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Abstract

This paper considers the identifiability of a class of hidden Markov models where both
the observed and unobserved components take values in finite spaces X and Y, respectively.
We prove that both the Markov transition probability and the conditional probability are
identified from the joint distribution of three consecutive variables given that the cardi-
nality of X is not greater than that of Y. The approach of identification provides a novel
methodology to estimate the hidden Markov models, and the performance of the proposed
estimators is illustrated by a Monte Carlo experiment. We further extend our methodology
to the Markov-switching model which generalizes the hidden Markov model, and show that
the extended model can be similarly identified and estimated from the joint distribution of
four consecutive variables if the cardinalities of Y and X are equal.

1 Introduction

A hidden Markov model is a bivariate stochastic process {Yt, Xt}t=1,2,... where {Xt} is an un-

observed Markov chain and, conditional on {Xt}, {Yt} is an observed sequence of independent

random variables such that the conditional distribution of Yt only depends on Xt. The state

space of {Xt} and {Yt} are denoted by X and Y with cardinality |X | and |Y|, respectively.

When Yt depends both on Xt and the lagged observations Yt−1, it is called Markov Switching

Model. Hidden Markov Models (HMMs) and Markov Switching Models (MSMs) are widely used

in econometrics, finance and macroeconomics (Hamilton (1989), Hull and White (1987)). They

are also found to be important in biology (Churchill (1992)), and speech recognition (Jelinek

(1997), Rabiner and Juang (1993)), etc.
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A hidden Markov model is fully captured by the conditional probability fYt|Xt and the transi-

tion probability of the hidden Markov chain fXt|Xt−1 , which are the two objectives of identification

and estimation in many existing studies of HMMs. Petrie (1969) is the first paper addresses the

identifiability of a class of HMMs where both X and Y are finite state spaces. The paper proves

that both the conditional and the transition probability are identified if the whole distribution

of the HMM is known and satisfying a set of regularity conditions. This result is extended about

three decades later: Lemma 1.2.4 of Finesso (1991) shows that the distribution of a HMM with

|X | hidden states and |Y| observed states is identified by the marginal distribution of 2|X | consec-

utive variables. Paz (1971) provides a stronger result in Corollary 3.4 (chapter 1): the marginal

distribution of 2|X |−1 consecutive variables suffices to reconstruct the whole HMM distribution.

More recently, Allman, Matias, and Rhodes (2009) (Theorem 6) provide a new result on identifia-

bility of HMMs using the fundamental algebraic results of Kruskal (1976, 1977). They show that

both the Markov transition probability and the conditional probability are uniquely determined

by the joint distribution of 2k + 1 consecutive observables where k satisfies
(
k+|Y|−1
|Y|−1

)
≥ |X |.

On the other hand, the existing literature on estimation of HMMs mainly focuses on the

maximum-likelihood estimator (MLE) initiated by Baum and Petrie (1966) and Petrie (1969)

where both the state space X and the observational space Y are finite sets. Still using MLE,

Leroux (1992), Douc and Matias (2001) and Douc, Moulines, and Ryden (2004) among others

investigate the consistency of MLE for general HMMs. Recently, Douc, Moulines, Olsson, and

Van Handel (2011) estimate a parametric family of Hidden Markov Models and provide strong

consistency under mild assumptions where both the observed and unobserved components take

values in a complete separable metric space. Hsu, Kakade, and Zhang (2012) and Siddiqi, Boots,

and Gordon (2010) study learning of HMMs using a singular value decomposition method. Full

Bayesian approaches are also employed in the inference of parameters of HMMs (e.g. see Chapter

13 in Cappé, Moulines, and Rydén (2005)) where parameters are assigned prior distributions,

and the inference on these parameters is conditional on the observations.

Employing recently developed methodology in the literature of measurement errors (Hu

(2008)), the present paper proposes a novel approach to identify and estimate HMMs. The

basic idea of our identification is that we treat the hidden Markov chain {Xt} as the unobserved

or latent “true” variable while {Yt} is the corresponding observed variables with error. We show

that when both X and Y are finite sets, a HMM is uniquely determined by the joint distribution

of three consecutive observables given that number of unobserved states is not greater than that
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of observed states, i.e., |X | ≤ |Y|. The procedure of identification is constructive and it provides

a novel estimating strategy for the transition and conditional probabilities. The estimators are

consistent under mild conditions, and their performance is illustrated by a Monte Carlo study.

Comparing with MLE, our estimators provide global solutions and they are computationally

convenient. Hence our estimators can be used as initial values for MLE.

The novel approach of identification can also be employed to identify more general models

that extend the basic HMMs with discrete state space. We consider Markov-switching models

(MSMs) that generalize the basic HMM by allowing the dependence of the observed variable Yt on

both the hidden state Xt (as in HMMs) and the lagged variable Yt−1. A Markov-switching model

is characterized by the conditional probability fYt|Yt−1,Xt and the transition probability fXt|Xt−1 ,

which are two objectives of identification. Using the similar methodology of identification for

HMMs, we show that Markov-switching models can be identified and estimated by the joint

distribution of four consecutive observables when both X and Y are finite sets and the cardinality

of X is equal to that of Y .

This paper contributes to the literature of HMMs and its generalization in several ways. First,

we propose a novel methodology to identify HMMs and MSMs. To the best of our knowledge,

this is the first paper on identifiability of Markov Switching Models. We show that the joint

distribution of three and four consecutive observables are informative enough to infer the whole

HMMs and Markov-switching models, respectively, under the assumption |X | = |Y|. The number

of observables required for our identification does not change with the cardinality of the state

space. This is an important advantage over existing results of identification, e.g., Siddiqi, Boots,

and Gordon (2010) we discussed before.

Second, instead of using the maximum likelihood estimator (EM algorithm is often imple-

mented) as most of the existing work does, we propose a new estimating strategy for HMMs

which directly mimics the identification procedure. A prominent advantage of our estimator is

that it is global and does not rely on initial values. It can be easily implemented and is com-

putationally fast. Furthermore, our estimator can be used as the initial value for MLE and this

provides a guidance to choose initial values for MLE, which is an important empirical issue.

Section 2 presents the results of identification for both Hidden Markov and Markov Switching

Models. Section 3 provides estimation for hidden Markov models and a Monte Carlo experiment

for our proposed estimators. Section 4 illustrates our methodology by an empirical application.
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Section 5 concludes. All proofs are collected in the Appendices.

2 Identification

In this section, we address the identification of HMMs and Markov Switching Models.

2.1 Case 1: Hidden Markov Models

Consider a hidden Markov model {Xt, Yt}t=1,2,··· ,T where {Xt} is a Markov chain and, conditional

on {Xt}, {Yt} is a time-series of independent random variables such that the conditional distri-

bution of Yt only depends on Xt. We assume that both the state space of {Xt}, X and the set

in which {Yt} takes its values, Y are finite with equal cardinality, i.e., |X | = |Y|. Without loss of

generality, we assume X = Y = {1, 2, ..., r}1. Hereafter we use capital letters to denote random

variables, while lower case letters denote a particular realization. For the model described above,

the conditional probability and the transition probability are

fYt|{Xt}t=1,2,...,T
= fYt|Xt ,

fXt|{Xt−1}t=2,3,...,T
= fXt|Xt−1 ,

respectively, where fYt|Xt is a matrix Q containing r2 conditional probability fYt|Xt(Yt = i|Xt =

j) ≡ P (Yt = i|Xt = j) = Qij. Similarly, the transition probability of the hidden Markov chain

fXt|Xt−1 is also a matrix P with its r2 elements being the transition probability, i.e., fXt|Xt−1(Xt =

i|Xt−1 = j) ≡ P (Xt = i|Xt−1 = j) = Pij. Throughout the paper, we assume that both fYt|Xt

and fXt|Xt−1 are time independent. Our research problem is to identify and estimate both fYt|Xt

and fXt|Xt−1 from the observed data {Yt}t=1,2,...,T .

HMMs can be generally used to describe the casual links between variables in economics. For

instance, a large literature devotes to the explanation of the dependence of health on socioeco-

nomic status, and a HMM can be a perfect tool to describe such effects, as discussed in Adams,

Hurdb, McFaddena, Merrillc, and Ribeiroa (2003). In our empirical application, we analyze

how the unobserved health status affects individuals’ insurance status (whether an individual is

insured).

1We use X , Y and {1, 2, ..., r} interchangeably in this paper.
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Our identification procedure is based on the recently developed methodology in measurement

error literature, e.g., Hu (2008). Intuitively, we treat observed variable Yt as a variable measured

with error, while Xt is the “true” or unobserved latent variable. We identify the HMMs in two

steps: in the first step, we use the results in Hu (2008) to identify the conditional probability

fYt|Xt . In the second step, we focus on the identification of the transition probability fXt|Xt−1 ,

which is based on the result of the first step.

