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Abstract

This paper provides a general solution to the problem of identification and estimation of nonlinear models with

misclassification error in a general discrete explanatory variable using instrumental variables. The misclassification error is

allowed to be correlated with all the explanatory variables in the model. It is not enough to identify the model by simply

generalizing the identification in the binary case with a claim that the number of restrictions is no less than that of the

unknowns. Such a claim requires solving a complicated nonlinear system of equations. This paper introduces a matrix

diagonalization technique which allows one to easily find the unique solution of the system. The solution shows that the

latent model can be expressed as an explicit function of directly observed distribution functions. Therefore, the latent

model is nonparametrically identifiable and directly estimable using instrumental variables. The results show that certain

monotonicity restrictions on the latent model may lead to its identification with virtually no restrictions on the

misclassification probabilities. An alternative identification condition suggests that the nonparametric identification may

rely on the belief that people always have a higher probability of telling the truth than of misreporting. The nonparametric

identification in this paper directly leads to a
ffiffiffi
n
p

-consistent semiparametric estimator. The Monte Carlo simulation and

empirical illustration show that the estimator performs well with a finite sample and real data.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Estimation of a general nonlinear model with measurement error in the covariates is a notoriously difficult
problem that has received considerable attention in the recent econometrics literature (relevant studies using
repeated measurements or instrumental variables include Hausman et al., 1991; Wang and Hsiao, 1995;
Newey, 2001; Li, 2002; Schennach, 2004, 2007). Measurement error in a continuous variable, such as wage or
income, is considered to be continuous, while the error in a discrete variable, such as education, marital status,
e front matter r 2007 Elsevier B.V. All rights reserved.
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or union status, is believed to be discrete. Discrete measurement error is also called misclassification error.
Most studies on misclassification error focus on the dichotomous case, avoiding clarifying identification and
estimation in the general discrete case, while many discrete variables have more than two possible values (see
Bound et al., 2001 for a survey). Using an instrumental variable, this paper achieves the nonparametric
identification of a nonlinear model with a general discrete explanatory variable that is subject to
misclassification error. The error is allowed to be correlated with all the explanatory variables in the model.
The identification procedure may lead to a

ffiffiffi
n
p

-consistent semiparametric estimator.
In general, a nonlinear model cannot be identified using misreported data without any further restrictions or

additional sample information. Some weak assumptions include the restrictions that the misclassification error
is independent of the dependent variable conditional on the true value and that the misclassification error is
not very large so that the misreported variable may still be positively correlated with the true value. More
restrictive assumptions include the restriction that the misclassification probabilities are independent of other
explanatory variables and, therefore, are constants. These assumptions are widely used in relevant studies,
such as Aigner (1973), Bollinger (1996), Kane et al. (1999), and Mahajan (2006). This paper adopts those weak
assumptions and allows the error to be correlated with all the explanatory variables.

The misclassification error in a dichotomous explanatory variable has been analyzed in a few studies. Aigner
(1973) and Bollinger (1996) consider regression models with misclassified binary regressors. Freeman (1984)
investigates the misclassification error in the union status in a longitudinal sample. Ramalho (2002) deals with
the presence of misclassification in the response variable in choice-based samples. Black et al. (2000) estimate
the slope coefficient in a regression model when a secondary measurement is available. Kane et al. (1999) and
Lewbel (2007) also use instruments to solve misclassification in treatment effect models. Two close studies on
misclassification in a dichotomous variable are Hui and Walter (1980) and Mahajan (2006), which use a
secondary measurement or an instrument to identify a nonlinear model that includes a mismeasured binary
regressor.

However, it is not clear how to extend the existing identification results in the dichotomous case to the
multi-value discrete case. For example, suppose the latent variable has k possible values. The misclassification
probability will have k � ðk � 1Þ unknown parameters if the misclassification error is independent of all other
variables conditional on the latent true value. Without that independence assumption, k � ðk � 1Þ unknown
density functions will need to be identified and estimated. A simple generalization of the identification results
in the binary case is to claim that the number of restrictions is no less than that of unknowns. Such a claim is
not enough to identify the latent model because it requires solving a complicated nonlinear system of
equations. The matrix diagonalization technique introduced in this paper allows one to easily find the unique
solution of the system once sufficient assumptions for point identification are imposed.

I will show the identification with misclassification in a general discrete variable under assumptions similar
to those in the existing literature. I compare the assumptions in the dichotomous case of Mahajan (2006) with
those in this paper. Certain useful results in this paper are also new in the dichotomous case. In the general
discrete case, Molinari (2003, 2005) also formalizes misclassification problems in matrix notation to greatly
facilitate identification analysis and provides the interval identification of parameters of interest. However, it is
not clear when and how the partial identification becomes the point identification. This paper shows that the
latent model and the misclassification error distribution are nonparametrically point-identified and directly
estimable when an instrumental variable is available.

The additional sample information used in this paper is an instrumental variable, which may also be treated
as a secondary measurement of the latent variable as in Li (2002) and Schennach (2004). Amemiya (1985a)
shows that IV estimators are generally biased in the estimation of nonlinear models. Under the assumption
that the measurement error vanishes when the sample size increases, Amemiya and Fuller (1988) and Carroll
and Stefanski (1990) obtain a consistent IV estimator for nonlinear models. The IV estimator for a polynomial
regression model is discussed in Hausman et al. (1991, 1995). Buzas (1997) derives an instrumental variable
estimator that is approximately consistent for general nonlinear models. Lewbel (1998) describes a consistent
estimator for a particularly specified latent variable model with instrumental variables and an exclusion
restriction. Newey (2001) and Schennach (2007) consider a nonlinear regression model using a prediction
equation in which an instrumental variable is independent of the prediction error. Most studies on IV
estimators focus on the continuous measurement error, on which certain independence restrictions are
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imposed. In this study, the measurement error is discrete so that the error cannot be independent of the latent
true value. Instead, I assume that the instrumental variable is independent of the dependent variable and the
measurement error, conditional on all the explanatory variables. These restrictions on the instrumental
variable are also widely used in relevant studies, such as Kane et al. (1999), Newey (2001), and Schennach
(2004, 2007).

This study shows that a nonlinear model with misclassification error is nonparametrically identified and
directly estimable when instrumental variables are available. One identification condition is that the latent
model satisfies a monotonicity condition, which holds in many popular models. An advantage of this
identification condition is that the restrictions on the misclassification probabilities are very weak. An
alternative identification condition suggests that the nonparametric identification may rely on the belief that
people always have a higher probability of telling the truth than of misreporting. The nonparametric
identification provides an explicit expression of the latent model as a function of the observed distributions,
and, therefore, directly leads to a nonparametric or semiparametric ‘‘plug-in’’ estimator.

The model considered in this paper contains three variables, y, x�, and w. The variable y is a dependent
variable, x� is the latent true discrete variable which is subject to misclassification error, and w is a vector of
other accurately measured independent variables. The misclassification error may be correlated with all the
independent variables. Suppose the conditional density of the dependent variable y on x� and w is

f yjx�wðyjx
�;wÞ.

The variables fy; x;w; zg are observed in an i.i.d. sample, where x is a proxy of x� and z is an instrumental
variable satisfying:

Assumption 1. f yjx�xzwðyjx
�; x; z;wÞ ¼ f yjx�wðyjx

�;wÞ.

Assumption 2. f xjx�zwðxjx
�; z;wÞ ¼ f xjx�wðxjx

�;wÞ.

These two assumptions are widely adopted in the relevant literature, such as Bollinger (1996), Kane et al.
(1999), and Mahajan (2006). Assumption 1 implies that the misclassified variable x and the instrumental
variable z do not contain any useful information on the dependent variable y beyond the true value x� and
covariates w. It also implies that the misclassification error in x is independent of the dependent variable y

conditional on x� and w. This type of measurement error is called nondifferential error. As discussed in Bound
et al. (2001, p. 3725), the nondifferential assumption is popular but strong. The correlation between the
dependent variable y and the measurement error may have two sources. One is the correlation between the
measurement error and other observables w, and the other is the correlation between the measurement error
and the unobservables (such as regression error in a regression model). Because Assumption 1 allows the first
type of correlation, i.e., the correlation between the measurement error and other observables w, Assumption
1 is weaker than the one discussed in Bound et al. (2001).

Assumption 2 implies that the misclassification error in x is independent of the instrumental variable z

conditional on x� and w. This assumption is also discussed in Bound et al. (2001, p. 3732) without considering
other explanatory variables w. Kane et al. (1999) use a similar assumption to obtain a consistent estimator in a
GMM setting. Assumption 2 is weaker than those in previous studies because I do not impose any parametric
specification on the misclassification probabilities, and these probabilities may depend on other covariates.
This paper suggests that such a parametric specification is not necessary because the misclassification
probabilities are nonparametrically identified. An important advantage of Assumption 2 is that it allows
correlation between the misclassification error and all the explanatory variables. This extension is important
because previous studies have shown the significance of such a correlation in the data. For example, Levine
(1993) compares the contemporaneous and retrospective reports of labor force status and finds that the rate of
underreporting is significant and related to individual demographic characteristics.

This paper shows that the conditional distribution function of the dependent variable f yjx�w may be
expressed as a known function of directly observed distribution functions and, therefore, is nonparametrically
identified. To be specific, the latent density f yjx�w plays the role of an eigenvalue of a matrix induced
by the observed density f yxjzw. And the corresponding eigenvector may be the misclassification probability
f xjx�w or the conditional density of the true value f x�jzw. With the density f x�jzw identified, I can estimate a
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parameter of interest y0 in a latent moment condition Eðyjx�;wÞ ¼ mðx�;w; y0Þ through an observed moment
condition.

This paper is organized as follows. Section 2 shows the nonparametric identification of the latent model and
the misclassification error distribution. Section 3 develops a

ffiffiffi
n
p

-consistent semiparametric estimator. Section 4
presents Monte Carlo evidence of the finite sample performance of the estimator. Section 5 provides an
empirical illustration. Section 6 concludes the paper. The proofs are in the appendix.
2. Identification

This section considers the nonparametric identification of the latent model and the misclassification error
distribution. Suppose that x;x�, and z share the same support f1; 2; . . . ; kg. I define the following notations:

Fyxjzw ¼

f yxjzwðy; 1j1;wÞ . . . f yxjzwðy; kj1;wÞ

..

. ..
. ..

.

f yxjzwðy; 1jk;wÞ . . . f yxjzwðy; kjk;wÞ

0BBB@
1CCCA,

Fx�jzw ¼

f x�jzwð1j1;wÞ . . . f x�jzwðkj1;wÞ

..

. ..
. ..

.

f x�jzwð1jk;wÞ . . . f x�jzwðkjk;wÞ

0BBB@
1CCCA,

Fxjx�w ¼

f xjx�wð1j1;wÞ . . . f xjx�wðkj1;wÞ

..

. ..
. ..

.

f xjx�wð1jk;wÞ . . . f xjx�wðkjk;wÞ

0BBB@
1CCCA,

Fyjx�w ¼

f yjx�wðyj1;wÞ 0 0

0 ..
.

0

0 0 f yjx�wðyjk;wÞ

0BBB@
1CCCA,

Fyjzw ¼ ðf yjzwðyj1;wÞ; . . . ; f yjzwðyjk;wÞÞ
T.

By Assumptions 1 and 2 and the law of total probability, the relationship between the observed and
unobserved densities results as follows:

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. Then,

f yxjzwðy;xjz;wÞ ¼
X
x�

f yjx�wðyjx
�;wÞf xjx�wðxjx

�;wÞf x�jzwðx
�jz;wÞ, (1)

f xjzwðxjz;wÞ ¼
X
x�

f xjx�wðxjx
�;wÞf x�jzwðx

�jz;wÞ, (2)

and

Fyxjzw ¼ Fx�jzw � Fyjx�w � Fxjx�w, (3)

Fxjzw ¼ Fx�jzw � Fxjx�w. (4)

Proof. See the appendix.
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Similarly, one may obtain

f yjzwðyjz;wÞ ¼
X
x�

f yjx�wðyjx
�;wÞf x�jzwðx

�jz;wÞ, (5)

which is equivalent to

Fyjzw ¼ Fx�jzw � Fyjx�w � i (6)

with i ¼ ð1; . . . ; 1ÞT. In order to identify the matrix Fyjx�w, one needs the following assumption:

Assumption 2.1. RankðFx�jzwÞ ¼ k.

Assumption 2.1 has been used in Darolles et al. (2000) and Newey and Powell (2003) for a continuous
variable, as well as in Mahajan (2006) for a dichotomous variable. Since it uses the whole conditional
distribution of x� in matrix Fx�jzw, my proposed approach can exploit any form of statistical dependence
between z and x� to achieve identification. However, Assumption 2.1 does not necessarily require the
instrument z to be correlated with x�. Here I briefly discuss the relationship between the invertibility of Fx�jzw

and the correlation between x� and z. I ignore the covariate w for the time being. Given that Prðz ¼ ziÞa0 for
all zi in the support of z, Fx�jz is invertible if and only if Fx�z is invertible, where the ith row and jth column
entry of the matrix Fx�z is the joint probability Prðx� ¼ x�j ; z ¼ ziÞ. Without loss of generality, I assume

EðzÞ ¼ 0. Then r2x�z ¼
½Eðx�zÞ�2

varðzÞvarðx�Þ. I first show that the singularity of Fx�z does not imply r2x�z ¼ 0. For

example, suppose x� and z share the same support f�1; 0; 1g with ðx1;x2;x3Þ ¼ ð�1; 0; 1Þ and
ðz1; z2; z3Þ ¼ ð�1; 0; 1Þ. Let the joint probability matrix Fx�z of x� and z be as follows:

Fx�z ¼

1=6 1=6 0

1=6 1=6 0

0 0 1=3

0B@
1CA.

