. This condition imposes a mild restriction on f(x|z) because

Equation
∑I

i=1 cif(x|zki) = 0 for all x ∈ X , which implies an infinite number of restrictions

on a finite number of constants ci. When the support of f(·|zk) is the whole real line for all

zk, a sufficient condition for the linear independence is that

lim
x→−∞

f(x|zk+1)

f(x|zk)
= 0 for all k, (6)

which implies limx→−∞
f(x|zk+m)
f(x|zk) = 0 for any m ≥ 1 and for all x. If

∑I
i=1 cif(·|zki) = 0 for

all x ∈ (−∞,+∞), we may have

−c1 =

I∑
i=1

ci
f(x|zki)
f(x|zk1)

.

The limit of the right-hand side is zero as x → −∞ so that c1 = 0. Similarly, we may show

c2,c3, ..., cI = 0 for all i by induction. Notice that the exponential family satisfies Equation (6)

for appropriate choices of µ, τ and a sequence. When the support X is bounded, for example,

X = [0, 1], the condition (6) may become

lim
x→0

f(x|zk+1)

f(x|zk)
= 0 for all k. (7)

For example, the Corollary (Müntz) on page 91 in Young (1980) implies that the family of

function {xz1 , xz2 , xz3 , ...} is complete in L2([0, 1]) if
∞∑
k=1

1
zk

= ∞. This family also satisfies

the condition (7) for a strictly increasing {zk}. For an existing function g(x|z) > 0, we may

always have f(x|z) = f(x|z)
g(x|z) × g(x|z). If the existing sequence {g(·|zk)} satisfies Equation (6),

i.e., limx→−∞
g(x|zk+1)
g(x|zk) = 0, then it is enough to have 0 <

(
limx→−∞

f(x|zk)
g(x|zk)

)
<∞.

Furthermore, when f(x|z) = h(x|z)×g(x|z), the condition (6) is implied by limx→−∞
g(x|zk+1)
g(x|zk) =

0 and
(

limx→−∞
h(x|zk+1)
h(x|zk)

)
<∞. We may also consider

f(x|z) = λ (z)h(x|z) + [1− λ (z)] g(x|z). (8)

In this case, the conditional density f(·|z) is a mixture of two continuous conditional densities

h, g and the weight λ in the mixture depends on z. At the limit point z0, f(·|z0) coincides
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with g(·|z0) if limzk→z0 λ (z) = 0. The linear independence condition in Equation (6) holds

when h(x|z) and g(x|z) satisfy

lim
x→−∞

g(x|zk+1)

g(x|zk)
= 0 and lim

x→−∞

h(x|zk)
g(x|zk)

<∞. (9)

The advantage of this condition is that there are only mild restrictions imposed on the func-

tional form of h(x|z) and λ (z).

Suppose the function f(x|z) is differentiable with respect to the variable x up to any finite

order. We may consider the so-called Wronskian determinant as follows:

W (x) = det


f(x|zk1) f(x|zk2) ... f(x|zkI )

f ′(x|zk1) f ′(x|zk2) ... f ′(x|zkI )

... ... ... ...

d(I−1)

dx(I−1) f(x|zk1) d(I−1)

dx(I−1) f(x|zk2) ... d(I−1)

dx(I−1) f(x|zkI )


(10)

If there exists an x0 such that the determinant W (x0) 6= 0 for every {zki : i = 1, 2, ..., I}, then

{f(·|zk)} is linear independent.

Another sufficient condition for the linear independence is that the so-called Gram determi-

nantGf is not equal to zero for every {zki : i = 1, 2, ..., I} , whereGf = det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
.

This condition does not require the function has all the derivatives.

We summarize these results on the linear independence as follows:

Lemma 3. The sequence {f(·|zk)} corresponding to a sequence {zk : k = 1, 2, ...} of distinct

zk ∈ N (z0) converging to z0 is linearly independent if one of the following conditions hold:

1)
∑I

i=1 cif(x|zki) = 0 for all x ∈ X implies ci = 0 for all I.

2) for all k, limx→−∞
f(x|zk+1)
f(x|zk) = 0 or limx→x0

f(x|zk+1)
f(x|zk) = 0 for some x0;

3) f(x|z) = d
dxF0(µ(z)τ(x)) with µ′(z0) 6= 0, τ(0) = 0, and dk

dxk
F0(0) 6= 0 for k = 1, 2, ...;

4) for every {zki : i = 1, 2, ..., I}, det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
6= 0.

Proof: See the appendix.

In order to illustrate the relationship between the complete sequence {g(·|zk)} and the

sequence {f(·|zk)}, we present numerical examples of these two functions as follows. Consider

g(x|z) = xz over L2([0, 0.8]) for Z = (25 ,
3
5). We pick zk = 1

2 −
2

(k+1)2
with zk → z0 = 1

2 . Since
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g(x|z)
f(x|z)

Figure 1: An example of g(x|z) and f(x|z) in Theorem 1.

∞∑
k=1

1
zk

= ∞, by the Corollary (Müntz) on page 91 in Young (1980) the family of function

{xz1 , xz2 , xz3 , ...} is complete in L2([0, 0.8]). Let f(x|z) =
(

1− 2(z− 1
2
)

(z−0.62)(x− 1)
)
xz.8 Since

lim
x→0

f(x|zk+1)
f(x|zk) = 0, our Theorem 1 implies that {f(·|zk)} is also complete in L2([0, 0.8]) with

g(x|z0) = f(x|z0) =
√
x. Figure 1 presents a 3D graph of g(x|z) and f(x|z) for (x, z) in

[0, 0.8]× (25 ,
3
5) to illustrate the relationship between the complete sequence {g(·|zk)} and the

sequence {f(·|zk)}.

3. Applications

We consider three applications of our main results: first, we show the sufficient conditions

for the completeness of f(x|z) when x = µ(z) + σ (z) ε with z ⊥ ε; second, we consider the

completeness with a general control function x = h(z, ε); finally, we show how to use our

results to transform a multivariate completeness problem to a single variable one.

8Choosing such a particular function is only for a suitable illustration in Figure 1.
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3.1. Extension of the convolution case

Lemma 2 provides a complete sequence when x = z + ε. Using Theorem 1, we may provide

sufficient conditions for the completeness of f(x|z) when the endogenous variable x and the

instrument z satisfy a general heterogeneous structure as follows:

x = µ(z) + σ (z) ε with z ⊥ ε.

We summarize the result as follows:

Lemma 4. For every z ∈ Z, let f(·|z) be in L1 (R). Let ω be a weight function satisfying

the restriction in Lemma 2. Suppose that there exists a point z0 with its open neighborhood

N (z0)⊆ Z such that

i) the characteristic function φz0(t) of f(·|z0) satisfies 0 < |φz0(t)| < Ce−δ|t| for all t ∈ R

and some constants C, δ > 0;

ii) ∂
∂zf (·|z) for z ∈ N (z0) and ∂

∂xf(·|z0) are in L2 (R, ω) ;

iii) the function f (·|z) satisfies conditions iii) in Theorem 1, i.e., there exists a sequence

{zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0 such that the sequence {f(·|zk) : k =

1, 2, ...} is linearly independent.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2 (R, ω).

