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Preface

This manuscript is designed for an advanced micro-econometrics course for graduate stu-
dents. For empirical researchers, it provides a tool kit to tackle latent variables, such as
unobserved heterogeneity, belief, effort, ability, and misreporting errors, in applied microe-
conomics, especially empirical industrial organization and labor economics. It focuses on
nonparametric identification and parametric or semiparametric estimation, and presents
specific empirical applications.

The manuscript requires basic knowledge on regression analysis and nonlinear models.
I refer to existing books and lecture notes for preparation:

• Bruce Hansen’s graduate-level econometrics book ↗

• Jeffrey Wooldridge’s graduate-level econometrics textbook:
Econometric Analysis of Cross Section and Panel Data ↗

• William Greene’s graduate-level econometrics textbook:
Econometric Analysis ↗

I usually start with the following topics:

• Discrete Choice ↗

• Dynamic Discrete Choice ↗

In addition, The presentation slides ↗ of this manuscript are also available.
I plan to keep updating this manuscript, not necessarily for publication, but for the

enjoyment of research. Any comments are highly appreciated. Especially, one should feel
free to contact me if she or he wants me to cite or discuss her or his work in this manuscript.

And last but not the least, this manuscript is also written for my three kids. From here,
they will find out what daddy was doing while they were skating, playing soccer, taking
piano, violin, swimming, and karate lessons, studying at AOPS, Kumon, Spidersmart, ...

Structure of Manuscript

This first half of the manuscript presents flexible nonparametric identification and paramet-
ric or semiparametric estimation methods for nonlinear models with latent variables. The
key methods are extended from the nonclassical measurement error literature.
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The second half provides applications of these methods in structural and reduced-form
econometrics and in empirical industrial organization and labor economics. These applica-
tions involve errors-in-variables, latent variable, unobserved heterogeneity, unobserved state
variable, mixture model, hidden Markov model, dynamic discrete choice, unemployment
rates, IPV auction, multiple equilibria in incomplete information games, belief, learning
model, fixed effects, panel data model, cognitive and non-cognitive skills, matching, income
dynamics.

About the companion website

The website ↗ for this file contains:

• A link to freely downloadable latest version of this manuscript and its companion
slides.

• Some relevant papers and miscellaneous materials.
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Introduction

1.1 Observables and Unobservables in Applied Microeconomics

Researchers in applies microeconomics study behavior of economic agents, such as con-
sumers and firms, from observed information in the data. Researchers in this area usually
start with an existing microeconomic theoretical models or an intuitive microeconomic re-
lationship, which contains a set of variables to describe economic agents’ behavior. This set
of variables is composed of three subsets: the agents’ decisions or choices, their information
set for their decisions, and outside information from which they form their information set.

In the meanwhile, what an empirical researcher observes in the data can be considered as
generally-defined measurements of these three subsets of variables, as shown in Table 1.1.
When these measurements perfectly reflect the true values, it means that the researcher
observes these variables in the data. When these measurements doesn’t contain any useful
information, it implies the corresponding variables are not observed by the researcher. In
the case where these measurements are associated with the latent variables, it means the
researcher observes proxies for these latent variables. In most applications, researchers
estimate a model based on what they observe in the data, which may contain dependent or
endogenous variables and exogenous variables, and treat those unobserved in the data as
shocks or error terms. If these unobservables include agents’ choices or covariates in agents’
information set, their misinterpretation as exogenous errors in the model is a major source
of endogeneity.

In this manuscript, we are interested in those variables which are either agents’ choices
or in the agents’ information set but are unobserved to researchers, in particular, those that
can’t be left in the error terms. If a complete model can fully explain agents’ behavior, the
main reason for endogeneity in empirical research is due to these unobservables which we
focus on. Therefore, the methods we provide here for unobservables also provide a solution
to the endogeneity problem, which is arguably the most important problem in econometrics.

4



1. INTRODUCTION ⇑ 5

Table 1.1: Unobservables of Interest

Researchers’ data may contain measurements M(·) which are:
Variables in micro models 1) perfect 2) informative 3) uninformative

M(x) = x M nondegenerated M(x) = 0

Agents’ decisions D(Ω) Dependent var. Proxy Unobs. choices
D = (Y ∗

1 , Y
∗

2 , Y
∗

3 ) Y1 = Y ∗
1 Y2 ⇐ Y ∗

2 Y ∗
3

Agents’ information set Ω(I) Explanatory var. Proxy Unobs. covariates
Ω = (X∗

1 , X
∗
2 , X

∗
3 ) X1 = X∗

1 X2 ⇐ X∗
2 X∗

3

Outside information I Instrument var. Noisy IV Shocks
I = (ζ1, ζ2, ζ3) Z1 = ζ1 Z2 ⇐ ζ2 ζ3

Observables Obs. ⇐ Unobs. Unobservables

1.2 Why Identification is Important and Challenging

Under the ideal condition, what researchers observe in the data coincides with all the
variables in the model of interest. One may directly estimate the model, structural or
reduced-form, using a random sample of the variables in the complete model. In many
empirical applications, however, there are important variables describing agents’ behavior
and information set but unobserved by the researchers, such as belief, ability, mood, and
effort.

A simple approach to deal with such lack of data information is to assume that these
unobservables are independent of the observables and have a known or partially known
distribution. The model of interest may then be specified in a likelihood or moment function,
in which the unobservables are integrated out.

A reasonable approach is to use additional data information or additional assumptions to
identify and estimate the complete model using observed variables by researchers, which may
be a subset of the information set of economic agents. Ideally, these additional assumptions,
e.g., conditional independence, can be motivated by the economic model. This task is
quite challenging due to the existence of unobservables. The identification of complete
models with incomplete data information is interesting and important because it lies at the
intersection of economic theory and econometric methodology.

Furthermore, we prefer to establish identification before the model of interest is param-
eterized, which usually leads to local identification and is inherently subject to misspecifica-
tion. Nonparametric identification allows researchers to answer the following question: Can
the economic relationship be revealed by incomplete data information? In the meanwhile,
identification of a nonparametric model becomes much more challenging than parametric
identification.
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From a practitioner’s view, ignorance of identification directly lead to inconsistency of an
estimator. In layman’s terms, we wouldn’t know what an estimator is estimating without a
solid identification argument. For example, it is well known that many estimators ignoring
measurement errors in explanatory variables lead to inconsistent estimates. In addition,
non-identification implies a flat likelihood function, with which iterative algorithms may
not converge.

1.3 Latent Variable and Measurement Error Models

Latent variable and measurement error models describe the relationship between unobserv-
ables and observables. The goal is to identify the distribution of unobservables and also the
distribution of observables conditional on unobservables, which corresponds to the distribu-
tion of measurement errors. In general, the parameter of interest is the joint distribution,
which can be used to describe the relationship between observables and unobservables in
economic models.

Early studies on measurement errors in the econometric literature started with the so-
called classical measurement error, where the errors are usually assumed to be independent
of the true values, arguably because the measurement error models were borrowed from the
relevant statistical literature, where the independence assumption is quite reasonable when
the measurement error is caused by using an instrument to measure a certain property of
an object. The additivity and independence in the classical measurement error models lead
to important and fruitful results. In the econometric literature, the classical measurement
error framework is adopted mainly for the parsimony of the measurement error part of the
model and for the convenience of using existing results. In empirical macroeconomics and
some applied microeconomic research, the classical measurement error framework is usually
embedded into linear models, such as factor models, linear dynamic models, and linear panel
data models. In microeconometrics, identification and estimation of nonlinear models, such
as nonlinear regressions and limited dependent models, with classical measurement errors,
had been a difficult problem for many years.

In recent years, econometricians have been leading the studies on the nonclassical mea-
surement error model because of the need of handling measurement errors in economic
survey data, where the measurement errors are usually caused by self-reporting behaviors.
Such a need exists in most disciplines in social sciences. Instead of measuring certain prop-
erties of an object, many economic data are from surveys, where interviewees self-report
their information. The classical measurement error assumption is unlikely to hold in these
scenarios. Econometricians are, therefore, on the frontier of identification and estimation of
the so-called nonclassical measurement errors models, where the errors may be correlated
with the latent true values. In particular, the presence of nonclassical measurement errors
makes the identification of nonlinear models containing the latent true values extremely dif-
ficult, that is, whether the models can be uniquely determined from the joint distribution
of observed variables.

Based on conditional independence assumptions, which widely exist in economic theo-
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ries, a breakthrough in the measurement error models literature has been the realization
that the joint distribution of three observables may uniquely determine the joint distribu-
tion of four variables including the three observables and the latent variable. Hu (2008)
uses a matrix eigenvalue-eigenvector decomposition to show this pathbreaking result for the
case where the latent variable is a general discrete variable. The Hu-Schennach Theorem
in Hu and Schennach (2008) nontrivially extends this result to the general continuous case
using a unique representation of bounded linear operators. In addition, one of the three
observables may contain as few information as a binary indicator. Such an identification
result is nonparametric and global and leads to a closed-form estimation procedure in the
discrete case. The flexibility of these results greatly extend applications of measurement
error models to various areas in empirical economic research. This manuscript follows Hu
(2017), organizes the existing technical results in terms of the number of measurements,
and shows that these technical results may not only apply to measurement error models,
but also many economic models with latent variables. For more reviews of this extensive
literature, we refer to Wansbeek and Meijer (2000), Bound et al. (2001b), Fuller (2009),
Chen et al. (2011), Carroll et al. (2012), Schennach (2016), and Schennach (2019).



2

Nonparametric Identification with
Unobservables

This chapter starts with a general framework, where “a measurement" can be simply an
observed variable with an informative support. The measurement error distribution de-
scribes how observables and unobservables are associated with each other, and contains the
information about a mapping from the distribution of the latent variables to the observed
measurements. We organize the technical results by the number of measurements needed
for identification. In the first example, there are two measurements, which are mutually
independent conditioning on the latent variable. With such limited information, strong re-
strictions on measurement errors are needed to achieve identification in this 2-measurement
model. Nevertheless, there are still well known useful results in this framework, such as
Kotlarski’s identity.

However, when a 0-1 dichotomous indicator of the latent variable is available together
with two measurements, nonparametric identification is feasible under a very flexible spec-
ification of the model. Hu (2017) names this a 2.1-measurement model, where he uses 0.1
measurement to refer to a 0-1 binary variable. A major breakthrough in the measurement
error literature is that the 2.1-measurement model can be non-parametrically identified un-
der mild restrictions (see Hu (2008) and Hu and Schennach (2008) ). Since it allows very
flexible specifications, the 2.1-measurement model is widely applicable to microeconomic
models with latent variables even beyond many existing applications.

Given that any observed random variable can be manually transformed to a 0-1 binary
variable, the results for a 2.1-measurement model can be easily extended to a 3-measurement
model. A 3-measurement model is useful because many dynamic models involve multiple
measurements of a latent variable. A typical example is the hidden Markov model. Results
for the 3-measurement model show the exchangeable roles which each measurement may
play. In particular, in many cases, it does not matter which one of the three measurements
is called a dependent variable, a proxy, or an instrument.

One may also interpret the identification strategy of the 2.1-measurement model as
a nonparametric instrumental approach. In that sense, a nonparametric difference-in-
differences version of this strategy may help identify more general dynamic processes with

8
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more measurements. As shown in Hu and Shum (2012) , four measurements or four periods
of data are enough to identify a rather general partially observed first-order Markov pro-
cess. Such an identification result is directly applicable to the nonparametric identification
of dynamic models with unobserved state variables.

2.1 Definition of a Measurement

In the measurement error literature, researchers usually use the term “measurement" with-
out a formal definition. Here, we adopt the general definition of measurement in Hu (2017).
Such a definition is a helpful concept to organize the literature.

Let X denote an observed random variable and X∗ be a latent random variable of
interest. We define a measurement of X∗ as follows:

Definition 1 A random variable X with support X is called a measurement of a latent
random variable X∗ with support X ∗ if

card (X ) ≥ card (X ∗) ,

where card (X ) stands for the cardinality of set X .

The support condition in Definition 1 implies that there exists an injective function from
X ∗ into X . When X is continuous, the support condition is not restrictive whether X∗ is
discrete or continuous. When X is discrete, the support condition implies that the number
of possible values of one measurement is larger than or equal to that of the latent variable.
In addition, the possible values in X ∗ are unknown and usually normalized to be the same
as those of one measurement with an equal cardinality of the support.

Definition 1 describes a broadly-defined measurement, and doesn’t imply or impose
any restrictions on how the observables and unobservables are associated with each other.
For example, the measurement X defined here can be independent of the true values X∗.
How much information the measurement contains about the true values is described in the
restrictions imposed on fX|X∗ , which are introduced below.

X X∗

discrete {x1, x2, ..., xL} discrete {x∗
1, x

∗
2, ..., x

∗
K} L ≥ K

continuous discrete {x∗
1, x

∗
2, ..., x

∗
K}

continuous continuous

2.2 A General Framework

In a random sample, we observe measurement X, while the variable of interest X∗ is
unobserved. The measurement error is defined as the difference X−X∗. We can identify the
distribution function fX of measurement X directly from the sample, but our main interest
is to identify the distribution of the latent variable fX∗ , together with the measurement
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error distribution described by fX|X∗ . The observed measurement and the latent variable
are associated as follows: for all x ∈ X

fX(x) =
∫

X ∗
fX|X∗(x|x∗)fX∗(x∗)dx∗, (2.1)

when X∗ is continuous and fX∗ is the probability density function of X∗, and for all x ∈
X = {x1, x2, . . . , xL}

fX(x) =
∑

x∗∈X ∗
fX|X∗(x|x∗)fX∗(x∗), (2.2)

when X∗ is discrete with support X ∗ = {x∗
1, x

∗
2, . . . , x

∗
K} and fX∗(x∗) = Pr(X∗ = x∗) is the

probability mass function of X∗ and fX|X∗(x|x∗) = Pr(X = x|X∗ = x∗). Definition 1 of
measurement requires L ≥ K. We omit arguments of the functions when it does not cause
any confusion. This general framework can be used to describe a wide range of economic
relationships between observables and unobservables in the sense that the latent variable
X∗ can be interpreted as unobserved heterogeneity, fixed effects, random coefficients, or
latent types in mixture models, etc.

X measurement observables
X∗ latent true variable unobservables

In many empirical models, the latent true variables may have particular economic meanings.

empirical models unobservables observables
measurement error true earnings self-reported earnings
consumption function permanent income observed income
production function productivity output, input
wage function ability test scores
learning model belief choices, proxy
auction model unobserved heterogeneity bids
contract model effort, type outcome, state var.
... ... ...

For simplicity, we start with the discrete case and define

−→p X = [fX(x1), fX(x2), . . . , fX(xL)]T (2.3)
−→p X∗ = [fX∗(x∗

1), fX∗(x∗
2), . . . , fX∗(x∗

K)]T

MX|X∗ =
[
fX|X∗(xl|x∗

k)
]
l=1,2,...,L;k=1,2,...,K

.

The notation MT stands for the transpose of M . Note that −→p X , −→p X∗ , and MX|X∗ contain
the same information as distributions fX , fX∗ , and fX|X∗ , respectively. Equation (2.2) is
then equivalent to

−→p X = MX|X∗
−→p X∗ . (2.4)
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The matrix MX|X∗ describes the linear transformation from RK , a vector space containing
−→p X∗ , to RL, a vector space containing −→p X . Suppose that the measurement error distribu-
tion, i.e., MX|X∗ , is known. The identification of the latent distribution fX∗ means that if
two possible marginal distributions −→p aX∗ and −→p bX∗ are observationally equivalent, i.e.,

−→p X = MX|X∗
−→p aX∗ = MX|X∗

−→p bX∗ , (2.5)

then the two distributions are the same, i.e., −→p aX∗ = −→p bX∗ . Let h = −→p aX∗ −−→p bX∗ . Equation
(2.5) implies that MX|X∗h = 0. The identification of fX∗ then requires that MX|X∗h = 0
implies h = 0 for any h ∈ RK , or that matrix MX|X∗ has rank K, i.e., Rank

(
MX|X∗

)
=

K. This is a necessary rank condition for the nonparametric identification of the latent
distribution fX∗ .

In the continuous case, we need to define the linear operator corresponding to fX|X∗ ,
which maps fX∗ to fX . Suppose that we know both fX∗ and fX are bounded and integrable.
We define L1

bnd (X ∗) as the set of bounded and integrable functions defined on X ∗, i.e.,1

L1
bnd (X ∗) =

{
h :
∫

X ∗
|h(x∗)| dx∗ <∞ and sup

x∗∈X ∗
|h(x∗)| <∞

}
. (2.6)

The linear operator can be defined as

LX|X∗ : L1
bnd (X ∗)→ L1

bnd (X ) (2.7)(
LX|X∗h

)
(x) =

∫
X ∗
fX|X∗(x|x∗)h(x∗)dx∗.

Equation (2.1) is then equivalent to

fX = LX|X∗fX∗ . (2.8)

Following a similar argument, we can show that a necessary condition for the identification
of fX∗ in the functional space L1

bnd (X ∗) is that the linear operator LX|X∗ is injective, i.e.,
LX|X∗h = 0 implies h = 0 for any h ∈ L1

bnd (X ∗). This condition can also be interpreted
as completeness of conditional density fX|X∗ in L1

bnd (X ∗). We refer to Hu and Schennach
(2008) for detailed discussion on this injectivity condition.

Since both the measurement error distribution fX|X∗ and the marginal distribution fX∗

are unknown, we have to rely on additional restrictions or additional data information to
achieve identification. On the one hand, parametric identification may be feasible if fX|X∗

and fX∗ belong to parametric families (see Fuller (2009) ). On the other hand, we can
use additional data information to achieve nonparametric identification. For example, if we
observe the joint distribution of X and X∗ in a validation sample, we can identify fX|X∗

from the validation sample and then identify fX∗ in the primary sample (see Chen et al.
(2005) ). In this paper, we focus on methodologies using additional measurements in a
single sample.

1We may also define the operator on other functional spaces containing fX∗ .
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2.3 A 2-measurement Model

Given very limited identification results which one may obtain from equations (2.1)-(2.2),
a direct extension is to use more data information, i.e., an additional measurement. Define
a 2-measurement model as follows:

Definition 2 A 2-measurement model contains two measurements, as in Definition 1,
X ∈ X and Z ∈ Z of the latent variable X∗ ∈ X ∗ satisfying

X ⊥ Z | X∗, (2.9)

i.e., X and Z are independent conditional on X∗.

The 2-measurement model implies that two measurements X and Z not only have distinct
information on the latent variable X∗, but also are mutually independent conditional on
the latent variable. In the case where all the variables X, Z, and X∗ are discrete with
Z = {z1, z2, . . . , zJ}, we define

MX,Z = [fX,Z(xl, zj)]l=1,2,...,L;j=1,2,...,J (2.10)

MZ|X∗ =
[
fZ|X∗(zj |x∗

k)
]
j=1,2,...,J ;k=1,2,...,K

and a diagonal matrix

DX∗ = diag {fX∗(x∗
1), fX∗(x∗

2), . . . , fX∗(x∗
K)} , (2.11)

where fX∗(x∗
i ) > 0 for i = 1, 2, ...,K by the definition of the discrete support X ∗. Definition

1 implies that K ≤ L and K ≤ J . Equation (2.9) means

fX,Z (x, z) =
∑

x∗∈X ∗
fX|X∗(x|x∗)fZ|X∗(z|x∗)fX∗(x∗), (2.12)

which is equivalent to
MX,Z = MX|X∗DX∗MT

Z|X∗ . (2.13)

Without further restrictions to reduce the number of unknowns on the right hand side, point
identification of fX|X∗ , fZ|X∗ , and fX∗ may not be feasible. But one element that can be
identified from observed MX,Z is the dimension K of the latent variable X∗, as elucidated
in the following Lemma:

Lemma 2.3.1 In the 2-measurement model in Definition 2 with support X ∗ = {x∗
1, x

∗
2, . . . , x

∗
K},

suppose that matrices MX|X∗ and MZ|X∗ both have rank K. Then K = rank (MX,Z).

Proof. In the 2-measurement model, Definition 1 requires that K ≤ L and K ≤ J . The
definition of the discrete support X ∗ implies that fX∗(x∗

i ) > 0 for i = 1, 2, ...,K and DX∗

has rank K. Using the rank inequality: for any p-by-m matrix A and m-by-q matrix
B, rank(A) + rank(B) − m ≤ rank(AB) ≤ min{rank(A), rank(B)}, we may first show
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MX|X∗DX∗has rank K, then use the inequality again to show the right hand side of Equation
(2.13) has rank K. Thus, we have rank (MX,Z) = K.

Point identification of this model requires further restrictions. For example, if MX|X∗

and MT
Z|X∗ are lower and upper triangular matrices, respectively, point identification is fea-

sible through the so-called LU decomposition (See Hu and Sasaki (2017) for a generalization
of such a result). In general, this is also related to the literature on non-negative matrix
factorization, which focuses more on existence and approximation, instead of uniqueness.

In the rest of this section, we discuss a class of 2-measurement model, i.e., a regression
model with a mismeasured regressor, where one measurement is the dependent variable,
the other measurement is the mismeasured regressor. With two observables, we will focus
on regression models with an independent regression error.

2.3.1 Regression with a Misclassified Binary Regressor

Although point identification may not be feasible without further assumptions, we can still
have some partial identification results. Consider a linear regression model with a discrete
regressor X∗ as follows:

Y = X∗β + η (2.14)
Y ⊥ X | X∗

where X∗ ∈ {0, 1} and E [η|X∗] = 0. Here the dependent variable Y takes the place
of Z as a measurement of X∗.2 We observe (Y,X) with X ∈ {0, 1} in the data as two
measurements of the latent X∗. Since Y and X are independent conditional on X∗, the two
observed distributions with x = 0, 1 are different weighted averages of the same two latent
distributions, i.e.,

fY |X(y|x) = fY |X∗(y|0)fX∗|X(0|x) + fY |X∗(y|1)fX∗|X(1|x). (2.15)

Taking the difference with respect to x = 0, 1 leads to

|E [Y |X∗ = 1]− E [Y |X∗ = 0]| (2.16)
≥ |E [Y |X = 1]− E [Y |X = 0]| .

That means the observed difference provides a lower bound on the parameter of interest
|β|. This is the so-called attenuation phenomenon, as in Figure 2.1. Such a lower bound is
useful for testing the hypothesis β = 0 without further restrictions on the misclassification
probability. More partial identification results can be found in Bollinger (1996) and Molinari
(2008).

Furthermore, the model can be point identified under the assumption that the regression
error η is independent of the regressor X∗. Chen et al. (2009) consider a nonlinear regression

2We follow the routine to use Y to denote a dependent variable instead of Z.



2. NONPARAMETRIC IDENTIFICATION WITH UNOBSERVABLES ⇑ 14

−10 −5 0 5 10

−0
.1

0.
0

0.
1

0.
2

0.
3

observed
true

f(y|x=1)f(y|x=0)

f(y| x* =0) f(y| x* =1)

Figure 2.1: Attenuation bias
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model with a general discrete X∗ as follows:

Y = m (X∗) + η (2.17)

where the regression function m is the unknown of interest. They provide sufficient condi-
tions for identification of m from the joint distribution fY,X when X∗ is independent of η,
i.e., X∗ ⊥ η. In particular, when X∗ is 0-1 dichotomous, we have

Y = m(0) + [m(1)−m(0)]X∗ + η. (2.18)

Chen et al. (2008b) show that the model can be identified with closed-form expressions.
Define

µj = E[Y |X = j]

vj = E[(Y − µj)2|X = j]

sj = E[(Y − µj)3|X = j]

C1 = (v1 + µ2
1)− (v0 + µ2

0)
µ1 − µ0

C2 = 1
2(µ1 − µ0)2 + 3

2

(
v1 − v0
µ1 − µ0

)2
− s1 − s0
µ1 − µ0

.

Under assumptions that µ1 > µ0 and fX∗|X(1|0) + fX∗|X(0|1) < 1, they show the unknown
elements of the model can be expressed as closed-form functions of observables as follows:

m(0) = 1
2C1 −

√
1
2C2

m(1) = 1
2C1 +

√
1
2C2

fX∗|X(1|0) =
µ0 − 1

2C1√
2C2

− 1
2

fX∗|X(0|1) =
1
2C1 − µ1√

2C2
− 1

2

fY |X∗(y|j) = µ1 −m(j)
µ1 − µ0

fY |X(y|0) + m(j)− µ0
µ1 − µ0

fY |X(y|1).

Such closed-form identification results may be very convenient for empirical researchers.

2.3.2 Regression with a Misclassified Discrete Regressor

Such a point identification result can be extended to a regression model with a general
discrete regressor under the assumption that the regression error η is independent of the
regressor X∗. Chen et al. (2009) consider a nonlinear regression model with a general
discrete X∗ as follows:

Y = m (X∗) + η (2.19)
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where the regression function m is the unknown of interest. They provide sufficient condi-
tions for identification of m from the joint distribution fY,X when X∗ is independent of η,
i.e., X∗ ⊥ η.

LetX∗ have support X = {1, 2, ..., J}. They observe a random sample of (X,Y ) ∈ X×Y,
where X is a proxy for X∗. The goal is to find restrictions on the latent model fY |X∗ that
suffice to nonparametrically identify fY |X∗ and fX|X∗ from fY |X .

Assumption 2.3.1 X ⊥ η|X∗.

This assumption implies that the measurement errorX−X∗ is independent of the dependent
variable Y conditional on the true value X∗. In other words, we have fY |X∗,X(y|x∗, x) =
fY |X∗(y|x∗) for all (x, x∗, y) ∈ X × X × Y. This is equivalent to the classical measurement
error property that the outcome Y conditional on both the true X∗ and on the measurement
error in X, does not depend upon the measurement error.

Assumption 2.3.2 X∗ ⊥ η.

This assumption implies that the regression error η is independent of the regressor X∗

so fY |X∗ (y|x∗) = fη (y −m(x∗)). The relationship between the observed density and the
latent ones is then

fY,X(y, x) =
J∑

x∗=1
fη (y −m(x∗)) fX,X∗ (x, x∗) . (2.20)

Assumption 2.3.2 rules out heteroskedasticity or other heterogeneity of the regression error
η, but allows its density fη to be completely unknown and nonparametric. The regression
error η is not required to be continuously distributed, but the rank condition discussed below
does place a lower bound on the number of points in the support of η. They also show that
this assumption can be relaxed in a couple of different ways, e.g., it can be replaced by
E [exp (itη) |X∗, X] = E [exp (itη)] for a certain finite set of values of t. For dichotomous
(binary) X∗, they show Assumption 2.3.2 can alternatively be weakened to just requiring
E
(
ηk|X∗

)
= E

(
ηk
)

for k = 2, 3.
Let ϕ denote a characteristic function (ch.f.). Equation (2.20) is equivalent to

ϕY,X=x (t) = ϕη (t)
J∑

x∗=1
exp (itm(x∗)) fX,X∗ (x, x∗) (2.21)

for all real-valued t, where ϕY,X=x (t) =
∫

exp(ity)fY,X(y, x)dy and x ∈ X . Since η

may not be symmetric, ϕη (t) =
∫

exp(itη)fη(η)dη need not be real-valued. Let ϕη (t) ≡
|ϕη (t)| exp (ia (t)), where

|ϕη (t)| ≡
√

[Re{ϕη (t)}]2 + [Im{ϕη (t)}]2, a (t) ≡ arccos Re{ϕη (t)}
|ϕη (t)| .



2. NONPARAMETRIC IDENTIFICATION WITH UNOBSERVABLES ⇑ 17

We then have for any real-valued scalar t,

ϕY,X=x (t) = |ϕη (t)|
J∑

x∗=1
exp (itm(x∗) + ia (t)) fX,X∗ (x, x∗) . (2.22)

Define

FX,X∗ =


fX,X∗ (1, 1) fX,X∗ (1, 2) ... fX,X∗ (1, J)
fX,X∗ (2, 1) fX,X∗ (2, 2) ... fX,X∗ (2, J)

... ... ... ...

fX,X∗ (J, 1) fX,X∗ (J, 2) ... fX,X∗ (J, J)

 .
For a real-valued vector t = (0, t2, ..., tJ), let D|ϕ|(t) = Diag{1, |ϕη(t2)| , ..., |ϕη(tJ)|},

ΦY,X(t) =


fX(1) ϕY,X=1(t2) ... ϕY,X=1(tJ)
fX(2) ϕY,X=2(t2) ... ϕY,X=2(tJ)
... ... ... ...

fX(J) ϕY,X=J(t2) ... ϕY,X=J(tJ)

 ,

and take mj = m(j) for j = 1, 2, ..., J, with

Φm,a(t) =


1 exp (it2m1 + ia (t2)) ... exp (itJm1 + ia (tJ))
1 exp (it2m2 + ia (t2)) ... exp (itJm2 + ia (tJ))
... ... ... ...

1 exp (it2mJ + ia (t2)) ... exp (itJmJ + ia (tJ))

 .

With these matrix notations, for any real-valued vector t, equation (2.22) is equivalent to

ΦY,X(t) = FX,X∗ × Φm,a(t)×D|ϕ|(t). (2.23)

Equation (2.23) relates the known parameters ΦY,X(t) (which may be interpreted as re-
duced form parameters of the model) to the unknown structural parameters FX,X∗ , Φm,a(t),
and D|ϕ|(t). Equation (2.23) provides a sufficient number of equality constraints to iden-
tify the structural parameters given the reduced form parameters, so what is required are
sufficient invertibility or rank restrictions to rule out multiple solutions of these equations.

To provide these conditions, consider both the real and imaginary parts of ΦY,X(t).
Since D|ϕ|(t) is real by definition, we have

Re{ΦY,X(t)} = FX,X∗ ×Re{Φm,a(t)} ×D|ϕ|(t), (2.24)

Im{ΦY,X(t)} = FX,X∗ × Im{Φm,a(t)} ×D|ϕ|(t). (2.25)

Since the matrices Im{ΦY,X(t)} and Im{Φm,a(t)} are not invertible because their first
columns are zeros, we replace (2.25) with

(Im{ΦY,X(t)}+ ΥX) = FX,X∗ × (Im{Φm,a(t)}+ Υ)×D|ϕ|(t), (2.26)
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where

ΥX =


fX(1) 0 ... 0
fX(2) 0 ... 0
... ... ... ...

fX(J) 0 ... 0

 and Υ =


1 0 ... 0
1 0 ... 0
... ... ... ...