Consider the observed time series data {Yt}t=1,2,...,T which can be thought as observations

of a random variable from a single agent for many time periods, i.e., T → ∞. To further

investigate the statistical properties of the series, we first impose a regularity condition on the

model {Xt, Yt}t=1,2,...,T .

Assumption 1. The time-series process {Xt, Yt}t=∞t=1 is strictly stationary and ergodic.

Strict stationarity and ergodicity are commonly assumed properties for time-series data for the

statistical analysis. This assumption suffices the strict stationarity and ergodicity of {Yt}, and the

time-invariant conditional probability fYt|Xt . For the ergodic time-series process {Yt}, we consider

the joint distribution of four consecutive observations, Yt+1, Yt, Yt−1, Yt−2, fYt+1,Yt,Yt−1,Yt−2 . Under

Assumption 1, fYt+1,Yt,Yt−1,Yt−2 is uniquely determined by the observed time-series {Yt}t=1,2,...,T

where T →∞ and the result is summarized in the following lemma.

Remark. As we will show later, the assumption above can be relaxed and we may alternatively

only assume the stationarity and ergodicity of {Yt}t=∞t=1 . Under this alternative assumption,

the identification of HMMs is still valid but we need the joint distribution of four consecutive

variables fYt+1,Yt,Yt−1,Yt−2 .

Lemma 1. Under assumption 1, the distribution fYt+1,Yt,Yt−1,Yt−2 is identified from the observed

time-series {Yt}t=1,2,...,T where T →∞.

This result is due to the ergodicity of {Yt}, which is induced by assumption 1, Theorems

3.34 and 3.35 in White (2001). This lemma also naturally implies the identification of the

joint distribution fYt+1,Yt,Yt−1 , fYt+1,Yt and fYt,Yt−1 which we use repeatedly in our identification

procedure.

Remark. This identification result above is due to the asymptotic independent and identically

distributed properties of the stationary and ergodic process. Therefore, this lemma also holds
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for any independent and identically distributed panel data {Yit}i=1,2,...,N ;t=1,2,...,T where Yit are

independent across i. Consequently, our procedure of identification and estimation can be readily

applied to panel data as a special case.

Considering that both Yt and Xt are discrete variables, we define a square matrix Sr1,R2,R3

with its (i, j)-th element being the joint probability P (R1 = r1, R2 = i, R3 = j), square matrices

SR1|r2,R3 and SR2,R3 are similarly defined. A diagonal matrix Dr1,R3 is defined such that its (i, i)-th

element on diagonal is P (R1 = r1, R3 = i), i, j, r1 = 1, 2, ..., r. In what follows, our assumptions

on the model will be imposed on the matrices describing the joint (conditional) distributions.

Assumption 2. The matrix SYt,Yt−1 that describes the observed joint distribution of Yt, Yt−1 has

full rank, i.e., rank(SYt,Yt−1) = |X | = |Y|.

Remark 1. The implications of this assumption can be further observed from the following

relationship

SYt,Yt−1 = SYt|XtSXt,Yt−1 . (1)

The three matrices SYt,Yt−1 , SYt|Xt , SXt,Yt−1 are of the same dimension r × r. Therefore, the

full rank of SYt,Yt−1 implies that both the matrices on the R.H.S. have full rank, too. The full

rank condition on the matrix SYt|Xt requires that the probability P (Yt|Xt = j) is not a linear

combination of P (Yt|Xt = k), k 6= j, k, j ∈ Y . The full rank of SXt,Yt−1 imposes similar restrictions

on the joint probability distribution P (Xt = i, Yt−1 = j), i, j ∈ Y .

Remark 2. The advantage of imposing this assumption is that it can be directly verified from

data by testing the rank of SYt,Yt−1 .

Under the assumption of full rank above, we are able to obtain an eigen-decomposition of an

observed matrix involving our identification objectives

Syt+1,Yt,Yt−1S
−1
Yt,Yt−1

= SYt|XtDyt+1|XtS
−1
Yt|Xt

, for all yt+1 ∈ Y . (2)

This eigen-decomposition allows us to identify SYt|Xt as the eigenvector matrix of the L.H.S.,

SYt+1,yt,Yt−1S
−1
Yt,Yt−1

which can be recovered from data directly. To ensure the uniqueness of the

decomposition, we impose two more assumptions on the model.

Assumption 3. Dyt+1|Xt=k 6= Dyt+1|Xt=j for any given yt+1 ∈ Y whenever k 6= j, k, j ∈ Y.
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With this assumption, we can exclude the possibility of degenerate eigenvalues, it is still

remaining to correctly order the eigenvalues (eigenvectors) which is guaranteed by the next

assumption. To further investigate the restrictions this assumption imposes to the model, we

consider the following equality

Dyt+1|Xt=j = P (yt+1|Xt = j) =
∑
k∈X

P (yt+1|Xt+1 = k)P (Xt+1 = k|Xt = j).

It is clear from this equation that assumption 3 does not restrict P (Yt|Xt) and P (Xt+1|Xt)

directly rather implicitly imposes restrictions on the combination of them. This is in contrast to

what assumed in the literature, e.g., one of the requirements of identifiability in Petrie (1969) is

that there exists a j ∈ X = {1, 2, ..., r} such that all the P (Yt = yt|Xt = j) are distinct.

Assumption 4. There exists a functional F(·) such that F
(
fYt|Xt(·|·)

)
is monotonic in xt or

yt.

Remark. The monotonicity imposed above is not as restrictive as it looks for the following two

reasons: first, the functional F(·) could take any reasonable form. For example, in the Monte

Carlo study, the conditional probability matrix SYt|Xt is strictly diagonally dominant, hence the

columns can be ordered according to the position of the maximal entry of each column. Alter-

natively, the ordering condition may be derived from some known properties of the distribution

fYt+1|Xt . For instance, if it is known that E(Yt+1|Xt = xt) is monotonic in xt, we are able to cor-

rectly order all the columns of SYt|Xt . Second, in empirical applications, this assumption is model

specific and oftentimes it is implied by the model. For instance, An (2010) and An, Hu, and

Shum (2010) show that such an assumption satisfies naturally in auction models. In the empirical

application of the present paper, Yt is whether a patient is insured while Xt is the unobserved

health status of this patient. A reasonable assumption is that given all other factors, a more

healthy patient is insured with a higher probability, i.e., Pr(Yt = 1|Xt = 1) > Pr(Yt = 1|Xt = 0).

Similarly, Pr(Yt = 0|Xt = 0) > Pr(Yt = 0|Xt = 1) also holds. For instance, in a simple

HMM with two hidden states being “Low” and “High” atmospheric pressure and two observa-

tions being “Rain” and “Dry”. Then the monotonicity is natural: P (Yt = Rain|Xt = Low) >

P (Yt = Dry|Xt = Low) and P (Yt = Rain|Xt = High) < P (Yt = Dry|Xt = High), i.e., it is

more likely to rain (be dry) when atmospheric pressure is low (high). While in a theoretical

model, noisy observations within the framework of continuous state spaces are more possible,

this assumption oftentimes can be justified in specific economic problems. Of course, we may
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still have the risk that this assumption is difficult to justify for the qualitative data, e.g., in the

classical case of DNA segmentation.

The decomposition in equation (2) together with assumptions 2, 3 and 4 guarantees the

identification of SYt|Xt . To identify the transition probability SXt|Xt−1 , we decompose the joint

distribution of Yt+1 and Yt,

SYt+1,Yt = SYt+1|Xt+1SXt+1,XtS
T
Yt|Xt

= SYt|XtSXt+1,XtS
T
Yt|Xt

, (3)

where the second equality is due to the stationarity of the HMMs. The identification of SXt+1,Xt

follows directly from this relationship and the identified SYt|Xt .

Theorem 1. Suppose a class of Hidden Markov Models {Xt, Yt}t=1,2,...,T with |X | = |Y| satisfy

assumption 1, 2, 3, and 4, then the conditional probability matrix SYt|Xt and the transition

probability matrix SXt|Xt−1 are identified from the observed joint probability fYt+1,Yt,Yt−1 for t ∈
{2, ..., T − 1}. More specifically, the conditional probability matrix SYt|Xt is identified as the

eigenvector matrix of SYt+1,Yt,Yt−1 S
−1
Yt,Yt−1

.