In particular, when

f(x|z) =
1

σ (z)
fε

(
x− µ (z)

σ (z)

)
on R×Z, we assume

i’) the characteristic function φε(t) of fε satisfies 0 < |φε(t)| < Ce−δ|t|;

ii’) µ (·), σ (·), and fε (·) are continuously differentiable with µ′ (z0) 6= 0, σ (z0) 6= 0 and∫ +∞
−∞ |xf

′
ε(x)|2 dx <∞;

iii’) limx→−∞
fε(x−c)
fε(x)

= 0 for any constant c > 0.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2(R, ω).

Proof: See the appendix.

The first part of Lemma 4 implies that one may always make a sequence coincide with a

convolution sequence. Consider a sequence {f(·|zk) : k = 1, 2, ...} with a sequence {zk : k = 1, 2, ...}
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of distinct zk ∈ N (z0) converging to z0. We may always generate a convolution sequence

{g(·|zk) : k = 1, 2, ...} where

g(x|zk) = f (x− µ (zk) |z0) with µ (z0) = 0 and µ′ (z0) 6= 0.

Condition i) implies that the sequence satisfies the conditions in Lemma 2 and is complete.

Condition ii) guarantees that the first-order derivatives ∂
∂zf (·|z) and ∂

∂zg (·|z) are in L2 (X , ω)

so that the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is Lipschitz continuous in z. Since D(z0) =

0 by construction, the condition ii) in Theorem 1 holds. Thus, the completeness holds for

{f(·|z) : z ∈ N (z0)}. In the heterogeneous case where x = µ(z)+σ (z) ε, a primitive condition

for the linear independence is that limx→−∞
fε(x−c)
fε(x)

= 0.

The main purpose of Lemma 4 is to provide sufficient conditions that are easier to check

and more accessible than conditions in Theorem 1. While the part (i) of Theorem 1 is a

generalized version of the condition (1), the part (iii) of Theorem 1 is equivalent to the

condition (2) by Lemma 3. This particular case immediately provide the completeness of

the normal distribution with heterogeneity which is complement to the normal distribu-

tion with homoskedasticity. Suppose ε ∼ N(0, 1). Then, by Lemma 4 we have the family{
f(x|z) = 1

σ(z)φ
(
x−µ(z)
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R, ω). This result is new to the

literature and provides the identification for models with heterogeneity. On the other hand,

consider a conditional density function f(x|z) = cz

(
1− 2(z− 1

2
)

(z−0.62)(x− 1)
)
xz where cz is a nor-

malized coefficient. We have shown {f(·|zk) : k = 1, 2, ...} is complete in L2([0, 0.8]) in the

end of Section 2. Therefore, our results have shown many complete DGPs that are not pre-

viously known. Another point to emphasize is that we only need this 0 < |φε(t)| < Ce−δ|t|

restriction at the limit point z0 not over all z. Any distribution containing a normal factor,

say a convolution of normal and another distribution, satisfies this tail restriction.

We may then consider the nonparametric identification of a regression model

y = α+ βx+ u, E[u|z] = 0, (11)

with x = µ(z)+σ (z) ε and ε ∼ N(0, 1). Here the true regression function m(x) is linear, which

is unknown to researchers. We have shown that the family
{
f(x|z) = 1

σ(z)φ
(
x−µ(z)
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R, ω), which implies the above linear model is uniquely identified among all
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the functions in L2(R, ω). Notice that the bounded completeness is not enough for such an

identification.

3.2. Completeness with a control function

We then consider a general expression of the relationship between the endogenous variable x

and the instrument z. Let a control function describe the relationship between an endogenous

variable x and an instrument z as follow:9

x = h(z, ε), with z ⊥ ε. (12)

We consider the case where x and ε have the support R. Without loss of generality, we assume

ε has a standard normal distribution with the cdf Φ. It is well known that the function h

is related to the cdf Fx|z as h(z, ε) ≡ F−1x|z (Φ (ε) |z) when the inverse of Fx|z exists and h is

strictly increasing in ε. Given the function h, we are interested in what restrictions on h are

sufficient for the completeness of the conditional density f(x|z) implied by Equation (12).

Lemma 5. Let N (z0) ⊆ Z be an open neighborhood of some z0 ∈ Z and ω be a weight

function satisfying the restriction in Lemma 2. Let Equation (12) hold with h(z0, ε) = ε,

where ε has a standard normal distribution with the support R. Suppose that

i) for z ∈ N (z0), the function h(z, ε) is strictly increasing in ε and twice differentiable in

z and ε;

ii) for z ∈ N (z0) , the functions f(·|z) and ∂
∂zf (·|z) are in L2(R, ω), where f(x|z) =

∂
∂xFε

(
h−1(z, x)

)
;

iii) there exists a sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0 such

that the sequence {f(·|zk) : k = 1, 2, ...} is linearly independent; in particular, such a sequence

exists if for any z̃ 6= ẑ in N (z0), limε→−∞ [h(z̃, ε)− h(ẑ, ε)] 6= 0, and ∂
∂zh(z0, ε) 6= 0 as

ε→ −∞.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2(R, ω).

Proof: See the appendix.

9Here we call h the control function without assuming that the IV z is independent of (u, ε) as in the usual
control function approach.
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Condition i) guarantees that the conditional density f(x|z) is continuous in both x and

z around z0. The condition h(z0, ε) = ε is not restrictive because one may always redefine

ε. Therefore, f(x|z) satisfies f(x|z0) = fε (x), which may be considered as a limit point in

the translated family such as {g(x|z) = fε (x− µ (zk)) : k = 1, 2, ...} with µ (z0) = 0, i.e.

f(x|z0) = g(x|z0). We may then use Theorem 1 to show f(x|z) is complete. Condition ii)

implies that the deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is Lipschitz continuous in z. Condition iii)

guarantees the linear independence of the sequence {f(·|zk)}.

Lemma 5 implies that key sufficient assumptions for the completeness of f(x|z) implied by

the control function in Equation (12) is that the control function h is invertible with respect

to ε around a limit point in the support of z and linearly independence of the sequence

{f(·|zk) : k = 1, 2, ...}. Our results may provide sufficient conditions for completeness with a

general h. For example, suppose ∂
∂zµ (z0) < 0, we may have

h (z, ε) = µ (z) + ez−z0ε+
J∑
j=0

(z − z0)2j hj (ε) ,

where hj (·) are increasing functions. The function h may also have a nonseparable form such

as

h (z, ε) = µ (z) + ln
[
(z − z0)2 + exp(ε)

]
.

3.3. Multivariate completeness

When the endogenous variable x and the instrument z are both vectors, our main results

in Theorem 1 still applies. In other words, our results can be extended to the multivariate

case straightforwardly. In this section, we show that one can use Theorem 1 to reduce a

multivariate completeness problem to a single variate one. Without loss of generality, we

consider x = (x1, x2), z = (z1, z2), X = X1 × X2, and Z = Z1 × Z2. One may show that the

completeness of f(x1|z1) and f(x2|z2) implies that of f(x1|z1) × f(x2|z2). Theorem 1 then

implies that if conditional density f(x1, x2|z1, z2) coincides with f(x1|z1)× f(x2|z2) at a limit

point in Z then f(x1, x2|z1, z2) is complete. We summarize the results as follows:

Lemma 6. For every z ∈ Z = Z1×Z2, let f(·|z) and g(·|z) be in a Hilbert space H of functions

defined on X = X1×X2 with norm ‖ · ‖. Suppose that there exists a point z0 = (z10, z20) with

its open neighborhood N (z0)⊆ Z such that
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i) for every sequence {zk : k = 1, 2, 3, ...} of distinct zk ∈ N (z0) converging to z0, the

corresponding sequence {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are

complete in Hilbert spaces H of functions defined on X1 and X2;

ii) the relative deviation D(z1, z2) =
‖fx|z(·,·|z1,z2)−fx1|z1 (·|z1)fx2|z2 (·|z2)‖

‖fx1|z1 (·|z1)fx2|z2 (·|z2)‖
is continuous in

z = (z1, z2) on N (z0) with fx|z(·, ·|z10, z20) = fx1|z1(·|z10)fx2|z2(·|z20).

iii) there exists a sequence {zk : k = 1, 2, 3, ...} of distinct zk ∈ O converging to z0 such

that the sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} is linearly independent,

Then, the sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} is complete in the Hilbert space H of

functions defined on X1 ×X2.