1 0 ... 0

 .
Equation (2.26) holds because FX,X∗×Υ = ΥX and Υ×D|ϕ|(t) = Υ. Let Ct ≡ (Re{ΦY,X(t)})−1×
(Im{ΦY,X(t)}+ ΥX).

Assumption 2.3.3 (rank).There is a real-valued vector t = (0, t2, ..., tJ) such that (i)
Re{ΦY,X(t)} and (Im{ΦY,X(t)}+ ΥX) are invertible, and (ii) For any real-valued J ×
J−diagonal matrices Dk = Diag (0, dk,2, ..., dk,J), if D1+Ct×D1×Ct+D2×Ct−Ct×D2 = 0,
then Dk = 0 for k = 1, 2.

Assumption 2.3.3 is analogous to the rank condition for identification in linear models and,
in particular, implies identification of the two diagonal matrices

D∂ ln|ϕ|(t) = Diag

(
0, ∂
∂t

ln |ϕη(t2)| , ..., ∂
∂t

ln |ϕη(tJ)|
)
,

D∂a(t) = Diag

(
0, ∂
∂t
a(t2), ..., ∂

∂t
a(tJ)

)
.

Assumption 2.3.3(ii) is rather complicated, but can be replaced by some simpler sufficient
alternatives, which will be described later. Given a candidate value of t, one can test if
Assumption 2.3.3 holds for that value, since the assumption is expressed entirely in terms
of fX and the matrix ΦY,X(t) which, given a vector t, can be directly estimated from data.
It would also be possible to set up a numerical search for sensible candidate values of t that
one might check. For example, letting Q(t) be an estimate of the product of the squared
determinants of the matrices in Assumption 2.3.3(i), one could search for values of t that
numerically maximize Q(t). Assumption 2.3.3(i) is then satisfied with high probability if
the maximized Q(t) differs significantly from zero.

In the Appendix, Chen et al. (2009) show that

ReΦY,X(t)×At × (ReΦY,X(t))−1 = FX|X∗ ×Dm ×
(
FX|X∗

)−1
, (2.27)

where At on the left-hand side is identified when D∂ ln|ϕ|(t) and D∂a(t) are identified,
Dm = Diag (m(1), ...,m(J)), and

FX|X∗ =


fX|X∗ (1|1) fX|X∗ (1|2) ... fX|X∗ (1|J)
fX|X∗ (2|1) fX|X∗ (2|2) ... fX|X∗ (2|J)

... ... ... ...

fX|X∗ (J |1) fX|X∗ (J |2) ... fX|X∗ (J |J)

 .

Equation (2.27) implies that fX|X∗(·|x∗) and m(x∗) are eigenfunctions and eigenvalues of
an identified J × J matrix on the left. We may then identify fX|X∗(·|x∗) and m(x∗) under
the following.
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Assumption 2.3.4 (i) m(x∗) < ∞ and m(x∗) ̸= 0 for all x∗ ∈ X ; (ii) m(x∗) is strictly
increasing in x∗ ∈ X .

Assumption 2.3.4(i) implies that each possible value of X∗ is relevant for Y , and 2.3.4(ii)
allows us to assign each eigenvalue m(x∗) to its corresponding value x∗. If we only wish to
identify the support of the latent factor m∗ = m(X∗) and not the regression function m(·)
itself, then this monotonicity assumption can be dropped.

Given identification and invertibility of FX|X∗ , identification of fX∗ (the marginal distri-
bution of X∗) immediately follows because fX∗ can solved from fX =

∑
X∗ fX|X∗fX∗ given

the invertibility of FX|X∗ .
Assumption 2.3.4 could be replaced by restrictions on fX|X∗ (e.g., by exploiting knowl-

edge about the eigenfunctions rather than eigenvalues to properly assign each m(x∗) to
its corresponding value x∗), but Assumption 2.3.4 is more in line with other assumptions,
which assume that we have information about the regression model but know very little
about the relationship of the unobserved X∗ to the proxy X.

Theorem 2.3.1 Under Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.3.4 in Equation (2.19), the
density fY,X uniquely determines fY |X∗, fX|X∗, and fX∗.

Given the model, defined by Assumptions 2.3.1 and 2.3.2, Theorem 2.3.1 shows that
Assumptions 2.3.3 and 2.3.4 guarantee that the sample of (Y,X) is informative enough
to nonparametrically identify ϕη, m(x∗) and fX,X∗ , which correspond respectively to the
regression error distribution, the regression function, and the joint distribution of the un-
observed regressor X∗ and the measurement error. This identification is obtained without
additional sample information such as an instrumental variable or a secondary sample. Of
course, if one has additional covariates such as instruments or repeated measures, they could
be exploited along with Theorem 2.3.1. Their results can also be immediately applied if
one observes an additional covariate vector W that appears in the regression function, so
Y = m (X∗,W ) + η, since their assumptions and results can all be restated as conditioned
upon W .

Now consider some simpler sufficient conditions for Assumption 2.3.3(ii) in Theorem
2.3.1. Let CTt be the transpose of Ct, and "◦" stand for the Hadamard product, i.e., the
element-wise product of two matrices.

Assumption 2.3.5 The real-valued vector t = (0, t2, ..., tJ) satisfying Assumption 2.3.3(i)
also has Ct ◦ CTt + I invertible, and all entries in the first row of the matrix Ct nonzero.

Assumption 2.3.5 implies Assumption 2.3.3(ii), and is in fact stronger than Assumption
2.3.3(ii), since if it holds then one may explicitly solve for D∂ ln|ϕ|(t) and D∂a(t) in simple
closed form. Another alternative to Assumption 2.3.3(ii) is the following

Assumption 2.3.6 (symmetric rank) a (t) = 0 for all t and, for any real-valued J × J

diagonal matrix D1 = Diag (0, d1,2, ..., d1,J), if D1 + Ct ×D1 × Ct = 0 then D1 = 0.
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The condition in Assumption 2.3.6 that a (t) = 0 for all t is the same as assuming that the
distribution of the error term η is symmetric. They call Assumption 2.3.6 the symmetric
rank condition because it implies the previous rank condition when η is symmetrically
distributed.

Finally, the assumption that the measurement error is independent of the regression
error, Assumption 2.3.2, is stronger than necessary. All independence is used for is to
obtain (5.3) for some given values of t. More formally, all that is required is that (2.23),
and hence (2.25) and (2.26), hold for the vector t in Assumption 2.3.3. When there are
covariates W in the regression model, the requirement becomes that (2.23) hold for the
vector t in Assumption 2.3.3 conditional on W . Therefore, Theorem 2.3.1 holds replacing
Assumption 2.3.2 with the following, strictly weaker assumption.

Assumption 2.3.7 For the known t = 0, t2, ..., tJ that satisfies Assumption 2.3.3, ϕη|X∗=x∗ (t) =
ϕη|X∗=1 (t) and ∂

∂tϕη|X∗=x∗ (t) = ∂
∂tϕη|X∗=1 (t) for all x∗ ∈ X .

This condition permits some correlation of the proxy X with the regression error η, and
allows some moments of η to correlate with X∗.

2.3.3 Linear Regression with a Classical Measurement Error

A similar argument also applies to an extended model as follows:

X = X∗β + ϵ (2.28)
Z = X∗ + ϵ′.

Suppose β > 0. A naive OLS estimator obtained by regressing X on Z converges in
probability to cov(X,Z)

var(Z) , which provides a lower bound on the regression coefficient β. In
fact, we have explicit bounds as follows:

cov(X,Z)
var(Z) ≤ β ≤ var(X)

cov(X,Z) . (2.29)

Furthermore, additional assumptions, such as the joint independence of X∗, ϵ, and ϵ′,
can lead to point identification of β. Reiersøl (1950) shows that β is point identified when
X∗ is not normally distributed. To be specific, neither fX∗ nor β is identified if and only if
X∗ is normally distributed and either ϵ′ or ϵ can be written as the sum of two independent
random variables, one of which is normally distributed.

2.3.4 A Special Case with Closed-Form Solution: Kotlarski’s Identity

In the case where all the variables X, Z, and X∗ are continuous, a widely-used setup is

X = X∗ + ϵ (2.30)
Z = X∗ + ϵ′
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where X∗, ϵ, and ϵ′ are mutually independent with E[ϵ] = 0. When the error ϵ := X−X∗ is
independent of the latent variable X∗, it is called a classical measurement error. This setup
is well known because the density of the latent variable X∗ can be written as a closed-form
function of the observed distribution fX,Z . Define ϕX∗(t) = E

[
eitX

∗
]

with i =
√
−1 as the

characteristic function of X∗. Under the assumption that ϕZ(t) is absolutely integrable and
does not vanish on the real line, we have

fX∗ (x∗) = 1
2π

∫ ∞

−∞
e−ix∗tϕX∗ (t) dt (2.31)

ϕX∗ (t) = exp

∫ t

0

iE
[
XeisZ

]
E [eisZ ] ds

 .
This is the so-called Kotlarski’s identity (See Kotlarski (1965) and Rao (1992) ). Note
that the independence between ϵ and (X∗, ϵ′) can be relaxed to a mean independence
condition E [ϵ|X∗, ϵ′] = E[ϵ]. This identity was first introduced to econometric research
by Li and Vuong (1998). Li (2002) first used this result to consistently estimate nonlinear
regression models with classical measurement errors. The Kotlarski’s identity has been
used in many empirical and theoretical studies, including Li et al. (2000) , Krasnokutskaya
(2011) , Schennach (2004a), and Evdokimov (2010) .

The intuition of Kotlarski’s identity is that the variance of X∗ is revealed by the covari-
ance of X and Z, i.e., var(X∗) = cov(X,Z). Therefore, the higher order moments between
X and Z can reveal more moments of X∗. If one can pin down all the moments of X∗

from the observed moments, the distribution of X∗ is then identified under some regularity
assumptions.

2.3.5 Nonparametric Regression with a Classical Measurement Error

A more general extension is to consider

X = g (X∗) + ϵ (2.32)
Z = X∗ + ϵ′,

where function g is nonparametric and unknown. Schennach and Hu (2013) generalize
Reiersøl’s result and show that function g and distribution of X∗ are nonparametrically
identified except for a particular functional form of g or fX∗ . The only difference between the
model in equation (2.32) and a nonparametric regression model with a classical measurement
error is that the regression error ϵ needs to be independent of the regressor X∗.

Schennach and Hu (2013) assume that

Assumption 2.3.8 The variables X∗, ϵ′, ϵ, are mutually independent, E [ϵ′] = 0 and
E [ϵ] = 0.

Assumption 2.3.9 E
[
eiξϵ

′
]

and E
[
eiγϵ

]
do not vanish for any ξ, γ ∈ R, where i =

√
−1.
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Assumption 2.3.10 E
[
eiξX

∗
]

and E
[
eiξg(X∗)

]
do not vanish for all ξ in a dense subset

of R.

Assumption 2.3.11 The distribution of X∗ admits a uniformly bounded density fX∗ (x∗)
with respect to the Lebesgue measure.

Assumption 2.3.12 The regression function g (x∗) is continuously differentiable over the
support of X∗.

Assumption 2.3.13 The set Z = {x∗ : g′ (x∗) = 0} has at most a finite number of ele-
ments x∗

1, . . . , x
∗
m. If Z is nonempty, fX∗ (x∗) is continuous and nonvanishing in a neigh-

borhood of each x∗
k, k = 1, . . . ,m.

Their main result can then be stated as follows:

Theorem 2.3.2 (Schennach and Hu (2013)) Let Assumptions 2.3.8-2.3.13 hold.

1. If g (x∗) is not of the form

g (x∗) = a+ b ln
(
ecx

∗ + d
)

(2.33)

for some constants a, b, c, d ∈ R then fX∗ (x∗) and g (x∗) (over the support of fX∗ (x∗))
in equation 2.32 are identified.

2. If g (x∗) is of the form (2.33) with3 d > 0, then neither fX∗ (x∗) nor g (x∗) in equation
2.32 are identified iff X∗ has a density of the form

fX∗ (x∗) = A exp
(
−BeCx∗ + CDx∗

) (
eCx

∗ + E
)−F

(2.34)

with4 C ∈ R, A,B,D,E, F ∈ [0,∞[ and ϵ is decomposable with a type I extreme value
factor.5

3. If g (x∗) is linear (i.e. of the form (2.33) with d = 0), then neither fX∗ (x∗) nor
g (x∗) in equation 2.32 are identified iff X∗ is normally distributed and either ϵ′ or ϵ
is decomposable with a normal factor. 6

2.3.6 Nonparametric Regression with a Nonclassical Measurement Error

Hu et al. (2022) consider a very general case of nonparametric regressions with nonclassical
continuous measurement errors. Let Y, X , and X ∗ denote the supports of the distributions

3A case where d < 0 can be converted into a case with d > 0 by permuting the roles of Z and X.
4The constants A, B, C, D, E, F depend on a, b, c, d, although this dependence is omitted here for sim-

plicity. Constants yielding a valid density can be found for any a, b, c, d (with d > 0).
5A type I extreme value distribution has a density of the general form f (u) =

K1 exp (K2 exp (K3u) + K4u). Here, the constant K1, K2, K3, K4 are such that f (u) integrates to 1
and has zero mean and may depend on a, b, c, d, although this dependence is omitted here for simplicity.

6We say that a random variable r is decomposable with F factor if r can be written as the sum of two
independent random variables (which may be degenerate), one of which has the distribution F .
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of the random variables Y , X, and X∗, respectively. They first assume a boundedness
restriction on densities and place some restrictions on the regression error η.

Assumption 2.3.14 (Restrictions on densities) The joint distribution of the random vari-
able X and X∗ admits a density fX,X∗ with respect to the Lebesgue measure and the con-
ditional density of the measurement error fX|X∗ and marginal density of the true regressor
fX∗ are bounded by a constant.

Assumption 2.3.15 (Restrictions on regression error) We assume that
(i) (Independence) the regressor error η is independent of the latent true regressor X∗,
(ii) (Zero conditional mean) E[η|X∗] = 0,
(iii) (Nonvanishing characteristic function) E[exp(iγη)] ̸= 0 for all γ ∈ R.

Assumption 7.1.1(i) effectively imposes an additively separable structure on the regres-
sion error η. This assumption implies that the conditional density fY |X∗ is completely
determined by the distribution of the regressor error η and the regression function as fol-
lows:

fY |X∗(y|x∗) = fη(y −m0(X∗)).

Assumption 7.1.1(ii) is a standard centering restriction on the model’s disturbances.
Let L2(X) = {h :

∫
X |h(x)|2dx <∞}. The measurement error satisfies the following:

Assumption 2.3.16 (Restrictions on Measurement Error) Suppose that
(i) (Nondifferential error) the observed measurement X is independent of dependent

variable Y conditional on the unobserved regressor X∗, i.e., for ∀(y, x, x∗) ∈ Y × X × X ∗

fY |X∗,X(y|x∗, x) = fY |X∗(y|x∗).

(ii) (Invertibility) For any function h ∈ L2(X ∗),
∫
fX|X∗(x|x∗)h(x∗)dx∗ = 0 for all

x ∈ X implies h(x∗) = 0 for almost any x∗ ∈ X ∗. On the other hand, for any function
h ∈ L2(X ),

∫
fX|X∗(x|x∗)h(x)dx = 0 for all x∗ ∈ X ∗ implies h(x) = 0 for almost any

x ∈ X .
(iii) (Normalization) There exists a known functional G such that G

[
fX|X∗(·|x∗)

]
= x∗

for any x∗ ∈ X ∗.

Assumption 2.3.16(i) implies that the measurement error is nondifferential, that is,
X −X∗ does not affect the true model, fY |X∗ , the distribution of the dependent variable Y
conditional on the true value X∗. The observed measurement X thus does not provide any
more information about Y than the unobserved regressor X∗ already does. Such conditional
independence restrictions have been extensively used in the recent years.7 Note that they
allow the measurement error X −X∗ to be correlated with the true unobserved regressor
X∗, which reflects the presence of potential nonclassical measurement error.

7For example, Altonji and Matzkin (2005), Heckman and Vytlacil (2005), and Hoderlein and Mammen
(2007).
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Assumption 2.3.16(ii) implies that the conditional density fX|X∗ is complete in both X
and X ∗. This condition is related to the invertibility of the integral operator with kernel
fX|X∗ . Intuitively, assuming completeness of fX|X∗ is weaker than assuming independence
between X∗ and X −X∗, in the same way the space of invertible matrices is much larger
(in terms of dimension) than the space of similarly sized matrices A of the special form
Aij = v(j−i) for some vector v.8 Completeness conditions have recently been employed
in the nonparametric IV regression models and nonlinear measurement error models and
such conditions are often regarded as high level conditions. Canay et al. (2013a) have
shown that the completeness condition is not testable in a nonparametric setting with
continuous variables. However, Freyberger (2017) provides a first test for the restricted
completeness in a nonparametric instrumental variable model by linking the outcome of the
test to consistency of an estimator. Hu et al. (2017) rely on known results regarding the
Volterra equation to provide sufficient conditions for completeness conditions for densities
with compact support with an accessible interpretation and without specific functional form
restrictions.9

Assumption 2.3.16(iii) is borrowed from Hu and Schennach (2008), because they also
use a spectral decomposition, but with less data information and more restrictions on the
regression model. Examples of functional G from Assumption 2.3.16(iii) include the mean,
the mode, median, or the τ -th quantile. It implies that a location of the distribution
fX|X∗(·|x∗) reveals the true value x∗. This condition also imposes restrictions on the support
of x, x∗, and therefore, the measurement error. Those include that zero is in the support of
the measurement error and that the cardinality of the support of x can’t be smaller than
that of x∗.

Finally, they assume the regression function satisfies

Assumption 2.3.17 (Restrictions on regression function) Suppose that the regression func-
tion m0 is continuous, bounded, and strictly monotonic over support X ∗.

The boundedness constraint can be somewhat restrictive and rules out linear functions
when the support X ∗ is unbounded. However, if the support of x∗ is a bounded interval,
Assumption 7.1.2 is a rather mild condition and allows for linear functions.

Their main results is as follows:

Theorem 2.3.3 Under Assumptions 2.3.14, 2.3.16, 7.1.1, and 7.1.2, given the observed
density fY,X(y, x), the equation

fY,X(y, x) =
∫

X ∗
fη(y −m0(X∗))fX|X∗(x|x∗)fX∗(x∗)dx∗

permits a unique solution (m0, fη, fX|X∗ , fX∗) ≡ α0.
8This analogy exploits the fact that, in the case of discrete measurement error, the link between the

observed distribution of X and the unobserved distribution of X∗ can be represented by the multiplication
of the vector of unobserved probabilities of the different values of X∗ by the mislassification matrix A.

9More general discussions of completeness can be found in D’Haultfoeuille (2011), Chen et al. (2013),
Andrews (2011), and Hu and Shiu (2018), Mattner (1993), Newey and Powell (2003) and Blundell et al.
(2007b).
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The formal proof of this result can be outlined as follows. If one knew the distribution
of the model error η, one could recover the joint distribution of (m0(X∗), X) by a standard
deconvolution argument, thanks to Assumptions 7.1.1 and 2.3.16(i). From that distribu-
tion, one could then recover m0 and fX|X∗ from the assumed normalization restriction
(Assumption 2.3.16(iii)), after exploiting the monotonicity and continuity of m0 (Assump-
tion 7.1.2).10 Of course, one does not know, a priori, the distribution of η, but one can,
in principle, consider any possible trial distribution to get various possible trial values of
m0 and fX|X∗ . The key realization is that, whenever the assumed density of η is incorrect,
this will be detectable by one of the following occurrences: (i) negative densities for the
unobserved variables, (ii) violation of Assumption 2.3.16(ii) (invertibility) or (iii) violation
of the boundedness constraint of Assumption 7.1.2.

The Appendix provides another, completely independent, proof of Theorem 2.3.3, which
delivers a rather different insight into the identification problem. This alternate proof
employs operator techniques similar to those used in Hu and Schennach (2008) and can
be summarized as follows. The idea is that the integral Equation 2.3.3 can be cast as a
system of operator equivalence relations. Solving this system yields an equivalence between
an operator entirely built from observable quantities and a product of unknown operators
to be determined. They then show that this factorization can be uniquely determined,
because it takes the form of an operator diagonalization identity, i.e., the eigenvalues and
eigenfunctions of a known operator yield the different pieces of the product. To ensure
uniqueness of this decomposition, they appeal to conditions such as the invertibility and
normalization on fX|X∗ in Assumptions 2.3.16(ii)&(iii) and the monotonic restriction on
m0 in Assumptions 7.1.2.

Although the monotonicity is a strong restriction, the condition is applicable to many
empirical settings. they provide three examples in different areas of economics where mono-
tonicity is a reasonable assumption. The first example is the estimation of the impact of
education (X∗) on wages (Y ) in which there could be reporting errors in education level.
The higher education level the higher wage, which implies a monotonic regression function
between the wage offer and the true education level. The second empirical example is in
estimating the effect of government subsidies (X∗) on firm R&D investment (Y ). The mea-
sures of government subsidies may suffer measurement errors because they may be hard
to summarize when each firm may receive different types of subsidies. The fact that more
government subsidies for firms are likely to increase R&D investments indicates a monotonic
relation between them. The third example is the relation between household income (X∗,
measured with error) and children health status (Y ). Since wealthier families have more
resource to promote children health, higher household income tends to be associated with
better children health status. In all these three examples, one can use the mode as the
functional G in Assumption 2.3.16(iii) because people are more likely to tell the truth for
their education level, and household income, and firms are more likely to report the true
government subsidies.

10In the absence of monotonicity, the measurement error distributions along the X axis for different true
values of X∗ would mix. As a result, one could not easily identify the measurement error distribution by
looking at the distribution of X conditional on the value of m0(X∗).
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The point identification result of Theorem 2.3.3 is not only nonparametric, but also
global. This is because they show identification by solving the integral equation directly,
in the sense that the identification strategy does not rely on the usual local identification
condition that a true parameter value is only distinguishable from those parameters values
close to the true one.

Their result is applicable beyond regression settings. In general, one may also consider
the observables (Y,X) as two measurements or proxies of the latent variable X∗, an ob-
servation which is useful, for instance, in factor models. In many empirical applications,
the latent variable may represent unobserved heterogeneity or an individual effect. Their
result may then allow for flexible relationships between observables and unobservables to
achieve nonparametric identification. In addition, the results can also be straightforwardly
extended to the case where an additional error-free covariate vector W appears in the re-
gression function, because the assumptions and results can all be restated as conditioned
on W .

Their results prompt the question of whether it would be possible to further extend the
identification proof to cover the case where both the dependent variable and the regressor
are contaminated by a nonclassical error. However, this would necessitate a one-to-one
mapping between the space of bivariate density fY X(y, x) and the much “larger” space of
pairs of bivariate functions (fX,X∗(x, x∗), fY |X∗(y|x∗)), which is a highly unlikely possibility.

This is the most general identification result for a 2-measurement model in the contin-
uous case, which has been published so far.

2.4 A 2.1-measurement Model

An arguably surprising result is that we can achieve quite general nonparametric identifi-
cation of a measurement error model if we observe a little more data information, i.e., an
extra binary indicator, than in the 2-measurement model. Define a 2.1-measurement model
as follows:

Definition 3 A 2.1-measurement model contains two measurements, as in Definition
1, X ∈ X and Z ∈ Z and a 0-1 dichotomous indicator Y ∈ Y = {0, 1} of the latent variable
X∗ ∈ X ∗ satisfying

X ⊥ Y ⊥ Z | X∗, (2.35)

i.e., (X,Y, Z) are jointly independent conditional on X∗.

In this definition, I use “0.1 measurement" to refer to a 0-1 dichotomous indicator of the
latent variable. I name it the 2.1-measurement model instead of 3-measurement one in
order to emphasize the fact that we only need slightly more data information than the
2-measurement model, given that a binary variable is arguably the least informative mea-
surement, except a constant measurement, of a latent random variable.
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2.4.1 The Discrete Case

In the case where X, Z, and X∗ are discrete, Definition 1 implies that the supports of
observed X and Z are larger than or equal to that of the latent X∗. We start our discussion
with the case where the three variables share the same support. We assume

Assumption 2.4.1 The two measurements X and Z and the latent variable X∗ share the
same support X ∗ = {x∗

1, x
∗
2, . . . , x

∗
K}.

This condition is not restrictive because the number of possible values in X ∗ can be iden-
tified, as shown in Lemma 6.1.1, and one can always transform a discrete variable into one
with less possible values. We will later discuss that case where supports of measurements
X and Z are larger than that of X∗.

The conditional independence in equation (5.23) implies11

fX,Y,Z (x, y, z) =
∑

x∗∈X ∗
fX|X∗(x|x∗)fY |X∗(y|x∗)fZ|X∗(z|x∗)fX∗(x∗). (2.36)

For each value of Y = y, we define

MX,y,Z = [fX,Y,Z (xi, y, zj)]i=1,2,...,K;j=1,2,...,K (2.37)

Dy|X∗ =

 fY |X∗(y|x∗
1) 0 0

0 ... 0
0 0 fY |X∗(y|x∗

K)

 .
Equation (2.36) is then equivalent to

MX,y,Z = MX|X∗Dy|X∗DX∗MT
Z|X∗ . (2.38)

Next, we assume

Assumption 2.4.2 Matrix MX,Z has rank K.

This assumption is imposed on observed probabilities, and therefore, is directly testable.
Equation (2.13), i.e.,

MX,Z = MX|X∗DX∗MT
Z|X∗ . (2.39)

then implies MX|X∗ and MZ|X∗ both have rank K. We then eliminate DX∗MT
Z|X∗ to obtain

MX,y,ZM
−1
X,Z = MX|X∗Dy|X∗M−1

X|X∗ . (2.40)

This equation implies that the observed matrix on the left hand side has an inherent
eigenvalue-eigenvector decomposition, where each column inMX|X∗ corresponding to fX|X∗(·|x∗

k)
11Hui and Walter (1980) first consider the case where the latent variable X∗ is binary and show that this

identification problem can be reduced to solving a quadratic equation. Mahajan (2006) and Lewbel (2007)
also consider this binary case in regression models and treatment effect models. See Section 7.2 for details.
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is an eigenvector and the corresponding eigenvalue is fY |X∗(y|x∗
k). Decompositions with dif-

ferent indexing are observationally equivalent, which can be illustrated as follows:

MX,y,ZM
−1
X,Z = MX|X∗Dy|X∗M−1

X|X∗

=

 fX|X∗(x1|♣) fX|X∗(x1|♡) fX|X∗(x1|♠)
fX|X∗(x2|♣) fX|X∗(x2|♡) fX|X∗(x2|♠)
fX|X∗(x3|♣) fX|X∗(x3|♡) fX|X∗(x3|♠)



×

 fY |X∗(y|♣) 0 0
0 fY |X∗(y|♡) 0
0 0 fY |X∗(y|♠)



×

 fX|X∗(x1|♣) fX|X∗(x1|♡) fX|X∗(x1|♠)
fX|X∗(x2|♣) fX|X∗(x2|♡) fX|X∗(x2|♠)
fX|X∗(x3|♣) fX|X∗(x3|♡) fX|X∗(x3|♠)


−1

where 12

{♣,♡,♠} 1-to-1⇐⇒ {x∗
1, x

∗
2, x

∗
3} .

In order to achieve a unique decomposition, we require that the eigenvalues are distinct,
and that certain location of distribution fX|X∗(·|x∗

k) reveals the value of x∗
k. We assume

Assumption 2.4.3 There exists a function ω(·) such that E [ω (Y ) |X∗ = x∗] ̸= E [ω (Y ) |X∗ = x̃∗]
for any x∗ ̸= x̃∗ in X ∗.

Assumption 2.4.4 One of the following conditions holds:
1) fX|X∗

(
x1|x∗

j

)
> fX|X∗

(
x1|x∗

j+1

)
for j = 1, 2, . . . ,K − 1;

2) fX|X∗ (x∗|x∗) > fX|X∗ (x̃∗|x∗) for any x̃∗ ̸= x∗ ∈ X ∗;
3) There exists a function ω(·) such that E

[
ω (Y ) |X∗ = x∗

j

]
> E

[
ω (Y ) |X∗ = x∗

j+1

]
for j = 1, 2, . . . ,K − 1.

The function ω(·) may be user-specified, such as ω (y) = y, ω (y) = 1(y > y0), or ω (y) =
δ(y−y0) for some given y0.13 Assumption 2.8.5 2) is consistent with the empirical evidences
from the validation study in Table 2.1.

When estimating the model using the eigenvalue-eigenvector decomposition, especially
with a continuous Y as later in the paper, it is more convenient to average over Y and use
the equation below than directly using Equation (2.36) with a fixed y

E [ω (Y ) |X = x, Z = z] fX,Z (x, z) =
∑

x∗∈X ∗
fX|X∗(x|x∗)E [ω (Y ) |x∗] fZ|X∗(z|x∗)fX∗(x∗).

(2.41)
If the conditional mean E [Y |X∗] is an object of interest instead of fY |X∗ as in a regres-
sion model, we can consider the equation above with ω (y) = y and relax the conditional

12Such quaint notations are particularly suitable here because they don’t imply any ordering.
13When Y is binary, the choice of function ω(·) does not matter. I state the assumptions in this way so

that there is no need to rephrase them later for a general Y .
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Table 2.1: Self-reported education x conditional on true education x∗ in Kane et al. (1999)
(Data source: National Longitudinal Class of 1972 and Transcript data)

fx|x∗(xi|xj) x∗ — true education level
x — self-reported education x1–no college x2–some college x3–BA+

x1–no college 0.876 0.111 0.000
x2–some college 0.112 0.772 0.020
x3–BA+ 0.012 0.117 0.980

independence assumption fY |X∗,X,Z = fY |X∗ implied in the 2.1-measurement model to a
conditional mean independence assumption E [Y |X∗, X, Z] = E [Y |X∗].