Syt+1,Yt,Yt−1S
−1
Yt,Yt−1

= SYt|XtDyt+1|XtS
−1
Yt|Xt

. (4)

The transition matrix of the Markov chain SXt|Xt−1 is identified as

(SXt+1|Xt)i,j =
(SXt+1,Xt)i,j∑
j

(SXt+1,Xt)i,j
, (5)

where

SXt+1,Xt = S−1Yt|Xt
SYt+1,Yt

(
ST
Yt|Xt

)−1
. (6)

Remark 1. A novelty of the identification results is that given |X | = |Y|, HMMs are identified

from the distribution of three consecutive observations, which does not vary with the cardinality

of X , Y , and this is in contrast to most of the existing results: in Paz (1971), the marginal

distribution of 2|X | − 1 consecutive variables is needed, while in Allman, Matias, and Rhodes

(2009), 2k + 1 consecutive observables are needed where k satisfies
(
k+|Y|−1
|Y|−1

)
≥ |X |.

Remark 2. In the proof of Theorem 1, we imposed the restriction |X | = |Y|. Nevertheless, the

identification results can be extended to the case where |X | < |Y| with additional assumptions.
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When |X | < |Y|, it is convenient for us to combine observations of Yt such that the matrix

SYt,Yt−1 is still invertible with its rank being |X |. To fix ideas, we consider a toy model where

X = {0, 1} and Y = {0, 1, 2}, then we may combine the observations such that

Y ∗t =

{
0 if Yt = 0,

1 if Yt = 1, 2.

Then the proposed identification procedure allows us to identify SY ∗
t |Xt (correspondingly, the

assumptions will be imposed on the new model), and consequently we can identify SYt|Xt . For

the purpose of identification, it is necessary to change assumptions 2, 3, and 4 to accommodate

the model with observations {Y ∗t }.

Assumption 2’. The matrix SYt,Yt−1 that describes the observed joint distribution of Yt, Yt−1 has

a rank |X |, i.e., rank(SYt,Yt−1) = |X | < |Y|.

The new assumptions that correspond to Assumptions 3 and 4 are neither sufficient nor

necessary to assumptions 3 and 4. We will not explore further the identification in this case, the

purpose of this part is only to provide a possible approach to deal with the case where |X | < |Y|.

2.2 Case 2: Markov Switching Models

The methodology presented in the previous section can be readily applied to identification of

extended models of HMMs. In this section, we consider the identification of Markov switching

models.

Generalized from hidden Markov models with discrete state space, a Markov switching model2

(MSM) allows dependence of the observed random variable Yt on both the unobserved variable

Xt and the lagged observation Yt−1. Naturally the identification objectives are the transition

probability fXt|Xt−1 and the conditional probability fYt|Yt−1,Xt . The MSMs allow more general

interactions between Yt and Xt than that in HMMs. Therefore, it can be similarly used to model

the more complicated causal links between economic variables. For example, in our empirical

illustration we may assume the current insurance status is determined not only by the current

health status of a patient, but also the insurance status of last period for this patient.

Markov-switching models have much in common with basic HMMs. However, identification

2 It is also called Markov jump systems when the hidden state space is finite.
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of Markov-switching models is much more intricate than that for HMMs due to the fact that the

properties of the observed process Yt are controlled not only by those of the unobservable chain

Xt (as is the case in HMMs) but also by the lagged observations of Yt−1. Hence we employ a

slightly different identification approach from we introduced previously to identify MSMs.

First, we start our identification argument from Lemma 1, which provides identification of

the joint distribution fYt+1,Yt,Yt−1,Yt−2 from the observed data {Yt}. Then we define a “kernel” of

the Markov switching models,

Definition 1. The kernel of a Markov-switching model is defined as fYt,Xt|Yt−1,Xt−1.

It can be shown that (in Appendix) the kernel fYt,Yt|Yt−1,Xt−1 can be decomposed into our two

identification objectives fYt|Yt−1,Xt and fXt|Xt−1 , i.e.,

fYt,Xt|Yt−1,Xt−1 = fYt|Yt−1,XtfXt|Xt−1 . (7)

According to this decomposition, it is sufficient to identify the kernel and one of the identification

objective in order to identify a Markov-switching model. We will prove that the kernel and

the conditional probability fYt|Yt−1,Xt can both be identified. To prove the identifiability of

fYt,Xt|Yt−1,Xt−1 , we impose several regularity conditions to the model as follows.

Assumption 5. For all possible values of (yt, yt−1) ∈ Y ×Y, the matrix SYt+1,yt,yt−1,Yt−2 has full

rank, i.e., rank(SYt+1,yt,yt−1,Yt−2)=|X |=|Y|.

This assumption is similar to assumption 2, and its implications can be seen from

SYt+1,yt,yt−1,Yt−2 = SYt+1|yt,Xt+1SXt+1|XtDyt|yt−1,XtSXt|Xt−1SXt−1|yt−1,Yt−2Dyt−1,Yt−2 .

Since all the matrices in the equation above are r × r, SYt+1,yt,yt−1,Yt−2 has full rank implies that

all the matrices on the R.H.S. have full rank, too. The full rank condition on the two diagonal

matrices Dyt|yt−1,Xt and Dyt−1,Yt−2 requires that for any given value yt and yt−1 the probability

P (yt|yt−1, Xt = k) and P (yt−1, Yt−2 = k) are positive for all k = {1, 2, ..., r}, respectively. SXt+1|Xt

and SXt|Xt−1 are transition matrices of the Markov chain {Xt}, on which the restriction of full

rank requires that the probability P (Xt+1|Xt = j) is not a linear combination of P (Xt+1|Xt =

k), k 6= j. Full rank of the matrices SYt+1|yt,Xt+1 and SXt−1|yt−1,Yt−2 imposes the similar restriction

on the conditional probability P (Yt+1 = k|yt, Xt+1 = j).
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Remark. For MSMs with both the observed and unobserved components taking values in a

finite space, this crucial invertibility assumption can be directly verified from the data, thus

making the assumption testable.

We denote the kernel fYt,Xt|Yt−1,Xt−1 as Syt,Xt|yt−1,Xt−1 in matrix form. The decomposition

result in Eq.(7), together with assumption 5 guarantees that there exists a representation of the

kernel of MSM, Syt,Xt|yt−1,Xt−1 .

Syt,Xt|yt−1,Xt−1 = S−1Yt+1|yt,Xt
SYt+1,yt,yt−1,Yt−2S

−1
Yt,yt−1,Yt−2

SYt|yt−1,Xt−1 . (8)

Remark. The representation of Syt,Xt|yt−1,Xt−1 implies that identification of fYt+1|Yt,Xt and

fYt|Yt−1,Xt−1 is sufficient to identify the kernel of the MSM, fYt,Xt|Yt−1,Xt−1 since the joint dis-

tributions fYt+1,Yt,Yt−1,Yt−2 and fYt,Yt−1,Yt−2 are both observed from data. Under the stationary

assumption, the kernel fYt,Xt|Yt−1,Xt−1 is time-invariant. Therefore, fYt+1|Yt,Xt = fYt|Yt−1,Xt−1 , we

only need to identify fYt+1|Yt,Xt in order to identify the kernel.

Next we impose two additional assumptions under which the distribution fYt+1|Yt,Xt is iden-

tified by the joint distribution of four consecutive variables {Yt+1, Yt, Yt−1, Yt−2}. Recall that

(yt, yt−1) ∈ Y × Y . We may choose another two realizations ỹt and ỹt−1 for Yt and Yt−1 satis-

fying (ỹt, ỹt−1) ∈ Y × Y . Consequently, (yt, ỹt−1) ∈ Y × Y and (ỹt, yt−1) ∈ Y × Y . We define

a diagonal matrix Λyt,ỹt,yt−1,ỹt−1,Xt which describes the probability of Xt for given realizations

{yt, ỹt, yt−1, ỹt−1}.

Definition 2. A diagonal matrix Λyt,ỹt,yt−1,ỹt−1,Xt is defined as

Λyt,ỹt,yt−1,ỹt−1,Xt ≡ Dyt|yt−1,XtD
−1
ỹt|yt−1,Xt

Dỹt|ỹt−1,XtD
−1
yt|ỹt−1,Xt

,

with its (k, k)-th element being

Λyt,ỹt,yt−1,ỹt−1,Xt(Xt = k) =
P (yt|yt−1, Xt = k)P (ỹt|ỹt−1, Xt = k)

P (ỹt|yt−1, Xt = k)P (yt|ỹt−1, Xt = k)
.

Our next assumption requires that any two diagonal elements of the matrix Λyt,ỹt,yt−1,ỹt−1,Xt

are distinct.

Assumption 6. Λyt,ỹt,yt−1,ỹt−1,Xt(Xt = k) 6= Λyt,ỹt,yt−1,ỹt−1,Xt(Xt = j) whenever k 6= j, k, j ∈ Y.
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This assumption imposes restrictions on the conditional probability of the MSM, P (yt|Xt),

i.e.,
P (yt|yt−1, Xt = k)P (ỹt|ỹt−1, Xt = k)

P (ỹt|yt−1, Xt = k)P (yt|ỹt−1, Xt = k)
6= P (yt|yt−1, Xt = j)P (ỹt|ỹt−1, Xt = j)

P (ỹt|yt−1, Xt = j)P (yt|ỹt−1, Xt = j)
.