Obviously, the matrix Fx�z is singular. But Eðx�zÞ ¼ 1
2
, and EðzÞ ¼ 0 so that rx�z ¼ 0:75. Although the

correlation coefficient is large, the variable z is actually not a good instrument if one only considers the case
where x� equals �1 or 0. In fact, x� is independent of z conditional on x�a1 and za1. The next step is to show
that Fx�z may be invertible even if r2x�z ¼ 0. For example, suppose that

Fx�z ¼

1=8 1=4 0

0 0 1=4

1=4 0 1=8

0B@
1CA

in the last example. In this case, Eðx�zÞ ¼ 0 and EðzÞ ¼ 0 so that r2x�z ¼ 0, while Fx�z is invertible.
Interchanging the columns of Fx�z results in

1=4 0 1=8

0 1=4 0

0 1=8 1=4

0B@
1CA.

This matrix is strictly diagonally dominant, which implies that z actually is a good instrument. In fact, the
invertibility (or the determinant) of Fx�z (or Fx�jzÞ is a better measurement of the validity of an instrument than
jrx�zj, and the magnitude of correlation coefficient may be misleading in identifying a valid instrument. Since
the validity of instruments is not the major focus of this paper, I leave it for future research and assume a valid
instrument.

In the case where the instrument takes fewer values than the misclassified regressor, Assumption 2.1 may
not hold anymore. However, it is reasonable to believe that the number of possible values of the instrument is
the same as that of the misclassified regressor when the instrument is a repeated measurement of the regressor.
For example, if respondents report education levels twice in a survey, one may expect the two reported
education levels to have the same support. If the instrument takes more values than the misclassified regressor,
Assumption 2.1 implies that one can always generate a new instrument taking the same possible values as the
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regressor such that this assumption still holds for the new instrument. Since such a new instrument is not
unique, this case is also related to the case of more than one instrument. On the one hand, I may relax
Assumptions 1 or 2 in this case to allow some of these variables to be in the latent model or to be correlated
with the misclassification error. On the other hand, the inverse of the matrices Fx�jzw and Fxjzw, to be used later,
will have to be replaced with the Moore–Penrose matrix inverse.1

By Assumption 2.1, Eq. (6) implies that

Fyjx�w � i ¼ F�1x�jzw � Fyjzw. (7)

Therefore, the latent density Fyjx�w is identified if and only if the matrix Fx�jzw is identified. In order to obtain
Fx�jzw from Eq. (4), I make the following assumption:

Assumption 2.2. Fxjx�w is invertible.

One sufficient condition for Assumption 2.2 is that the matrix Fxjx�w is strictly diagonally dominant, i.e.,
f xjx�wðiji;wÞ4

P
jai f xjx�wðjji;wÞ, or Prðx ¼ ijx� ¼ i;wÞ40:5. This condition implies that x contains enough

correct information on x�.
I then obtain Fx�jzw from Eq. (4) as follows:

Fx�jzw ¼ Fxjzw � F�1xjx�w. (8)

Plugging this expression of Fx�jzw into Eq. (7) gives

Fyjx�w � i ¼ Fxjx�w � F�1xjzw � Fyjzw. (9)

Eq. (9) implies that Fyjx�w is linear in Fxjx�w. Substituting the expression of Fx�jzw into Eq. (3) results in

Fxjx�w � F�1xjzw � Fyxjzw ¼ Fyjx�w � Fxjx�w. (10)

This equation implies k2 restrictions on kðk þ 1Þ unknowns in matrices Fyjx�w and Fxjx�w. Since Fyjx�w is linear
in Fxjx�w, the result is a system of nonlinear equations containing the misclassification probabilities in the
matrix Fxjx�w. Furthermore, there are additional k restrictions as follows:

Fxjx�w � i ¼ i. (11)

Therefore, the unknowns Fyjx�w and Fxjx�w are determined by Eqs. (10) and (11). Solving the system of
equations is not an easy task. A simple generalization of the identification in the binary case, such as in
Mahajan (2006), is to claim that the number of restrictions is no less than that of unknowns. Such a claim is
not enough to identify the model because it requires solving the complicated nonlinear system of equations.
Finding the unique solution of this nonlinear system becomes manageable only when noticing that the
problem can be phrased in terms of the matrix diagonalization introduced below.

I define

A:¼F�1xjzw � Fyxjzw. (12)

Note that the matrix A is observed in the sample. From Eq. (10), I obtain

Fyjx�w ¼ Fxjx�w � A� F�1xjx�w. (13)

Eq. (13) implies that the matrix Fyjx�w is similar to the matrix A.2 In other words, the latent model Fyjx�w is
similar to the observed model described in A, and the misclassification probabilities simply consist of the
eigenvectors. Eq. (13) also implies that the identification of the misclassification matrix rests on assumptions
ruling out eigenvalues with multiplicity greater than 1. By the similarity property, the two matrices should
1One may also use other types of generalized matrix inverses in the identification and estimation. In that case, the identification strategy

would be the same except the expression of the observed matrices. Estimators using different inverses would have the asymptotic

properties similar to those presented in this paper.
2A k-by-k matrix B is said to be similar to a k-by-k matrix A if there exists a nonsingular k-by-k matrix S such that B ¼ SAS�1. If A and

B are similar, then they have the same eigenvalues. If B ¼ SAS�1 and B is a diagonal matrix, then A has a set of k linearly independent

eigenvectors and the ith row of S is a left eigenvector of A associated with the ith diagonal entry of B.
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have the same eigenvalues. Since Fyjx�w is diagonal, its diagonal element f yjx�wðyjj;wÞ should be equal to an
eigenvalue of the matrix A. And the eigenvector matrix Fxjx�w is identified up to permutations of its rows.

All that remains is to determine which eigenvalue of A corresponds to f yjx�wðyjj;wÞ for each j. This step of
the identification can be summarized in the following equation:

QFyjx�wQ�1 ¼ QFxjx�w � A� ðQFxjx�wÞ
�1, (14)

where Q is an elementary matrix generated by interchanging rows of the identity matrix. The pair
ðQFyjx�wQ�1;QFxjx�wÞ is observationally equivalent to ðFyjx�w;Fxjx�wÞ, thus signifying the need for further
restrictions to identify the model in Fyjx�w. As mentioned before, if there exist duplicate eigenvalues, the
identification of Fxjx�w may fail. A sufficient condition to avoid duplicate eigenvalues is that f yjx�wðyji;wÞa
f yjx�wðyjj;wÞ for iaj. However, it is sufficient to assume the following:

Assumption 2.3. There exists a function $ð�Þ such that E½$ðyÞjx� ¼ i;w�aE½$ðyÞjx� ¼ j;w� for all iaj.

This assumption generalizes Assumption 5 in Mahajan (2006) with choices of a user-specified function $ð�Þ.
The reasoning behind Assumption 2.3 is as follows. Eq. (1) impliesZ

$ðyÞf yxjzwðy;xjz;wÞdy ¼
X
x�

E½$ðyÞjx�;w�f xjx�wðxjx
�;wÞf x�jzwðx

�jz;wÞ.

Thus, if I replace f yjx�wðyjj;wÞ with E½$ðyÞjx� ¼ j;w� in Fyjx�w, and f yxjzwðy; ijj;wÞ with
R
$ðyÞf yxjzwðy; ijj;wÞdy

in Fyxjzw, the eigenvalue–eigenvector decomposition above still holds with E½$ðyÞjx� ¼ j;w� as eigenvalues. But
the eigenvectors in Fxjx�w do not change. Therefore, Assumption 2.3 rules out duplicate eigenvalues, i.e.,
E½$ðyÞjx� ¼ i;w� ¼ E½$ðyÞjx� ¼ j;w� for iaj.

The next step is to find a condition that implies the ordering of the eigenvalues or of the eigenvectors. Such a
condition is not unique, so I discuss various possibilities. First, if one can directly identify the ordering of the
eigenvalues, the model is then identified. For example, suppose that f yjx�w satisfies:

Assumption 2.4. Given y and w, the conditional density f yjx�wðyjx
�;wÞ is strictly increasing or decreasing in x�.

This assumption is not as strong as it looks. For example, I consider a binary choice model with a linear
index. The conditional density f yjx�wðyjx

�;wÞ equals F ðbx� þ wgÞ when y ¼ 1, and 1� F ðbx� þ wgÞ when
y ¼ 0, where F ð�Þ is a c.d.f. Assumption 2.4 holds if and only if the sign of b is known. Furthermore, economic
theory may suggest the sign of the coefficient in such an application as a study on the impact of education on
labor supply. Under Assumption 2.4, the matrix Fyjx�w is then not observationally equivalent to QFyjx�wQ�1

for any QaI . This is because the matrix diagonalization provides the matrix Fyjx�w up to permutations of its
diagonal entries. If the ordering of the diagonal entries is given, then Fyjx�w is identified. I define ljðAÞ for
j ¼ 1; 2; . . . ; k as the eigenvalues of the matrix A with l1ðAÞol2ðAÞo � � �olkðAÞ. Then the model is
nonparametrically identified as follows:

f yjx�wðyjj;wÞ ¼ ljðAÞ, (15)

if f yjx�wðyjx
�;wÞ is increasing in x�. Assumption 2.4 allows the consideration of very general misclassification

errors because the only restriction imposed on the misclassification probability matrix is its invertibility in
Assumption 2.2.

Moreover, it is sufficient to find the ordering of the conditional expectation E½$ðyÞjx�;w� rather than that of
the conditional density f yjx�w itself. I make the following assumption:

Assumption 2.5. There exists a function $ð�Þ such that E½$ðyÞjx�;w� is strictly increasing in x�.

As mentioned before, E½$ðyÞjx�;w� can also play the role of an eigenvalue. Therefore, if the ordering of
E½$ðyÞjx�;w� in x� is given, the ordering of the eigenvalues and eigenvectors is fixed and the model is then
identified. A straightforward choice of the function $ð�Þ is $ðyÞ ¼ y. This signifies that the conditional mean
of y is monotonic in x�, which is a reasonable assumption at least in a linear regression model. For example, let
$ðyÞ ¼ y when considering a linear regression model y ¼ bx� þ gwþ Z. Assumption 2.5 holds if b40. Other
choices of the user-specified function $ð�Þ are $ðyÞ ¼ ðy� EyÞ2, $ðyÞ ¼ 1ðypy0Þ, or $ðyÞ ¼ dðy� y0Þ for
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some given y0. As discussed above, one may use $ðyÞ ¼ dðy� y0Þ when considering a probit model. Similarly,
one may use $ðyÞ ¼ 1ðypy0Þ for a Tobit model.

It is worth mentioning that the invertibility of Fxjx�w is the only restriction imposed on the misclassification
probabilities under Assumptions 2.4 or 2.5. Assumption 2.5 suggests that certain monotonicity properties of
the latent model may lead to its identification without imposing restrictive assumptions on the
misclassification error. This result is also new in the dichotomous case. For example, suppose one is
interested in a probit model describing the impact of smoking on health with age as a covariate. Researchers
are concerned about the misreporting error in the dichotomous reports of smoking behavior. If one imposes
the restriction on the misclassification probabilities, one may require that the probability of reporting true
smoking behavior is larger than one half (as in Assumption 2.7). Since age is a covariate, this restriction has to
hold for people at all ages. However, such a restriction is believed to be very strong for teenagers. The
probability of misreporting smoking behavior might be larger than one half because smoking is not legal at
that age. Given that no studies show that smoking is healthy, the restriction on the latent model is more
desirable.

There are also cases where the restrictions on the misclassification probability are more reasonable. For
example, one might be interested in the impact of education on voting behavior. It is not immediately clear
whether more educated people are more likely to vote or not. However, validation studies have shown that the
misclassification error in self-reported education levels satisfies Assumption 2.7, which will be introduced later.
Therefore, the restrictions on the misclassification probabilities are more desirable in this case.

Instead of Assumptions 2.4 and 2.5, one may impose different restrictions on the misclassification matrix
Fxjx�w to identify the model. For example, if the entries in one of its columns are strictly monotonic, the matrix
Fxjx�w is not observationally equivalent to QFxjx�w for any QaI . Without loss of generality, the following
restriction can be imposed on the first column:

Assumption 2.6. Prðx ¼ 1jx�;wÞ is strictly decreasing in x� for x� 2 f1; 2; . . . ; kg.

In the 0–1 dichotomous case, this assumption implies that Prðx ¼ 0jx� ¼ 0;wÞ4Prðx ¼ 0jx� ¼ 1;wÞ, which
is the same as

Prðx ¼ 1jx� ¼ 0;wÞ þ Prðx ¼ 0jx� ¼ 1;wÞo1.

Therefore, Assumption 2.6 generalizes Assumption 2 in Mahajan (2006). For example, suppose there are three
possible values of education levels, i.e., high school, college, and graduate school. Assumption 2.6 implies that
people with a high school education are more likely to report the high school level than those with a college
education, while people with a college education are more likely to report a high school level than those with a
graduate school education. Under this assumption, the misclassification probability matrix Fxjx�w and the
model Fyjx�w are identified. The exact expression of Fyjx�w can be found by diagonalizing A to S�1LS with
S � i ¼ i and then using an elementary matrix Q to find the right QS satisfying Assumption 2.6 in

A ¼ ðQSÞ�1½QLQ�1�QS. (16)

The matrix Fyjx�w equals the diagonal matrix on the right-hand side

Fyjx�w ¼ QLQ�1. (17)

The latent model f yjx�w is therefore identified.
A fourth alternative assumption for achieving identification is the following:

Assumption 2.7. Prðx ¼ ijx� ¼ i;wÞ4Prðx ¼ jjx� ¼ i;wÞ for jai.