Proof: See the appendix.

In many applications, it is difficult to show the completeness for a multivariate conditional

density. The results above use Theorem 1 to extend the completeness for the one-dimensional

sequences {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} to the multiple

dimensional sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...}. The key assumption is that the

endogenous variables are conditionally independent of each other for some value of the instru-

ments, i.e.

fx|z(·, ·|z10, z20) = fx1|z1(·|z10)fx2|z2(·|z20). (13)

We may then use the completeness of one-dimensional conditional densities fx1|z1(·|z1k) and

fx2|z2(·|z2k) to show the completeness of a multi-dimensional density fx|z(·, ·|z1k, z2k). There-

fore, Lemma 6 may reduce the dimension as well as the difficulty of the problem.

What we need for the multivariate case (Lemma 6) in equation (13) includes two steps:

first, we need the independence between x1 and x2 only at z = z0, i.e.,

x1 ⊥ x2 | z = z0; (14)

The second step requires with z0 = (z10, z20)

fx1|z(·|z0) = fx1|z1(·|z10) and fx2|z(·|z0) = fx2|z2(·|z20).

This step is for simplicity and convenience because fx1|z(·|z10, z20) and fx2|z(·|z10, z20) are

already one-dimensional densities and we may re-define the two sequences in condition i) in
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Lemma 6 corresponding to fx1|z(·|z0) and fx2|z(·|z0). Such a simplification is particularly

useful when one can find an instrument corresponding to each endogenous variable.

The completeness of a conditional density function f(x|z) implies there exists a sequence

of conditional density function {f(x|zk) : k = 1, 2, 3, ...} as a basis. At these points zk =

(z1k, z2k), an intuitive idea of Lemma 6 is the fact that the tensor product of univariate

basis are multivariate basis. With the completeness of the sequence of product function

{fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...}, we can utilize the main perturbation result, Theo-

rem 1, to extend the result to other sequence of function close to the sequence of the product

function. At these ”small” perturbation sequences, {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} can

be nonseparable and satisfy the condition 14. For example, set fx1|z1(x1|z1) = 1
z1
e−x1z1 and

fx2|z2(x2|z2) = 1
z2
e−x2z2 where z1, z2 > 0 and x1, x2 ∈ {0}∪R+. Applying the results of Lemma

1 (a generalized version of Example 2) to these two density functions, we can obtain the com-

pleteness of the two families {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...}

where z1k and z2k are distinct sequences converging to 1. Then, consider {fx|z(·, ·|z1k, z2k) =

czk
z1kz2k

e−(x1z1k+x2z2k+(z1k−1)(z2k−1)x1x2) : k = 1, 2, 3, ...} where czk is a normalized coefficient.

This family has satisfied the conditions (i) and (ii) of Lemma 6 with z0 = (1, 1). If the fam-

ily is linear independent then Lemma 6 ensures its completeness. Suppose that there exists

c1, ..., cm such that

c1e
−(x1z1m+x2z2m+(z1m−1)(z2m−1)x1x2) + ...+ cme

−(x1z1m+x2z2m+(z1m−1)(z2m−1)x1x2) = 0

Differentiating the equation m− 1 times and plugging (x1, x2) = (0, 0), we obtain



c1 + . . .+ cm = 0

c1zk1 + . . .+ cmzkm = 0
... . . .

...

c1z
m−1
k1

+ ...+ cmz
m−1
km

= 0

.
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Rewrite the above equation as


1 1 . . . 1

zk1 zk2 . . . zkm
...

...
. . .

...

zm−1k1
zm−1k2

. . . zm−1km




c1

c2
...

cm


=


0

0
...

0


.

The first matrix is the Vandermonde matrix and its property implies the linear independence

of the family. Therefore, the multivariate result provides more results than the product case

at z0 and may not be too restrictive.

4. Conclusion

We provide sufficient conditions for the nonparametric identification of the regression func-

tion in a regression model with an endogenous regressor x and an instrumental variable z.

The identification of the regression function from the conditional expectation of the depen-

dent variable is implied by the completeness of the distribution of the endogenous regressor

conditional on the instrument, i.e., f(x|z). Sufficient conditions are then provided for the

completeness of f(x|z) without imposing a specific functional form, such as the exponential

family. We use the results in the stability of bases in Hilbert space to show that if the relative

deviation from a complete sequence of function is finite then f(x|z) itself is complete, and

therefore, the regression function is nonparametrically identified.

5. Appendix: Proofs

5.1. Preliminaries

Let L2(X ) = {h(·) :
∫
X |h(x)|2dx < ∞, } be a L2 space with the following inner product

〈f, g〉 ≡
∫
X f(x)g(x)dx. We define the corresponding norm as: ‖f‖2 = 〈f, f〉. The completion

of L2(X ) under the norm ‖ ·‖ is a Hilbert space, which may be denoted as H. The conditional

density of interest f(x|z) is defined over X × Z. If z only takes values from a countable set
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in Z then f(x|z) can be considered as a sequence of functions {f1, f2, f3, ...} in H with

fk ≡ f(·|zk),

where {zk : k = 1, 2, 3, ...} is a sequence in Z. The property of the sequence {fk} determines

the identification of the regression function in (2).

We then introduce the definition of a basis in a Hilbert space.

Definition 2. A sequence of functions {f1, f2, f3, ...} in a Hilbert space H is said to be a basis

if for any h ∈ H there corresponds a unique sequence of scalars {c1, c2, c3, ...} such that

h =
∞∑
k=1

ckfk.

The identification of a regression function in Equation (2) actually only requires a sequence

{f1, f2, f3, ...} containing a basis, instead of a basis itself. Therefore, we consider a complete

sequence of functions {f1, f2, f3, ...} which satisfies that 〈g, fk〉 = 0 for k = 1, 2, 3... implies

g = 0.

In fact, one can show that a basis is complete and that a complete sequence contains a

basis. Since every element in a Hilbert space has a unique representation in terms of a basis,

there is redundancy in a complete sequence. Given a complete sequence in a Hilbert space,

we can extract a basis from the complete sequence. One of the important properties of a

complete sequence for a Hilbert space is that every element can be approximated arbitrarily

close by finite combinations of the elements. We summarize these results as follows.

Lemma 7. (1) A basis in the Hilbert space H is also a complete sequence.

(2) Let W be a closed linear subspace of a Hilbert space. Set W⊥ = {h ∈ H : 〈h, g〉 =

0 for all g ∈W}. Then W⊥ is a closed linear subspace such that, W
⊕
W⊥ = H.

(3) Given a complete sequence of functions {f1, f2, f3, ...} in a Hilbert space H, there exists

a subsequence {r1, r2, r3, ...} which is a basis in the Hilbert space H.

