
JOURNAL OF APPLIED ECONOMETRICS
J. Appl. Econ. (2010)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/jae.1202

ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED
REGRESSORS USING MARGINAL INFORMATION

YINGYAO HUa* AND GEERT RIDDERb

a Department of Economics, Johns Hopkins University, Baltimore, MD, USA
b Department of Economics, University of Southern California, Los Angeles, CA, USA

SUMMARY
We consider the estimation of nonlinear models with mismeasured explanatory variables, when information
on the marginal distribution of the true values of these variables is available. We derive a semi-parametric
MLE that is shown to be

p
n consistent and asymptotically normally distributed. In a simulation experiment

we find that the finite sample distribution of the estimator is close to the asymptotic approximation. The semi-
parametric MLE is applied to a duration model for AFDC welfare spells with misreported welfare benefits.
The marginal distribution of the correctly measured welfare benefits is obtained from an administrative
source. Copyright  2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Many models that are routinely used in empirical research in microeconomics are nonlinear in
the explanatory variables. Examples are nonlinear (in variables) regression models, models for
limited-dependent variables (logit, probit, tobit etc.), and duration models. Often the parameters
of such nonlinear models are estimated using economic data in which one or more independent
variables are measured with error (Bound et al., 2001). The identification and estimation of models
that are nonlinear in mismeasured variables is a notoriously difficult problem (see Carroll et al.,
1995, for a survey).

There are three approaches to this problem: (i) the parametric approach; (ii) the instrumental
variable method; and (iii) methods that use an additional sample, such as a validation sample.
Throughout we assume that we have a parametric model for the relation between the dependent
and independent variables, but that we want to make minimal assumptions on the measurement
errors and the distribution of the explanatory variables.

The parametric approach makes strong and untestable distributional assumptions. In particular,
it is assumed that the distribution of the measurement error is in some parametric class (Bickel
and Ritov, 1987; Hsiao, 1989, 1991; Cheng and Van Ness, 1994; Murphy and Van Der Vaart,
1996; Wang, 1998; Kong and Gu, 1999; Hsiao and Wang, 2000; Augustin, 2004). With this
assumption the estimation problem is complicated, but fully parametric. The second approach is
the instrumental variable method. In an errors-in-variables model, a valid instrument is a variable
that (a) can be excluded from the model, (b) is correlated with the latent true value, and (c) is
independent of the measurement error (Amemiya and Fuller, 1988; Carroll and Stefanski, 1990;
Hausman et al., 1991, 1995; Li and Vuong, 1998; Newey, 2001). Schennach (2004a, 2007) and Hu
and Schennach (2008) extend the IV estimator to general nonlinear models. The third approach
is to use an additional sample, such as a validation sample (Bound et al., 1989; Hsiao, 1989;
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Hausman et al., 1991; Pepe and Fleming, 1991; Carroll and Wand, 1991; Lee and Sepanski, 1995;
Chen et al., 2005). A validation sample is a subsample of the original sample for which accurate
measurements are available. The approach taken in this paper is along these lines.

In this paper we show that many of the benefits of a validation sample can be obtained if we
have a random sample from the marginal distribution of the mismeasured variables, i.e. we need
not observe the mismeasured and true value and the other independent variables for the same units.
Information on the marginal distribution of the true value is available in administrative registers, as
employer’s records, tax returns, quality control samples, medical records, unemployment insurance
and social security records, and financial institution records. In fact, most validation samples are
constructed by matching survey data to administrative data. Creating such matched samples is
very costly and sometimes impossible. Moreover, the owners of the administrative data may be
reluctant to release the data because the matching raises privacy issues. Our approach only requires
a random sample from the administrative register. Indeed the random sample and the survey need
not have any unit in common. Of course, if available a validation sample is preferable over
marginal information. With a validation sample the assumptions on the measurement error can be
substantially weaker than with marginal information. Because we do not observe the mismeasured
and accurate variables for the same units, marginal information cannot identify the correlation
between the measurement error and the true value. For that reason we maintain the assumption
of classical measurement error, i.e. the measurement error is independent of the true value and
also independent of the other covariates in the model. The latter assumption can be relaxed if
these covariates are common to the survey sample and the administrative data. Validation studies
have found that the assumption of classical measurement errors may not hold in practice (see,
for example, Bound et al., 1989). The main advantage of a validation sample over marginal
information is that it allows us to avoid this assumption. However, as with a validation sample,
marginal information allows us to avoid assumptions on the distribution of the measurement
error and the latent true value. Given the scarcity of validation samples relative to administrative
datasets, the correction developed in this paper can be more widely applied, but researchers must
be aware that the estimates are biased if the assumptions on the measurement error do not hold.1

In recent years many studies have used administrative data, because they are considered to be
more accurate. For example, employer’s records have been used to study annual earnings and
hourly wages (Angrist and Krueger, 1999; Bound et al., 1994), union coverage (Barron et al.,
1997), and unemployment spells (Mathiowetz and Duncan, 1988). Tax returns have been used in
studies of wage and income (Code, 1992), unemployment benefits (Dibbs et al., 1995), and asset
ownership and interest income (Grondin and Michaud, 1994). Cohen and Carlson (1994) study
health care expenditures using medical records, and Johnson and Sanchez (1993) use these records
to study health outcomes. Transcript data have been used to study years of schooling (Kane et al.,
1999). Card et al. (2001) examine Medicaid coverage using Medicaid data. Bound et al. (2001)
give a survey of studies that use administrative data. A problem with administrative records is that
they usually contain only a small number of variables. We show that the marginal distribution of
the latent true values from administrative records is sufficient to correct for measurement error in
a survey sample. There have been earlier attempts to combine survey and administrative data to
deal with the measurement error in survey data. In the 1970s statistical matching of surveys and
administrative files without common units was used to create synthetic datasets that contained the
accurate data. Ridder and Moffitt (2007) survey this literature. This paper can be considered as
a better approach to the use of accurate data from a secondary source to deal with measurement
error.

1 It is possible to apply the estimator developed in this paper with a level of dependence between the true value and the
measurement error. In that case prior knowledge must be used to set the degree of dependence.
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Our application indicates what type of data can be used. We consider a duration model for
the relation between welfare benefits and the length of welfare spells. The survey data are from
the Survey of Income and Program Participation (SIPP). The welfare benefits in the SIPP are
self-reported and are likely to contain reporting errors. The federal government requires the states
to report random samples from their welfare records to check whether the welfare benefits are
calculated correctly. The random samples are publicly available as the AFDC Quality Control
Survey (AFDC QC). For that reason they do not contain identifiers that could be used to match
the AFDC QC to the SIPP, a task that would yield a small sample anyway because of the lack of
overlap of the two samples. Besides the welfare benefits the AFDC QC contains only a few other
variables.

This paper shows that the combination of a sample survey in which some of the independent
variables are measured with error and a secondary dataset that contains a sample from the
marginal distribution of the latent true values of the mismeasured variables identifies the conditional
distribution of the latent true value given the reported value and the other independent variables.
This distribution is used to integrate out the latent true values from the model. The resulting mixture
model (with estimated mixing distribution) can then be estimated by maximum likelihood (ML) (or
generalized method of moments (GMM)). Our semi-parametric MLE involves two deconvolutions.
The use of deconvolution estimators in the first stage is potentially problematic (Taupin, 2001). We
apply the results in Hu and Ridder (2010), who show that

p
n consistency can be obtained if the

distribution of the measurement error is range-restricted.2 We derive its asymptotic variance that
accounts for the fact that the mixing distribution is estimated. The semi-parametric MLE avoids
any assumption on the distribution of the measurement error and/or the distribution of the latent
true value.

The paper is organized as follows. Section 2 establishes non-parametric identification. Section
3 gives the estimator and its properties. Section 4 presents Monte Carlo evidence on the finite-
sample performance of the estimator. An empirical application is given in Section 5. Section 6
contains extensions and conclusions. The proofs are in the Appendix.

2. IDENTIFICATION USING MARGINAL INFORMATION

A parametric model for the relation between a dependent variable y, a latent true variable xŁ and
other covariates w can be expressed as a conditional density of y given xŁ, w, fŁ�yjxŁ, w; ��. The
relation between the observed x and the latent xŁ is

x D xŁ C ε �1�

with the classical measurement error assumption ε ? xŁ, w, y where ? indicates stochastic
independence. In the linear regression model the independence of the measurement error and
y given xŁ, w, which is implied by this assumption, is equivalent to the independence of the
measurement error and the regression error. The variable xŁ (and hence x) is continuous. The
independent variables in w can be either discrete or continuous. To keep the notation simple, the
theory will be developed for the case that w is scalar.

The data are a random sample yi, xi, wi, i D 1, . . . , n from the joint distribution of y, x, w,
the survey data, and a random sample xŁ

i , i D 1, . . . , n1 from the marginal distribution of xŁ, the
secondary sample that in most cases is a random sample from an administrative file. In asymptotic

2 The ‘range-restricted’ condition does exclude some interesting distributions, such as the normal distribution. We clarify
this limitation in the estimation section.
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arguments we assume that both n, n1 become large and that their ratio converges to a positive
and finite number.

Efficient inference for the parameters � is based on the likelihood function. The individual
contribution to the likelihood is the conditional density of y given x, w, f�yjx, w; ��. The relation
between this density and that of the parametric model is

f�yjx, w; �� D
∫
XŁ
fŁ�yjxŁ, w; ��g�xŁjx, w� dxŁ �2�

The conditional density g�xŁjx, w� does not depend on �, because xŁ, w is assumed to be ancillary
for �, and the measurement error is independent of y given xŁ, w.

The key problem with the use of the conditional density (2) in likelihood inference is that it
requires knowledge of the density g�xŁjx, w�. This density can be expressed as

g�xŁjx, w� D g�xjxŁ, w�g2�x
Ł, w�

g�x, w�
�3�

For likelihood inference we must identify the densities g�xjxŁ, w� and g2�xŁ, w�, while the
density in the denominator does not affect the inference. We could choose a parametric density
for g�xŁjx, w� and estimate its parameters jointly with �. There are at least two problems with
that approach. First, it is not clear whether the parameters in the density are identified, and if so,
whether the identification is by the arbitrary distributional assumptions and/or the functional form
of the parametric model. If there is (parametric) identification, misspecification of g�xŁjx, w� will
bias the MLE of �. Second, empirical researchers are reluctant to make distributional assumptions
on the independent variables in conditional models. For that reason we consider non-parametric
identification and estimation of the density of xŁ given x, w.

We have to show that the densities in the numerator are non-parametrically identified. First, the
assumption that the measurement error ε is independent of xŁ, w implies that

g�xjxŁ, w� D g1�x � xŁ� �4�

with g1 the density of ε. Because the observed x is the convolution, i.e. sum, of the latent true
value and the measurement error, it is convenient to work with the characteristic function of the
random variables, instead of their density or distribution functions. Of course, there is a one-to-one
correspondence between characteristic functions and distributions. Let �x�t� D E�exp�itx�� be the
characteristic function of the random variable x. From (1) and the assumption that xŁ and ε are
independent we have �x�t� D �xŁ�t��ε�t�. Hence, if the marginal distribution of xŁ is known, we
can solve for the characteristic function of the measurement error distribution

�ε�t� D �x�t�

�xŁ�t�
�5�

Because of the one-to-one correspondence between characteristic functions and distributions,
this identifies g�xjxŁ, w�. By the law of total probability the density g2�xŁ, w� is related to the
density g�x, w� as

g�x, w� D
∫
XŁ
g�xjxŁ, w�g2�x

Ł, w� dxŁ D
∫
XŁ
g1�x � xŁ�g2�x

Ł, w� dxŁ �6�
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This implies that the joint characteristic function �xw�r, s� D E�exp�irx C isw�� of the distribu-
tion of x, w, is equal to (with a change of variables to ε D x � xŁ)

�xw�r, s� D
∫
W

∫
XŁ

∫
X
eir�x�x

Ł�g1�x � xŁ� dxeirx
ŁCiswg2�x

Ł, w� dxŁ dw D �ε�r��xŁw�r, s� �7�

so that

�xŁ,w�r, s� D �x,w�r, s�

�ε�r�
D �x,w�r, s��xŁ�r�

�x�r�
�8�

If the data consist of a primary sample from the joint distribution of y, x, w and a secondary
sample from the marginal distribution of xŁ, then the right-hand side of (8) contains only
characteristic functions of distributions that can be observed in either sample.