This condition is less restrictive than it looks: as we show in the proof of identification, the

identifiability of fYt,Xt|Yt−1,Xt−1 only requires that the assumption holds for any yt 6= ỹt and

yt−1 6= ỹt−1. This property provides flexibility for us to choose ỹt and ỹt−1.

The next assumption is similar to assumption 4 for HMMs, it enables us to order the eigen-

values/eigenvectors of the matrix decomposition, which we employ in our identification of the

objective fYt+1|yt,Xt ,

Assumption 7. There exists a functional F(·) such that F
(
fYt+1|yt,Xt(·|yt, ·)

)
is monotonic.

Again, the assumption of monotonicity above leave us with the flexibility. It can be monotonic

in yt+1 given (yt, xt) or in xt for given (yt+1, yt). Under assumptions 1, 5, 6, and 7, the probability

distribution fYt+1|yt,Xt is identified as the eigenvector matrix of an observed matrix. Consequently,

the kernel fYt+1,Xt+1|Yt,Xt is identified according to Eq.(8) from the observed joint probability

fYt+1,Yt,Yt−1,Yt−2 .

Up to now, it is straightforward to characterize the identification of the transition probability

fXt|Xt−1 in matrix form:

SXt|Xt−1 = D−1yt|yt−1,Xt
Syt,Xt|yt−1,Xt−1 ,

which is due to the decomposition of the kernel and the fact that each element of Dyt|yt−1,Xt is

greater than zero hence D−1yt|yt−1,Xt
exists.

Theorem 2. Suppose a class of Markov-switching models {Xt, Yt}∞t=3 with |X | = |Y| satisfy

assumptions 1, 5, 6, and 7, then both the conditional probability fYt|Yt−1,Xt and the transition

probability of the hidden Markov process fXt|Xt−1 are identified from the observed joint probability

fYt+1,Yt,Yt−1,Yt−2 for any t ∈ {3, ..., T − 1}.

Remark 1. Similar to the identification results of HMMs, here we impose the stationarity that

is guaranteed by assumption 1. If we only assumption the stationarity and ergodicity of {Yt}
instead, Markov-switching models can still be identified but from the joint distribution of five

consecutive variables fYt+2,Yt+1,Yt,Yt−1,Yt−2 .
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Remark 2. Both the conditional probability fYt|Yt−1,Xt and the transition probability fXt|Xt−1

can be consistently estimated by directly following the identification procedure. The asymptotic

properties of the estimators are similar to those of HMMs.

Remark 3. When |X | < |Y|, we may still achieve identification by imposing additional restric-

tions, as we showed in Remark 3 of Theorem 1. We omit the discussion for brevity.

3 Estimation and Monte Carlo Study

The procedure of identification proposed in previous sections is constructive and it can be directly

used for estimation. Since the estimation of HMMs and MSMs are similar, we only consider the

estimation of HMMs in this section. We also present the asymptotic properties of our estimators

and illustrate their performance by a Monte Carlo experiment.

3.1 Consistent Estimation

To estimate HMMs consistently, we first provide an uniformly consistent estimator for the joint

distribution of fYt+1,Yt,Yt−1 , then employ the constructive identification procedure to estimate the

transition probability fXt|Xt−1 and the conditional probability fYt|Xt . More specifically, with the

estimated joint distribution fYt+1,Yt,Yt−1 , the remaining estimation reduces to diagonalization of

matrices which can be estimated directly from the data.

We first present the estimator of SYt|Xt based on the following relationship,

SYt|Xt = φ(Syt+1,Yt,Yt−1S
−1
Yt,Yt−1

),

where φ(·) denotes a non-stochastic mapping from a square matrix to its eigenvector matrix

described in Eq.(2). To maximize the rate of convergence, we average across all the values of

yt+1 ∈ Y for both sides of Eq.(2), i.e,

SEYt+1,Yt,Yt−1S
−1
Yt,Yt−1

= SYt|XtDEYt+1|XtS
−1
Yt|Xt

,

where the matrices SEYt+1,Yt,Yt−1 and DEYt+1|Xt are defined as follows.

SEYt+1,Yt,Yt−1 ≡
(
E[Yt+1|Yt = i, Yt−1 = j]SYt=i,Yt−1=j

)
i,j
,

DEYt+1|Xt ≡ diag
(
E [Yt+1|Xt = 1] , ..., E [Yt+1|Xt = r]

)
.
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Therefore, the conditional probability matrix SYt|Xt is estimated as:

ŜYt|Xt = φ(ŜEYt+1,Yt,Yt−1Ŝ
−1
Yt,Yt−1

), (9)

where the two estimators ŜEYt+1,Yt,Yt−1 and Ŝ−1Yt,Yt−1
can both be obtained directly from the ob-

served sample {Yt}t=2,...,T−1.

ŜEYt+1,Yt,Yt−1 =

(
1

T

T−1∑
t=2

yt+11(Yt = i, Yt−1 = k)

)
i,k

ŜYt,Yt−1 =

(
1

T

T−1∑
t=2

1(Yt = k, Yt−1 = j)

)
k,j

.

Employing the estimator ŜYt|Xt , we can estimate the joint probability SXt+1,Xt according to the

identification equation (6)

ŜXt+1,Xt = Ŝ−1Yt|Xt
ŜYt+1,Yt

(
ŜT
Yt|Xt

)−1
.

Consequently, the transition matrix SXt|Xt−1 can be estimated using Eq.(5),

(ŜXt|Xt−1)i,j =
(Ŝ−1Yt|Xt

)i,j∑
j

(ŜYt|Xt−1)i,j
. (10)

Asymptotic Properties. Our estimation procedure follows directly identification results, and

it only involves sample average and some nonstochastic mappings that do not affect the conver-

gence rate of our estimators. Therefore, we only present a simple summary of the asymptotic

properties of our estimators.

From the observed time-series {Yt}∞t=0, the estimator for the joint distribution of Yt+1, Yt, Yt−1,

FZt is

F̂Zt (zt) =
1

T

T−1∑
t=3

I (Yt+1 ≤ yt+1, Yt ≤ yt, Yt−1 ≤ yt−1) ,

here Zt = (Yt+1, Yt, Yt−1) and zt = (yt+1, yt, yt−1). Under strong mixing conditions which ensure

asymptotic independence of the times series, the asymptotic property of an empirical distribution

function F̂Zt is well-known. (e.g., see Silverman (1983), Liu and Yang (2008)) We state the

necessary conditions and the asymptotic results as follows.
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Assumption 8. The series {Yt}t=∞t=0 is strong mixing.3

Remark. Strong mixing is commonly imposed in the inference of time-series data, and it is

closely related to the assumption of Harris-recurrent Markov chain: Athreya and Pantula (1986)

have shown that a Harris-recurrent Markov chain on a general state space is strong mixing,

provided there exists a stationary probability distribution for that Markov chain. Oftentimes,

Harris-recurrent Markov chain is assumed for the inference of HMMs with general state space,

e.g., see Douc, Moulines, Olsson, and Van Handel (2011).

Under Assumption 8, for any zt√
TV −1(zt)

(
F̂Zt(zt)− FZt(zt)

) d→ N(0, 1), T →∞,

where V (zt) =
∑∞

l=0 γ(l), γ(l) = E [1{Zt ≤ zt}1{Zt+l ≤ zt}]− F 2
Zt

(zt).

This asymptotic result implies the uniform consistency of ŜEyt+1,Yt,Yt−1 and ŜYt,Yt−1 , i.e., ŜEYt+1,Yt,Yt−1−
SEYt+1,Yt,Yt−1 = Op(T

−1/2), ŜYt,Yt−1 − SYt,Yt−1 = Op(T
−1/2). Since φ(·) is a non-stochastic analyt-

ical function, we can obtain ŜYt|Xt − SYt|Xt = Op(T
−1/2) and consequently ŜXt+1|Xt − SXt+1|Xt =

Op(T
−1/2).

