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INSTRUMENTAL VARIABLE TREATMENT OF NONCLASSICAL
MEASUREMENT ERROR MODELS

BY YINGYAO HU AND SUSANNE M. SCHENNACH1

While the literature on nonclassical measurement error traditionally relies on the
availability of an auxiliary data set containing correctly measured observations, we es-
tablish that the availability of instruments enables the identification of a large class
of nonclassical nonlinear errors-in-variables models with continuously distributed vari-
ables. Our main identifying assumption is that, conditional on the value of the true
regressors, some “measure of location” of the distribution of the measurement error
(e.g., its mean, mode, or median) is equal to zero. The proposed approach relies on the
eigenvalue–eigenfunction decomposition of an integral operator associated with spe-
cific joint probability densities. The main identifying assumption is used to “index” the
eigenfunctions so that the decomposition is unique. We propose a convenient sieve-
based estimator, derive its asymptotic properties, and investigate its finite-sample be-
havior through Monte Carlo simulations.

KEYWORDS: Nonclassical measurement error, nonlinear errors-in-variables model,
instrumental variable, operator, semiparametric estimator, sieve maximum likelihood.

1. INTRODUCTION

IN RECENT YEARS, there has been considerable progress in the development
of inference methods that account for the presence of measurement error
in the explanatory variables in nonlinear models (see, for instance, Chesher
(1991, 1998, 2001), Lewbel (1996, 1998), Hausman (2001), Chesher, Du-
mangane, and Smith (2002), Hong and Tamer (2003), Carrasco and Florens
(2005)). The case of classical measurement errors, in which the measurement
error is either independent of the true value of the mismeasured variable or has
zero mean conditional on it, has been thoroughly studied. In this context, ap-
proaches that establish identifiability of the model, and provide estimators that
are either consistent or root n consistent and asymptotically normal have been
devised when either instruments (Hausman, Newey, Ichimura, and Powell
(1991), Newey (2001), Schennach (2007)), repeated measurements (Hausman,
Newey, Ichimura, and Powell (1991), Li (2002), Schennach (2004a, 2004b)), or
validation data (Hu and Ridder (2004)) are available.

However, there are a number of practical applications where the assumption
of classical measurement error is not appropriate (Bound, Brown, and Math-
iowetz (2001)). In the case of discretely distributed regressors, instrumental

1S. M. Schennach acknowledges support from the National Science Foundation via Grant
SES-0452089. The authors would like to thank Lars Hansen, James Heckman, Marine Carrasco,
Maxwell Stinchcombe, and Xiaohong Chen, as well as seminar audiences at various universities,
at the Cemmap/ESRC Econometric Study Group Workshop on Semiparametric Methods, and at
the Econometric Society 2006 Winter Meetings for helpful comments.
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variable estimators that are robust to the presence of such “nonclassical” mea-
surement error have been developed for binary regressors (Mahajan (2006),
Lewbel (2007)) and general discrete regressors (Hu (2007)). Unfortunately,
these results cannot trivially be extended to continuously distributed variables,
because the number of nuisance parameters needed to describe the measure-
ment error distribution (conditional on given values of the observable vari-
ables) becomes infinite. Identifying these parameters thus involves solving op-
erator equations that exhibit potential ill-posed inverse problems (similar to
those discussed in Carrasco, Florens, and Renault (2005), Darolles, Florens,
and Renault (2002), and Newey and Powell (2003)).

In the case of continuously distributed variables (in both linear or nonlin-
ear models), the only approach capable of handling nonclassical measurement
errors proposed so far has been the use of an auxiliary data set containing cor-
rectly measured observations (Chen, Hong, and Tamer (2005), Chen, Hong,
and Tarozzi (2008)). Unfortunately, the availability of such a clean data set
is the exception rather than the rule. Our interest in instrumental variables
is driven by the fact that instruments suitable for the proposed approach are
conceptually similar to the ones used in conventional instrumental variable
methods and researchers will have little difficulty identifying appropriate in-
strumental variables in typical data sets.

Our approach relies on the observation that, even though the measurement
error may not have zero mean conditional on the true value of the regressor,
perhaps some other measure of location, such as the median or the mode,
could still be zero. This type of nonclassical measurement error has been ob-
served, for instance, in the self-reported income found in the Current Popu-
lation Survey (CPS).2 Thanks to the availability of validation data for one of
the years of the survey, it was found that although measurement error is cor-
related with true income, the median of misreported income conditional on
true income is in fact equal to the true income (Bollinger (1998)). In another
study on the same data set, it was found that the mode of misreported income
conditional on true income is also equal to the true income (see Bound and
Krueger (1991) and Figure 1 in Chen, Hong, and Tarozzi (2008)).

There are numerous plausible settings where the conditional mode, median,
or some other quantile of the error could be zero even though its conditional
mean is not. First, if respondents are more likely to report values close to the
truth than any particular value far from the truth, then the mode of the mea-
surement error would be zero. This is a very plausible form of measurement
error that even allows for systematic over- or underreporting. Intuitively, since
there is only one way to report the truth, while there are an infinite number
of alternative ways to misreport, respondents would literally have to collude
on misreporting in a similar way to violate the mode assumption. In addition,

2Bureau of Labor Statistics and Bureau of Census, http://www.bls.census.gov/cps/cpsmain.htm.
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data truncation usually preserves the mode, but not the mean, provided the
truncation is not so severe that the mode itself is deleted.

Second, if respondents are equally likely to over- or underreport, but not by
the same amounts on average, then the median of the measurement error is
zero. This could occur perhaps because the observed regressor is a nonlinear
monotonic function (e.g., a logarithm) of some underlying mismeasured vari-
able with symmetric errors. Such a nonlinear function would preserve the zero
median, but not the zero mean of the error. Another important case is data
censoring, which also preserves the median, as long as the upper censoring
point is above the median and the lower censoring point is below the median.

Third, in some cases, a quantile other than the median might be appropri-
ate. For instance, tobacco consumption is likely to be either truthfully reported
or underreported and, in that case, the topmost quantile of the observed con-
sumption conditional on the truth would plausibly equal true consumption.

To encompass practically relevant cases such as these, which so far could
only have been analyzed in the presence of auxiliary correctly measured data,
our approach relies on the general assumption that some given “measure of
location” (e.g., the mean, the mode, the median, or some other quantile) that
characterizes the distribution of the observed regressor conditional on the true
regressor is left unaffected by the presence of measurement error. This frame-
work is also sufficiently general to include measurement error models in which
the true regressor and the errors enter the model in a nonseparable fashion.

The paper is organized as follows. We first provide a general proof of iden-
tification before introducing a semiparametric sieve estimator that is shown
to be root n consistent and asymptotically normal. Our identification is fully
nonparametric and therefore establishes identification in the presence of mea-
surement error of any model that would be identified in the absence of mea-
surement error. Our estimation framework encompasses models which, when
expressed in terms of the measurement error-free variables, take the form of
either parametric likelihoods or (conditional or unconditional) moment re-
strictions, and automatically provides a corresponding measurement error-
robust semiparametric instrumental variable estimator. This framework there-
fore addresses nonclassical measurement error issues in most of the widely
used models, including probit, logit, tobit, and duration models, in addition
to conditional mean and quantile regressions, as well as nonseparable mod-
els (thanks to their relationship with quantile restrictions). The finite-sample
properties of the estimator are investigated via Monte Carlo simulations.

2. IDENTIFICATION

The “true” model is defined by the joint distribution of the dependent vari-
able y and the true regressor x∗. However, x∗ is not observed, only its error-
contaminated counterpart, x, is observed. In this section, we rely on the avail-
ability of an instrument (or a repeated measurement) z to show that the joint
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distribution of x∗ and y is identified from knowledge of the distribution of
all observed variables. Our treatment can be straightforwardly extended to al-
low for the presence of a vector w of additional correctly measured regressors
merely by conditioning all densities on w.

Let Y , X , X ∗, and Z denote the supports of the distributions of the random
variables y , x, x∗, and z, respectively. We consider x�x∗, and z to be jointly
continuously distributed (X , X ∗ ⊂ R

nx and Z ⊂ R
nz with nz ≥ nx), while y can

be either continuous or discrete. Accordingly, we assume the following.

ASSUMPTION 1: The joint density of y and x�x∗� z admits a bounded density
with respect to the product measure of some dominating measure µ (defined on Y)
and the Lebesgue measure on X ×X ∗ ×Z . All marginal and conditional densities
are also bounded.

We use the notation fa(a) and fa|b(a|b) to denote the density of variable a
and the density of a conditional on b, respectively. Implicitly, these densities
are relative to the relevant dominating measure, as described above. For sim-
plicity, our notation does not distinguish between a random variable and a
specific value it may take. The joint support of all the variables need not be
rectangular, since we allow for vanishing densities.

To state our identification result, we start by making natural assumptions
regarding the conditional densities of all the variables of the model.

ASSUMPTION 2: (i) fy|xx∗z(y|x�x∗� z) = fy|x∗(y|x∗) for all (y�x�x∗� z) ∈ Y ×
X ×X ∗ ×Z and (ii) fx|x∗z(x|x∗� z)= fx|x∗(x|x∗) for all (x�x∗� z) ∈X ×X ∗ ×Z .

Assumption 2(i) indicates that x and z do not provide any more information
about y than x∗ already provides, while Assumption 2(ii) specifies that z does
not provide any more information about x than x∗ already provides. These
assumptions can be interpreted as standard exclusion restrictions. Conditional
independence restrictions have been widely used in the recent econometrics
literature (e.g., Hoderlein and Mammen (2007), Heckman and Vytlacil (2005),
Altonji and Matzkin (2005)).

REMARK: Our assumptions regarding the instrument z are sufficiently gen-
eral to encompass both the repeated measurement and the instrumental vari-
able cases in a single framework. In the repeated measurement case, having
the measurement error on the two measurements z and x be mutually inde-
pendent conditional on x∗ will be sufficient to satisfy Assumption 2. Note that
while we will refer to y as the dependent variable, it should be clear that it
could also contain another error-contaminated measurement of x∗ or even a
type of instrument that is “caused by” x∗, as suggested by Chalak and White
(2006). Finally, note that our assumptions allow for the measurement error
(x−x∗) to be correlated with x∗, which is crucial in the presence of potentially
nonclassical measurement error.
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To facilitate the statement of our next assumption, is it useful to note that a
function of two variables can be associated with an integral operator.

DEFINITION 1: Let a and b denote random variables with respective sup-
ports A and B. Given two corresponding spaces G(A) and G(B) of functions
with domains A and B, respectively, let Lb|a denote the operator mapping
g ∈ G(A) to Lb|ag ∈ G(B) defined by

[Lb|ag](b)≡
∫
A
fb|a(b|a)g(a)da�

where fb|a(b|a) denotes the conditional density of b given a.

For the density fb|a(b|a) to be uniquely determined by the operator Lb|a,
the space G(A) upon which the operator acts must be sufficiently large so
that fb|a(b|a) is “sampled” everywhere. For an integral operator, it is sufficient
to consider G(A) to be L1(A), the set of all absolutely integrable functions
with domain A (endowed with the norm ‖g‖1 = ∫

A |g(a)|da). It is even suf-
ficient to limit G(A) to the set of functions in L1(A) that are also bounded
(supa∈A |g(a)| < ∞), denoted L1

bnd(A).3 In our subsequent treatment, we will
consider the cases where G =L1 or where G =L1

bnd. We can then state our next
assumption.

ASSUMPTION 3: The operators Lx|x∗ and Lz|x are injective (for either G =L1 or
G =L1

bnd).

An operator Lb|a is said to be injective if its inverse L−1
b|a is defined over the

range of the operator Lb|a (see Section 3.1 in Carrasco, Florens, and Renault
(2005)). The qualification on the range is needed to account for the fact that
inverses are often defined only over a restricted domain in infinite-dimensional
spaces. Assumption 3 could also be stated in terms of the injectivity of Lz|x∗ and
Lx|x∗ , since it can be shown that injectivity of Lz|x∗ and Lx|x∗ implies injectivity
of Lz|x.

3This can be seen from the fact that

fb|a(b|a0)= lim
n→∞

[Lb|agn�a0 ](b)�

where gn�a0(a) = n1(|a − a0| ≤ n−1), a sequence of absolutely integrable and bounded func-
tions (the limit of that sequence does not need to belong to G(A), since we are not calculat-
ing Lb|a limn→∞ gn�a0 ). The so-called kernel fb|a(b|a0) of the integral operator Lb|a is therefore
uniquely determined by evaluating this limit for all values of a0 ∈ A. It is also straightforward
to check that for a bounded fb|a(b|a), g ∈ L1(A) implies Lb|ag ∈ L1(B) and that g ∈ L1

bnd(A)
implies Lb|ag ∈ L1

bnd(B). Indeed, ‖Lb|ag‖1 ≤ ∫ ∫
fb|a(b|a)db |g(a)|da = ∫

1|g(a)|da = ‖g‖1 and
supb∈B |[Lb|ag](b)| ≤ ∫

(supb̃∈B supã∈A |fb|a(b̃|ã)|)|g(a)|da = (supb̃∈B supã∈A |fb|a(b̃|ã)|)‖g‖1.
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Intuitively, an operator Lb|a will be injective if there is enough variation in
the density of b for different values of a. For instance, a simple case where
Lb|a is not injective is when fb|a(b|a) is a uniform density on B for any a ∈ A .
In general, however, injectivity assumptions are quite weak and are commonly
made in the literature on nonparametric instrumental variable methods. They
are sometimes invoked by assuming that an operator Lb|a admits a singular
value decomposition with nonzero singular values (Darolles, Florens, and Re-
nault (2002)) or by stating that an operator is nonsingular (Horowitz (2006),
Hall and Horowitz (2005)).

Injectivity assumptions are often phrased in terms of completeness (or
bounded completeness) of the family of distributions that play the role of
the kernel of the integral operator considered (Newey and Powell (2003),
Blundell, Chen, and Kristensen (2007), Chernozhukov and Hansen (2005),
Chernozhukov, Imbens, and Newey (2007)). This characterization is worth ex-
plaining in more detail, as it leads to primitive sufficient conditions. Formally,
a family of distribution fa|b(a|b) is complete if the only solution g̃(a) to

∫
A
g̃(a)fa|b(a|b)da= 0 for all b ∈ B(1)

(among all g̃(a) such that (1) is defined) is g̃(a) = 0. Under Assumption 1,
this condition implies injectivity of Lb|a (viewed as a mapping from L1(A)
to L1(B)). Indeed,

∫
fa|b(a|b)g̃(a)da = (fb(b))

−1
∫
fb|a(b|a)fa(a)g̃(a)da, and

since 0 < fa(a) < ∞ and 0 < fb(b) < ∞ over the interior of their respec-
tive supports, having g̃(a) = 0 as the unique solution is equivalent to having
g(a) = 0 as the unique solution to

∫
fb|a(b|a)g(a)da = 0. If g(a) = 0 is the

unique solution among all g(a) such that the integral is defined, then it is also
the unique solution in L1(A), which implies that Lb|a is injective. Bounded
completeness is similarly defined by stating that the only solution to (1) among
all bounded g̃(a) is g̃(a) = 0. Analogously, this implies that Lb|a is injective
when viewed as a mapping from L1

bnd(A) to L1
bnd(B).