The conditional density in (2) is a mixture with a mixing distribution that can be identified from
the joint distribution of x, w and the marginal distribution of xŁ. We still must establish that �
can be identified from this mixture. The parametric model for the relation between y and xŁ, w,
specifies the conditional density of y given xŁ, w, fŁ�yjxŁ, w; ��. The parameters in this model
are identified, if for all � 6D �0 with �0 the population value of the parameter vector, there is a set
A��� with positive measure, such that for �y, xŁ, w� 2 A���, fŁ�yjxŁ, w; �� 6D fŁ�yjxŁ, w; �0�. If the
parameters are identified, then the expected (with respect to the population distribution of y, xŁ,
w) log likelihood has a unique and well-separated maximum in �0 (Van Der Vaart, 1998, Lemma
5.35).

Under weak assumptions on the distribution of the measurement error, identification of � in
fŁ�yjxŁ, w; �� implies identification of � in f�yjx, w; ��.

Theorem 1. If (i) �0 is identified if we observe y, xŁ, w, (ii) the characteristic function of ε has
a countable number of zeros, and (iii) the density of xŁ, w and fŁ�yjxŁ, w; �� have two absolutely
integrable derivatives with respect to xŁ, then �0 is identified if we observe y, x, w.

Proof. See Appendix.
The fact that the density of xŁ given x, w is non-parametrically identified makes it possible to

study, for example, non-parametric regression of y on xŁ, w using data from the joint distribution
of y, w and the marginal distribution of xŁ. This is beyond the scope of the present paper, which
considers only parametric models. However, it must be stressed that the conditional density of
y given xŁ, w is non-parametrically identified, so that we do not rely on functional form or
distributional assumptions in the identification of �.

3. ESTIMATION WITH MARGINAL INFORMATION

3.1. Non-parametric Fourier Inversion Estimators

Our estimator is a two-step semi-parametric estimator. The first step in the estimation is to obtain
a non-parametric estimator of g1�x � xŁ�g2�xŁ, w�. The density g1 of the measurement error ε has

characteristic function, abbreviated as cf, �ε�t� D �x�t�
�xŁ�t� . The operation by which the cf of one of

the random variables in a convolution is obtained from the cf of the sum and the cf of the other
component is called deconvolution. By Fourier inversion we have, if �ε is absolutely integrable
(see below),

g1�x � xŁ� D 1

2�

∫ 1

�1
e�it�x�xŁ� �x�t�

�xŁ�t�
dt �9�
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The joint characteristic function of xŁ, w is �xŁw�r, s� D �xw�r, s��xŁ �r�
�x�r�

. Again Fourier inversion
gives, if �xŁw is absolutely integrable, the joint density of xŁ, w as

g2�x
Ł, w� D 1

�2��2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw �xw�r, s��xŁ�r�

�x�r�
dr ds �10�

The Fourier inversion formulas become non-parametric estimators, if we replace the cf by
empirical characteristic functions (ecf). If we have a random sample xi, i D 1, . . . , n from the
distribution of x, then the ecf is defined as

O�x�t� D 1

n

n∑
iD1

eitxi �11�

However, the estimators that we obtain if we substitute the ecf of x and xŁ in (9) and the ecf of
x, w, xŁ and x in (10) are not well defined. In particular, sampling variations cause the integrals
not to converge. Moreover, to prove consistency of the estimators we need results on the uniform
convergence of the empirical cf (as a function of t). Uniform convergence for �1 > t > 1
cannot be established. For these reasons we introduce integration limits in the definition of the
non-parametric density estimators by multiplying the integrand by a weight function KŁ

n�t� that

is 0 for jtj > Tn. For reasons that will become clear, we choose KŁ
n�t� D KŁ

(
t
Tn

)
with KŁ the

Fourier transform of the function K, i.e. KŁ�t� D ∫ 1
�1 e�itzK�z� dz. The function K is a kernel that

satisfies: (i) K�z� D K��z� and K2 is integrable; (ii) KŁ�t� D 0 for jtj > 1; (iii)
∫ 1

�1K�z� dz D 1,∫ 1
�1 zjK�z� dz D 0 for j D 1, 2, . . . , q � 1, and

∫ 1
�1 jzjqK�z� dz > 1, i.e. K is a kernel of order

q. In the nonparametric density estimator of xŁ, w we multiply by a bivariate weight function
KŁ
n�r, s� D KŁ

(
r
Rn
, sSn

)
with KŁ�r, s� the bivariate Fourier transform of the kernel K�v, z� that

satisfies (i)–(ii), and (iii)
∫ 1

�1
∫ 1

�1K�v, z� dz dv D 1,
∫ 1

�1
∫ 1

�1 vkzlK�v, z� dz dv D 0 if k C 1 > q
and

∫ 1
�1

∫ 1
�1 jvjkjzjlK�v, z� dz dv > 1 if k C l D q.

With these weight functions the nonparametric density estimators are

Og1�x � xŁ� D 1

2�

∫ 1

�1
e�it�x�xŁ�

O�x�t�
O�xŁ�t�

KŁ
n�t� dt �12�

Og2�x
Ł, w� D 1

4�2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw O�xw�r, s� O�xŁ�r�

O�x�r�
KŁ
n�r, s� ds dr �13�

The implicit integration limits Tn, Rn, and Sn diverge at an appropriate rate, to be defined below.
Although we integrate a complex-valued function the integrals are real.3 However, because we

3 Because eitxj D cos�txj�C i sin�txj� the ecf has a real part that is an even function of t and an imaginary part that is an
odd function of t. Let Ek�t� for k D 1, 2, 3, 4 be real even functions in t, i.e. Ek�t� D Ek��t�, where t may be a vector.
Let Ok�t� for k D 1, 2, 3, 4 be real odd functions in t, i.e. Ok��t� D �Ok�t�. For any E1�t�, E2�t�, O1�t�, O2�t�, we have
that

[E1�t�C iO1�t�][E2�t�C iO2�t�] D E3�t�C iO3�t�

and
E1�t�C iO1�t�

E2�t�C iO2�t�
D E4�t�C iO4�t�

Let the even functions and the odd functions be the real and the imaginary part of the ecf. Then the multiplica-
tion/division of ecf results in functions with an imaginary part that is an odd function of t. This implies that the imaginary
part of the integrand is an odd function of t so that its integral is 0.
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truncate the range of integration, the estimated densities need not be positive. Diggle and Hall
(1993) suggest that this phenomenon may be due to the sharp boundary cut-off of the domain of
KŁ
n�t�. Figure 1 illustrates this for our application with KŁ�t� D �1 � jtj�I�jtj � 1�.
Demonstration of consistency of the non-parametric estimators in (12) and (13) requires some

restrictions on the distributions of xŁ and ε. A relatively weak restriction is that the cf of ε and that
of xŁ, w must be absolutely integrable, i.e.

∫ 1
�1 j�ε�t�jdt > 1 and

∫ 1
�1

∫ 1
�1 j�xŁw�r, s�jdr ds > 1.

A sufficient condition is that, for example,
∫ 1

�1 jg1�ε�00jdε > 1 with g00
1 the second derivative of

the pdf of ε, which is a weak smoothness condition (and an analogous condition on the joint
density of x, w).

A second restriction derives from the fact that deconvolution involves division by an (empirical)
characteristic function. For this reason a common assumption in the deconvolution literature is that
the characteristic function in the denominator is never equal to 0. For instance, the characteristic
function of the normal distribution with mean 0 has this property. This assumption is not necessary
to ensure the consistency of the semiparametric MLE. However, we have been unable to provep
n consistency of the semi-parametric MLE without it. The assumption is not innocuous, because

it excludes, for example, the symmetrically truncated normal distribution (with mean 0). To ensurep
n consistency we restrict the distributions whose cf appears in the denominator to the class of

range-restricted distributions. Because these distributions are asymmetrically truncated, their cf’s
do not have (real) zeros (see Figure 2 for a counterexample). The nonzero cf assumption is a
peculiarity of the deconvolution approach to the solution of linear integral equations. Its resolution
may require a different solution method for the linear integral equations that determine the densities
of ε and of xŁ, w. This is beyond the scope of the present paper.

Finally, to obtain a rate of convergence of the first-stage nonparametric density estimators that
is fast enough to ensure

p
n consistency of the semi-parametric MLE, a sufficient condition is

that the characteristic functions of xŁ and ε are ordinarily smooth (Fan, 1991), i.e. for large t the
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Figure 1. Estimate and 95% CI of the measurement error density (Tn D 1; 200 repetitions)
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Figure 2. Characteristic function of symmetrically truncated (at �3 and 3) Laplace distribution. This figure
is available in color online at www.interscience.wiley.com/journal/jae

characteristic functions must be such that for some C0, C1, k > 0

C0t
��kC1� � j�v�t�j � C1t

��kC1� �14�

The integer k is the index of smoothness. In the deconvolution literature, assumptions on the tail
behavior of characteristic functions are common. Hu and Ridder (2010) relate these assumptions
to the underlying distributions. They show that a sufficient condition is that distributions of
the latent true value xŁ and the measurement error ε are range-restricted (Hu and Ridder,
2010).The distribution of a random variable v is range restricted of order k with k D 0, 1, 2, . . .
if: (i) its density fv has support [L, U] with either L or U finite; (ii) the density fv has
k C 2 absolutely integrable derivatives f�j�v ; (iii) f�j�v �U� D f�j�v �L� D 0 for j D 0, . . . , k � 1 and
jf�k�v �U�j 6D jf�k�v �L�j. This is a sufficient but not necessary condition for ordinary smoothness.4

If k D 0, then a sufficient condition for range restriction is that the density is not equal at the
upper and lower truncation points. This is obviously satisfied if the truncation is one-sided, e.g. if
the distribution is half normal. Furthermore, a range restricted distribution may also be obtained
by truncating a distribution with unbounded support, where the bounds L and U may diverge to
�1 and 1 with the sample size going to infinity.

Because we observe the marginal distribution of x and that of xŁ, one might wonder whether
the assumption that the distributions of xŁ and the measurement error are both range restricted
together with the measurement error model has testable implications. For instance, if both xŁ and
the measurement error are non-negative, then x is also non-negative. If both are bounded, then
x is also bounded with a support that is larger than that of xŁ, if the measurement error has a
support that includes both negative and positive values. If the support of ε is bounded from below

4 ‘Range-restricted’ distributions do not include distributions that are ‘supersmooth’ like the normal distribution. In that
case, Schennach (2004b) shows that fast nonparametric rates (i.e. op�n�1/4�) of convergence are still possible when both
the error distribution and that of the latent true values are supersmooth. We do not explore that possibility in this paper.
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by a positive number, the lower bound on the support of x will be larger than that of the support
of xŁ. The only case that is excluded is a support of x that is a strict subset of that of xŁ. Note
that our assumption is compatible with the classical measurement error assumption, because we
do not impose restrictions on the support of x.

The properties, and in particular the rate of uniform convergence, of the first-stage nonparametric
density estimators are given by the following lemma.

Lemma 1.