We summarize the identification result as follows:

Theorem 2.4.1 ( Hu (2008) ) Suppose that assumptions 2.8.1, 2.8.3, 2.8.4, and 2.8.5
hold, and that the conditional independence holds as follows:

fX,Y,Z,X∗ = fX|X∗fY |X∗fZ|X∗fX∗ . (2.42)

Then, the joint distribution of the three variables (X,Y, Z), i.e., fX,Y,Z , uniquely determines
the joint distribution of the four variables (X,Y, Z,X∗), i.e., fX,Y,Z,X∗.

In particular, the 2.1-measurement model in Definition 3 is non-parametrically identified
from the joint distribution of the three variables (X,Y, Z).

A brief proof: The conditional independence in Definition 3 of the 2.1-measurement
model implies that Equation (2.38) holds. Assumption 2.8.3 leads to an inherent eigenvalue-
eigenvector decomposition in Equation (2.40). Assumption 2.8.4 guarantees that there are
K linearly independent eigenvectors. These eigenvectors are conditional distributions, and
therefore, are normalized automatically because the column sum of each eigenvector is equal
to one. Assumption 2.8.5 pins down the ordering of the eigenvectors or the eigenvalues, i.e.,
the value of the latent variable corresponding to each eigenvector. Assumption 2.8.5(i)
implies that the first row of matrix MX|X∗ is decreasing in x∗

j and Assumption 2.8.5(ii)
implies that x∗ is the mode of distribution fX|X∗ (·|x∗). Assumption 2.8.5(i) directly implies
an ordering of the eigenvalues. Therefore, each element on the right hand side of Equation
(2.40) is uniquely determined by the observed matrix on the left hand side. The eigenvectors
reveal the conditional distribution fX|X∗ and the identification of other distributions then
follows. ■

Theorem 2.4.1, particularly under Assumption 2.8.1, provides an exact identification
result with a binary Y in the sense that the number of unknown probabilities is equal to
the number of observed probabilities in equation (2.36). Assumption 2.8.1 implies that there
are 2K2−1 observed probabilities in fX,Y,Z (x, y, z) on the left hand side of equation (2.36).
On the right hand side, there are K2 − K unknown probabilities in each of fX|X∗(x|x∗)
and fZ|X∗(z|x∗), K − 1 in fX∗(x∗), and K in fY |X∗(y|x∗) when Y is binary, which sum
up to 2K2 − 1. More importantly, this point identification result is nonparametric, global,
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and constructive. It is constructive in the sense that an estimator can directly mimic the
identification procedure.

When supports of measurements X and Z are larger than that of X∗, we can still achieve
the identification with minor modification of the conditions. Suppose supports X and Z are
larger than X ∗, i.e., X = {x1, x2, . . . , xL}, Z = {z1, z2, . . . , zJ}, and X ∗ = {x∗

1, x
∗
2, . . . , x

∗
K}

with L > K and J > K. By combining some values in the supports of X and Z, we
first transform X and Z to X̃ and Z̃ so that they share the same support X ∗ as X∗.
We then identify f

X̃|X∗ and f
Z̃|X∗ by Theorem 2.4.1 with those assumptions imposed on(

X̃, Y, Z̃,X∗
)
. However, the joint distribution fX,Y,Z,X∗ may still be of interest. In order

to identify fZ|X∗ or MZ|X∗ , we consider the joint distribution

f
X̃,Z

=
∑

x∗∈X ∗
f
X̃|X∗fZ|X∗fX∗ , (2.43)

which is equivalent to
M
X̃,Z

= M
X̃|X∗DX∗MT

Z|X∗ . (2.44)

Since we have identified M
X̃|X∗ and DX∗ , we can identify MZ|X∗ , i.e., fZ|X∗ , by inverting

M
X̃|X∗ . Similar argument holds for identification of fX|X∗ . This discussion implies that

Assumptions 2.8.1 is not necessary. We keep it in Theorem 2.4.1 in order to show minimum
data information needed for nonparametric identification of the 2.1-measurement model.
We summarize this result as follows:

Corollary 2.4.1 Suppose that there exists a transformation X̃ of X, which shares the
same support as X∗ and has a conditional distribution f

X̃|X∗ satisfying Assumption 2.8.5
as fX|X∗. Then, Theorem 2.4.1 holds without Assumption 2.8.1.

2.4.2 Misclassification versus Finite Mixture

Mixture structures arise with the presence of a latent variable, which could be a variable
measured with error or unobserved heterogeneity of different sources such as heterogeneous
preferences, unobserved heterogeneity within/across markets, different types of beliefs, and
multiple equilibria in games. Both finite mixture and misclassification models can be re-
formulated into similar mixture structures and are widely used in economic applications
such as labor economics, industrial organization, and so forth. For example, (Keane and
Wolpin, 1997) consider unobserved type-specific endowments; (Hu et al., 2013a) control for
auction-level unobserved heterogeneity; and (Xiao, 2018) controls for the presence of mul-
tiple equilibria in games. See (Compiani and Kitamura, 2016) for a review of finite mixture
models.

Both literatures of finite mixture and misclassification models recover the unobserved
component-specific distributions through joint distribution of observables, but they rely
on different conditions. A vast literature studies identification and estimation in the two
areas. The finite mixture literature initially focus on identification of the latent distributions
from the observed distribution by imposing restrictions on the component distribution.
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For example, the identification is feasible when the component distributions belong to a
parametric family (Everitt and David, 1981) or is symmetric ((Bordes et al., 2006) and
(Hunter et al., 2007)). Arguably, because these restrictions are implausible in empirical
applications, the conditional independence assumption was introduced later in the finite
mixture model with a multi-covariate observable. Such a setup is equivalent to the long-
existing misclassification model with multiple measurements. In that sense, one may either
interpret the misclassification model as an example of a finite mixture model, or observe
that the finite mixture setup is merging into the misclassification model. More importantly,
this connection means that the existing powerful results for misclassification models are also
applicable to finite mixture models.

Both literatures share the same prevalent label swapping issue, but they address the
issue differently in accordance with their respective interpretation of the latent variable.
In particular, since the latent variable in misclassification models usually carries economic
implications, additional conditions are imposed to pin down the precise value of the latent
variable. In contrast, the unobserved component in finite mixture models does not convey
any economic meaning, so precise location of the unobserved component is not necessar-
ily required. Consequently, misclassification models reach global identification while finite
mixture models reach local identification.

A problem arises with local identification when researchers attempt to use bootstrap to
estimate the standard errors of the estimators. Without an appropriate ordering condition,
the estimator would be a local one in the sense that multiple estimators can generate the
same values for the chosen criteria function; thus, it is not straightforward which local es-
timator should be chosen for each bootstrap resampling. The existing literature on finite
mixture models has realized the importance and necessity of pinning down the component
order when standard error is estimated through resampling. For instance, (Kasahara and
Shimotsu, 2009) propose determining this component ordering by using the marginal distri-
bution of the component to uniquely pin down the order. (Hall and Zhou, 2003) also suggest
similar treatment. (Bonhomme et al., 2016b) note that the label swapping issue presents a
challenge for inference methods based on resampling algorithms such as bootstrap. In line
with this literature, we advocate imposing a condition to pin down the order of the latent
components by which a global estimator may be obtained, as in misclassification models.
To this end, finite mixture models are very similar to misclassification models.

The literature on finite mixture models started with a setup as follows:

fD =
∑

τ∈{1,2,...,K}
fD|τfτ . (2.45)

where τ ∈ {1, 2, ...,K} for some finite T and D stands for observed variables in the data.
Researchers are interested in the distribution fD|τ while only fD is observed.

An approach of finite mixture models considers what restrictions can be imposed on the
distributions fD|τ for a small K, e.g., K = 2, so that fD|τ can be uniquely determined by
fD. For example, one of such restrictions may be that fD|τ is symmetric.

Since such restrictions may be too restrictive for empirical research, another approach of
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finite mixture models impose conditional independence restrictions such as D = (X,Y, Z)
and

fD =
∑
τ

fX|τfY |τfZ|τfτ . (2.46)

Such a setup is literally equivalent to a misclassification model, where many existing iden-
tification results apply.

A general local identification result, without the ordering conditions in Assumption 2.8.5
and the support condition in Definition 1, may be found in Allman et al. (2009). Allman et
al. (2009) show that fX|τ , fY |τ , fZ|τ , and fτ are uniquely determined up to the permutation
of the latent value of τ if

κX + κY + κZ ≥ 2K + 2 (2.47)

where K is the number of possible values in the support of τ and κZ is the Kruskal rank
of matrix MT

Z|τ below, i.e., the largest number I such that every set of I rows of MT
Z|τ are

independent.

MT
Z|τ =


fZ|τ (z1|τ1) fZ|τ (z2|τ1) ... fZ|τ (zJ |τ1)
fZ|τ (z1|τ2) fZ|τ (z2|τ2) ... fZ|τ (zJ |τ2)

... ...

fZ|τ (z1|τK) fZ|τ (z2|τK) ... fZ|τ (zJ |τK)


In our 2.1-measurement model, the equality in the rank condition in their Theorem 1

holds. To be specific, Assumption 2.8.4, which guarantees distinct eigenvalues, holds if and
only if the so-called Kruskal rank of their matrix corresponding to the binary Y is equal to
2. The Kruskal ranks of their other two matrices are equal to the regular matrix rank K,
and therefore, the total Kruskal rank equals 2K + 2. In addition, for a general discrete Y ,
Assumption 2.8.4 implies that the Kruskal rank of their matrix corresponding to Y is at
least 2.

We prove the claims above as follows. We may define the matrix corresponding to the
variable Y in the same way as in Allman et al. (2009) as follows:

MT
Y |X∗ =


fY |X∗(0|x∗

1) fY |X∗(1|x∗
1)

fY |X∗(0|x∗
2) fY |X∗(1|x∗

2)
... ...

fY |X∗(0|x∗
K) fY |X∗(1|x∗

K)


For a matrix M , the Kruskal rank of M will mean the largest number I such that every

set of I rows of M are independent. The Kruskal rank is smaller than or equal to the
regular rank of the same matrix. In the case where a matrix M of size K-by-L has rank K,
it also has Kruskal rank K. That means the Kruskal rank of MT

X|X∗ and MT
Z|X∗ is K.

We may then show that Assumption 2.8.4 holds if and only if the Kruskal rank of MT
Y |X∗

is equal to 2. Let ω(x) = x. Assumption 2.8.4 becomes fY |X∗(1|x̃∗) − fY |X∗(1|x∗) ̸= 0 for
any x∗ ̸= x̃∗ in X ∗. For any 2 rows of MT

y|x∗ corresponding to x∗ ̸= x̃∗, we consider the
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following matrix (
fY |X∗(0|x∗) fY |X∗(1|x∗)
fY |X∗(0|x̃∗) fY |X∗(1|x̃∗)

)
The determinant of this matrix is(

1− fY |X∗(1|x∗)
)
fY |X∗(1|x̃∗)− fY |X∗(1|x∗)

(
1− fY |X∗(1|x̃∗)

)
= fY |X∗(1|x̃∗)− fY |X∗(1|x∗)

Therefore, Assumption 2.8.4 implies that any 2 rows of MT
Y |X∗ are independent. Since Y is

binary, the largest number of independent rows is 2. Therefore, the Kruskal rank of MT
Y |X∗

is 2. The reverse argument also holds. If the Kruskal rank of MT
Y |X∗ is 2, any two rows of

that matrix are independent. Therefore, the determinant of the 2-by-2 matrix formed by
these two rows is not equal to zero, which implies Assumption 2.8.4 with ω(x) = x.

For a general discrete Y with support {y1, y2, . . . , ym}. We may consider

MT
Y |X∗ =


fY |X∗(y1|x∗

1) fY |X∗(y2|x∗
1) ... fY |X∗(ym|x∗

1)
fY |X∗(y1|x∗

2) fY |X∗(y2|x∗
2) ... fY |X∗(ym|x∗

2)
... ... ... ...

fY |X∗(y1|x∗
K) fY |X∗(y2|x∗

K) ... fY |X∗(ym|x∗
K)


We can show that the Kruskal rank of MT

Y |X∗ is at least 2 if and only if for any x∗ ̸= x̃∗

there exists a yj such that fY |X∗(yj |x̃∗)−fY |X∗(yj |x∗) ̸= 0. For any two rows with x∗ ̸= x̃∗,
we consider the following matrix

M2 =
(
fY |X∗(y1|x∗) fY |X∗(y2|x∗) ... fY |X∗(ym|x∗)
fY |X∗(y1|x̃∗) fY |X∗(y2|x̃∗) ... fY |X∗(ym|x̃∗)

)

Let 1 = (1, 1, ..., 1)T and ej = (0, ..., 0, 1, 0, ..., 0)T , where 1 is at the j-th coordinate. We
consider

M2 × (ej 1) =
(
fY |X∗(yj |x∗) 1
fY |X∗(yj |x̃∗) 1

)
Therefore, the rank of M2 equals 2 if fY |X∗(yj |x̃∗) − fY |X∗(yj |x∗) ̸= 0. That means the
Kruskal rank of MT

Y |X∗ is at least 2.
There reverse argument can also be shown similarly. If the Kruskal rank of MT

Y |X∗ is at
least 2, the rank of matrix M2 equals 2. That means there must exist a column, say j, in
M2 such that fY |X∗(yj |x̃∗)− fY |X∗(yj |x∗) ̸= 0.

For a more formal description of these results, see Hu and Xiao (2021).



2. NONPARAMETRIC IDENTIFICATION WITH UNOBSERVABLES ⇑ 34

2.4.3 A Geometric Illustration

Given that a matrix is a linear transformation from one vector space to another, we provide
a geometric interpretation of the identification strategy. Consider K = 3 and define

−→p X|x∗
i

=
[
fX|X∗(x1|x∗

i ), fX|X∗(x2|x∗
i ), fX|X∗(x3|x∗

i )
]T

(2.48)

−→p X|z =
[
fX|Z(x1|z), fX|Z(x2|z), fX|Z(x3|z)

]T
.

We have for each z

−→p X|z =
3∑
i=1

wzi

(−→p X|x∗
i

)
(2.49)

with wzi = fX∗|Z(x∗
i |z) and wz1 +wz2 +wz3 = 1. That means each observed distribution of X

conditional on Z = z is a weighted average of −→p X|x∗
1
, −→p X|x∗

2
, and −→p X|x∗

3
. Similarly, if we

consider the subsample with Y = 1, we have

−→p y1,X|z =
3∑
i=1

wzi

(
λi
−→p X|x∗

i

)
(2.50)

where λi = fY |X∗(1|x∗
i ) and

−→p y1,X|z =
[
fY,X|Z(1, x1|z), fY,X|Z(1, x2|z), fY,X|Z(1, x3|z)

]T
. (2.51)

That means vector −→p y1,X|z is a weighted average of
(
λi
−→p X|x∗

i

)
for i = 1, 2, 3, where weights

wzi are the same as in equation (2.49) from the whole sample. Notice that the direction
of basis vectors

(
λi
−→p X|x∗

i

)
corresponding to the subsample with Y = 1 is the same as the

direction of basis vectors −→p X|x∗
i

corresponding to the whole sample. The only difference is
the length of the basis vectors. Therefore, if we consider a mapping from the vector space
spanned by −→p X|z to one spanned by −→p y1,X|z, the basis vectors do not vary in direction so
that they are called eigenvectors, and the variation in the length of these basis vectors is
given by the corresponding eigenvalues, i.e., λi. This mapping is in fact MX,y,ZM

−1
X,Z on

the left hand side of equation (2.40). The variation in variable Z guarantees that such a
mapping exists. Figure 2.2 illustrates this framework.

2.4.4 The Continuous Case – the Hu-Schennach Theorem

In the case where X, Z, and X∗ are continuous, the identification strategy still work by
replacing matrices with integral operators. For a two-argument function fX|X∗ (·|·), we
consider an integral operator(

LX|X∗g
)

(x) =
∫
fX|X∗ (x|x∗) g (x∗) dx∗ for any g.
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Figure 2.2: Eigenvalue-eigenvector decomposition in the 2.1-measurement model.

Note:
Eigenvalue: λi = fY |X∗(1|x∗

i ).

Eigenvector: −→pi = −→p X|x∗
i

=
[
fX|X∗(x1|x∗

i ), fX|X∗(x2|x∗
i ), fX|X∗(x3|x∗

i )
]T

.
Observed distribution in the whole sample:
−→q 1 = −→p X|z1 =

[
fX|Z(x1|z1), fX|Z(x2|z1), fX|Z(x3|z1)

]T
.

Observed distribution in the subsample with Y = 1 :
−→q y1 = −→p y1,X|z1 =

[
fY,X|Z(1, x1|z1), fY,X|Z(1, x2|z1), fY,X|Z(1, x3|z1)

]T
.
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Operator LX|X∗ transforms unobserved fX∗ to observed fX , i.e., fX = LX|X∗fX∗ .(
fX∗(·)

distribution of X∗

)
LX|X∗
=⇒

(
fX(·)

distribution of X

)

The function fX|X∗ (·|·) is called the kernel function of LX|X∗ .

We may then use intergral operators as we did with matrices in the discrete case.

Ly;X|Z g =
∫
fY,X|Z (y, ·|z) g (z) dz

LX|Z g =
∫
fX|Z (·|z) g (z) dz

LX|X∗ g =
∫
fX|X∗ (·|x∗) g (x∗) dx∗

LX∗|Z g =
∫
fX∗|Z (·|z) g (z) dz

Dy;X∗|X∗ g = fY |X∗ (y|·) g (·) .

In operator Ly;X|Z , y is viewed as a fixed parameter. And Dy;X∗|X∗ is a diagonal operator
as multiplication by a function.

Given the conditional independence, we have an integral equation as follows

Ly;X|Z = LX|X∗Dy;X∗|X∗LX∗|Z .

Such an equivalence can be shown as follows: for a function g,

[
Ly;X|Z g

]
(x) =

∫
fY,X|Z (y, x|z) g (z) dz

=
∫ ∫

fX|X∗ (x|x∗) fY |X∗ (y|x∗) fX∗|Z (x∗|z) dx∗g (z) dz

=
∫
fX|X∗ (x|x∗) fY |X∗ (y|x∗)

∫
fX∗|Z (x∗|z) g (z) dzdx∗

=
∫
fX|X∗ (x|x∗) fY |X∗ (y|x∗)

[
LX∗|Z g

]
(x∗) dx∗

=
∫
fX|X∗ (x|x∗)

[
Dy;X∗|X∗LX∗|Z g

]
(x∗) dx∗

=
[
LX|X∗Dy;X∗|X∗LX∗|Z g

]
(x) .

Similarly, we have
LX|Z = LX|X∗LZ∗|Z .

When operator LX|X∗ is injective, the (left) inverse L−1
X|X∗ exists on its domain. That is

L−1
X|X∗ × LX|X∗ = IX∗|X∗
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We have

L−1
X|X∗LX|Z = L−1

X|X∗(LX|X∗LX∗|Z)
= LX∗|Z

Plugging this expression to the main equation leads to

Ly;X|Z = LX|X∗Dy;X∗|X∗LX∗|Z

= LX|X∗Dy;X∗|X∗(L−1
X|X∗LX|Z)

We will need the right inverse of LX|Z , i.e.,

LX|Z × L−1
X|Z = IX|X ,

which is implied by the injectivity of its adjoint operator, LZ|X . We then have

Ly;X|ZL
−1
X|Z =

(
LX|X∗Dy;X∗|X∗LX∗|Z

)
× L−1

X|Z

=
(
LX|X∗Dy;X∗|X∗(L−1

X|X∗LX|Z)
)
× L−1

X|Z

= LX|X∗Dy;X∗|X∗L−1
X|X∗ .

This presents an eigenvalue-eigenfunction decomposition of an observed operator on the left
hand side. The eigenvalues are fY |X∗ (y|x∗), the kernel of Dy;X∗|X∗ . And the eigenfunctions
are fX|X∗ (·|x∗), the kernel of LX|X∗ .

We state assumptions as follows:

Assumption 2.4.5 The joint distribution of (X,Y, Z,X∗) admits a bounded density with
respect to the product measure of some dominating measure defined on Y and the Lebesgue
measure on X × X ∗ ×Z. All marginal and conditional densities are also bounded.

Assumption 2.4.6 The operators LX|X∗ and LZ|X are injective.14

Assumption 2.4.7 For all x∗ ̸= x̃∗ in X ∗, the set
{
y : fY |X∗ (y|x∗) ̸= fY |X∗ (y|x̃∗)

}
has

positive probability.

Assumption 2.4.8 There exists a known functional M such that M
[
fX|X∗ (·|x∗)

]
= x∗

for all x∗ ∈ X ∗.

Assumption 2.4.6 is a high-level technical condition. A sufficient condition for the injectivity
of LZ|X is that the only function h(·) satisfying E [h(X)|Z = z] = 0 for any z ∈ Z is h(·) = 0
over X . This condition is also equivalent to the completeness of the density fX|Z over certain
functional space. Assumption 2.4.7 requires that each possible value of the latent variable
X∗ affects the distribution of Y . The functional M [·] in Assumption 2.4.8 may be mean,
mode, median, or another quantile, which maps a probability distribution to a point on the

14LZ|X is defined in the same way as LX|X∗ in equation (2.7).
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Figure 2.3: Chen et al. (2008a) (page 50): Ratio of self-reported earnings x
vs. true earnings x∗ by quartiles of true earnings. The link of the paper is:
http://cowles.econ.yale.edu/P/cd/d16a/d1644.pdf (Data source: 1978 CPS/SS Exact
Match File)

real line. In particular, the zero mode and zero median assumptions are consistent with the
empirical evidences from validation studies in Figures 2.3, 2.4, and 2.5.

As we will show in the next section, the identification results can be straightforwardly
extended to the case where Y is a general random variable. We summarize the results as
follows:

Theorem 2.4.2 ( Hu and Schennach (2008) ) Suppose that assumptions 2.4.5, 2.4.6, 2.4.7,
and 2.4.8 hold, and that the conditional independence holds as follows:

fX,Y,Z,X∗ = fX|X∗fY |X∗fZ|X∗fX∗ . (2.52)

Then, the joint distribution of the three variables (X,Y, Z), fX,Y,Z , uniquely determines the
joint distribution of the four variables (X,Y, Z,X∗), fX,Y,Z,X∗.

In particular, the 2.1-measurement model in Definition 3 with a continuous X∗ is non-
parametrically identified from the joint distribution of the three variables (X,Y, Z).

This result implies that if we observe an additional binary indicator of the latent variable
together with two measurements, we can relax the additivity and the independence assump-
tions in equation (2.89) and achieve nonparametric identification of very general models.
Comparing the model in equation (2.89) and the 2.1-measurement model, which are both
point identified, the latter is much more flexible to accommodate various economic models
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Figure 2.4: Bollinger (1998) (page 591): percentiles of self-reported earnings x given true
earnings x∗ for males. (Data source: 1978 CPS/SS Exact Match File)

Figure 2.5: Self-reporting errors by gender
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Figure 2.6: Graphical illustration of zero-mode measurement error

with latent variables. For example, Theorem 2.4.2 identifies the joint distribution of X∗

and Z, and therefore, applies to both the case where Z = X∗ + ϵ′ and the case where the
relationship between Z and X∗ is specified as X∗ = Z+ ϵ′. The latter case is related to the
so-called Berkson-type measurement error models (Schennach (2013)).

Unlike the discrete case, it is difficult to exactly mimic the identification procedure to
form an estimator in this general continuous case. However, the closed-form identification
and estimation is possible under some nonparametric specification of the model, as shown
in section 3.3.

2.4.5 A Class of Injective Operators

Based on the results in Hu and Shiu (2022), we provide an example of measurements
satisfying the injectivity assumption based on convolution. In addition, we will show that
injectivity in that class of models is actually testable from the data. The example is based
the result as follows:

Lemma 2.4.1 Suppose Range(g) = R and ε is independent of X∗. Consider

X = g(X∗) + ε.

Then, the nonparametric family of conditional density functions
{
fX|X∗(·|x∗) = fε(· −

g (x∗)) : x∗ ∈ X ∗
}

is complete in L1
bnd(X ) if and only if the characteristic function of ε is

everywhere nonvanishing on the real line.
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We then consider

X = g(X∗) + ε

Z = g′(X∗) + ε′

where g(·) and g′(·) are monotonic. We can show that the operators LX|X∗ and LZ|X are
injective in this example. That means Assumption 2.4.6 holds.

The injectivity of LX|X∗ means that

[LX|X∗h](x) =
∫
fX|X∗(x|x∗)h(x∗)dx∗ = 0

for all x implies h(x∗) = 0 for all x∗ almost everywhere. We have

[LX|X∗h](x) =
∫
fX|X∗(x|x∗)h(x∗)dx∗

=
∫
fε(x− g(x∗))h(x∗)dx∗

=
∫
fε(x− z)h(g−1(z))dg−1(z)

=
∫
fε(x− z)

(
h(g−1(z)) 1

dg
dx∗ (g−1(z))

)
dz

= 0

We then have h(g−1(z)) = 0 for all z, since the family
{
fε(x−z) : x ∈ X

}
is complete. The

monotonicity of g implies that h(x∗) = 0 for all x∗. Therefore, LX|X∗ is injective. Similarly,
LZ|X∗ is injective.

Next, we show that LZ|X is injective in this example. Specifically, we need to show that

[LZ|Xh](z) =
∫
fZ|X(z|x)h(x)dx = 0

for all z implies h(x) = 0 for all x. Consider∫
fZ|X(z|x)h(x)dx

=
∫ ∫

fZ|X,X∗(z|x, x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗h(x)f−1
X (x)dx

=
∫ ∫

fZ|X∗(z|x∗)fX∗(x∗)fX|X∗(x|x∗)dx∗h(x)f−1
X (x)dx

=
∫ ∫

fε′(z − g′(x∗))fX∗(x∗)fε(x− g(x∗))h(x)f−1
X (x)dxdx∗

=
∫
fε′(z − g(x∗))

(
fX∗(x∗)

∫
fε(x− g(x∗))h(x)f−1

X (x)dx
)
dx∗

= LZ|X∗

(
fX∗(·)

∫
fε(x− g(·))h(x)f−1

X (x)dx
)
.
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Since LZ|X∗ is injective, we have

fX∗(x∗)
∫
fε(x− g(x∗))h(x)f−1

X (x)dx = 0 for any x∗.

Because the range of g is the whole real line, we have
∫
fε(x−z)h(x)f−1

X (x)dx = 0 for any z
and this implies that ∫

f−ε(z − x)h(x)f−1
X (x)dx = 0 for any z.

The condition that the characteristic function of ε does not vanish on the real line
implies that the characteristic function of −ε does not vanish on the real line. Therefore,∫
f−ε(z − x)h(x)f−1

X (x)dx = 0 for all z implies that h(x) = 0 for all x. Therefore, LZ|X is
injective.

2.4.6 An Illustrative Example

Here we use a simple example to illustrate the intuition of the identification results. Consider
a labor supply model for college graduates, where Y is the 0-1 dichotomous employment
status, X is the college GPA, Z is the SAT scores, and X∗ is the latent ability type. We are
interested in the probability of being employed given different ability, i.e., Pr (Y = 1|X∗) ,
and the marginal probability of the latent ability fX∗ .

We consider a simplified version of the 2.1-measurement model with

Pr (Y = 1|X∗) ̸= Pr (Y = 1) (2.53)
X = X∗γ + ϵ

Z = X∗γ′ + ϵ′

where (X∗, ϵ, ϵ′) are mutually independent. We may interpret the error term ϵ′ as a per-
formance shock in the SAT test. If coefficients γ and γ′ are known, we can use X/γ and
Z/γ′ as the two measurements in equation (2.89) to identify the marginal distribution of
ability without using the binary measurement Y . As shown in Hu and Sasaki (2015) , we
can identify all the elements of interest in this model. Here we focus on the identification
of the coefficients γ and γ′ to illustrate the intuition of the identification results.

SinceX∗ is unobserved, we normalize γ′ = 1 without loss of generality. A naive estimator
for γ may be from the following regression equation

X = Zγ +
(
ϵ− ϵ′γ

)
. (2.54)

The OLS estimator corresponds to cov(X,Z)
var(Z) = γ var(X∗)

var(X∗)+var(ϵ′) , which is the well-known
attenuation result with

∣∣cov(X,Z)
var(Z)

∣∣ < |γ|. This regression equation suffers an endogeneity
problem because the regressor, the SAT scores Z, does not perfectly reflect the ability X∗

and is negatively correlated with the performance shock ϵ′ in the regression error (ϵ− ϵ′γ).
When an additional variable Y is available, even if it is binary, we can use Y as an instrument
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to solve the endogeneity problem and identify γ as

γ = E [X|Y = 1]− E [X|Y = 0]
E [Z|Y = 1]− E [Z|Y = 0] . (2.55)

This is literally the two-stage least square estimator. The regressor, SAT scores Z, is
endogenous in both the employed subsample and the unemployed subsample. But the
difference between the two subsamples may reveal how the observed GPA X is associated
with ability X∗ through γ.

The intuition of this identification strategy is that when we compare the employed
(Y = 1) subsample with the unemployed (Y = 0) subsample, the only different element on
the right hand side of the equation below is the marginal distribution of ability, i.e., fX∗|Y=1
and fX∗|Y=0 in

fX,Z|Y=y =
∫

X ∗
fX|X∗fZ|X∗fX∗|Y=ydx

∗. (2.56)

If we naively treat SAT scores Z as latent ability X∗ to study the relationship between
college GPA X and latent ability X∗, we may end up with a model with an endogeneity
problem as in equation (2.54). However, the conditional independence assumption guaran-
tees that the change in the employment status Y “exogenously" varies with latent ability
X∗, and therefore, with the observed SAT scores Z, but does not vary with the performance
shock ϵ′, which is the cause of the endogeneity problem. Therefore, the employment status
Y may serve as an instrument to achieve identification. Notice that this argument still
holds if we compare the employed subsample with the whole sample, which is what we use
in equations (2.49) and (2.50) in Section 2.4.3.15

Furthermore, an arguably surprising result is that such identification of the 2.1 mea-
surement model is still nonparametric and global even if the instrument Y is binary. This
is because the conditional independence assumption reduces the joint distribution fX,Y,Z,X∗

to distributions of each measurement conditional the latent variable
(
fX|X∗ , fY |X∗ , fZ|X∗

)
,

and the marginal distribution fX∗ as in equation (2.42). The joint distribution fX,Y,Z,X∗ is a
four-dimensional function, while

(
fX|X∗ , fY |X∗ , fZ|X∗

)
are three two-dimensional functions.