A nice consequence of the connection between injectivity and (bounded)
completeness is that primitive conditions for (bounded) completeness are
readily available in the literature. For instance, some very general exponen-
tial families of distributions are known to be complete (as invoked in Newey
and Powell (2003)). The weaker notion of bounded completeness can also be
used to find even more general families of distributions leading to injective
operators (as discussed in Blundell, Chen, and Kristensen (2007)). In partic-
ular, when fa|b(a|b) can be written in the form fε(a − b), then Lb|a is injec-
tive if and only if the Fourier transform of fε is everywhere nonvanishing (by
Theorem 2.1 in Mattner (1993)), and similar results have also been obtained
for more general families of distributions that cannot be written as fε(a − b)
(d’Haultfoeuille (2006)).
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The assumption of injectivity of Lx|x∗ allows for x∗ and x to be multivariate.
Injectivity of Lz|x in multivariate settings is also natural whenever the dimen-
sion of z is greater or equal to the dimension of x. If the dimension of z is less
than the dimension of x or if z contains too many colinear elements, identifi-
cation will not be possible, as expected.

While Assumption 3 places restrictions on the relationships between z�x,
and x∗, the following assumption places restrictions on the relationship be-
tween y and x∗.

ASSUMPTION 4: For all x∗
1�x

∗
2 ∈ X ∗, the set {y : fy|x∗(y|x∗

1) 
= fy|x∗(y|x∗
2)} has

positive probability (under the marginal of y) whenever x∗
1 
= x∗

2.

This assumption is even weaker than injectivity. It is automatically satisfied
if E[y|x∗] is strictly monotone (for univariate x∗), but also holds far more gen-
erally. The presence of conditional heteroskedasticity can be sufficient in the
absence of monotonicity. Assumption 4 is only violated if the distribution of y
conditional on x∗ is identical at two values of x∗.

REMARK: In the special case of binary y , Assumption 4 amounts to a
monotonicity assumption (e.g., P[y = 0|x∗] is strictly monotone in x∗). When
x∗ is multivariate, while the outcome variable is still binary (or when P[y =
0|x∗] is not monotone), it will be necessary to define y to be a vector that con-
tains auxiliary variables in addition to the binary outcome to allow for enough
variation in the distribution of y conditional on x∗ to satisfy Assumption 4.
Each of these additional variables need not be part of the model of interest
per se, but does need to be affected by x∗ is some way. In that sense, such a
variable is a type of “instrument,” although it differs conceptually from conven-
tional instruments, as it would typically be “caused by x∗” instead of “causing
x∗.” See Chalak and White (2006) for a discussion of this type of instrument.

We then characterize the nature of measurement error via an assumption
that considerably generalizes the case of classical measurement error.

ASSUMPTION 5: There exists a known functional M such that M[fx|x∗(·|x∗)] =
x∗ for all x∗ ∈X ∗.

M is a very general functional that maps a density to a real number (or a vec-
tor if x∗ is multivariate) and that defines some measure of location. Examples
of M include, but are not limited to, the mean, the mode, and the τ quantile,
corresponding to the following definitions of M , respectively:

M[f ] =
∫
X
xf(x)dx�(2)

M[f ] = arg max
x∈X

f (x)�(3)
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M[f ] = inf
{
x∗ ∈X ∗ :

∫
1(x≤ x∗)f (x)dx≥ τ

}
�(4)

Case (2) above covers classical measurement error (in which x= x∗ +ε, where
E[ε|x∗] = 0), since M[fx|x∗(·|x∗)] =E[x|x∗] =E[x∗ +ε|x∗] = x∗ +E[ε|x∗] = x∗

in that case. The other two examples of M cover nonclassical measurement
error of various forms. For multivariate x, (2) and (3) apply directly, while
(4) could then take the form of a vector of univariate marginal quantiles, for
instance.

It should be noted that Assumptions 1–5 are not mutually contradictory:
Models that satisfy all of them can easily be constructed. For instance, one can
set fxyzx∗(x� y� z�x∗)= fx|x∗(x|x∗)fy|x∗(y|x∗)fz|x∗(z|x∗)fx∗(x∗), where fx∗(x∗) is a
normal, and where fx|x∗(x|x∗), fy|x∗(y|x∗), and fz|x∗(z|x∗) each are homoskedas-
tic normals whose means depend linearly on x∗ (with nonzero slope) and such
that E[x|x∗] = x∗. We are now ready to state our main result.

THEOREM 1: Under Assumptions 1–5, given the true observed density fyx|z , the
equation

fyx|z(y�x|z)=
∫
X ∗

fy|x∗(y|x∗)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗(5)

for all y ∈Y�x ∈X � z ∈Z�

admits a unique solution4 (fy|x∗� fx|x∗� fx∗|z). A similar result holds for

fyxz(y�x� z)=
∫
X ∗

fyx∗(y�x∗)fx|x∗(x|x∗)fz|x∗(z|x∗)dx∗(6)

for all y ∈Y�x ∈X � z ∈Z�

The proof can be found in the Appendix and can be outlined as follows.
Assumption 2 lets us obtain the integral Equation (5) that relates the joint
densities of the observable variables to the joint densities of the unobservable
variables. This equation is then shown to define the operator equivalence rela-
tionship

Ly;x|z =Lx|x∗�y;x∗Lx∗|z�(7)

where Ly;x|z is defined analogously to Lx|z with fx|z replaced by fy�x|z for a given
y ∈ Y and where �y;x∗ is the “diagonal” operator mapping the function g(x∗) to
the function fy|x∗(y|x∗)g(x∗), for a given y ∈ Y . Next, we note that the equiva-
lence Lx|z =Lx|x∗Lx∗|z also holds (by integration of (7) over all y ∈Y). Isolating
Lx∗|z to yield

Lx∗|z =L−1
x|x∗Lx|z�(8)

4More formally, if multiple solutions exist, they differ only on a set of zero probability.
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substituting it into (7), and rearranging, we obtain

Ly;x|zL−1
x|z = Lx|x∗�y;x∗L−1

x|x∗�(9)

where all inverses can be shown to exist over suitable domains by Assumption 3
and Lemma 1 in the Appendix. Equation (9) states that the operator Ly;x|zL−1

x|z
admits a spectral decomposition (specifically, an eigenvalue–eigenfunction de-
composition in this case). The operator to be diagonalized is defined in terms
of observable densities, while the resulting eigenvalues fy|x∗(y|x∗) and eigen-
functions fx|x∗(·|x∗) (both indexed by x∗ ∈ X ∗) provide the unobserved densi-
ties of interest. To ensure uniqueness of this decomposition, we employ four
techniques. First, a powerful result from spectral analysis (Theorem XV.4.5 in
Dunford and Schwartz (1971)) ensures uniqueness up to some normalizations.
Second, the a priori arbitrary scale of the eigenfunctions is fixed by the require-
ment that densities must integrate to 1. Third, to avoid any ambiguity in the de-
finition of the eigenfunctions when degenerate eigenvalues are present, we use
Assumption 4 and the fact that the eigenfunctions (which do not depend on y ,
unlike the eigenvalues fy|x∗(y|x∗)) must be consistent across different values of
the dependent variable y . Finally, to uniquely determine the ordering and in-
dexing of the eigenvalues and eigenfunctions, we invoke Assumption 5: If one
considers another variable x̃∗ related to x∗ through x∗ = R(x̃∗), we have

M[fx|x̃∗(·|x̃∗)] =M
[
fx|x∗(·|R(x̃∗))

] =R(x̃∗)�

which is only equal to x̃∗ if R is the identity function. These four steps ensure
that the diagonalization operation uniquely specifies the unobserved densities
fy|x∗(y|x∗) and fx|x∗(x|x∗) of interest. Next, Equation (8) implies that fx∗|z(x∗|z)
is also identified. Since the identities (9) and (8) use and provide the same in-
formation as Equation (5), this establishes uniqueness of the solution to Equa-
tion (5). The second conclusion of the theorem (Equation (6)) follows by sim-
ilar manipulations.

It is possible to replace fy�x|z(y�x|z) by E[y|x�z]fx|z(x|z) and fy|x∗(y|x∗)
by E[y|x∗] throughout to obtain an identification result for E[y|x∗] directly,
without fully identifying fy|x∗(y|x∗). This would slightly weaken Assump-
tion 2(i) to E[y|x�x∗� z] = E[y|x∗]. However, under this approach, the ana-
logues of Assumptions 1 and 4 would become somewhat restrictive for uni-
variate y and x∗, requiring E[y|x∗] to be strictly monotone in x∗ and such
that supx∗∈X ∗ |E[y|x∗]| < ∞. These restrictions are avoided if identification of
E[y|x∗] is secured through the identification of fy|x∗(y|x∗).

While Theorem 1 establishes identification, we can also show that the model
is actually overidentified, thus permitting a test of the model. Equation (5) re-
lates a function of three variables to a triplet of functions of two variables. Since
the set of functions of three variables is much “larger” than the set of triplets
of functions of two variables, there exist densities fyx|z(y�x|z) that cannot be
generated by Equation (5), a telltale sign of an overidentifying restriction. The
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availability of more than one valid instrument offers further opportunities to
test the model’s assumptions.

3. ESTIMATION USING SIEVE MAXIMUM LIKELIHOOD

As a starting point, we consider a model expressed in terms of the observed
variable y and the unobserved mismeasured regressor x∗:

fy|x∗(y|x∗;θ)�(10)

It is often convenient to decompose the potentially infinite-dimensional para-
meter θ that we seek to estimate into two subvectors: b, a finite-dimensional
parameter vector of interest, and η, a potentially infinite-dimensional nuisance
parameter. Naturally, we assume that the parametrization (10) does not in-
clude redundant degrees of freedom, that is, θ ≡ (b�η) is identified if fy|x∗ is
identified.

This framework nests most commonly used models as subcases. First, set-
ting θ ≡ b covers the parametric likelihood case (which will then become
semiparametric once we account for measurement error). Second, mod-
els defined via conditional moment restrictions E[m(y�x∗� b)|x∗] = 0 can
be considered by defining a family of densities fy|x∗(y|x∗;b�η) such that∫
fy|x∗(y|x∗;b�η)m(y�x∗� b)dy = 0 for all b and η, which is clearly equiva-

lent to imposing a moment condition. For example, in a nonlinear regres-
sion model y = g(x∗� b) + ε with E(ε|x∗) = 0, we have fy|x∗(y|x∗;b�η) =
fε|x∗(y − g(x∗� b)|x∗). The infinite-dimensional nuisance parameter η is the
conditional density fε|x∗(·|·), constrained to have zero mean. Another impor-
tant example is the quantile regression case5 (where the conditional density
fε|x∗(·|·) is constrained to have its conditional τ-quantile equal to 0). Quantile
restrictions are useful, as they provide the fundamental concept that enables a
natural treatment of nonseparable models (e.g., Chernozhukov, Imbens, and
Newey (2007), Matzkin (2003), Chesher (2003)). More generally, our frame-
work also covers most semiparametric setups. For instance, one could devise a
family of densities fy|x∗(y|x∗;b�η) such that b sets the value of the average
derivative

∫
(dE[y|x∗]/dx∗)w(x∗)dx∗ (for some weighting function w(x∗)),

while η controls all remaining degrees of freedom that affect the shape of
the density but that do not affect the value of the average derivative. More
examples of a partition of θ into b and η can be found in Shen (1997).

Given a model expressed in terms of the true unobserved variables (10),
Equation (5) in Theorem 1 suggests a corresponding measurement-error ro-
bust sieve maximum likelihood estimator (e.g., Grenander (1981), Shen (1997),

5The nonsmoothness of the moment conditions in this case does not pose special problems,
because all quantities are effectively smoothed by the truncated series used to represent all den-
sities.
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Chen and Shen (1998), Ai and Chen (2003)):

(θ̂� f̂1� f̂2)(11)

= arg max
(θ�f1�f2)∈An

1
n

n∑
i=1

ln
∫
X ∗

fy|x∗(yi|x∗;θ)f1(xi|x∗)f2(x
∗|zi)dx∗�

Here, (xi� yi� zi)
n
i=1 is an independent and identically distributed (i.i.d.) sample

and An is a sequence of approximating sieve spaces that contain progressively
more flexible parametric approximations to the densities (as sample size n in-
creases). While Equation (11) enforces Assumption 2 by construction, func-
tions in An are required to satisfy Assumption 5 as well as normalizations that
ensure that the relevant conditional densities suitably integrate to 1. The re-
maining assumptions made in the identification theory are regularity condi-
tions that the generating process is assumed to satisfy but that do not need to
be imposed in the estimation procedure. Typically, the approximating spaces
An are generated by the span of series approximations that are linear in the
coefficients, such as polynomials, splines, and so forth. In this case, all restric-
tions on An imposed by the original semiparametric model or by Assumption 5
can be easily implemented, since they amount to imposing linear restrictions
on the coefficients of the sieve that represent the unknown densities.

The supplementary material available on the Econometrica website (Hu
and Schennach (2008)) fully develops the asymptotic theory of the proposed
sieve maximum likelihood estimator. A nonparametric consistency result (in
a weighted sup norm) is provided as well as a semiparametric root n consis-
tency and asymptotic normality result for the estimated parametric component
b of the parameter θ. Our treatment allows for the support of all variables
y , x∗, x, z to be unbounded. For the purposes of simplicity and conciseness,
our treatment provides primitive sufficient conditions for the independent and
identically distributed case. However, since our estimator takes the form of a
semiparametric sieve estimator, the very general treatment of Shen (1997) and
Chen and Shen (1998) can be used to establish asymptotic normality and root
n consistency under a very wide variety of conditions that include dependent
and nonidentically distributed data. The regularity conditions invoked for the
asymptotic theory fall into three general classes:

(i) Smoothness and boundedness restrictions that limit the “size” of the
space of functions considered so as to obtain the compactness of the parame-
ter space (where, here, the parameters include functions) that is traditionally
invoked to show consistency.

(ii) Envelope conditions that limit how rapidly the objective function can
change in value as the parameters change; this helps secure stochastic equicon-
tinuity and uniform convergence results.

(iii) Sieve approximation rates (i.e., at what rate must the number of terms
in the series increase to guarantee a given rate of decay of the approximation
error?).
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The practical implementation of the method requires the selection of the
number of terms in the various approximating series. While a formal selection
rule for these smoothing parameters (e.g., based on a higher-order asymptotic
analysis) would be desirable, it is beyond the scope of the present paper. Some
informal guidelines can nevertheless be given. In our semiparametric setting,
selection of the smoothing parameters is somewhat facilitated (relative to fully
nonparametric approaches), because semiparametric estimators are known to
have the same asymptotic distribution for a wide range of smoothing parame-
ter sequences. This observation suggests that a valid smoothing parameter can
be obtained by scanning a range of values in search of a region where the es-
timates are not very sensitive to small variations in the smoothing parameter.
Typically, for very short series, the smoothing bias dominates and the estimates
will exhibit a marked trend as the number of terms is increased. At the other
extreme, for very long series, the statistical noise dominates and, although the
point estimates vary significantly as additional terms are added, no clear trend
should be visible. In between those extremes should lie a region where any
clear trend has leveled off and where the random noise in the estimates has
not yet grown to an excessive level. The middle of that region points to a suit-
able value of the smoothing parameters.

A number of straightforward extensions of the above approach are possible.
First, the model specified in (10) also could be conditional on any number of
other, correctly measured, variables. The same identification proof and esti-
mation method follow, after conditioning all densities on those variables.