Any function f in a Hilbert space can be expressed as a linear combination of the basis

function with a unique sequence of scalars {c1, c2, c3, ...}. Therefore, we can consider cn as a

function of f . In fact, cn (·) is the so-called coefficient functional.
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Definition 3. If {f1, f2, f3, ...} is a basis in a Hilbert space H, then every function f in H

has a unique series {c1, c2, c3, ...} such that

f =

∞∑
n=1

cn(f)fn.

Each cn is a function of f . The functionals cn (n = 1, 2, 3, ...) are called the coefficient

functionals associated with the basis {f1, f2, f3, ...}.

It is clear that cn is a linear function of f . The following results regarding the coefficient

functionals are from Theorem 3 in section 6 in Young (1980).

Lemma 8. If {f1, f2, f3, ...} is a basis in a Hilbert space H. Define cn as coefficient functionals

associated with the basis. Then, there exists a constant M such that

1 ≤ ‖fn‖ · ‖cn‖ ≤M, (15)

for all n.

In our proofs, we limit our attention to linearly independent sequences when providing

sufficient conditions for completeness. The linear independence of an infinite sequence is

considered as follows.

Definition 4. A sequence of functions {fn (·)} of a Hilbert space H is said to be ω−independent

if the equality
∞∑
n=1

cnfn (x) = 0 for all x ∈ X

is possible only for cn = 0, (n = 1, 2, 3, ...).

It is obvious that the ω−independence implies that linear independence. But the converse

argument does not hold. A complete sequence may not be ω−independent, but it contains a

basis, and therefore, contains an ω−independent subsequence.

Our proofs also need a uniqueness theorem of complex differentiable functions. Let w =

a+ ib, where a, b are real number and i =
√
−1. Define C = {w = a+ ib : a, b ∈ R} and it is

called a complex plane. The complex differentiable function is defined as follows.
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Definition 5. Denote Ω as an open set in C. Suppose f is a complex function defined in Ω.

If z0 ∈ Ω and

lim
z→z0

f(z)− f(z0)

z − z0

exists, we denote this limit by f ′(z0) and call it the derivative of f at z0. If f ′(z0) exists for

every z0 ∈ Ω, f is called a complex differentiable function in Ω.

To be more precise, f ′(z0) exists if for every ε > 0 there corresponds a δ > 0 such that

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε for all 0 < |z − z0| < δ.

A complex differentiable function has a large number of interesting properties which are

different from a real differentiable function. One of them is the following uniqueness theorem,

as stated in a corollary on page 209 in Rudin (1987).

Lemma 9. If g and f are complex differentiable functions in an open connected set Ω and if

f(z) = g(z) for all z in some set which has a limit point in Ω, then f(z) = g(z) for all z ∈ Ω.

5.2. Proofs of completeness of existing sequences

Proof of Lemma 1: Set t(z) = 1 is for simplicity. In order to use the above uniqueness

result of complex differentiable functions, we consider a converging sequence {zk : k = 1, 2, ...}

in Z as the set with a limit point. Since µ (·) is continuous with µ′ (z0) 6= 0 for some limit

point z0 ∈ Z, there exists δ > 0 and a sequence {zk : k = 1, 2, ...} converging to z0 such that

{µ(zk) : k = 1, 2, ...} ∈ (µ(z0) − δ, µ(z0) + δ) ⊂ µ(N (z0)) be a sequence of distinct numbers

converging to an interior point µ(z0) ∈ µ(N (z0)). In addition, since g(x|z) ∈ L1(X ) for z ∈ O,

∫
X
s(x) exp [µ(z0)τ(x) + δ|τ(x)|] dx <∞.

Choose a weight function ω(x) satisfying
∫
X
s(x)2 exp[2(µ(z0)τ(x)+δ|τ(x)|)]

ω(x) dx <∞.

Given h0 ∈ L2(X , ω) and δ1 < δ. Consider a complex function with the following form

f(w) =

∫
X
s(x)ewτ(x)h0(x)dx, (16)
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where the complex variable w is in the vertical strip R ≡ {w : µ(z0) − δ1 < Re (w) <

µ(z0) + δ1}.10 Let w = a + ib, where a, b are real numbers. Applying Cauchy-Schwarz

inequality to Eq. (16), we have for a ∈ (µ(z0)− δ1, µ(z0) + δ1)

∣∣f(w)
∣∣2 ≤ ∣∣∣ ∫

X
s(x)ewτ(x)h0(x)dx

∣∣∣2 (17)

≤
(∫
X

s(x)eaτ(x)

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)eµ(z0)τ(x)+δ1|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)eµ(z0)τ(x)+δ|τ(x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
≤
(∫
X

s(x)2 exp [2(µ(z0)τ(x) + δ|τ(x)|)]
ω(x)

dx
)(∫

X
|h0(x)|2ω(x)dx

)
<∞.

This suggests that f(w) defined in Eq. (16) exists and is finite. Suppose η ∈ C such that

|η| ≤ δ2 and δ1 + δ2 < δ. Given w ∈ R. Consider the difference quotient of the integrand in

Eq. (16), we have

|Q(x, η)| ≡
∣∣∣s(x)e(w+η)τ(x)h0(x)− s(x)ewτ(x)h0(x)

η

∣∣∣
=
∣∣∣s(x)

ewτ(x)
(
eητ(x) − 1

)
η

h0(x)
∣∣∣

≤ s(x)

∣∣∣∣∣ewτ(x)+δ2|τ(x)|δ2

∣∣∣∣∣ ∣∣∣h0(x)
∣∣∣

≤ s(x)

∣∣∣∣∣e(w+δ2)τ(x) + e(w−δ2)τ(x)

δ2

∣∣∣∣∣ ∣∣∣h0(x)
∣∣∣

≤ 2s(x)
eµ(z0)τ(x)+(δ1+δ2)|τ(x)|

δ2

∣∣∣h0(x)
∣∣∣,

where we have used (i) apply the inequality | eaz−1z | ≤
eδ2|a|

δ2
for |z| ≤ δ2 to the factor

(eητ(x)−1)
η ,

and (ii) w ∈ R. The right-hand side is integrable when δ1 + δ2 < δ by a similar derivation in

Eq. (17). It follows from the Lebesgue dominated convergence theorem that

f ′(w) = lim
η→0

∫
X
Q(x, η)dx =

∫
X

lim
η→0

Q(x, η)dx =

∫
X
s(x)τ(x)ewτ(x)h0(x)dx.

10A holomorphic (or analytic) function defined with a similar function form in a strip is also discussed in
the proof of Theorem 1 in Section 4.3 of Lehmann (1986). The proof provided here is close to the proof of
Theorem 9 in Section 2.7 of Lehmann (1986).
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Therefore, the function f defined through the integral is holomorphic.

The condition
∫
X s(x)eµ(zk)τ(x)h0(x)dx = 0 is equivalent to f(µ(zk)) = 0 by Equation

(16). This implies that the complex differentiable function f is equal to zeros in the sequence

{µ(z1), µ(z2), µ(z3), ...} which has a limit point µ(z0). Applying the uniqueness theorem

(Lemma 9) quoted above to f results in f(w) = 0 on {w : µ(z0)− δ1 < Re (w) < µ(z0) + δ1}.

If X is a bounded domain, we extend h0 to a function in L2(R, ω) by

h̃0(x) =

 h0 if x ∈ X ,

0 otherwise.