(i) Let �ε be absolutely integrable and let the density of ε be q times differentiable with a
q-th derivative that is bounded on its support. Suppose j�xŁ�t�j > 0 for all t 2 < and that the

distribution of xŁ is range restricted of order kxŁ . Let Tn D O
((

n
logn

)�)
for 0 > � > 1

2 . Then

a.s. if n1
n ! � with 0 > � > 1 for n ! 1

sup
x2X,xŁ2XŁ

jOg1�x � xŁ�� g1�x � xŁ�j D O

(
logn

n

) 1
2 ��kxŁ C3���	

 C O

((
logn

n

)q�)
�15�

for 	 > 0 and q the order of the kernel in the density estimator.
(ii) Let �xŁw�t, s� be absolutely integrable and let the density of xŁ, w be q times differentiable with

all qth derivatives bounded. Suppose j�x�t�j > 0, j�xŁ�t�j > 0 for all t 2 <, the distribution of
xŁ is range restricted of order kxŁ and the distribution of ε is range restricted of order kε. Let

Sn D O

((
n

logn

)� 0)
and Rn D O

((
n

logn

)� 0)
with 0 > � 0 > 1

2 . Then a.s. if n1
n ! � with

0 > � > 1 for n ! 1

sup
�xŁ,w�2XŁðW

jOg2�x
Ł, w�� g2�x

Ł, w�j D O

(
logn

n

) 1
2 ��kxŁ CkεC5�� 0�	

 C O

((
logn

n

)q� 0)
�16�

for 	 > 0 and q the order of the kernel in the density estimator.

Proof. See Appendix.
Note that in the bounds the first term is the variance and the second the bias term. As usual,

the bias term can be made arbitrarily small by choosing a higher-order kernel. To obtain a rate of

convergence of n� 1
4 or faster (Newey, 1994) we require that

1

4q
> � >

1

4�kxŁ C 3�
�17�

and
1

4q
> � 0 >

1

4�kxŁ C kε C 5�
�18�

which requires that we choose the order of the kernel q to be greater than kxŁ C kε C 5.
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3.2. The Semi-parametric MLE

The data consist of a random sample yi, xi, wi, i D 1, . . . , n and an independent random sample
xŁ
i , i D 1, . . . , n1. The population density of the observations in the first sample is

f�yjx, w; �0� D
∫
XŁ
fŁ�yjxŁ, w; �0�

g1�x � xŁ�g2�x
Ł, w�

g�x, w�
dxŁ �19�

in which fŁ�yjxŁ, w; �� is the parametric model for the conditional distribution of y given w and
the latent xŁ. The densities fx, fxŁ , fwjx have support X, XŁ, W, respectively. These supports may
be bounded.

The semi-parametric MLE is defined as

O� D arg max
�2

n∑
iD1

ln Of�yijxi, wi; �� �20�

with Of�yijxi, wi; �� the conditional density in which we replace g1, g2 by their non-parametric
Fourier inversion estimators. The parameter vector � is of dimension d. The semi-parametric
MLE satisfies the moment condition

n∑
iD1

m�yi, xi, wi, O�, Og1, Og1� D 0 �21�

where the moment function m�y, x, w, �, g1, g2� is the score of the integrated likelihood

m�y, x, w, �, g1, g2� D

∫
XŁ

∂fŁ�yjxŁ, w; ��

∂�
g1�x � xŁ�g2�x

Ł, w� dxŁ∫
XŁ
fŁ�yjxŁ, w; ��g1�x � xŁ�g2�x

Ł, w� dxŁ
�22�

The next two theorems give conditions under which the semi-parametric MLE is consistent and
asymptotically normal.

Theorem 2. If

(A1) The parametric model fŁ�yjxŁ, w; �� is such that there are constants 0 > m0 > m1 > 1 such
that for all �y, xŁ, w� 2 Y ð XŁ ð W and � 2 

m0 � fŁ�yjxŁ, w; �� � m1 �23�∣∣∣∣∂fŁ�yjxŁ, w; ��

∂�k

∣∣∣∣ � m1 �24�

and that for all �y, w� 2 Y ð W and � 2 ∫
XŁ
fŁ�yjxŁ, w; �� dxŁ > 1 �25�∣∣∣∣∫

XŁ

∂fŁ�yjxŁ, w; ��

∂�k
dxŁ

∣∣∣∣ > 1 �26�

with k D 1, . . . , d. The density of x, w is bounded from 0 on its support X ð W.
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(A2) The characteristic functions of ε and xŁ, w are absolutely integrable and their densities q
times differentiable with qth derivatives that are bounded on their support. The cf of ε and
xŁ do not have (real) zeros and are range-restricted of order kε and kxŁ , respectively.

(A3) Tn D O
((

n
logn

)�)
with 0 > � > 1

2�kxŁ C 3� , and Sn D O

((
n

logn

)� 0)
,

Rn D O

((
n

logn

)� 0)
with 0 > � 0 > 1

2�kxŁ C kε C 5� , and lim
n!1

n1
n D �, 0 > � > 1.

Then for the semi-parametric MLE

O� D arg max
�2

n∑
iD1

ln Of�yijxi, wi; �� �27�

we have
O� p!�0 �28�

Proof. See Appendix.
Assumption (A1) is sufficient but by no means necessary. It can be replaced by boundedness

assumptions on the moment function and the Fréchet differential of the moment function (see the
proof in the Appendix). However, we prefer to give sufficient conditions that can be verified more
easily in most applications. In some cases, e.g. if y has unbounded support, the more complicated
sufficient conditions must hold.

The next lemma shows that the two-step semi-parametric MLE has an asymptotically linear
representation.

Lemma 2. If the assumptions of Theorem 2 hold and in addition

(A4) E�m�y, x, w, �0, g1, g2�m�y, x, w, �0, g1, g2�0� > 1.

(A5) Tn D O
((

n
logn

)�)
with 1

4q > � > 1
4�kxŁ C 3� , and Sn D O

((
n

logn

)� 0)
and

Rn D O

((
n

logn

)� 0)
with 1

4q > � 0 > 1
4�kε C kxŁ C 5� .

(A6) g1�ε� has kε C 1 absolutely integrable derivatives and g2�xŁ, w� has kxŁ C 1 absolutely
integrable derivatives with respect to xŁ. The range-restricted distribution of xŁ has support
XŁ D [L,U] where L can be �1 or U can be 1 and the derivatives of the marginal density of
xŁ satisfy g�k�2 �L� D g2�k� �U� D 0 for k D 0, . . . , kxŁ � 1. We assume that the partial derivatives
of the joint density of xŁ, w with respect to xŁ satisfy5 g�k�2 �L, w� D g�k�2 �U, w� D 0 for k D
0, . . . , kxŁ � 1 for all w 2 W. fŁ�yjxŁ, w; �0� and ∂f

Ł�yjxŁ, w; �0�
∂� have maxfkε C 1, kxŁ C 1g

absolutely integrable derivatives with respect to xŁ.

Then
1p
n

n∑
jD1

m�yj, xj, wj, �0, Og1, Og2�
d!N�0, �� �29�

where

� D E[ �y, x, w� �y, x, w�0] C �E[ϕ�xŁ�ϕ�xŁ�0] �30�

5 This is automatically satisfied if the order of range-restriction is 0, which is the leading case.
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 �y, x, w� D m�y, x, w, �0, h0�C 1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xŁ�r�

�x�r�
[eirxCisw � �xw�r, s�] ds dr

� 1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s��xŁ�r�

�x�r��x�r�
[eirx � �x�r�] ds dr

C 1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�
[eitx � �x�t�] dt �31�

ϕ�xŁ� D � 1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�

�x�t�

�xŁ�t�
[eitx

Ł � �xŁ�t�] dt

C 1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s�

�x�r�
[eitx

Ł � �xŁ�t�] ds dr �32�

dŁ
1�t� D E[�Ł

1�t, y, x, w�] �33�

dŁ
2�r, s� D E[�Ł

2�r, s, y, x, w�] �34�

�Ł
1�t, y, x, w� D

∫
e�it�x�xŁ�υ�y, x, w, xŁ�g2�x

Ł, w�dxŁ �35�

�Ł
2�r, s, y, x, w� D

∫
e�irxŁ�iswυ�y, x, w, xŁ�g1�x � xŁ�dxŁ �36�

υ�y, x, w, xŁ� D fŁ�yjxŁ, w�
f�y, x, w�


∂

∂�
fŁ�yjxŁ, w�

fŁ�yjxŁ, w�
�

∂

∂�
f�y, x, w�

f�y, x, w�

 �37�

Proof. See Appendix.
The influence function of the semi-parametric MLE is equal to m�y, x, w, �0, h0�C  �y, x, w�C

�ϕ�xŁ�. The term m�y, x, w, �0, h0�C  �y, x, w� is the influence function for the survey data and
the term ϕ�xŁ� is that for the marginal sample. The next theorem is an easy implication of the
lemma.

Theorem 3. If assumptions (A1)–(A5) are satisfied, then

p
n�O� � �0�

d!N�0, V� �38�

with V D �M0��1�M�1 where

M D E
(
∂m�y, x, w, �0, g1, g2�

∂�0

)
�39�

The matrix � is estimated by substituting estimates for unknown parameters and empirical for
population characteristic functions. The matrix � has a closed-form representation. Although we
do not need this expression to estimate �, we consider it to see how zeros in the cf of x and xŁ
may affect the asymptotic variance. To keep the discussion simple we consider the third term of
 �y, x, w�, which has a variance equal to

E

[(
1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�
�eitx � �x�t��dt

)2
]
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D 1

4�2

∫ 1

�1

∫ 1

�1

dŁ
1�t�d

Ł
1�s�

�xŁ�t��xŁ �s�
��x�t C s�� �x�t��x�s�� dt ds

D 1

4�2

∫ 1

�1

∫ 1

�1
dŁ

1�t�d
Ł
1�s��ε�t��ε�s�

(
�x�t C s�

�x�t��x�s�
� 1

)
dt ds �40�

Now if for some finite t both �x and �xŁ are 0, while �ε is bounded from 0, then the integral
may diverge and in that case the asymptotic variance is infinite.

4. A MONTE CARLO SIMULATION

This section applies the method developed above to a probit model with a mismeasured explanatory
variable. The conditional density function of the probit model is

fŁ�yjxŁ, w; �� D P�y, xŁ, w; ��y�1 � P�y, xŁ, w; ���1�y �41�

P�y, xŁ, w; �� D �ˇ0 C ˇ1x
Ł C ˇ2w�

where � D �ˇ0, ˇ1, ˇ2�0 and  is the standard normal cdf. The true value and the error both have a
normal distribution truncated at plus and minus 4 standard deviations, which is practically the same
as the original normal distribution in the small sample. Four estimators are considered: (i) the ML
probit estimator that uses mismeasured covariate x in the primary sample as if it were accurate,
i.e. it ignores the measurement error. The MLE is not consistent. The conditional density function
in this case is written as fŁ�yjx, w; ��; (ii) the infeasible ML probit estimator that uses the latent
true xŁ as covariate. This estimator is consistent and has the smallest asymptotic variance of all
estimators that we consider. The conditional density function is fŁ�yjxŁ, w; ��; (iii) the mixture
MLE that assumes that the density function of xŁ given x, w is known and that uses this density
to integrate out the latent xŁ. This estimator is consistent, but it is less efficient than the MLE in
(i); and (iv) the semi-parametric MLE developed above that uses both the primary sample yi, xi,
wi, i D 1, 2, . . . , n and the secondary sample xŁ

j , j D 1, 2, . . . , n1.
For each estimator, we report root mean squared error (RMSE), the average bias of estimates,

and the standard deviation of the estimates over the replications.
We consider three different values of the measurement error variance: large, moderate and small

(relative to the variance of the latent true value). The results are summarized in Table I. In all
cases the smoothing parameters S, T are chosen as suggested in Diggle and Hall (1993). The
results are quite robust against changes in the smoothing parameters, and the same is true in our
application in Section 5.

Table I shows that the MLE that ignores the measurement error is significantly biased as
expected. The bias of the coefficient of the mismeasured independent variable is larger than
the bias of the coefficient of the other covariate or the constant. Some of the consistent estimators
have a small-sample bias that is significantly different from 0. In particular, the (small-sample)
biases in the new semi-parametric MLE are similar to those of the other consistent estimators.