The second conclusion of Theorem 1 also suggests an alternative expression
for the observed density which proves useful if the model specifies fyx∗(y�x∗)
instead of fy|x∗(y|x∗). Our sieve approach, now based on a likelihood expressed
in terms of fyxz(y�x� z), covers this case as well. This also enables the treat-
ment of models defined via unconditional moment restrictions (i.e., E[m(y�x∗�
b)] = 0).

4. SIMULATIONS

This section investigates the performance of the proposed estimator with
simulated data. We consider a simple parametric probit model

fy|x∗(y|x∗)= [�(a+ bx∗)]y[1 −�(a+ bx∗)]1−y for y ∈Y = {0�1}�
where (a�b) is the unknown parameter vector and �(·) is the standard normal
cumulative distribution function (c.d.f.). In the simulations, we generate the
instrumental variable and the latent variable as follows: z ∼ N(1� (0�7)2) and
x∗ = z + 0�3(e − z) with an independent e ∼ N(1� (0�7)2). The distributions
of both z and η are truncated on [0�2] for simplicity in the implementation.
To illustrate our method’s ability to handle a variety of assumptions regarding
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the measurement error, our examples of generating processes have the general
form

fx|x∗(x|x∗)= 1
σ(x∗)

fν

(
x− x∗

σ(x∗)

)
�

where fν is a density function that will be specified in each example below. We
allow for considerable heteroskedasticity, setting σ(x∗) = 0�5 exp(−x∗) in all
examples. Sieves for functions of two variables are constructed through tensor
product bases of univariate trigonometric series. We let in and jn denote the
number of terms taken from each of the two series. The smoothing parame-
ters were determined following the guidelines given in the previous section,
by locating the middle of a range of values of in and jn over which the point
estimates are relatively constant.

We consider three maximum likelihood estimators: (i) the (inconsistent)
estimator obtained when ignoring measurement error, (ii) the (infeasible)
estimator obtained using error-free data, and (iii) the proposed (consistent
and feasible) sieve maximum likelihood estimator. We consider models where
(i) the mode of fν is at zero, (ii) the median of fν is at zero, and (iii) the 100th
percentile of fν is at zero. The supplementary material (Hu and Schennach
(2008)) presents additional simulation examples.

The simulation results (see Table I) show that our proposed estimator per-
forms well under a variety of identification conditions. The sieve estimator has
a considerably smaller bias than the estimator ignoring the measurement er-
ror. As expected, the sieve estimator has a larger variance than the other two
estimators, due to the estimation of nonparametric components. However, the
sieve estimator still achieves a reduction in the overall root mean square error
(RMSE), relative to the other feasible estimator.

5. CONCLUSION

This paper represents the first treatment of a wide class of nonclassical non-
linear errors-in-variables models with continuously distributed variables using
instruments (or repeated measurements). Our main identifying assumption ex-
ploits the observation that, even though the measurement error may not have
zero mean conditional on the true value of the regressor, perhaps some other
measure of location, such as the median or the mode, could still be zero. We
show that the identification problem can be cast into the form of an operator
diagonalization problem in which the operator to be diagonalized is defined in
terms of observable densities, while the resulting eigenvalues and eigenfunc-
tions provide the unobserved joint densities of the variables of interest.

This nonparametric identification result suggests a natural sieve-based semi-
parametric maximum likelihood estimator that is relatively simple to imple-
ment. Our framework enables the construction of measurement-error-robust



208 Y. HU AND S. M. SCHENNACH

TABLE I

SIMULATION RESULTSa

Parameter (=True Value)

a = −1 b = 1

Mean Std. Dev. RMSE Mean Std. Dev. RMSE

Error distribution (zero mode): fν(ν)= exp[ν − exp(ν)]
Ignoring meas. error −0.5676 0.0649 0.4372 0.6404 0.0632 0.3651
Accurate data −1.0010 0.0813 0.0813 1.0030 0.0761 0.0761
Sieve MLE −0.9575 0.2208 0.2249 0.9825 0.1586 0.1596
Smoothing parameters: in = 6� jn = 3 in f1; in = 3� jn = 2 in f2

Error distribution (zero median): fν(ν) = 1
π
(1 + [ 1

2 + 1
2 exp(ν)− exp(−ν)]2)−1

Ignoring meas. error −0.6514 0.0714 0.3559 0.6375 0.0629 0.3679
Accurate data −1.0020 0.0796 0.0796 1.0020 0.0747 0.0748
Sieve MLE −0.9561 0.2982 0.3014 0.9196 0.2734 0.2850
Smoothing parameters: in = 8� jn = 8 in f1; in = 3� jn = 2 in f2

Error distribution (100th percentile at zero): fν(ν) = exp(ν) for ν ∈ [−∞�0]
Ignoring meas. error −0.5562 0.0601 0.4478 0.693 0.0632 0.3134
Accurate data −1.0010 0.0813 0.0813 1.003 0.0761 0.0761
Sieve MLE −0.9230 0.2389 0.2510 1.071 0.2324 0.2429
Smoothing parameters: in = 4� jn = 6 in f1; in = 3� jn = 2 in f2

aFor each estimator, we report the mean, the standard deviation (std. dev.), and the square root of the mean
squared error (RMSE) of the estimators averaged over all 1,000 replications. The sample size is 2,000.

counterparts of parametric likelihood or moment conditions models, as well as
numerous semiparametric models. Our semiparametric estimator is shown to
be root n consistent and asymptotically normal.
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APPENDIX: PROOFS

PROOF OF THEOREM 1: By the definition of conditional densities and As-
sumption 2,

fyx|z(y�x|z) =
∫

fyxx∗|z(y�x�x∗|z)dx∗

=
∫

fy|xx∗z(y|x�x∗� z)fxx∗|z(x�x∗|z)dx∗

mailto:yhu@jhu.edu
mailto:smschenn@uchicago.edu
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=
∫

fy|x∗(y|x∗)fxx∗|z(x�x∗|z)dx∗

=
∫

fy|x∗(y|x∗)fx|x∗z(x|x∗� z)fx∗|z(x∗|z)dx∗

=
∫

fy|x∗(y|x∗)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗�

This establishes Equation (5) of the theorem. We now show the uniqueness of
the solution.

Let the operators Lx|z�Lx|x∗ , and Lx∗|z� be given by Definition 1, and let

Ly;x|z: G(Z) �→ G(X ) with Ly;x|zg ≡
∫

fyx|z(y� ·|z)g(z)dz�
�y;x∗ : G(X ∗) �→ G(X ∗) with �y;x∗g ≡ fy|x∗(y|·)g(·)�

The notation Ly;x|z emphasizes that y is regarded as a parameter on which
Ly;x|z depends, while the operator itself maps functions of z onto functions of
x. The �y;x∗ operator is a “diagonal” operator since it is just a multiplication
by a function (for a given y), that is, [�y;x∗g](x∗) = fy|x∗(y|x∗)g(x∗). By calcu-
lating Ly;x|zg for an arbitrary g ∈ G(Z), we rewrite Equation (5) as an operator
equivalence relationship,

[Ly;x|zg](x) =
∫

fyx|z(y�x|z)g(z)dz(12)

=
∫ ∫

fyx�x∗|z(y�x�x∗|z)dx∗g(z)dz

=
∫ ∫

fx|x∗(x|x∗)fy|x∗(y|x∗)fx∗|z(x∗|z)dx∗g(z)dz

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)
∫

fx∗|z(x∗|z)g(z)dz dx∗

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)[Lx∗|zg](x∗)dx∗

=
∫

fx|x∗(x|x∗)[�y;x∗Lx∗|zg](x∗)dx∗

= [Lx|x∗�y;x∗Lx∗|zg](x)�
where we have used (i) Equation (5), (ii) an interchange of the order of in-
tegration (justified by Fubini’s theorem), (iii) the definition of Lx∗|z , (iv) the
definition of �y;x∗ operating on the function [Lx∗|zg], and (v) the definition of
Lx|x∗ operating on the function [�y;x∗Lx∗|zg].
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Equation (12) thus implies the operator equivalence (which holds over the
domain G(Z))

Ly;x|z =Lx|x∗�y;x∗Lx∗|z�(13)

By integration over y and noting that
∫
Y Ly;x|zµ(dy)=Lx|z and

∫
Y �y;x∗µ(dy)=

I, the identity operator, we similarly get

Lx|z = Lx|x∗Lx∗|z�(14)

Since Lx|x∗ is injective (by Assumption 3), Equation (14) can be written as

Lx∗|z =L−1
x|x∗Lx|z�(15)

The domain of the inverse is guaranteed to be dense in the range of Lx|z be-
cause the results of the inversion L−1

x|x∗Lx|z yield a well-defined integral opera-
tor Lx∗|z . Moreover, the operator equivalence (15) holds for the same domain
space G(Z) as in (14) because the inverse operator was applied from the left
side of Equation (14). The expression (15) for Lx∗|z can be substituted into
Equation (13) to yield

Ly;x|z =Lx|x∗�y;x∗L−1
x|x∗Lx|z�(16)

As shown in Lemma 1 below, the fact that Lz|x is injective (by Assumption 3)
implies that the inverse L−1

x|z can be applied “from the right” on each side of
Equation (16) to yield

Ly;x|zL−1
x|z = Lx|x∗�y;x∗L−1

x|x∗�(17)

where the operator equivalence holds over a dense subset of the domain space
G(X ). The equivalence can then be extended to the whole domain space G(X )
by the standard extension procedure for linear operators.

The operator Ly;x|zL−1
x|z is defined in terms of densities of the observable vari-

ables x, y , and z, and can therefore be considered known. Equation (17) states
that the known operator Ly;x|zL−1

x|z admits a spectral decomposition that takes
the form of an eigenvalue–eigenfunction decomposition.6 The eigenvalues of
the Ly;x|zL−1

x|z operator are given by the “diagonal elements” of the �y;x∗ opera-
tor (i.e., {fy|x∗(y|x∗)} for a given y and for all x∗) while the eigenfunctions of the
Ly;x|zL−1

x|z operator are given by the kernel of the integral operator Lx|x∗ , that is,

6A spectral decomposition of an operator T takes the form of an eigenvalue–eigenfunction
decomposition when (T − λI) is not one-to-one for all eigenvalues λ in the spectrum. This can
be verified to be the case here, because all eigenfunctions fx|x∗(·|x∗) belong to G(X ) and are
mapped to 0 under (T − λI). An example of a spectral decomposition that is not an eigenvalue–
eigenfunction decomposition would be one where some of the eigenfunctions lie outside the
space of functions considered (e.g., can only be reached by a limiting process).
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{fx|x∗(·|x∗)} for all x∗. To establish identification of the unobserved functions of
interest fy|x∗(y|x∗) and fx|x∗(·|x∗), we need to show that the decomposition (17)
is unique.

Theorem XV.4.5 in Dunford and Schwartz (1971) provides necessary and
sufficient conditions for the existence of a unique representation of the so-
called spectral decomposition of a linear operator. In particular, if a bounded
operator T can be written as T =A+N , where A is an operator of the form

A=
∫
σ

λP(dλ)�(18)

where P is a projection-valued measure7 supported on the spectrum σ , a sub-
set of the complex plane, and N is a “quasi-nilpotent” operator commuting
with A, then this representation is unique.

The result is applicable to our situation (with T = Ly;x|zL−1
x|z) in the special

case where N = 0 and σ ⊂ R. The spectrum σ is simply the range of fy|x∗(y|x∗),
that is, {fy|x∗(y|x∗) : x∗ ∈ X ∗}. Since the largest element of the spectrum is
bounded (by Assumption 1), the operator T is indeed bounded in the sense
required by Dunford and Schwartz’s result.8

In our situation, the projection-valued measure P assigned to any subset Λ
of R is

P(Λ) =Lx|x∗IΛL
−1
x|x∗�

where the operator IΛ is defined via

[IΛg](x∗)= 1(fy|x∗(y|x∗) ∈Λ)g(x∗)�

An equivalent way to define P(Λ) is by introducing the subspace

S(Λ)= span{fx|x∗(·|x∗) :x∗ such that fy|x∗(y|x∗) ∈ Λ}(19)

for any subset Λ of the spectrum σ . The projection P(Λ) is then uniquely
defined by specifying that its range is S(Λ) and that its null space is S(σ\Λ).

The fact that
∫
σ
λP(dλ) = Lx|x∗�y;x∗L−1

x|x∗ , thus connecting Equation (17)
with Equation (18), can be shown by noting that

∫
σ

λP(dλ) ≡
∫
σ

λ

(
d

dλ
P([−∞�λ])

)
dλ

= Lx|x∗

(∫
σ

λ
dI[−∞�λ]

dλ
dλ

)
L−1

x|x∗�

7Just like a real-valued measure assigns a real number to each set in some field, a projection-
valued measure assigns a projection operator to each set in some field (here, the Borel σ-field).
A projection operator Q is one that is idempotent, that is, QQ = Q.

8As explained in Section XV.4 of Dunford and Schwartz (1971).
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where the operator in parentheses can be obtained by calculating its effect on
some function g(x∗),

[∫
σ

λ
dI[−∞�λ]

dλ
dλg

]
(x∗) =

∫
σ

λ
d

dλ
1(fy|x∗(y|x∗) ∈ [−∞�λ])g(x∗)dλ

=
∫
σ

λδ(λ− fy|x∗(y|x∗))g(x∗)dλ

= fy|x∗(y|x∗)g(x∗)= [�y;x∗g](x∗)�

where we have used the fact that the generalized differential of a step
function 1(λ ≤ 0) is a Dirac delta9 δ(λ), as defined by the property that∫
δ(λ − λ0)h(λ)dλ = h(λ0) for any function h(λ) continuous at λ = λ0 and,

in particular, for h(λ) = λ. Hence, we can indeed conclude that
∫
σ
λP(dλ) =

Lx|x∗�y;x∗L−1
x|x∗ .

Having established uniqueness of the decomposition (18) does not yet imply
that the representation (17) is unique. The situation is analogous to standard
matrix diagonalization:

(i) Each eigenvalue λ is associated with a unique subspace S({λ}) for S(·)
as defined in Equation (19). However, there are multiple ways to select a basis
of functions whose span defines that subspace.

(a) Each basis function can always be multiplied by a constant.
(b) Also, if S({λ}) has more than one dimension (i.e., if λ is degener-

ate), a new basis can be defined in terms of linear combinations of functions of
the original basis.

(ii) There is a unique mapping between λ and S({λ}), but one is free to
index the eigenvalues by some other variable (here x∗) and represent the diag-
onalization by a function λ(x∗) and the family of subspaces S({λ(x∗)}). The
choice of the mapping λ(x∗) is not unique. For matrices, it is sufficient to
place the eigenvectors in the correct order. For operators, once the order of
the eigenfunctions is set, it is still possible to parametrize them in multiple
ways (e.g., index them by x∗ or by (x∗)3), as illustrated in the supplementary
material (Hu and Schennach (2008)).