Remark. In the literature on HMMs, estimation of the parameters has most often been per-

formed using maximum-likelihood estimation. When both Xt and Yt take values in finite sets

as in our analysis, Baum and Petrie (1966) provide results on consistency and asymptotic nor-

mality of the maximum-likelihood estimator (MLE). In practice, MLE is often computed using

EM (expectation-maximization) algorithm. For HMMs, the EM algorithm was formulated by

Baum, Petrie, Soules, and Weiss (1970), and it is known as Baum-Welch (forward-backward)

algorithm. Even though the EM of HMMs is efficient, there are two major drawbacks: first, it is

well-known that the EM may converge towards a local maximum or even a saddle point whatever

optimization algorithm is used. Second, the rate of convergence for the EM algorithm, which

is only linear in the vicinity of MLE, can be very slow.4 In contrast, a prominent advantage

3Let {Yt}t=∞
t=0 be a sequence of random variables on a probability space (Ω,F , P ) and Fm

n = σ{Yt : n ≤ t ≤ m}
be the σ-algebra generated by the random variables {Yn, · · · , Ym}. Define α(m) = sup |P (E

⋂
F )| − P (E)P (F )|,

where the supremum is taken over all E ∈ Fn
0 , F ∈ F∞

n+m and n. We say that {Yt} is strong mixing if α(m)

tends to zero as m increases to infinity.
4Some modifications have been proposed to improve the rate but little is known whether they work well for

HMMs (please see Bickel, Ritov, and Ryden (1998) for further discussions.)
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of our estimating strategy is that the estimators are global and this overcomes the difficulty of

local maximum. Furthermore, our procedure is easy to implement and much faster than EM

algorithm. The disadvantage is that our estimator is less efficient than MLE because it involves

matrix inversion and diagonalization. Instead of providing a theoretical comparison between

MLE and our estimators, we investigate their performance in a Monte Carlo study.

3.2 Monte Carlo Study

To illustrate the performance of our proposed estimators and compare it with that of MLE,

we present some monte carlo evidence in this subsection. We consider the following setup of

the hidden Markov model: the state space is X = Y = {0, 1, 2}, {Xt}t=1,2,...,T is a stationary

and ergodic Markov chain with the matrices of transition probabilities P and the conditional

probabilities Q:

P =


0.20 0.75 0.05

0.70 0.20 0.05

0.10 0.05 0.90

 . Q =


0.80 0.20 0.05

0.15 0.75 0.15

0.05 0.05 0.80

 .

Assuming that the initial state is X0 = (1/3, 1/3, 1/3), we first generate the (hidden) Markov

chain {Xt}t=1,2,...,T using the transition matrix P . Then {Yt}t=1,2,...,T is generated from {Xt}
based on the conditional probability matrix Q. To utilize the data sufficiently in the estimation,

we arrange the data {Yt}Tt=1 as {Y1, Y2, Y3}, {Y2, Y3, Y4}, ... to estimate SEYt+1,Yt,Yt−1 . As we

mentioned previously, the ordering of estimated eigenvalues is achieved based on the property

that the matrix Q is strictly diagonally dominant. Our Monte Carlo results are for sample size

T = 2000, 3000, 5000, 8000 and 200 replications.

Before estimating the parameters of the HMM, we first test the validity of Assumption 2,

i.e., whether the matrix SYt+1,Yt is of full rank. The results show that for all the sample sizes we

consider, rank of the matrix SYt+1,Yt is equal to 3 for each replication.

The estimates of the matrices P and Q are presented in Tables 1 and 2, respectively, where

the number of iteration for MLE is 2000. The column of “Matrix decomposition” contains results

using our method and standard errors are in parentheses. The initial values of P and Q for MLE
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are (indicated “initial values #1”):

P 0 =


0.80 0.30 0.05

0.05 0.40 0.35

0.15 0.30 0.60

 , Q0 =


0.50 0.05 0.40

0.10 0.90 0.10

0.40 0.05 0.50

 .

The results show that both matrices P and Q can be estimated accurately from the observed

modest-sized time-series data using our proposed method.5 Furthermore, the fact that the esti-

mator ŜYt|Xt performs better is consistent with our estimation procedure where ŜXt|Xt−1 is based

on ŜYt|Xt . As also shown in the tables, the performance of our estimators can be comparable

with that of MLE for the same sample size. However, if the initial values are chosen to be

close enough to the true values, then MLE outperforms our estimators for all sample sizes. The

results for MLE are presented in Table 3, where the initial values of P and Q are the estimates

for T = 2000 using our method (denoted “initial values #2” ).

P 0 =


0.40 0.91 0.07

0.50 0.07 0.02

0.10 0.01 0.90

 , Q0 =


0.82 0.02 0.02

0.17 0.86 0.17

0.01 0.12 0.80

 .

In practice, it is difficult to obtain initial values that are close enough to the true values

for MLE due to the possible existence of local minimum. The results in Table 3 implies that

if we employ the estimates of our method as the initial values, the accuracy of MLE will be

greatly improved and we even expect a global maximum. Therefore, our method also provides

a guidance to choose initial values for MLE, which is an important empirical issue, and the

computational convenience of our method further makes such an approach plausible. To illustrate

the computational convenience of our method, we provide a comparison of the computing time

between our method and MLE in Table 4. The results show that our method is computationally

much faster than MLE.6

5One practical issue of estimation is that the estimated elements of P and Q could be negative or greater than

1. Such results conflict with the fact that each element of the two matrices is a probability and hence between

zero and one. In this case, we restrict all elements of ŜYt|Xt
and ŜXt|Xt−1

to be between zero and one, then

minimize the squared distance between the R.H.S. and L.H.S. of Eq.(4) in estimating ŜYt|Xt
.

6The computer we use has an Intel Core i5 CPU, 3.2GHz and 4GB of RAM, the operating system is Window

XP.
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Table 1: Estimation results of matrix P : initial values #1

Sample size Matrix decomposition MLE

T = 2000

0.397(0.186) 0.910(0.231) 0.068(0.050)
0.500(0.172) 0.074(0.215) 0.024(0.036)
0.103(0.063) 0.016(0.054) 0.908(0.042)

 0.254(0.096) 0.538(0.294) 0.094(0.070)
0.629(0.107) 0.166(0.08) 0.267(0.300)
0.117(0.037) 0.297(0.341) 0.639(0.355)


T = 3000

0.241(0.157) 0.904(0.180) 0.046(0.031)
0.670(0.138) 0.054(0.160) 0.035(0.029)
0.089(0.038) 0.042(0.029) 0.919(0.021)

 0.245(0.089) 0.563(0.284) 0.090(0.068)
0.639(0.102) 0.171(0.068) 0.241(0.290)
0.116(0.034) 0.266(0.328) 0.669(0.347)


T = 5000

0.271(0.110) 0.837(0.109) 0.097(0.026)
0.575(0.095) 0.147(0.101) 0.023(0.025)
0.154(0.033) 0.016(0.033) 0.880(0.018)

 0.227(0.063) 0.632(0.244) 0.075(0.061)
0.663(0.080) 0.181(0.053) 0.171(0.245)
0.110(0.026) 0.187(0.279) 0.754(0.297)


T = 8000

0.242(0.102) 0.833(0.093) 0.084(0.026)
0.622(0.097) 0.145(0.090) 0.029(0.019)
0.136(0.025) 0.022(0.023) 0.887(0.017)

 0.218(0.051) 0.672(0.204) 0.066(0.051)
0.677(0.063) 0.189(0.039) 0.131(0.212)
0.105(0.016) 0.139(0.229) 0.803(0.257)



Table 2: Estimation results of matrix Q: initial values #1

Sample size Matrix decomposition MLE

T = 2000

0.818(0.137) 0.020(0.185) 0.023(0.032)
0.178(0.057) 0.861(0.187) 0.173(0.006)
0.004(0.099) 0.119(0.063) 0.803(0.029)

 0.576(0.320) 0.204(0.031) 0.321(0.379)
0.165(0.081) 0.762(0.030) 0.151(0.036)
0.259(0.310) 0.034(0.039) 0.528(0.379)


T = 3000

0.776(0.116) 0.174(0.108) 0.063(0.019)
0.204(0.034) 0.789(0.120) 0.162(0.004)
0.020(0.104) 0.037(0.053) 0.775(0.016)

 0.598(0.313) 0.204(0.024) 0.289(0.366)
0.163(0.065) 0.759(0.043) 0.151(0.028)
0.239(0.297) 0.037(0.056) 0.560(0.369)


T = 5000

0.788(0.069) 0.161(0.084) 0.035(0.014)
0.164(0.028) 0.833(0.099) 0.167(0.003)
0.048(0.067) 0.006(0.042) 0.798(0.013)

 0.669(0.268) 0.204(0.015) 0.205(0.318)
0.160(0.047) 0.756(0.020) 0.149(0.020)
0.171(0.254) 0.040(0.020) 0.646(0.319)


T = 8000

0.769(0.045) 0.182(0.067) 0.041(0.014)
0.167(0.025) 0.805(0.079) 0.157(0.003)
0.064(0.045) 0.013(0.031) 0.802(0.013)

 0.716(0.218) 0.203(0.011) 0.154(0.270)
0.154(0.031) 0.754(0.016) 0.150(0.017)
0.130(0.210) 0.043(0.017) 0.696(0.270)


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Table 3: Estimation results of P and Q: initial values #2