In all cases the MSE of the infeasible MLE is (much) smaller than that of the other consistent
estimators. The loss of precision is associated with the fact that xŁ is not observed, but that
we must integrate with respect to its distribution given x, w. It does not seem to matter that in
the semi-parametric MLE this density is estimated non-parametrically, because the MSE of the
estimator with a known distribution of the latent true value given x, w is only marginally smaller
than that of our proposed estimator.

We also tested whether the sampling distribution of the semi-parametric MLE is normal. Figure 3
shows the empirical distribution of 400 semi-parametric MLE estimates of ˇ1. It is close to a normal
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Table I. Simulation results, probit model: n D 500, n1 D 600, number of repetitions 200

ˇ1 ˇ2 ˇ0

Root MSE Mean bias SD Root MSE Mean bias SD Root MSE Mean bias SD

�2
ε

�2
xŁ

D 1.96a

Ignoring
meas. error

0.6909 �0.6871Ł 0.0730 0.1452 0.0679Ł 0.1283 0.0692 �0.0340Ł 0.0603

True xŁ 0.1464 0.0221Ł 0.1447 0.1310 �0.0143 0.1302 0.0598 0.0056 0.0595
Known meas.

error dist.
0.2862 0.0330 0.2843 0.1498 �0.0151 0.1491 0.0712 0.0077 0.0708

Marginal
information

0.3288 �0.0923 0.3156 0.1886 �0.0197 0.1876 0.0815 0.0025 0.0815

�2
ε

�2
xŁ

D 1b

Ignoring
meas. error

0.5386 �0.5311Ł 0.0894 0.1546 0.0562Ł 0.1441 0.0698 �0.0177Ł 0.0675

True xŁ 0.1407 0.0025 0.1407 0.1466 0.0007 0.1466 0.0705 0.0111Ł 0.0696
Known meas.

error dist.
0.2218 0.0152 0.2213 0.1563 �0.0046 0.1563 0.0758 0.0135Ł 0.0746

Marginal
information

0.2481 0.0082 0.2480 0.1701 �0.0158 0.1693 0.0873 0.0163Ł 0.0858

�2
ε

�2
xŁ

D 0.36c

Ignoring
meas. error

0.2938 �0.2723Ł 0.1103 0.1449 0.0174Ł 0.1439 0.0630 �0.0132Ł 0.0616

True xŁ 0.1384 0.0123 0.1379 0.1477 �0.0130 0.1471 0.0642 0.0031 0.0641
Known meas.

error dist.
0.1711 0.0336Ł 0.1678 0.1518 �0.0177 0.1507 0.0655 0.0042 0.0653

Marginal
information

0.1764 �0.0325Ł 0.1733 0.1743 �0.0634 0.1624 0.0942 0.0206Ł 0.0919

a ˇ1 D 1, ˇ2 D �1, ˇ0 D 0.5; xŁ ¾ N�0, 0.25�, w ¾ N�0, 0.25�, ε ¾ N�0, �2
ε �; smoothing parameters are Tn D 0.7 for

density of ε and Sn D Rn D 0.6 for joint density of xŁ, w.
b ˇ1 D 1, ˇ2 D �1, ˇ0 D 0.5; xŁ ¾ N�0, 0.25�, w ¾ N�0, 0.25�, ε ¾ N�0, �2

ε �; smoothing parameters are Tn D 0.6 for
density of ε and Sn D Rn D 0.7 for joint density of xŁ, w.
c ˇ1 D 1, ˇ2 D �1, ˇ0 D 0.5; xŁ ¾ N�0, 0.25�, w ¾ N�0, 0.25�, ε ¾ N�0, �2

ε �; smoothing parameters are Tn D 0.75 for
density of ε and Sn D Rn D 0.2 for joint density of xŁ, w.

density with the same mean and variance. The p-value of the normality test, the Shapiro–Wilk W
test, is 0.21, and therefore one cannot reject the hypothesis that the distribution of ̂̌

1 is normal.
The computation of the Fourier inversion estimators in the simulation involves one-dimensional

(distribution of ε) and two-dimensional (distribution of xŁ, w) numerical integrals. In the
simulations these are computed by Gauss–Laguerre quadrature. In the empirical application in
Section 5 the second estimator involves a numerical integral of a dimension equal to the number of
covariates in w plus 1. This numerical integral is computed by the Monte Carlo method (100 draws).

5. AN EMPIRICAL APPLICATION: THE DURATION OF WELFARE SPELLS

5.1. Background

The Aid to Families with Dependent Children (AFDC) program was created in 1935 to provide
financial support to families with children who were deprived of the support of one biological
parent by reason of death, disability, or absence from the home, and were under the care of the
other parent or another relative. Only families with income and assets lower than a specified level
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Figure 3. Sampling distribution of SPMLE of ˇ1 (200 repetitions)

are eligible. The majority of families of this type are single-mother families, consisting of a mother
and her children. The AFDC benefit level is determined by maximum benefit level, the so-called
guarantee, and deductions for earned income, child care, and work-related expenses. The maxi-
mum benefit level varies across the states, while the benefit reduction rate, sometimes called the
tax rate, is set by the federal government. For example, the benefit reduction rate on earnings was
reduced to 67% from 100% in 1967 and was raised back to 100% in 1981. AFDC was eliminated
in 1996 and replaced by Temporary Assistance for Needy Families (TANF).

A review of the research on AFDC can be found in Moffitt (1992, 2002). In this application,
we investigate to what extent the characteristics of the recipients, external economic factors,
and the level of welfare benefits received influence the length of time spent on welfare. Most
studies on welfare spells (Bane and Ellwood, 1994; Ellwood, 1986; O’Neill et al., 1984; Blank,
1989; Fitzgerald, 1991) find that the level of benefits is negatively and significantly related to the
probability of leaving welfare. Almost all studies use the AFDC guarantee rather than the reported
benefit level as the independent variable. One reason for not using the reported benefit level is
the fear of biases due to reporting error. The AFDC guarantee has less variation than the actual
benefit level, as the AFDC guarantee is the same for all families with the same number of people
who live in a particular state.

5.2. Data

The primary sample used here is extracted from the Survey of Income and Program Participation,
a longitudinal survey that collects information on topics such as income, employment, health
insurance coverage, and participation in government transfer programs. The SIPP population
consists of persons resident in US households and persons living in group quarters. People selected
for the SIPP sample are interviewed once every 4 months over the observation period. Sample
members within each panel are randomly divided into four rotation groups of roughly equal size.
Each month, the members of one rotation group are interviewed and information is collected
about the previous 4 months, which are called reference months. Therefore, all rotation groups are
interviewed every 4 months so that we have a panel with quarterly waves.

We use the 1992 and 1993 SIPP panels, each of which contains nine waves.6 The SIPP 1992
panel follows 21,577 households from October 1991 through December 1994. The SIPP 1993

6 The 1992 panel actually has 10 waves, but the 10th wave is only available in the longitudinal file. The original wave
files are used here instead of the longitudinal file.
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panel contains information on 21,823 households, from October 1992 through December 1995.
Each sample member is followed over a 36-month period.

We consider a flow sample of all single mothers of age 18–64 who entered the AFDC program
during the 36-month observation period. For simplicity, only a single spell for each individual is
considered here. A single spell is defined as the first spell during the observation period for each
mother. A spell is right-censored if it does not end during the observation period. The SIPP duration
sample contains 520 single spells, of which 269 spells are right-censored. Figure 4 presents the
empirical hazard function based on these observations.

The benefit level in the SIPP sample is expected to be misreported. The reporting error in
transfer income in survey data has been studied extensively. In the SIPP the reporting of transfer
income is in two stages. First, respondents report receipt or not of a particular form of income, and
if they report that they receive some type of transfer income they are asked the amount that they
receive. Validation studies have shown that there is a tendency to underreport receipt, although
for some types there is also evidence of overreporting receipt. The second source of measurement
error is the response error in the amount of transfer income. Several studies find significant differ-
ences between survey reports and administrative records, but there are also studies that find little
difference between reports and records. Most studies find that transfer income is underreported,
and underreporting is particularly important for the AFDC program. A review of the research can
be found in Bound et al. (2001).

The AFDC QC is a repeated cross-section that is conducted every month. Every month each
state reports benefit amounts, last opening dates and other information from the case records of a
randomly selected sample of the cases receiving cash payments in that state. Hence for the QC
sample we know not only the true benefit level of a welfare recipient but also when the current
welfare spell started. Therefore we can select from the QC sample all the women who enter the
program in a particular month. The QC sample used here is restricted to the same population as
the SIPP sample, which is all single mothers of age 18–64 who entered the program during the
period from October 1991 to December 1995.

Because the welfare recipients can enter welfare in any month during the 51-month observation
period, the distribution of the true benefits given the reported benefits and the other independent
variables could be different for each of the 51 months. For instance, the composition of the families
who go on welfare could have a seasonal or cyclical pattern. If this were the case we would have

Figure 4. Empirical hazard rate of welfare durations in SIPP. This figure is available in color online at
www.interscience.wiley.com/journal/jae
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to estimate 51 distributions. Although this is feasible it is preferable to investigate first whether we
can do with fewer. We test whether the distribution of the benefits is constant over the 51 months
of entry or, if suspect cyclical shifts, the 4 years of the observation period. Table II reports the
Kruskal–Wallis test for the null hypothesis of a constant distribution over the entry months (first
row) and the entry years (second row). Table III reports the results of the Kolmogorov–Smirnov
test of the hypothesis that the distribution of the welfare benefits in a particular month is the same
as that in all other 50 months. The conclusion is that it is allowed to pool the 51 entry months
and to estimate a single distribution of the true benefits given the reported benefits and the other
independent variables.7

Since both the SIPP and AFDC QC samples come from the same population, we can compare
the distributions of the nominal benefit levels in the two samples. Figure 5 shows the estimated
density of log nominal benefit levels and Table IV reports summary statistics and the result
of the Kolmogorov–Smirnov test of equality of the two distributions. A comparison of the

Table II. Stationarity of distribution of nominal benefits in QC sample: Kruskal–Wallis test, n D 3318

Kruskal–Wallis statistic Degrees of freedom p-value

Nominal benefits between months 57.2 50 0.2254
Nominal benefits between years 6.1 4 0.1948

Table III. Stationarity of distribution nominal benefit levels in QC sample: Kolmogorov–Smirnov test
distribution in indicated month vs. other months

Month # obs. K-S stat. p-value Month # obs. K-S stat. p-value

1 82 0.077 0.725 27 80 0.078 0.727
2 82 0.062 0.923 28 48 0.094 0.793
3 75 0.105 0.391 29 67 0.120 0.301
4 64 0.082 0.798 30 67 0.112 0.383
5 67 0.106 0.455 31 63 0.096 0.623
6 63 0.089 0.711 32 54 0.137 0.273
7 58 0.127 0.319 33 62 0.091 0.694
8 55 0.172ŁŁ 0.082 34 87 0.073 0.754
9 70 0.093 0.593 35 68 0.204Ł 0.008

10 68 0.071 0.889 36 66 0.119 0.317
11 68 0.120 0.293 37 68 0.136 0.168
12 67 0.076 0.840 38 81 0.090 0.551
13 69 0.142 0.132 39 62 0.146 0.151
14 59 0.102 0.589 40 45 0.117 0.573
15 61 0.123 0.329 41 72 0.057 0.975
16 62 0.110 0.449 42 50 0.141 0.279
17 57 0.103 0.594 43 61 0.137 0.208
18 47 0.106 0.677 44 55 0.166 0.101
19 59 0.074 0.905 45 68 0.113 0.364
20 52 0.105 0.623 46 57 0.110 0.507
21 43 0.109 0.694 47 63 0.088 0.724
22 69 0.125 0.242 48 83 0.117 0.221
23 70 0.041 1.000 49 80 0.140ŁŁ 0.092
24 69 0.128 0.220 50 62 0.081 0.822
25 76 0.092 0.562 51 73 0.114 0.312
26 64 0.138 0.180

Note: Significant at Ł 5% level; ŁŁ 10% level.