The intuition of this assumption is that the probability of reporting the true value is higher than that of
reporting other values. This assumption is consistent with most validation studies. For example, the
misclassification probability matrix of education with three possible values found in a validation study by
Kane et al. (1999, Table 1) satisfies this assumption. As summarized in Bound et al. (2001, Table 5,
pp. 3794–3797), at least four validation studies show the misclassification probability matrix of employment
status with three possible values. All of these misclassification probability matrices satisfy Assumption 2.7.
Notice that this assumption is different from Assumption 2.6 in this paper and Assumption 2 in Mahajan
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(2006). Assumption 2.7 imposes restrictions on the conditional density f xjx�wð�ji;wÞ for each i 2 f1; 2; . . . ; kg,
while Assumption 2.6 imposes restrictions on k conditional probabilities f xjx�wð1j�;wÞ simultaneously.
Assumption 2.7 implies Assumption 2.6 only in the dichotomous case. In the 0–1 dichotomous case,
Assumption 2.7 implies that Prðx ¼ 1jx� ¼ 1;wÞ40:5 and Prðx ¼ 0jx� ¼ 0;wÞ40:5, which is different from
Assumption 2 in Mahajan (2006).

The identification procedure under Assumption 2.7 is as follows. After an eigenvector (i.e., a row of
QFxjx�w) is obtained from the diagonalization, one may identify the largest entry in that row. If it is the jth
entry, that eigenvector is equal to the jth row of the matrix Fxjx�w. Note that Assumption 2.7 is weaker than
the assumption that Fxjx�w is strictly diagonally dominant (i.e., Prðx ¼ ijx� ¼ i;wÞ40:5 for all i ¼ 1; 2; . . . ; k).
Assumption 2.7 suggests that if the diagonal entries of matrix Fxjx�w are the largest in each row, the matrix
Fxjx�w is not observationally equivalent to QFxjx�w for any QaI , and the model is identified.

The identification results are summarized as follows:

Theorem 1 (Nonparametric identification). Suppose that Assumptions 1, 2, 2.1–2.3, and one of Assumptions

2.4–2.7 are satisfied. Then the model f yjx�w, together with f xjx�w and f x�jzw, is nonparametrically identifiable and

directly estimable.

This theorem uses an instrumental variable to show that the latent model f yjx�w and the misclassification
error distribution f xjx�w are point-identified and directly estimable. I will show that the point identification
leads to a ‘‘plug-in’’ semiparametric estimator.

2.1. Identification when k ¼ 3

This section shows the nonparametric identification when k ¼ 3 by expressing Fyjx�w, Fxjx�w, and Fx�jzw as
explicit functions of Fyxjzw and Fxjzw. By definition,

Fyxjzw ¼

f yxjzwðy; 1j1;wÞ f yxjzwðy; 2j1;wÞ f yxjzwðy; 3j1;wÞ

f yxjzwðy; 1j2;wÞ f yxjzwðy; 2j2;wÞ f yxjzwðy; 3j2;wÞ

f yxjzwðy; 1j3;wÞ f yxjzwðy; 2j3;wÞ f yxjzwðy; 3j3;wÞ

0B@
1CA

and

Fxjzw ¼

f xjzwð1j1;wÞ f xjzwð2j1;wÞ f xjzwð3j1;wÞ

f xjzwð1j2;wÞ f xjzwð2j2;wÞ f xjzwð3j2;wÞ

f xjzwð1j3;wÞ f xjzwð2j3;wÞ f xjzwð3j3;wÞ

0B@
1CA.

First, I solve for the eigenvalues of the matrix A defined as A:¼F�1xjzw � Fyxjzw. Note that all the density
functions in the matrix A are observed in the sample. The characteristic polynomial of the matrix A is as
follows:

pðtÞ ¼ t3 � trðAÞt2 þmðAÞt� detðAÞ,

where mðAÞ is the sum of all the two-by-two principal minors of the matrix A.3 By Eq. (13), the matrix A has
three real eigenvalues so that the cubic equation pðtÞ ¼ 0 has three different real roots as follows:

l1 ¼ 2
ffiffiffiffiffiffiffi
�p
p

cos
y
3

� �
þ

1

3
trðAÞ,

l2 ¼ 2
ffiffiffiffiffiffiffi
�p
p

cos
yþ 2p

3

� �
þ

1

3
trðAÞ,

l3 ¼ 2
ffiffiffiffiffiffiffi
�p
p

cos
yþ 4p

3

� �
þ

1

3
trðAÞ,
3A k-by-k principal submatrix of A is one lying in the same set of k rows and columns, and a k-by-k principal minor is the determinant of

such a principal submatrix.
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where

p ¼
3mðAÞ � trðAÞ2

9
,

q ¼
�9mðAÞtrðAÞ þ 27 detðAÞ þ 2 trðAÞ3

54
,

y ¼ cos�1
qffiffiffiffiffiffiffiffiffi
�p3

p !
.

As shown before, the eigenvalues satisfy

l1 0 0

0 l2 0

0 0 l3

0B@
1CA ¼

f yjx�wðyjei;wÞ 0 0

0 f yjx�wðyjej;wÞ 0

0 0 f yjx�wðyj
ek;wÞ

0BBB@
1CCCA,

where the set fei;ej; ekg ¼ f1; 2; 3g. If one can identify the values of the indices ei, ej, and ek, the latent density f yjx�w

is identified. In the case where f yxjzwðy; ijj;wÞ is replaced with
R
$ðyÞf yxjzwðy; ijj;wÞdy in the matrix Fyxjzw, the

following equality results:

l1 0 0

0 l2 0

0 0 l3

0B@
1CA ¼ E½$ðyÞjx� ¼ ei;w� 0 0

0 E½$ðyÞjx� ¼ ej;w� 0

0 0 E½$ðyÞjx� ¼ ek;w�
0BB@

1CCA. (18)

The second step is to obtain the left eigenvector corresponding to each eigenvalue li ði ¼ 1; 2; 3Þ. I define the
eigenvectors as vi ¼ ðvi1; vi2; vi3Þ satisfying vi1 þ vi2 þ vi3 ¼ 1. By Eq. (13), each vi corresponds to a row of the
matrix Fxjx�w. The result is

li � vi ¼ vi � A,

which implies

Ei � vTi ¼ e

with Ei ¼ ðA� liI ; iÞ
T and e ¼ ð0; 0; 0; 1ÞT. Let Eþi be the Moore–Penrose matrix inverse of Ei.

4 The
eigenvector vi can be found as follows:

vi ¼ ðE
þ
i � eÞT.

The matrix of the eigenvectors is as follows:

V ¼

v1

v2

v3

0B@
1CA �

f xjx�wð1jei;wÞ f xjx�wð2jei;wÞ f xjx�wð3jei;wÞ
f xjx�wð1jej;wÞ f xjx�wð2jej;wÞ f xjx�wð3jej;wÞ
f xjx�wð1j

ek;wÞ f xjx�wð2j
ek;wÞ f xjx�wð3j

ek;wÞ
0BB@

1CCA.

The set of indices fei;ej; ekg is equal to f1; 2; 3g. The matrix Fxjx�w is identified if the values of ei, ej, and ek can be
identified. In fact, each of Assumptions 2.4–2.7 may lead to such identification. I discuss each of these
assumptions in what follows.

Assumptions 2.4 or 2.5 imply the ordering of the eigenvalues directly. Suppose that the ordering is
l24l14l3. Assumption 2.5 then implies that ei ¼ 2, ej ¼ 3, and ek ¼ 1 in Eq. (18). The advantage of
Assumptions 2.4 or 2.5 is that Fxjx�w is identified without further restrictions.
4The Moore–Penrose matrix inverse of a matrix B is Bþ satisfying BBþB ¼ B, BþBBþ ¼ Bþ, ðBBþÞT ¼ BBþ, and ðBþBÞT ¼ BþB. If

BTB is invertible, then Bþ ¼ ðBTBÞ�1BT. Moreover, the Moore–Penrose matrix inverse is unique.
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Assumption 2.6 implies that the misclassification probability matrix Fxjx�w can be identified by
interchanging the rows v1, v2, v3 in V. In other words, Assumption 2.6 implies that

Fxjx�w ¼ Q� V ,

where Q is an elementary matrix. For example, suppose the value of three entries f xjx�wð1jej;wÞ, f xjx�wð1jei;wÞ,
and f xjx�wð1j

ek;wÞ satisfying f xjx�wð1jej;wÞ4f xjx�wð1jei;wÞ4f xjx�wð1j
ek;wÞ. Since Assumption 2.6 implies

f xjx�wð1j1;wÞ4f xjx�wð1j2;wÞ4f xjx�wð1j3;wÞ, the result is ei ¼ 2, ej ¼ 1, and ek ¼ 3. That means v1 and v2 need

to be interchanged in the matrix V to obtain Fxjx�w with

Q ¼

0 1 0

1 0 0

0 0 1

0B@
1CA.

Assumption 2.7 may also lead to such an elementary matrix Q. This assumption implies that all the rows of
V have a unique largest entry in different columns. Suppose that the data show that these entries are

f xjx�wð3jei;wÞ; f xjx�wð2jej;wÞ f xjx�wð1j
ek;wÞ. Then the rows in V need to be interchanged such that these entries

are on the diagonal with

Q ¼

0 0 1

0 1 0

1 0 0

0B@
1CA.

The result is that ei ¼ 3, ej ¼ 2, and ek ¼ 1.
With the matrix Q identified, the latent model Fyjx�w is achieved by interchanging the eigenvalues on the

diagonal correspondingly as follows:

Fyjx�w ¼ Q�

l1 0 0

0 l2 0

0 0 l3

0B@
1CA�Q�1.

The last step is to find Fx�jzw through Eq. (8) as follows:

Fx�jzw ¼ Fxjzw � V�1 �Q�1.

In summary, I have shown the explicit expressions of f yjx�w, f xjx�w, and f x�jzw as functions of f yxjzw, such
that

f yjx�wðyjx
�;wÞ ¼ fðx�; f yxwzÞ,

f xjx�wðxjx
�;wÞ ¼ jðx�; f yxwzÞ,

f x�jzwðx
�jz;wÞ ¼ cðx�; f yxwzÞ.

Although the explicit expression of these functions for a general k is expected to be complicated, a general
result in Andrew et al. (1993) shows that these functions are in fact analytic. Moreover, it is not necessary to
use these explicit expressions in the computation. Most statistical software packages can easily compute
eigenvalues and eigenvectors of a given matrix. In that sense, one of the major contributions of this paper is to
reveal the similarity relationship between the observed model and the latent model. Such a relationship makes
the identification very clear.

3. Estimation

This section focuses on the following parametric conditional moment model:

Eðyjx�;wÞ ¼ m�ðx�;w; y0Þ, (19)
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where m� is a known moment function and y0 is an unknown parameter of interest. The variables y, x, z, and
w are observed in an i.i.d. sample. Since x� is not observed, one can estimate the parameter y0 through an
observed moment

Eðyjz;wÞ ¼ mðz;w; y0Þ, (20)

with

mðz;w; y0Þ ¼
X
x�

m�ðx�;w; y0Þf x�jzwðx
�jz;wÞ. (21)

As discussed in Assumptions 2.3 and 2.5, the identification results still hold with f yxjwzðy;xjw; zÞ and
f yjx�wðyjx

�;wÞ replaced by
R
$ðyÞf yxwzðy;xjw; zÞdy and E½$ðyÞjx�;w� for a known function$ð�Þ. In this section,

let $ðyÞ ¼ y in Assumptions 2.3 and 2.5. The identification results imply that one can express the unknown
density f x�jzw as follows:

f x�jzwðx
�jz;wÞ ¼ cðx�; g0ðz;wÞÞ, (22)

with a known function c, g0ðz;wÞ ¼ ½g10ðz;wÞ; g20ðz;wÞ; g30ðz;wÞ�
T, and

g10ðz;wÞ ¼
Z
$ðyÞf yxwzðy; 1;w; zÞdy; . . . ;

Z
$ðyÞf yxwzðy; k;w; zÞdy

� �
,

g20ðz;wÞ ¼ ðf xwzð1;w; zÞ; . . . ; f xwzðk;w; zÞÞ,

g30ðz;wÞ ¼ f wzðw; zÞ.

Although the expression of the function c is complicated, a general result in Andrew et al. (1993) shows that
the function c is a well-behaved analytic function around g0.

The next step is to show that the parameter y0 is identifiable in the observed model Eðyjz;wÞ ¼ mðz;w; y0Þ if
and only if the parameter y0 is identifiable in the latent model Eðyjx�;wÞ ¼ m�ðx�;w; y0Þ. Define two vectors:

MðyÞ ¼ ðmðz;w; yÞjz¼1;mðz;w; yÞjz¼2; . . . ;mðz;w; yÞjz¼kÞ
T,

M�ðyÞ ¼ ðm�ðx�;w; yÞjx�¼1;m
�ðx�;w; yÞjx�¼2; . . . ;m

�ðx�;w; yÞjx�¼kÞ
T.

Therefore,

MðyÞ ¼ Fx�jzw �M�ðyÞ. (23)

Suppose y0 is not identifiable so that there exists y1 which is observationally equivalent to y0 in the sense that
Mðy1Þ �Mðy0Þ ¼ 0. Since Fx�jzw is identified and has rank k, one must have M�ðy1Þ �M�ðy0Þ ¼ 0. Thus, the
parameter y0 is not identified in the latent model if it is not identified in the observed model. In other words,
the parameter y0 is identified in the observed model if it is identified in the latent model. It is obvious that the
parameter y0 is not identified in the observed model if it is not identified in the latent model. The parametric
identification is summarized as follows:

Theorem 2 (Parametric identification). Suppose that Assumptions 1, 2, 2.1–2.3 and one of Assumptions 2.4–2.7
are satisfied. The parameter y0 is identifiable in the observed model (20) if and only if it is identifiable in the latent

model (19).

Given that the density function f x�jzw can be explicitly expressed as a function of the observed density f yxwz,
I propose a ‘‘plug-in’’ semiparametric estimator. Although this estimator may not be the most efficient one, I
make the estimator as simple as possible. By Eqs. (21) and (22), the observed model can be written as follows:

Ef½y�mðz;w; y0; g0ðz;wÞÞ�jz;wg ¼ 0, (24)

with

mðz;w; y0; g0ðz;wÞÞ ¼
X
x�

m�ðx�;w; y0Þcðx�; g0ðz;wÞÞ

and the nuisance function g0ðz;wÞ ¼ ½g10ðz;wÞ; g20ðz;wÞ; g30ðz;wÞ�
T. Since the function c in Eq. (22) is known, the

moment function mðz;w; y0; g0Þ is known up to the parameter y0 and the nuisance function g0. Note that the
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moment function depends on the value of the nuisance function at observed points through the known function
c, while a general GMM model may consider a moment function depending on the entire nuisance function.