Sample size Estimated P Estimated Q

T = 2000

0.203(0.027) 0.753(0.053) 0.059(0.045)
0.696(0.028) 0.197(0.050) 0.052(0.047)
0.101(0.012) 0.050(0.014) 0.889(0.059)

 0.802(0.032) 0.198(0.019) 0.046(0.029)
0.148(0.029) 0.753(0.019) 0.149(0.033)
0.050(0.014) 0.049(0.010) 0.805(0.045)


T = 3000

0.203(0.026) 0.753(0.046) 0.056(0.041)
0.697(0.027) 0.198(0.043) 0.052(0.041)
0.100(0.009) 0.049(0.011) 0.892(0.049)

 0.801(0.028) 0.199(0.016) 0.047(0.023)
0.149(0.024) 0.753(0.017) 0.149(0.026)
0.050(0.010) 0.049(0.008) 0.804(0.033)


T = 5000

0.201(0.019) 0.751(0.035) 0.052(0.033)
0.699(0.019) 0.199(0.033) 0.052(0.032)
0.010(0.007) 0.050(0.008) 0.896(0.037)

 0.800(0.021) 0.200(0.013) 0.048(0.019)
0.150(0.018) 0.750(0.013) 0.148(0.021)
0.050(0.009) 0.005(0.006) 0.804(0.028)


T = 8000

0.200(0.015) 0.750(0.028) 0.050(0.026)
0.700(0.016) 0.200(0.026) 0.050(0.027)
0.100(0.006) 0.050(0.007) 0.900(0.033)

 0.801(0.016) 0.200(0.010) 0.050(0.015)
0.150(0.015) 0.750(0.011) 0.049(0.017)
0.049(0.007) 0.050(0.006) 0.801(0.022)



Table 4: Computing time (seconds)

Sample size Matrix decomposition MLE (500 iterations) MLE (2000 iterations)

T = 2000 74 24033 60447

T = 3000 79 34088 86908

T = 5000 82 55995 124883

T = 8000 86 86422 183998
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4 Empirical Illustration

In this section, we illustrate the proposed methodology using a dataset on insurance coverage of

drugs for patients with chronic diseases. The data set used in our application is compiled from

several sources: (1) Catalina Health Resource blinded longitudinal prescription data warehouse

(prescription and patient factors), (2) Redbook (price of drugs), First DataBank (brand or generic

of drugs), Pharmacy experts (drug performance factors such as side effects, etc.), Verispan PSA

(Direct to Consumer, DTC), and the Physician Drug & Diagnosis Audit (drug usage by ICD-9

disease code).

The patients in the sample are observed to start therapy for their chronic disease for a drug

they had not taken before. They are from three cohorts: cohort 1 begins in June, 2002; cohort 2

begins in May, 2002; cohort 3 begins in April, 2002. Each patient is observed for one year. 5920

of the patients in our sample have more than three (re)fills and these patients are used for our

estimation. Table 5 presents summary statistics of our sample in analysis.

Empirical specification. Across one year panel, we observe whether a patient is insured or not

for her prescribed drug. We attribute the change of observed insurance status {Yt}t=1,2,3 ∈ {0, 1}
to the unobserved binary health status {Xt}t=1,2,3 (less healthy and healthy) and we are interested

in two objectives: how patients’ health status evolve and how their health status affect the

insurance status. For this purpose, we model {Xt, Yt} as a hidden Markov model and focus

on estimating the conditional probability P (Yt|Xt) and the transition probability of the hidden

Markov process P (Xt|Xt−1), which are both 2× 2 matrices.

Justification of assumptions. Before we estimate the model, we provide some discussions on

the assumptions 1-4. Assumption 1 and 3 can not be tested directly from the data. However, it

is reasonable to impose an assumption of strictly stationary and ergodic since in our application

patients have chronic disease and a substantial part (26%) of the sample has taken similar

medicine before, the process is stable. Assumption 4 is not testable, but it is reasonable to assume

that given all other factors, a more healthy patient is insured with a higher probability than a

less healthy patient, i.e., Pr(Yt = 1|Xt = 1) > Pr(Yt = 1|Xt = 0). Similarly, Pr(Yt = 0|Xt =

0) > Pr(Yt = 0|Xt = 1) also holds. Hence the matrix SYt|Xt is assumed to be strictly diagonally

dominant. Assumption 2 is testable and we compute the rank and the condition number of the
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Table 5: Summary Statistics

Variable Mean

Standard

Deviation Minimum Maximum

# of patients 5920 - - -

Age 62.20 13.98 11 90

Gender (M=1) 0.404 0.490 0 1

Insurance (insured=0) .188 .391 0 1

Table 6: Estimation results
(a) Conditional probability

Insured Not insured
Healthy 0.932(0.003) 0.068(0.003)

Less healthy 0.020(0.002) 0.980(0.002)

(b) Transition probability

Healthy Less healthy
Healthy 0.996 (0.0007) 0.004(0.0007)

Less healthy 0.000(0.0001) 1.000(0.0001)

matrix SY2,Y1 , which describes the joint distribution of Y2 and Y1, by bootstrapping 200 times.7

The resulting rank is 2± 0 and the condition number is 4.857± 0.161.

Estimation results. The estimated results are presented in Table 6, where the standard errors

are estimated using bootstrap (200 times). The results provide patterns of how patients’ health

status evolves and how it affects their insurance status. Several interesting observations form

from the results: (1) a less healthy patient will be not insured with a higher probability than a

healthy patient being insured (98% v.s. 93%), which reveals some information about insurer’s

preference; (2) the transition probabilities show that patients’ health status does not change

much across two periods, which is not surprising because the patients have chronic disease. The

results above are simple since we did not take into account other factors that affect conditional

and transition probabilities. Nevertheless, our focus of this empirical example is to illustrate

our methodology and also show that our method can be empirically important in analyzing the

casual links between variables in economics.

7Even though a deterministic relationship between condition number and determinant of a matrix does not

exist, a larger condition number is a reasonable indicator of the matrix being closer to singular.
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5 Conclusion

We considered the identification of a class of hidden Markov models where both the observed

and unobserved components take values in finite spaces X and Y , respectively. We proved that

hidden Markov models (Markov switching models) are identified from the joint distribution of

three (four) consecutive variables given that the cardinality of X is equal to that of Y . The

approach of identification is constructive and it provides a novel methodology to estimate the

hidden Markov models. Comparing with the MLE, our estimators are global, which do not

depend on initial values, and they are computationally convenient. Hence our estimators can be

used as initial values for MLE. The performance of our methodology is illustrated in a Monte

Carlo experiment as well as a simple empirical example. It will be interesting to apply our

methodology to the analysis of the casual links between economic variables, e.g., the relationship

between health and socioeconomic status as discussed in Adams, Hurdb, McFaddena, Merrillc,

and Ribeiroa (2003).
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Appendix

A Proof of Theorem 1

According to the structure of the HMM in our analysis, the joint distribution fYt+1,Yt,Yt−1 which

describes the evolution of the observed variable, contains information of the conditional and

transition probability of the HMM. To single out the objectives of our identification, we consider

the following decomposition of the observed joint distribution of Yt+1, Yt, Yt−1.

fYt+1,Yt,Yt−1 =
∑
Xt

∑
Xt−1

fYt+1,Yt,Xt,Yt−1,Xt−1

=
∑
Xt

∑
Xt−1

fYt+1|Yt,XtfYt,Xt|Yt−1,Xt−1fYt−1,Xt−1

=
∑
Xt

∑
Xt−1

fYt+1|XtfYt|XtfXt|Xt−1fYt−1,Xt−1

=
∑
Xt

fYt+1|XtfYt|Xt

∑
Xt−1

fXt|Xt−1fYt−1,Xt−1


=

∑
Xt

fYt+1|XtfYt|XtfXt,Yt−1

Employing these notations, the equation above for all possible values of yt+1 ∈ Y can be expressed

in matrix form as follows.

Syt+1,Yt,Yt−1 = SYt|XtDyt+1|XtSXt,Yt−1 (A.1)

Similarly, the observed joint distribution fYt,Yt−1 can also be expressed as

fYt,Yt−1 =
∑
Xt

fYt|Xt,Yt−1fXt,Yt−1

=
∑
Xt

fYt|XtfXt,Yt−1 ,

where the second equality is due to the property of HMM. Again, we rewrite the equation above

in matrix form,

SYt,Yt−1 = SYt|XtSXt,Yt−1 . (A.2)

In both Eq.(A.1) and Eq.(1), the L.H.S. can be recovered directly from the data while the

R.H.S. contain the matrix of interest SYt|Xt . The intuition of identification is to aggregate the

information provided by the two observed joint distribution and achieve identification.
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The assumption of full rank or invertibility permits us to take the inverse of Eq.(1)

S−1Yt,Yt−1
= S−1Xt,Yt−1

S−1Yt|Xt
.