Issue (i)(a) is avoided because the requirement that
∫
fx|x∗(x|x∗)dx= 1 sets

the scale of the eigenfunctions.
Issue (i)(b) above, is handled via Assumption 4. The idea is that the operator

Lx|x∗ that defines the eigenfunctions does not depend on y , while the eigenval-
ues given by fy|x∗(y|x∗) do. Hence, if there is an eigenvalue degeneracy that in-
volves two eigenfunctions fx|x∗(·|x∗

1) and fx|x∗(·|x∗
2) for some value of y , we can

look for another value of y that does not exhibit this problem to resolve the

9This derivation can alternatively be written in terms of Lebesgue–Stieltjes integrals, which
avoids the need to explicitly introduce delta functions, but this is notationally cumbersome.
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ambiguity. Formally, this can be shown as follows. Consider a given eigenfunc-
tion fx|x∗(·|x∗) and let D(y�x∗)= {x̃∗ : fy|x∗(y|x̃∗)= fy|x∗(y|x∗)}, the set of other
values of x∗ that index eigenfunctions sharing the same eigenvalue. Any linear
combination of functions fx|x∗(·|x̃∗) for x̃∗ ∈ D(y�x∗) is a potential eigenfunc-
tion of Ly;x|zL−1

x|z . However, if v(x∗)≡ ⋂
y∈Y span({fx|x∗(·|x̃∗)}x̃∗∈D(y�x∗)) is one di-

mensional, then the set v(x∗) will uniquely specify the eigenfunction fx|x∗(·|x∗)
(after normalization to integrate to 1). We now proceed by contradiction and
show that if v(x∗) is not one dimensional, then Assumption 4 is violated. In-
deed, if v(x∗) has more than one dimension, it must contain at least two eigen-
functions, say fx|x∗(·|x∗) and fx|x∗(·|x̃∗). This implies that

⋂
y∈Y D(y�x∗) must at

least contain the two points x∗ and x̃∗. By the definition of D(y�x∗), we must
have that fy|x∗(y|x∗) = fy|x∗(y|x̃∗) for all y ∈ Y , thus violating Assumption 4.
(The qualification that the set on which the densities differ must have positive
probability merely accounts for the fact that densities that differ on a set of
zero probability actually represent the same density.)

Next, Assumption 5 resolves the ordering/indexing ambiguity (issue (ii)
above), because if one considers another variable x̃∗ related to x∗ through
x∗ =R(x̃∗), we have

M[fx|x̃∗(·|x̃∗)] =M
[
fx|x∗(·|R(x̃∗))

] =R(x̃∗)�

which is only equal to x̃∗ if R is the identity function. Having shown that
fy|x∗(y|x∗) and fx|x∗(x|x∗) are uniquely determined, we can then show that
fx∗|z(x∗|z) is uniquely determined, since Lx∗|z = L−1

x|x∗Lx|z , where Lx|x∗ is now
known and where Lx|z is also known because its kernel is an observed density.

The second conclusion of the theorem is obtained by noting that

fyxz(y�x� z) = fyx|z(y�x|z)fz(z)

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)fx∗|z(x∗|z)dx∗ fz(z)

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)fx∗z(x
∗� z)dx∗

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)fx∗(x∗)fz|x∗(z|x∗)dx∗

=
∫

fx|x∗(x|x∗)fy�x∗(y�x∗)fz|x∗(z|x∗)dx∗

and showing that fx|x∗ , fyx∗ , and fz|x∗ are uniquely determined from fyxz .
First, we have already shown that fx|x∗(x|x∗) is identified from fyx|z(y�x|z)
(and therefore from fyxz(y�x� z)). By Equation (15), fx∗|z(x∗|z) is also iden-
tified. Next, fx∗(x∗) = ∫

fx∗|z(x∗|z)fz(z)dz, where fz(z) is observed. Then
fz|x∗(z|x∗) = fx∗|z(x∗|z)fz(z)/fx∗(x∗) and, finally, fy�x∗(y�x∗) = fy|x∗(y|x∗) ×
fx∗(x∗). Hence the solution to Equation (6) is unique. Q.E.D.
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LEMMA 1: Under Assumption 1, if Lz|x is injective, then L−1
x|z exists and is

densely defined over G(X ) (for G =L1, L1
bnd).

PROOF: Under Assumption 1, injectivity of Lz|x implies injectivity of L†
x|z ,

the adjoint of Lx|z . This follows from arguments similar to those given after
Equation (1) and the fact that g(·)/fx(·) ∈ G∗(X ), where G∗(X ) denotes the
dual space of G(X ), implies that g ∈ G(X ).

Next, Lx|z can be shown to be injective when viewed as a mapping of R(L†
x|z)

into G(X ), where R(L†
x|z) denotes the closure in G(Z) of the range of L†

x|z .

Indeed, by Lemma VI.2.8 in Dunford and Schwartz (1971), R(L†
x|z) is the or-

thogonal complement of the null space of Lx|z , denoted N (Lx|z). It follows that
L−1

x|z exists.
By Lemma VI.2.8 in Dunford and Schwartz (1971) again, R(Lx|z) is the or-

thogonal complement of N (L†
x|z), but since L†

x|z is injective, N (L†
x|z) = {0}.

Hence, R(Lx|z) = G(X ) and L−1
x|z is therefore defined on a dense subset of

G(X ). Q.E.D.
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This supplementary material contains some of the more technical details omitted
from the main paper. First, the asymptotic theory of the proposed sieve maximum like-
lihood estimator is fully developed, providing suitable regularity conditions, a nonpara-
metric consistency result, and a semiparametric asymptotic normality and root n con-
sistency result. Second, we provide an example that shows the necessity, for identifica-
tion purposes, of our location constraint assumption regarding the measurement error.
Third, a detailed example that illustrates the implementation of this location constraint
with linear sieves is given. Finally, additional simulation results are reported.

S1. ASYMPTOTICS

LET US FIRST RECALL the assumptions needed for identification.

ASSUMPTION 1: The joint density of y and x�x∗� z admits a bounded density
with respect to the product measure of some dominating measure µ (defined on
Y) and the Lebesgue measure on X × X ∗ × Z . All marginal and conditional
densities are also bounded.

ASSUMPTION 2: (i) fy|xx∗z(y|x�x∗� z) = fy|x∗(y|x∗) for all (y�x�x∗� z) ∈ Y ×
X ×X ∗ ×Z and (ii) fx|x∗z(x|x∗� z)= fx|x∗(x|x∗) for all (x�x∗� z) ∈X ×X ∗ ×Z .

ASSUMPTION 3: The operators Lx|x∗ and Lz|x are injective (for either G =L1 or
G =L1

bnd).

ASSUMPTION 4: For all x∗
1�x

∗
2 ∈ X ∗, the set {y : fy|x∗(y|x∗

1) �= fy|x∗(y|x∗
2)} has

positive probability (under the marginal of y) whenever x∗
1 �= x∗

2.

ASSUMPTION 5: There exists a known functional M such that M[fx|x∗(·|x∗)] =
x∗ for all x∗ ∈X ∗.

Our sieve estimator is based on the following expression for the observed
density (following Theorem 1 in the main text):

fyx|z(y�x|z;α0) =
∫
X ∗

fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗�(S1)

1Susanne M. Schennach acknowledges support from the National Science Foundation via
grant SES-0452089. The authors would like to thank Lars Hansen, James Heckman, Marine Car-
rasco, Maxwell Stinchcombe, and Xiaohong Chen, as well as seminar audiences at various univer-
sities, at the Cemmap/ESRC Econometric Study Group Workshop on Semiparametric Methods,
and at the Econometric Society 2006 Winter Meetings for helpful comments.
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2 Y. HU AND S. M. SCHENNACH

The unknown α0 in the density function fyx|z includes θ0 and density func-
tions fx|x∗ and fx∗|z , that is, α0 = (θ0� fx|x∗� fx∗|z)T . The estimation procedure
basically consists of replacing fx|x∗ and fx∗|z (and fy|x∗ if it contains an infinite-
dimensional nuisance parameter η) by truncated series approximations and
optimizing all parameters within a semiparametric maximum likelihood frame-
work. The number of terms kept in the series approximations is allowed to
grow with sample size at a controlled rate.

Our asymptotic analysis relies on standard smoothness restrictions (e.g., Ai
and Chen (2003)) on the unknown functions η, fx|x∗ , and fx∗|z . To describe
them, let ξ ∈ V ⊂ R

d , a= (a1� � � � � ad)
T � and

∇ag(ξ)≡ ∂a1+···+adg(ξ)

∂ξ
a1
1 · · · ∂ξad

d

denote the (a1 + · · · + ad)th derivative. Let ‖ · ‖E denote the Euclidean norm.
Let γ denote the largest integer satisfying γ > γ. The Hölder space Λγ(V) of
order γ > 0 is a space of functions g :V �→ R such that the first γ derivative
is bounded, and the γth derivative are Hölder continuous with the exponent
γ − γ ∈ (0�1], that is,

max
a1+···+ad=γ

|∇ag(ξ)− ∇ag(ξ′)| ≤ c(‖ξ − ξ′‖E)
γ−γ

for all ξ, ξ′ ∈ V and some constant c� The Hölder space becomes a Banach
space with the Hölder norm as follows:

‖g‖Λγ = sup
ξ∈V

|g(ξ)| + max
a1+···+ad=γ

sup
ξ �=ξ′∈V

|∇ag(ξ)− ∇ag(ξ′)|
(‖ξ − ξ′‖E)

γ−γ
�

To facilitate the treatment of functions defined on noncompact domains, we
follow the technique suggested in Chen, Hong, and Tamer (2005), introduc-
ing a weighting function of the form ω(ξ) = (1 + ‖ξ‖2

E)
−ς/2, ς > γ > 0, and

defining a weighted Hölder norm as ‖g‖Λγ�ω ≡ ‖g̃‖Λγ for g̃(ξ)≡ g(ξ)ω(ξ). The
corresponding weighted Hölder space is denoted by Λγ�ω(V), while a weighted
Hölder ball can be defined as Λγ�ω

c (V) ≡ {g ∈Λγ�ω(V) :‖g‖Λγ�ω ≤ c <∞}.
We assume the functions η, fx|x∗� and fx∗|z belong to the sets M, F1, and F2,

respectively, defined below.

ASSUMPTION 6: η ∈ Λγ1�ω
c (U) with γ1 > 1.2

ASSUMPTION 7: f1 ∈ Λγ1�ω
c (X × X ∗) with γ1 > 1 and

∫
X f1(x|x∗)dx = 1 for

all x∗ ∈X ∗.

2If η is a density function, certain restrictions should be added to Assumption 6 analogous to
those in Assumptions 8 and 7.
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ASSUMPTION 8: f2 ∈ Λγ1�ω
c (X ∗ ×Z) with γ1 > 1 and

∫
X ∗ f2(x

∗|z)dx∗ = 1 for
all z ∈Z .

M= {η(·� ·) : Assumption 6 holds}�
F1 = {f1(·|·) : Assumptions 3, 5, and 7 hold}�
F2 = {f2(·|·) : Assumptions 3 and 8 hold}�

The condition ‖f‖Λγ1 �ω ≤ c <∞ is necessary for the method of sieves, which
we will use in the next step. In principle, one can solve for the true value α0 =
(θ0� fx|x∗� fx∗|z)T as

α0 = arg max
α=(θ�f1�f2)

T ∈A
E

(
ln

∫
X ∗

fy|x∗(y|x∗;θ)f1(x|x∗)f2(x
∗|z)dx∗

)
�

where A = Θ×F1 ×F2 with Θ = B ×M. Let pkn
j (·) be a sequence of known

univariate basis functions, such as power series, splines, Fourier series, and
so forth. To approximate functions of two variables, we use a tensor–product
linear sieve basis, denoted by pkn(·� ·) = (pkn

1 (·� ·), pkn
2 (·� ·), � � � , pkn

kn
(·� ·))T . In

the sieve approximation, we consider η, f1, and f2 in finite-dimensional spaces
Mn, F1n, and F2n, where3

Mn = {η(ξ1� ξ2)= pkn(ξ1� ξ2)
Tδ for all δ

s.t. Assumption 6 holds}�
F1n = {f (x|x∗)= pkn(x�x∗)Tβ for all β

s.t. Assumptions 3, 5, and 7 hold}�
F2n = {f (x∗|z)= pkn(x∗� z)Tγ for all γ

s.t. Assumptions 3 and 8 hold}�
Therefore, we replace M×F 1 ×F2 with Mn ×F1n ×F2n in the optimization
problem and then estimate α0 by α̂n as

α̂n = (θ̂n� f̂1n� f̂2n)
T

= arg max
α=(θ�f1�f2)

T ∈An

1
n

n∑
i=1

ln
∫
X ∗

fy|x∗(yi|x∗;θ)f1(xi|x∗)f2(x
∗|zi)dx∗�

where An = Θn ×F1n ×F2n with Θn = B ×Mn. In practice, the above integral
can be conveniently carried out through either one of a number of numerical

3For simplicity, the notation pkn(·� ·) implicitly assumes that the sieves for η, f (x|x∗), and
f (x∗|z) are the same, although this can be easily relaxed.
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techniques, including Gaussian quadrature, Simpson’s rules, importance sam-
pling, or Markov chain Monte Carlo. In the sequel, we simply assume that this
integral can be evaluated, for a given sample and a given truncated sieve, with
a numerical accuracy that is far better than the statistical noise associated with
the estimation procedure.

This setup is the same as in Shen (1997). We also use techniques described
in Ai and Chen (2003) to state more primitive regularity conditions. In their
paper, there are two sieve approximations: One is used to directly estimate the
conditional mean as a function of the unknown parameter; the other is the
sieve approximation of the infinite-dimensional parameter estimated through
the maximization procedure. Our setup is, in some ways, simpler than in Ai and
Chen (2003), because all the unknown parameters in α are estimated through a
single-step semiparametric sieve MLE (maximum likelihood estimator). Since
our estimator takes the form of a semiparametric sieve estimator, the very gen-
eral treatment of Shen (1997) and Chen and Shen (1998) can be used to estab-
lish asymptotic normality and root n consistency under a very wide variety of
conditions, including dependent and nonidentically distributed data. However,
for the purposes of simplicity and conciseness, this section provides specific
sufficient regularity conditions for the independent and identically distributed
(i.i.d.) case.

The restrictions in the definitions of F1n and F2n are easy to impose on a
sieve estimator. We have the sieve expressions of f1 and f2 as

f1(x|x∗)=
in∑
i=0

jn∑
j=0

βijpi(x− x∗)pj(x
∗)�

f2(x
∗|z)=

in∑
i=0

jn∑
j=0

γijpi(x
∗ − z)pj(z)�

where pi(·) are user-specified basis functions. Define kn = (in + 1)(jn + 1) and
assume that in/jn is bounded and bounded away from zero for all n. We also
define the projection of the true value α0 onto the space An associated with kn,

Πnα ≡ αn

≡ arg max
αn=(θ�f1�f2)

T ∈An

E

(
ln

∫
X ∗

fy|x∗(y|x∗;θ)f1(x|x∗)f2(x
∗|z)dx∗

)
�

and we let the smoothing parameter kn → ∞ as the sample size n → ∞. The
restriction

∫
X f1(x|x∗)dx = 1 in the definition of F1n implies

∑jn
j=0(

∑in
i=0 βij ×∫

E pi(ε)dε)pj(x
∗) = 1 for all x∗, where ε = x − x∗. Suppose p0(·) is the

only constant in pj(·)� That equation implies that
∑in

i=0 βi0

∫
E pi(ε)dε = 1 and∑in

i=0 βij

∫
E pi(ε)dε = 0 for j = 1�2� � � � � jn� Similar restrictions can be found
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for
∫
X ∗ f2(x

∗|z)dx∗ = 1. Moreover, the identification assumption, Assump-
tion 5, also implies restrictions on the sieve coefficients. For example, con-
sider the zero mode case. If the mode is unique and not at a boundary, we then
have ∂

∂x
fx|x∗(x|x∗)= 0 if and only if x = x∗� The restriction ∂

∂x
fx|x∗(x|x∗)|x=x∗ = 0

in the definition of F1n implies
∑jn

j=0(
∑in

i=0 βij(∂pi(0))/∂x)qj(x
∗) = 0� Since it

must hold for all x∗, we have additional jn constraints
∑in

i=0 βij
∂pi(0)
∂x

= 0 for
j = 1�2� � � � � jn� Similar restrictions can be found for the zero mean and the
zero median cases. In all three cases, Assumption 5 can be expressed as linear
restrictions on β, which are easy to implement. See Section S4 for an explicit
expression for the restrictions in the case where Fourier series are used in the
sieve approximation.