Since the joint distribution of fy;x;w; zg is observed in the sample, the nuisance parameter g0 can be
estimated nonparametrically as follows:bgðz;wÞ ¼ ½bg1ðz;wÞ;bg2ðz;wÞ;bg3ðz;wÞ�T,
where

bg1ðz;wÞ ¼ Z
$ðyÞbf yxwzðy; 1;w; zÞdy; . . . ;

Z
$ðyÞbf yxwzðy; k;w; zÞdy

� �
,

bg2ðz;wÞ ¼ ðbf xwzð1;w; zÞ; . . . ; bf xwzðk;w; zÞÞ,bg3ðz;wÞ ¼ bf wzðw; zÞ,

and

bf yxwzðy;x;w; zÞ ¼
1

n

Xn

i¼1

Iðxi ¼ xÞIðzi ¼ zÞ
1

hrþ1
K

y� yi

h
;
w� wi

h

� �T� �� �
,

bf xwzðx;w; zÞ ¼
1

n

Xn

i¼1

Iðxi ¼ xÞIðzi ¼ zÞ
1

hr K
w� wi

h

� �� �
,

bf wzðw; zÞ ¼
1

n

Xn

i¼1

Iðzi ¼ zÞ
1

hr K
w� wi

h

� �� �
.

The constant r is the dimension of w. The function Ið�Þ is an indicator function, and the function Kð�Þ is a
known kernel function with bandwidth h. If the dependent variable y is discrete, one should apply the
indicator function to y rather than the kernel function.

When I replace g0 by bg in the known function c, I must guarantee that the moment function
mðz;w; y0;bgðz;wÞÞ is well-behaved. For this reason, I consider a weighted moment functionemðy; z;w; y0; g0ðz;wÞÞ ¼ tðz;wÞ½y�mðz;w; y0; g0ðz;wÞÞ�

with a weight function tðz;wÞ. The moment condition then becomes

E½emðy; z;w; y0; g0ðz;wÞÞjz;w� ¼ 0. (25)

This condition holds for any weight function tðz;wÞ.
The next step is to choose a desirable tðz;wÞ such that the weighted moment function emðy; z;w; y0;bgðz;wÞÞ is

well-behaved. Let S be the compact support of ðz;wÞ and G be a closed subset of the range of g0ð�; �Þ. Since
0pf x�jzwðx

�jz;wÞp1 in Eq. (22) for any ðz;wÞ 2S, the identification results guarantee that 0pcðx�; rÞp1 for
all r 2 G. Moreover, c is an analytic function so that there exists an open set G such that (i) �1ocðx�; rÞo1
for all r 2 G and (ii) G is a subset of G. The existence of G guarantees that the function cðx�; �Þ is well-behaved
even on the boundary of G. Notice that the set G does not depend on the function c. The problem arises whenbgðz;wÞeG for some ðz;wÞ so that cðx�;bgðz;wÞÞ might be unbounded. I adopt the fixed trimming technique to
solve this problem. By the uniform convergence of bg to g0, there exists a fixed closed set S� � intðSÞ such thatbgðz;wÞ 2 G and g0ðz;wÞ 2 G for all ðz;wÞ 2S�. Therefore, if tðz;wÞ ¼ 0 for all ðz;wÞeS�, the weighted moment
function emðy; z;w; y0;bgðz;wÞÞ is well-behaved.

Since the weighted moment condition is used to estimate y0, an extra identification assumption is needed for
the parameter y0 to be identified by the weighted moment condition (25). It will be introduced later as
Assumption 4.1(ii). This assumption requires that ðz;wÞ is informative enough on the set S� to identify the
unknown parameter y0. It is true that the latent moment function m�ðx�;wÞ may not be nonparametrically
identified after using the trimming function tðz;wÞ. However, this extra identification assumption implies that
the identification of the parameter y0 is still feasible after trimming. Although a different weight function
tðz;wÞ may affect the efficiency, the estimator for y0 based on the weighted moment condition (25) may still be
consistent and asymptotically normal.
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I then estimate the unknown parameter of interest, y0 2 Y, through a ‘‘plug-in’’ semiparametric estimator in
which I replace g0 with its nonparametric estimator. The semiparametric estimator by is defined as follows:

by ¼ argmin
y2Y

Xn

i¼1

tðzi;wiÞ½yi �mðzi;wi; y;bgðzi;wiÞÞ�
2. (26)

As discussed in Newey (1994b), the weight function t is used to focus on regions where mðzi;wi; y;bgÞ provides
reasonable estimates. As discussed above, the set S� can be used as the fixed trimming set. A simple weight
function may be tðz;wÞ ¼ IS�ðz;wÞ. As Hardle and Marron (1990) discuss, fixed trimming avoids the
boundary effects associated with kernel density estimators. Aside from the fixed trimming function, there are
other types of weight functions. For example, Fan and Li (1996) propose a data-dependent weight function.
This paper chooses to focus on the fixed set S� in order to avoid estimating the conditional density f x�jzw in
the area where the estimate of the conditional density is not very accurate. Fixed trimming also makes the
theoretical proof relatively convenient.

Another issue in the estimation is that the estimated eigenvalues and eigenvectors may not always be real.
A solution to this problem is to take the real part of the estimator. Since the identification shows that all the
latent densities are real and positive, the probability of encountering a complex value should go to zero as
the sample size goes to infinity. Additional Monte Carlo experiments, which are not included in this paper,
imply that the misspecification of the model always causes a significant bias in the real parts of the estimates
but does not necessarily cause the imaginary parts to be significantly different from zero. In other words, the
fact that the imaginary parts are significantly different from zero implies that the model may be misspecified.
However, the fact that the imaginary parts are close to zero does not necessarily mean that the model is
correctly specified. The reason behind this phenomenon is as follows. The matrix A is always real even
when the model is misspecified. That means the characteristic polynomial pðtÞ of A always has real coefficients.
Although the zeros of a real polynomial may not necessarily be real, it is still possible that the roots of pðtÞ ¼ 0,
i.e., the eigenvalues of A, are all real under certain misspecification of the model. In that case, the imagi-
nary parts of the estimates would be close to zero while the real parts are biased. In the case where some
roots of pðtÞ ¼ 0 are not real due to misspecification, both the real parts and the imaginary parts would be
biased.

3.1. Consistency

In order to show the consistency of the estimator by, I first show the uniform convergence of bg. The kernel
density estimator used in bg has been studied extensively. Let o:¼ðy;x;w; zÞ and bg ¼ ðbg1;bg2;bg3ÞT. Define the
norm k � k1 as

kbg� g0k1 ¼ sup
o2W
jbg1 � g10j þ sup

o2W
jbg2 � g20j þ sup

o2W
jbg3 � g30j.

The following results come from Newey (1992):

Lemma 2. Suppose:
(Assumption 3.1)
 o 2W and W is a compact set.
(Assumption 3.2)
 g0ðoÞ is continuously differentiable to order d with bounded derivatives on an open set

containing W.

(Assumption 3.3)
 KðuÞ is differentiable of order d, and the derivatives of order d are bounded. KðuÞ is zero

outside a bounded set.
R1
�1

KðxÞdx ¼ 1, and there is a positive integer m such that for all

jom,
R1
�1

KðuÞuj du ¼ 0. And the characteristic function of K is absolutely integrable.
(Assumption 3.4)
 h! 0 and nhr
!1, as n!1.
Then

kbg� g0k1 ¼ Op½ðln nÞ1=2ðnhrþ2d
Þ
�1=2
þ hm
�. (27)
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The next step is to show the uniform convergence of the estimated density bf x�jzw ¼ cðx�;bgÞ. Consider the
function g0 as a mapping from W \S� to a set G. For any given x� ¼ j, the function cðj; �Þ is a known and
nonstochastic function which does not depend on o. From Eqs. (3) and (4), one can show

F$ðyÞxjzw � F�1xjzw ¼ Fx�jzw � F$ðyÞjx�w � F�1x�jzw,

where F$ðyÞxjzw ¼ ½
R
$ðyÞf yxjzwðy; jji;wÞdy�i;j and F$ðyÞjx�w is a diagonal matrix with the ith diagonal element

equal to E½$ðyÞjx� ¼ i;w�. I define B � F$ðyÞxjzw � F�1xjzw. This means a column in Fx�jzw is an eigenvector of B.

In order to derive the derivative of the eigenvalues and eigenvectors, I define gv
0 ¼ ðvecðF$ðyÞxzwÞ

T;
vecðFxzwÞ

T;FT
zwÞ

T where vecðMÞ denotes the vector formed by collecting the entries of the matrix M in a single
vector, and

F$ðyÞxzw ¼

R
$ðyÞf yxzwðy; 1; 1;wÞdy . . .

R
$ðyÞf yxzwðy; k; 1;wÞdy

..

. ..
. ..

.R
$ðyÞf yxzwðy; 1; k;wÞdy . . .

R
$ðyÞf yxzwðy; k; k;wÞdy

0BBB@
1CCCA,

Fxzw ¼

f xzwðy; 1; 1;wÞ . . . f xzwðy; k; 1;wÞ

..

. ..
. ..

.

f xzwðy; 1; k;wÞ . . . f xzwðy; k; k;wÞ

0BB@
1CCA,

Fzw ¼ ðf zwð1;wÞ . . . f zwðk;wÞÞ
T.

Note that the vector gv
0 contains the same information as g0. Similarly, I define bgv

as the vector version of bg.
Now consider k � k matrix-valued functions BðgvÞ where gv is a vector of arguments. The eigenvalues lðgvÞ

and eigenvectors wðgvÞ of B satisfy

½BðgvÞ � lðgvÞI�wðgvÞ ¼ 0,

where I is an identity matrix. In this case, an eigenvalue lðgv
0Þ equals f yjx�wðyjx

�
j ;wÞ and its corresponding

eigenvector is

wðgv
0Þ ¼ ½cðx

�
j ; g

v
0Þ; . . . ;cðx

�
j ; g

v
0Þ�

T

¼ ½f x�jzwðx
�
j j1;wÞ; . . . ; f x�jzwðx

�
j jk;wÞ�

T

for a given index x�j of the eigenvalues. The derivatives of eigenvalues and eigenvectors of matrix functions
have been studied thoroughly. Here, I use a general result from Andrew et al. (1993). Their Theorem 2.1
shows that there is a neighborhood N0 of gv

0 on which there exists an eigenvalue function lðgvÞ and an
eigenvector function wðgvÞ that are all analytic functions of gv. I define eG ¼ fn : n ¼ gvðoÞ and gv 2N0g, which
is the union of the range of all gv near gv

0. Thus, the range of g
v
0 is a subset of eG and the function wð�Þ is analytic

on eG.
Now recall the concept of the pathwise derivative. I assume the existence of a continuous path fgvðtÞ : t 2

½0; 1�g such that gvð0Þ ¼ gv
0 and gvð1Þ ¼ gv. When gv is close enough to gv

0, the linear combination ð1� tÞgv
0 þ tgv

is in N0 and its range is a subset of eG. Therefore, wðð1� tÞgv
0 þ tgvÞ is continuously differentiable at t ¼ 0. The

pathwise derivative of wð�Þ evaluated at gv � gv
0 can be defined as

dwðgv
0Þ

dgv
½gv � gv

0� �
dwðð1� tÞgv

0 þ tgvÞ

dt

				
t¼0

(28)

almost everywhere (under the probability measure of o). The pathwise derivative is a linear functional that
approximates wðgvÞ in the neighborhood of gv

0 (i.e., for small values of gv � gv
0). Notice that the nonstochastic

analytic function w only depends on the values of the nuisance function gv at observed points instead of the
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entire function. The pathwise derivative can be expressed as the ordinary derivative through

dwðð1� tÞgv
0 þ tgvÞ

dt
¼

qwðð1� tÞgv
0 þ tgvÞ

qðgvÞ
T

� ðgv � gv
0Þ.

I can then use the results in Lemma 2 to show that the function wðbgv
Þ converges uniformly with bg.

Let 1 equal a vector of ones ð1; . . . ; 1ÞT, I denote an identity matrix, and Mþ stand for the Moore–Penrose
generalized inverse of the matrix M. Let ðgvÞj denote the jth entry of vector gv and k � k1 denote the L1 norm or
the sum norm. When gv ¼ gv

0, wðgv
0Þ is a column of Fx�jzw. Define mðgv

0Þ as a column of the matrix ðF�1x�jzwÞ
T,

which is actually the right eigenvector corresponding to lðgv
0Þ. The result is summarized in the following

lemma:

Lemma 3. Suppose that assumptions in Lemma 2 hold, and that there exists a constant c40 such that

detðFxjzwÞXc and f zwXc. Then for some e! 0 as n!1

sup
kg�g0k1pe

kwðgvÞ � wðgv
0Þk1 ¼ Oðkg� g0k1Þ.

Moreover,

sup
kg�g0k1pe

wðgvÞ � wðgv
0Þ �

qwðgv
0Þ

qðgvÞ
T
ðgv � gv

0Þ





 




1

¼ Oðkg� g0k
2
1Þ,

where

qwðgv
0Þ

qðgvÞ
T
¼

qwðgv
0Þ

qðgvÞ1
;
qwðgv

0Þ

qðgvÞ2
; . . . ;

qwðgv
0Þ

qðgvÞ
2k2þk

 !
,

qwðgv
0Þ

qðgvÞj
¼ �ðI� wðgv

0Þ1
TÞ½Bðgv

0Þ � lðgv
0ÞI�
þ qBðgv

0Þ

qðgvÞj
�

qlðgv
0Þ

qðgvÞj
I

 !
wðgv

0Þ,

and

qlðgv
0Þ

qðgvÞj
¼ mðgv

0Þ
T qBðg

v
0Þ

qðgvÞj
wðgv

0Þ.