It follows from Eq.(A.1) and Eq.(1) that

Syt+1,Yt,Yt−1S
−1
Yt,Yt−1

= SYt|XtDyt+1|XtS
−1
Yt|Xt

. (A.3)

The R.H.S. of the above equation is an eigen-decomposition of the L.H.S., which can be ob-

served directly from the data {Yt}. This relationship implies that SYt|Xt and Dyt+1|Xt may be

identified as the eigenvalue and eigenvector matrices, respectively, and the identification requires

normalization of eigenvectors, uniqueness and correct ordering of eigenvalues (eigenvectors).

Since the (i, j)-th element of the matrix SYt|Xt is a probability P (Yt = i|Xt = j), then for any

j = 1, 2, ..., r the column sum is one. Hence a natural way to normalize the eigenvector matrix

is to divide each column by the corresponding column sum. Moreover, assumptions 3 and 4 help

us achieve the uniqueness and correct ordering of eigenvalues (eigenvectors), respectively.

The identification of the transition probability SXt|Xt−1 of the Markov chain is based on the

identification result of SYt|Xt . We employ the stationarity again, and focus on the identification

of fXt+1|Xt . For this purpose, we consider

fYt+1,Yt =
∑
Xt+1

∑
Xt

fYt+1|Xt+1fXt+1|XtfYt|XtfXt

=
∑
Xt+1

∑
Xt

fYt+1|Xt+1fXt+1,XtfYt|Xt .

This equation is equivalent to

SYt+1,Yt = SYt+1|Xt+1SXt+1,XtS
T
Yt|Xt

= SYt|XtSXt+1,XtS
T
Yt|Xt

, (A.4)

in matrix form, where SYt+1|Xt+1 = SYt|Xt and ST
Yt|Xt

is the transpose of SYt|Xt . Considering the

invertibility of the conditional probability matrix SYt|Xt implied by Assumption 2, we identify

the joint probability matrix of the Markov chain SXt+1,Xt as

SXt+1,Xt = S−1Yt+1|Xt+1
SYt+1,Yt

(
ST
Yt|Xt

)−1
= S−1Yt|Xt

SYt+1,Yt

(
ST
Yt|Xt

)−1
. (A.5)
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Consequently, it is natural to identify the transition matrix SXt+1|Xt as

(SXt+1|Xt)i,j =
(SXt+1|Xt)i,j∑
j

(SXt+1|Xt)i,j
.

B Proof of Theorem 2

We decompose the proof of theorem 2 into several lemmas. Lemma 2 is on the decomposition

and representation of the kernel of Markov-switching models. Lemma 3 and 4 construct the

identification of the kernel and conditional probability of MSMs, respectively.8

Lemma 2. The kernel of Markov switching models, fYt,Xt|Yt−1,Xt−1 can be decomposed into the
transition probability of the Markov chain fXt|Xt−1 and the conditional probability fYt|Yt−1,Xt, i.e.,

fYt,Xt|Yt−1,Xt−1 = fYt|Yt−1,XtfXt|Xt−1 . (B.1)

Under Assumptions 1 and 5, for all (yt, yt−1) ∈ Y ×Y the kernel (in matrix form) Syt,Xt|yt−1,Xt−1

can be represented as

Syt,Xt|yt−1,Xt−1 = S−1Yt+1|yt,Xt
SYt+1,yt,yt−1,Yt−2S

−1
Yt,yt−1,Yt−2

SYt|yt−1,Xt−1 . (B.2)

Proof We derive the decomposition directly as follows.

fYt,Xt|Yt−1,Xt−1 =
fYt,Xt,Yt−1,Xt−1

fYt−1,Xt−1

=
fYt|Xt,Yt−1,Xt−1fXt,Yt−1,Xt−1

fYt−1,Xt−1

=
fYt|Yt−1,XtfXt|Yt−1,Xt−1fYt−1,Xt−1

fYt−1,Xt−1

= fYt|Yt−1,XtfXt|Xt−1 ,

where the third and the fourth equality are due to the property of MSM: fYt|Xt,Yt−1,Xt−1 =
fYt|Yt−1,Xt and fXt|Yt−1,Xt−1 = fXt|Xt−1 . For all given (yt, yt−1) ∈ Y ×Y , the relationship above can
be expressed in matrix form as

Syt,Xt|yt−1,Xt−1 = Syt|yt−1,XtSXt|Xt−1 .

8All the derivations involving conditional probabilities can be obtained using the results of graphical models
as in Lauritzen (1996).
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To show obtain the representation of the kernel fYt,Xt|Yt−1,Xt−1 , we first investigate the identified
joint distribution fYt+1,Yt,Yt−1,Yt−2 .

fYt+1,Yt,Yt−1,Yt−2 =
∑
Xt

fYt+1,Yt,Yt−1,Yt−2,Xt

=
∑
Xt

fYt+1|Yt,Yt−1,Yt−2,XtfYt|Yt−1,Yt−2,XtfYt−1,Yt−2,Xt

=
∑
Xt

fYt+1|Yt,XtfYt|Yt−1,XtfYt−1,Yt−2,Xt .

where the third equality holds because Yt does not depend on Yt−2 and Yt+1 does not depend on
Yt−1, Yt−2.

Employing the matrix notation, the equation above for all possible values of (yt, yt−1) ∈ Y×Y
can be expressed in matrix form as follows.

SYt+1,yt,yt−1,Yt−2 = SYt+1|yt,XtDyt|yt−1,XtSXt,yt−1,Yt−2

= SYt+1|yt,XtDyt|yt−1,XtSXt|yt−1,Xt−1SXt−1,yt−1,Yt−2

= SYt+1|yt,Xt+1SXt+1|yt,XtDyt|yt−1,XtSXt|yt−1,Xt−1SXt−1|yt−1,Yt−2Dyt−1,Yt−2

= SYt+1|yt,Xt+1SXt+1|XtDyt|yt−1,XtSXt|Xt−1SXt−1|yt−1,Yt−2Dyt−1,Yt−2 . (B.3)

The simplification of the matrices on the R.H.S. is due to the properties of the MSM.

To construct the representation of the objective fYt,Xt|Yt−1,Xt−1 , which is described by a ma-
trix Syt,Xt|yt−1,Xt−1 from the observed joint distribution fYt+1,Yt,Yt−1,Yt−2 , we rewrite the matrix
SYt+1,yt,yt−1,Xt−2 as

SYt+1,yt,yt−1,Xt−2 = SYt+1|yt,XtSyt,Xt,yt−1,Yt−2

= SYt+1|yt,XtSyt,Xt|yt−1,Xt−1SXt−1,yt−1,Yt−2 (B.4)

Assumption 5 enables us to change the equation above to

Syt,Xt|yt−1,Xt−1SXt−1,yt−1,Yt−2 = S−1Yt+1|yt,Xt
SYt+1,yt,yt−1,Xt−2

(B.5)

One more step to single out Syt,Xt|yt−1,Xt−1 is to eliminate SXt−1,yt−1,Yt−2 . For this purpose, we use
SYt,yt−1,Yt−2 to indicate the joint distribution of Yt, Yt−1, and Yt−2, then

SYt,yt−1,Yt−2 = SYt|yt−1,Yt−2,Xt−1Syt−1,Yt−2,Xt−1

= SYt|yt−1,Xt−1Syt−1,Yt−2,Xt−1

Taking into account the full rank (invertibility) of SYt|yt−1,Xt−1 , we express Syt−1,Yt−2,Xt−1 as

Syt−1,Yt−2,Xt−1 = S−1Yt|yt−1,Xt−1
SYt,yt−1,Yt−2
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Plug this result into Eq.(B.5),

Syt,Xt|yt−1,Xt−1S
−1
Yt|yt−1,Xt−1

SYt,yt−1,Yt−2 = S−1Yt+1|yt,Xt
SYt+1,yt,yt−1,Xt−2

The resulting Syt,Xt|yt−1,Xt−1 is

Syt,Xt|yt−1,Xt−1 = S−1Yt+1|yt,Xt
SYt+1,yt,yt−1,Xt−2S

−1
Yt,yt−1,Yt−2

SYt|yt−1,Xt−1 .

�

Lemma 3. Suppose a class of MSMs satisfy 1, 5, 6, and 7, then the kernel fYt+1,Xt+1|Yt,Xt is
identified from the observed joint probability fYt+1,Yt,Yt−1,Yt−2 for any t ∈ {3, ..., T − 1}.

Proof According to Eq.(8), identification of Syt,Xt|yt−1,Xt−1 relies on the identifiability of SYt+1|yt,Xt

and SYt|yt−1,Xt−1 . We only show in the following that fYt+1|Yt,Xt is identified from the observed
joint distribution fYt+1,Yt,Yt−1,Yt−2 since the identifiability of fYt|Yt−1,Xt−1 can be achieved similarly
from the observed distribution fYt,Yt−1,Yt−2,Yt−3 without stationarity. If the process is stationary,
then fYt+1|Yt,Xt = fYt|Yt−1,Xt−1 and both of them can be identified from fYt+1,Yt,Yt−1,Yt−2 .