7 In Table III we reject the null hypothesis once for the 51 tests. Although the test statistics are not independent, a rejection
in a single case is to be expected.
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Figure 5. Density estimates of log benefits in SIPP and QC

Table IV. Comparison of the distribution of welfare benefits in SIPP and QC samples

Real benefits Nominal benefits

SIPP QC SIPP QC

Mean 285.3 303.8 304.2 327.7
SD 169.6 156.9 180.9 169.4
Min. 9.3 9.6 10 10
Max. 959 1598 1025 1801
Skewness 1.08 1.27 1.07 1.33
Kurtosis 4.60 6.83 4.54 7.46
n 520 3318 520 3318
K-S statistic 0.123 0.128
p-value 0.0000 0.0000

estimated densities and the sample means shows that benefits are indeed underreported. Indeed
the Kolmogorov–Smirnov test confirms that the distribution in the SIPP sample is significantly
different from the distribution in the AFDC QC. The variance of welfare benefits in the SIPP is
larger than in the AFDC QC, which is a necessary condition for classical measurement error in
the log benefits.

5.3. The Model and Estimation

We use a discrete duration model to analyze the grouped duration data, since the welfare duration
is measured to the nearest month. As mentioned before, we consider a flow sample, and therefore
we do not need to consider the sample selection problem that arises with stock sampling (Ridder,
1984). Let [0, M] be the observation period, and let ti0 2 [0,M] denote the month that individual
i enters the welfare program, and ti1 2 [0,M] the month that she leaves, if she leaves welfare
during the observation period. If tŁi is the length of the welfare spell in months, then the event ti0,
ti1 is equivalent to

ti1 � ti0 � 1 � tŁi � ti1 � ti0 C 1 �42�

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. (2010)
DOI: 10.1002/jae



ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS

Also if the welfare spell is censored in month M, then

tŁi ½ M� ti0 �43�

Hence the censoring time is determined by the month of entry. We assume that this censoring
time is independent of the welfare spell conditional on the (observed) covariates zi and this is
equivalent to the assumption that the month of entry is independent of the welfare spell conditional
on these covariates.

The primary sample contains ti0, ti1, zi, υi where υi is the censoring indicator. The latent tŁi
has a continuous conditional density that is assumed to be independent of the starting time, ti0,
conditional on the vector of observed covariates zi. Let ��t, z, �� be a parametric hazard function
and let Pm�zi, �� denote the probability that a welfare spell lasts at least m months, given that it
has lasted m� 1 months. Then

Pm�zi, �� D P�tŁi ½ mjtŁi ½ m � 1, zi� D exp
(

�
∫ m

m�1
��t, zi, �� dt

)
�44�

If we allow for censored spells, the conditional density function for individual i with welfare
spell ti is

fŁ�ti, υi, jzi; �� D [1 � Pti �zi, ��]
υi
ti�1∏
mD1

Pm�zi, �� �45�

The hazard is specified as a proportional hazard model with a piece-wise constant baseline
hazard:

��t, zi, �� D �m exp�ziˇ�, m � 1 � t > m �46�

This hazard specification implies that

Pm�zi, �� D exp[��m exp�ziˇ�] �47�

If the �m are unrestricted, then the covariates zi cannot contain a constant term. For simplicity,
define � D ��1, �2, . . . , �M�0. The unknown parameters then are � D �ˇ0, �0�0.

The covariates are zi D �xŁ
i , w

0
i�

0, where the scalar xŁ
i is the log real benefit level and the vector

wi contains the other covariates. The log real benefit level is defined as

xŁ
i D x̃Ł

i � p, �48�

where x̃Ł
i is the log nominal benefit level and p is the log of the deflator.8

The measurement error εi is i.i.d. and the measurement error model is

x̃i D x̃Ł
i C εi, εi ? ti, zi, υi �49�

where x̃i is the log reported nominal benefit level and εi is the individual reporting error. Note
that error εi is not assumed to have a zero mean, and a non-zero mean can be interpreted as a
systematic reporting error.

The variables involved in estimation are summarized in Table V. The MLE are reported in
Table VI. We report the biased MLE that ignores the reporting error in the welfare benefits and
the semi-parametric MLE that uses the marginal information in the AFDC QC. Note that the
coefficient on the benefit level is larger for the semi-parametric MLE. This is in line with the bias

8 We take the consumer price level as the deflator. We match the deflator to the month for which the welfare benefits are
reported.
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Table V. Descriptive statistics, n D 520

Mean SD Min. Max.

Welfare spell (month) 9.07 8.25 1 35
Fraction censored 0.52 — 0 1
Age (years) 31.8 8.2 18 54
Disabled 0.84 — 0 1
Labor hours per week 13.3 17.6 0 70
Log real welfare benefits (week) 5.46 0.68 2.23 6.86
Log nominal welfare benefits (week) 5.52 0.68 2.30 6.93
Number of children under 18 1.92 1.02 1 7
Number of children under 5 0.60 0.76 0 4
Real non-benefits income ($1000/week) 0.234 0.402 0 0.360
State unemployment rate (%) 6.72 1.41 2.9 10.9
Education (years) 11.6 2.64 0 18

Table VI. Parameter estimates of duration model, n D 520, n1 D 3318

Variable MLE with marginal information MLE ignoring measurement error

MLE SE MLE SE

Log real benefits �0.3368 0.1025 �0.2528 0.0877
Hours worked per week 0.2828 0.0955 0.2828 0.0938
Real non-benefits inc. 0.1891 0.1425 0.1842 0.1527
No. of children age >5 �0.1855 0.1095 �0.1809 0.1111
No. of children age >18 0.0724 0.0674 0.0712 0.0718
Years of education (/24) �0.1803 0.9877 �0.3086 0.9663
Age (years/100) �0.0692 0.0505 �0.0691 0.0481
State unempl. rate (%) 0.0112 0.0295 0.0082 0.0290
Disabled �0.1093 0.1833 �0.1198 0.1867
Baseline hazard (weeks)
1 0.0516 0.0097 0.0546 0.0105
2 0.0662 0.0120 0.0697 0.0127
3 0.0409 0.0097 0.0429 0.0104
4 0.1385 0.0203 0.1445 0.0211
5 0.0433 0.0121 0.0450 0.0128
6 0.0771 0.0169 0.0798 0.0177
7 0.0543 0.0151 0.0562 0.0156
8 0.0646 0.0180 0.0668 0.0186
9 0.0787 0.0211 0.0807 0.0217
10 0.0565 0.0189 0.0575 0.0195
11 0.0480 0.0184 0.0486 0.0186
12 0.0750 0.0250 0.0756 0.0252
13–14 0.0438 0.0146 0.0440 0.0144
15–16 0.0226 0.0113 0.0227 0.0114
17–18 0.0286 0.0143 0.0285 0.0143
19–20 0.0263 0.0152 0.0261 0.0150
21C 0.0116 0.0058 0.0114 0.0055

Note: The smoothing parameters are: distribution ε, Tn D 0.7, distribution of xŁ, w, Sn D 0.875 and Rn D 0.9.

that we would expect in a linear model with a mismeasured covariate.9 The other coefficients and
the baseline hazard seem to be mostly unaffected by the reporting error. This may be due to the
fact that the measurement error in this application is relatively small.

9 There are no general results on the bias in nonlinear models and the bias could have been away from 0.
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6. CONCLUSION

This paper considers the problem of consistent estimation of nonlinear models with mismeasured
explanatory variables, when marginal information on the true values of these variables is
available. The marginal distribution of the true variables is used to identify the distribution of
the measurement error, and the distribution of the true variables conditional on the mismeasured
variables and the other explanatory variables. The estimator is shown to be

p
n consistent and

asymptotically normally distributed. The simulation results are in line with the asymptotic results.
The semi-parametric MLE is applied to a duration model of AFDC welfare spells with misreported
welfare benefits. The marginal distribution of welfare benefits is obtained from the AFDC Quality
Control data. We find that the MLE that ignores the reporting error underestimates the effect of
welfare benefits on probability of leaving welfare.
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APPENDIX

Proof of Theorem 1

Assume that � is observationally equivalent to �0. Then for all y, w, x

f�yjx, w; ��� f�yjx, w; �0� �50�

D
∫
XŁ
�fŁ�yjxŁ, w; ��� fŁ�yjxŁ, w; �0��g�x

Łjx, w� dxŁ � 0

After substitution of (3) and (4) and a change of variable in the integration, this is equivalent
to ∫

E
�fŁ�yjx � ε, w; ��� fŁ�yjx � ε, w; �0��g2�x � ε, w�g1�ε� dε � 0 �51�

By the convolution theorem this implies that

hŁ�t, y, w, ���ε�t� D 0 �52�

for all t, y, w, �, with

hŁ�t, y, w, �� D
∫
XŁ
eitx

Ł
h�y, w, xŁ, �� dxŁ �53�

and
h�y, w, xŁ, �� D �fŁ�yjxŁ, w; ��� fŁ�yjxŁ, w; �0��g2�x

Ł, w� �54�

so that
hŁ�t, y, w, �� � 0 �55�

except possibly for a countable number of values of t. Because hŁ�t, y, w, �� is absolute integrable
with respect to t under the assumptions, we have by the Fourier inversion theorem that for all
y, w, xŁ, �

h�y, w, xŁ, �� D �fŁ�yjxŁ, w; ��� fŁ�yjxŁ, w; �0��g2�x
Ł, w� D 0 �56�

Hence on the support of xŁ, w we have

fŁ�yjxŁ, w; �� D fŁ�yjxŁ, w; �0� �57�

so that � D �0. �
The next lemma gives an almost sure rate of convergence for the empirical characteristic function

without any restriction on the support of the distribution, which is related to Lemma 6 in Schennach
(2004a). It can be compared to the result in Lemma 1 of Horowitz and Markatou (1996).

Lemma 3.

(i) Let O��t� D ∫ 1
�1 eitx dFn�x� be the empirical characteristic function of a random sample from

a distribution with cdf F and with E�jxj� > 1. For 0 > � > 1
2 , let Tn D o

((
n

logn

)�)
. Then

sup
jtj�Tn

j O��t�� ��t�j D o�˛n� a.s. �58�
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with ˛n D o�1� and

(
logn

n

) 1
2 ��

˛n D O�1�, i.e. the rate of convergence is at most
(

logn
n

) 1
2 ��

.

(ii) Let O��s, t� D ∫ 1
�1

∫ 1
�1 eisxCity dFn�x, y� be the empirical characteristic function of a random

sample from a bivariate distribution with cdf F and with E�jxj C jyj� > 1. For 0 > � 0 > 1
2 ,

let10 Rn D o

((
n

logn

)� 0)
and Sn D o

((
n

logn

)� 0)
. Then

sup
jrj�Rnj,sj�Sn

∣∣∣ O��r, s�� ��r, s�
∣∣∣ D o�˛n� a.s. �59�

with ˛n D o�1� and

(
logn

n

) 1
2 �� 0

˛n D O�1�, i.e. the rate is the same as in the one-dimensional
case.

The lemma ensures that the Fourier inversion estimators Og1 and Og2 are well defined if n is
sufficiently large, because the denominators of the integrands are bounded from 0 except possibly
on a set that has probability 0.