Therefore, the number of unknowns are greatly reduced under the conditional independence
assumption.

2.5 A 3-measurement Model

We introduce the 2.1-measurement model to show the least data information needed for
nonparametric identification of a measurement error model. Given that a random variable
can always be transformed to a 0-1 dichotomous variable, the identification result can still
hold when there are three measurements of the latent variable. In this section, we introduce

15Another way to look at this is that γ can also be expressed as

γ = E [X|Y = 1] − E [X]
E [Z|Y = 1] − E [Z] .
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the 3-measurement model to emphasize that three observables may play exchangeable roles
so that it does not matter which measurement is called a dependent variable, a measurement,
or an instrument variable. We define this case as follows:

Definition 4 A 3-measurement model contains three measurements, as in Definition 1,
X ∈ X , Y ∈ Y, and Z ∈ Z of the latent variable X∗ ∈ X ∗ satisfying

X ⊥ Y ⊥ Z | X∗, (2.57)

i.e., (X,Y, Z) are jointly independent conditional on X∗.

Based on the results for the 2.1-measurement model, nonparametric identification of the
joint distribution fX,Y,Z,X∗ in the 3-measurement model is feasible because one can always
replace Y with a 0-1 binary indicator, e.g., I (Y > E[Y ]). In fact, we intentionally write
the results in section 2.4 in such a way that the assumptions and the theorems remain the
same after replacing the binary support {0, 1} with a general support Y for variable Y .
An important observation here is that the three measurements (X,Y, Z) play exchangeable
roles in the 3-measurement model. We can impose different restrictions on different mea-
surements, which makes one look like a dependent variable, one like a measurement, and
another like an instrument. But these “assignments" are arbitrary. On the one hand, the
researcher may decide which “assignments" are reasonable based on the economic model.
On the other hand, it does not matter which variable is called a dependent variable, a mea-
surement, or an instrument variable in terms of identification. We summarize the results
as follows:

Corollary 2.5.1 Theorems 2.4.1 and 2.4.2 both hold for the 3-measurement model in Def-
inition 4.

2.6 A Measurement Model with 4 Observables

Before we extend the results to a dynamic setting, we introduce the nonparametric identi-
fication of measurement error models with two samples as in Carroll et al. (2010). Let Y
be the dependent variable of interest, X∗ be the latent explanatory variable, Z be other
covariates, and S ∈ S = {s1, s2} be a sample indicator. The model of interest is described
by fY |X∗,Z . The data structure can be described as follows:

Assumption 2.6.1 i) conditional independence

fY,X|Z,S =
∑
X∗

fY |X∗,ZfX|X∗,SfX∗|Z,S . (2.58)

ii) Y can be discretized to Y d so that Y d, X and X∗ share the same support X = {1, 2, ...,K}.
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We define for any fixed (z, s)

MX,Y d|z,s =
[
fX,Y d|Z,S(i, j|z, s)

]
i=1,2,...,K;j=1,2,...,K

(2.59)

MX|X∗,s =
[
fX|X∗,S(i|j, s)

]
i=1,2,...,K;j=1,2,...,K

.

DX∗|z,s =

 fX∗|Z,S(1|z, s) 0 0
0 ... 0
0 0 fX∗|Z,S(K|z, s)

 (2.60)

In general, we define a matrix representation of a probability distribution as follows: for
discrete random variables R1, R2, R3, the (i+ 1, j + 1)-th element of the matrix MR1,r2,R3

contains the joint probability that (R1 = i, R2 = r2, R3 = j), for i, j ∈ {1, 2, ...,K}.
Equation (2.58) then implies

MX,Y d|z,s = MX|X∗,sDX∗|z,s(MY d|X∗,z)T . (2.61)

We then assume that

Assumption 2.6.2 Invertibility: for any s ∈ S, there exists a (z, z, s) such that MX,Y d|z,s,
MX,Y d|z,s, MX,Y d|z,s, and MX,Y d|z,s are invertible and that for all x∗ ̸= x̃∗ in X

∆s∆z ln fX∗|Z,S (x∗) ̸= ∆s∆z ln fX∗|Z,S (x̃∗)

where ∆s∆z ln fX∗|Z,S (x∗) is defined as 16

∆s∆z ln fX∗|Z,S (x∗) =
[
ln fX∗|Z,S (x∗|z, s)− ln fX∗|Z,S (x∗|z, s)

]
−
[
ln fX∗|Z,S (x∗|z, s)− ln fX∗|Z,S (x∗|z, s)

]
.

Under the assumption that the four matrices on the LHS are invertible, which is directly
testable, we may have

A ≡ MX,Y d|z,sM
−1
X,Y d|z,s

= MX|X∗,sDX∗|z,sD
−1
X∗|z,sM

−1
X|X∗,s.

Similar manipulations lead to

B ≡ MX,Y d|z,sM
−1
X,Y d|z,s

= MX|X∗,sDX∗|z,sD
−1
X∗|z,sM

−1
X|X∗,s.

Finally, we obtain

AB = MX|X∗,sDX∗|z,sD
−1
X∗|z,sDX∗|z,sD

−1
X∗|z,sM

−1
X|X∗,s.

≡ MX|X∗,sDz,z,s,s,X∗M−1
X|X∗,s, (2.62)

16We use the ln function only for the purpose of using the double-difference notation.
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where

Dz,z,s,s,X∗ =


exp

(
∆s∆z ln fX∗|Z,S (1)

)
0 0

0 ... 0
0 0 exp

(
∆s∆z ln fX∗|Z,S (K)

)
 (2.63)

Assumption 2.6.2 guarantees that this eigen-decomposition has distinct eigenvalues. To pin
down the ordering in one of the decompositions, we assume

Assumption 2.6.3 There exists an s1 ∈ S such that i) for any s ∈ S, there exists
a (z, z, s1) satisfying Assumption 2.6.2; and ii) the ordering assumption 2.8.5 holds for
fX|X∗,S(·|·, s1).

Therefore, we can identify fX|X∗,S(·|·, s1). That identifies all the distributions fX∗|Z,S
and fY |X∗,Z . We summarize the result as follows:

Theorem 2.6.1 (Carroll, Chen and Hu, 2010) Under assumptions 2.6.1, 2.6.2, and 2.6.3,
the conditional distribution of the two variables fX,Y |Z,S uniquely determines the conditional
distribution of the three variables fX,Y,X∗|Z,S which satisfies

fX,Y,X∗|Z,S = fY |X∗,ZfX|X∗,SfX∗|Z,S (2.64)

2.6.1 An Illustrative Example

In this section, we use a simple example to illustrate the identification strategy in Theorem
2.6.1, in Carroll et al. (2010) . Consider estimation of a consumption equation using two
samples. Let Y be the consumption, X∗ be the latent true income, Z be the family size,
and S ∈ {s1, s2} be a sample indicator. The data structure can be described as follows:

fY,X|Z,S =
∫
fY |X∗,ZfX|X∗,SfX∗|Z,Sdx

∗. (2.65)

The consumption model is described by fY |X∗,Z , where consumption depends on income and
family size. The self-reported income X may have different distributions in the two samples.
The income X∗ may be correlated with the family size Z and the income distribution may
also be different in the two samples. Carroll et al. (2010) provide sufficient conditions for
nonparametric identification of all the densities on the right hand side of equation (2.65).
To illustrate the identification strategy, we consider the following parametric specification

Y = βX∗ + γZ + η (2.66)
X = X∗ + γ′S + ϵ

X∗ = δ1S + δ2Z + δ3 (S × Z) + u,

where (β, γ, γ′, δ1, δ2, δ3) are unknown constants with δ3 ̸= 0.
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We focus on the identification of β. If we naively treat X as the latent true income X∗,
we have a model with endogeneity as follows:

Y = β
(
X − γ′S − ϵ

)
+ γZ + η (2.67)

= βX + γZ − βγ′S + (η − βϵ) .

The regressor X is endogenous because it is correlated with the measurement error ϵ. Note
that the income X∗ may vary with the family size Z and the sample indicator S, which
are independent of ϵ, the source of the endogeneity. The fact that there is no interaction
term of Z and S on the right hand side of equation (2.67) is consistent with the conditional
independence implied in equation (2.65). Let (z0, z1) and (s0, s1) be possible values of Z
and S, respectively. Assuming E[η|Z, S,X∗] = E [ϵ|Z, S] = E [u|Z, S] = 0, we estimate β
as follows 17

β = [E(Y |z1, s1)− E(Y |z0, s1)]− [E(Y |z1, s0)− E(Y |z0, s0)]
[E(X|z1, s1)− E(X|z0, s1)]− [E(X|z1, s0)− E(X|z0, s0)] . (2.68)

This is a 2SLS estimator using (S × Z) as an IV in the first stage, in which the numerator
is a difference-in-differences estimator for βδ3 (z1 − z0) (s1 − s0) and the denominator is a
difference-in-differences estimator for δ3 (z1 − z0) (s1 − s0).

We may then consider two regressions

Y = β(δ1S + δ2Z + δ3 (S × Z) + u) + γZ + η

= βδ1S + (βδ2 + γ)Z + βδ3 (S × Z)) + (η + βu) (2.69)
X = (δ1S + δ2Z + δ3 (S × Z) + u) + γ′S + ϵ

= (δ1 + γ′)S + δ2Z + δ3 (S × Z) + (ϵ+ u), (2.70)

Therefore, we can estimate all the coefficients from these two regressions. Furthermore, we
can extend this results to the case where there are other covariates W as follows:

Y = βX∗ + γZ + θyW + η (2.71)
X = X∗ + γ′S + θxW + ϵ

X∗ = δ1S + δ2Z + δ3 (S × Z) + θW + u,

The regression equations with observables are

Y = β(δ1S + δ2Z + δ3 (S × Z) + θW + u) + γZ + θyW + η

= βδ1S + (βδ2 + γ)Z + βδ3 (S × Z)) + (βθ + θy)W + (η + βu) (2.72)
X = (δ1S + δ2Z + δ3 (S × Z) + θW + u) + γ′S + θxW + ϵ

= (δ1 + γ′)S + δ2Z + δ3 (S × Z) + (θ + θx)W + (ϵ+ u). (2.73)
17Due to the linear specification of the model, the result here remains with E[η|Z, S] = 0 instead of

E[η|Z, S, X∗] = 0 . That means X∗ is allowed to be endogenous in the regression equation. In other words,
the estimator can tackle both endogeneity and measurement error issues in some settings.
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We can identify (βθ+θy) and (θ+θx), besides other parameters. Therefore, we can identify
the coefficients on those covariates which don’t appear in one of the three equations, or
appear with a normalized coefficients.

2.7 Dynamic Measurement Models

2.7.1 Hidden Markov Models

The 3-measurement model is directly applicable to identify a hidden Markov model. We
consider a hidden Markov model containing {Xt, X

∗
t }, where {X∗

t } is a latent first-order
Markov process, i.e.,

X∗
t+1 ⊥ {X∗

s }s≤t−1 | X∗
t . (2.74)

In each period, we observe a measurement Xt of the latent X∗
t satisfying

Xt ⊥ {Xs, X
∗
s }s ̸=t | X∗

t . (2.75)

This is the so-called local independence assumption, where a measurementXt is independent
of everything else conditional the latent variable X∗

t in the sample period. The relationship
among the variables can be shown in the flow chart as follows.

Xt−1 Xt Xt+1
↑ ↑ ↑

−→ X∗
t−1 −→ X∗

t −→ X∗
t+1 −→

Consider a panel data set, where we observed three periods of data {Xt−1, Xt, Xt+1}. The
conditions in equations (2.74) and (2.75) imply

Xt−1 ⊥ Xt ⊥ Xt+1 | X∗
t , (2.76)

i.e., (Xt−1, Xt, Xt+1) are jointly independent conditional onX∗
t . Although the original model

is dynamic, it can be reduced to a 3-measurement model as in equation (2.76). Corollary
2.5.1 then non-parametrically identifies fXt+1|X∗

t
, fXt|X∗

t
, fXt−1|X∗

t
, and fX∗

t
. Under a sta-

tionarity assumption that fXt+1|X∗
t+1

= fXt|X∗
t
, we can then identify the Markov kernel

fX∗
t+1|X∗

t
from

fXt+1|X∗
t

=
∫

X ∗
fXt+1|X∗

t+1
fX∗

t+1|X∗
t
dx∗

t+1, (2.77)

by inverting the integral operator corresponding to fXt+1|X∗
t+1

.18 Therefore, it does not
really matter which one of {Xt−1, Xt, Xt+1} is treated as measurement or instrument for
X∗
t . Applications of nonparametric identification of such a hidden Markov model or, in

general, the 3-measurement model based on Hu (2008) and Hu and Schennach (2008), can
be found in Hu et al. (2013b) , Feng and Hu (2013) , Wilhelm (2013) , and Hu and Sasaki

18Without stationarity, one can use one more period of data, i.e., Xt+2, to identify fXt+1|X∗
t+1

from the
joint distribution of (Xt, Xt+1, Xt+2) .
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(2018) , etc.

2.7.2 Markov Models with Limited Feedback

A natural extension to the hidden Markov model in equations (2.74)-(2.75) is to relax the
local independence assumption in equation (2.75) when more periods of data are available.
For example, we may allow direct serial correlation among observed measurements {Xt} of
latent variables {X∗

t }. To this end, we assume the following:

Assumption 2.7.1 The joint process {Xt, X
∗
t } is a first-order Markov process. Further-

more, the Markov kernel satisfies

fXt,X∗
t |Xt−1,X∗

t−1
= fXt|X∗

t ,Xt−1fX∗
t |Xt−1,X∗

t−1
. (2.78)

Equation (2.78) is the so-called limited feedback assumption in Hu and Shum (2012) . It
implies that the latent variable in current period has summarized all the information on
the latent part of the process. The relationship among the variables may be described as
follows:

−→ Xt−2 −→ Xt−1 −→ Xt −→ Xt+1 −→
↘ ↕ ↘ ↕ ↘ ↕ ↘ ↕ ↘
−→ X∗

t−2 −→ X∗
t−1 −→ X∗

t −→ X∗
t+1 −→

For simplicity, we focus on the discrete case and assume

Assumption 2.7.2 Xt and X∗
t share the same support X ∗ = {x∗

1, x
∗
2, . . . , x

∗
K}.

The observed distribution is associated with unobserved ones as follows:

fXt+1,Xt,Xt−1,Xt−2 =
∑
x∗
fXt+1|Xt,X∗

t
fXt|X∗

t ,Xt−1fX∗
t ,Xt−1,Xt−2 . (2.79)

We define for any fixed (xt, xt−1)

MXt+1,xt|xt−1,Xt−2 =
[
fXt+1,Xt|Xt−1,Xt−2(xi, xt|xt−1, xj)

]
i=1,2,...,K;j=1,2,...,K

(2.80)

MXt|xt−1,Xt−2 =
[
fXt|Xt−1,Xt−2(xi|xt−1, xj)

]
i=1,2,...,K;j=1,2,...,K

.

Assumption 2.7.3 (i) for any xt−1 ∈ X , MXt|xt−1,Xt−2 is invertible.
(ii) for any xt ∈ X , there exists a (xt−1, xt−1, xt) such that MXt+1,xt|xt−1,Xt−2, MXt+1,xt|xt−1,Xt−2,

MXt+1,xt|xt−1,Xt−2, and MXt+1,xt|xt−1,Xt−2 are invertible and that for all x∗
t ̸= x̃∗

t in X ∗

∆xt∆xt−1 ln fXt|X∗
t ,Xt−1 (x∗

t ) ̸= ∆xt∆xt−1 ln fXt|X∗
t ,Xt−1 (x̃∗

t )

where ∆xt∆xt−1 ln fXt|X∗
t ,Xt−1 (x∗

t ) is defined as

∆xt∆xt−1 ln fXt|X∗
t ,Xt−1 (x∗

t ) : =
[
ln fXt|X∗

t ,Xt−1 (xt|x∗
t , xt−1)− ln fXt|X∗

t ,Xt−1 (xt|x∗
t , xt−1)

]
−
[
ln fXt|X∗

t ,Xt−1 (xt|x∗
t , xt−1)− ln fXt|X∗

t ,Xt−1 (xt|x∗
t , xt−1)

]
.
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Assumption 2.7.4 For any xt ∈ X , there exists a known functional M such that M
[
fXt+1|Xt,X∗

t
(·|xt, x∗

t )
]

is strictly increasing in x∗
t .

Assumption 2.7.5 The Markov kernel is stationary, i.e.,

fXt,X∗
t |Xt−1,X∗

t−1
= fX2,X∗

2 |X1,X∗
1
. (2.81)

The invertibility in Assumption 2.7.3 is testable because it imposes a rank condi-
tion on observed matrices. The invertibility guarantees that a directly estimable matrix
has an eigenvalue-eigenvector decomposition, where the eigenvalues are associated with
∆xt∆xt−1 ln fXt|X∗

t ,Xt−1 and the eigenvectors are related to fXt+1|Xt,X∗
t

(·|xt, x∗
t ) for a fixed

xt. Assumption 2.7.3(ii) is needed for the distinctness of the eigenvalues. And Assumption
2.7.4 reveals the ordering of the eigenvectors as Assumption 2.4.8. Assumption 2.7.5 is a
stationarity assumption, which is not needed with one more periods of data. We summarize
the results as follows:

Theorem 2.7.1 ( Hu and Shum (2012) ) Under assumptions 2.7.1, 2.7.2, 2.7.3, 2.7.4, and
2.7.5, the joint distribution of four periods of data fXt+1,Xt,Xt−1,Xt−2 uniquely determines
the Markov transition kernel fXt,X∗

t |Xt−1,X∗
t−1

and the initial condition fXt−2,X∗
t−2

.

Proof: See section 6.1 for details.
For the continuous case and other variations of the assumptions, such as non-stationarity,
I refer to Hu and Shum (2012) for details. A simple extension of this result is the case
where X∗

t is discrete and Xt is continuous. As in the discussion following Theorem 2.4.1,
the identification results still apply with minor modification of the assumptions.

In the case where X∗
t = X∗ is time-invariant, the condition in equation (2.78) is not re-

strictive and the Markov kernel becomes fXt|Xt−1,X∗ . For such a first-order Markov model,
Kasahara and Shimotsu (2009) suggest using two periods of data to break the interdepen-
dence and use six periods of data to identify the transition kernel. For fixed Xt = xt,
Xt+2 = xt+2, Xt+4 = xt+4, it can be shown that Xt+1, Xt+3, Xt+5 are independent condi-
tional on X∗ as follows:

fXt+5,xt+4,Xt+3,xt+2,Xt+1,xt =
∑

x∗∈X ∗
fXt+5|xt+4,X∗fxt+4,Xt+3|xt+2,X∗fxt+2.Xt+1,xt,X∗ .

The model then falls into the framework of the 3-measurement model, where (Xt+1, Xt+3, Xt+5)
may serve as three measurements for each fixed (xt, xt+2, xt+4) to achieve identification. 19

This similarity to the 3-measurement model can also be seen in Bonhomme et al. (2016a)
and Bonhomme et al. (2016b) . However, the 2.1-measurement model implies that minimum
data information for nonparametric identification can be “2.1 measurements" instead of “3
measurements". Hu and Shum (2012) shows that the interaction between observables in the
middle two periods may play the role of the binary measurement in the 2.1-measurement
model so that such a model, even with a time-varying unobserved state variable, can be
identified using only four periods of data.

19See section 6.1.3 for detailed comparison with Kasahara and Shimotsu (2009).
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See section 6.1 for detailed description of this model with applications to dynamic dis-
crete choice models.

2.7.3 An Illustrative Example

In the dynamic model in Theorem 2.7.1, we can re-write equation (2.79) as

fXt+1,Xt−2|Xt,Xt−1 =
∑
x∗
fXt+1|X∗

t ,Xt
fXt−2|X∗

t ,Xt−1fX∗
t |Xt,Xt−1 , (2.82)

which is analogical to equation (2.65). Similar to the previous example on consumption, sup-
pose we naively treat Xt−2 as X∗

t to study the relationship between Xt+1 and (Xt, X
∗
t ), say

Xt+1 = H (X∗
t , Xt, ηt), where ηt is an independent error term. And suppose the conditional

density fXt−2|X∗
t ,Xt−1 implies Xt−2 = G (X∗

t , Xt−1, ϵt), where ϵt represents an independent
error term. Suppose we can replace X∗

t by G−1 (Xt−2, Xt−1, ϵt) to obtain

Xt+1 = H
(
G−1 (Xt−2, Xt−1, ϵt) , Xt, ηt

)
, (2.83)

where Xt−2 is endogenous and correlated with ϵ. The conditional independence in equation
(2.82) implies that the variation in Xt and Xt−1 may vary with X∗

t , but not with the error
ϵ. However, the variation in Xt may change the relationship between the future Xt+1 and
the latent variable X∗

t , while the variation in Xt−1 may change the relationship between the
early Xt−2 and the latent X∗

t . Therefore, a “joint" second-order variation in (Xt, Xt−1) may
lead to an “exogenous" variation in X∗, which may solve the endogeneity problem. Thus,
our identification strategy may be considered as a nonparametric version of a difference-in-
differences argument.

For example, let Xt stand for the choice of health insurance between a high coverage plan
and a low coverage plan. And X∗

t stands for the good or bad health status. The Markov
process {Xt, X

∗
t } describes the interaction between insurance choices and health status.

We consider the joint distribution of four periods of insurance choices fXt+1,Xt,Xt−1,Xt−2 .
If we compare a subsample with (Xt, Xt−1) = (high, high) and a subsample with and
(Xt, Xt−1) = (high, low), we should be able to “difference out" the direct impact of health
insurance choice Xt on the choice Xt+1 in next period in fXt+1|X∗

t ,Xt
. Then, we may repeat

such a comparison again with (Xt, Xt−1) = (low, high) and (Xt, Xt−1) = (low, low). In both
comparisons, the impact of changes in insurance choice Xt−1 described in fXt−2|X∗

t ,Xt−1 is
independent of the choice Xt. Therefore, the difference in the differences from those two
comparisons above may lead to exogenous variation in X∗

t as described in fX∗
t |Xt,Xt−1 ,

which is independent of the endogenous error due to naively using Xt−2 as X∗
t . Therefore,

the second-order joint variation in observed insurance choices (Xt, Xt−1) may serve as an
instrument to solve the endogeneity problem caused by using the observed insurance choice
Xt−2 as a proxy for the unobserved health condition X∗

t .
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2.8 Identification of Unobservables in Observations

In empirical studies, the data usually don’t include all the variables of interest in an economic
model. This section shows the identification of unobserved variables in observations at the
population level. When the observables are distinct in each observation, there exists a
function mapping from the observables to the unobservables. Such a function guarantees
the uniqueness of the latent value in each observation. The key lies in the identification of
the joint distribution of observables and unobservables from the distribution of observables.
The joint distribution of observables and unobservables then reveal the latent value in each
observation.

We start with the saying -

“No two leaves are alike.”

Thousand years of human history show that no two leaves are alike. Suppose that each leaf
has observed traits x and unobserved heterogeneity x∗. If we observe that no two leaves
are alike, then the mapping from x to x∗ is a function, i.e., a set of ordered pairs (x, x∗)
in which no two different ordered pairs have the same first coordinate. Therefore, such a
function can uniquely determine unobserved heterogeneity x∗ from observed traits x for
each leaf.

In empirical studies, an observation in the data is similar to observed traits x of a leaf
and unobserved heterogeneity x∗ corresponds to some variables of interest not observed
in the data. For example, researchers observe a patient’s insurance policy, but not their
health status in the data. In general, we observe an agent’s choices, but not their types or
unobserved heterogeneity. In macroeconomics, we are interested in a country’s true GDP
when only rough measurements are available. This paper intends to provide a framework
to identify the value of a latent variable of interest in observations.

For a variable with a distinct value in each observation in a sample, researchers usually
consider it as a continuous variable in the population. Such continuity only exists in as-
sumptions given the discrete nature of a sample. It is observationally equivalent to assume
that the population is a collection of a large but finite number of elements. To avoid an
uncountable amount of unknowns, we adopt the latter in this paper.

Let xi and x∗
i be measurements of observed traits and unobserved heterogeneity of leaf

i, respectively. We define the property of leaves as follows:

Definition 5 A population PX,X∗ satisfies the property of leaves if it is a collection of
ordered pairs (xi, x∗

i ) for i = 1, 2, ..., N ;N <∞ such that xi ̸= xj for any i ̸= j. That is

PX,X∗ = {(xi, x∗
i ) : xi ̸= xj for i ̸= j and i, j = 1, 2, ..., N.} (2.84)

Furthermore, let FX,X∗ denote the cumulative distribution function of random variables
(X,X∗) randomly drawn from population PX,X∗ with probability

Pr({(X,X∗) = (xi, x∗
i )}) = pi > 0 (2.85)
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with
∑N
i=1 pi = 1. A typical example is pi = 1

N . Here we focus on the case where the
population size N is large but finite. In this case, distribution function FX,X∗ uniquely
determines population PX,X∗ because FX,X∗ is a step function and each step corresponds
to an element in PX,X∗ . If we consider the set PX,X∗ as a mapping from X to X∗, then this
mapping is a function, i.e., a set of ordered pairs in which no two different ordered pairs
have the same first coordinate. The population of observed traits x is

PX = {xi : (xi, x∗
i ) ∈ PX,X∗ for somex∗

i } (2.86)

with a distribution function FX . In fact, its probability function is

Pr({X = xi}) = pi (2.87)

because xi is distinct for all i = 1, 2, ..., N , i.e., in the whole population. Therefore, the
probabilities pi is known for each i from FX , but the value of x∗

i in Equation (2.85) still
needs to be identified and distribution function FX,X∗ is still unknown. Notice that x∗

i is
not necessarily distinct in observations.

Here it is necessary to clarify that this identification analysis is at the population level,
instead of at the sample level. In estimation, we usually start with a sample of X and use its
sample statistics to estimate its population counterparts.20 For example, we use empirical
CDF F̂X to consistently estimate the population CDF FX . In the identification analysis, we
start with population PX and its CDF FX when X is observed in a sample because PX and
FX are identified as the limit of the sample and the empirical CDF, respectively. This paper
presents sufficient conditions, under which one can uniquely determine the unobserved x∗

from the observed x in each observation in the population. We summarize the immediate
conditions as follows:

Proposition 1 Suppose that Conditions 1 and 2 hold as follows:

1. Population PX,X∗, with distribution function FX,X∗, satisfies the property of leaves in
Equations (2.84) ;

2. FX uniquely determines FX,X∗, where distribution function FX corresponds to popu-
lation PX in Equations (2.86).

Then, PX and FX uniquely determine PX,X∗ and FX,X∗, i.e., each xi in PX uniquely
determines its corresponding x∗

i through PX,X∗.

Proof : Equations (2.85) and (2.87) implies that

Pr({X∗ = x∗
i }|{X = xi}) = 1. (2.88)

20If we draw from such a population of X with placement, it is possible to have two draws with the same
value x. The property of leaves guarantees that the value x corresponds to a unique x∗ and that the two
draws are from the same leaf, which can be represented in the sample proportions of each distinct value of
x. Therefore, such a generated sample of X is representative of the population of leaves and its distribution.
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Therefore, distribution function FX,X∗ directly pins down the value of x∗
i for each xi. To

be specific, distribution function FX corresponds to population PX . Condition 2) requires
that FX uniquely determines FX,X∗ . Given that population PX,X∗ contains a large but
finite number N of different elements, distribution function FX,X∗ is a step function and
each step corresponds to one element in population PX,X∗ , and therefore, FX,X∗ uniquely
determines population PX,X∗ . In summary, PX with FX uniquely determines PX,X∗ with
FX,X∗ . Q.E.D.

Although it is for a large but finite N , this result can be extended to the case with
N → ∞ as long as population PX,X∗ contains a countably number of elements. Note
that the probability in Equation (2.85) can’t be uniform, i.e., pi = p, in this case. The
discreteness of PX,X∗ implies that population distribution FX,X∗ is a step function and
each step still corresponds one element in population PX,X∗ . Such a property is lost when
there are uncountably many elements in the population, e.g., the unit interval. 21

Conditions 1) in Proposition 1 requires that the observed X should satisfy the property
of leaves so that there exists a function mapping from the observed to the unobserved.
Condition 2 is the key to achieve the identification of unobservables in observations. In
order to make Proposition 1 useful, it is important to provide sufficient conditions to identify
FX,X∗ from FX .

Proposition 1 can be adapted to the case where additional variables are observed. If
the data include (X,Z) instead of X only, and if FX,Z uniquely determines FX,X∗ , then
there is no need to identify FX,Z,X∗ , which may require more assumptions than those for
the identification of FX,X∗ . In that case, the result in Proposition 1 remains with FX,Z
uniquely determining FX,X∗ in Condition 2).

It is useful to understand the result in Proposition 1 in the case of the widely-used linear
regression model, i.e.,

Y = Wβ + η

with E[η|W ] = 0. A researcher observes X = (Y,W ) but not X∗ = η. Suppose that
we never observe repeated values of (Y,W ) in the population. Therefore, Condition 1) is
satisfied. In fact, the function implied by Condition 1), which maps from X = (Y,W ) to
X∗ = η, is given by the model, i.e., η = Y −Wβ. Given that we can identify and estimate
β using distribution FY,W through the moment equation E[Y −Wβ|W ] = 0, parameter β
can be considered as known from the population. Then, it can be shown that FX , i.e., the
distribution of (Y,W ), uniquely determines FX,X∗ , i.e., the distribution of (Y,W, η), because
η = Y −Wβ, and therefore, PX , the population of (Y,W ), uniquely determines PX,X∗ ,
the population of (Y,W, η). That means, the regression error ηi, although unobserved,
is uniquely determined by (yi, wi) in each observation through PX,X∗ as ηi = yi − wiβ.
The estimation of residuals in the linear regression model is the sample counterpart of this
procedure. The results in Matzkin (2003b) can be considered as a generalization of this
example to the non-additive and non-separable case.