Proof. See the appendix.

The semiparametric estimator in this paper may be considered as an application of the general
semiparametric estimator in Section 8.3 of Newey and McFadden (1994). I will therefore make similar
assumptions and just provide a brief discussion as they have been covered in that handbook chapter. Define
the score function as

gðo; y; gÞ ¼ tðz;wÞ½y�mðz;w; y; gÞ�
d

dy
mðz;w; y; gÞ,

where o:¼ðy;x;w; zÞ. Let k � k2 stand for the L2 norm. In order to guarantee the consistency of the estimator, I
make the following assumptions:
Assumption 4.1. (i) Assumptions in Theorem 2, Lemma 2, and Lemma 3 hold and y0 2 Y, whereY is compact;
(ii) y0 is identifiable from the weighted moment condition in Eq. (25).

Assumption 4.2. m�ðx�;w; yÞ is continuously differentiable in y for all w and is a measurable function of x� and
w for all y 2 Y.

Assumption 4.3. There is dðoÞ with kgðo; y; g0Þk2pdðoÞ, ktðz;wÞm�ðx�;w; yÞk2pdðoÞ, and ktðz;wÞm�ðx�;wi; yÞ
½y�mðz;w; y; g0Þ�k2pdðoÞ for all y 2 Y and all x� 2 f1; 2; . . . ; kg such that E½dðoÞ�o1.

Assumption 4.4. ln n=ðnhrþ2d
Þ ! 0 as n!1.
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The consistency of this estimator is summarized in the following theorem:

Theorem 3 (Consistency). Suppose that Assumptions 4.1–4.4 are satisfied. Then,

ŷ!
p
y0.

Proof. See the appendix.

3.2. Asymptotic normality

I now show the asymptotic distribution of the estimator by that solves

1

n

Xn

i¼1

gðoi;by;bgÞ ¼ 0.

The standard delta method leads to

�
1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞðby� y0Þ ¼

1

n

Xn

i¼1

gðoi; y0;bgÞ,
where ey is an intermediate value between by and y0. To obtain the asymptotic normality of ŷ, I first show that
the right-hand side equals

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ ¼ 1ffiffiffi
n
p
Xn

i¼1

½gðoi; y0; g0Þ þ dðoiÞ� þ opð1Þ, (29)

where

dðoÞ ¼ vðoÞ � EvðoÞ,

vðeoÞ ¼ E tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; gÞ

qwðgvÞ

qðgvÞ
T
1

				
gv¼gv

0
ðeoÞ
						eo

24 35,
with the vector 1 having the same dimension as gv, and

sðyi; zi;wi; y; g0Þ ¼

ðyi �mðzi;wi; y; g0ÞÞm
�ðx�j1

;wi; yÞ

..

.

ðyi �mðzi;wi; y; g0ÞÞm
�ðx�jk

;wi; yÞ

0BBB@
1CCCA

T

,

with the ordering of x�j1
; . . . ; x�jk being the same as that of x� in the vector wðgvÞ.

The correction term dðoiÞ in Eq. (29) is due to the nonparametric estimation of g0. The formula of vðoÞ is
derived from the linearization of gðo; y0; gÞ with respect to g. The expression of this correction term is
consistent with the results in Newey (1994a). The first term on the right-hand side of Eq. (29) converges
to a normal distribution by the standard central limit theorem. This result is summarized in the following
lemma:

Lemma 4. Suppose that assumptions in Theorem 3 are satisfied, and:
(Assumption 5.1)
 m�ðx�;w; yÞ is continuously differentiable of order 5.

(Assumption 5.2)
 E½kgðo; y0; g0Þ þ dðoÞk2�o1.

(Assumption 5.3)
 There is dðoÞ with

tðz;wÞm�ðx�1;w; y0Þ
d

dy
m�ðx�2;w; y0Þ





 




1

pdðoÞ,
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and

tðz;wÞ
d

dy
sðy; z;w; y0; g0Þ





 




1

pdðoÞ

for all x�1, x�2 2 f1; 2; . . . ; kg such that E½d2
ðoÞ�o1.ffiffiffip ffiffiffip
(Assumption 5.4)
 nh2m
! 0, and n ln n=ðnhrþ2d

Þ ! 0 as n!1.
Then,

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ!d Nð0;OÞ,

where

O ¼ Var½gðo; y0; g0Þ þ dðoÞ�.

Proof. See the appendix.

The last step is to show the asymptotic normality of the estimator ŷ through the delta method. The results
are summarized as follows:

Theorem 4 (Asymptotic normality). Suppose that assumptions in Theorem 3 and Lemma 4 hold, and:
(Assumption 5.5)
 y0 2 interiorðYÞ, and E½kgðo; y0; g0Þk
2
2�o1.
(Assumption 5.6)
 There is dðoÞ with

tðz;wÞm�ðx�;w; yÞ
d2

dydyT
mðz;w; y; g0Þ





 




2

pdðoÞ,

tðz;wÞ½y�mðz;w; y; g0Þ�
d2

dydyT
m�ðx�;w; yÞ





 




2

pdðoÞ,

tðz;wÞ
d

dyj

m�ðx�1;w;
eyÞ d2

dydyT
m�ðx�2;w; yÞ





 




2

pdðoÞ,

tðz;wÞ
d

dyj

m�ðx�1;w; yÞ
d

dyT
mðz;w; y; g0Þ





 




2

pdðoÞ,

and

tðz;wÞ
d

dyj

m�ðx�1;w; yÞ
d

dyT
m�ðx�2;w; yÞ





 




2

pdðoÞ

for all y 2 Y, all x�1, x�2 2 f1; 2; . . . ; kg, and all 1pjpdimðyÞ such that E½dðoÞ�o1.

(Assumption 5.7)
 E½rygðo; y0; g0Þ� exists and is nonsingular.
Then, ffiffiffi
n
p
ðŷ� y0Þ!

d
Nð0;G�1y OG�10y Þ,

where

Gy ¼ E½rygðo; y0; g0Þ�.

Proof. See the appendix.

Since I have the explicit expression of the asymptotic variance, a consistent estimator of the asymptotic
variance can be constructed by substituting estimates for true values in G�1y OG�10y . However, the estimator of
the correction term dðoÞ may be very complicated and difficult to compute. As suggested by Newey (1994b,
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equation 7), an alternative way to compute the correction term is to use the numerical differentiation of the
influence function instead of using the explicit expression. The detailed estimation of the asymptotic variance
may be found in Section 3 in Newey (1994b). I also implement that variance estimator in the empirical
illustration.
4. Simulation

This section applies the estimator developed above to a probit model with a mismeasured 0–1 dichotomous
explanatory variable and to a nonlinear regression model containing a discrete regressor with four possible
values. The conditional density function of the probit model is

f �ðyjx�;w; yÞ ¼ Pðx�;w; yÞyð1� Pðx�;w; yÞÞ1�y,

Pðx�;w; yÞ ¼ Fðb0 þ b1x� þ b2wÞ, ð30Þ

where y ¼ ðb0;b1;b2Þ
T and F is the standard normal c.d.f. I consider three estimators. The first is the ML

probit estimator that uses the mismeasured variable x in the sample as if it were accurate. That is, it ignores the
misclassification error. This ML estimator is not consistent. The second estimator is the infeasible ML probit
estimator that uses the latent true x�. This estimator is consistent and has the smallest asymptotic variance of
all the estimators considered here. The third estimator is the semi-parametric MLE developed above which
uses the instrumental variable. For each estimator, I report the Root Mean Squared Error (RMSE), the
average bias, and the standard deviation of the estimates over the replications. One should expect that the
second estimator has the smallest mean squared error (MSE), that the first one has the largest MSE, and that
the MSE of the semiparametric IV estimator is between those of the other two estimators. Since the first
estimator is biased due to the misclassification error, the bias should dominate the MSE of that estimator. The
semiparametric IV estimator corrects the bias, but its variance should be larger than that of the second
estimator. Since the last two estimators are consistent, their variance should dominate their MSE.

Table 1 shows that the MLE that ignores the misclassification error is significantly biased as expected. The
bias of the estimated coefficient on the mismeasured independent variable is larger than the biases of other
Table 1

Simulation results of probit model: sample size 500; number of repetitions 200

b1 b2 b0

Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev.

p ¼ 0:3

q ¼ 0:2

Ignoring meas. error 0.541 �0.523 0.139 0.181 �0.103 0.149 0.293 0.277 0.095

True x� 0.160 0.015 0.159 0.166 �0.013 0.165 0.104 0.000 0.104

I.V. 0.421 �0.095 0.410 0.307 �0.087 0.295 0.263 0.045 0.259

p ¼ 0:3� 0:1w

q ¼ 0:2þ 0:1w

Ignoring meas. error 0.538 �0.520 0.136 0.210 �0.150 0.147 0.290 0.275 0.094

True x� 0.157 0.012 0.157 0.165 �0.011 0.164 0.104 0.000 0.104

I.V. 0.409 �0.124 0.389 0.332 �0.138 0.302 0.238 0.061 0.230

p ¼ 0:3þ 0:1w

q ¼ 0:2þ 0:1w

Ignoring meas. error 0.509 �0.491 0.137 0.176 �0.094 0.149 0.279 0.263 0.093

True x� 0.160 0.015 0.159 0.165 �0.014 0.165 0.104 �0.001 0.104

I.V. 0.318 �0.108 0.299 0.307 �0.071 0.298 0.205 0.052 0.198

Note: (1) b1 ¼ 1, b2 ¼ 1, b0 ¼ 0:5, x� ¼ Ið�o0:6Þ; z ¼ Ið�þ do0:6Þ, �	Uniformð0; 1Þ, d	Nð0; 0:04Þ, ðrx�z 
 0:67Þ, w	Nð0; 0:25Þ.
(2) Prðx ¼ 0jx� ¼ 1;wÞ ¼ minð1;maxð0; pÞÞ;Prðx ¼ 1jx� ¼ 0;wÞ ¼ minð1;maxð0; qÞÞ.
(3) KðxÞ ¼ 0:5ð3� x2ÞfðxÞ and h ¼ 0:2, where fðxÞ is the standard normal density.
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estimated coefficients. The biases of the new semiparametric estimator are smaller than those of the estimator
with misclassification error ignored. In all cases, the MSE of the infeasible MLE is much smaller than that of
the other two estimators. The semiparametric estimator performs well with different specifications of the
misclassification error distribution.

In the general discrete case, I consider a nonlinear regression model as follows:

y ¼ e�ðb0þb1x�þb2wÞ þ u.

The covariate w and the regression error u have a standard normal distribution. The true values of the
parameters are b0 ¼ �2, b1 ¼ 1, and b2 ¼ 1. The latent discrete variable x�, the misclassified variable x, and
the instrumental variable z share the same support f1; 2; 3; 4g. The marginal distributions of x� and z are
Px� ¼ ð0:2; 0:3; 0:3; 0:2Þ, Pz ¼ ð0:3; 0:2; 0:3; 0:2Þ, where Pv:¼ðPðv ¼ 1Þ;Pðv ¼ 2Þ;Pðv ¼ 3Þ;Pðv ¼ 4ÞÞ for a ran-
dom variable v. The variable x� is generated as follows:

x� ¼ Px�ðZx�Þ �

1 if Zx�pPðx� ¼ 1Þ;

2 if Pðx� ¼ 1ÞoZx�pPðx�p2Þ;

3 if Pðx�p2ÞoZx�pPðx�p3Þ;

4 if Pðx�p3ÞoZx�pPðx�p4Þ;

8>>>><>>>>:
where Zx� is uniformly distributed on ½0; 1� and is independent of all other variables. I abuse the notation Px�

to express x� as a function of the random variable Zx� in x� ¼ Px�ðZx�Þ. Similarly, I define
z ¼ Pzð0:6Zx� þ 0:4ZzÞ, where Zz is another independent random variable with a uniform distribution on
½0; 1�. The correlation between x� and z is caused by the common random variable Zx� .

I consider three specifications of the misclassification error distribution in the matrix Fxjx�w. The first
specification uses the constant misclassification probabilities as follows:

Fxjx�w ¼ Fxjx� ¼

0:6 0:2 0:1 0:1

0:2 0:6 0:1 0:1

0:1 0:1 0:7 0:1

0:1 0:1 0:1 0:7

0BBB@
1CCCA.

The matrix Fxjx� is defined as the matrix Fxjx�w with f xjx�wðxjx
�;wÞ ¼ Prðxjx�Þ in each entry. The matrix Fxjx�w

above is strictly diagonally dominant so that the model is identified according to Theorem 1. For a given x�,
the value of x is determined by the corresponding row in Fxjx� and another independent random variable, Zx,
with a uniform distribution on ½0; 1� as follows:

x ¼ Fxjx�ðZxÞ �

1 if ZxpPðx ¼ 1jx�Þ;

2 if Pðx ¼ 1jx�ÞoZxpPðxp2jx�Þ;

3 if Pðxp2jx�ÞoZxpPðxp3jx�Þ;

4 if Pðxp3jx�ÞoZxpPðxp4jx�Þ:

8>>>><>>>>:
I abuse the notation again to express x as a function of Zx in x ¼ Fxjx�ðZxÞ. In the other two specifications, I
consider the correlation between the misclassification error and the covariate w as x ¼ Fxjx�ð0:9Zx þ 0:1FðwÞÞ
and x ¼ Fxjx�ð0:9Zx þ 0:1ð1� FðwÞÞÞ, where F is the cumulative distribution function of w.