We also extend s(x) and τ(x) to functions in R, s̃(x) and τ̃(x) respectively with the following

properties, s̃(x) > 0 and τ̃ ′(x) 6= 0. In particular, choose w = µ(z̃) + it for any real t, we have

f(w) =

∫
X
s(x)eµ(z̃)τ(x)eitτ(x)h0(x)dx = 0

=

∫ ∞
−∞

s̃(τ−1(x))eµ(z̃)xeitxh̃0(τ̃
−1(x))

1

τ̃ ′(x)
dx

≡
∫ ∞
−∞

eitxĥ0(x)dx.

The last step implies that the Fourier transform of ĥ0(x) is zero on the whole real line.

And Eq. (17) implies ĥ0 ∈ L1(R). By the uniqueness Theorem 9.12 in Rudin (1987) for

ĥ0 ∈ L1(R), we have ĥ0 = 0 and therefore the function h0 = 0. This shows that the sequence

{g(·|zk) = s(·)t(zk)eµ(zk)τ(·) : k = 1, 2, ...} is complete in L2(X , ω). QED.

Proof of Lemma 2: Choose a sequence of distinct numbers {zk} in the support Z

converging to z0 ∈ Z. Pick 0 < δ′ < δ and choose a weight function ω(x) satisfying∫ exp(−2δ′|x|)
ω(x) dx < ∞.11 Suppose that

∫∞
−∞ fε (x− zk)h0(x)dx = 0 for some h0 ∈ L2(R, ω).

Consider

g (z) ≡
∫
X
h0(x)fε (x− z) dx,

11A specific choice of the weight function is ω(x) ≡ exp (−2δω|x|) for 0 < δω < δ′.
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which is a convolution. Let φg stands for the Fourier transform of g as follows:

φg(t) =

∫ ∞
−∞

eitzg (z) dz

=

∫ ∞
−∞

eit(x−(x−z))
∫
X
h0(x)fε (x− z) dxdz

=

∫
X
eitxh0(x)

(∫ ∞
−∞

eit(z−x)fε (−(z − x)) dz

)
dx

= φh0(t)φ−ε(t)

= φh0(t)φε(−t).

We have g(z) = 1
2π

∫∞
−∞ e

−itzφh0(t)φε(−t)dt. We define

f(w) =

∫ ∞
−∞

e−itwφh0(t)φε(−t)dt,

for

w = z + ib for z, b ∈ R and |b| < δ − δ′,

where δ is in Equation (4). Consider

∣∣f(w)
∣∣2 =

∣∣∣ ∫ ∞
−∞

e−itwφh0(t)φε(−t)dt
∣∣∣2

≤
(∫ ∞
−∞
|φε(−t)|

ebt

ω(t)1/2
|φh0(t)|ω(t)1/2dt

)2
≤
(∫ ∞
−∞
|φε(−t)|2

e2bt

ω(t)
dt
)(∫ ∞

−∞
|φh0(t)|2ω(t)dt

)
≤ C2

(∫ ∞
−∞

e−2(δ−b)|t|

ω(t)
dt
)(∫ ∞

−∞
|φh0(t)|2ω(t)dt

)
≤ C2

(∫ ∞
−∞

e−2δ
′|t|

ω(t)
dt
)(∫ ∞

−∞
|φh0(t)|2ω(t)dt

)
<∞

by φh0(t) ∈ L2(R, ω) since h0 ∈ L2(R, ω).12 Since the right-hand side is finite, then f(w) exists

and is finite in R = {z+ ib : |b| < δ−δ′}. To prove f(w) is analytic (complex differentiable) in

12See Theorem 9.13 on page 186 in Rudin (1987).
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R, we consider the difference quotient at a point w0 = z0 + ib0 in R. For |η| < δ1 < δ−δ′− b0,

|Q(t, η)| ≡
∣∣∣e−it(w0+η)φh0(t)φε(−t)− e−itw0φh0(t)φε(−t)

η

∣∣∣
=
∣∣∣e−itw0(e−itη − 1)

η
φh0(t)φε(−t)

∣∣∣
≤
∣∣∣e−itw0eδ1|t|

δ1

∣∣∣∣∣∣φh0(t)
∣∣∣∣∣∣φε(−t)∣∣∣

≤
∣∣∣eb0teδ1|t|

δ1

∣∣∣∣∣∣φh0(t)
∣∣∣∣∣∣φε(−t)∣∣∣

≤ 2C
∣∣∣e(b0+δ1)|t|
δ1ω(t)1/2

∣∣∣e−δ|t|∣∣∣φh0(t)
∣∣∣ω(t)1/2

≤ 2C

δ1

∣∣∣e(b0+δ1−δ)|t|
ω(t)1/2

∣∣∣∣∣∣φh0(t)
∣∣∣ω(t)1/2,

where we have used the inequalities | eaz−1z | ≤
eδ1|a|

δ1
for |z| ≤ δ1, and |φε(t)| < Ce−δ|t|. The

condition b0 + δ1 − δ < −δ′ and φh0(t) ∈ L2(R, ω) make the right-hand side integrable. Since

the quotient is bounded above by an integrable function, the Lebesgue dominated convergence

theorem implies

f ′(w) = lim
η→0

∫ ∞
−∞

Q(t, η)dt =

∫ ∞
−∞

lim
η→0

Q(t, η)dt = −it
∫ ∞
−∞

e−itwφh0(t)φε(−t)dt.

Thus, f(w) is analytic (complex differentiable) in R = {z + ib : |b| < δ − δ′}. Consequently,

the fact that f(w) equals zero for a sequence {z1, z2, z3, ...} converging to z0 implies that f(w)

is equal to zero in R by the uniqueness theorem cited in the proof of Lemma 1. This suggests

that f(w) is equal to zero for all w = z on the real line, i.e.,
∫∞
−∞ e

−itzφh0(t)φε(−t)dt = 0 for all

z ∈ R. Since
∫∞
−∞ |φh0(t)φε(−t)|dt ≤ (

∫∞
−∞ |φh0(t)|2e−2δ1|t|dt)1/2(

∫∞
−∞ |φε(−t)|

2e2δ1|t|dt)1/2 <

∞, φh0(t)φε(−t) ∈ L1(R). Thus, the characteristic function φh0(t)φε(−t) = 0 for all t.13

By Eq. (4), i.e., φε(t) 6= 0, we have φh0(t) = 0 for all t ∈ R so h0 = 0. The family

{g(x|z) = fε(x− zk) : k = 1, 2, ...} is complete in L2(X , ω). QED.

5.3. Proof of Theorem 1

We prove Theorem 1 in three steps:

1. The total deviation from a complete sequence {g(·|zk)} to the corresponding sequence

13See Theorem 9.12 on page 185 in Rudin (1987).
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{f(·|zk)} is
∞∑
k=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

. (18)

We prove that if the total deviation from a basis to an ω− independent sequence is

finite, then the latter sequence is also a basis. This result is summarized in Lemma 10

as the cornerstone of the proof of Theorem 1.

2. Condition ii) implies that the total deviation in Eq. (18) is finite.

3. A linearly independent sequence {f(·|zk)} in a normed space contains an ω− indepen-

dent subsequence {f(·|zkl)}. Finally, for a complete sequence {g(·|zkl)} and the ω−

independent sequence {f(·|zkl)} , Equation (18) and Lemma 10 imply that the sequence

{f(·|zkl)} is complete, and therefore, {f(·|z) : z ∈ N (z0)} is complete.