Condition 1) in Proposition 1 holds as long as there is a traditionally-defined continu-
21? provides identification arguments in that case.
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ous variable in the sample. The challenging part of Proposition 1 is to show that the joint
distribution of observables and unobservables is uniquely determined by that of the observ-
ables. The next two sections present examples of sufficient conditions for the identification
of FX,X∗ from FX . We adopt the framework in ? to consider cases with a difference number
of measurements of X∗ in X.

2.8.1 A 2-measurement case

In this section, we consider a 2-measurement setting, where X = (X1, X2). Assume that
X1, X2, and X∗ are a scalar random variable satisfying

X1 = X∗ + ϵ1

X2 = X∗ + ϵ2 (2.89)

where i) ϵ1 is independent of (X∗, ϵ2), ii) the characteristic function of X1 is absolutely
integrable and does not vanish on the real line, and iii) E[ϵ2|X∗] = 0.

Before presenting the technical results, it is useful to illustrate the idea of identification in
observations with a simple example. Suppose X∗ ∈ {0, 1}, ϵ1 ∈ {−1, 2} and ϵ2 ∈ {−1, 0, 1}
satisfying Equation (2.89) with distribution functions fX∗,ϵ2 and fϵ1 . Notice that ϵ2 should
have a zero mean conditional on X∗. The population and its distribution can be presented
as in Table 2.2. Given the population of 12 observations of (X1, X2) with distribution
function fX1,X2 , the goal is to show that the value of X∗ is uniquely determined in each
observation.

Table 2.2: An illustration of identification in observations

observation observables unobservables probability
i X1 = X∗ + ϵ1 X2 = X∗ + ϵ2 ϵ1 X∗ ϵ2 pi
1 0 0 -1 1 -1 fX1,X2 (0, 0) = fϵ1 (−1)fX∗,ϵ2 (1, −1)

2 0 1 -1 1 0 fX1,X2 (0, 1) = fϵ1 (−1)fX∗,ϵ2 (1, 0)

3 0 2 -1 1 1 ...
4 -1 -1 -1 0 -1 ...
5 -1 0 -1 0 0 ...
6 -1 1 -1 0 1 ...
7 3 0 2 1 -1 ...
8 3 1 2 1 0 ...
9 3 2 2 1 1 ...
10 2 -1 2 0 -1 ...
11 2 0 2 0 0 ...
12 2 1 2 0 1 ...

Note: In each group, mean of X2 reveals X∗.

In this example, the observed (X1, X2) are distinct. If we group the 12 observations by
X1, then the mean of X2 within each group is equal to the value of latent X∗. In general,
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the property of leaves guarantees the uniqueness of X∗ in each observation. The restrictions
on the distribution, i.e., ϵ2 should have a zero mean conditional on X∗, reveal the value of
X∗ in each observation. Therefore, the unobserved is uniquely determined by the observed
in observations. Notice that the four groups are actually categorized by the values of X∗

and ϵ1.
Although we use X2 to put the 12 observations into 4 groups in this particular example in

Table 2.2, it really is the combination of the 12 observations of (X1, X2) and the distribution
function of fX1,X2,X∗ or fϵ1fX∗,ϵ2 that identifies the 4 groups out of the 12 observations.
It is possible that X1 is not enough to distingish all the groups with the same values of
X∗ and ϵ1. For example, we may change the support of ϵ1 and ϵ2 to be ϵ1 ∈ {−1, 0}
and ϵ2 ∈ {−1.5, 0.5, 1}, still assuming ϵ2 should have a zero mean. Table 2.3 shows the
population and the probabilities in this case, where X1 is no longer enough to identify the
four groups. From the observed 12 probabilities, i.e., pi, in fX1,X2 , however, we are able to
identify the 8 unknown probabilities in fϵ1 and fX∗,ϵ2 , which will be shown below in a more
general setup. The identified distribution function, i.e., the probabilities in fϵ1 and fX∗,ϵ2

can determine how to put the observations into four groups with the same X∗ and ϵ1 as in
the last column in Table 2.3. Then, mean of X2 reveals X∗ in each group.

Table 2.3: A second example

observation observables unobservables probability
i X1 = X∗ + ϵ1 X2 = X∗ + ϵ2 ϵ1 X∗ ϵ2 pi
1 0 -0.5 -1 1 -1.5 fX1,X2 (0, −0.5) = fϵ1 (−1)fX∗,ϵ2 (1, −1.5)

2 0 1.5 -1 1 0.5 fX1,X2 (0, 1.5) = fϵ1 (−1)fX∗,ϵ2 (1, 0.5)

3 0 2 -1 1 1 fX1,X2 (0, 2) = fϵ1 (−1)fX∗,ϵ2 (1, 1)

4 -1 -1.5 -1 0 -1.5 ...
5 -1 0.5 -1 0 0.5 ...
6 -1 1 -1 0 1 ...
7 1 -0.5 0 1 -1.5 ...
8 1 1.5 0 1 0.5 ...
9 1 2 0 1 1 ...
10 0 -1.5 0 0 -1.5 fX1,X2 (0, −1, 5) = fϵ1 (0)fX∗,ϵ2 (0, −1.5)

11 0 0.5 0 0 0.5 fX1,X2 (0, 0.5) = fϵ1 (0)fX∗,ϵ2 (0, 0.5)

12 0 1 0 0 1 fX1,X2 (0, 1) = fϵ1 (0)fX∗,ϵ2 (0, 1)

Note: In each group, mean of X2 reveals X∗.

The setup in Equation (2.89) is well known because the distribution of the latent variable
X∗ can be written as a closed-form function of the observed distribution fX1,X2 . The
characteristic function of X∗ is defined as ϕX∗(t) = E

[
eitX

∗
]

with i =
√
−1. One can show
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that

fX∗ (x∗) = 1
2π

∫ ∞

−∞
e−ix∗tϕX∗ (t) dt (2.90)

ϕX∗ (t) = exp

∫ t

0

iE
[
X2e

isX1
]

E [eisX1 ] ds

 .
This is the so-called Kotlarski’s identity (Kotlarski (1965) and Rao (1992)). Notice that

ϕX1,X2(s, t) = exp [isX1 + itX2]
= exp [isX∗ + itX2] exp [isϵ1]

= ϕX∗,X2(s, t)ϕX1 (s)
ϕX∗ (s)

Therefore, we may identify the joint distribution FX∗,X2 as follows:

ϕX∗,X2(s, t) = ϕX1,X2(s, t)ϕX
∗ (s)

ϕX1 (s)

Finally, the distribution of (X1, X2, X
∗) can be uniquely determined by the distribution of

(X1, X2) as follows:

ϕX1,X2,X∗(s, t, v) = exp [isX1 + itX2 + ivX∗]
= exp [i(s+ v)X∗ + itX2] exp [isϵ1]

= ϕX∗,X2(s+ v, t)ϕX1 (s)
ϕX∗ (s) (2.91)

That means FX1,X2 uniquely determines FX1,X2,X∗ . Under the assumption that observa-
tions of (X1, X2) are distinct, Condition 1) of Proposition 1 holds. Then, the identification
of FX1,X2,X∗ implies that the value of X∗ can be uniquely determined by that of (X1, X2).
We summarize the results as follows:

Lemma 2.8.1 Suppose that X = (X1, X2) satisfies Equation (2.89) and that population
PX1,X2,X∗ satisfies Equation (2.84), i.e., observations of (X1, X2) are distinct in PX1,X2,X∗.
Then, PX1,X2 and FX1,X2 uniquely determine PX1,X2,X∗ and FX1,X2,X∗, i.e., each (x1,i, x2,i)
in PX1,X2 uniquely determines its corresponding x∗

i through PX1,X2,X∗.

Notice that having more information on the individuals in the population will make
the property of leaves in Equation (2.84) less restrictive. For example, suppose that we
observe an additional covariate W for each individual in the population and consider
(X1, X2, X

∗,W ), where we define the observed variable as X = (X1, X2,W ). Suppose
that (X1, X2) satisfy Equation (2.89) with

Fϵ1,ϵ2,X∗,W = Fϵ1,ϵ2FX∗,W

That means the errors terms (ϵ1, ϵ2) are independent of the additional covariates W . The re-
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sult above implies that distribution FX1,X2,W uniquely determines distribution FX1,X2,X∗,W .
In order to show identification in observations, we need to require that observations of
X = (X1, X2,W ) are distinct in PX,X∗ , which is weaker than, or implied by, the assump-
tion that X = (X1, X2) are distinct in PX,X∗ ,

2.8.2 A 3-measurement case

It is possible to avoid the additivity and linearity in Equation (2.89), when there are more
observables. In the case where X = (X1, X2, X3), Hu (2008) provides sufficient conditions
to identify the distribution of (X1, X2, X3, X

∗) from that of (X1, X2, X3). A version of the
conditions is presented here:

Assumption 2.8.1 The two measurements X1 and X2 and the latent variable X∗ share
the same support X = {v1, v2, . . . , vK} with K < N .

This condition is not restrictive because the results can be straightforwardly extended to
the case where supports of measurements X1 and X2 are larger than that of X∗.

Assumption 2.8.2 The observables satisfy conditional independence as follows:

F [X1, X2, X3|X∗] = F [X1|X∗]F [X2|X∗]F [X3|X∗] (2.92)

where F [X|X∗] is the conditional CDF of X on X∗.

Let fX1,X2 be the probability function of (X1, X2). Define a matrix representation of dis-
tributions as follows:

MX1,X2 = [fX1,X2 (vi, vj)]i=1,2,...,K;j=1,2,...,K (2.93)

MX1|X∗ =
[
fX1|X∗ (vi|vj)

]
i=1,2,...,K;j=1,2,...,K

(2.94)

We assume

Assumption 2.8.3 Matrix MX1,X2 has rank K.

Assumption 2.8.4 There exists a function g(·) such that E [g (X3) |X∗ = v] ̸= E [g (X3) |X∗ = ṽ]
for any v ̸= ṽ in X .

Define

MX1,X2,g = [E(g(X3)|X1 = vi, X2 = vj)× fX1,X2 (vi, vj)]i=1,2,...,K;j=1,2,...,K (2.95)
Dg|X∗ = diag {E[g(X3)|X∗ = v1], E[g(X3)|X∗ = v2], ..., E[g(X3)|X∗ = vK ]}(2.96)

We have an eigenvector-eigenvalue decomposition as follows:

MX1,X2,gM
−1
X1,X2

= MX1|X∗Dg|X∗M−1
X1|X∗ (2.97)

The following ordering condition can then uniquely determine eigenvalues and eigenvectors
on the right hand side from the observed matrix on the left hand side.
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Assumption 2.8.5 fX1|X∗ (v|v) > fX1|X∗ (ṽ|v) for any ṽ ̸= v ∈ X , i.e., v is the mode of
distribution fX1|X∗(·|v).

Under assumptions 2.8.1, 2.8.2, 2.8.3, 2.8.4, and 2.8.5, Hu (2008) shows that the joint
distribution of the observables (X1, X2, X3) uniquely determines the joint distribution of
the observed variables and the unobservable (X1, X2, X3, X

∗). Furthermore, if (X1, X2, X3)
satisfies Condition 1) in Proposition 1, then we can apply Proposition 1 as follows:

Lemma 2.8.2 Suppose that Assumptions 2.8.1, 2.8.2, 2.8.3, 2.8.4, and 2.8.5 hold, and that
population PX1,X2,X3,X∗. satisfies Equation (2.84), i.e., observations of X = (X1, X2, X3)
are distinct in PX1,X2,X3,X∗. Then, PX1,X2,X3 and FX1,X2,X3 uniquely determine PX1,X2,X3,X∗

and FX1,X2,X3,X∗, i.e., each (x1,i, x2,i, x3,i) in PX1,X2,X3 uniquely determines its correspond-
ing x∗

i through PX1,X2,X3,X∗.

Because X1 and X2 have a small discrete support, i.e., K < N , we need X3 to have a
large support to make X = (X1, X2, X3) distinct in the population. For the identification
of distributions, X3 can be a measurement as little informative as a binary indictor. But
for identification in observations in this paper, X3 needs to have a large support so that
X = (X1, X2, X3) is distinct in each observation.

Given the general result above, it is still useful to provide a simple example to illus-
trate the idea of identification in observations in this case. Suppose X1, X2, X

∗ share the
same support {0, 1} with non-degenerated misclassification probabilities fX1|X∗(1|0) > 0,
fX1|X∗(0|1) > 0, fX2|X∗(1|0) > 0, fX2|X∗(0|1) > 0, and X3 ∈ {1, 2, 3, 4} with fX3|X∗ satisfy-
ing

fX3|X∗(1|1) = fX3|X∗(2|0) = fX3|X∗(3|0) = fX3|X∗(4|1) = 0.

This population is presented in Table 2.4 and satisfies the property of leaves. The goal
is to show that the observations of (X1, X2, X3) and the distribution of (X1, X2, X3) can
uniquely determine the value of X∗ in each observation.

Assumptions in Lemma 2.8.2 hold for the example in Table 2.4. The conditional inde-
pendence, together with other assumptions, identifies the probability functions, including
fX1|X∗ . Then, for each given value X3, X∗ takes a unique value x∗, which is equal to the
mode of fX1|X∗(·|x∗) under Assumption 2.8.5. Therefore, the unobserved x∗ is uniquely
determined by the observed variables in each observation.

Because every observation of the observables (X1, X2, X3) has to be distinct in the
population of (X1, X2, X3, X

∗), each value of (X1, X2, X3) can only map to one unique
value of X∗. It is also useful to present a case where the property of leaves fails. Table 2.5
shows a violation of the property of leaves with fX3|X∗ satisfying

fX3|X∗(1|1) = fX3|X∗(2|0) = fX3|X∗(3|0) = 0
fX3|X∗(4|0) > 0 , fX3|X∗(4|1) > 0

in the example above because observations 13, 14, 15, 16 are the same as observations 17,
18, 19, 20, respectively, if we only observe (X1, X2, X3). In other words, X3 = 4 corresponds
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to X∗ = 0 and X∗ = 1. In particular, leaves (or observations) 13 and 17 are different in
population, but they are the same from a researcher’s view because they don’t observe X∗.
That is the case we rule out here because it is not consistent with the common knowledge
that no two leaves are alike.

Table 2.4: An illustration of identification in observations

observation observables unobservables probability
i X1 X2 X3 X∗ pi
1 0 0 1 0 fX1,X2,X3 (0, 0, 1) = fX1|X∗ (0|0)fX2|X∗ (0|0)fX3|X∗ (1|0)fX∗ (0)

2 1 0 1 0 fX1,X2,X3 (1, 0, 1) = fX1|X∗ (1|0)fX2|X∗ (0|0)fX3|X∗ (1|0)fX∗ (0)

3 0 1 1 0 ...
4 1 1 1 0 ...
5 0 0 2 1 ...
6 1 0 2 1 ...
7 0 1 2 1 ...
8 1 1 2 1 ...
9 0 0 3 1 ...
10 1 0 3 1 ...
11 0 1 3 1 ...
12 1 1 3 1 ...
13 0 0 4 0 ...
14 1 0 4 0 ...
15 0 1 4 0 ...
16 1 1 4 0 ...

Note: For a given X3, X∗ takes a unique value equal to the mode of fX1|X∗(·|x∗).

2.8.3 Summary

This section provides sufficient conditions for the identification of unobserved variables
in observations at the population level. Based on an observed feature of the data – the
property of leaves, the results in this paper imply that when the joint distribution of the
observable X and the unobservable X∗ satisfies certain conditions, it is not only possible
to identify their joint distribution FX,X∗ from FX , but also possible to identify the value of
the unobservable X∗ in observations. The distinctness of observed variables in observations
implies there exists a function mapping from the observables to the unobservables. Such
a function guarantees the uniqueness of the latent value in each observation. The joint
distribution can then reveal the latent value in each observation.

In the identification analysis, we consider distribution function FX to be identified as
the limit of the empirical distribution of X from a sample. The results in this paper suggests
that it is possible to use the sample counterpart of this argument to estimate unobservables
at the observation level. A simple existing example is OLS residuals in a linear regression
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Table 2.5: A violation of the property of leaves in Equation 2.84

observation observables unobservables probability
i X1 X2 X3 X∗ pi
1 0 0 1 0 fX1,X2,X3 (0, 0, 1) = fX1|X∗ (0|0)fX2|X∗ (0|0)fX3|X∗ (1|0)fX∗ (0)

2 1 0 1 0 fX1,X2,X3 (1, 0, 1) = fX1|X∗ (1|0)fX2|X∗ (0|0)fX3|X∗ (1|0)fX∗ (0)

3 0 1 1 0 ...
4 1 1 1 0 ...
5 0 0 2 1 ...
6 1 0 2 1 ...
7 0 1 2 1 ...
8 1 1 2 1 ...
9 0 0 3 1 ...
10 1 0 3 1 ...
11 0 1 3 1 ...
12 1 1 3 1 ...
13 0 0 4 0 fX1|X∗ (0|0)fX2|X∗ (0|0)fX3|X∗ (4|0)fX∗ (0)

14 1 0 4 0 ...
15 0 1 4 0 ...
16 1 1 4 0 ...
17 0 0 4 1 fX1|X∗ (0|1)fX2|X∗ (0|1)fX3|X∗ (4|1)fX∗ (1)

18 1 0 4 1 ...
19 0 1 4 1 ...
20 1 1 4 1 ...

Note: For X3 = 4, X∗ is not unique.
fX1,X2,X3(0, 0, 4) =

∑
x∗∈{0,1} fX1|X∗(0|x∗)fX2|X∗(0|x∗)fX3|X∗(4|x∗)fX∗(x∗)



2. NONPARAMETRIC IDENTIFICATION WITH UNOBSERVABLES ⇑ 62

model. The identification results here imply that researchers may tackle unobservables by
directly estimating them in a broad range of models.



3

Semiparametric and
Nonparametric Estimation

All the identification results above are at the distribution level in the sense that probability
distribution functions involving latent variables are uniquely determined by probability
distribution functions of observables, which are directly estimable from a random sample of
observables. Therefore, a maximum likelihood estimator is a straightforward choice for these
models. In addition, we also provide a class of closed-form estimators for the measurement
error models. Nevertheless, we start with the testability of the key technical assumption
for identification, i.e., the completeness condition.

3.1 Testing the Completeness Condition

This section introduces a test of completeness in a class of models based on convolution in
Hu and Shiu (2022);. The completeness condition can be expressed in terms of a family of
functions as follows: For all measurable real functions m such that E[|m(X)|] <∞, and∫

m(x)f(x, z)dx = 0 a.e. in Z, (3.1)

then m(·) = 0 a.e.. Bounded completeness is similarly defined by stating that the only
solution to Eq. (3.1) among all bounded functions is m(·) = 0 a.e.. In this section, we
focus on testing issues on bounded completeness and refer the family {f(x, z) : z ∈ Z}
satisfying the above restriction as a complete family. Define the set of all absolutely
integrable and bounded functions with domain A as L1

bnd(A) = {h(·) :
∫

X |h(x)|1dx <

∞ and supa∈A h(a) < ∞}, where A is a closed interval in R. We can rewrite Eq. (3.1) as
an integral operator with the kernel function f(x, z) through the following:

(Lfh)(z) =
∫

Xz

h (x) f(x, z)dx, (3.2)

where Lf is an integral operator from L1
bnd(X ) to L1

bnd(Z). The completeness of the family
{f(x, z) : z ∈ Z} over L1

bnd(X ) is equivalent to the injective property of the integral operator

63
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Lf using f(x, z) as a kernel function.
The injectivity of the conditional expectation operator using the conditional distribu-

tion f(X|Z) as a kernel function is used to obtain the nonparametric identification of
nonparametric IV regression models (see Newey and Powell (2003); Ai and Chen (2003);
Chernozhukov and Hansen (2005); Blundell et al. (2007b); Chernozhukov et al. (2007);
Horowitz and Lee (2007); Darolles et al. (2011); Horowitz (2011)). Hu et al. (2017) use the
result of the Volterra equation to provide sufficient conditions for nonparametric identifica-
tion of IV regression models in compact supports. Further, as discussed in Horowitz (2012)
an identification condition may not exist when an instrument is not valid. This raises the
question whether it is possible to test for the completeness. Canay et al. (2013a) consider
the hypothesis testing problems for testing completeness in the nonparametric IV regres-
sion model and show the completeness condition is, without further restrictions, untestable
against very general alternatives. Any test that controls asymptotic size will have trivial
asymptotic power against any alternative because distributions for which completeness fails
are arbitrarily close to distributions for which completeness holds. Freyberger (2017) pro-
vides a test for a restricted completeness by linking the outcome of the test to consistency
of an estimator.

The method developed in this section builds on Theorem 2.1 in Mattner (1993), the
nonparametric location family of functions {fV (x−z) : z ∈ R} is complete if and only if the
characteristic function of V is everywhere nonvanishing. Under nonparametric specifications
for an additive functional form and an independent error term, the everywhere nonvanish-
ing property of the characteristic function of observables is a sufficient condition for the
completeness condition. This enables us to construct test statistics for the completeness
using the squared modulus of empirical characteristic functions. Compared with the other
tests for completeness, the test statistics are relatively simple because they are based on
marginal distributions of observables instead of joint distributions.1 One of the advantage
of the property is that the test statistics can be used to test completeness conditions related
to unobservables. Under the nonparametric specifications, rejection of the null hypothesis
implies the nonparametric family of conditional density functions

{
fV (x − z) : z ∈ R

}
is

complete in L1
bnd(X ). Our nonparametric restrictions on the class of functions are strong

enough to allow testability for completeness. We illustrate the propose simple test statistics
for the completeness conditions in nonparametric IV regression models, and nonclassical
measurement error models with instrumental variables.

3.1.1 Testability of the Completeness Condition

There are three major implications of the testing results in Hu and Shiu (2022):
1. Uniform or point-wise tests
Hu and Shiu (2022) provides a useful result for the test of completeness condition in a
class of models based on convolution. This result is complementary to the non-testability
result of the completeness condition in Canay et al. (2013a). They consider a very general

1Other tests for completeness such as a full rank test for completeness of discrete cases in ?, and a test
for a restricted version of completeness in ? are derived in terms of joint distributions.
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class of models and show that any test that controls asymptotic size uniformly over a large
class of non-complete distributions has trivial asymptotic power against any alternative.
Denote P0 as some class of distributions where the completeness fails and P1 is the class of
distributions where the completeness holds. A uniform result on size control is to control
size uniformly over P0. Canay et al. (2013a) show any distribution in P1 can be arbitrarily
approximated by a sequence of distributions in P0. This means the impossibility of having
a nontrivial test that controls size over a large set of possible DGP’s. Within the class
of models considered here, P0 corresponds to the set of vanishing ch.f., i.e., characteristic
functions with zeros on the real line, and P1 corresponds to the set of non-vanishing ch.f..
It can be shown that none of non-vanishing ch.f. can be arbitrarily approximated by a
sequence of vanishing ch.f.. That is where the testability of completeness comes from here.

On one hand, a general result on testability is of interest in econometric theory; On the
other hand, practitioners usually work on a specific model in empirical applications and
want to know what can be tested for such a specific model instead of an extremely general
model. Since our test only focuses on a class of models, it would control size point-wisely
for any distribution satisfying the null hypothesis but would not control size uniformly. If
an empirical model falls into this class of specifications, Hu and Shiu (2022) shows that
testing the completeness condition is feasible and actually simple. In that sense, our results
are complementary to the result in Canay et al. (2013a). Therefore, the point-wise results
in Hu and Shiu (2022) are very useful for empirical research using this class of models,
especially given the existing uniform non-testibility result.

2. Non-testability of continuity
The same uniformity argument can be applied to tests of the continuity assumption. Sup-
pose we consider a general nonparametric regression model Y = m(X) + η with X ∈ R
and want to test the continuity assumption imposed on the regression function m(·) over
the real line using a random sample of {Y,X}. Without imposing enough restrictions, one
can establish a non-testability result of the continuity assumption simply because we only
observe a countable number of possible values in the support of regressor X as the sample
size goes to infinity. One can always find a discontinuous function which is observationally
equivalent to the true continuous regression function m(·). In other words, a continuous
function over the real line only exists at the population level. Such a non-testability result
is empirically vacuous.

Furthermore, the results in Canay et al. (2013a) actually rely on such a continuity
restriction. In their section, the completeness of f(X|Z) is defined on the whole support of
two continuous variables X and Z with X ∈ R and Z ∈ R. They show that one can always
use a sequence of discontinuous step functions to approximate the continuous distribution
function f(X|Z) defined on the support. The completeness, which is defined in a functional
space of continuous functions over R , doesn’t hold with these discontinuous step functions.
2 Given a random sample, the limit of that sequence of discontinuous step functions is
observationally equivalent to the true continuous distribution function f(X|Z). That is

2It is possible that a sequence of step functions is complete in the functional space of continuous functions
over a compact set. For example, a sequence of the so-called Haar wavelet functions, which are discontinuous
step functions, can uniformly approximates any continuous real function with compact support.
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why the completeness condition is not testable in this general setting. In other words, their
proof of the non-testability of completeness is in fact based on the non-testability of the
continuity restriction. That is also why they directly rule out cases with a discrete X.
The full support of a discrete X can be identified in a large sample. It is well known that
completeness is the same as the full rank condition of a matrix, which is testable, in the
discrete case.

The key of the testability of the completeness condition actually lies in the case where
X has a support with infinitely countable points. Because one can only observe or identify
such a support with a random sample as the sample size goes to infinity, restrictions im-
posed beyond such a support will have to be put into non-testable assumptions. Whether
completeness is testable in this countable discrete case is an open question for future re-
search.

3. Bounded completeness – identification of density functions
Hu and Shiu (2022) tests bounded completeness, i.e., completeness over a space of bounded
functions. One argument against considering the set of bounded function is that it rules
out polynomials, in particular, linear functions over the real line. In a standard nonpara-
metric IV model, we need the completeness of f(X|Z) to identify regression function m(·)
from E[Y |Z] =

∫
m(X)f(X|Z)dX. Therefore, bounded completeness is not enough to

nonparametrically identify m(·) in the case where the support of X is the whole real line
and m(·) is linear. However, the bounded completeness is very useful in measurement er-
ror models, where the goal is to identify the density function of a latent variable X∗ from
f(X) =

∫
f(X|X∗)f(X∗)dX∗. The key identification assumption is the completeness of

f(X|X∗). In this case, bounded completeness is useful enough even if the support of X∗

is the whole real line because it is a quite mild restriction to assume f(X∗) is bounded.
Our tests are based on a convolution setting, where f(X|X∗) = fϵ(X−X∗) with a classical
measurement error ϵ. In such a convolution setting, completeness has a simple implica-
tion, i.e., a non-vanishing ch.f. of ϵ. Under the so-called non-differential measurement
error assumption, we may consider the relationship between dependent variable Y and X∗

though f(X,Y ) =
∫
f(X|X∗)f(X∗, Y )dX∗. Notice that bounded completeness is enough

to identify the joint density f(X∗, Y ). That means we can also identify the conditional
mean function E[Y |X∗] =

∫
Y f(Y |X∗)dY , which doesn’t need to be bounded even if the

support of Y is the whole real line. In that sense, the possible unboundedness of the mean
function is due to the unboundedness of the function, i.e., g(Y)=Y, of which we are taking
expectation E[g(Y )|X∗], while the density function f(Y |X∗) is usually bounded. In other
words, bounded completeness is still useful for models with an unbounded conditional mean
function through the identification of the corresponding density function.

3.1.2 Sufficient Conditions for Completeness

Although the non-testable result in Canay et al. (2013a) has been established in a very
general settings, we can provide a test for the completeness for a subclass of conditional
density functions. The next lemma is a directly from Theorem 2.1 in Mattner (1993).
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Lemma 3.1.1 The nonparametric family {fV (x − z) : z ∈ R} is complete in L1
bnd(X ) if

and only if the characteristic function of V is everywhere nonvanishing.

A range of a function m is denoted by Range(m) = {m1 : m1 = m (z1) for some z1 ∈
Z}, where Z is the support of z. We can write the result as follows.

Lemma 3.1.2 Suppose Range(m) = R and V is independent of Z. Consider

X = m(Z) + V. (3.3)

Then, the nonparametric family of conditional density functions
{
f(x|z) = fV (x−m (z)) :

z ∈ Z
}

is complete in L1
bnd(X ) if and only if the characteristic function of V is everywhere

nonvanishing.

Let i =
√
−1 be the unit imaginary number. Define the marginal characteristic functions

ϕX , ϕm and ϕV by ϕX(t) = E
[
eitX

]
, ϕm(t) = E

[
eitm(Z)

]
and ϕV (t) = E

[
eitV

]
, respectively.

Given V is independent of Z and X = m(Z) + V , we have

ϕX(t) = E
[
eitX

]
= E

[
eitm(Z)

]
· E
[
eitV

]
= ϕm(t) · ϕV (t). (3.4)

This implies that nonzero points of the characteristic function of X are also nonzero points
of the characteristic function of V . If the characteristic function of X is everywhere nonva-
nishing, then the characteristic function of V is also everywhere nonvanishing.

Proposition 2 Consider X = m(Z) + V , where Range(m) = R and V is independent of
Z. If the characteristic function of X is everywhere nonvanishing, then the nonparametric
family of conditional density functions

{
f(x|z) = fV (x − m (z)) : z ∈ Z

}
is complete in

L1
bnd(X ).

Under the range restriction and the independent condition, the characteristic func-
tions ϕX(t) do not vanish on the real line is a sufficient condition for the completeness
which is testable. The common distribution families such as the normal, chi-squared,
Cauchy, gamma, Student, Laplace, and α-stable and exponential distributions have this
non-vanishing property for their characteristic functions.

D’Haultfoeuille (2011) extends the nonparametric additive models with independent
errors in Eq. (3.3) to the following nonparametric models with an additive separability:

X = Λ(m(Z) + V ). (3.5)

We summarize part (i) of Theorem 2.1 in D’Haultfoeuille (2011) in the following lemma.