Recall that for all (yt, yt−1) ∈ Y × Y , we have

SYt+1,yt,yt−1,Yt−2 = SYt+1|yt,XtDyt|yt−1,XtSXt,yt−1,Yt−2 .

This allows us to choose another two points ỹt and ỹt−1 satisfying (ỹt, ỹt−1) ∈ Y×Y . Consequently,
(yt, ỹt−1) ∈ Y × Y and (ỹt, yt−1) ∈ Y × Y . If the equation above is evaluated at the four pairs of
points (yt, yt−1), (ỹt, ỹt−1), (yt, ỹt−1) and (ỹt, yt−1), then we obtain

SYt+1,yt,yt−1,Yt−2 = SYt+1|yt,XtDyt|yt−1,XtSXt,yt−1,Yt−2 ,

SYt+1,ỹt,yt−1,Yt−2 = SYt+1|ỹt,XtDỹt|yt−1,XtSXt,yt−1,Yt−2 ,

SYt+1,yt,ỹt−1,Yt−2 = SYt+1|yt,XtDyt|ỹt−1,XtSXt,ỹt−1,Yt−2 ,

SYt+1,ỹt,ỹt−1,Yt−2 = SYt+1|ỹt,XtDỹt|ỹt−1,XtSXt,ỹt−1,Yt−2 . (B.6)

Under Assumption 5, both SYt+1|ỹt,Xt and Dỹt|yt−1,Xt have full rank, i.e., are invertible. Then
SXt,yt−1,Yt−2 can be solved from the second equation above as

SXt,yt−1,Yt−2 = D−1ỹt|yt−1,Xt
S−1Yt+1|ỹt,Xt

SYt+1,ỹt,yt−1,Yt−2 .

Combining this expression with the first equation in Eq.(B.6) leads to

SYt+1,yt,yt−1,Yt−2 = SYt+1|yt,XtDyt|yt−1,XtD
−1
ỹt|yt−1,Xt

S−1Yt+1|ỹt,Xt
SYt+1,ỹt,yt−1,Yt−2 .

The matrix SYt+1,ỹt,yt−1,Yt−2 is invertible under the full rank assumption. Hence we can get rid of
this matrix from the equation above by post-multiplying its inverse S−1Yt+1,ỹt,yt−1,Yt−2

and denote
the resulting matrix as U

U ≡ SYt+1,yt,yt−1,Yt−2S
−1
Yt+1,ỹt,yt−1,Yt−2

= SYt+1|yt,XtDyt|yt−1,XtD
−1
ỹt|yt−1,Xt

S−1Yt+1|ỹt,Xt
.
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A similar matrix V can be obtained from the third and fourth equality in Eq.(B.6),

V ≡ SYt+1,ỹt,ỹt−1,Yt−2S
−1
Yt+1,yt,ỹt−1,Yt−2

= SYt+1|ỹt,XtDỹt|ỹt−1,XtD
−1
yt|ỹt−1,Xt

S−1Yt+1|yt,Xt
.

We further investigate the product of U and V

UV = SYt+1|yt,XtDyt|yt−1,XtD
−1
ỹt|yt−1,Xt

S−1Yt+1|ỹt,Xt
SYt+1|ỹt,XtDỹt|ỹt−1,XtD

−1
yt|ỹt−1,Xt

S−1Yt+1|yt,Xt

= SYt+1|yt,Xt

(
Dyt|yt−1,XtD

−1
ỹt|yt−1,Xt

Dỹt|ỹt−1,XtD
−1
yt|ỹt−1,Xt

)
S−1Yt+1|yt,Xt

= SYt+1|yt,XtΛyt,ỹt,yt−1,ỹt−1,XtS
−1
Yt+1|yt,Xt

, (B.7)

where the matrix Λyt,ỹt,yt−1,ỹt−1,Xt ≡ Dyt|yt−1,XtD
−1
ỹt|yt−1,Xt

Dỹt|ỹt−1,XtD
−1
yt|ỹt−1,Xt

is diagonal and its

(k, k)-th element

Λyt,ỹt,yt−1,ỹt−1,Xt(Xt = k) =
P (yt|yt−1, Xt = k) Pr(ỹt|ỹt−1, Xt = k)

P (ỹt|yt−1, Xt = k)P (yt|ỹt−1, Xt = k)
. (B.8)

Eq.(B.7) implies that the R.H.S. is an eigenvalue-eigenvector decomposition of the observed
matrix UV , with Λyt,ỹt,yt−1,ỹt−1,Xt and SYt+1|yt,Xt being the eigenvalue and eigenvector matrices,
respectively. Under Assumption 5, Dyt|yt−1,Xt has full rank, which implies P (yt|yt−1, Xt = k) > 0
for all k ∈ {1, 2, ..., r}. Therefore, all the eigenvalues of the decomposition above are finite. To
uniquely determine SYt+1|yt,Xt from the decomposition, we need to assure the eigenvalues are
distinct and the eigenvectors can be normalized and correctly ordered.

To normalize the eigenvectors, we consider that the (i, j)-th element of SYt+1|yt,Xt is P (Yt+1 =

i|yt, Xt = j), and we have
r∑

i=1

P (Yt+1 = i|yt, Xt = j) = 1 for all j ∈ {1, 2, ..., r} and every given yt.

This relationship provides a convenient procedure to normalize the eigenvector matrix SYt+1|Xt :
divide each column by column sum. The distinct eigenvalues are guaranteed by assumption 6. It
remains to order the eigenvalues (eigenvectors) correctly, and this requires some monotonicity of
columns of the eigenvector SYt+1|yt,Xt matrix or elements of the eigenvalue matrix Λyt,ỹt,yt−1,ỹt−1,Xt .
This ordering condition is guaranteed by Assumption 7.

Since the process in analysis is stationary, SYt+1|yt,Xt = SYt|yt,Xt−1 holds. Therefore both
SYt+1|yt,Xt and SYt|yt−1,Xt−1 are identified from the joint probability distribution fYt+1,Yt,Yt−1,Yt−2 .
Recall in Eq.(8), our identification objective fYt+1,Xt+1|Yt,Xt is determined uniquely by the joint
probability distribution fYt+1,Yt,Yt−1,Yt−2 if SYt+1|yt,Xt and SYt|yt−1,Xt−1 are identified. �

Lemma 4. Under assumptions 1, 5, 6, and 7, the distribution fYt|Yt−1,Xt is identified from the
observed time-series {Yt}t=1,2,...,T where T →∞.

Proof We first express the identification objective fYt|Yt−1,Xt ,

fYt,Yt−1 = fYt|Yt−1,XtfXt,Yt−1 .
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For any given yt ∈ Y , the equation above has the following matrix form

Dyt,Yt−1 = Syt|Yt−1,XtSXt,Yt−1 . (B.9)

Hence, the identification of Syt|Yt−1,Xt relies on the identification of SXt,Yt−1 . To identify SXt,Yt−1 ,
we consider the joint distribution of Yt+1, Yt and Yt−1 for any given yt ∈ Y ,

SYt+1,yt,Yt−1 = SYt+1|yt,XtSXt,yt,Yt−1 .

In the proof of lemma 3, we show the identification of SYt+1|yt,Xt . Therefore SXt,yt,Yt−1 can be
identified as

SXt,yt,Yt−1 = S−1Yt+1|yt,Xt
SYt+1,yt,Yt−1 .

Consequently, the joint distribution of Xt and Yt−1, SXt,Yt−1 can also be identified,

SXt,Yt−1 =
∑
yt∈Y

SXt,yt,Yt−1

=
∑
yt∈Y

S−1Yt+1|yt,Xt
SYt+1,yt,Yt−1 . (B.10)

Combining Eq.(B.9) and Eq.(B.10), we obtain the identification of Syt|Yt−1,Xt ,

Syt|Yt−1,Xt = Dyt,Yt−1

(∑
yt∈Y

S−1Yt+1|yt,Xt
SYt+1,yt,Yt−1

)−1
. (B.11)

�

Recall the decomposition of the kernel of Markov-switching models in Lemma 2,

Syt,Xt|yt−1,Xt−1 = Syt|yt−1,XtSXt|Xt−1 .

This decomposition, together with the identification of Syt,Xt|yt−1,Xt−1 in Lemma 3, and of Syt|yt−1,Xt

in Lemma 4 implies that the transition probability SXt|Xt−1 is also identified as

SXt|Xt−1 = S−1yt|yt−1,Xt
Syt,Xt|yt−1,Xt−1 . (B.12)
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