Step 1: We prove that if the total deviation from a basis to an ω− independent sequence

is finite, then the latter sequence is also a basis. This result is summarized in the following

lemma as the cornerstone of the proof of Theorem 1.

Lemma 10. Suppose that

i) the sequence {en (·) : n = 1, 2, ...} is a basis in a Hilbert space H;

ii) the sequence {fn (·) : n = 1, 2, ...} in H is ω−independent;

iii)
∑∞

n=1
‖fn(·)−en(·)‖
‖en(·)‖ <∞.

Then, the sequence {fn(·) : n = 1, 2, ...} is a basis in H.

Proof of Lemma 10: As in the proof of Theorem 15 on page 45 of Young (1980), we

consider for any function f ∈ H

f =

∞∑
n=1

cn(f)en,

where cn(f) is the so-called coefficient functional corresponding to the basis {en}. It is clear

that cn(f) is a linear function of f . Define an operator T : H → H as

Tf =
∞∑
n=1

cn(f) (en − fn) .
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It is clear that T is linear. Since cn(en) = 1 and ck(en) = 0 for k 6= n, we have

Ten =
∞∑
n=1

cn(en) (en − fn) = en − fn.

By using the triangle inequality and the definition of functional, we have

‖Tf‖ =

∥∥∥∥∥
∞∑
n=1

cn(f) (en − fn)

∥∥∥∥∥
≤

∞∑
n=1

‖cn(f) (en − fn)‖

≤

( ∞∑
n=1

‖en − fn‖ ‖cn‖

)
‖f‖ .

Lemma 8 suggests that

1 ≤ ‖en‖ ‖cn‖ ≤M.

Therefore, we have

‖Tf‖ ≤

( ∞∑
n=1

‖en − fn‖
‖en‖

‖en‖ ‖cn‖

)
‖f‖

≤ M

( ∞∑
n=1

‖en − fn‖
‖en‖

)
‖f‖

The relationship above implies that the linear operator T is bounded if

∞∑
n=1

‖en − fn‖
‖en‖

<∞,

which will be shown in the next step to be implied by condition (iii). We then show that T

is a compact operator. Set

TNf =
N∑
n=1

cn(f) (en − fn) .
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Consider

‖(T − Tn)f‖ =

∥∥∥∥∥
∞∑

n=N+1

cn(f) (en − fn)

∥∥∥∥∥
≤

∞∑
n=N+1

‖cn(f) (en − fn)‖

≤

( ∞∑
n=N+1

‖en − fn‖ ‖cn‖

)
‖f‖ .

Follow the previous derivation of ‖Tf‖, we can obtain

‖(T − Tn)f‖ ≤M

( ∞∑
n=N+1

‖en − fn‖
‖en‖

)
‖f‖ .

This implies that ‖(T − Tn)‖ ≤M
(∑∞

n=N+1
‖en−fn‖
‖en‖

)
. Assumption iii) of Lemma 10 suggests

that ‖T − Tn‖ → 0. Since each TN has finite dimensional range and ‖T − TN‖ → 0 as N →∞,

T is an compact operator.14

Next, we show that Ker(I − T ) = {0}, i.e., (I − T ) is invertible. Consider

0 = (I − T ) f

= f −
∞∑
n=1

cn(f) (en − fn)

=

∞∑
n=1

cn(f)en −
∞∑
n=1

cn(f)en +

∞∑
n=1

cn(f)fn

=
∞∑
n=1

cn(f)fn

Since {fn (·)} is an ω−independent sequence, we have cn(f) = 0 for all n, and therefore,

0 = (I − T ) f implies f = 0.

Therefore, T is a compact operator defined in a Hilbert space H with Ker(I − T ) = {0}.

By the Fredholm alternative, this shows that (I − T ) is a bounded invertible operator.15

Since T is bounded, (I − T ) is also bounded. Therefore, we have shown that (I − T ) is a

bounded invertible operator. Clearly, we have (I − T ) en = fn. Consider any h ∈ H. Then,

14If an bounded linear operator T is the limit of operators of finite rank, then T is compact. See Exercise
13 on page 112 in Rudin (1991).

15See the Fredholm alternative in Rudin (1991), Exercise 13 on page 112.
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(I − T )−1h has an unique series expression (I − T )−1h =
∞∑
n=1

cnen since {en (·)} is a basis.

Since (I − T ) is bounded, applying (I − T ) to the expression above results in h =
∞∑
n=1

cnfn.

This series expansion is unique because {fn (·)} is ω-independent. The argument above shows

that every element h ∈ H has a unique series expansion in terms of fn. Thus, {fn (·)} is also

a basis for H. QED

Step 2: We show condition ii) implies Equation (18), i.e.,

∞∑
k=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

<∞. (19)

We choose a sequence {zk : k = 1, 2, ...} ⊂ N (z0) converging to z0 ∈ N (z0). In other words,

z0 is a limit point in N (z0). Define

D(z) ≡ ‖f(·|z)− g(·|z)‖
‖g(·|z)‖

for z close to z0. Condition ii) imply that D(z) is Lipschitz continuous at z0 with D(z0) = 0.

Then, we have for some constant C and z close to z0

‖f(·|z)− g(·|z)‖
‖g(·|z)‖

= D(z)−D(z0) ≤ C |z − z0| .

Therefore, we may choose |zk − z0| = O(k−p) for p > 1 so that Equation (18) holds with∑∞
k=1D(zk) = O(

∑∞
k=1 k

−p) <∞. Thus, there exists a sequence {zk : k = 1, 2, ...} converging

to z0 such that Equation (18) holds.

Step 3: Condition iii) implies that there exists a linearly independent sequence in

{f(·|zk)}. According to the second Theorem in Erdös and Straus (1953), any linearly in-

dependent sequence in a normed space contains an ω− independent subsequence. We obtain

an ω− independent subsequence {f(·|zkl)} in {f(·|zk)}.

We then show that the ω− independent subsequence {f(·|zkl)} is complete in the Hilbert

spaceH. Since the sequence {zkl} corresponding to {f(·|zkl)} is a subsequence of {zk} and also

converges to z0, condition i) implies that the corresponding sequence {g(·|zkl)} is complete in
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the Hilbert space defined on X . The two sequences also satisfies Equation (18) i.e.,

∞∑
l=1

‖f(·|zkl)− g(·|zkl)‖
‖g(·|zkl)‖

<∞. (20)

Let {en} denote a basis contained in the complete sequence {g(·|zkl)} and {fn} be the cor-

responding subsequence in {f(·|zkl)}, which is also ω− independent. Then {en} and {fn}

also satisfies
∑∞

n=1
‖fn(·)−en(·)‖
‖en(·)‖ < ∞. Lemma 10 implies that {fn} is a basis and therefore

{f(·|zkl)} is complete in the Hilbert space H. Since the sequence {zk} is in N (z0), the family

{f(·|z) : z ∈ N (z0)} is complete in the Hilbert space H. QED.