Lemma 3.1.3 Suppose Eq. (3.5) hold. Assume Range(m) = R and V is independent of Z.
If the characteristic function of V is smooth or equivalently, of class C∞ and everywhere
nonvanishing, then the nonparametric family {f(x|z) : z ∈ R} is complete in L1

bnd(X ).
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Thus, under the nonparametric specifications in Eqs. (3.3) and (3.5), the completeness
condition is more accessible and the high level completeness conditions required for identifi-
cations in many econometric models can be verify in practice by examining the nonvanishing
property of characteristic functions. The technical details in this test can be found in Hu
and Shiu (2022).

3.2 Sieve Maximum Likelihood Estimators

Consider the 2.1-measurement model in Theorem 2.4.2, where the observed density is asso-
ciated with the unobserved ones as follows:

fX,Y,Z (x, y, z) =
∫

X ∗
fX|X∗(x|x∗)fY |X∗(y|x∗)fZ|X∗(z|x∗)fX∗(x∗)dx∗. (3.6)

Our identification results provide conditions under which this equation has a unique solution(
fX|X∗ , fY |X∗ , fZ|X∗ , fX∗

)
. Suppose that Y is the dependent variable and the model of

interest is described by a parametric conditional density function as

fY |X∗(y|x∗) = fY |X∗(y|x∗; θ). (3.7)

With an i.i.d. sample {xi, yi, zi}i=1,2,...,N , we can use a sieve maximum likelihood estimator
( Shen (1997) and Chen and Shen (1998) ) based on

(
θ̂, f̂x|x∗ , f̂z|x∗ , f̂x∗

)
= arg max

(θ,f1,f2,f3)∈AN

1
N

N∑
i=1

ln
∫

X ∗
f1(xi|x∗)fY |X∗(yi|x∗; θ)f2(zi|x∗)f3(x∗)dx∗,

(3.8)
where AN is approximating sieve spaces which contain truncated series as parametric ap-
proximations to densities

(
fX|X∗ , fZ|X∗ , fX∗

)
. For example, function f1(x|x∗) in the sieve

space AN can be as follows:

f1(x|x∗) =
JN∑
j=1

KN∑
k=1

βjkpj (x− x∗) pk (x∗) ,

where pj(·) is a known basis function, such as power series, splines, Fourier series, etc.
and JN and KN are smoothing parameters. The choice of a sieve space depends on how
well it can approximate the original functional space and how much computation burden
it may lead to (See section 2.3.6 of Chen (2007) for details). One advantage of a sieve
estimator is that it is relatively convenient to impose restrictions on the sieve space AN . To
be specific, Assumption 2.4.8 can be imposed on the sieve coefficients βjk (See section S4
of supplementary materials of Hu and Schennach (2008) for details). Since the coefficients
are treated as unknown parameters in the likelihood function, the parameters of interest in
Equation (3.8) can be estimated just as a parametric MLE. The number of coefficients JN×
KN diverges at a given speed with the sample size N , which makes the approximation more
flexible with a larger sample size. A useful result worth mentioning is that the parametric
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part of the model can converge at a fast rate, i.e., θ̂ can be
√
n consistent and asymptotically

normally distributed under suitable assumptions ( Shen (1997) ). We refer to Hu and
Schennach (2008) , Carroll et al. (2010) and supplementary materials for more discussion
on this semi-nonparametric extremum estimator.

3.2.1 A Setup

Given the general nonparametric identification, we develop our estimator based on an i.i.d
sample, which can be extended to for time series data. We assume that there is a random
sample {xi, yi, zi}ni=1.

We adopt a parametric specification in equation (3.7) and leave other elements nonpara-
metrically. Let the true value of the unknowns be α0 ≡ (θT0 , f01, f02, f03)T ≡ (θT0 , fx|x∗ , fz|x∗ , fx∗)T ,
where fA|B denotes the distribution of A conditional on B. We then introduce a sieve MLE
estimator α̂ for α0, and establish the asymptotic normality of θ̂. These results can also be
extended to the case where the function m is misspecified.

Following Hu and Schennach (2008) and Carroll et al. (2010), we consider the widely
used Hölder space of functions. Let ξ = (ξ1, ξ2, ξ3)T ∈ R3, a = (a1, a2, a3)T , and ∇ah(ξ) ≡
∂a1+a2+a3h(ξ1,ξ2,ξ3)

∂ξ
a1
1 ∂ξ

a2
2 ∂ξ

a3
3

denote the (a1 + a2 + a3)th derivative. Let ∥·∥E denote the Euclidean
norm. Let V ⊆ R3 and γ be the largest integer satisfying γ > γ. The Hölder space Λγ(V)
of order γ > 0 is a space of functions h : V 7→ R, such that the first γ derivatives are
continuous and bounded, and the γth derivative is Hölder continuous with the exponent
γ − γ ∈ (0, 1]. We define a Hölder ball as Λγc (V) ≡ {h ∈ Λγ(V) : ∥h∥Λγ ≤ c <∞}, in which

∥h∥Λγ ≡ max
a1+a2+a3≤γ

sup
ξ
|∇ah(ξ)|+ max

a1+a2+a3=γ
sup
ξ ̸=ξ′

|∇ah(ξ)−∇ah(ξ′)|
(∥ξ − ξ′∥E)γ−γ <∞.

The space containing f01 = fx|x∗ are assumed to be

F1 =
{
f1(·|·) ∈ Λγ1

c (X × X ∗) : Assumptions in Theorem 2.4.2 hold,
f1(·|x∗) is a positive density function for all x∗ ∈ X ∗

}
.

Similarly, we assume f02 and f03 are in the following functional spaces

F2 =
{
f2(·|·) ∈ Λγ2

c (Z × X ∗) : Assumptions in Theorem 2.4.2 hold,
f2(·|x∗) is a positive density function for all x∗ ∈ X ∗

}
,

and

F3 = {f3(·) ∈ Λγ3
c (X ∗) : f3(·) is a positive density function } .

Let A = Θ × F1 × F2 × F3 as the parameter space. The log-joint likelihood for α ≡
(θT , f1, f2, f3)T ∈ A is given by:

n∑
i=1

log f(xi, yi, zi) =
n∑
i=1

ℓ(Di;α),
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in which Di = (xi, yi, zi) and

ℓ(Di;α) ≡ ℓ(xi, yi, zi; θ, f1, f2, f3)

= log{
∫
f1(xi|x∗)fy|x∗(yi|x∗; θ)f2(zi|x∗)f3(x∗)dx∗}.

Let E[·] denote the expectation with respect to the underlying true data generating process
for Di. Then

α0 = arg sup
α∈A

E [ℓ(Di;α)] .

We then use a sequence of finite-dimensional sieve spaces An = Θ × Fn1 × Fn2 × Fn3 to
approximate the functional space A = Θ× F1 × F2 × F3. The semiparametric sieve MLE
α̂n =

(
θ̂T , f̂1, f̂2, f̂3

)T
∈ An for α0 ∈ A is defined as:

α̂n = arg max
α∈An

n∑
i=1

ℓ(Di;α).

Let pkn(·) be a kn × 1−vector of known basis functions, such as power series, splines,
Fourier series, Legendre polynomials, Hermite polynomials, etc. We use linear sieves to
directly approximate unknown densities:

Fn1 =
{
f1(x|x∗) = pk1,n(x− x∗)T

[
β1,i,j

]
i,j
pk1,n(x∗) ∈ F1

}

Fn2 =
{
f2(z|x∗) =

[
pk2,n(z)T

[
β2,i,j

]
i,j
pk2,n(x∗)

]2
∈ F2

}

Fn3 =
{
f3(x∗) =

[
pk3,n(x∗)Tβ3

]2
∈ F3

}
where

[
β1,i,j

]
i,j

and
[
β2,i,j

]
i,j

represent matrices of sieve coefficients. Below we present the
asymptotic properties of the proposed estimator.

3.2.2 Consistency

Here we provide sufficient conditions for the consistency of the sieve estimator α̂n =(
θ̂T , f̂1, f̂2, f̂3,

)T
.

Assumption 3.2.1 (i) All the assumptions in Theorem 2.4.2 hold; (ii) fx|x∗ (·|·) ∈ F1 with
γ1 > 1/2 ; (iii) fz|x∗(·|·) ∈ F2 with γ2 > 1; (iv) fx∗(·) ∈ F3 with γ3 > 1.

Assumption 3.2.2 (i) {xi, yi, zi}ni=1 is i.i.d.; (ii) f(y|x∗; θ) is continuous in θ ∈ Θ, and Θ
is a compact subset of Rdθ ; (iii) θ0 ∈ Θ is the unique solution of maxθE[lnf(y|x∗; θ)] over
θ ∈ Θ.

We define a norm on A as: ∥α∥s = ∥θ∥E + ∥f1∥∞,ω1
+ ∥f2∥∞,ω2

+ ∥f3∥∞,ω3
in which

∥h∥∞,ωj
≡ supξ |h(ξ)ωj (ξ)| with ωj (ξ) =

(
1 + ∥ξ∥2E

)−ςj/2
, ςj > 0 for j = 1, 2, 3. We assume
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Assumption 3.2.3 (i) −∞ < E [ℓ(Di;α0)] < ∞, E [ℓ(Di;α)] is upper semicontinuous on
A under the metric ∥·∥s; (ii) there is a finite τ > 0 and a random variable U(Di) with
E{U(Di)} <∞ such that supα∈An:∥α−α0∥s≤δ |ℓ(Di;α)− ℓ(Di;α0)| ≤ δτU(Di).

Assumption 3.2.4 (i) pkj,n(·) is a kj,n × 1−vector of basis functions on R for j = 1, 2, 3;
(ii) min{k2

1,n, k
2
2,n, k3,n} → ∞ and max{k2

1,n, k
2
2,n, k3,n}/n→ 0.

We then have

Lemma 3.2.1 Under Assumptions 3.2.1–3.2.4, we have ∥α̂n − α0∥s = op(1).

This is a direct extension from Carroll et al. (2010) , which uses theorem 3.1 in Chen (2007).

3.2.3 Convergence Rates and Asymptotic Normality

The asymptotic properties of our estimator is a direct extension of that in Carroll et al.
(2010). We list the conditions below for readers’ convenience.

Convergence Rates of Nonparametric Part

Given the consistency shown in Lemma 3.2.1, we focus on a shrinking || · ||s−neighborhood
around α0. Let A0s ≡ {α ∈ A : ||α − α0||s = o(1), ||α||s ≤ c0 < c} and A0sn ≡ {α ∈
An : ||α − α0||s = o(1), ||α||s ≤ c0 < c}. We assume that both A0s and A0sn are convex
parameter spaces, and that ℓ(Di;α + τv) is twice continuously differentiable at τ = 0 for
almost all Di and any direction v ∈ A0s.

Define the pathwise first and second derivatives of the sieve loglikelihood in the direction
v as

dℓ(Di;α)
dα

[v] ≡ dℓ(Di;α+ τv)
dτ

|τ=0; d2ℓ(Di;α)
dαdαT

[v, v] ≡ d2ℓ(Di;α+ τv)
dτ2 |τ=0.

Mimicing Ai and Chen (2007), for any α1, α2 ∈ A0s, we define a pseudo metric || · ||2 as

∥α1 − α2∥2 ≡

√
−E

(
d2ℓ(Di;α0)
dαdαT

[α1 − α2, α1 − α2]
)

.

Our goal is to show that α̂n converges to α0 at a rate faster than n−1/4 under the pseudo
metric ∥·∥2. We make the following assumptions:

Assumption 3.2.5 (i) ςj > γj for j = 1, 2, 3; (ii) max{k−γ1
1,n , k

−γ2
2,n , k

−γ3
3,n } = o(n−1/4).

Assumption 3.2.6 (i) A0s is convex at α0 and θ0 ∈ int (Θ); (ii) ℓ(Di;α) is twice contin-
uously pathwise differentiable with respect to α ∈ A0s, and m(y∗; θ) is twice continuously
differentiable at θ0.

Assumption 3.2.7 supα̃∈A0s
supα∈A0sn

∣∣∣dℓ(Di;α̃)
dα

[
α−α0

∥α−α0∥s

]∣∣∣ ≤ U(Di) for a random variable
U(Di) with E{[U(Di)]2} <∞.
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Assumption 3.2.8 (i) supv∈A0s:||v||s=1−E
(
d2ℓ(Di;α0)
dαdαT [v, v]

)
≤ C <∞; (ii) uniformly over

α̃ ∈ A0s and α ∈ A0sn, we have

−E
(
d2ℓ(Di; α̃)
dαdαT

[α− α0, α− α0]
)

= ∥α− α0∥22 × {1 + o(1)}.

These assumptions are standard in the literature. As a direct application of Theorem 3.2
of Shen and Wong (1994) to the local parameter space A0s and the local sieve space A0sn,
we have

Theorem 3.2.1 Let γ ≡ min{γ1/2, γ2/2, γ3} > 1/2. Under assumptions 3.2.1–3.2.8, if
k2

1,n = O

(
n

1
γ1+1

)
, k2

2,n = O

(
n

1
γ2+1

)
, and k3,n = O

(
n

1
2γ3+1

)
, then

∥α̂n − α0∥2 = OP

(
n

−γ
2γ+1

)
= oP

(
n−1/4

)
.

Asymptotic Normality of Parametric Part

This section presents sufficient conditions for the asymptotic normality of the parametric
part of the model. Define an inner product corresponding to the pseudo metric ∥·∥2:

⟨v1, v2⟩2 ≡ −E
[
d2ℓ(Di;α0)
dαdαT

[v1, v2]
]
,

where
d2ℓ(Di;α0)
dαdαT

[v1, v2] ≡ d2ℓ(Di;α0 + τ1v1 + τ2v2)
dτ1dτ2

|τ1=τ2=0.

Let V denote the closure of the linear span of A−{α0} under the metric ∥·∥2. Then(
V, ∥·∥2

)
is a Hilbert space. We define V = Rdθ×U with U ≡ F1 ×F2 ×F3−{(f01, f02, f03)}

and let h = (f1, f2, f3) denote all the unknown densities. The pathwise first derivative can
be written as

dℓ(Di;α0)
dα

[α− α0] = dℓ(Di;α0)
dθT

(θ − θ0) + dℓ(Di;α0)
dh

[h− h0]

=
(
dℓ(Di;α0)

dθT
− dℓ(D;α0)

dh
[µ]
)

(θ − θ0),

with h− h0 ≡ −µ× (θ − θ0), and in which

dℓ(Di;α0)
dh

[h− h0] = dℓ(Di; θ0, h0(1− τ) + τh)
dτ

|τ=0

= dℓ(Di;α0)
df1

[f1 − f01] + dℓ(Di;α0)
df2

[f2 − f02]

+dℓ(Di;α0)
df3

[f3 − f03] .
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Note that

E

(
d2ℓ(Di;α0)
dαdαT

[α− α0, α− α0]
)

= (θ − θ0)TE
(
d2ℓ(Di;α0)
dθdθT

− 2d
2ℓ(Di;α0)
dθdhT

[µ] + d2ℓ(Di;α0)
dhdhT

[µ, µ]
)

(θ − θ0),

with h− h0 ≡ −µ× (θ − θ0), and in which

d2ℓ(Di;α0)
dθdhT

[h− h0] = d(∂ℓ(Di; θ0, h0(1− τ) + τh)/∂θ)
dτ

|τ=0,

d2ℓ(Di;α0)
dhdhT

[h− h0, h− h0] = d2ℓ(Di; θ0, h0(1− τ) + τh)
dτ2 |τ=0.

For each component θk (of θ), k = 1, ..., dθ, suppose there exists a µ∗k ∈ U that solves:

µ∗k : inf
µk∈U

E

{
−
(
∂2ℓ(Di;α0)
∂θk∂θk

− 2d
2ℓ(Di;α0)
∂θkdhT

[µk] + d2ℓ(Di;α0)
dhdhT

[µk, µk]
)}

.

Denote µ∗ =
(
µ∗1, µ∗2, ..., µ∗dθ

)
with each µ∗k ∈ U , and

dℓ(Di;α0)
dh

[µ∗] =
(
dℓ(Di;α0)

dh

[
µ∗1
]
, ...,

dℓ(Di;α0)
dh

[
µ∗dθ

])
,

d2ℓ(Di;α0)
∂θdhT

[µ∗] =
(
d2ℓ(Di;α0)

∂θdh
[µ∗1], ..., d

2ℓ(Di;α0)
∂θdh

[µ∗dθ ]
)
,

d2ℓ(Di;α0)
dhdhT

[µ∗, µ∗] =


d2ℓ(Di;α0)
dhdhT [µ∗1, µ∗1] · · · d2ℓ(Di;α0)

dhdhT [µ∗1, µ∗dθ ]
· · · · · · · · ·

d2ℓ(Di;α0)
dhdhT [µ∗dθ , µ∗1] · · · d2ℓ(Di;α0)

dhdhT [µ∗dθ , µ∗dθ ]

 .
We also define

V∗ ≡ −E
(
∂2ℓ(Di;α0)
∂θ∂θT

− 2d
2ℓ(Di;α0)
∂θdhT

[µ∗] + d2ℓ(Di;α0)
dhdhT

[µ∗, µ∗]
)
. (3.9)

We then consider a linear functional of α, which is λT θ for any λ ∈ Rdθ with λ ̸= 0.
Since

sup
α−α0 ̸=0

|λT (θ − θ0) |2

||α− α0||22

= sup
θ ̸=θ0,µ̸=0

(θ − θ0)TλλT (θ − θ0)
(θ − θ0)TE

{
−
(
d2ℓ(Di;α0)
dθdθT − 2d

2ℓ(Di;α0)
dθdhT [µ] + d2ℓ(Di;α0)

dhdhT [µ, µ]
)}

(θ − θ0)

= λT (V∗)−1λ,
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the functional λT (θ − θ0) is bounded if and only if the matrix V∗ is nonsingular.
Suppose that V∗ is nonsingular. For any fixed λ ̸= 0, denote υ∗ ≡ (v∗

θ , v
∗
h) with v∗

θ ≡
(V∗)−1λ and v∗

h ≡ −µ∗ × v∗
θ . Then the Riesz representation theorem implies: λT (θ − θ0) =

⟨υ∗, α− α0⟩2 for all α ∈ A. We have:

λT (θ̂n − θ0) = ⟨υ∗, α̂n − α0⟩2 (3.10)

= 1
n

∑n
i=1

dℓ(Di;α0)
dα

[υ∗] + op{n−1/2}.

Denote N0 = {α ∈ A0s : ∥α− α0∥2 = o(n−1/4)} and N0n = {α ∈ A0sn : ∥α− α0∥2 =
o(n−1/4)}. We provide additional sufficient for asymptotic normality of sieve MLE θ̂n as
follows:

Assumption 3.2.9 µ∗ exists (i.e., µ∗k ∈ U for k = 1, ..., dθ), and V∗ is positive-definite.

3

Assumption 3.2.10 There is a υ∗
n ∈ An−{α0}, such that ||υ∗

n−υ∗||2 = o(1) and ∥υ∗
n − υ∗∥2×

∥α̂n − α0∥2 = oP ( 1√
n

).

Assumption 3.2.11 There is a random variable U(Di) with E{[U(Di)]2} < ∞ and a
non-negative measurable function η with limδ→0 η(δ) = 0, such that, for all α ∈ N0n,

sup
α∈N0

∣∣∣∣∣d2ℓ(Di;α)
dαdαT

[α− α0, υ
∗
n]
∣∣∣∣∣ ≤ U(Di)× η(||α− α0||s).

Assumption 3.2.12 Uniformly over α ∈ N0 and α ∈ N0n,

E

(
d2ℓ(Di;α)
dαdαT

[α− α0, υ
∗
n]− d2ℓ(Di;α0)

dαdαT
[α− α0, υ

∗
n]
)

= o

( 1√
n

)
.

Assumption 3.2.13 E{
(
dℓ(Di;α0)

dα [υ∗
n − υ∗]

)2
} goes to zero as ∥υ∗

n − υ∗∥2 goes to zero.

Recall the definitions of Fisher inner product and the Fisher norm:

⟨v1, v2⟩ ≡ E
{(

dℓ(Di;α0)
dα

[v1]
)(

dℓ(Di;α0)
dα

[v2]
)}

, ∥v∥ ≡
√
⟨v, v⟩.

3This assumption is necessary for the root-n convergence rate, but it may not always hold. See Chen and
Liao (2014), Chen et al. (2014), Chen and Pouzo (2015), and Hahn and Liao (2018) for examples of ill-posed
inverse problems in which the finite dimensional functionals fail to be root-n estimable. To be specific, Chen
and Liao (2014) and Chen et al. (2014) provide a rate-adaptive asymptotic normality result by examining
the functional of interest on a sieve tangent space where a Riesz representer always exists regardless of
whether the functional is regular or irregular; Chen and Pouzo (2015) provide unified asymptotic theories
for a penalized sieve minimum distance (PSMD) based inferences on possibly irregular functional of unknown
parameters in general semi/nonparametric conditional moment restrictions. Hahn and Liao (2018) develop
a few examples to show that regular estimation is impossible with severe ill-posedness, and may be possible
with mild ill-posedness by imposing restrictions on a parameter space.
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Under correct specification, m(y∗; θ0) = E(z|y∗, l), it can be shown that ∥v∥ = ∥v∥2 and
⟨v1, v2⟩ = ⟨v1, v2⟩2. Thus, the space V is also the closure of the linear span of A−{α0}
under the Fisher metric ∥·∥.
Suppose that θ has dθ components, and write its kth component as θk. Write µ∗ =(
µ∗1, µ∗2, ..., µ∗dθ

)
, where we compute µ∗k ≡

(
µ∗k

1 , µ
∗k
2 , µ

∗k
3

)T
∈ U as the solution to

inf
µk∈U

E

{(
dℓ(Di;α0)

dθk
− dℓ(Di;α0)

dh

[
µk
])2}

= inf
(µ1,µ2,µ3)T ∈U

E


 dℓ(Di;α0)

dθk − dℓ(Di;α0)
df1

[µ1]
−dℓ(Di;α0)

df2
[µ2]− dℓ(Di;α0)

df3
[µ3]

2
 .

This equation also defines dℓ(Di;α0)
dh [µ∗]. Then Sθ0 ≡

dℓ(Di;α0)
dθT − dℓ(Di;α0)

dh [µ∗] becomes the
semiparametric efficient score for θ0, and

I∗ ≡ E
[
STθ0Sθ0

]
= V∗ (3.11)

becomes the semiparametric information bound for θ0.
Finally, we can show that the sieve MLE θ̂n is asymptotically normally distributed

around θ0 as follows:

Theorem 3.2.2 Suppose that Assumptions of Lemma 3.2.1, and Assumptions 3.2.5–3.2.13
hold. Then:

√
n(θ̂n−θ0) d→ N(0, V −1

∗ I∗V
−1

∗ ), with V∗ defined in equation (3.9) and I∗ given
by equation (3.11).

3.3 Closed-form Estimators

In most of the existing estimators, there exists a gap between identification and estimation in
the sense that not all the identification conditions are imposed in the estimation procedure.
This section introduces a class of estimators, which may fill this gap at the expense of
efficiency.

Although the sieve MLE in (3.8) is quite general and flexible, a few identification results
in this section provide closed-form expressions for the unobserved components as functions
of observed distribution functions, which can lead to straightforward closed-form estima-
tors. In the case where X∗ is continuous, for example, Li and Vuong (1998) suggest that the
distribution of the latent variable fX∗ in equation (2.90) can be estimated using Kotlarski’s
identity with characteristic functions being replaced by corresponding empirical character-
istic functions. In general, one can consider a nonlinear regression model in the framework
of the 3-measurement model as

Y = g1(X∗) + η (3.12)
X = g2 (X∗) + ϵ

Z = g3 (X∗) + ϵ′
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where ϵ and ϵ′ are independent of X∗ and η with E [η|X∗] = 0. Since X∗ is unobserved, we
may normalize g3 (X∗) = X∗. Schennach (2004b) provides a closed-form estimator of g1(·)
in the case where g2 (X∗) = X∗ using Kotlarski’s identity as follows:4

g1(x∗) =
1

2π
∫+∞

−∞ e−it1x∗
(

[ ∂
∂s
ϕX,Y (t1,s)]s=0
iϕX(t1) ϕX∗ (t1)

)
dt1

1
2π
∫+∞

−∞ e−itx∗ϕX∗ (t) dt

where fX∗ is identified from the characteristic function

ϕX∗ (t) = exp

∫ t

0

[
∂
∂t2
ϕX,Z (s, t2)

]
t2=0

iϕX (s) ds

 .
Hu and Sasaki (2015) generalize that estimator to the case where g2(·) is a polynomial.
Whether a closed-form estimator of g1(·) exists or not with a general g2(·) is a challenging
and open question for future research.

In the case where X∗ is discrete as in Theorem 2.4.1 and Corollary 2.5.1, the sieve MLE
is still applicable. Nevertheless, the identification strategy in the discrete case also leads to
a closed-form estimator for the unknown probabilities in the sense that one can mimic the
identification procedure to solve for the unknowns. In estimation, it is more convenient to
use the equation below than directly using Equation (2.36)

E [ω (Y ) |X = x, Z = z] fX,Z (x, z) =
∑

x∗∈X ∗
fX|X∗(x|x∗)E [ω (Y ) |x∗] fZ|X∗(z|x∗)fX∗(x∗),

(3.13)
which leads to an eigenvalue-eigenvector decomposition

MX,ω,ZM
−1
X,Z = MX|X∗Dω|X∗M−1

X|X∗ (3.14)

with

MX,ω,Z = [E [ω (Y ) |X = xk, Z = zl] fX,Z (xk, zl)]k=1,2,...,K;l=1,2,...,K (3.15)
Dω|X∗ = diag {E [ω (Y ) |x∗

1] , E [ω (Y ) |x∗
2] , . . . , E [ω (Y ) |x∗

K ]} .

The matrix MX,ω,Z can be directly estimated as

M̂X,ω,Z =
[

1
N

N∑
i=1

ω (Yi) 1 (Xi = xk, Zi = zl)
]
k=1,2,...,K;l=1,2,...,K

where 1(·) is the indicator function. Similarly, matrix MX,Z can be estimated as M̂X,Z =
M̂X,ω,Z

∣∣∣
ω(·)=1

. Solving for eigenvectors and eigenvalues in Equation (3.14) can be consid-
ered as a procedure to minimize the Euclidean distance ∥ · ∥ between the left hand side and

4Schennach (2007) also provides a closed-form estimator for a similar nonparametric regression model
using a generalized function approach.
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the right hand side of that equation, in fact, to zero. Moreover, Assumption 2.8.5 can be
directly used to order the eigenvectors or the eigenvalues. With a finite sample, estimated
probabilities might be outside [0, 1] or even a complex number. One remedy is to use Equa-
tion (3.14) as a moment condition to estimate the unknown probabilities under suitable
restrictions. To be specific, matrices MX|X∗ and Dω|X∗ can be estimated as follows:

(
M̂X|X∗ , D̂ω|X∗

)
= arg min

M,D

∥∥∥∥M̂X,ω,Z

(
M̂X,Z

)−1
M −M ×D

∥∥∥∥ (3.16)

such that
1) each entry in M is in [0, 1] ;
2) each column sum of M equals 1 and D is diagonal;
3) entries in M and D satisfy Assumptions 2.8.4 and 2.8.5.

This closed-form estimator performs well in empirical studies, such as An et al. (2017) , An
et al. (2010) , Feng and Hu (2013) , and Hu et al. (2013b) .

Such closed-form estimators may not be as efficient as the sieve MLE, but they have
their advantages that there are much fewer nuisance parameters involved than indirect
estimators and that the computation of closed-form estimators may not rely on optimization
algorithms, which usually involve many iterations and are time-consuming. An optimization
algorithm can only guarantee a local maximum or minimum, while a closed-form estimator
is a global one by construction. Although a closed-form estimator may not always exist,
it is much more straightforward and transparent, if available, than an indirect estimator.
Such closed-form estimation may be a challenging but useful approach for future research.

3.3.1 Regression with Misclassification: Simulations and Code

This section provides simulation results for both the minimum distance estimator and the
plug-in estimator proposed for a linear regression model with a misclassified regressor and
its two measurements. 5 We consider a linear regression model of a wage equation as
follows:

Y = m(X∗) + η

where Y is log wage, X∗ is the true education level, and η is a regression error with a normal
distribution N(0, 0.52). Instead of observing X∗, we observed two measurements, i.e., the
self-reported education attainment X and the transcript-recorded education attainment Z

We generate the data as follows: First, we generate the true education attainment X∗

using its marginal distribution; Second, we generate the self-reported education attainment
X and the transcript-recorded education attainment Z using their associated error matrices
separately. We also generate the wage corresponding to the true education attainment with
the normal distribution as the wage shocks. We replicate the above process for 1000 times
for sample size (N) 500 and 1000, respectively.

5I am grateful for Professor Ruli Xiao at Indiana University for providing MATLAB codes and other
materials in this and next sections.
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As discussed above, we consider two estimators, i.e., a minimum distance estimator in
Equation (3.16) and a plug-in estimator following step-by-step the identification procedure
using the eigenvalue-eigenvector decomposition in Equation (3.14). Tables 3.1 and 3.2
provide the true values and the estimates of the mean wages and the marginal probabilities
of the latent education levels. Table 3.3 presents the true values of the misclassification
probability in the two measurements. Tables 3.4, 3.5, 3.6, and 3.7 include the estimation
results in the simulations. Click here ↗ to download the Matlab code for the simulations.

Table 3.1: Estimates of Mean Wage
True Min-distance Plug-in Estimator

N=500 N=1000 N=500 N=1000
High school 2.0250 2.0227∗∗∗ 2.0249∗∗∗ 2.0232∗∗∗ 2.0252∗∗∗

(0.0411) (0.0289) (0.0419) (0.0293)
Some College 2.2074 2.2081∗∗∗ 2.2073∗∗∗ 2.2073∗∗∗ 2.2071∗∗∗

(0.0446) (0.0312) (0.0461) (0.0317)
Bachelor 2.4456 2.4451∗∗∗ 2.4441∗∗∗ 2.4446∗∗∗ 2.4438∗∗∗

(0.0391) (0.0275) (0.0394) (0.0278)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 Symbols ∗∗∗ indicate that the test is significant at a level of 1%.