Proof of Lemma 3
For part (i) consider the parametric class of functions Gn D feitxjjtj � Tng. The first step is
to find the L1 covering number of Gn. Because eitx D cos�tx�C i sin�tx�, we need covers of
G1n D fcos�tx�jjtj � Tng and fF2n D sin�tx�jjtj � Tng. Because j cos�t2x�� cos�t1x�j � jxjjt2 � t1j
and E�jxj� > 1, an ε2E�jxj� cover (with respect to the L1 norm) of G1n is obtained from an ε2 cover
of ftjjtj � Tng by choosing tk , k D 1, . . . , K arbitrarily from the distinct covering sets, where K
is the smallest integer larger than 2Tn

ε . Because j sin�t2x�� sin�t1x�j � jxjjt2 � t1j, the functions
sin�tkx�, k D 1, . . . , K are an ε

2E�jxj� cover of F2n. Hence cos�tkx�C i sin�tkx�, k D 1, . . . , K is
an εE�jxj� cover of Gn, and we conclude that

N1�ε, P, Gn� � A
Tn
ε

�60�

with P an arbitrary probability measure such that E�jxj� > 1 and A > 0, a constant that does not
depend on n. The next step is to apply the argument that leads to Theorem 2.37 in Pollard (1984).
The theorem cannot be used directly, because the condition N1�ε, P, Gn� � Aε�W is not met. In
Pollard’s proof we set υn D 1 for all n, and εn D ε˛n. Equations (30) and (31) in Pollard (1984,
p. 31) are valid for N1�ε, P, Gn� defined above. Hence we have as in Pollard’s proof using his
(31)

Pr� sup
jtj�Tn

j O��t�� ��t�j > 2εn� � 2A
(
εn
Tn

)�1

exp
(

� 1

128
nε2

n

)
C Pr� sup

jtj�Tn
O��2t� > 64� �61�

The second term on the right-hand side is obviously 0. The first term on the right-hand side is
bounded by

2Aε�1 exp
(

log
(
Tn
˛n

)
� 1

128
nε2˛2

n

)
�62�

10 We could allow for different growth in Sn and Tn, but nothing is gained by this.
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The restrictions on ˛n and Tn imply that Tn˛n D o

(√ n
logn

)
, and hence log

(
Tn
˛n

)
� 1

2 logn !

�1. The same restrictions imply that
n˛2

n
logn ! 1. The result now follows from the Borel–Cantelli

lemma.
For part (ii) we note that the ε2 covers of jsj � Sn and jrj � Rn generate ε2E�jxj C jyj� covers

of cos�sx C ty�, and sin�sx C ty� and an εE�jxj C jyj� cover of eisxCity . Hence (60) becomes

N1�ε, P, Gn� � A
RnSn
ε2 �63�

Hence in (61) we must replace εnTn
by εn
Rn
εn
Sn

and in the next equation log
(
Tn
˛n

)
by log

(
Rn
˛n

)
C

log
(
Sn
˛n

)
. �

Lemma 3 suggests that we can choose Tn D O
((

n
logn

)�)
, Rn D O

((
n

logn

)� 0)
, Sn D

O

((
n

logn

)� 0)
, and ˛n D O

((
logn
n

) 1
2 �� 0�	

)
for any arbitrarily small 	 > 0.

Proof of Lemma 1

(i) Define ε D x � xŁ. Then

sup
ε2E

jOg1�ε�� g1�ε�j � sup
ε2E

∣∣∣∣∣ 1

2�

∫ 1

�1
e�itε

( O�x�t�
O�xŁ�t�

� �x�t�

�xŁ�t�

)
KŁ
n�t� dt

∣∣∣∣∣
C sup

ε2E

∣∣∣∣ 1

2�

∫ 1

�1
e�itε�ε�t�[1 �KŁ

n�t�] dt

∣∣∣∣ �64�

We give bounds on the terms that are uniform over ε 2 E. Using the identity

â

b̂
� a

b
D 1

b̂
�â � a�� a

b̂b
�b̂� b� �65�

we bound the first term on the right-hand side, the variance term, by (KŁ
n�t� D 0 for jtj > Tn):

1

2�

∫ Tn

�Tn

∣∣∣∣∣∣∣∣∣
1

O�xŁ�t�

�xŁ�t�

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣ O�x�t�� �x�t�

�xŁ�t�

∣∣∣∣∣ jKŁ
n�t�jdt C 1

2�

∫ Tn

�Tn

∣∣∣∣ �x�t��xŁ�t�

∣∣∣∣
∣∣∣∣∣∣∣∣∣

1
O�xŁ�t�

�xŁ�t�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ O�xŁ�t�� �xŁ�t�

�xŁ�t�

∣∣∣∣∣ jKŁ
n�t�jdt �66�

Because j�xŁ�t�j > 0 and �xŁ�t� is absolute integrable so that limjtj!1 j�xŁ�t�j D 0, we have that
infjtj�Tn j�xŁ�t�j D j�xŁ�Tn�j if n is sufficiently large. Note also that because

∫ 1
�1 jK�z�j2 dz > 1
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∫ Tn

�Tn
jKŁ

n�t�jdt D
∫ Tn

�Tn

∣∣∣∣KŁ
(
t

Tn

)∣∣∣∣ dt D Tn

∫ 1

�1
jKŁ�s�jds � Tn

∫ 1

�1∫ 1

�1
jK�z�jdz ds � CTn �67�

Using this and Lemma 3 we find that (66) is a.s. bounded by (the first term dominates the
second because �ε is absolutely integrable and jKŁ

n�t�j � 1)

O

 Tn˛n

j�xŁ�Tn�j
(

1 � o

(
˛n

j�xŁ�Tn�j
))

 D O

TkxŁ C2
n

(
logn

n

) 1
2 ���	

 �68�

where Tn D O
((

n
logn

)�)
and the distribution of xŁ is range-restricted of order kxŁ . Consider

the second term in (64), i.e. the bias term. Because KŁ
(
t
Tn

)
D ∫ 1

�1 e�itzK�Tnz� dz we have
by the convolution theorem

1

2�

∫ 1

�1
e�itε�ε�t�[1 �KŁ

n�t�] dt D g1�ε��
∫ 1

�1
g1�ε� z�K�Tnz� dz D g1�ε�

�
∫ 1

�1
g1

(
ε� z

Tn

)
K�z� dz �69�

Expanding g1

(
ε� z

Tn

)
in a qth order Taylor series we have, because K is a qth order kernel

and the qth derivative of g1 is bounded∣∣∣∣ 1

2�

∫
e�itε�ε�t�[1 �KŁ

n�t�] dt

∣∣∣∣ � CT�q
n

∫ 1

�1
jzjqK�z� dz �70�

Therefore the bias term is O�T�q
n �. Hence we have the combined bound

sup
�x,xŁ�2XðXŁ

jOg1�x � xŁ�� g1�x � xŁ�j D O

TkxŁ C2
n

(
logn

n

) 1
2 ���	

 C O�T�q
n � �71�

(ii) We have

sup
�xŁ,w�2XŁðW

jOg2�x
Ł, w�� g2�x

Ł, w�j

� sup
�xŁ,w�2XŁðW

∣∣∣∣∣ 1

�2��2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw

( O�xw�r, s� O�xŁ �r�
O�x�r�

� �xw�r, s��xŁ �r�

�x�r�

)
KŁ
n�r, s� ds dr

∣∣∣∣∣
C sup

�xŁ,w�2§ŁðW

∣∣∣∣ 1

�2��2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw �xw�r, s��xŁ �r�

�x�r�
[1 �KŁ

n�r, s�]ds dr

∣∣∣∣ �72�

Using the identity
âĉ

b̂
� ac

b
D ĉ

b̂
�â� a�C a

b̂
�ĉ � c�� ac

b̂b
� Ob� b� �73�
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the first term, i.e. the variance term, is bounded by

1

�2��2

∫ Rn

�Rn

∫ Sn

�Sn

∣∣∣∣∣ O�xŁ�r�
O�x�r�

∣∣∣∣∣ j O�xw�r, s�� �xw�r, s�jjKŁ
n�r, s�jds dr

C 1

�2��2

∫ Rn

�Rn

∫ Sn

�Sn

∣∣∣∣�xw�r, s�O�x�r�

∣∣∣∣ j O�xŁ�r�� �xŁ�r�jjKŁ
n�r, s�jds dr

C 1

�2��2

∫ 1

�1

∫ 1

�1

∣∣∣∣�xw�r, s��xŁ�r�
O�x�r��x�r�

∣∣∣∣ j O�x�r�� �x�r�jjKŁ
n�r, s�jds dr

� 1

�2��2

∫ Rn

�Rn

∫ Sn

�Sn
j O�xŁ�r�j 1∣∣∣∣∣j�ε�r�j � j O�x�r�� �x�r�j

j�xŁ�r�j

∣∣∣∣∣
j O�xw�r, s�� �xw�r, s�j

j�xŁ�r�j jKŁ
n�r, s�jds dr

C 1

�2��2

∫ Rn

�Rn

∫ Sn

�Sn
j�xw�r, s�j 1∣∣∣∣∣j�ε�r�j � j O�x�r�� �x�r�j

j�xŁ�r�j

∣∣∣∣∣
j O�xŁ�r�� �xŁ�r�j

j�xŁ�r�j jKŁ
n�r, s�jds dr

C 1

�2��2

∫ 1

�1

∫ 1

�1
j�xŁw�r, s�j 1∣∣∣∣∣j�ε�r�j � j O�x�r�� �x�r�j

j�xŁ�r�j

∣∣∣∣∣
j O�x�r�� �x�r�j

j�xŁ�r�j jKŁ
n�r, s�jds dr �74�

Note that by a similar argument to that in (67)∫ 1

�1

∫ 1

�1
jKŁ

n�r, s�jdr ds � CRnSn �75�

Using the same method of proof as in part (i), the bound is (note that the final two terms are
dominated by the first)

O

(
˛nRnSn

�ε�Rn��xŁ�Rn�

)

where Sn D O

((
n

logn

)� 0)
, Rn D O

((
n

logn

)� 0)
, and ˛n D O

((
logn
n

) 1
2 �� 0�	

)
. For the

bias term we have by the convolution theorem

1

�2��2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw�xŁw�r, s�[1 �KŁ

n�r, s�]ds dr

D g2�x
Ł, w��

∫ 1

�1

∫ 1

�1
g2

(
xŁ � r

Rn
, w� s

Sn

)
K�r, s�dr ds �76�

Because K�r, s� is a qth order kernel and all the qth order derivatives of g2�xŁ, w� are bounded,
we have by a qth order Taylor series expansion of g2∣∣∣∣ 1

�2��2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw�xŁw�r, s�[1 �KŁ

n�r, s�] ds dr

∣∣∣∣ � CR�q1
n S�q2

n �77�

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. (2010)
DOI: 10.1002/jae



ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS

with q1 C q2 D q. Combining the bounds on the variance and bias terms we find, if ε is range
restricted of order kε and xŁ is range-restricted of order kxŁ ,

sup
�xŁ,w�2XŁðW

jOg2�x
Ł, w�� g2�x

Ł, w�j D O

RkxŁ CkεC3
n Sn

(
logn

n

) 1
2 �� 0�	

 C O�R�q1
n S�q2

n � �78�

with q1 C q2 D q.11 �

Proof of Theorem 2

First we linearize the moment function. Let h0 be the joint density of xŁ, x, w, i.e. h0�xŁ, x, w� D
g1�x � xŁ�g2�xŁ, w�. We have Oh�xŁ, x, w� D Og1�x � xŁ�Og2�xŁ, w�. Both the population densities g1,
g2 and their estimators are obtained by Fourier inversion. Because the corresponding characteristic
functions are assumed to be absolutely integrable, g1, g2 are bounded on their support. Their
estimators are bounded for finite n. Hence without loss of generality we can restrict g1, g2 and
hence h to the set of densities that are bounded on their support.

The moment function is

m�y, x, w, �, h� D

∫
XŁ

∂

∂�
fŁ�yjxŁ, w; ��h�xŁ, x, w� dxŁ∫

XŁ
fŁ�yjxŁ, w; ��h�xŁ, x, w� dxŁ

�79�

The joint density of y, x, w is denoted by f�y, x, w; ��. The population density of xŁ, x, w
is denoted by h0�xŁ, x, w�, f0�y, x, w, �� D ∫

XŁ fŁ�yjxŁ, w; ��h0�xŁ, x, w� dxŁ, and f�y, x, w, �� D∫
XŁ fŁ�yjxŁ, w; ��h�xŁ, x, w� dxŁ.