5.4. Proof of a Sufficient Condition for Lipschitz Continuity

Proof : For z ∈ N (z0),

|D(z)−D(z0)| ≤ c1|D(z)−D(z0)||D(z) +D(z0)|

= c1|D(z)2 −D(z0)
2|

= c1

∣∣∣∣‖f(·|z)− g(·|z)‖2‖g(·|z0)‖2 − ‖f(·|z0)− g(·|z0)‖2‖g(·|z)‖2
∣∣∣∣

‖g(·|z)‖2‖g(·|z0)‖2

≤ c2

∣∣d(z)− d(z0)
∣∣

‖g(·|z0)‖4

≤ c2

∣∣ ∂
∂zd(z̃)

∣∣|z − z0|
‖g(·|z0)‖4

,

where d(z) ≡ ‖f(·|z)−g(·|z)‖2‖g(·|z0)‖2−‖f(·|z0)−g(·|z0)‖2‖g(·|z)‖2, and z̃ is some point in

N (z0). D(z) is Lipschitz continuous if the function d(z) has a bounded derivative at z̃. This

holds because for some function h(·|z) ∈ L2 (X , ω) with ∂
∂zh(·|z) ∈ L2 (X , ω) the derivative of

‖h(·|z)‖2 w.r.t. z is finite due to the Cauchy-Schwarz inequality as follows:

∣∣∣∣ ∂∂z (‖h(·|z)‖2
)∣∣∣∣ ≤ 2 ‖h(·|z)‖

∥∥∥∥ ∂∂zh(·|z)
∥∥∥∥ .

Furthermore, if X is bounded, we only need ∂
∂zh (·|z) to be bounded. QED.
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5.5. Proof of the linear independence

Proof of Lemma 3(3): We have for z > 0 and 0 ∈ X

f(x|z) =
d

dx
F0(z × x)

with

W (0) = ΠI
i=1

(
zki

d(i)F0(0)

dx(i)

)
× det


1 1 ... 1

zk1 zk2 ... zkI

... ... ... ...

(zk1)I−1 (zk2)I−1 ... (zkI )
I−1


.

According to the property of the Vandermonde matrix, the determinant W (x) is not equal to

zero when F0(x) has all the nonzero derivative at x = 0 and zk are nonzero and distinctive.

We may also generalize the above argument to show {f(·|zk)} is linear independent with

f(x|z) =
d

dx
F0(µ(z)τ(x))

where µ′(z) 6= 0 and τ(·) is monotonic with τ(0) ≡ 0. While the restriction µ′(z) 6= 0

guarantees that µ(zk) are different for a distinct sequence {zk} around z0, the condition τ(·)

is monotonic ensures that the linear independence for any x is the same as that for any

τ(x). If
I∑
i=1

cif(·|zki) = 0, then it is equivalent to
I∑
i=1

ci
d
dxF0(µ(zki)τ(·)) = 0. This implies

I∑
i=1

ci
d
dxF0(µ(zki)τ) = 0 for all τ ∈ τ(X ). Thus, we may show the determinant of W (x) of the

the function f(x|z) is nonzero at x = 0. QED.

5.6. Proof of completeness in applications

Proof of Lemma 4: Let N (z0) be an open neighborhood of z0. Since the characteristic

function φz0(t) of f(·|z0) satisfies Equation (4) in Lemma 2, we may generate a complete

sequence {g(x|zk) = f (x− µ (zk) |z0) : k = 1, 2, ...} satisfying condition i) in Theorem 1 with

µ (z0) = 0 and µ′ (z0) 6= 0. We have f(·|z0) = g(·|z0) and ‖g(·|z0)‖ > 0 due to |φz0(t)| > 0.

32



As discussed below Theorem 1, when the Hilbert space H is the L2 (X , ω), the relative

deviation D(z) is Lipschitz continuous if ‖g(·|z0)‖ > 0 and the first-order derivatives ∂
∂zf (·|z)

and ∂
∂zg (·|z) are also in L2 (X , ω) for z ∈ N (z0). This is because the derivative of ‖f(·|z)‖2

w.r.t. z is bounded by the Cauchy-Schwarz inequality as follows:

∣∣∣∣ ∂∂z (‖f(·|z)‖2
)∣∣∣∣ =

∣∣∣∣ ∂∂z
∫
f(x|z)2ω(x)dx

∣∣∣∣
=

∣∣∣∣∫ 2f(x|z)ω(x)1/2
∂

∂z
f(x|z)ω(x)1/2dx

∣∣∣∣
≤ 2 ‖f(·|z)‖

∥∥∥∥ ∂∂z f(·|z)
∥∥∥∥ .

For g(x|z) = f (x− µ (z) |z0), we have

∂

∂z
g(x|z) =

∂

∂z
f (x− µ (z) |z0)

=
∂

∂x
f (x− µ (z) |z0)

(
−µ′ (z)

)
.

The condition ii) of Lemma 4 implies that ∂
∂zg (·|z) is in L2 (X , ω) so that the relative deviation

D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is Lipschitz continuous in z. Since D(z0) = 0 by definition, the condition

ii) in Theorem 1 holds. Thus, the completeness holds for {f(·|z) : z ∈ N (z0)}.

We then consider the special case f(x|z) = 1
σ(z)fε

(
x−µ(z)
σ(z)

)
. Without loss of generality,

we set σ (z0) = 1 because we may always redefine 1
σ(z0)

fε

(
x

σ(z0)

)
as fε (x). Since µ (·) is

continuous with µ′ (z0) 6= 0, the sequence {µ (zk) : k = 1, 2, 3, ...} ⊂ µ (N (z0)) may be a

distinct sequence converging to µ (z0) ∈ µ (N (z0)). Applying the results in Lemma 2 with the

sequence {µ (zk) : k = 1, 2, 3, ...}, we may show that {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...}

is complete. We then extend the completeness of {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...} to

{f(x|zk) = 1
σ(zk)

fε

(
x−µ(zk)
σ(zk)

)
: k = 1, 2, ...}. Since σ (z0) = 1, we have f(x|z0) = g(x|z0).
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We then check f(·|z) ∈ L2(R) for any z ∈ N (z0). We have for some constant C1, C2

‖f(·|z)‖ =

∫
X

∣∣∣∣ 1

σ (z)
fε

(
x− µ (z)

σ (z)

)∣∣∣∣2 ω(x)dx

≤ C1

∫
X

∣∣∣∣ 1

σ (z)
fε

(
x− µ (z)

σ (z)

)∣∣∣∣2 dx
= C1

∫
X

∣∣∣∣ 1

σ (z)
fε (ε)

∣∣∣∣2 σ (z) dε

≤ C2

σ (z0)

∫
R
|fε (ε)|2 dε.

The last step is due to the continuity of σ (·) and σ (z0) > 0. Since |φε(t)| < Ce−δ|t|, we

have
∫
R |φε(t)|

2 dt < ∞, the last expression is finite, and therefore, f(·|z) is in L2(R, ω) for

z ∈ N (z0).

In order to show the Lipschitz continuity of D(z), we show ∂
∂zf (·|z) is also in L2(R, ω).

We have

∂

∂z
f(x|z) =

−σ′ (z)
σ2 (z)

fε

(
x− µ (z)

σ (z)

)
+ f ′ε

(
x− µ (z)

σ (z)

)(
−µ′ (z)
σ2 (z)

)
+
x− µ (z)

σ (z)
f ′ε

(
x− µ (z)

σ (z)

)(
−σ′ (z)
σ2 (z)

)
.

The function ∂
∂zf(·|z) for z ∈ N (z0) is in L2 (R) because of condition ii’). It follows that

these ∂
∂zf (·|z) are in L2(R, ω). Therefore, the total deviation

D(z) =

∥∥∥ 1
σ(z)fε

(
x−µ(z)
σ(z)

)
− fε (x− µ (z))

∥∥∥
‖fε (x− µ (z))‖

is Lipschitz continuous in z.