S1.1. Consistency

We use the results in Newey and Powell (2003) to show consistency of the
sieve estimator. Define D≡ (y�x� z) for y ∈Y , x ∈X , and z ∈Z . The random
variables x, y , and z can have unbounded support R. Following Ai and Chen
(2003), we first show consistency under a strong norm ‖ · ‖s as a stepping stone
to establishing a convergence rate under a suitably constructed weaker norm.
Let

‖α‖s = ‖b‖E + ‖η‖∞�ω + ‖f1‖∞�ω + ‖f2‖∞�ω�

where ‖g‖∞�ω ≡ supξ |g(ξ)ω(ξ)| with ω(ξ) = (1 + ‖ξ‖2
E)

−ς/2, ς > γ1 > 0. We
make the following assumptions:

ASSUMPTION 9: (i) The data {(Yi�Xi�Zi)
n
i=1} are i.i.d. (ii) The density of D ≡

(y�x� z)� fD, satisfies
∫
ω(D)−2fD(D)dD<∞.

ASSUMPTION 10: (i) b0 ∈ B, a compact subset of R
b. (ii) Assumptions 6–8 hold

for (b�η� f1� f2) in a neighborhood of α0 (in the norm ‖ · ‖s).

ASSUMPTION 11: (i) E[(ln fyx|z(D))2] is bounded. (ii) There exists a mea-
surable function h1(D) with E{(h1(D))2} < ∞ such that, for any α = (θ� f 1�

f 2)
T ∈A,

∣∣∣∣f
|1|
yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣ ≤ h1(D)�

where f |1|
yx|z(D�α� ω̄) is defined as d

dt
fyx|z(D;α + tω̄)|t=0 with each linear term,

that is, d
dθ
fy|x∗� f 1, and f 2, replaced by its absolute value, and ω(ξ�x�x∗� z)= [1�

ω−1(ξ)� ω−1((x�x∗)T )� ω−1((x∗� z)T )]T with ξ ∈ U . (The explicit expression of
f |1|
yx|z(D�α� ω̄) can be found in Equation (S6) in the proof of Lemma 2.)
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ASSUMPTION 12: ‖Πnα0 − α0‖s = o(1) (as kn → ∞) and kn/n → 0.

Assumption 9 is commonly used in cross-sectional analyses. Assump-
tion 9(ii) is a typical condition on the tail behavior on the density, analogous to
Assumption 3.2 in Chen, Hong, and Tamer (2005). Assumption 10 imposes re-
strictions on the parameter space. Detailed discussions on this assumption can
be found in Gallant and Nychka (1987). Assumption 11 imposes an envelope
condition on the first derivative of the log likelihood function and guarantees
a Hölder continuity property for the log likelihood. Assumption 12 states that
the sieve can approximate the true α0 arbitrarily well, to control the bias, while
ensuring that the number of terms in the sieve grows slower than the sample
size, to control the variance. We show consistency in the following lemma.

LEMMA 2: Under Assumptions 1–5 and 9–12, we have ‖α̂n − α0‖s = op(1)�

See Section S2 for the proof.
Consistency under the norm ‖·‖s is the first step needed to obtain the asymp-

totic properties of the estimator. To proceed toward our main semiparametric
asymptotic normality and root n consistency result, we then need to establish
convergence at the rate op(n

−1/4) in a suitable norm. To achieve this conver-
gence rate under relatively weak assumptions, we employ a device introduced
by Ai and Chen (2003) and employ a weaker norm ‖ · ‖, under which op(n

−1/4)
convergence is easier to establish.

We now recall the concept of pathwise derivative, which is central to the
asymptotics of sieve estimators. Consider α1�α2 ∈A, and assume the existence
of a continuous path {α(τ) :τ ∈ [0�1]} in A such that α(0)= α1 and α(1)= α2.
If ln fyx|z(D� (1 − τ)α0 + τα) is continuously differentiable at τ = 0 for almost
all D and any α ∈ A, the pathwise derivative of ln fyx|z(D�α0) at α0 evaluated
at α− α0 can be defined as

d ln fyx|z(D�α0)

dα
[α− α0] ≡ d ln fyx|z(D� (1 − τ)α0 + τα)

dτ

∣∣∣∣
τ=0

almost everywhere (under the probability measure of D). The pathwise deriva-
tive is a linear functional that approximates ln fyx|z(D�α0) in the neighborhood
of α0, that is, for small values of α − α0. Note that this functional can also be
evaluated for other values of the argument. For instance, by linearity,

d ln fyx|z(D�α0)

dα
[α1 − α2]

≡ d ln fyx|z(D�α0)

dα
[α1 − α0] − d ln fyx|z(D�α0)

dα
[α2 − α0]�
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In our setting, the pathwise derivative at α0 is (from Equation (S1))

d ln fyx|z(D�α0)

dα
[α− α0]

= 1
fyx|z(D�α0)

{∫
X ∗

d

dθ
fy|x∗(y|x∗;θ0)

× [θ− θ0]fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗

+
∫
X ∗

fy|x∗(y|x∗;θ0)[f1(x|x∗)− fx|x∗(x|x∗)]fx∗|z(x∗|z)dx∗

+
∫
X ∗

fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)[f2(x
∗|z)− fx∗|z(x∗|z)]dx∗

}
�

Note that the denominator fyx|z(D�α0) is nonzero with probability 1. We use
the Fisher norm ‖ · ‖ defined as

‖α1 − α2‖ ≡
√
E

{(
d ln fyx|z(D�α0)

dα
[α1 − α2]

)2}
(S2)

for any α1, α2 ∈ A. To establish the asymptotic normality of b̂n, one typically
needs α̂n to converge to α0 at a rate faster than n−1/4. We need the following
assumptions to obtain this rate of convergence:

ASSUMPTION 13: ‖Πnα0 − α0‖ = O(k−γ1/d1
n ) = o(n−1/4) with d1 = 2 and

γ1 > d1, for γ1 as in Assumptions 6–8.4

ASSUMPTION 14: (i) There exists a measurable function c(D) with E{c(D)4}<
∞ such that | ln fyx|z(D;α)| ≤ c(D) for all D and α ∈ An. (ii) ln fyx|z(D;α) ∈
Λγ�ω

c (Y ×X ×Z) for some constant c > 0 with γ > dD/2� for all α ∈ An� where
dD is the dimension of D.

ASSUMPTION 15: A is convex in α0 and fy|x∗(y|x∗;θ) is pathwise differentiable
at θ0.

ASSUMPTION 16: For some c1� c2 > 0,

c1E

(
ln

fyx|z(D;α0)

fyx|z(D;α)
)

≤ ‖α− α0‖2 ≤ c2E

(
ln

fyx|z(D;α0)

fyx|z(D;α)
)

holds for all α ∈An with ‖α− α0‖s = o(1)�

4In general, d1 = max{dim(U)�dim(X ×X ∗)�dim(X ∗ ×Z)}�
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ASSUMPTION 17: (knn
−1/2 lnn) sup(ξ1�ξ2)∈(U∪(X×X ∗)∪(X ∗×Z)) ‖pkn(ξ1� ξ2)‖2

E =
o(1).

ASSUMPTION 18: lnN(ε�An) = O(kn ln(kn/ε)), where N(ε�An) is the mini-
mum number of balls (in the ‖ · ‖s norm) needed to cover the set An.

Assumption 13 controls the approximation error of Πnα0 to α0 and the se-
lection of kn. It is usually satisfied by using sieve functions such as power se-
ries, Fourier series, and so forth (see Newey (1995, 1997) for more discussion).
Assumption 14 imposes an envelope condition and a smoothness condition
on the log likelihood function. Assumption 15 implies that the norm ‖ · ‖ is
well defined. Define K(α�α0)= E(ln (fyx|z(D;α0))/(fyx|z(D;α))), which is the
Kullback–Leibler discrepancy. Assumption 16 implies that ‖·‖ is a norm equiv-
alent to the (K(·� ·))1/2 discrepancy on An. Under the norm ‖ · ‖, the sieve es-
timator can be shown to converge at the requisite rate op(n

−1/4)�

THEOREM 2: Under Assumptions 1–5 and 9–18, we have ‖α̂n − α0‖ =
op(n

−1/4).

The proof is given in Section S2.
It may appear surprising at first that such a fast convergence rate could be

obtained in a nonparametric estimation problem that includes, as a special
case, models traditionally handled through deconvolution approaches and that
are known to be prone to slow convergence issues (e.g., Fan (1991)). These is-
sues can be circumvented, thanks to the fact that the Fisher norm downweighs
each dimension of the estimation error α̂ − α0 according to its own standard
error. In other words, more error is tolerated along the dimensions that are
more difficult to estimate. Assumption 16 does impose a limit on how weak the
Fisher norm can be, however. In the limit where the Fisher norm becomes sin-
gular (i.e., completely insensitive to some dimensions of α), the local quadratic
behavior of the objective function is lost and Assumption 16 no longer holds.

Thanks to the Fisher norm’s downweighting property, as the number of
terms in the sieve increases, each new degree of freedom that gets included
in the estimation problem does not appear increasingly difficult to estimate.
A relatively fast convergence in the Fisher norm is therefore possible and
does not conflict with slower convergence obtained in some other norm. Natu-
rally, for the same reason, convergence in the Fisher norm is not a very useful
concept for the sole purpose of establishing a nonparametric convergence re-
sult. In nonparametric settings, convergence in some well-understood Lp norm
would be a more useful result. However, our ultimate goal is to establish the
asymptotics for some parametric component of our semiparametric model. In
that context, the Fisher norm is a very useful device that was employed in Ai
and Chen (2003) and that guarantees the important intermediate results of
op(n

−1/4) convergence under rather weak conditions.
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S1.2. Asymptotic Normality

We follow the semiparametric MLE framework of Shen (1997) to show the
asymptotic normality of the estimator b̂n. We define the inner product

〈v1� v2〉 = E

{(
d ln fyx|z(D�α0)

dα
[v1]

)(
d ln fyx|z(D�α0)

dα
[v2]

)}
�(S3)

Obviously, the weak norm ‖ · ‖ defined in Equation (S2) can be induced by this
inner product. Let V denote the closure of the linear span of A−{α0} under
the norm ‖ · ‖ (i.e., V = R

db ×W with W ≡M×F1 ×F2 − {(η0� fx|x∗� fx∗|z)T })
and define the Hilbert space (V� 〈·� ·〉) with its inner product defined in Equa-
tion (S3).

As shown above, we have

d ln fyx|z(D�α0)

dα
[α− α0]

= d ln fyx|z(D�α0)

db
[b− b0] + d ln fyx|z(D�α0)

dη
[η−η0]

+ d ln fyx|z(D�α0)

df1
[f1 − fx|x∗ ] + d ln fyx|z(D�α0)

df2
[f2 − fx∗|z]�

For each component bj of b, j = 1�2� � � � � db, we define w∗
j ∈W as

w∗
j ≡ (η∗

j � f
∗
1j� f

∗
2j)

T

= arg min
(η�f1�f2)

T ∈W
E

{(
d ln fyx|z(D�α0)

dbj

− d ln fyx|z(D�α0)

dη
[η]

− d ln fyx|z(D�α0)

df1
[f1] − d ln fyx|z(D�α0)

df2
[f2]

)2}
�

Define w∗ = (w∗
1�w

∗
2� � � � �w

∗
db
),

d ln fyx|z(D�α0)

df
[w∗

j ] = d ln fyx|z(D�α0)

dη
[η∗

j ] + d ln fyx|z(D�α0)

df1
[f ∗

1j]

+ d ln fyx|z(D�α0)

df2
[f ∗

2j]�

d ln fyx|z(D�α0)

df
[w∗] =

(
d ln fyx|z(D�α0)

df
[w∗

1]� � � � �

d ln fyx|z(D�α0)

df
[w∗

db
]
)
�



10 Y. HU AND S. M. SCHENNACH

and the row vector

Gw∗(D) = d ln fyx|z(D�α0)

dbT
− d ln fyx|z(D�α0)

df
[w∗]�(S4)

We want to show that b̂n has a multivariate normal distribution asymptoti-
cally. It is well known that if λTb has a normal distribution for all λ, then b has
a multivariate normal distribution. Therefore, we consider λTb as a functional
of α. Define s(α) ≡ λTb for λ ∈ R

db and λ �= 0. If E[Gw∗(D)TGw∗(D)] is finite
positive definite, then the function s(α) is bounded, and the Riesz representa-
tion theorem implies that there exists a representor v∗ such that

s(α)− s(α0)≡ λT(b− b0)= 〈v∗�α− α0〉(S5)

for all α ∈A. Here v∗ ≡ (v∗
b

v∗
f

)
, v∗

b = J−1λ, and v∗
f = −w∗v∗

b with J =E[Gw∗(D)T ×
Gw∗(D)]� Under suitable assumptions made below, the Riesz representor v∗

exists and is bounded.
As mentioned in Begun, Hall, Huang, and Wellner (1983), v∗

f corresponds
to a worst possible direction of approach to (η0� fx|x∗� fx∗|z) for the problem
of estimating b0. In the language of Stein (1956), v∗

f yields the most difficult
one-dimensional subproblem. Equation (S5) implies that it is sufficient to find
the asymptotic distribution of 〈v∗� α̂n − α0〉 to obtain that of λT(b̂n − b0) under
suitable conditions. We denote

d ln fyx|z(D�α)

dα
[v] ≡ d ln fyx|z(D�α+ τv)

dτ

∣∣∣∣
τ=0

a.s. D for any v ∈ V�

For a sieve MLE, we have that

〈v∗� α̂n − α0〉 = 1
n

n∑
i=1

d ln fyx|z(Di�α0)

dα
[v∗] + op(n

−1/2)�

Note that ((d ln fyx|z(D�α))/dα[v∗])=Gw∗(D)J−1λ� Thus, by the classical cen-
tral limit theorem, the asymptotic distribution of

√
n(b̂n − b0) is N(0� J−1). In

fact, the matrix J is the efficient information matrix in this semiparametric es-
timation, under suitable regularity conditions given in Shen (1997).

We now present the sufficient conditions for the
√
n-normality of b̂n. Define

N0n ≡ {α ∈An :‖α− α0‖s ≤ υn�‖α− α0‖ ≤ υnn
−1/4}

with υn = o(1) and define N0 the same way with An replaced by A. Note that
N0 still depends on n. For α ∈ N0n we define a local alternative α∗(α�εn) =
(1 − εn)α + εn(v

∗ + α0) with εn = o(n−1/2). Let Πnα
∗(α�εn) be the projection

of α∗(α�εn) onto An.