The simulation results in Table 2 contain three estimators similar to those in Table 1. The first estimator is a
nonlinear least squares (NLS) estimator using the misclassified variable x as if it were the true value x�. In
other words, the first estimator ignores the misclassification error in x. The second one uses the accurate data
without misclassification errors. The last estimator is the semiparametric IV estimator developed in this paper.
As expected, the simulation results in Table 2 show that the first estimator has a larger MSE than the second
estimator using accurate data, because the misclassification errors cause significant biases. The third estimator
has a smaller MSE than the first one. Moreover, the developed estimator effectively reduces the bias. The
semiparametric IV estimator performs better when the misclassification error is correlated with other
explanatory variables. This is because the semiparametric IV estimator treats the misclassification
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Table 2

Simulation results of the nonlinear regression model: sample size 500; number of repetitions 100

b1 b2 b0

Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev. Root MSE Mean bias Std. dev.

x ¼ F xjx�wðZÞ

Z ¼ Zx

Ignoring meas. error 0.5662 �0.5435 0.1587 0.2090 0.0371 0.2057 1.2081 1.1032 0.4924

True x� 0.0285 0.0003 0.0285 0.0180 �0.0023 0.0178 0.0463 �0.0063 0.0458

I.V. 0.3504 �0.0119 0.3502 0.1561 �0.0722 0.1384 0.5860 �0.0539 0.5835

x ¼ F xjx�wðZÞ

Z ¼ 0:9Zx þ 0:1FðwÞ

Ignoring meas. error 0.4690 �0.4495 0.1336 0.2103 0.0102 0.2101 1.0057 0.9095 0.4291

True x� 0.0285 0.0003 0.0285 0.0180 �0.0023 0.0178 0.0463 �0.0063 0.0458

I.V. 0.3164 �0.0268 0.3152 0.1527 �0.0789 0.1307 0.5162 �0.0242 0.5157

x ¼ F xjx�wðZÞ

Z ¼ 0:9Zx þ 0:1½1� FðwÞ�

Ignoring meas. error 0.4189 �0.3907 0.1511 0.1975 0.0582 0.1888 0.8712 0.7436 0.4539

True x� 0.0285 0.0003 0.0285 0.0180 �0.0023 0.0178 0.0463 �0.0063 0.0458

I.V. 0.3077 �0.0824 0.2965 0.1583 �0.0728 0.1405 0.5171 0.0612 0.5171
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probabilities as fully nonparametric functions of other explanatory variables. In the situation where the
misclassification probabilities are just constants, one should expect certain efficiency loss due to the
nonparametric estimation of the misclassification probabilities. Another fact is that the misclassification error
not only causes a large bias in the estimated coefficient bb1 on the latent variable x�, but also leads to a
significant bias in the estimated constant term bb0. The simulation results show that the semiparametric IV
estimator also reduces the bias in bb0.

In summary, the semiparametric IV estimator performs well in the finite sample. The new estimator
successfully reduces the bias caused by the misclassification error. And the simulation results are also
consistent with the asymptotic properties of the estimator.

5. Empirical illustration

This section applies the developed estimator to a count data model to investigate the impact of education on
women’s fertility. Since the dependent variable (number of children) takes on discrete values for a nontrivial
fraction of the population, I directly model the expectation of the dependent variable y conditional on the
explanatory variables x� and w as Eðyjx�;wÞ ¼ m�ðx�;wÞ. A detailed discussion of count data models can be
found in Wooldridge (2002, p. 645). I use the exponential function, a popular functional form, as follows:

m�ðx�;wÞ ¼ eb0þb1x�þb2w.

The coefficient b1 or b2 is related to the semielasticity of Eðyjx�;wÞ with respect to x� or w. For small changes
Dx�, the percentage change in the conditional mean Eðyjx�;wÞ is roughly 100b1Dx�. Since the true education
level of each individual is subject to misreporting error,5 I use the parents’ education level as the instrumental
variable to estimate the parameter of interest b ¼ ðb0;b1; b2Þ

T. Notice that Assumptions 2.2 and 2.7 are
consistent with the misclassification probability matrix found in Kane et al. (1999). The father’s self-reported
education level can be treated as a repeated measurement of the individual’s education level. As in other
measurement error studies using repeated measurements, such as Li (2002) and Schennach (2004), the repeated
measurement is not required to be accurate. As long as it is independent of the individual’s self-reported
5For example, see Kane et al. (1999, Table 1).
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education level and fertility conditional on the true education level, the father’s self-reported education level
may play the role of the instrumental variable.

As discussed above, the parameters are estimated through the moment condition

mðz;wÞ ¼
X
x�

eb0þb1x�þb2wf x�jzwðx
�jz;wÞ.

One can apply a NLS estimator to this count data model. The NLS estimator is consistent but inefficient
because the discrete distribution of the count data implies heteroskedasticity. I instead use the Poisson
regression model, which is common for count data. When the distribution of the dependent variable
conditional on the independent variables f yjx�w is Poisson, the estimator using the latent model f yjx�w with
conditional mean m�ðx�;wÞ is just a maximum likelihood estimator with the log likelihood for observation i as
follows:

l�i ðyi;x
�
i ;wi; bÞ ¼ yi lnm�ðx�i ;wi; bÞ �m�ðx�i ;wi; bÞ.

In fact, the Poisson assumption is not necessary for consistent estimation of the parameters. When the
distribution f yjx�w is not Poisson, the same estimator is called the Poisson quasi-maximum likelihood
estimator (QMLE), which is fully robust to distributional misspecification. In this situation, there are two
possible estimators. First, one can ignore the measurement error and use xi as x�i in the likelihood
liðyi;x

�
i ;wi; bÞ. Second, one can use the mðz;wÞ as a conditional mean of y on z and w, and implement a QMLE

with a likelihood function as follows:

liðyi; zi;wi; bÞ ¼ yi lnmðzi;wi; bÞ �mðzi;wi; bÞ.

Under the regularity conditions, this QMLE estimator is consistent and asymptotically normal.
The population considered here is composed of women who have left school but still live with their parents.

The dependent variable is the number of children for a given woman. The independent variable consists of
education, age, employment status, and race. The sample is from the March supplement to the 2002 Current
Population Survey (CPS). In this estimation, education has three categories: high school education or lower,
some college education, and college education or higher. Years of education assigned to each category are 9,
14, and 16, respectively. The joint distribution of women’s and their parents’ education level is shown in
Table 3. More than half of the women in the sample did not have any college education. And 26.5% of the
individuals in the sample entered college but did not finish. The correlation coefficient between the education
levels of the women and their parents is 0.256. Table 4 contains the descriptive statistics of other variables.
There were 53% of the women having no children, 27% having one child, and 20% having two or more.
About 80% of the women in the sample were employed and about 20% were black. The median age was 22,
and the first and the third quartiles were 19 and 25. Marital status is not considered in the model because less
than 1.6% of the 1,688 women in the sample were married.

I assume the misclassification error in a woman’s education level is independent of her parents’ education
level and the number of her children conditional on her true education level, employment status, age, and race.
And the misclassification probability is assumed to satisfy Assumptions 2.6 and 2.7. Assumption 2.7 implies
that people are more willing to tell the truth than to lie, conditional on their education, employment status,
Table 3

Joint distribution of education (1688 observations)

Education Parents’ education

High school or lower Some college College or higher Total

High school or lower 0.361 0.134 0.072 0.568

Some college 0.111 0.092 0.050 0.254

College or higher 0.065 0.039 0.075 0.179

Total 0.537 0.265 0.198 1
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Table 4

Summary statistics of variables (1688 observations)

Mean Std. dev. Min Max

Number of children 0.790 1.092 0 9

Employment ðyes ¼ 1Þ 0.799 0.401 0 1

Age 22.982 6.443 15 56

Race ðwhite ¼ 1Þ 0.798 0.401 0 1

Table 5

NLS estimation results

Ignoring meas. error I.V.

Estimate Std. dev. Estimate Std. dev.

Education �0.0188 0.0177 �0.0539 0.0223

Employment �0.0145 0.0621 �0.0077 0.0638

Age �0.3494 0.0284 �0.3632 0.0254

Age2=100 0.4482 0.0536 0.4660 0.0508

Race �0.0222 0.0808 �0.0092 0.0823

Constant 5.2249 0.3067 5.8884 0.4076

Table 6

QMLE estimation results

Ignoring meas. error I.V.

Estimate Std. dev. Estimate Std. dev.

Education �0.0264 0.0143 �0.0541 0.0244

Employment �0.0220 0.0636 �0.0065 0.0638

Age �0.3665 0.0240 �0.3900 0.0220

Age2=100 0.4979 0.0454 0.5272 0.0438

Race 0.0710 0.0811 0.0658 0.0815

Constant 5.3654 0.2809 6.0178 0.4226
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age, and race. The advantage of the estimator developed in this paper is that it allows the misclassification
error in education to be correlated with all the explanatory variables—the true education level, age,
employment status, and race. For example, individuals at different ages may have different probabilities of
misreporting their education levels. Suppose the error is independent of other explanatory variables except for
age and education. At each age level, the misclassification probability contains six unknown parameters. If age
is considered to be continuous, there are six unknown density functions in the misclassification probability
matrix. If all the other explanatory variables are included, the six unknown functions will have multiple
arguments. Without imposing further restrictions, it is not clear how to use the existing methods to identify
and estimate these functions. Using the method in this paper, I can nonparametrically identify these unknown
functions and parameters of interest and use a ‘‘plug-in’’ semiparametric estimator to estimate them. The
asymptotic variance is estimated using Theorem 8.13 and equation 8.18 in Newey and McFadden (1994), with
more details in Newey (1994b).

Table 5 contains two NLS estimates, and Table 6 shows the two QMLE estimates. The second and third
columns of the tables contain the estimates and their estimated standard deviations when the misclassification
error is ignored. The estimates of the developed estimator and their standard deviations are shown in the last
two columns. When the misclassification error is ignored, both the NLS estimator and the QMLE estimator
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are inconsistent, and the NLS estimator also has the problem of heteroskedasticity. The two semiparametric
IV estimators both are consistent, and the QMLE one should have the correct estimate of asymptotic standard
deviations. The most interesting parameter in the model is the coefficient on education. If the misclassification
error is ignored, the estimates are biased toward zero when compared with the estimates using the
instrumental variable.

The results show that the impact of education on women’s fertility is more significant than commonly
thought. If one ignores the measurement error, the QMLE estimate suggests that one more year of education
will lead to a 2.6% decrease in the number of children born. But the new estimator shows that this percentage
change is underestimated. Its interpretation is that there is a 5.4% decrease in the number of children born for
one more year of education. And the effect is more significant than in the case where the measurement error is
ignored. Employment status and race do not have a significant impact on women’s fertility in any of the four
estimates. The impact of age on women’s fertility is very significant, as expected.

Based on the results in Table 6, one can conduct a test similar to the Hausman test with the null hypothesis

that there are no misclassification errors in education levels. The test statistics is ðbbie � bbivÞTV�1ðbbie � bbivÞ	X2
6,

where bbie is the estimator with error ignored, bbiv is the IV estimator, and V is the variance–covariance matrix

of ðbbie � bbivÞ. In this empirical illustration, the test statistic equals 15.85 with p-value 0.0146. Therefore, the
null hypothesis is rejected at usual significance levels.

In summary, this simple empirical example illustrates that the new estimator performs well with real data.

6. Conclusion

This paper provides a general solution to the problem of identification and estimation of nonlinear models
with misclassification error when instrumental variables are available. The misclassification error can be
correlated with all the explanatory variables. The results show that certain monotonicity restrictions on the
latent model may lead to its identification with virtually no restrictions on the misclassification probabilities.
In this case, one may estimate the latent model directly as eigenvalues of an observed matrix without
considering the misclassification probability. An alternative identification condition implies that the
nonparametric identification may rely on the belief that people always have a higher probability of telling
the truth than of misreporting. The nonparametric identification in this paper directly leads to a
nonparametric or semiparametric estimator.

Acknowledgments

I would like to thank Stephen Donald, Qi Li, Geert Ridder, Maxwell Stinchcombe, seminar audiences at
New York University, at Johns Hopkins University, at the Econometric Society 2005 World Congress and at
Texas Econometrics Camp, as well as the two anonymous referees for helpful comments and suggestions. I
especially thank Xiaohong Chen for her helpful comments in the second revision and Susanne Schennach for
her helpful suggestions in the first two revisions of this paper. All errors are mine.

Appendix
Proof of Lemma 1. First, I show Eqs. (1) and (3). The law of total probability implies

f yxjzwðy;xjz;wÞ ¼
X
x�

f yxx�jzwðy; x;x
�jz;wÞ,

where

f yxx�jzwðy; x;x
�jz;wÞ ¼ f yjxx�zwðyjx;x

�; z;wÞf xjx�zwðxjx
�; z;wÞf x�jzwðx

�jz;wÞ.

By Assumptions 1 and 2, the equation above becomes

f yxx�jzwðy; x;x
�jz;wÞ ¼ f yjx�wðyjx

�;wÞf xjx�wðxjx
�;wÞf x�jzwðx

�jz;wÞ.
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Therefore, Eq. (1) holds as follows:

f yxjzwðy; xjz;wÞ ¼
X
x�

f yjx�wðyjx
�;wÞf xjx�wðxjx

�;wÞf x�jzwðx
�jz;wÞ. (31)

The next step is to directly show Eq. (3), i.e.,

Fyxjzw ¼ Fx�jzw � Fyjx�w � Fxjx�w.

Here, I only show a detailed proof for k ¼ 2, which can be directly generalized to the general discrete case. The
right-hand side of Eq. (3) is

Fx�jzw � Fyjx�w � Fxjx�w

¼

f x�jzwð1j1;wÞ f x�jzwð2j1;wÞ

f x�jzwð1j2;wÞ f x�jzwð2j2;wÞ

 !
�

f yjx�wðyj1;wÞ 0

0 f yjx�wðyj2;wÞ

 !

�

f xjx�wð1j1;wÞ f xjx�wð2j1;wÞ

f xjx�wð1j2;wÞ f xjx�wð2j2;wÞ

 !

¼

f x�jzwð1j1;wÞ f x�jzwð2j1;wÞ

f x�jzwð1j2;wÞ f x�jzwð2j2;wÞ

 !
�

f yjx�wðyj1;wÞf xjx�wð1j1;wÞ f yjx�wðyj1;wÞf xjx�wð2j1;wÞ

f yjx�wðyj2;wÞf xjx�wð1j2;wÞ f yjx�wðyj2;wÞf xjx�wð2j2;wÞ

 !
.