Table 3.2: Estimates of True Education Attainment’s Marginal Probabilities
True Min-distance Plug-in Estimator

N=500 N=1000 N=500 N=1000
High school 0.3432 0.3412∗∗∗ 0.3413∗∗∗ 0.3432∗∗∗ 0.3424∗∗∗

(0.0393) (0.0328) (0.0623) (0.0376)
Some College 0.3022 0.3073∗∗∗ 0.3060∗∗∗ 0.3084∗∗∗ 0.3056∗∗∗

(0.0381) (0.0329) (0.0637) (0.0390)
Bachelor 0.3546 0.3515∗∗∗ 0.3526∗∗∗ 0.3484∗∗∗ 0.3521∗∗∗

(0.0236) (0.0181) (0.0341) (0.0188)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 Symbols ∗∗∗ indicate that the test is significant at a level of 1%.

Table 3.3: DGP: True Misclassification Probability for both Measurements
Conditional on true education level:

High School Some College Bachelor
Self-Reported High School 0.8838 0.0630 0.0001

Some College 0.1049 0.9111 0.0095
Bachelor 0.0113 0.0259 0.9904

Transcript High School 0.9439 0.0928 0.0291
Some College 0.0557 0.9007 0.0494
Bachelor 0.0004 0.0065 0.9215

http://www.econ2.jhu.edu/people/hu/SimuCode.zip
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Table 3.4: Estimated Error Probability (Min-distance), N=500
Conditional on true education level:

High School Some College Bachelor
Self-reported High school 0.8881 0.0631 0.0004

(0.0778) (0.0630) (0.0015)
Some College 0.0977 0.9051 0.0104

(0.0757) (0.0679) (0.0095)
Bachelor 0.0142 0.0318 0.9892

(0.0154) (0.0345) (0.0096)
Transcript-recorded High school 0.9453 0.0947 0.0254

(0.0625) (0.0845) (0.0172)
Some College 0.0544 0.9005 0.0447

(0.0624) (0.0842) (0.0292)
Bachelor 0.0004 0.0048 0.9299∗∗

(0.0014) (0.0082) (0.0344)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal element

being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant at a level
of 1%, 5%, and 10%, respectively.

Table 3.5: Estimated Error Probability (Min-distance), N=1000
Conditional on true education level:

High School Some College Bachelor
Self-reported High school 0.8893∗∗ 0.0625 0.0004

(0.0570) (0.0450) (0.0011)
Some College 0.0981∗ 0.9069∗ 0.0107

(0.0552) (0.0524) (0.0076)
Bachelor 0.0126 0.0306 0.9889

(0.0116) (0.0289) (0.0076)
Transcript-recorded High school 0.9466 0.0920 0.0273∗∗

(0.0404) (0.0634) (0.0132)
Some College 0.0531 0.9033 0.0450∗

(0.0403) (0.0631) (0.0251)
Bachelor 0.0003 0.0047 0.9277∗∗∗

(0.0008) (0.0069) (0.0296)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal element

being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant at a level
of 1%, 5%, and 10%, respectively.
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Table 3.6: Estimated Error Probability (Plug-in), N=500
Conditional on true education level:

High School Some College Bachelor
Self-reported High school 0.8761 0.0727 0.0008

(0.0867) (0.0746) (0.0026)
Some College 0.1083 0.8895 0.0130

(0.0850) (0.0824) (0.0180)
Bachelor 0.0157 0.0378 0.9862

(0.0177) (0.0452) (0.0185)
Transcript-recorded High school 0.9314 0.1028 0.0282

(0.0759) (0.0996) (0.0207)
Some College 0.0676 0.8834 0.0525

(0.0758) (0.0991) (0.0408)
Bachelor 0.0010 0.0138 0.9193∗

(0.0027) (0.0196) (0.0452)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal element

being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant at a
level of 1%, 5%, and 10%, respectively.

Table 3.7: Estimated Error Probability (Plug-in), N=1000
Conditional on true education level:

High School Some College Bachelor
Self-reported High school 0.8833∗ 0.0661 0.0007

(0.0632) (0.0513) (0.0017)
Some College 0.1034∗ 0.9013∗ 0.0117

(0.0623) (0.0596) (0.0126)
Bachelor 0.0133 0.0325 0.9876

(0.0122) (0.0321) (0.0129)
Transcript-recorded High school 0.9401 0.0932 0.0287∗∗

(0.0470) (0.0672) (0.0147)
Some College 0.0590 0.8962 0.0495

(0.0471) (0.0680) (0.0324)
Bachelor 0.0009 0.0105 0.9219∗∗

(0.0020) (0.0135) (0.0362)
1 Standard errors (calculated by 1000 replications) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal element

being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant at a level
of 1%, 5%, and 10%, respectively.

3.3.2 Misclassification in Education: Data, Code, and Estimates

This section provides an empirical example for methods proposed above with a Matlab
code using the dataset in Kane et al. (1999), which contains wages and education levels
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from the National Longitudinal Study of 1972 and the Postsecondary Education Transcript
Study. Table 3.8 provides the summary statistics of the data. Tables 3.9 and 3.11 provide
the estimates of the error probability matrix for both transcript-recorded and self-reported
education attainments. In particular, Table 3.9 uses a minimum distance estimator in
Equation (3.16); and Table 3.11 uses the plug-in estimator following step-by-step the iden-
tification procedure using the eigenvalue-eigenvector decomposition in Equation (3.14). The
minimum distance estimator requires an initial estimate for optimization iterations, which
is usually ignored in the discussion of estimation. Given the advantages of the closed-form
estimator, a natural choice of such an initial estimate is the plug-in estimates in Table 3.11.
The ordering assumption is imposed on the eigenvalues such that average wages increase
with education levels. The standard errors are computed through bootstrap. Click here ↗

to download the datasets and the Matlab code, which runs about 26 minutes.

Table 3.8: Sample Proportions and Mean Log Wages in 1986
Sample Proportions:
Self-Reported Schooling:

Transcript-recorded High School Some College Bachelor’s Degree Row Total
High School 0.2881 0.0596 0.0146 0.3623
Some College 0.0340 0.2502 0.0246 0.3088
Bachelor’s Degree 0.0200 0.5000 0.3237 0.3289
Column Total 0.3223 0.33148 0.3629 1.0000

Mean Log Wages in 1986:
Self-Reported Schooling:

Transcript-recorded High School Some College Bachelor’s Degree Row Total
High School 2.0262 2.1039 2.3304 2.0512

(0.4970) (0.4941) (0.6094) (0.5055)
Some College 2.1175 2.2061 2.3748 2.2098

(0.4534) (0.4882) (0.5162) (0.4916)
Bachelor’s Degree 2.4604 2.3101 2.4456 2.4435

(0.3503) (0.4166) (0.4947) (0.4937)
Column Total 2.0360 2.1884 2.4362 2.2292

(0.4950) (0.4900) (0.5018) (0.5235)
1 Educational attainment measured as of 1979, and average log hourly wages observed

in 1986. The sample size is 9261.
2 Source: NLS-72 and PETS.

http://www.econ2.jhu.edu/people/hu/CodeWithData.zip
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Table 3.9: Estimated Error Probability for both Measures (a Minimal Distance Estimator)
Conditional on true education level:

High School Some College Bachelor
Self-Reported High School 0.8839∗∗∗ 0.0630∗∗∗ 0.0001

(0.0220) (0.0189) (0.0001)
Some College 0.1049∗∗∗ 0.9112∗∗∗ 0.0095∗∗∗

(0.0209) (0.0218) (0.0037)
Bachelor 0.0113∗∗ 0.0259∗∗ 0.9905∗∗∗

(0.0056) (0.0128) (0.0037)
Transcript High School 0.9440∗∗∗ 0.0928∗∗∗ 0.0291∗∗∗

(0.0172) (0.0251) (0.0054)
Some College 0.0557∗∗∗ 0.9008∗∗∗ 0.0494∗∗∗

(0.0171) (0.0252) (0.0101)
Bachelor 0.0004 0.0065 0.9215∗∗∗

(0.0004) (0.0044) (0.0116)
1 Standard errors (calculated by bootstrap) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal ele-

ment being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant
at a level of 1%, 5%, and 10%, respectively.

Table 3.10: Mean wage and marginal distribution of true education
High School Some College Bachelor

Min-distance estimator Mean wage 2.0250∗∗∗ 2.2074∗∗∗ 2.4456∗∗∗

(0.0097) (0.0106) (0.0087)
Marginal distribution 0.3432∗∗∗ 0.3022∗∗∗ 0.3546∗∗∗

(0.0127) (0.0129) (0.0066)
Plug-in estimator Mean wage 2.0250∗∗∗ 2.2075∗∗∗ 2.4456∗∗∗

(0.0097) (0.0106) (0.0087)
Marginal distribution 0.3427∗∗∗ 0.3035∗∗∗ 0.3538∗∗∗

(0.0125) (0.0127) (0.0065)
1 Standard errors (calculated by bootstrap) are in parentheses.
2 Symbols ∗∗∗ indicate that the test is significant at a level of 1%.
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Table 3.11: Estimated Error Probability for both Measures (a Plug-in Estimator)
Conditional on true education level:

High School Some College Bachelor
Self-Reported High School 0.8842∗∗∗ 0.0632∗∗∗ 0.0004

(0.0220) (0.0184) (0.0005)
Some College 0.1047∗∗∗ 0.9113∗∗∗ 0.0065∗

(0.0210) (0.0212) (0.0036)
Bachelor 0.0111∗∗ 0.0255∗∗ 0.9930∗

(0.0055) (0.0127) (0.0037)
Transcript High School 0.9446∗∗∗ 0.0926∗∗∗ 0.0292∗∗∗

(0.0165) (0.0250) (0.0054)
Some College 0.0554∗∗∗ 0.8970∗∗∗ 0.0497∗∗∗

(0.0165) (0.0250) (0.0102)
Bachelor 0.000 0.0103∗∗ 0.9211∗∗∗

(0.0001) (0.0047) (0.0117)
1 Standard errors (calculated by bootstrap) are in parentheses.
2 We separately test the diagonal element being 1 and the off-diagonal ele-

ment being zero. Symbols ∗∗∗, ∗∗, and ∗ indicate that the test is significant
at a level of 1%, 5%, and 10%, respectively.

3.3.3 Regressions with Non-Classical Measurement Errors

Here we present the closed-form estimation of nonparametric regression models with non-
classical measurement errors in Hu and Sasaki (2015). Specifically, we explicitly estimate
the nonparametric regression function g for the model

Y = g(X∗) + U E [U |X∗] = 0,

where Y is an observed dependent variable, X∗ is an unobserved explanatory variable, and
U is the regression residual. While the true explanatory variable X∗ is not observed, two
measurements, X1 and X2, are available from matched data. For simplicity, X∗ is assumed
to be a scalar and continuously distributed. The relationship between the two measurements
and the true explanatory variable X∗ is modeled as follows.

X1 =
P∑
p=0

γpX
∗p + ϵ1

X2 = X∗ + ϵ2

Unless γ0 = 0, γ1 = 1 and γ2 = · · · = γP = 0 are true, the first measurement X1 entails non-
classical errors with nonlinearity. Allowing for such non-classical errors is crucial particularly
for survey data that are often contaminated by endogenous self-reporting biases. Since the
truth X∗ is unobserved, the second measurement X2 is location-/scale-normalized with
respect to the unobserved truth X∗. We use alternative independence assumptions on
the measurement error ϵ2 depending on which order P we assume about X1, but these
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assumptions are more innocuous than assuming classical errors in any case.
Under assumptions that will be introduced below, we show that the regression function

g can be explicitly expressed as a functional of the joint CDF FY X1X2 in the following sense.

g(x∗) = λ(x∗|FY X1X2).

We provide the concrete expression for this functional λ(x∗ | · ). In order to construct a
sample-counterpart estimator of g(x∗) given this closed-form identifying solution, it suffices
to substitute the empirical distribution F̂Y X1X2 in this known transformation so we get
the closed-form estimator ĝ(x∗) = λ(x∗ | F̂Y X1X2). Measurement error models have been
extensively studied in both statistics and econometrics. The statistical literature focuses
on cases of classical errors, where measurement errors are independent of the true values
– see Fuller (1987) and Carroll, Ruppert, Stefanski and Crainiceanu (2006) for reviews.
The econometric literature investigates nonlinear models and nonclassical measurement er-
rors – see Chen, Hong and Nekipelov (2011), Bound, Brown and Mathiowetz (2001) and
Schennach (2013) for reviews. However, closed-form estimation, nonlinear/nonparametric
models, and non-classical measurement errors still remain unsolved, despite their joint prac-
tical relevance. Two measurements are known to be useful to correct measurement errors
even for external samples if the matched administrative data is known to be true (e.g.,
Chen, Hong, and Tamer, 2005). The baseline model of our framework was introduced by Li
(2002) and Schennach (2004a), where they consider parametric regression models under two
measurements with classical errors. Hu and Schennach (2008) provide general identification
results for nonseparable and non-classical measurement errors,6 but their estimator relies
on semi-/non-parametric extremal estimator where nuisance functions are approximated by
truncated series. 7 Unlike these existing approaches, we develop a closed-form estimator
for nonparametric models involving non-classical measurement errors.

Our results share much in common with Schennach (2004b) where she develops a closed-
form estimator under the restriction, γ1 = 1 and γ2 = · · · = γP = 0, of a classical-error
structure. There are notable differences and thus values added by this paper as well. Our
method paves the way for non-classical error structures with high degrees of nonlinearity
whereas the existing closed-form estimator can handle only classical errors. To this end, we
propose a new method to recover and use the characteristic function of the generated latent
variable

∑P
p=1 γpX

∗p, instead of just X∗, in the framework of deconvolution approaches.
Not surprisingly, as we show through simulations, the classical error assumption γ1 = 1
and γ2 = · · · = γP = 0 can severely bias estimates if the true DGP does not conform with
this assumption. In our empirical application, we find that γ1 ̸= 1 is indeed true when

6Also see Mahajan (2006), Lewbel (2007), and Hu (2008) for non-/semi-parametric identification and
estimation under non-classical measurement errors with discrete variables.

7Our model is also closely related to nonparametric regression models with classical measurement errors,
which are extensively studied in the rich literature in statistics. When the error distribution is known, the
regression function may be estimated by deconvolution – see Fan and Truong (1993) and Carroll, Ruppert,
Stefanski and Crainiceanu (2006) for reviews. When the error distribution is unknown, Schennach (2004b)
uses Kotlarski’s identify (see Rao, 1992) to provide a Nadaraya-Watson-type estimator for the regression
function.
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people report their physical characteristics, and hence the existing closed-form estimator
that assumes classical errors would likely suffer from biased estimates. The contribution of
our method is to overcome these practical limitations of the existing closed-form estimators.

Closed-Form Identification: A Baseline Model

Our objective is to derive closed-form identifying formulas for the nonparametric regression
function g. For the purpose of intuitive exposition, we first focus on the following simple
model:

Y = g(X∗) + U, E[U | X∗] = 0
X1 = γ1X

∗ + ϵ1 E[ϵ1] = γ0 (3.17)
X2 = X∗ + ϵ2, E[ϵ2] = 0

where we observe the joint distribution of (Y,X1, X2). The restriction E[U | X∗] = 0 means
that g(X∗) is the nonparametric regression of Y on X∗. We do not assume E[ϵ1] to be zero
in order to accommodate arbitrary intercept γ0 for the first measurement X1. As such,
we suppress γ0 from the equation for X1, i.e., it is embedded in γ0 = E[ϵ1]. On the other
hand, the locational normalization E[ϵ2] = 0 is imposed on the second measurement X2.
A leading example of (3.17) is the case with γ1 = 1 often assumed in related papers in the
literature. We do not make such an assumption, and thus our model (3.17) accommodates
the possibility that the first measurement X1 is endogenously biased even if X∗ ⊥ ϵ1 is
assumed, as E[X1 −X∗ | X∗] = γ0 + (γ1 − 1)X∗.

We can easily show that γ1 is identified from the observed data by the closed-form
formula:

γ1 = Cov(Y,X1)
Cov(Y,X2) (3.18)

under the following assumption.

Assumption 3.3.1 (Identification of γ1) Cov(ϵ1, Y ) = Cov(ϵ2, Y ) = 0 and Cov(Y,X2) ̸=
0.

The first part of this assumption requires that ϵ1 and ϵ2 are uncorrelated with the
dependent variable. These zero covariance restrictions can be implied by a lower-level
assumption, such as E[U | X∗, ϵ1, ϵ2] = 0, ϵ1 ⊥ X∗, and E[ϵ2 | X∗] = 0, which also imply
the additional identifying restrictions presented later (Assumption 3.3.3). The second part
of Assumption 3.3.1 is empirically testable with observed data, and implies a non-zero
denominator in the identifying equation (3.18). We state this auxiliary result below for ease
of reference.

Lemma 3.3.1 (Identification of γ1) If Assumption 3.3.1 holds, then γ1 is identified with
(3.18).

In some applications, we may simply assume γ1 = 1 from the outset, and Assumption
3.3.1 need not be invoked. In any case, we hereafter assume that γ1 is known either by
assumption or by the identifying formula (3.18), and that γ1 is different from zero.
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Assumption 3.3.2 (Nonzero γ1) γ1 ̸= 0.

If this assumption fails, then the observed variable X1 fails to be an informative signal
of X∗. Assumption 3.3.2 therefore plays the role of letting X1 be an effective proxy for the
latent variable X∗. To complete our definition of the model (3.17), we impose the following
independence restrictions.

Assumption 3.3.3 (Identifying Restrictions)
(i) E [U |X1] = 0, (ii) ϵ1 ⊥ X∗, and (iii) E [ϵ2|X1] = 0

Part (i) states that the residual of the outcome equation is conditional mean indepen-
dent of the first measurement. A stronger version of part (i) is the mean independence
E [U |X∗, ϵ1] = 0. Part (ii) states that the random error ϵ1 in X1 is independent of the
true explanatory variable X∗. Notice that the coefficient γ1 may not equal to one, and
therefore the first measurement error defined as X1 − X∗ = (γ1 − 1)X∗ + ϵ1 need not be
classical, i.e., the measurement error is not independent of the true value X∗, even under
part (ii) of the above assumption. This observation highlights one of the major advantages
of our model compared to the existing models which impose γ1 = 1. Part (iii) states that
the second measurement error ϵ2 is conditional mean independent of the first measurement
X1. This assumption is different from the classical measurement error assumption that ϵ2 is
independent of X∗ and U . The last two parts, (ii) and (iii), can be succinctly implied by the
frequently used assumption in the literature that X∗, ϵ1, and ϵ2 are mutually independent,
but we state the above weaker assumptions for the sake of generality.

Let i =
√
−1 denote the unit imaginary number. Define the marginal characteristic

functions ϕX1 , ϕX∗ and ϕϵ1 by

ϕX1(t) = EeitX1 , ϕX∗(t) = EeitX
∗ and ϕϵ1(t) = Eeitϵ1 ,

respectively. Also define the joint characteristic functions ϕX1X2 and ϕX1Y by

ϕX1X2(t1, t2) = Eeit1X1+it2X2 and ϕX1Y (t1, s) = Eeit1X1+isY ,

respectively. We let F denote the transformation defined by

Ff(t) =
∫
eitxf(x)dx.

With this notation, we state the following assumption for identification of g.

Assumption 3.3.4 (Regularity) (i) ϕX1 does not vanish on the real line. (ii) fX∗ and
FfX∗ are continuous and absolutely integrable. (iii) fX∗ · g and F(fX∗ · g) are continuous
and absolutely integrable.

Under Assumptions 3.3.3 (ii) and 3.3.4 (i), the characteristic functions ϕX∗ and ϕϵ1 do
not vanish on the real line either. This property of non-vanishing characteristic functions is
shared by many of the common distribution families, e.g., the normal, chi-squared, Cauchy,
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gamma, and exponential distributions. In parts of our identifying formula, the characteristic
functions appear as denominators, and hence this assumption to rule out zero denominator
is crucial. Parts (ii) and (iii) ensure that we can apply the Fourier transform and inversion
to those functions. Under this commonly invoked regularity condition together with the
independence restrictions in Assumption 3.3.3, we can solve relevant integral equations
explicitly to obtain the following closed-form identification result.

Theorem 3.3.1 Suppose that Assumptions 3.3.1, 3.3.2, 3.3.3 and 3.3.4 hold for the model
(3.17). The nonparametric function g evaluated at x∗ in the interior of the support of X∗

is identified with the closed-form solution:

g(x∗) =

∫+∞
−∞ e−itx∗

ϕX∗(t) [ ∂
∂s
ϕX1Y (t/γ1,s)]s=0
i ϕX1 (t/γ1) dt∫+∞

−∞ e−itx∗ϕX∗(t)dt
, (3.19)

where the parameter γ1 is identified with the closed-form solution (3.18) and

ϕX∗(t) = exp

∫ t

0

[
∂
∂t2
ϕX1X2(t1/γ1, t2)

]
t2=0

ϕX1(t1/γ1) dt1

 .
Note that every component on the right-hand side of the identifying formula (3.19) is

computable directly as a moment of observed data. Replacing the population moments by
the corresponding sample moments therefore yields a closed-form estimator of g(x∗).

Closed-Form Identification: General Models

In this section, we consider the following generalized extension to the baseline model (3.17):

Y = g(X∗) + U, E[U | X∗] = 0

X1 =
P∑
p=1

γpX
∗p + ϵ1 E[ϵ1] = γ0 (3.20)

X2 = X∗ + ϵ2, E[ϵ2] = 0

where we observe the joint distribution of (Y,X1, X2). The first measurement X1 is sys-
tematically biased with an arbitrarily high order of nonlinearity. We demonstrate that a
similar closed-form identification result can be obtained for this extended model. To this
goal, we impose the following independence restrictions on (3.20).

Assumption 3.3.5 (Identifying Restrictions for the General Polynomial Model)

(i) E[U | X∗, ϵ1, ϵ2] = 0, (ii) X∗ ⊥ ϵ1, and (iii) (X∗, ϵ1) ⊥ ϵ2.

Parts (i)–(iii) of this assumption are analogous to the corresponding parts in Assumption
3.3.3. We remark that parts (i) and (iii) are stronger than those corresponding parts in
Assumption 3.3.3, and that we can deal with the higher-order measurement model (3.20) at
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the cost of this strengthening of the independence assumption. A preliminary step before
the closed-form identification of g(X∗) involves identification of the polynomial coefficients
γ0, · · · , γP and the moments of ϵ2 up to the P -th order. This preliminary step is presented
in Section 3.3.3. After the preliminary step, we then proceed with closed-form identification
of the nonparametric regression function g in Section 3.3.3.

A Preliminary Step: Identification of γp and E[ϵp2]

As is the case for the simple affine model of endogenous measurement presented in Section
3.3.3 (see (3.18) and Lemma 3.3.1), identification of the parameters γp and σp2 := E[ϵp2]
for the model (3.20) also follows from an appropriate set of moment restrictions. To form
such restrictions, one can propose several alternative statistical and mean independence
assumptions, and there is not the unique set of identifying restrictions to this goal. One
might therefore want to come up with the most convenient set of restriction tailored to
specific empirical applications. As a general prescription, we can form restrictions of the
form

cov(Y Xq
2 , X1) = E

Y (X∗ + ϵ2)q
 P∑
p=1

γpX
∗p + ϵ1

− E [Y (X∗ + ϵ2)q]E

 P∑
p=1

γpX
∗p + ϵ1


=

P∑
p=0

q∑
q′=0

γpσ
q−q′

2

(
q

q′

)(
E[Y X∗(p+q′)]− E[Y X∗q′ ]E[X∗p]

)
cov(Y Xr

2 , X
s
2) = E[Y (X∗ + ϵ2)r+s] − E[Y (X∗ + ϵ2)r]E[(X∗ + ϵ2)s]

=
r+s∑
r′=0

σr+s−r
′

2

(
r + s

r′

)
E[Y X∗r′ ]−

r∑
r′=0

s∑
s′=0

σr+s−r
′−s′

2

(
r

r′

)(
s

s′

)
E[Y X∗r′ ]E[X∗s′ ]

for various q = 0, 1, · · · , Q − P , r = 0, 1, · · · and s = 1, · · · such that r + s ⩽ Q for some
Q ∈ N. The right-hand sides of the above two equations involve the unknowns, (γ0, · · · , γP ),
(σ2

2, · · · , σ
Q
2 ), (E[X∗], · · · , E[X∗Q]), and (E[Y X∗], · · · , E[Y X∗Q]), under Assumption 3.3.5.

As such, we obtain (Q − P + 1) + Q(Q+1)
2 restrictions for 3Q + P unknown parameters,

(γ0, · · · , γP ), (σ2
2, · · · , σ

Q
2 ), (E[X∗], · · · , E[X∗Q]), and (E[Y X∗], · · · , E[Y X∗Q]). Clearly for

any given order P of polynomial, as we increase the number Q, we have sufficiently more
number of restrictions than the unknowns to recover the polynomial coefficients γ0, · · · , γP
and the moments σ2

2, · · · , σP2 which we need.
A drawback to the above general prescription is that these moment restrictions may not

necessarily lead to a closed-form solution to these parameters. One can make alternative
statistical and mean independence assumptions for the goal of obtaining closed-form identi-
fication of the polynomial coefficients γ0, · · · , γP and the moments σ2

2, · · · , σP2 . Specifically,
we may show a closed-from solution to the quadratic case, where the endogenous measure-
ment X1 is modeled with P = 2 by

X1 = γ1X
∗ + γ2X

∗2 + ϵ1 : E[ϵ1] = γ0 (3.21)
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We impose a homoscedasticity assumption

E[U2 | X∗, ϵ1, ϵ2] = E[U2] (3.22)

and an empirically testable rank condition

cov(Y,X2) · cov(Y 2, X2
2 ) ̸= cov(Y,X2

2 ) · cov(Y 2, X2). (3.23)

We may then show that the coefficients γ1 and γ2 of the model (3.21) are identified with
closed-form solutions as follows.

γ1 = cov(Y,X1) · cov(Y 2, X2
2 )− cov(Y,X2

2 ) · cov(Y 2, X1)
cov(Y,X2) · cov(Y 2, X2

2 )− cov(Y,X2
2 ) · cov(Y 2, X2)

(3.24)

γ2 = cov(Y,X2) · cov(Y 2, X1)− cov(Y,X1) · cov(Y 2, X2)
cov(Y,X2) · cov(Y 2, X2

2 )− cov(Y,X2
2 ) · cov(Y 2, X2)

, (3.25)

Furthermore, Assumption 3.3.5 also allows us to identify γ0 and σ2
2 with closed-form solu-

tions from the system of linear equations as follows: E[Y X1]
E[X1X2]
E[Y X1X2]

 =

 E[Y ] −γ2E[Y ] 0
E[X2] −γ1 − 3γ2E[X2] −γ2
E[Y X2] −γ1E[Y ]− 3γ2E[Y X2] −γ2E[Y ]


 γ0
σ2

2
σ3

2

 .
If the above 3 by 3 matrix is nonsingular, the linear system yields a unique solution to
(γ0, σ

2
2, σ

3
2). In particular, it yields the following closed-form formula for σ2

2:

σ2
2 = 1

2γ2

(
cov(Y,X1X2)
cov(Y,X2) − E[Y X1]

E[Y ]

)
.

Identification of Nonparametric Regression Function

Having identified the polynomial coefficients (γ1, · · · , γP ) and the moments (σ2
2, · · · , σP2 ) for

the model (3.20) following the methods outlined in Section 3.3.3, we proceed with closed-
form identification of the nonparametric regression function g evaluated at various points
x∗ in the interior of the support of X∗. To this end, we assume the following rank condition,
which is effectively an empirically testable assumption as (σ2

2, · · · , σP2 ) are identified from
observed data FY X1X2 .

Assumption 3.3.6 (Empirically Testable Rank Condition) The following matrix is
nonsingular. 

1
( P
P−1

)
σ1

2 · · ·
(P

2
)
σP−2

2
(P

1
)
σP−1

2
1 · · ·

(P−1
2
)
σP−3

2
(P−1

1
)
σP−2

2
. . . ...

...
1

(2
1
)
σ1

2
1


P×P

Besides its empirical testability, this rank condition is automatically satisfied for the
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linear case (P = 1) and the quadratic case (P = 2) due to the normalization E[ϵ2] = 0
in (3.20).8 For convenience of writing, we let Z∗ denote the random variable

∑P
p=1 γpX

∗p.
The role of Assumption 3.3.6 is to identify the distribution of this generated latent variable
Z∗ in the following manner. Under Assumption 3.3.6, we can write the following vector on
the left-hand side in terms of the expression on the right-hand side that consists of observed
data. [

µ(t, P ;σ1
2, · · · , σP2 ;FX1X2) · · · µ(t, 1;σ1

2, · · · , σP2 ;FX1X2)
]′

:=

1
( P
P−1

)
σ1

2 · · ·
(P

2
)
σP−2

2
(P

1
)
σP−1

2
1 · · ·

(P−1
2
)
σP−3

2
(P−1

1
)
σP−2

2
. . . ...

...
1

(2
1
)
σ1

2
1



−1 

E[(XP
2 − σP2 )eitX1 ]

E[(XP−1
2 − σP−1

2 )eitX1 ]
...

E[(X2
2 − σ2

2)eitX1 ]
E[(X2 − σ1

2)eitX1 ]


(3.26)

It is shown in the theorem below that this vector is sufficient to pin down the distribution
of the generated latent variable Z∗ =

∑P
p=1 γpX

∗p, and hence its distribution (equivalently,
its characteristic function) can be identified from observed data.

To make use of this auxiliary result to identify the nonparametric regression function g
of interest, we next propose the following regularity conditions.

Assumption 3.3.7 (Regularity) (i) ϕX1 and ϕX2 do not vanish on the real line. (ii) fX∗

and FfX∗ are continuous and absolutely integrable. (iii) fZ∗ and FfZ∗ are continuous and
absolutely integrable. (iv) fX∗ · g and F(fX∗ · g) are continuous and absolutely integrable.

This assumption plays a similar role to Assumption 3.3.4. In parts of our identifying
formula, the characteristic functions appear as denominators, and hence part (i) of this
assumption rules out zero denominator. This property of non-vanishing characteristic func-
tions is shared by many of the common distribution families, e.g., the normal, chi-squared,
Cauchy, gamma, and exponential distributions. Parts (ii) and (iii) ensure that we can apply
the Fourier transform and inversion to those functions. The model allows for nonlinear and
endogenous errors in the sense of E[X1 | X∗] =

∑P
p=0 γpX

∗p. However, we rule out the case
where the report X1 is decreasing while the truth X∗ is increasing. Specifically, we assume
the following monotonicity restriction.