ASSUMPTION 19: (i) E[Gw∗(D)TGw∗(D)] exists, is bounded, and is positive-
definite. (ii) b0 ∈ int(B)�
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ASSUMPTION 20: There exists a measurable function h2(D) with
E{(h2(D))2}< ∞ such that for any α= (θ� f 1� f 2)

T ∈N0,

∣∣∣∣f
|1|
yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣
2

+
∣∣∣∣f

|2|
yx|z(D�α� ω̄)

fyx|z(D�α)

∣∣∣∣ <h2(D)�

where f |2|
yx|z(D�α� ω̄) is defined as (d2/dt2)fyx|z(D;α + tω̄)|t=0 with each linear

term, that is, d
dθ
fy|x∗� d2

dθ2 fy|x∗� f 1, and f 2, replaced by its absolute value. (The
explicit expression of f |2|

yx|z(D�α� ω̄) can be found in Equation (S17) in the proof
of Theorem 3.)

We introduce the following notations for the next assumption: for f̃ = η, f1,
or f2,

d ln fyx|z(D�α0)

df̃
[pkn]

=
(
d ln fyx|z(D�α0)

df̃
[pkn

1 ]� d ln fyx|z(D�α0)

df̃
[pkn

2 ]�

� � � �
d ln fyx|z(D�α0)

df̃
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

db

=
(
d ln fyx|z(D�α0)

db1
�
d ln fyx|z(D�α0)

db2
� � � � �

d ln fyx|z(D�α0)

dbdb

)T

�

d ln fyx|z(D�α0)

dα
[pkn]

=
((

d ln fyx|z(D�α0)

db

)T

�

(
d ln fyx|z(D�α0)

dη
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df1
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df2
[pkn]

)T)T

�

and

Ωkn =E

{(
d ln fyx|z(D�α0)

dα
[pkn]

)(
d ln fyx|z(D�α0)

dα
[pkn]

)T}
�

ASSUMPTION 21: The smallest eigenvalue of the matrix Ωkn is bounded away
from zero, and ‖pkn

j ‖∞�ω <∞ for j = 1�2� � � � �kn uniformly in kn.
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ASSUMPTION 22: There is a v∗
n = (

v∗
b

−(Πnw∗)v∗
b

) ∈ An−{Πnα0} such that ‖v∗
n −

v∗‖ = o(n−1/4)�

ASSUMPTION 23: For all α ∈ N0n, there exists a measurable function h4(D)
with E|h4(D)| <∞ such that

∣∣∣∣ d
4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

≤ h4(D)‖α− α0‖4
s �

Assumption 19 is essential to obtain root n consistency since it ensures that
the asymptotic variance exists and that b0 is an “interior” solution. Assump-
tion 20 imposes an envelope condition on the second derivative of the log
likelihood function. This condition is related to the stochastic equicontinuity
condition, Condition A, in Shen (1997). The condition guarantees the linear
approximation of the likelihood function by its derivative near α0. That condi-
tion can be replaced by a stronger condition that fyx|z(D�α) is differentiable in
quadratic mean. Assumption 21 is similar to Assumption 2 in Newey (1997).
Intuitively, Assumptions 21 and 23 are used to characterizes the local quadratic
behavior of the criterion difference, that is, Condition B in Shen (1997), and
can be simplified to: for all α ∈N0n,

E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)
= 1

2
‖α− α0‖2(1 + o(1))�

Assumption 22 states that the representor can be approximated by the sieve
with an asymptotically negligible error, which is an important necessary con-
dition for the asymptotic bias of the sieve estimator itself to be asymptotically
negligible. A detailed discussion of these assumptions can be found in Shen
(1997) and Chen and Shen (1998). By Theorem 1 in Shen (1997), we show that
the estimator for the parametric component b0 is

√
n consistent and asymptot-

ically normally distributed.

THEOREM 3: Under Assumptions 1–5, 9–16, and 19–23,
√
n(b̂n − b0)

d→
N(0� J−1), where J =E[Gw∗(D)TGw∗(D)] for Gw∗(D) given in Equation (S4).

See Section S2 for the proof.
Achieving the level of generality provided by Theorem 3 forces us to state

some of our regularity conditions is a relatively high-level form, as is often done
in the sieve estimation literature (e.g., Ai and Chen (2003), Shen (1997), Chen
and Shen (1998)). However, once the type of sieve and the particular form
of fy|x∗(y|x∗;θ) are specified, more primitive assumptions can be formulated,
using some of the techniques found in Blundell, Chen, and Kristensen (2007),
for instance.
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It is known that obtaining a root n consistency and asymptotic normality
result for a semiparametric estimator in the context of classical errors-in-
variables models demands a balance between the smoothness of the mea-
surement error and of the densities (or regression functions) of interest (e.g.,
Taupin (1998), Schennach (2004)). Our treatment, when specialized to classi-
cal measurement errors, does not evade this requirement. When the measure-
ment error densities are “too smooth” and the functions of interest are “not
smooth enough” to guarantee root n consistency and asymptotic normality,
this will manifests itself as a violation of one of our assumptions. If the fail-
ure is first order, that is, it is due to the inexistence of an influence function
with bounded variance, then a bounded Riesz representor v∗ will fail to exist
and Assumptions 19 and 22 will not hold. If the failure is of a “higher-order”
nature, that is, when nonlinear remainder terms in the estimator’s stochastic
expansion are not negligible, then any one of Assumption 20, 21, or 23 will not
hold. Intuitively, this represents a case where the local quadratic behavior of
the objective function is lost.

S2. PROOFS

PROOF OF LEMMA 2: First note that Assumptions 1–5 imply that the model
is identified so that α0 is uniquely defined. We prove the results by checking the
conditions in Theorem 4.1 in Newey and Powell (2003). Their Assumption 1
on identification of the unknown parameter is assumed directly. We assume
kn → ∞ and kn/n → 0 in Assumption 12 so that the relevant part of their As-
sumption 2 is satisfied. Note that we do not have any “plug-in” nonparametric
part in the likelihood function. The first part of their Condition 3 is assumed in
our Assumption 11(i). For the rest of their Condition 3, we consider pathwise
derivative

ln fyx|z(D;α1)− ln fyx|z(D;α2)

= d ln fyx|z(D�α0)

dα
[α1 − α2]

= d

dt
ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

�

where α0 = (θ� f 1� f 2)
T is a mean value between α1 and α2. Letting α1 =

(θ1� f11� f21)
T and α2 = (θ2� f12� f22)

T � we have

d

dt
ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

= 1
fyx|z(D�α0)

{∫
d

dθ
fy|x∗(y|x∗;θ)(θ1 − θ2)f 1(x|x∗)f 2(x

∗|z)dx∗
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+
∫

fy|x∗(y|x∗;θ)[f11 − f12]f 2(x
∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)f 1(x|x∗)[f21 − f22]dx∗
}
�

The bounds can be found as∣∣∣∣ ddt ln fyx|z(D;α0 + t(α1 − α2))

∣∣∣∣
t=0

(S6)

≤ 1
|fyx|z(D�α0)|

{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ1 − θ2‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)|dx∗ ‖f11 − f12‖s

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗ ‖f21 − f22‖s

}

≤ 1
|fyx|z(D�α0)|

{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗
}
‖α− α0‖s

≡
∣∣∣∣f

|1|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣‖α− α0‖s�

where f |1|
yx|z(D�α0� ω̄) is defined as d

dt
fyx|z(D;α0 + tω̄)|t=0 with each linear term,

that is, d
dθ
fy|x∗� f 1, and f 2, replaced by its absolute value. The function ω̄ is

defined as

ω(ξ�x�x∗� z)= [
1�ω−1(ξ)�ω−1((x�x∗)T )�ω−1((x∗� z)T )

]T
with ξ ∈ U � Therefore, our Assumption 11(ii), that is, E((f |1|

yx|z(D�α0� ω̄))/

(fyx|z(D�α0)))
2 ≤ E(h1(D))2 < ∞� implies that ln fyx|z(D�α) is Hölder contin-

uous in α. Therefore, their Condition 3 holds. Assumption 10 guarantees that
A is compact under the norm ‖ · ‖s, which is their Condition 4. From Chen,
Hansen, and Scheinkman (1997), for any α ∈A

‖α−Πnα‖s ≤ ‖η−Πnη‖s + ‖f1 −Πnf1‖s + ‖f2 −Πnf2‖s(S7)

= O(k−γ1/d1
n )
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with d1 = 2� Therefore, their Condition 5 is satisfied with our Assumption 12�
A similar proof can also be found in that of Lemma 3.1 and Proposition 3.1 in
Ai and Chen (2003). Q.E.D.

PROOF OF THEOREM 2: First note that Assumptions 2–5 imply that the
model is identified so that α0 is uniquely defined. We prove the results by
checking the conditions in Theorem 3.1 in Ai and Chen (2003). Note that there
are two different estimated criterion functions, that is, Ln(α) and L̂n(α) in
their Appendix B (Ai and Chen (2003, p. 1825)). In our setup, we do not have
that distinction and their proof still applies with Ln(α)= 1

n

∑n

i=1 ln fyx|z(Di�α)�
From the proof of Lemma 2, Assumptions 11 and 13 imply their Condi-
tion 3.5(iii), that is, ‖α − Πnα‖ = o(n−1/4). Assumptions 3.6(iii), 3.7, and 3.8
in Chen and Shen (1998) are assumed directly in our Assumptions 14, 17,
and 18, respectively. According to its expression, fyx|z(D;α) is pathwise dif-
ferentiable at α0 if fy|x∗(y|x∗;θ) is pathwise differentiable at θ0. Therefore, As-
sumption 15 implies their Condition 3.9(i). Condition 3.9(ii) in Ai and Chen
(2003) is assumed directly in Assumption 16. Thus, the results of consistency
follow. Q.E.D.

PROOF OF THEOREM 3: First note that Assumptions 1–5 imply that the
model is identified so that α0 is uniquely defined. We prove the results by
checking the conditions in Theorem 1 in Shen (1997). We define the remainder
term as

r[α− α0�D] ≡ ln fyx|z(D�α)− ln fyx|z(D�α0)

− d ln fyx|z(D�α0)

dα
[α− α0]�

We also define µn(g) = 1
n

∑n

i=1[g(D�α) − Eg(D�α)] as the empirical process
induced by g. We have the sieve estimator α̂n for α0 and a local alternative
α∗(̂αn� εn) = (1 − εn)̂αn + εn(v

∗ + α0) with εn = o(n−1/2). Let Πnα
∗(α�εn) be

the projection of α∗(α�εn) to An.
First of all, the Riesz representor v∗ is finite because the matrix J is invertible

and w∗ is bounded. Second, Equation (4.2) in Shen (1997), that is,

∣∣∣∣s(α)− s(α0)− ds(α)

dα
[α− α0]

∣∣∣∣ ≤ c‖α− α0‖ω

as ‖α− α0‖ → 0, is required by Theorem 1 in that paper and holds trivially in
our paper with ω = ∞ because we have s(α) ≡ λTb.
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Third, Condition A in Shen (1997) requires

sup
α∈N0n

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D]) =Op(ε
2
n)�

By the definition of r[α− α0�D], we have

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D])

= µn

{(
ln fyx|z(D�α)− ln fyx|z(D�α0)− d ln fyx|z(D�α0)

dα
[α− α0]

)

−
(

ln fyx|z(D�Πnα
∗(α�εn))− ln fyx|z(D�α0)

− d ln fyx|z(D�α0)

dα
[Πnα

∗(α�εn)− α0]
)}

= µn

(
ln fyx|z(D�α)− ln fyx|z(D�Πnα

∗(α�εn))

− d ln fyx|z(D�α0)

dα
[α−Πnα

∗(α�εn)]
)
�

The Taylor expansion gives

ln fyx|z(D�α)− ln fyx|z(D�Πnα
∗(α�εn))

= d ln fyx|z(D�Πnα
∗(α�εn))

dα
[α−Πnα

∗(α�εn)]

+ 1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[α−Πnα

∗(α�εn)�α−Πnα
∗(α�εn)]�

where α̃1 is a mean value between α and Πnα
∗(α�εn). Therefore, we have

µn

(
r[α− α0�D] − r[Πnα

∗(α�εn)− α0�D])(S8)

= µn

(
d ln fyx|z(D�Πnα

∗(α�εn))

dα
[α−Πnα

∗(α�εn)]

− d ln fyx|z(D�α0)

dα
[α−Πnα

∗(α�εn)]
)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[α−Πnα

∗(α�εn)�α−Πnα
∗(α�εn)]

)
�

Since

α−Πnα
∗(α�εn)= εnΠn(α− α0 − v∗)�
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the right-hand side of Equation (S8) equals

= µn

(
d2 ln fyx|z(D�α1)

dαdαT
[α−Πnα

∗(α�εn)�Πnα
∗(α�εn)− α0]

)
(S9)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[εnΠn(α− α0 − v∗)�εnΠn(α− α0 − v∗)]

)

= µn

(
d2 ln fyx|z(D�α1)

dαdαT
[εnΠn(α− α0 − v∗)�Πnα

∗(α�εn)− α0]
)

+µn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[εnΠn(α− α0 − v∗)�εnΠn(α− α0 − v∗)]

)

= εnµn

(
d2 ln fyx|z(D�α1)

dαdαT

× [Πn(α− α0 − v∗)�εnΠn(v
∗ + α0 − α)+ (α− α0)]

)

+ ε2
nµn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)

= εnµn

(
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�α− α0]

)

− ε2
nµn

(
1
2
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)

+ ε2
nµn

(
1
2
d2 ln fyx|z(D� α̃1)

dαdαT
[Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]

)

=A1 +A2 +A3�

where α1 is a mean value between α0 and Πnα
∗(α�εn). We consider the term

A1 as

sup
α∈N0n

A1 = εn sup
α∈N0n

µn

(
d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)�α− α0]

)
�(S10)

Let α1 = (θ� f 1� f 2) and vn = Πn(α − α0 − v∗) = ([vn]θ� [vn]f1� [vn]f2). We con-
sider the term∣∣∣∣ sup

α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[vn�α− α0]

∣∣∣∣(S11)

≤ sup
α∈N0n

∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]
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− d ln fyx|z(D�α1)

dα
[vn]d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣
≤ sup

α∈N0n

(∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣
+

∣∣∣∣d ln fyx|z(D�α1)

dα
[vn]

∣∣∣∣
∣∣∣∣d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣
)
�

We need to find the bounds on three terms in the absolute value. We have

d ln fyx|z(D�α1)

dα
[α− α0](S12)

= 1
fyx|z(D�α1)

{∫
d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)f 1(x|x∗)f 2(x

∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)[f1 − fx|x∗ ]f 2(x
∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)f 1(x|x∗)[f2 − fx∗|z]dx∗
}
�

Therefore, the term |(d ln fyx|z(D�α1))/dα[α− α0]| can be bounded through

∣∣∣∣d ln fyx|z(D�α1)

dα
[α− α0]

∣∣∣∣(S13)

≤ 1
|fyx|z(D�α1)|

{∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ− θ0‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)f 2(x
∗|z)|dx∗ ‖f1 − fx|x∗‖s