Both the numerator and denominator in (79) are linear in h. Hence m is Fréchet differentiable
in h and

sup
�y,x,w�2YðXðW

jm�y, x, w, �, h�� m�y, x, w, �, h0�

�
∫
XŁ

[
fŁ�yjxŁ, w; ��

f0�y, x, w; ��
�sŁ�yjxŁ, w; ��� s0�yjx, w; ���

]
�h�xŁ, x, w�� h0�x

Ł, x, w�� dxŁj
D o�jjh� h0jj� �80�

with sŁ and s0 the scores of fŁ�yjxŁ, w; �� and f0�yjx, w; �� respectively.
To prove consistency we need that for all � 2 

jm�y, x, w, �, h0�j � b1�y, x, w� �81�

11 Although the ‘range-restricted’ assumption rules out distributions that are ‘supersmooth’ like the normal distribution,
the desirable nonparametric rate of convergence is still feasible in the case where both the error distribution and that of
the latent true values are supersmooth. In that case, the bias terms converge to zero exponentially with respect to the
smoothing parameters Tn, Rn, and Sn. This fact allows those smoothing parameters to diverge very slowly with respect
to the sample size n, for example, O�logn�, to still achieve the desirable convergence rate of both the variance terms and
the bias terms. The rest of the proofs could be modified similarly to allow this case (see Schennach, 2004b, for further
discussion).
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with E�b1�y, w, x�� > 1, and that for all h in a (small) neighborhood of h0 and all � 2 , the
Fréchet differential in h satisfies∣∣∣∣∫

XŁ

fŁ�yjxŁ, w; ��

f�y, x, w; ��
�sŁ�yjxŁ, w; ��� s�yjx, w; ��� dxŁ

∣∣∣∣ � b2�y, w, x� �82�

with E�b2�y, w, x�� > 1.
The following weak restrictions on the parametric model are sufficient. There are constants

0 > m0 > m1 > 1 such that for all �y, xŁ, w� 2 Y ð XŁ ð W and � 2 

m0 � fŁ�yjxŁ, w; �� � m1 �83�∣∣∣∣∂fŁ�yjxŁ, w; ��

∂�

∣∣∣∣ � m1 �84�

This is sufficient for (81). For (82) we need in addition that for all �y, w� 2 Y ð W and � 2 ∫
XŁ
fŁ�yjxŁ, w; �� dxŁ > 1 �85�∣∣∣∣∫

XŁ

∂fŁ�yjxŁ, w; ��

∂�
dxŁ

∣∣∣∣ > 1 �86�

If (82) holds then by Proposition 2 in Luenberger (1969, p. 176)

jm�y, x, w, �, h�� m�y, x, w, �, h0�j � b2�y, x, w� sup
�y,xŁ,w�2YðXŁðW

jh�xŁ, x, w�� h0�x
Ł, x, w�j �87�

Hence Assumptions 5.4 and 5.5. in Newey (1994) are satisfied and we conclude that the
semiparametric MLE is consistent if we use a (uniformly in xŁ, x, w) consistent estimator for h.

Proof of Lemma 2

The derivation consists of a number of steps. We first linearize the score with respect to �. Next we
express the score at the population parameter as the sum of the population score and a correction
term that accounts for the nonparametric estimates of the density functions. The correction term
is further linearized in three steps. In the first step, the estimated score is linearized w.r.t. its
numerator and denominator. In the second step, the leading terms in the first step are linearized
w.r.t. the estimated densities Og1 and Og2. In the third step, the leading terms left in the previous
step are linearized w.r.t. the empirical characteristic functions O�xŁ�r�, O�x�r�, and O�xw�r, s�. In each
step, we show that the remainder terms are asymptotically negligible. The resulting expression is
rewritten as the sum of five U-statistics. The asymptotic variances of these U-statistics are shown
to be finite.

In the sequel, the moment functions are evaluated at � D �0, and the dependence on �0 is
suppressed in the notation, e.g. fŁ�yjxŁ, w� D fŁ�yjxŁ, w; �0� etc.

The semi-parametric MLE satisfies

n∑
jD1

m�yj, xj, wj, O�, Og1, Og2� D
n∑
jD1

∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj, O��Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj, O��Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ
D 0 �88�
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Linearization with respect to � gives (the integration region is XŁ)

0 D 1p
n

n∑
jD1

∫
∂

∂�
fŁ�yjjxŁ, wj, �0�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ∫
fŁ�yjjxŁ, wj, �0�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ

C

 1

n

n∑
jD1

∫
fŁ�yjjxŁ, wj, ��Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ
∫

∂2

∂�∂�0f
Ł�yjjxŁ, wj, ��Og1�xj � xŁ�

Og2�x
Ł, wj� dxŁ �

∫
∂

∂�
fŁ�yjjxŁ, wj, ��Og1�xj � xŁ�Og2�x

Ł, wjdxŁ
∫

∂

∂�0f
Ł�yjjxŁ, wj, ���

Og1�xj � xŁ�Og2�x
Ł, wj� dxŁ(∫

fŁ�yjjxŁ, wj, ��Og1�xj � xŁ�Og2�x
Ł, wj� dxŁ

)2


p
n�O� � �0� �89�

By Lemma 1 Og1 and Og2 converge uniformly, and this ensures that the matrix in the second term
on the right-hand side converges to a matrix that is nonsingular, because the model is identified.

Hence we concentrate on the first term on the right-hand side:

1p
n

n∑
jD1

∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj, �0�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj, �0�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ

D 1p
n

n∑
jD1

m�yj, xj, , wj, �0, Og1, Og2�

D 1p
n

n∑
jD1

m�yj, xj, , wj, �0, g1, g2�C B �90�

with

B D 1p
n

n∑
jD1


∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ

�

∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj�g1�xj � xŁ�g2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj�g1�xj � xŁ�g2�x

Ł, wj� dxŁ

 �91�
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where B is the correction term that accounts for the estimated g1 and g2. This term is analyzed
first. We use the following identities repeatedly:

âb̂ D abC b�â � a�C a�b̂� b�C �â� a��b̂ � b� �92�

â

b̂
D a

b
C 1

b
�â� a�� a

b2 �b̂� b�C a

b̂b2
�b̂� b�2 � 1

b̂b
�â � a��b̂ � b� �93�

To simplify the notation we define

∂

∂�
f̂�yj, xj, wj�

f̂�yj, xj, wj�
�

∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj�Og1�xj � xŁ�Og2�x

Ł, wj� dxŁ
�94�

∂

∂�
f�yj, xj, wj�

f�yj, xj, wj�
�

∫
XŁ

∂

∂�
fŁ�yjjxŁ, wj�g1�xj � xŁ�g2�x

Ł, wj� dxŁ∫
XŁ
fŁ�yjjxŁ, wj�g1�xj � xŁ�g2�x

Ł, wj� dxŁ
�95�

First, using identity (93), we linearize the estimated score w.r.t the numerator ∂
∂� f̂�yj, xj, wj�

and the denominator f̂�yj, xj, wj�. B then becomes (the integration region is XŁ)

B D 1p
n

n∑
jD1

1

f�yj, xj, wj�

∫
∂

∂�
fŁ�yjjxŁ, wj�[Og1�xj � xŁ�Og2�x

Ł, wj�� g1�xj � xŁ�g2�x
Ł, wj�]dxŁ

� 1p
n

n∑
jD1

∂

∂�
f�yj, xj, wj�

f2�yj, xj, wj�

∫
fŁ�yjjxŁ, wj�[Og1�xj � xŁ�Og2�x

Ł, wj�� g1�xj � xŁ�g2�x
Ł, wj�]dxŁ

C 1p
n

n∑
jD1

∂

∂�
f�yj, xj, wj�

f̂�yj, xj, wj�f
2�yj, xj, wj�

ð
(∫

fŁ�yjjxŁ, wj�[Og1�xj � xŁ�Og2�x
Ł, wj�� g1�xj � xŁ�g2�x

Ł, wj�]dxŁ
)2

� 1p
n

n∑
jD1

1

f̂�yj, xj, wj�f�yj, xj, wj�

ð
(∫

∂

∂�
fŁ�yjjxŁ, wj�[Og1�xj � xŁ�Og2�x

Ł, wj�� g1�xj � xŁ�g2�x
Ł, wj�]dxŁ

)
ð

(∫
XŁ
fŁ�yjjxŁ, wj�[Og1�xj � xŁ�Og2�x

Ł, wj�� g1�xj � xŁ�g2�x
Ł, wj�]dxŁ

)
� D1 � D2 C D3 � D4 �96�
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D3 is bounded by

jD3j � sup
�y,x,w�2YðXðW

∣∣∣∣∣∣∣
∂

∂�
f�y, x, w�

Of�y, x, w�f�y, x, w�2

∣∣∣∣∣∣∣ sup
�y,w�2YðW

∣∣∣∣∫
XŁ
fŁ�yjxŁ, w�dxŁ

∣∣∣∣2

ð p
n sup
�x,xŁ,w�2XðXŁðW

jOg1�x � xŁ�Og2�x
Ł, w�� g1�x � xŁ�g2�x

Ł, w�j2 �97�

By assumption (A1) f�y, x, w� is bounded from 0 on its support so that its uniform consistent
estimator Of�y, x, w� is also bounded from 0 on that support for sufficiently large n. By (A1)
j ∂∂�f�y, x, w�j is bounded on the support, and so is j ∫XŁ fŁ�yjxŁ, w�dxŁj. By (92)

n
1
4 sup
�x,xŁ,w�2XðXŁðW

jOg1�x � xŁ�Og2�x
Ł, w�� g1�x � xŁ�g2�x

Ł, w�j

D n
1
4 sup
�x,xŁ,w�2XðXŁðW

jg2�x
Ł, w�� Og1�x � xŁ�� g1�x � xŁ��j

C n
1
4 sup
�x,xŁ,w�2XðXŁðW

jg1�x � xŁ�� Og2�x
Ł, w�� g2�x

Ł, w��j

C n
1
4 sup
�x,xŁ,w�2XðXŁðW

j� Og1�x � xŁ�� g1�x � xŁ��� Og2�x
Ł, w�� g2�x

Ł, w��j �98�

If assumption (A5) holds, these expressions are op�1�. In the same way we show that
D4 D op�1�.

Next we consider

D1 � D2 D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�[Og1�xj � xŁ�Og2�x
Ł, wj�� g1�xj � xŁ�g2�x

Ł, wj�]dxŁ

�99�
where

υ�yj, xj, wj, x
Ł� D fŁ�yjjxŁ, wj�

f�yj, xj, wj�


∂

∂�
fŁ�yjjxŁ, wj�

fŁ�yjjxŁ, wj�
�

∂

∂�
f�yj, xj, wj�

f�yj, xj, wj�

 �100�

Using identity (92) we obtain

D1 � D2 D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g2�x
Ł, wj�[Og1�xj � xŁ�� g1�xj � xŁ�]dxŁ

C 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g1�xj � xŁ�[Og2�x
Ł, wj�� g2�x

Ł, wj�]dxŁ

C 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�[Og1�xj � xŁ�� g1�xj � xŁ�][Og2�x
Ł, wj�� g2�x

Ł, wj�]dxŁ

� E1 C E2 C E3 �101�
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Again, because jυ�y, x, w, xŁ�j is bounded by (A1), we have using the same argument as above
that E3 D op�1� by (A5). Next E1 C E2 is decomposed into the variance part and the bias part as
follows:

E1 C E2 D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g2�x
Ł, wj�[Og1�xj � xŁ�� Qg1�xj � xŁ�]dxŁ

C 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g1�xj � xŁ�[Og2�x
Ł, wj�� Qg2�x

Ł, wj�]dxŁ

C 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g2�x
Ł, wj�[Qg1�xj � xŁ�� g1�xj � xŁ�]dxŁ

C 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g1�xj � xŁ�[Qg2�x
Ł, wj�� g2�x

Ł, wj�]dxŁ

� F1 C F2 C F3 C F4 �102�

where

Qg1�x � xŁ� D 1

2�

∫ 1

�1
e�it�x�xŁ��ε�t�K

Ł
n�t�dt �103�

Qg2�x
Ł, w� D 1

4�2

∫ 1

�1

∫ 1

�1
e�irxŁ�isw�xŁw�r, s�K

Ł
n�r, s�dsdr �104�

As shown in Lemma 1 we have

sup
ε

jQg1�ε�� g1�ε�j D Op�T
�q
n � �105�

sup
xŁ,w

jQg2�x
Ł, w�� g2�x

Ł, w�j D Op�R
�q1
n S�q2

n � �106�

with q1 C q2 D q. Therefore if (A5) holds then jF3j D o�1� and jF4j D o�1� because by (A1) υ
is bounded. Hence we only need to consider F1 and F2 that we linearize w.r.t the ecf’s O�xŁ�r�,
O�x�r�, and O�xw�r, s�.