By Assumptions 1 and 2,

f yxjx�wðy;xjx
�;wÞ ¼ f yjx�wðyjx

�;wÞf xjx�wðxjx
�;wÞ,

and therefore,

Fx�jzw � Fyjx�w � Fxjx�w

¼

f x�jzwð1j1;wÞ f x�jzwð2j1;wÞ

f x�jzwð1j2;wÞ f x�jzwð2j2;wÞ

 !
�

f yxjx�wðy; 1j1;wÞ f yxjx�wðy; 2j1;wÞ

f yxjx�wðy; 1j2;wÞ f yxjx�wðy; 2j2;wÞ

 !

¼

f yxjx�wðy; 1j1;wÞf x�jzwð1j1;wÞ

þf yxjx�wðy; 1j2;wÞf x�jzwð2j1;wÞ

 !
f yxjx�wðy; 2j1;wÞf x�jzwð1j1;wÞ

þf yxjx�wðy; 2j2;wÞf x�jzwð2j1;wÞ

 !
f yxjx�wðy; 1j1;wÞf x�jzwð1j2;wÞ

þf yxjx�wðy; 1j2;wÞf x�jzwð2j2;wÞ

 !
f yxjx�wðy; 2j1;wÞf x�jzwð1j2;wÞ

þf yxjx�wðy; 2j2;wÞf x�jzwð2j2;wÞ

 !
0BBBBBB@

1CCCCCCA.

Again by Assumptions 1 and 2,

f yxx�jzwðy; x;x
�jz;wÞ ¼ f yxjx�wðy; xjx

�;wÞf x�jzwðx
�jz;wÞ,

and then

Fx�jzw � Fyjx�w � Fxjx�w

¼

f yxx�jzwðy; 1; 1j1;wÞ þ f yxx�jzwðy; 1; 2j1;wÞ f yxx�jzwðy; 2; 1j1;wÞ þ f yxx�jzwðy; 2; 2j1;wÞ

f yxx�jzwðy; 1; 1j2;wÞ þ f yxx�jzwðy; 1; 2j2;wÞ f yxx�jzwðy; 2; 1j2;wÞ þ f yxx�jzwðy; 2; 2j2;wÞ

 !
. ð32Þ

Since

f yxjzwðy; xjz;wÞ ¼
X
x�

f yxx�jzwðy;x;x
�jz;wÞ,
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the result is

Fx�jzw � Fyjx�w � Fxjx�w ¼
f yxjzwðy; 1j1;wÞ f yxjzwðy; 2j1;wÞ

f yxjzwðy; 1j2;wÞ f yxjzwðy; 2j2;wÞ

 !
¼ Fyxjzw.

Therefore, Eq. (3) holds.
Second, I show Eqs. (2) and (4). Integrating y out in Eq. (31) results in Eq. (2) as follows:

f xjzwðxjz;wÞ ¼
X
x�

f xjx�wðxjx
�;wÞf x�jzwjðx

�jz;wÞ. (33)

The next step is to show that Eq. (4), i.e.,

Fxjzw ¼ Fx�jzw � Fxjx�w, (34)

is equivalent to Eq. (33). The right-hand side of Eq. (34) is

Fx�jzw � Fxjx�w ¼

f x�jzwð1j1;wÞ f x�jzwð2j1;wÞ

f x�jzwð1j2;wÞ f x�jzwð2j2;wÞ

 !
�

f xjx�wð1j1;wÞ f xjx�wð2j1;wÞ

f xjx�wð1j2;wÞ f xjx�wð2j2;wÞ

 !

¼

f xjx�wð1j1;wÞf x�jzwð1j1;wÞ

þf xjx�wð1j2;wÞf x�jzwð2j1;wÞ

 !
f xjx�wð2j1;wÞf x�jzwð1j1;wÞ

þf xjx�wð2j2;wÞf x�jzwð2j1;wÞ

 !
f xjx�wð1j1;wÞf x�jzwð1j2;wÞ

þf xjx�wð1j2;wÞf x�jzwð2j2;wÞ

 !
f xjx�wð2j1;wÞf x�jzwð1j2;wÞ

þf xjx�wð2j2;wÞf x�jzwð2j2;wÞ

 !
0BBBBBB@

1CCCCCCA.

By Assumptions 1 and 2,

f xx�jzwðx;x
�jz;wÞ ¼ f xjx�wðxjx

�;wÞf x�jzwðx
�jz;wÞ,

and then

Fx�jzw � Fxjx�w ¼
f xx�jzwð1; 1j1;wÞ þ f xx�jzwð1; 2j1;wÞ f xx�jzwð2; 1j1;wÞ þ f xx�jzwð2; 2j1;wÞ

f xx�jzwð1; 1j2;wÞ þ f xx�jzwð1; 2j2;wÞ f xx�jzwð2; 1j2;wÞ þ f xx�jzwð2; 2j2;wÞ

 !
.

Since

f xjzwðxjz;wÞ ¼
X
x�

f xx�jzwðx;x
�jz;wÞ,

the result is

Fx�jzw � Fxjx�w ¼
f xjzwð1j1;wÞ f xjzwð2j1;wÞ

f xjzwð1j2;wÞ f xjzwð2j2;wÞ

 !
¼ Fxjzw.

Therefore, Eq. (4) holds. It is straightforward to show that these results still hold for a general k. &

Proof of Lemma 3. This proof uses a general result in Andrew et al. (1993). Consider k � k matrix-valued
functions BðgvÞ where gv is a vector of arguments. The eigenvalues lðgvÞ and eigenvectors wðgvÞ of B satisfy

½BðgvÞ � lðgvÞI�wðgvÞ ¼ 0.

Theorem 2.1 assumes that the values of gv and lðgvÞ belong to sets N and Nl, such that (i) the elements
of BðgvÞ are an analytic function of gv; (ii) for each value of gv in N there is a value of l in Nl such
that detðBðgvÞ � lIÞa0. In this paper, the function BðgvÞ is known as B � Fyxjzw � F�1xjzw, therefore, such sets N
and Nl exist. Moreover, condition (i) holds with gv ¼ gv

0 by the definition of the matrix B under
the assumption that detðFxjzwÞ and f zw are bounded away from zero. By their Theorem 3.2, the fact that
BðgvÞ has distinctive eigenvalues at gv ¼ gv

0 implies that ½BðgvÞ � lðgvÞI� has a so-called simple eigenvalue
at gv ¼ gv

0. Therefore, their Theorem 2.1 holds and implies that there is a neighborhood N0 of gv
0 on

which there exists an eigenvalue function lðgvÞ and eigenvector functions wðgvÞ that are all analytic functions of
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gv. I define eG ¼ fn : n ¼ gvðoÞ and gv 2N0g, which is the union of the range of all gv near gv
0. Thus, the

function wð�Þ is analytic on eG. Notice that the neighborhood N0 and the set eG do not change with the sample
size n.

Consider gv, gv
0 and assume the existence of a continuous path fgvðtÞ : t 2 ½0; 1�g such that gvð0Þ ¼ gv

0 and
gvð1Þ ¼ gv. Given the uniform convergence of bg to g0, one may only consider gv close enough to gv

0. When gv is
close enough to gv

0, i.e., kg� g0k1pe for a e! 0 as n!1, the range of ð1� tÞgv
0 þ tgv is a subset of eG.

Therefore, wðð1� tÞgv
0 þ tgvÞ is continuously differentiable (actually analytic) at t ¼ 0. The pathwise derivative

of wð�Þ evaluated at gv � gv
0 can be defined as

dwðgv
0Þ

dgv
½gv � gv

0� �
dwðð1� tÞgv

0 þ tgvÞ

dt

				
t¼0

(35)

almost everywhere (under the probability measure of o). Notice that the nonstochastic analytic function w

only depends on the values of the nuisance function gv at observed points instead of the entire function. The
pathwise derivative can be expressed as the ordinary derivative through

dwðð1� tÞgv
0 þ tgvÞ

dt
¼

qwðð1� tÞgv
0 þ tgvÞ

qðgvÞ
T

� ðgv � gv
0Þ.

This is a linear functional that approximates wðgvÞ in the neighborhood of gv
0, i.e., for small values of gv � gv

0.
Therefore,

wðgvÞ � wðgv
0Þ ¼

dwðð1� etÞgv
0 þ etgvÞ

dgv
½gv � gv

0� (36)

for some et 2 ½0; 1�.
Let ðgvÞj denote the jth entry of vector gv and k � k1 denote the L1 norm or the sum norm. Section 12 in

Andrew et al. (1993) shows that

qlðgv
0Þ

qðgvÞj
¼ mðgv

0Þ
T qBðg

v
0Þ

qðgvÞj
wðgv

0Þ,

where mðgvÞ is the right eigenvector corresponding to lðgvÞ. When gv ¼ gv
0, wðg

v
0Þ is a column of Fx�jzw and mðgv

0Þ

is a column of ðF�1x�jzwÞ
T. The derivative of the eigenvector is

qwðgv
0Þ

qðgvÞj
¼ �ðI� wðgv

0Þ1
TÞ½Bðgv

0Þ � lðgv
0ÞI�
þ qBðgv

0Þ

qðgvÞj
�

qlðgv
0Þ

qðgvÞj
I

 !
wðgv

0Þ,

where 1 ¼ ð1; . . . ; 1ÞT and Mþ stands for the Moore–Penrose generalized inverse of the matrix M. Therefore,
Eq. (36) becomes

wðgvÞ � wðgv
0Þ ¼

dwðð1� etÞgv
0 þ etgvÞ

dgv
½gv � gv

0�

¼
X

j

qwðð1� etÞgv
0 þ etgvÞ

qðgvÞj
ðgv

j � gv
0jÞ

p
X

j

qwðð1� etÞgv
0 þ etgvÞ

qðgvÞj













1

jgv
j � gv

0jj. ð37Þ

Since the range of ð1� etÞgv
0 þ etgv in Eq. (37) is a subset of eG and wð�Þ is analytic on eG, the term

qwðð1� etÞgv
0 þ etgvÞ

qðgvÞj













1

is bounded and the last term in Eq. (37) is Oðkg� g0k1Þ. Therefore, the eigenvectors

converge as follows:

sup
kg�g0k1pe

kwðgvÞ � wðgv
0Þk1 ¼ Oðkg� g0k1Þ.
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Now consider the linearization of wðgvÞ with respect to gv. The pathwise derivative gives

wðgvÞ � wðgv
0Þ ¼

qwðgv
0Þ

qðgvÞ
T
ðgv � gv

0Þ þ
X

j

X
l

q2wðð1� etÞgv
0 þ etgvÞ

qðgvÞjdðgvÞl
ðgv

j � gv
0jÞðg

v
l � gv

0lÞ, (38)

where et 2 ½0; 1�. The explicit expression of the second-order derivative
q2wðð1� etÞgv

0 þ etgvÞ

qðgvÞjqðgvÞl
is complicated but

may still be derived. Although I do not show the explicit expression, the same reasoning as in Eq. (37) holds.
Since wð�Þ is analytic, its higher-order derivatives are all well defined and bounded. Therefore, the last term on
the right-hand side of Eq. (38) is Oðkg� g0k

2
1Þ. The result then is

sup
kg�g0k1pe

wðgvÞ � wðgv
0Þ �

qwðgv
0Þ

qðgvÞ
T
ðgv � gv

0Þ





 




1

¼ Oðkg� g0k
2
1Þ: &

Proof of Theorem 3 (Consistency). Define

Qnðy;bgÞ ¼ 1

n

Xn

i¼1

tðzi;wiÞ½yi �mðzi;wi; y;bgÞ�2
and

Q0ðy; g0Þ ¼ Eftðzi;wiÞ½yi �mðzi;wi; y; g0Þ�
2g.

I first show that supy2Y jQnðy;bgÞ �Q0ðy; g0Þj ¼ opð1Þ. The left-hand side is bounded as follows:

sup
y2Y
jQnðy;bgÞ �Q0ðy; g0Þjp sup

y2Y
jQnðy;bgÞ �Qnðy; g0Þj þ sup

y2Y
jQnðy; g0Þ �Q0ðy; g0Þj. (39)

By Lemma 2.4 in Newey and McFadden (1994) and Assumptions 4.2 and 4.3, the second term on the right-
hand side is negligible, i.e.,

sup
y2Y
jQnðy; g0Þ �Q0ðy; g0Þj ¼ opð1Þ. (40)

I consider the first term on the right-hand side of Eq. (39) as follows:

Qnðy;bgÞ �Qnðy; g0Þ ¼
1

n

Xn

i¼1

tðzi;wiÞf½yi �mðzi;wi; y;bgÞ�2 � ½yi �mðzi;wi; y; g0Þ�
2g.

Using the identity

ba2 � a2 ¼ ðba� aÞ2 þ 2aðba� aÞ.

I obtain

Qnðy;bgÞ �Qnðy; g0Þ ¼
1

n

Xn

i¼1

tðzi;wiÞ½mðzi;wi; y;bgÞ �mðzi;wi; y; g0Þ�
2

�
1

n

Xn

i¼1

tðzi;wiÞ2½yi �mðzi;wi; y; g0Þ�½mðzi;wi; y;bgÞ �mðzi;wi; y; g0Þ�

¼
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

m�ðx�;wi; yÞ½cðx�;bgÞ � cðx�; g0Þ�

 !2

�
1

n

Xn

i¼1

tðzi;wiÞ2½yi �mðzi;wi; y; g0Þ�

�
X
x�

m�ðx�;wi; yÞ½cðx�;bgÞ � cðx�; g0Þ�

 !
.
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Given the uniform convergence of bg, for some e! 0 as n!1

sup
y2Y
jQnðy;bgÞ �Qnðy; g0Þjp sup

kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A2X
x�

1

n

Xn

i¼1

tðzi;wiÞjm
�ðx�;wi; yÞj

 !

þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A
�
X
x�

1

n

Xn

i¼1

tðzi;wiÞjm
�ðx�;wi; yÞ2½yi �mðzi;wi; y; g0Þ�j

 !
.

By Assumption 4.3 and Lemma 2.4 in Newey and McFadden (1994),

sup
y2Y
jQnðy;bgÞ �Qnðy; g0ÞjpOp sup

kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A
¼ Oðkbg� g0k1Þ

¼ opð1Þ.

The last two steps are due to Lemmas 2 and 3, and Assumption 4.4. Therefore,

sup
y2Y
jQnðy;bgÞ �Qnðy; g0Þj ¼ opð1Þ.

Combining Eqs. (39) and (40) results in

sup
y2Y
jQnðy;bgÞ �Q0ðy; g0Þj ¼ opð1Þ. (41)

By Theorem 4.1.1 in Amemiya (1985b, p. 106), Assumptions 4.1–4.2 and Eq. (41) imply

ŷ!
p
y0: &

Proof of Lemma 4. The major step in this proof is to show

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ ¼ 1ffiffiffi
n
p
Xn

i¼1

½gðoi; y0; g0Þ þ dðoiÞ� þ opð1Þ. (42)

That means 1ffiffi
n
p
Pn

i¼1 gðoi; y0;bgÞ has the same asymptotic distribution as 1ffiffi
n
p
Pn

i¼1 ½gðoi; y; g0Þ þ dðoiÞ�, which
converges to a normal distribution. Consider

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ � 1ffiffiffi
n
p
Xn

i¼1

gðoi; y0; g0Þ ¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ ½yi �mðzi;wi; y0;bgÞ� d
dy

mðzi;wi; y0;bgÞ�
� ½yi �mðzi;wi; y0; g0Þ�

d

dy
mðzi;wi; y0; g0Þ

�
. ð43Þ

By the identity

babb� ab ¼ ðba� aÞbþ aðbb� bÞ þ ðba� aÞðbb� bÞ,

the right-hand side of Eq. (43) equals

¼ �
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ½mðzi;wi; y0;bgÞ �mðzi;wi; y0; g0Þ�
d

dy
mðzi;wi; y0; g0Þ

þ
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ½yi �mðzi;wi; y0; g0Þ�
d

dy
mðzi;wi; y0;bgÞ � d

dy
mðzi;wi; y0; g0Þ

� �
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�
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ½mðzi;wi; y0;bgÞ �mðzi;wi; y0; g0Þ�

�
d

dy
mðzi;wi; y0;bgÞ � d

dy
mðzi;wi; y0; g0Þ

� �

¼ �
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
X
x�

m�ðx�;wi; y0Þ½cðx�;bgÞ � cðx�; g0Þ�

 !
d

dy
mðzi;wi; y0; g0Þ

þ
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ½yi �mðzi;wi; y0; g0Þ�
X
x�

d

dy
m�ðx�;wi; y0Þ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
X
x�

m�ðx�;wi; y0Þ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
X
x�

d

dy
m�ðx�;wi; y0Þ½cðx�;bgÞ � cðx�; g0Þ�

 !
¼ A1 þ A2 þ A3. ð44Þ

I first show the term A3 is opð1Þ. The term A3 is bounded as follows:

jA3jp sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A2

�
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
X
x�

jm�ðx�;wi; y0Þj

 ! X
x�

d

dy
m�ðx�;wi; y0Þ

				 				
 !

¼ Op sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A2

Opðn
1=2Þ.

The last step is due to Assumption 5.3. By Lemma 3, jA3j is equal to Opðn
1=2kbg� g0k

2
1Þ. Assumption 5.4 then

implies that jA3j is opð1Þ.
Combining the terms A1 and A2 in Eq. (44) results in

A1 þ A2 ¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
X
x�

½yi �mðzi;wi; y0; g0Þ�
d

dy
m�ðx�;wi; y0Þ

� 

�m�ðx�;wi; y0Þ
d

dy
mðzi;wi; y0; g0Þ

�
½cðx�;bgÞ � cðx�; g0Þ�

!

¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
½ðyi �mðzi;wi; y0; g0ÞÞm

�ðx�;wi; y0Þ�½cðx�;bgÞ � cðx�; g0Þ�

 !
.

Define

sðyi; zi;wi; y; g0Þ ¼

ðyi �mðzi;wi; y; g0ÞÞm
�ðx�j1

;wi; yÞ

..

.

ðyi �mðzi;wi; y; g0ÞÞm
�ðx�jk

;wi; yÞ

0BBB@
1CCCA

T

,

where the ordering of x�j1
; . . . ;x�jk is the same as that of x� in the vector wðgvÞ. The result is

A1 þ A2 ¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; g0Þ½wðbgv

Þ � wðgv
0Þ�.
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The right-hand side equals

¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; g0Þ

qwðgv
0Þ

qðgvÞ
T
ðbgv
� gv

0Þ þ R,

where the remainder term R is

R ¼
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; g0Þ wðbgv

Þ � wðgv
0Þ �

qwðgv
0Þ

qðgvÞ
T
ðbgv
� gv

0Þ

� �
.

It is bounded as follows:

jRjp sup
kbg�g0k1pe

wðbgv
Þ � wðgv

0Þ �
qwðgv

0Þ

qðgvÞ
T
ðbgv
� gv

0Þ





 




1

�
1ffiffiffi
n
p
Xn

i¼1

tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; g0Þ





 




1

.

The second term on the right-hand side is Opðn
1=2Þ by Assumption 5.3. By Lemma 3, the first term on the right-

hand side is Opðkbg� g0k
2
1Þ. Assumption 5.4 then implies that jRj ¼ opð1Þ. Thus,

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ ¼ 1ffiffiffi
n
p
Xn

i¼1

gðoi; y0; g0Þ þ
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; g0Þ

qwðgv
0Þ

qðgvÞ
T
ðbgv
� gv

0Þ þ opð1Þ.

Define

Gðo; gv � gv
0Þ ¼ tðz;wÞ

d

dy
sðy; z;w; y0; g0Þ

qwðgv
0Þ

qðgvÞ
T
ðgv � gv

0Þ.

I have actually shown that for kg� g0k1pe

sup
kg�g0k1pe

jgðo; y0; gÞ � gðo; y0; g0Þ � Gðo; gv � gv
0ÞjpbðoÞkg� g0k

2
1,

with E½bðoÞ�o1. That means condition (i) in Theorem 8.11 in Newey and McFadden (1994) is satisfied.
Assumption 5.3 and Lemma 3 guarantee their condition (ii). The function Gðo; gÞ is a linear function of g so
that Z

Gðo; gvÞdF 0ðoÞ ¼
Z

vðoÞgvðoÞdo,

where

vðeoÞ ¼ E tðzi;wiÞ
d

dy
sðyi; zi;wi; y0; gÞ

qwðgvÞ

qðgvÞ
T
1

				
gv¼gv

0
ðeoÞ
						eo

24 35,
and the vector 1 has the same dimension as gv. Therefore, their condition (iii) in Theorem 8.11 is satisfied.
Since the function wð�Þ is analytic and o has a compact support, Assumptions 5.1 and 5.3 implies Assumption
(iv) in Theorem 8.11 is satisfied. Let

dðoÞ ¼ vðoÞ � E½vðoÞ�.

Finally, Theorem 8.11 in Newey and McFadden (1994) implies that

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ ¼ 1ffiffiffi
n
p
Xn

i¼1

½gðoi; y; g0Þ þ dðoiÞ� þ opð1Þ.

By the standard central limit theorem, 1ffiffi
n
p
Pn

i¼1 ½gðoi; y; g0Þ þ dðoiÞ� converges to a normal distribution with
mean zero and variance O ¼ Varfgðo; y0; g0Þ þ dðoÞg, i.e.,

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ!d Nð0;OÞ: &
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Proof of Theorem 4 (Asymptotic normality). The estimator by solves

1

n

Xn

i¼1

gðoi;by;bgÞ ¼ 0.

The left-hand side equals

¼
1

n

Xn

i¼1

gðoi; y0;bgÞ þ 1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞðby� y0Þ,

where ey is between by and y0. I show the asymptotic normality of the estimator using the delta method as
follows:

�
1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞ ffiffiffinp ðby� y0Þ ¼

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ. (45)

Lemma 4 implies that the term on the right-hand side converges to a normal distribution as follows:

1ffiffiffi
n
p
Xn

i¼1

gðoi; y0;bgÞ!d Nð0;Varfgðo; y0; g0Þ þ dðoÞgÞ.

The next step is to show the uniform convergence of the Hessian matrix term on the left-hand side of Eq. (45),
i.e.,

sup
y2Y

sup
kg�g0k1pe

1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞ � 1

n

Xn

i¼1

d

dyT
gðoi; y0; g0Þ

					
					 ¼ opð1Þ.

The left-hand side is bounded by

p sup
y2Y

sup
kg�g0k1pe

1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞ � 1

n

Xn

i¼1

d

dyT
gðoi;ey; g0Þ

					
					

þ sup
y2Y

1

n

Xn

i¼1

d

dyT
gðoi;ey; g0Þ � 1

n

Xn

i¼1

d

dyT
gðoi; y0; g0Þ

					
					. ð46Þ

Because ey!p y0 and the function gðo; y; g0Þ is continuously differentiable in y by Assumption 4.2, the second
term in Eq. (46) is opð1Þ. Now consider the first term in Eq. (46):

D �
1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞ � 1

n

Xn

i¼1

d

dyT
gðoi;ey; g0Þ

¼
1

n

Xn

i¼1

tðzi;wiÞ ½yi �mðzi;wi;ey;bgÞ� d2

dydyT
mðzi;wi;ey;bgÞ � ½yi �mðzi;wi;ey; g0Þ� d2

dy dyT
mðzi;wi;ey; g0Þ� �

�
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey;bgÞ d

dyT
mðzi;wi;ey;bgÞ � d

dy
mðzi;wi;ey; g0Þ d

dyT
mðzi;wi;ey; g0Þ� �

.

Using identity

babb� ab ¼ ðba� aÞbþ aðbb� bÞ þ ðba� aÞðbb� bÞ,

I obtain for any ey 2 Y,

D ¼ �
1

n

Xn

i¼1

tðzi;wiÞ ½mðzi;wi;ey;bgÞ �mðzi;wi;ey; g0Þ� d2

dydyT
mðzi;wi;ey; g0Þ� �

þ
1

n

Xn

i¼1

tðzi;wiÞ½yi �mðzi;wi;ey; g0Þ�
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�
d2

dydyT
mðzi;wi;ey;bgÞ � d2

dydyT
mðzi;wi;ey; g0Þ� �

�
1

n

Xn

i¼1

tðzi;wiÞ½mðzi;wi;ey;bgÞ �mðzi;wi;ey; g0Þ�
�

d2

dydyT
mðzi;wi;ey;bgÞ � d2

dydyT
mðzi;wi;ey; g0Þ� �

�
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey;bgÞ � d

dy
mðzi;wi;ey; g0Þ� �

d

dyT
mðzi;wi;ey; g0Þ� �

�
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey; g0Þ d

dyT
mðzi;wi;ey;bgÞ � d

dyT
mðzi;wi;ey; g0Þ� �� �

�
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey;bgÞ � d

dy
mðzi;wi;ey; g0Þ� �

�
d

dyT
mðzi;wi;ey;bgÞ � d

dyT
mðzi;wi;ey; g0Þ� �

¼ �
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !
d2

dydyT
mðzi;wi;ey; g0Þ

 !

þ
1

n

Xn

i¼1

tðzi;wiÞ ½yi �mðzi;wi;ey; g0Þ� X
x�

d2

dydyT
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !" #

�
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
X
x�

d2

dydyT
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !
d

dyT
mðzi;wi;ey; g0Þ

�
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey; g0Þ X

x�

d

dyT
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !

�
X
x�

d

dyT
m�ðx�;wi;eyÞ½cðx�;bgÞ � cðx�; g0Þ�

 !
.

Therefore, the term jDj is bounded by

sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

jm�ðx�;wi;eyÞj d2

dydyT
mðzi;wi;ey; g0Þ				 				

 !					
					

þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1
1

n

Xn

i¼1

tðzi;wiÞjyi �mðzi;wi;ey; g0ÞjX
x�

d2

dydyT
m�ðx�;wi;eyÞ				 				
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þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A2

�
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ				 				

 ! X
x�

d2

dydyT
m�ðx�;wi;eyÞ				 				

 !					
					

þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ				 				 d

dyT
mðzi;wi;ey; g0Þ				 				

					
					

þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1
1

n

Xn

i¼1

tðzi;wiÞ
d

dy
mðzi;wi;ey; g0Þ				 				 X

x�

d

dyT
m�ðx�;wi;eyÞ				 				

 !					
					

þ sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A2

�
1

n

Xn

i¼1

tðzi;wiÞ
X
x�

d

dy
m�ðx�;wi;eyÞ				 				

 ! X
x�

d

dyT
m�ðx�;wi;eyÞ				 				

 !					
					.

By Assumption 5.6 and Lemma 2.4 in Newey and McFadden (1994),

sup
y2Y

sup
kg�g0k1pe

jDj ¼ Op sup
kbg�g0k1pe

kwðbgv
Þ � wðgv

0Þk1

0@ 1A.

By Lemma 3 and Assumptions 3.4 and 4.4, supy2Ysupkbg�g0k1pe
jDj ¼ opð1Þ. Finally, the result is

sup
y2Y

sup
kg�g0k1pe

1

n

Xn

i¼1

d

dyT
gðoi;ey;bgÞ � 1

n

Xn

i¼1

d

dyT
gðoi; y0; g0Þ

					
					 ¼ opð1Þ.

Because E½rygðo; y0; g0Þ� exists and is nonsingular, the Slutsky theorem then impliesffiffiffi
n
p
ðŷ� y0Þ!

d
Nð0;G�1y OG�10y Þ,

where

Gy ¼ E½rygðo; y0; g0Þ�,

O ¼ Var½gðo; y0; g0Þ þ dðoÞ�: &
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