+
∫

|fy|x∗(y|x∗;θ)f 1(x|x∗)ω−1(x∗� z)|dx∗ ‖f2 − fx∗|z‖s

}

≤
∣∣∣∣f

|1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖α− α0‖s�

where f |1|
yx|z(D�α1� ω̄) is defined in Assumption 11 and Equation (S6). Similarly,

we also have

∣∣∣∣d ln fyx|z(D�α1)

dα
[vn]

∣∣∣∣ ≤
∣∣∣∣f

|1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖vn‖s(S14)
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with

‖vn‖s = ‖Πn(α− α0 − v∗)‖s ≤ ‖v∗
n‖s + ‖Πn(α− α0)‖s < ∞�(S15)

We then consider the term 1/(fyx|z(D�α1))(d
2fyx|z(D�α1))/(dαdαT)[vn� (α −

α0)] as

1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)](S16)

= 1
fyx|z(D�α1)

{∫
d2

dθ2
fy|x∗(y|x∗;θ)[vn]θ(θ− θ0)

× f 1(x|x∗)f 2(x
∗|z)dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)[vn]θ[f1 − fx|x∗ ]f 2(x

∗|z)dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)[vn]θf 1(x|x∗)[f2 − fx∗|z]dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)[vn]f1f 2(x

∗|z)dx∗

+
∫

fy|x∗(y|x∗;θ)[vn]f1[f2 − fx∗|z]dx∗

+
∫

d

dθ
fy|x∗(y|x∗;θ)(θ− θ0)f 1(x|x∗)[vn]f2 dx

∗

+
∫

fy|x∗(y|x∗;θ)[f1 − fx|x∗ ][vn]f2 dx
∗
}
�

Therefore, the term |1/(fyx|z(D�α1))(d
2fyx|z(D�α1))/(dαdαT)[vn� (α − α0)]|

can be bounded through
∣∣∣∣ 1
fyx|z(D�α1)

d2fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣(S17)

≤ 1
|fyx|z(D�α1)|

{∫ ∣∣∣∣ d2

dθ2
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(ξ)

× f 1(x|x∗)f 2(x
∗|z)

∣∣∣∣dx∗ ‖[vn]θ‖s‖θ− θ0‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖[vn]θ‖s‖f1 − fx|x∗‖s
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+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

× ‖[vn]θ‖s‖f2 − fx∗|z‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

× ‖θ− θ0‖s‖[vn]f1‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗‖[vn]f1‖s‖f2 − fx∗|z‖s

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

× ‖θ− θ0‖s‖[vn]f2‖s

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗

× ‖f1 − fx|x∗‖s‖[vn]f2‖s

}

≤ 1
|fyx|z(D�α1)|

{∫ ∣∣∣∣ d2

dθ2
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(ξ)

× f 1(x|x∗)f 2(x
∗|z)

∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)ω−1(x�x∗)f 2(x

∗|z)
∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗

+
∫ ∣∣∣∣ d

dθ
fy|x∗(y|x∗;θ)ω−1(ξ)f 1(x|x∗)ω−1(x∗� z)

∣∣∣∣dx∗

+
∫

|fy|x∗(y|x∗;θ)ω−1(x�x∗)ω−1(x∗� z)|dx∗
}
‖α− α0‖s‖vn‖s

≡
∣∣∣∣f

|2|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣‖α− α0‖s‖vn‖s�
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where f |2|
yx|z(D�α1� ω̄) is defined in Assumption 20. Plugging the bounds in

Equations (S13), (S14), and (S17) back in to Equation (S11), we have

∣∣∣∣ sup
α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[vn� (α− α0)]

∣∣∣∣

≤ sup
α1∈N0n

[∣∣∣∣f
|1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣
2

+
∣∣∣∣f

|2|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣
]
‖α− α0‖s‖vn‖s

≤ h2(D)‖α− α0‖s‖vn‖s�

By the envelope condition in Assumption 20, Equation (S10) becomes

sup
α∈N0n

A1

= εnOp(n
−1/2)

×
√
E

(
sup
α∈N0n

d2 ln fyx|z(D�α1)

dαdαT
[Πn(α− α0 − v∗)� (α− α0)]

)2

≤ εnOp(n
−1/2)

√
E(h2(D))2‖α− α0‖s‖vn‖s

=Op(ε
2
n)

with ‖α − α0‖s = o(1). The last two terms, A2 and A3 in Equation (S9), are
bounded as

∣∣∣ sup
α∈N0n

A2

∣∣∣ = ε2
n

∣∣∣∣ sup
α∈N0n

µn

(
1
2
d2 ln fyx|z(D�α1)

dαdαT

× [Πn(α− α0 − v∗)�Πn(α− α0 − v∗)]
)∣∣∣∣

≤ ε2
n

1
2
µn

(∣∣∣∣f
|1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣
2

+
∣∣∣∣f

|2|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

∣∣∣∣
)

× ‖Πn(α− α0 − v∗)‖2
s

≤ ε2
n

1
2
Op

(
E|h2(D)|)‖Πn(α− α0 − v∗)‖2

s

= Op(ε
2
n)�

The same result holds for | supα∈N0n
A3| and, therefore, Condition A in Shen

(1997) holds.
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Fourth, Condition B requires

sup
α∈N0n

[
E

(
ln

fyx|z(D�α0)

fyx|z(D�Πnα∗(α�εn))

)
−E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)

− 1
2
(‖α∗(α�εn)− α0‖2 − ‖α− α0‖2

)] =O(ε2
n)�

As Corollary 2 in Shen (1997) points out, Condition B can be replaced by Con-
dition B′ as

E

(
ln

fyx|z(D�α0)

fyx|z(D�α)

)
= 1

2
‖α− α0‖2(1 + o(hn))

with some positive sequence {hn} → 0 as n → ∞. We consider the Taylor ex-
pansion

E[ln fyx|z(D�α)− ln fyx|z(D�α0)](S18)

=E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)

+ 1
2
E

(
d2 ln fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)

+ 1
6
E

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

where α is a mean value between α and α0.
As for the leading terms on the right-hand side, we have η satisfying∫

Y(∂/∂η)fy|x∗(y|x∗;θ)dy = 0,
∫
Y(∂

2/∂η2)fy|x∗(y|x∗;θ)dy = 0� and∫
Y(∂

3/∂η3)fy|x∗(y|x∗;θ)dy = 0 for all θ ∈ Θ, and we have f1 and f2 satisfying∫
X f1(x|x∗)dx = 1 and

∫
X ∗ f2(x

∗|z)dx = 1. It is then tedious but straightfor-
ward to show 5

E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
= 0�

E

(
1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)
= 0�

5We abuse the notation (d3 ln fyx|z)/dα3 to stand for the third order derivative with respect to
a vector α�
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E

[
1

fyx|z(D�α0)

d3fyx|z(D�α0)

dα3
[α− α0�α− α0�α− α0]

]
= 0�

Therefore,

E

(
d2 ln fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

)

=E

[
1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α�α] −

(
d ln fyx|z(D�α0)

dα
[α− α0]

)

×
(
d ln fyx|z(D�α0)

dα
[α− α0]

)]

= −E

[(
d ln fyx|z(D�α0)

dα
[α− α0]

)(
d ln fyx|z(D�α0)

dα
[α− α0]

)]

= −‖α− α0‖2�

Therefore, Equation (S18) becomes

E[ln fyx|z(D�α)− ln fyx|z(D�α0)](S19)

= −1
2
‖α− α0‖2 + 1

6
E

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

For the second term on the right-hand side, we have

d3

dt3
ln fyx|z(D;α0 + t(α− α0))

∣∣∣∣
t=0

=E

[
1

fyx|z(D�α0)

d3fyx|z(D�α0)

dα3
[α− α0�α− α0�α− α0]

]

− 3E
[
d ln fyx|z(D�α0)

dα
[α− α0] 1

fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT

× [α− α0�α− α0]
]

+ 2E
(
d ln fyx|z(D�α0)

dα
[α− α0]

)3

= B1 +B2 +B3�
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Again, it is straightforward to show B1 = 0. The term B2 is bounded as

E

[
d ln fyx|z(D�α0)

dα
[α− α0]

× 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

]

≤E

[∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
×

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣
]

≤
[
E

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣
2]1/2

×
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
2]1/2

=
[
E

∣∣∣∣ 1
fyx|z(D�α0)

d2fyx|z(D�α0)

dαdαT
[α− α0�α− α0]

∣∣∣∣
2]1/2

‖α− α0‖

≤
[
E

∣∣∣∣f
|2|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣
2]1/2

‖α− α0‖2
s‖α− α0‖

≤ [
E|h2(D)|2

]1/2‖α− α0‖2
s‖α− α0‖�

For the term B3, we have

B3 ≤ E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
3

≤
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
4]1/2

×
[
E

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
2]1/2

=
[
E

(
d ln fyx|z(D�α0)

dα
[α− α0]

)4]1/2

‖α− α0‖

≤
[
E

∣∣∣∣f
|1|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣
4]1/2

‖α− α0‖2
s‖α− α0‖

≤ [
E|h1(D)|4

]1/2‖α− α0‖2
s‖α− α0‖�
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Note that E|h2(D)|2 < ∞ implies E|h1(D)|4 < ∞. Therefore, Equation (S19)
becomes

E[ln fyx|z(D�α)− ln fyx|z(D�α0)]

= −1
2
‖α− α0‖2 +O(‖α− α0‖2

s‖α− α0‖)

+ 1
24

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

�

By Assumption 23, we have

E
d4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

≤E

∣∣∣∣ d
4

dt4
ln fyx|z(D;α+ t(α− α0))

∣∣∣∣
t=0

∣∣∣∣
≤E|h4(D)|‖α− α0‖4

s

=O(‖α− α0‖4
s )

and, therefore,

E[ln fyx|z(D�α0)− ln fyx|z(D�α)] = 1
2
‖α− α0‖2(1 +O(hn))(S20)

with

hn = ‖α− α0‖2
s

‖α− α0‖ + ‖α− α0‖4
s

‖α− α0‖2
�

Next, we show that ‖α− α0‖2
s /‖α− α0‖ → 0 as n → ∞. We will need the

convergence rate of the sieve coefficients. Therefore, we define for α ∈N0n,

α = (bT �Πnη�Πnf1�Πnf2)
T

= (bT �pkn(ξ1� ξ2)
Tδ�pkn(x�x∗)Tβ�pkn(x∗� z)Tγ)T �

Πnα0 = (bT
0 �Πnη0�Πnfx|x∗�Πnfx∗|z)T

= (bT
0 �p

kn(ξ1� ξ2)
Tδ0�p

kn(x�x∗)Tβ0�p
kn(x∗� z)Tγ0)

T �

where pkn ’s are kn-by-1 vectors, that is, pkn(·� ·) = (pkn
1 (·� ·)�pkn

2 (·� ·)� � � � �
pkn

kn
(·� ·))T . Note that all the vectors are column vectors. We also define the

vector of the sieve coefficients as

αc = (bT �δT �βT �γT )T �

αc
0 = (bT

0 � δ
T
0 �β

T
0 �γ

T
0 )

T �
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We then have

α− α0 = α−Πnα0 +Πnα0 − α0

= ((bT − bT
0 )�p

kn(ξ1� ξ2)
T (δ− δ0)�

pkn(x�x∗)T (β−β0)�p
kn(x∗� z)T (γ − γ0))

+Πnα0 − α0�

Suppose that

‖α− α0‖ = O(n−1/4−ς0)

with some small ς0 > 0. By Assumption 13 and Equation (S7), we let

‖Πnα0 − α0‖s = O(k−γ1/d1
n )= O(n−1/4−ς)

for some small ς > ς0.
We then show ‖αc −αc

0‖E =O(n−1/4−ς0) from ‖α−α0‖ = O(n−1/4−ς0). For any
α ∈N0n, we have

∣∣‖α− α0‖ − ‖Πnα0 − α0‖
∣∣

≤ ‖α−Πnα0‖ ≤ ‖α− α0‖ + ‖Πnα0 − α0‖�
We have shown that Assumption 11 implies E|(f |1|

yx|z(D�α1� ω̄))/(fyx|z(D�

α1))|2 ≤ E|h1(D)|2 < ∞� We then have

‖Πnα0 − α0‖ ≤
√
E

(
f |1|
yx|z(D�α1� ω̄)

fyx|z(D�α1)

)2

‖Πnα0 − α0‖s

= O(‖Πnα0 − α0‖s)

≤ O(k−γ1/d1
n )

= O(n−1/4−ς)

and, therefore, for some constants 0 <C1�C2 < ∞,

C1‖α− α0‖ ≤ ‖α−Πnα0‖ ≤ C2‖α− α0‖�(S21)

Moreover, we define

d ln fyx|z(D�α0)

db

=
(
d ln fyx|z(D�α0)

db1
�
d ln fyx|z(D�α0)

db2
� � � � �

d ln fyx|z(D�α0)

dbdb

)T

�
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d ln fyx|z(D�α0)

dη
[pkn]

=
(
d ln fyx|z(D�α0)

dη
[pkn

1 ]�

d ln fyx|z(D�α0)

dη
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

dη
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

df1
[pkn]

=
(
d ln fyx|z(D�α0)

df1
[pkn

1 ]�

d ln fyx|z(D�α0)

df1
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

df1
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

df2
[pkn]

=
(
d ln fyx|z(D�α0)

df2
[pkn

1 ]�

d ln fyx|z(D�α0)

df2
[pkn

2 ]� � � � � d ln fyx|z(D�α0)

df2
[pkn

kn
]
)T

�

d ln fyx|z(D�α0)

dα
[pkn]

=
[(

d ln fyx|z(D�α0)

db

)T

�

(
d ln fyx|z(D�α0)

dη
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df1
[pkn]

)T

�

(
d ln fyx|z(D�α0)

df2
[pkn]

)T]T

�

With the notations above, we have

d ln fyx|z(D�α0)

dα
[α−Πnα0]

=
(
d ln fyx|z(D�α0)

db

)T

(b− b0)+
(
d ln fyx|z(D�α0)

dη
[pkn]

)T

(δ− δ0)

+
(
d ln fyx|z(D�α0)

df1
[pkn]

)T

(β−β0)
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+
(
d ln fyx|z(D�α0)

df2
[pkn]

)T

(γ − γ0)

=
(
d ln fyx|z(D�α0)

dα
[pkn]

)T

(αc − αc
0)

and

‖α−Πnα0‖2

=E

{(
d ln fyx|z(D�α0)

dα
[α−Πnα0]

)2}

= (αc − αc
0)

TE

{(
d ln fyx|z(D�α0)

dα
[pkn]

)(
d ln fyx|z(D�α0)

dα
[pkn]

)T}

× (αc − αc
0)

≡ (αc − αc
0)

TΩkn(α
c − αc

0)�

The matrix Ωkn is positive definite with its smallest eigenvalue bounded away
from zero uniformly in kn according to Assumption 21. Since ‖α − Πnα0‖ is
always finite, the largest eigenvalue of Ωkn is finite. Thus, we have for some
constants 0 <C1�C2 < ∞,

C1‖αc − αc
0‖E ≤ ‖α−Πnα0‖ ≤ C2‖αc − αc

0‖E�(S22)

Note that C1 and C2 are general constants that may take different values at
each appearance.