We have for F1

F1 D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g2�x
Ł, wj�[Og1�xj � xŁ�� Qg1�xj � xŁ�]dxŁ

D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g2�x
Ł, wj�

[
1

2�

∫ 1

�1
e�it�xj�xŁ�

( O�x�t�
O�xŁ�t�

� �x�t�

�xŁ�t�

)
KŁ
n�t�dt

]
dxŁ

D 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�

( O�x�t�
O�xŁ�t�

� �x�t�

�xŁ�t�

)
KŁ
n�t� dt �107�

where
�Ł

1�t, yj, xj, wj� D
∫
XŁ
e�it�xj�xŁ�υ�yj, xj, wj, x

Ł�g2�x
Ł, wj� dxŁ �108�
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F1 can be linearized further using identity (93):

F1 D 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�
O�x�t�� �x�t�

�xŁ�t�
KŁ
n�t� dt

� 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�
�x�t�

�xŁ�t�

O�xŁ�t�� �xŁ�t�

�xŁ�t�
KŁ
n�t� dt

C 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�
�x�t�
O�xŁ�t�

( O�xŁ�t�� �xŁ�t�

�xŁ�t�

)2

KŁ
n�t� dt

� 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�
1

O�xŁ�t��xŁ �t�
[ O�x�t�� �x�t�][ O�xŁ�t�� �xŁ�t�]KŁ

n�t� dt

D F11 � F12 C F13 � F14 �109�

Consider �Ł
1�t, yj, xj, wj�, which we denote by �Ł

j�t�. We also use the notation υj�xŁ� D
υ�yj, xj, wj, xŁ� and �j�xŁ� D υj�xŁ�g2�xŁ, wj�. A superscript (k) indicates that we consider the
kth derivative of a function. If we integrate by parts kxŁ C 1 times we obtain, if XŁ D [L,U],

�Ł
j�t� D

kxŁ C1∑
lD1

��1�l�1

�it�l
e�it�xj�xŁ���l�1�

j �xŁ�jUL C ��1�kxŁ C1

�it�kxŁ C1

∫ U

L
e�it�xj�xŁ���kxŁ C1�

j �xŁ� dxŁ �110�

with

��k�j �x
Ł� D

l∑
lD0

(
k
l

)
υ�l�j �x

Ł�g�k�l�2 �xŁ, wj� dxŁ �111�

If xŁ is range-restricted of order kxŁ , then g�k�2 �L� D g�k�2 �U� D 0 for k D 0, . . . , kxŁ � 1, so that
if, as assumed, this implies that g�k�2 �L, w� D g�k�2 �U, w� D 0 for k D 0, . . . , kxŁ � 1 and all w 2 W,
we have that

j�Ł
j�t�j � CjtjkxŁ C1 �112�

We conclude that

∣∣∣∣�Ł
1�t, yj, xj, wj�

�xŁ�t�

∣∣∣∣ is bounded.

Hence by Lemma 3 and (67)

jF13j D Op

(p
n

Tn
j�xŁ�Tn�j˛

2
n

)
D Op

(
p
n

(
logn

n

)1��kxŁ C4���	)
�113�

and

jF14j D Op

(p
n

Tn
j�xŁ�Tn�j˛

2
n

)
D Op

(
p
n

(
logn

n

)1��kxŁ C4���	)
�114�

so that these terms are op�1� if (A5) holds.
F11 can be written as

F11 D 1p
n

n∑
jD1

1

2�

∫ 1

�1
�Ł

1�t, yj, xj, wj�
O�x�t�� �x�t�

�xŁ�t�
KŁ
n�t� dt
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D 1

n
p
n

n∑
kD1

n∑
jD1

1

2�

∫ 1

�1

�Ł
1�t, yk, xk, wk�

�xŁ�t�
[eitxj � �x�t�]K

Ł
n�t� dt �115�

If we omit the terms k D j in the summations (these terms are op�1�) the resulting expression
is a one-sample U-statistic. Using the same line of proof as in Hu and Ridder (2010), we can
show that this term is Op�1�. Hence by projection

F11 D 1p
n

n∑
jD1

1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�
[eitxj � �x�t�]K

Ł
n�t�dt C op�1� �116�

with
dŁ

1�t� D E[�Ł
1�t, y, x, w��] �117�

Similarly, we have

F12 D
√
n

n1

1p
n1

n1∑
jD1

1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�

�x�t�

�xŁ�t�
[eitx

Ł
j � �xŁ�t�]KŁ

n�t� dt C op�1� �118�

The next step is to analyze F2:

F2 D 1p
n

n∑
jD1

∫
XŁ
υ�yj, xj, wj, x

Ł�g1�xj � xŁ�[Og2�x
Ł, wj�� g̃2�x

Ł, wj�]dxŁ

D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
�Ł

2�r, s, yj, xj, wj�

( O�xw�r, s� O�xŁ�r�
O�x�r�

� �xw�r, s��xŁ�r�

�x�r�

)
ÐKŁ

n�r, s� ds dr �119�

where
�Ł

2�r, s, yj, xj, wj� D
∫
XŁ
e�irxŁ�iswjυ�yj, xj, wj, xŁ�g1�xj � xŁ� dxŁ �120�

To linearize
O�xŁ�r� O�xw�r, s�

O�x�r�
, we use the identity

âĉ

b̂
D ac

b
C 1

b
�âĉ � ac�� ac

b2 �b̂� b�C ac

b̂b2
�b̂� b�2 � 1

b̂b
�âĉ � ac�� Ob� b�

D ac

b
C c

b
�â� a�C a

b
�ĉ � c�� ac

b2 �b̂� b�C ac

b̂b2
�b̂� b�2 C 1

b
�â� a��ĉ � c�

� c

b̂b
�â� a��b̂� b�� a

b̂b
�ĉ � c��b̂ � b�� 1

b̂b
�â � a��ĉ � c��b̂ � b� �121�

Therefore, we have

F2 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
�Ł

2�r, s, yj, xj, wj�
�xw�r, s�

�x�r�
[ O�xŁ�r�� �xŁ�r�]KŁ

n�r, s� ds dr
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C 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
�Ł

2�r, s, yj, xj, wj�
�xŁ�r�

�x�r�
[ O�xw�r, s�� �xw�r, s�]K

Ł
n�r, s� ds dr

� 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
�Ł

2�r, s, yj, xj, wj�
�xw�r, s��xŁ �r�

�x�r��x�r�
[ O�x�r�� �x�r�]K

Ł
n�r, s� ds dr

C F24

� F21 C F22 � F23 C F24 �122�

where F24 D G1 CG2 CG3 CG4 CG5 contains all the other (quadratic) terms in the linearization.
Integration by parts as for �Ł

1�t, yj, xj, wj� shows that

j�Ł
2�r, s, yj, xj, wj�j � CjrjkεC1 �123�

if ε is range-restricted of order kε and υ�y, x, w, xŁ�, g1�ε� have absolutely integrable derivatives of

order kε C 1 with respect to xŁ and ε, respectively. This implies that

∣∣∣∣�Ł
2�r, s, y, x, w�

�ε�r�

∣∣∣∣ is bounded

in r, s.
Hence

G1 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1

�Ł
2�r, s, yj, xj, wj�

�ε�r�

�xŁw�r, s�( O�x�r�� �x�r�

�xŁ�r�
C �ε�r�

)
�xŁ�r�2

Ð � O�x�r�� �x�r��
2KŁ

n�r, s� ds dr D Op

(p
n

RnSn
�xŁ�Rn�

2j�ε�Rn�j
˛2
n

)
�124�

Next

G2 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1

�Ł
2�r, s, yj, xj, wj�

�ε�r�

O�xŁ�r�� �xŁ�r�

�xŁ�r�

Ð � O�xw�r, s�� �xw�r, s��K
Ł
n�r, s� ds dr

D Op

(p
n

RnSn
j�xŁ�Rn�j˛

2
n

)
�125�

Further

G3 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1

�Ł
2�r, s, yj, xj, wj�

�ε�r�

�xŁw�r, s�( O�x�r�
�xŁ�r�

� �ε�r�

)
C �ε�r�

Ð �
O�x�r�� �x�r��� O�xŁ �r�� �xŁ�r��

�xŁ�r�2
KŁ
n�r, s� ds dr

D Op

(p
n

RnSn
�xŁ�Rn�

2˛
2
n

)
�126�
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Also

G4 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1

�Ł
2�r, s, yj, xj, wj�

�ε�r�

�xŁ�r�( O�x�r�
�ε�r�

� �xŁ�r�

)
C �xŁ�r�

Ð �
O�x�r�� �x�r��� O�xw�r, s�� �xw�r, s��

�xŁ�r��ε�r�
KŁ
n�r, s� ds dr

D Op

(p
n

RnSn
j�xŁ�Rn��ε�Rn�j˛

2
n

)
�127�

The final term is dominated by the others, so that the final bound is

Op

(p
n

RnSn
j�ε�Rn�j�xŁ�Rn�

2˛
2
n

)
which is op�1� if (A5) holds.

Using the same line of proof as in Hu and Ridder (2010), we can show that F21, F22, and F23

are Op�1�. Moreover, they can be written as U-statistics, so that

F21 D
√
n

n1

1p
n1

n1∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s�

�x�r�

[eitx
Ł
j � �xŁ�t�]KŁ

n�r, s� ds dr C op�1� �128�

F22 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xŁ�r�

�x�r�

[eirxjCiswj � �xw�r, s�]K
Ł
n�r, s� ds dr C op�1� �129�

F23 D 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s��xŁ�r�

�x�r��x�r�

[eirxj � �x�r�]K
Ł
n�r, s� ds dr C op�1� �130�

where
dŁ

2�r, s� D E[�Ł
2�r, s, yj, xj, wj�] �131�

Substitution in (90) gives the asymptotically linear expression for the score

1p
n

n∑
jD1

m�yj, xj, wj, �0, Og1, Og2�

D 1p
n

n∑
jD1

m�yj, xj, wj, �0, g1, g2�C F11 � F12 C F21 C F22 � F23 C op�1�

D 1p
n

n∑
jD1

m�yj, xj, wj, �0, g1, g2�C 1p
n

n∑
jD1

1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�
[eitxj � �x�t�]K

Ł
n�t� dt
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�
p
np
n1

1p
n1

n1∑
jD1

1

2�

∫ 1

�1

dŁ
1�t�

�xŁ�t�

�x�t�

�xŁ�t�
[eitx

Ł
j � �xŁ�t�]KŁ

n�t� dt

C
p
np
n1

1p
n1

n1∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s�

�x�r�
[eitx

Ł
j � �xŁ�t�]KŁ

n�r, s� ds dr

C 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xŁ�r�

�x�r�
[eirxjCiswj � �xw�r, s�]K

Ł
n�r, s� ds dr

� 1p
n

n∑
jD1

1

�2��2

∫ 1

�1

∫ 1

�1
dŁ

2�r, s�
�xw�r, s��xŁ�r�

�x�r��x�r�
[eirxj � �x�r�]K

Ł
n�r, s� ds dr C op�1�

By the triangular array central limit theorem this expression converges in distribution to a normal
random variable with mean 0 and variance matrix � given in Lemma 2.
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