We show the linear independence of {f(·|zk)} as follows:

lim
x→−∞

f(x|zk+1)

f(x|zk)
= lim

x→−∞

∣∣∣ 1
σ(zk+1)

∣∣∣ fε (x−µ(zk+1)
σ(zk+1)

)
∣∣∣ 1
σ(zk)

∣∣∣ fε (x−µ(zk)σ(zk)

) ,
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where

fε

(
x−µ(zk+1)
σ(zk+1)

)
fε

(
x−µ(zk)
σ(zk)

) =
fε

(
x−µ(zk)
σ(zk)

−
(
x−µ(zk)
σ(zk)

− x−µ(zk+1)
σ(zk+1)

))
fε

(
x−µ(zk)
σ(zk)

)
=

fε

(
x−µ(zk)
σ(zk)

−
(
[σ(zk+1)−σ(zk)]x−σ(zk+1)µ(zk)+σ(zk)µ(zk+1)

σ(zk)σ(zk+1)

))
fε

(
x−µ(zk)
σ(zk)

)
<

fε

(
x−µ(zk)
σ(zk)

− c
)

fε

(
x−µ(zk)
σ(zk)

) .

If σ′ (z) = 0, i.e., σ (zk+1) = σ (zk), we may pick zk such that µ (zk+1) > µ (zk) so that the

last inequality holds because fε (x) decreases as x→ −∞. If σ′ (z) 6= 0, we may pick zk such

that σ (zk+1) < σ (zk) and therefore
(
[σ(zk+1)−σ(zk)]x−σ(zk+1)µ(zk)+σ(zk)µ(zk+1)

σ(zk)σ(zk+1)

)
> c > 0 for

some constant c as x → −∞. Therefore, condition iii’) implies that condition (2) in Lemma

3 holds.

Finally, Theorem 1 implies that the family {f(·|z) : z ∈ N (z0)} is complete in L2(R, ω).

In fact, the proof of Theorem 1 suggests that the sequence {f(·|zk) : k = 1, 2, ...} is also

complete. QED.

Proof of Lemma 5: Without loss of generality, we assume ∂
∂zh(z0, ε) < 0 as ε → −∞.

Then we choose distinct zk ↑ z0 such that |zk − z0| < 1
kp for some p > 2. We use the

complete sequence {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...} with µ (z0) = 0 and µ′ (z0) 6= 0

from Lemma 4. This implies that g(x|z0) = fε (x) = f(x|z0) because h(z0, ε) = ε. In addition,

the normality assumption of ε suggests {g(·|zk) : k = 1, 2, ...} is complete in L2(R, ω) for a

weight function ω by Lemma 2. Then the complete sequence {g(·|zk) : k = 1, 2, ...} satisfies

the condition i) in Theorem 1.

We may check that the family {f(x|zk) =
∣∣ ∂
∂xh

−1(zk, x)
∣∣ fε (h−1(zk, x)

)
: k = 1, 2, ...} is in
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L2(R, ω). Consider for some constant c1 and z ∈ N (z0)

∫
R
|f(x|z)|2 dx =

∫
R

∣∣∣∣∂h−1(z, x)

∂x
fε
(
h−1(z, x)

)∣∣∣∣2 dx
=

∫
R

∣∣∣∣∣
(
∂h(z, ε)

∂ε

)−1
fε (ε)

∣∣∣∣∣
2
∂h(z, ε)

∂ε
dε

=

∫
R

∣∣∣∣∂h(z, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

≤ c1
∫
R

∣∣∣∣∂h(z0, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

=
c1
C

∫
R
|fε (ε)|2 dε <∞

The last step is because conditions i) and the normality assumption of ε imply
∣∣∣∂h(z0,ε)∂ε

∣∣∣ >
C > 0 and

∫
R |fε (ε)|2 dε < ∞. That means f(x|z) ∈ L2(R) for z ∈ N (z0). Since a weight

function is bounded, f(x|z) ∈ L2(R, ω) for z ∈ N (z0). The condition ii) of Lemma 5 implies

that ∂
∂zf (·|z) and ∂

∂zg (·|z) are in L2 (R, ω) so that the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖

is Lipschitz continuous in z. Since D(z0) = 0 by definition, the condition ii) in Theorem 1

holds.

We show the linear independence of {f(·|zk)} and the corresponding CDF sequence {F (·|zk)}

as follows. We consider

lim
x→−∞

F (x|zk+1)

F (x|zk)
= lim

x→−∞

Fε(h
−1(zk+1, x))

Fε(h−1(zk, x))

= lim
x→−∞

Fε(h
−1(zk, x)− (h−1(zk, x)− h−1(zk+1, x)))

Fε(h−1(zk, x))
.

Since the function h(z, ε) is strictly increasing in ε for z ∈ N (z0), this implies that

h−1(zk, x)− h−1(zk+1, x)

≡ εk − h−1(zk+1, h(zk, εk))

= εk − h−1(zk+1, h(zk+1, εk) + [h(zk, εk)− h(zk+1, εk)]).

Since ∂
∂zh(z0, ε) < 0 and zk ↑ z0, we have h(zk, εk) − h(zk+1, εk) = c′ > 0 for εk → −∞.
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Using h(z, ε) is strictly increasing in ε, we have

h−1(zk, x)− h−1(zk+1, x)

= εk − h−1(zk+1, h(zk+1, εk) + c′)

= εk − h−1(zk+1, h(zk+1, εk)) + c

= εk − εk + c 6= 0

for some constant c > 0 as εk → −∞. Given Fε is increasing, we may pick zk such that c > 0

to have

lim
x→−∞

F (x|zk+1)

F (x|zk)
= lim

x→−∞

Fε(h
−1(zk, x)− c)

Fε(h−1(zk, x))
= 0.

The last step is because Fε satisfies limx→−∞
Fε(x−c)
Fε(x)

= limx→−∞
fε(x−c)
fε(x)

= 0 by L’Hôpital’s

rule and ε is normally distributed. Therefore, condition (2) in Lemma 3 holds. Theorem 1

then implies that completeness of {f(·|z) : z ∈ N (z0)} in L2 (R, ω). QED.

Proof of Lemma 6: Without loss of generality, we consider x = (x1, x2), z = (z1, z2),

X = X1 × X2, and Z = Z1 × Z2. Condition i) implies that {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and

{fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in their corresponding Hilbert spaces.

We then show the sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...} is complete because

{fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in corresponding

Hilbert spaces. Consider

∫ ∫
h(x1, x2)f(x1|z1)f(x2|z2)dx1dx2 =

∫ (∫
h(x1, x2)f(x1|z1)dx1

)
f(x2|z2)dx2

≡
∫
h′ (x2, z1) f(x2|z2)dx2.

If the LHS is equal to zero for any (z1, z2) ∈ Z1×Z2, then for any given z1
∫
h′ (x2, z1) f(x2|z2)dx2

equals to zero for any z2. Since f(x2|z2) is complete, we have h′ (x2, z1) = 0 for any x2 ∈ X2

and any given z1 ∈ Z1. Furthermore, for any given x2 ∈ X2, h
′ (x2, z1) = 0 for any z1 ∈ Z1

implies h(x1, x2) = 0 for any x1 ∈ X1. Therefore, the sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) : k =

1, 2, 3, ...} is complete. We then apply Theorem 1 to show that the sequence {fx1,x2|z1,z2(·, ·|z1k, z2k) :

k = 1, 2, 3, ...} is complete because it is close to a complete sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) :

k = 1, 2, 3, ...}. QED.
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