We then consider the ratio ‖α− α0‖2
s /‖α− α0‖. From Equations (S21) and

(S22), we have

‖α− α0‖ ≥ C1‖αc − αc
0‖E(S23)

and ‖αc − αc
0‖E = O(n−1/4−ς0). Assumption 21 implies ‖α − Πnα0‖2

s ≤ C2‖αc −
αc

0‖2
1, where ‖ · ‖1 is the L1 vector norm. Thus, we have

‖α− α0‖2
s ≤ ‖α−Πnα0‖2

s + ‖Πnα0 − α0‖2
s

≤ C2‖αc − αc
0‖2

1 +O(k−2γ1/d1
n )

≤ C2kn‖αc − αc
0‖2

E +O(n2(−1/4−ς))�

Since ‖αc − αc
0‖E =O(n−1/4−ς0) and ς > ς0, we have

‖α− α0‖2
s ≤ C2kn‖αc − αc

0‖2
E�(S24)

By Equations (S23) and (S24), we have

‖α− α0‖2
s

‖α− α0‖ ≤ C2kn‖αc − αc
0‖2

E

C1‖αc − αc
0‖E

≤ O(kn‖αc − αc
0‖E)�
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Assumption 13 requires k−γ1/d1
n = O(n−1/4−ς), that is, kn = n(1/4+ς)1/(γ1/d1). We

then have

kn‖αc − αc
0‖E =O

(
n−1/4(1−1/(γ1/d1))+ς(1/(γ1/d1))−ς0

) = o(1)

for ς < 1
4(γ1/d1 − 1)+ (γ1/d1)ς0 with γ1/d1 > 1 in Assumption 13. Therefore,

Equation (S20) holds with the positive sequence {hn} → 0 as n → ∞. That
means that Condition B′ in Shen (1997) holds.

Fifth, Condition C in Shen (1997) requires

sup
α∈N0n

‖α∗(α�εn)−Πnα
∗(α�εn)‖ = O(n−1/4εn)�

By definition, we have α∗(α�εn)= (1−εn)α+εn(v
∗ +α0) with α ∈N0n. There-

fore,

‖α∗(α�εn)−Πnα
∗(α�εn)‖

= εn‖v∗ + α0 −Πn(v
∗ + α0)‖

≤ εn‖v∗ −Πnv
∗‖ + εn‖α0 −Πnα0‖

=O(n−1/4εn)�

The last step is due to Assumption 22. Condition C also requires

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α∗(α�εn)−Πnα

∗(α�εn)]
)

=Op(ε
2
n)�(S25)

The left-hand side equals

εnµn

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)

+ εnµn

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)
�

By the envelope condition in Assumption 11, the first term (corresponding to
v∗) is

∣∣∣∣µn

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)∣∣∣∣

=
√
E

(
d ln fyx|z(D�α0)

dα
[v∗ − v∗

n]
)2

Op(n
−1/2)

= ‖v∗ − v∗
n‖Op(n

−1/2)

= op(n
−1/2)�
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and the second term (corresponding to α0) is

∣∣∣∣µn

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)∣∣∣∣

=
√
E

(
d ln fyx|z(D�α0)

dα
[α0 −Πnα0]

)2

Op(n
−1/2)

= ‖α0 −Πnα0‖Op(n
−1/2)

= op(n
−1/2)�

The last step is due to ‖α0 −Πnα0‖ = o(n−1/4). Therefore, Condition C in The-
orem 1 in Shen (1997) holds. Note that Condition C′ in Corollary 2 is also
satisfied, that is, ‖v∗

n − v∗‖ = o(n−1/4) and o(hn)‖α0 −Πnα0‖2 = op(n
−1/2).

Finally, Condition D in Shen (1997), that is,

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α− α0]

)
= op(n

−1/2)�

can be verified as follows: We first have

sup
α∈N0n

∣∣∣∣d ln fyx|z(D�α0)

dα
[α− α0]

∣∣∣∣
≤

∣∣∣∣ 1
fyx|z(D�α0)

∫
d

dθ
fy|x∗(y|x∗;θ0)ω

−1(ξ)fx|x∗(x|x∗)fx∗|z(x∗|z)dx∗
∣∣∣∣

× ‖θ− θ0‖s

+
∣∣∣∣ 1
fyx|z(D�α0)

∫
fy|x∗(y|x∗;θ0)ω

−1(x�x∗)fx∗|z(x∗|z)dx∗
∣∣∣∣

× ‖f1 − fx|x∗‖s

+
∣∣∣∣ 1
fyx|z(D�α0)

∫
fy|x∗(y|x∗;θ0)fx|x∗(x|x∗)ω−1(x∗� z)dx∗

∣∣∣∣
× ‖f2 − fx∗|z‖s

≤
∣∣∣∣f

|1|
yx|z(D�α0� ω̄)

fyx|z(D�α0)

∣∣∣∣‖α− α0‖s

≤ |h1(D)|‖α− α0‖s
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with E|h1(D)|2 < ∞ by the envelope condition in Assumption 11. We then
have

sup
α∈N0n

µn

(
d ln fyx|z(D�α0)

dα
[α− α0]

)

=
√
E

(
sup
α∈N0n

d ln fyx|z(D�α0)

dα
[α− α0]

)2

Op(n
−1/2)

≤
√
E|h1(D)|2‖α− α0‖sOp(n

−1/2)

= op(n
−1/2)�

Thus, Condition D in Theorem 1 in Shen (1997) holds. Since all the condi-
tions in Theorem 1 in Shen (1997) hold, the results of asymptotic normality
follow. Q.E.D.

S3. NONUNIQUENESS OF THE INDEXING OF THE EIGENVALUES

Let x∗ and x̃∗ be related through x∗ = R(x̃∗), where R(x̃∗) is a given piece-
wise differentiable function. We now show that, without Assumption 5, models
in which x∗ or x̃∗ is the unobserved true regressor are observationally equiva-
lent, because

Lx|x̃∗�y;x̃∗L−1
x|x̃∗ =Lx|x∗�y;x∗L−1

x|x∗�

where the operators �y;x̃∗ and Lx|x̃∗ are defined as

[�y;x̃∗g](x̃∗)= fy|x̃∗(y|x̃∗)g(x̃∗)�

[Lx|x̃∗g](x)=
∫

fx|x̃∗(x|x̃∗)g(x̃∗)dx̃∗�

We first note that the operators �y;x̃∗ and Lx|x̃∗ can also be written in terms of
fy|x∗ and fx|x∗ as

[�y;x̃∗g](x̃∗)= fy|x∗(y|R(x̃∗))g(x̃∗)�

[Lx|x̃∗g](x)=
∫

fx|x∗(x|R(x̃∗))g(x̃∗)dx̃∗�

It can be verified (by calculating Lx|x̃∗L−1
x|x̃∗g) that L−1

x|x̃∗ is given by

[L−1
x|x̃∗g](x̃∗) = r(x̃∗)[L−1

x|x∗g](R(x̃∗))�
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where r(x̃∗) = dR(x̃∗)/dx̃∗ whenever this differential exists and r(x̃∗) = 0 oth-
erwise.6 We can then calculate

[Lx|x̃∗�y;x̃∗L−1
x|x̃∗g](x)

=
∫

fx|x∗(x|R(x̃∗))fy|x∗(y|R(x̃∗))r(x̃∗)[L−1
x|x∗g](R(x̃∗))dx̃∗

=
∫

fx|x∗(x|R(x̃∗))fy|x∗(y|R(x̃∗))[L−1
x|x∗g](R(x̃∗))dR(x̃∗)

=
∫

fx|x∗(x|x∗)fy|x∗(y|x∗)[L−1
x|x∗g](x∗)dx∗

(substituting x∗ = R(x̃∗))

= [Lx|x∗�y;x∗L−1
x|x∗g](x)�

It follows that indexing the eigenfunctions by x̃∗ or x∗ produces observationally
equivalent models, but implies different joint densities of x and of the true
regressor (x∗ or x̃∗).

S4. RESTRICTIONS WITH FOURIER SERIES

As shown above, the sieve estimators are

f1(x|x∗)=
in∑
i=0

jn∑
j=0

βijpi(x− x∗)qj(x
∗)�

f2(x
∗|z)=

in∑
i=0

jn∑
j=0

γijpi(x
∗ − z)qj(z)�

Let z�x∗ ∈ [0� lx] and (x− x∗) ∈ [−le� le]. We use the Fourier series

pk(x− x∗) = cos
kπ

le
(x− x∗) or sin

kπ

le
(x− x∗)�

pk(x
∗ − z)= cos

kπ

lx
(x∗ − z) or sin

kπ

lx
(x∗ − z)�

and qk(x) = cos(kπ/lx)x� For simplicity, we consider the case where in = 3
and jn = 2. Longer series can be handled similarly. We have

f1(x|x∗) =
(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

6Since R(x̃∗) is piecewise differentiable, dR(x̃∗)/dx̃∗ exists almost everywhere and the points
where it does not will not affect the value of the integral.
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+
3∑

k=1

(
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π
lx

x∗
)

cos
kπ

le
(x− x∗)

+
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)

sin
kπ

le
(x− x∗)�

Consider the restriction
∫
X f1(x|x∗)dx= 1. We can show that

∫
X
f1(x|x∗)dx= 2le

(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

for all x∗. Therefore, a00 = 1/2le and a01 = a02 = 0. We can similarly find the
sieve expression of the function f2(x

∗|z) that satisfies
∫
X ∗ f2(x

∗|z)dx∗ = 1.
Next, we consider the identification restrictions on f1(x|x∗). First, in the zero

mode case, we have ∂
∂x
f1(x|x∗)|x=x∗ = 0 for all x∗ with

∂

∂x
f1(x|x∗)

∣∣∣∣
x=x∗

=
3∑

k=1

kπ

le

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)
�

Thus, the restrictions on the coefficients are

3∑
k=1

kbk0 =
3∑

k=1

kbk1 =
3∑

k=1

kbk2 = 0�

Second, if we make the zero mean assumption instead of the zero mode one,
we have

∫
X (x− x∗)f1(x|x∗)dx= 0 for all x∗ with
∫
X
(x− x∗)f1(x|x∗)dx

=
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)(

− 2l2
e

kπ
(−1)k

)
�

We have

3∑
k=1

(−1)k

k
bk0 =

3∑
k=1

(−1)k

k
bk1 =

3∑
k=1

(−1)k

k
bk2 = 0�

Third, if we make the zero median assumption, we have∫
X∩{x<x∗} fx|x∗(x|x∗)dx= 1

2 for all x∗ with
∫
X∩{x<x∗}

f1(x|x∗)dx
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= 1
2

+
3∑

k=1

(
bk0 + bk1 cos

π

lx
x∗ + bk2 cos

2π
lx

x∗
)
le
(−1)k − 1

kπ
�

Therefore,

3∑
k=1

(−1)k − 1
k

bk0 =
3∑

k=1

(−1)k − 1
k

bk1 =
3∑

k=1

(−1)k − 1
k

bk2 = 0�

Fourth, if x∗ is the 100th percentile of fx|x∗� we assume (x − x∗) ∈ [−le�0].
The sieve estimator of f1(x|x∗) is

f1(x|x∗) =
(
a00 + a01 cos

π

lx
x∗ + a02 cos

2π
lx

x∗
)

+
3∑

k=1

(
ak0 + ak1 cos

π

lx
x∗ + ak2 cos

2π
lx

x∗
)

cos
kπ

le

× (x− x∗)�

The restriction
∫
X∩{x<x∗} fx|x∗(x|x∗)dx= 1 for all x∗ is equivalent to the restric-

tions a00 = 1/le and a01 = a02 = 0�

S5. ADDITIONAL SIMULATIONS

EXAMPLE IV—Heteroskedastic Error with Zero Mean: Consider a mea-
surement error

x= x∗ + σ(x∗)ν(S26)

with x∗ ⊥ ν, E(ν) = 0, and σ(·) > 0 being an unknown nonstochastic func-
tion. These assumptions can also be written as E(x − x∗|x∗) = 0, that is, the
measurement error is the conditional mean independent of the true value.
The identification condition is also satisfied because it can be verified that
x∗ = ∫

xfx|x∗(x|x∗)dx. The error structure in the simulation is Fν(ν) = �(ν)
with σ(x∗)= 0�5 exp(−x∗)� The simulation results are in Table SI.

EXAMPLE V—Nonadditive Error with Zero Mode: An error equation like
(S26) is usually set up for convenience. The additive structure of (S26) with
x∗ ⊥ ν may not always be appropriate in applications. Therefore, we now con-
sider a nonseparable example, where it is more natural to specify fx|x∗(x|x∗)
directly for the purpose of generating the simulated data. Let

fx|x∗(x|x∗)= g(x�x∗)∫ ∞
−∞ g(x�x∗)dx

�
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TABLE SI

SIMULATION RESULTS

a = −1 b = 1

Mean Std. Dev. RMSE Mean Std. Dev. RMSE

Example I
Ignoring meas. error −0�7601 0.0759 0.2516 0.7601 0.0686 0.2495
Accurate data −0�9974 0.0823 0.0824 0.9989 0.0766 0.0766
Sieve MLE −0�9556 0.1831 0.1884 0.9087 0.1315 0.1601
Smoothing parameters: in = 6� jn = 6 in f1; in = 3� jn = 2 in f2

Example II
Ignoring meas. error −0�5167 0.0611 0.4871 0.5834 0.0590 0.4208
Accurate data −1�0010 0.0813 0.0813 1.0030 0.0761 0.0761
Sieve MLE −0�9232 0.2010 0.2152 0.9430 0.1440 0.1549
Smoothing parameters: in = 7� jn = 3 in f1; in = 3� jn = 2 in f2

Example III
Ignoring meas. error −0�6351 0.0734 0.3722 0.6219 0.0647 0.3836
Accurate data −1�0010 0.0802 0.0802 1.0020 0.0752 0.0753
Sieve MLE −0�9741 0.2803 0.2815 0.9342 0.2567 0.2650
Smoothing parameters: in = 8� jn = 8 in f1; in = 3� jn = 2 in f2

g(x�x∗)= exp
{
h(x∗)

[(
x− x∗

σ(x∗)

)
− exp

(
x− x∗

σ(x∗)

)]}
�

It is easy to show that fx|x∗ has the unique mode at x∗ for any h(x∗) > 0. Thus
the model is identified with this error structure. When h(x∗) = 1, this density
becomes the density generated by Equation (S26) with ν having an extreme
value distribution� Furthermore, the fact that identification holds for a general
h(x∗) means the independence assumption x∗ ⊥ ν in (S26) is not necessary. We
can deal with more general measurement error using the estimator in this pa-
per. In the simulation, we use σ(x∗)= 0�5 exp(−x∗) and h(x∗)= exp(−0�1x∗)�
The simulation results are in Table SI.

EXAMPLE VI—Nonadditive Error with Zero Median: We let the cumulative
distribution function that corresponds to fx|x∗ be

Fx|x∗(x|x∗)

= 1
π

arctan
{
h(x∗)

[
1
2

+ 1
2

exp
(
x− x∗

σ(x∗)

)
− exp

(
−x− x∗

σ(x∗)

)]}
+ 1

2

with h(x∗) > 0. Note that Fx|x∗(x∗|x∗) = 1
2 for any h(x∗). Moreover, this dis-

tribution is not symmetric around x∗, and x∗ is not the mode either. When
h(x∗) = 1, the error structure is the same as in (S26). In the simulation, we use
σ(x∗) = 0�5 exp(−x∗) and h(x∗) = exp(−0�1x∗). The simulation results are in
Table SI.
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