Assumption 3.3.8 (Monotonicity)
∑P
p=0 γpx

p is non-decreasing in x on the support of
X∗.

This monotonicity assumption is used for the purpose of applying the density transfor-
mation formula to derive the density function for the transformed random variable. Poly-
nomial functions do not generally exhibit monotonicity on the entire real line. Note that
Assumption 3.3.8 only requires the monotonicity to hold on the support of X∗, and hence

8However, when the order of polynomial is P = 3 or above, this rank condition can be shown to be
unsatisfied, e.g., one can check that σ2

2 = 1
3 when P = 3 fails the assumption.
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is not restrictive when the support of X∗ is a proper subset of R. For example, many eco-
nomic variables X∗ are innately positive, i.e., supp(X∗) ⊆ R+, and the quadratic function
E[X1 | X∗] = γ2X

∗2, for example, necessarily satisfies Assumption 3.3.8 for such variables.
With this set of assumptions, we can still identify the nonparametric function g with a

closed-form formula, even if the measurement X1 is systematically biased with endogeneity
and such a high order of nonlinearity. The following theorem states the exact result.

Theorem 3.3.2 Suppose that Assumptions 3.3.5, 3.3.6, 3.3.7 and 3.3.8 hold for the model
(3.20). The nonparametric function g evaluated at x∗ in the interior of the support of X∗

is identified with the closed-form solution:

g(x∗) =

∫ ∫ ∫
e

−itx∗+itx−it′
(∑P

p=1 γpxp

) ∣∣∣∑P
p=1 pγpx

p−1
∣∣∣ E[Y eitX2 ]
E[eitX2 ] ϕZ∗(t′)dt′dxdt

2π
∫
e

−ith
(∑P

p=1 γpx∗p

) ∣∣∣∑P
p=1 pγpx

∗(p−1)
∣∣∣ϕZ∗(t)dt

,

where ϕZ∗ is identified with the closed-form solution

ϕZ∗(t) = exp
{∫ t

0

∑P
p=1 γpµ(t1, p ;σ1

2, · · · , σP2 ;FX1X2)
E[eit1X1 ] dt1

}

and µ(t, p ;σ1
2, · · · , σP2 ;FX1X2) for all p = 1, · · · , P are given by the closed-form solution

(3.26).

Note that this general version of the closed-form identifying formula, involving the triple
integral instead of a single integral due to the nonlinear transformation, is qualitatively
quite different from the traditional formulas including the one in Theorem 3.3.1 as well
as that of Schennach (2004b). Theorem 3.3.1 may appear to be a special case of this
theorem, as the former focuses on affine models and the latter extends to higher order
polynomials. Strictly speaking, it is not a special case, because Theorem 3.3.1 requires
slightly weaker independence assumptions than Theorem 3.3.2. As such, we stated Theorem
3.3.1 separately in the previous section for the practical importance of parsimonious affine
models.

Closed-Form Estimator

Given the closed-form identifying formulas of Theorems 3.3.1 and 3.3.2, one can easily
construct a direct sample-counterpart estimator by replacing the population moments by
the sample moments for the characteristic functions. As this basic idea is the same across
all the cases, we focus on the simplest model (3.17) for simplicity in this section. If γ1 is
known, then the sample-counterpart estimator ĝ(x∗) of the closed-form identifying formula
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(3.19) is given by

ĝ(x∗) =

∫+∞
−∞ e−itx∗ exp

(
i
∫ t

0

∑n

j=1 X2,je
it1X1,j /γ1∑n

j=1 e
it1X1,j /γ1

dt1

) ∑n

j=1 Yje
itX1,j /γ1∑n

j=1 e
itX1,j /γ1

ϕK(th)dt

∫+∞
−∞ e−itx∗ exp

(
i
∫ t

0

∑n

j=1 X2,je
it1X1,j /γ1∑n

j=1 e
it1X1,j /γ1

dt1

)
ϕK(th)dt

(3.27)

where ϕK denotes the Fourier transform of a kernel function K which we use together with
the tuning parameter h for the purpose of regularization.

On the other hand, if γ1 is not known, we replace γ1 by its estimate and the estimator
thus takes the form

ĝ(x∗) =

∫+∞
−∞ e−itx∗ exp

(
i
∫ t

0

∑n

j=1 X2,je
it1X1,j /γ̂1∑n

j=1 e
it1X1,j /γ̂1

dt1

) ∑n

j=1 Yje
itX1,j /γ̂1∑n

j=1 e
itX1,j /γ̂1

ϕK(th)dt

∫+∞
−∞ e−itx∗ exp

(
i
∫ t

0

∑n

j=1 X2,je
it1X1,j /γ̂1∑n

j=1 e
it1X1,j /γ̂1

dt1

)
ϕK(th)dt

(3.28)

where γ̂1 is computed by the following sample-counterpart of (3.18).

γ̂1 =
1
n

∑n
j=1 YjX1,j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1X1,j

)
1
n

∑n
j=1 YjX2,j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1X2,j

) .
It turns out that the substitution of the estimate γ̂1 for the true value of γ1 does not affect
the asymptotic property of ĝ(x∗). We assume the following basic regularity conditions to
derive the consistency of ĝ(x∗) in both (3.27) and (3.28).

Assumption 3.3.9 (Basic Assumptions for Consistency of the Closed-Form Estimator)

(i) {X∗, ϵ1, ϵ2, U} is independently and identically distributed.
(ii) ϕK is symmetric, satisfies ϕK(0) = 1, and has integrable second derivatives.
(iii) E |X1|2+δ <∞, E |X2|2+δ <∞, and E |Y |2+δ <∞ for some δ > 0.

In case of using the version (3.28) of the closed-form estimator instead of (3.27), we
assume the following bounded fourth moment restriction in addition to part (iii) of As-
sumption 3.3.9.

Assumption 3.3.9. (iii)′ E |X1|4 <∞, E |X2|4 <∞, and E |Y |4 <∞.

The asymptotic rate of convergence of the closed-form estimators (3.27) and (3.28) depend
on the Hölder exponents of the nonparametric density fX∗ and the nonparametric regression
g. We therefore introduce the following assumption with index numbers that determine the
asymptotic orders.

Assumption 3.3.10 (Determinants of the Asymptotic Orders of Biases)
(i) fX∗ is twice continuously differentiable at x∗, and the k1-th derivative of fX∗ is k2-Hölder
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continuous with Hölder constant bounded by k0, i.e.,∣∣∣f (k1)
X∗ (x)− f (k1)

X∗ (x+ δ)
∣∣∣ ⩽ k0 |δ|k2 for all x and δ.

(ii) g is twice continuously differentiable at x∗, and the l1-th derivative of g is l2-Hölder
continuous with Hölder constant bounded by l0, i.e.,∣∣∣g(l1)(x)− g(l1)(x+ δ)

∣∣∣ ⩽ l0 |δ|l2 for all x and δ.

Let k = k1 + k2 and l = l1 + l2 be the largest numbers satisfying the above properties.

Since optimal choices of the bandwidth parameter h depend on the shape of the under-
lying characteristic function, we first state the following auxiliary result of convergence rate
under free choice of h.

Lemma 3.3.2 (Mean Square Error of the Closed-Form Estimator) Suppose that As-
sumptions 3.3.2, 3.3.3 and 3.3.4 hold for the model (3.17). If Assumptions 3.3.9 and 3.3.10
are satisfied and x∗ is in the interior of the support of X∗, then, with any choice of h such
that h→ 0 and nh4 |ϕX1(1/h)|4 →∞ as n→∞, the mean square error of the closed-form
estimator ĝ(x∗) given in (3.27) has the asymptotic order:

O(h2 min{k,l}) +O
(

1
nh4 |ϕX1(1/h)|4

)
, (3.29)

where the first and second terms correspond to the asymptotic orders of the squared bias and
the variance, respectively. The same conclusion holds for the closed-form estimator ĝ(x∗)
given in (3.28), provided that Assumptions 3.3.1, and 3.3.9 (iii)′ additionally hold.

This lemma implies that the MSE-optimizing choice of h obviously depends on the tail
behavior of the characteristic function ϕX1 , which in turn depends on the characteristic
functions ϕX∗ and ϕϵ1 . Therefore, we branch into the following two cases: (a) at least
one of X∗ and ϵ1 has a super-smooth distribution; and (b) both X∗ and ϵ1 have ordinary-
smooth distributions. These two cases are precisely stated in the following two separate
assumptions.

Assumption 3.3.11 (Super-Smooth Distributions) Assume that
(i) the distribution of X∗ is super-smooth of order β1 > 0, i.e., there exist κ1 > 0 such that

|ϕX∗(t)| = O
(
e−|t|β1/κ1

)
as t→ ±∞,

OR
(ii) the distribution of ϵ1 is super-smooth of order β2 > 0, i.e., there exist κ2 > 0 such that

|ϕϵ1(t)| = O
(
e−|t|β2/κ2

)
as t→ ±∞,

OR both (i) and (ii) hold. For convenience of notation, we let β1 = 0 (respectively, β2 = 0)
if the distribution of X∗ (respectively, ϵ1) is not super-smooth.
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Assumption 3.3.12 (Ordinary-Smooth Distributions) Assume that
(i) the distribution of X∗ is ordinary-smooth of order β1, i.e.,

|ϕX∗(t)| = O
(
|t|−β1

)
as t→ ±∞,

AND
(ii) the distribution of ϵ1 is ordinary-smooth of order β2, i.e.,

|ϕϵ1(t)| = O
(
|t|−β2

)
as t→ ±∞.

These two smoothness definitions characterized by the tail behavior of the characteris-
tic functions measure the smoothness of the density function. Examples of super-smooth
distributions include the normal, Cauchy, and mixed normal distributions. Examples of
ordinary-smooth distributions include the gamma, exponential, and uniform distributions.
If at least one of X∗ and ϵ1 has a super-smooth distribution in the sense of Assumption
3.3.11, then the closed-form estimators follow logn rates of convergence as follows.

Theorem 3.3.3 (Consistency under Super-Smooth Distribution(s)) Suppose that As-
sumptions 3.3.2, 3.3.3 and 3.3.4 hold for the model (3.17). If Assumptions 3.3.9, 3.3.10,
and 3.3.11 are satisfied and x∗ is in the interior of the support of X∗, then the closed-form
estimator ĝ(x∗) given in (3.27) is consistent with the convergence rate

(
E
[
ĝ(x∗)− g(x∗)

]2)1/2
= O

(
(logn)

− min{k,l}
max{β1,β2}

)

under the choice of the tuning parameter h ∝ (logn)−1/max{β1,β2}. The same conclusion
holds for the closed-form estimator ĝ(x∗) given in (3.28), provided that Assumptions 3.3.1,
and 3.3.9 (iii)′ additionally hold.

On the other hand, if both X∗ and ϵ1 have ordinary-smooth distributions in the sense of
Assumption 3.3.12, then the closed-form estimator follow polynomial rates of convergence
as follows.

Theorem 3.3.4 (Consistency under Ordinary-Smooth Distributions) Suppose that
Assumptions 3.3.2, 3.3.3 and 3.3.4 hold for the model (3.17). If Assumptions 3.3.9, 3.3.10,
and 3.3.12 are satisfied and x∗ is in the interior of the support of X∗, then the closed-form
estimator ĝ(x∗) given in (3.27) is consistent with the convergence rate

(
E
[
ĝ(x∗)− g(x∗)

]2)1/2
= O

(
n

− min{k,l}
2(min{k,l}+2(β1+β2+1))

)

under the choice of the tuning parameter h ∝ n−1/2(min{k,l}+2(β1+β2+1)). The same conclu-
sion holds for the closed-form estimator ĝ(x∗) given in (3.28), provided that Assumptions
3.3.1, and 3.3.9 (iii)′ additionally hold.

While the contexts and the setups are different and a direct comparison cannot be made,
the two cases covered in our Theorems 3.3.3 and 3.3.4 can be connected to Cases 2 and 4 of
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Theorem 2 in Schennach (2004b), respectively.9 The rates of convergence achieved by the
estimator in both cases fall short of the convergence rate of the traditional nonparametric
regression estimators that assume observation of X∗.

3.4 Revealing Unobservables by Deep Learning

Ongoing research - see additional slides.

9Specifically, the auxiliary parameters βv, γb and γv used in Schennach (2004b) can be reconciled with
our regularity parameters through the relations βv = max{β1, β2}, γb = − min{k, l} and γv = 2(β1 +β2 +1).



4

Applications in Empirical
Industrial Organization

A major breakthrough in the measurement error literature is the nonparametric identifica-
tion of the 2.1-measurement model in section 2.4, which allows a very flexible relationship
between observables and unobservables. The generality of these results enables researchers
to tackle many important problems involving latent variables, such as belief, productivity,
unobserved heterogeneity, and fixed effects, in the field of empirical industrial organization
and labor economics.

4.1 Unobserved Heterogeneity in Auctions

Unobserved heterogeneity has been a concern in the estimation of auction models for a
long time. Li et al. (2000) and Krasnokutskaya (2011) use the identification result of
2-measurement model in equation (2.89) to estimate auction models with separable unob-
served heterogeneity. In a first-price auction indexed by t for t = 1, 2, . . . , T without a
reserve price, there are N symmetric risk-neutral bidders. For i = 1, 2, . . . , N , each bidder
i’s cost is assumed to be decomposed into two independent factors as s∗

t × xi, where xi is
her private value and s∗

t is an auction-specific state or unobserved heterogeneity. With this
decomposition of the cost, it can be shown that equilibrium bidding strategies bit can also
be decomposed as follows

bit = s∗
tai, (4.1)

where ai = ai (xi) represents equilibrium bidding strategies in the auction with s∗
t = 1. This

falls into the 2-measurement model given that

b1t ⊥ b2t | s∗
t . (4.2)

96
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With such separable unobserved heterogeneity, one can consider the joint distribution of
two bids as follows:

ln b1t = ln s∗
t + ln a1 (4.3)

ln b2t = ln s∗
t + ln a2,

where Kotlarski’s identity is applicable for nonparametric identification of the distributions
of ln s∗

t and ln ai. Further estimation of the value distribution from the distribution of ai (xi)
can be found in Guerre et al. (2000) .

Hu et al. (2013a) consider auction models with non-separable unobserved heterogeneity.
They assume that the private values xi are independent conditional on an auction-specific
state or unobserved heterogeneity s∗

t . Based on the conditional independence of the values,
the conditional independence of the bids holds, i.e.,

b1t ⊥ b2t ⊥ b3t | s∗
t . (4.4)

This falls into a 3-measurement model, where the three measurements, i.e., bids, are inde-
pendent conditional on the unobserved heterogeneity. Nonparametric identification of the
model then follows.

A specific example of unobserved heterogeneity may be bidder’s heterogeneous beliefs
across Auctions. An (2017) considers first-price auctions, in which bidders’ beliefs about
their opponents’ bidding behavior are not in equilibrium but follow a level-k thinking as
in Stahl and Wilson (1994). Bidders are assumed to have different levels of sophistication
with a hierarchical structure, i.e., heterogenous (possibly incorrect) beliefs about others’
behavior based on a nonstrategic type as follows.

Type Belief about other bidders’ behavior
1 all other bidders are type-L0 (bid naïvely)
2 all other bidders are type-1
...

...
k all other bidders are type-(k − 1)

By observing a bidder’s behavior in three different auctions, An (2017) uses a 3-measurement
model to show the model with latent belief levels (or types) can be identified and estimated.
The key assumptions include that bidder’s belief level doesn’t change across auctions and
that three bids are independent conditional on the belief level. Such an empirical model
helps explain overbidding and non-equilibrium behavior. More detailed description can be
found in Yonghong An’s presentation slides ↗.

4.2 Auctions with an Unknown Number of bidders

Since the earliest papers in the structural empirical auction literature, researchers have had
to grapple with a lack of information on N∗, the number of potential bidders in the auction,

http://www.econ2.jhu.edu/people/hu/Slides_YonghongAn.pdf
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which is an indicator of market competitiveness. The number of potential bidders may be
different from the observed number of bidders A due to binding reserve prices, participation
costs, or misreporting errors. For example, when reserve prices are binding, the number
of potential bidders N∗ would be observed by bidders and affect their bidding behavior.
However, the observed number of bidders A, which is the number of participants whose bids
exceed the reserve price, would be less than or equal to N∗.

In first-price sealed-bid auctions under the symmetric independent private values (IPV)
paradigm, each of N∗ potential bidders draws a private valuation from the distribution
FN∗(x) with support [x, x]. The bidders observe N∗, which is latent to researchers. The
reserve price r is assumed to be known and fixed across all auctions with r > x. For each
bidder i with valuation xi, the equilibrium bidding function b (xi, N∗) can be shown as
follows:

b(xi;N∗) =

 xi −
∫ xi

r
FN∗ (s)N∗−1ds

FN∗ (xi)N∗−1 for xi ≥ r
0 for xi < r.

(4.5)

The observed number of bidders is At =
∑N∗

t
i=1 1 (xit ≥ r). In a random sample, we

observe {At, b1t, b2t, . . . , bAtt} for each auction t = 1, 2, . . . , T . We consider

f (b1t, b2t, At, x1t, x2t|x1t ≥ r, x2t ≥ r,N∗
t )

= f (b1t|b2t, At, x1t, x2t, x1t ≥ r, x2t ≥ r,N∗
t ) f (b2t|At, x1t, x2t, x1 ≥ r, x2t ≥ r,N∗

t )
×f (At|x1t, x2t, x1t ≥ r, x2t ≥ r,N∗

t ) f (x1t, x2t|x1t ≥ r, x2t ≥ r,N∗
t )

= f (b1t|x1t, x1t ≥ r,N∗
t ) f (b2t|x2t, x2t ≥ r,N∗

t )

×f
(
N∗∑
i=3

1 (xit ≥ r) + 1 (x1t ≥ r) + 1 (x2t ≥ r) |x1t, x2t, x1t ≥ r, x2t ≥ r,N∗
t

)
×f (x1t, x2t|x1t ≥ r, x2t ≥ r,N∗

t )
= f (b1t|x1t, x1t ≥ r,N∗

t ) f (b2t|x2t, x2t ≥ r,N∗
t )

×f
(
N∗∑
i=3

1 (xit ≥ r) + 2|N∗
t

)
f (x1t|x2t, x1t ≥ r, x2t ≥ r,N∗

t ) f (x2t|x1t ≥ r, x2t ≥ r,N∗
t )

= f (b1t|x1t, x1t ≥ r,N∗
t ) f (b2t|x2t, x2t ≥ r,N∗

t ) f (At|At ≥ 2, N∗
t )

×f (x1t|x1t ≥ r,N∗
t ) f (x2t|x2t > r,N∗

t )

Note that the event {xit ≥ r} is the same as {bit ≥ r}. We have

f (b1t, b2t, At, x1t, x2t|b1t ≥ r, b2t ≥ r,N∗
t )

= f (b1t|x1t, b1t ≥ r,N∗
t ) f (b2t|x2t, b2t ≥ r,N∗

t ) f (At|At ≥ 2, N∗
t )

×f (x1t|b1t ≥ r,N∗
t ) f (x2t|b2t > r,N∗

t )
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Integrating out x1t, x2t leads to

f (b1t, b2t, At|b1 ≥ r, b2 ≥ r,N∗)

=
∫
f (b1t|x1t, b1t ≥ r,N∗

t ) f (x1t|b1t ≥ r,N∗
t ) dx1t

×
∫
f (b2t|x2t, b2t ≥ r,N∗

t ) f (x2t|b2t > r,N∗
t ) dx2t

×f (At|At ≥ 2, N∗
t )

= f (b1t|b1t ≥ r,N∗) f (b2t|b2t ≥ r,N∗) f (At|At ≥ 2, N∗) .

Therefore, we have

f (At, b1t, b2t|b1t > r, b2t > r) (4.6)
=

∑
N∗

f (At|At ≥ 2, N∗) f (b1t|b1t > r,N∗) f (b2t|b2t > r,N∗) f (N∗|b1t > r, b2t > r) .

That means that the two bids and the observed number of bidders are independent condi-
tional on the number of potential bidders, which forms a 3-measurement model. In addition,
the fact that At ≤ N∗

t provides an ordering of the eigenvectors corresponding to fAt|N∗
t
.

As shown in An et al. (2010) , the bid distribution, and therefore, the value distribution,
can be non-parametrically identified. Furthermore, such identification is constructive and
directly leads to an estimator.

An et al. (2010) consider nonparametric identification and estimation of first-price auc-
tion models when N∗ is observed by bidders, but not by the researcher. Using recent results
from the literature on misclassified regressors, we show how the equilibrium distribution of
bids, given the unobserved N∗, can be identified and estimated. In the case of first-price
auctions, these bid distributions estimated using our procedure can be used as inputs into
established nonparametric procedures (Guerre et al. (2000), Li et al. (2002)) to obtain
estimates of bidders’ valuations.

Accommodating the possibility that the researcher does not know N∗ is important for
drawing valid policy implications from auction model estimates. Because N∗ is the level
of competition in an auction, not knowing N∗, or using a mismeasured value for N∗, can
lead to wrong implications about the degree of competitiveness in the auction, and also the
extent of bidders’ markups and profit margins. Indeed, a naïve approach where the number
of observed bids is used as a proxy for N∗ will tend to overstate competition, because the
unknown N∗ is always (weakly) larger than the number of observed bids. This bias will be
shown in the empirical illustration below.

Not knowing the potential number of bidders N∗ has been an issue since the earliest
papers in the structural empirical auction literature. In the parametric estimation of auction
models, the functional relationship between the bids b and number of potential bidders N∗

is explicitly parameterized, so that not knowing N∗ need not be a problem. For instance,
Laffont et al. (1995) used a goodness-of-fit statistic to select the most plausible value of N∗

for French eggplant auctions. Paarsch (1997) treated N∗ essentially as a random effect and
integrates it out over the assumed distribution in his analysis of timber auctions.
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In a nonparametric approach to auctions, however, the relationship between the bids
b and N∗ must be inferred directly from the data, and not knowing N∗ (or observing N∗

with error) raises difficulties. Within the independent private-values (IPV) framework, and
under the additional assumption that the unknown N∗ is fixed across all auctions (or fixed
across a known subset of the auctions), Guerre et al. (2000) showed how to identify N∗ and
the equilibrium bid distribution in the range of bids exceeding the reserve price. Hendricks
et al. (2003) allowed N∗ to vary across auctions, and assume that N∗ = L, where L is a
measure of the number of potential bidders which they construct.

The main contribution of An et al. (2010) is to present a solution for the nonparametric
identification and estimation of first-price auction models in which the number of bidders
N∗ is observed by bidders, but unknown to the researcher. We develop a nonparametric
procedure for recovering the distribution of bids conditional on unknown N∗ which requires
neither N∗ to be fixed across auctions, nor for an (assumed) perfect measure of N∗ to be
available. Our procedure applies results from the recent econometric literature on models
with misclassification error, such as e.g. Mahajan (2006), Hu (2008).

As a specific case, our method is, as far as we aware, the first to solve the identification
problem for IPV first-price auctions with reserve prices when the unobserved number of
potential bidders N∗ is a random variable. Previously, Guerre et al. (2000) also considered
identification for first-price IPV auctions with reserve prices. However, they assumed that
the observed number of potential bidders N∗ is fixed across auctions, so that it could be
estimated as a parameter.

For first-price auctions, allowing the unknown N∗ to vary randomly across auctions is
not innocuous. Because N∗ is observed by the bidders, it affects their equilibrium bidding
strategies. Hence, when N∗ is not known by the researcher, and varies across auctions, the
observed bids are drawn from a mixture distribution, where the “mixing densities” g(b|N∗)
and the “mixing weights” Pr(A|N∗) are both unknown. This motivates the application of
econometric methods developed for models with a misclassified regressor, where (likewise)
the observed outcomes are drawn from a mixture distribution.

Most closely related to our work is a paper by Song (2004). She solved the problem of
the nonparametric estimation of ascending auction models in the IPV framework, when the
number of potential bidders N∗ is unknown by the researcher (and varies in the sample).
She showed that the distribution of valuations can be recovered from observation of any
two valuations of which rankings from the top is known.1 However, her approach cannot
be applied to first-price auctions, which are the focus of this paper. The reason for this is
that, in IPV first-price auctions (but not in ascending- or second-price auctions), even if
the distribution of bidders’ valuations do not vary across the unknown N∗, the equilibrium
distribution of bids still vary across N∗. Hence, because the researcher does not know
N∗, the observed bids are drawn from a mixture distribution, and estimating the model
requires deconvolution methods which have been developed in the econometric literature
on measurement error.2

1Adams (2007) also considers estimation of ascending auctions when the distribution of potential bidders
is unknown.

2Song (2006) showed that the top two bids are also enough to identify first-price auctions where the
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In a different context, Li et al. (2000) applied deconvolution results from the (continuous)
measurement error literature to identify and estimate conditionally independent auction
models in which bidders’ valuations have common and private (idiosyncratic) components.
Krasnokutskaya (2011) also used deconvolution results to estimate auction models with
unobserved heterogeneity. To our knowledge, however, our paper is the first application
of (discrete) measurement error results to estimate an auction model where the number of
potential bidders is unknown.

The issues considered in this paper are close to those considered in the literature on
entry in auctions: eg. Li (2005), Li and Zheng (2006), Athey et al. (2005), Krasnokutskaya
and Seim (2011), Haile et al. (2003). While the entry models considered in these papers
differ, their one commonality is to model more explicitly bidders’ participation decisions in
auctions, which can cause the number of observed bidders A to differ from the number of
potential bidders N∗. For instance, Haile et al. (2003) consider an endogenous participation
model in which the number of potential bidders is observed by the researcher, and equal
to the observed number of bidders (i.e., N∗ = A), so that non-observability of N∗ is not
a problem. However, A is potentially endogenous, because it may be determined in part
by auction-specific unobservables which also affect the bids. By contrast, in this paper we
assume that N∗ is unobserved, and that N∗ ̸= A, but we do not consider the possible
endogeneity of N∗.3

4.2.1 Model

In this paper, we consider the case of first-price auctions under the symmetric independent
private values (IPV) paradigm, for which identification and estimation are most transparent.
For a thorough discussion of identification and estimation of these models when the number
of potential bidders N∗ is known, see Paarsch and Hong (2006), ch. 4. For concreteness, we
focus on the case where a binding reserve price is the reason why the number of potential
bidders N∗ differs from the observed number of bidders, and is not known by the researcher.

There are N∗ bidders in the auction, with each bidder drawing a private valuation from
the distribution FN∗(x) which has support [x, x̄]. Furthermore, we assume the density of
the private valuation fN∗(x) is bounded away from zero on [x, x̄].4 N∗ can vary freely across
the auctions, and while it is observed by the bidders, it is not known by the researcher. We
allow the distribution of valuations FN∗(x) to vary across N∗.5 There is a reserve price r,
assumed to be fixed across all auctions, where r > x.6 The equilibrium bidding function

number of active bidders is not observed by bidders. Under her assumptions, however, the observed bids are
i.i.d. samples from a homogeneous distribution, so that her estimation methodology would not work for the
model considered in this paper.

3In principle, we recover the distribution of bids (and hence the distribution of valuations) separately
for each value of N∗, which accommodates endogeneity in a general sense. However, because we do not
model the entry process explicitly (as in the papers cited above), we do not deal with endogeneity in a direct
manner.

4This assumption guarantees that the density of bids g(b|N∗, b > r) is also bounded away from zero. See
Guerre et al. (2000), Section 3.1 for detailed discussions.

5This is consistent with some models of endogenous entry. See section 4.2.6 below.
6Our estimation methodology can potentially also be used to handle the case where N∗is fixed across all

auctions, but r varies freely across auctions.
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for bidder i with valuation xi is

b(xi;N∗)

 = xi −
∫ xi

r
FN∗ (s)N∗−1ds

FN∗ (xi)N∗−1 for xi ≥ r
0 for xi < r.

(4.7)

Hence, the number of bidders observed by the researcher is A ≡
∑N∗
i=1 1(xi > r), the number

of bidders whose valuations exceed the reserve price.
For this case, the equilibrium bids are i.i.d. and, using the change-of-variables formula,

the density of interest g(b|N∗, b > r) is equal to

g(b|N∗, b > r) = 1
b′(ξ(b;N∗);N∗))

fN∗(ξ(b;N∗))
1− FN∗(r) , for b > r (4.8)

where ξ(b;N∗) denotes the inverse of the equilibrium bid function b(·;N∗) evaluated at
b. In equilibrium, each observed bid from an N∗-bidder auction is an i.i.d. draw from
the distribution given in Eq. (4.8), which does not depend on A, the observed number of
bidders.

We propose a two-step estimation procedure. In the first step, the goal is to recover
the density g(b|N∗; b > r) of the equilibrium bids, for the truncated support (r,+∞). (For
convenience, in what follows, we suppress the conditioning truncation event b > r.) To
identify and estimate g(b|N∗), we use the results from Hu (2008).

In second step, we use the methodology of Guerre et al. (2000) to recover the valu-
ations x, from the density g(b|N∗). For each b in the marginal support of g(b|N∗), the
corresponding valuation x is obtained by

ξ (b,N∗) = b+ 1
N∗ − 1

[
G (b|N∗)
g (b|N∗) + FN∗(r)

1− FN∗(r) ·
1

g (b|N∗)

]
. (4.9)

Notice that FN∗ , which is the valuation distributions, can also be recovered after we identify
g(b|N∗) for different N∗.

For most of this paper, we focus on the first step of this procedure, because the second
step is a straightforward application of standard techniques.

4.2.2 Nonparametric Identification

In this section, we apply the results from Hu (2008) to show the identification of the first-
price auction model with unknown N∗. The procedure requires two auxiliary variables:

1. a proxy N , e.g., the number of actual bidders A, which is a mismeasured version of
N∗

2. an instrument Z, which could be a discretized second bid.

We observe a random sample of
{⃗
bt, At

}
, where b⃗t denotes the vector of observed bids

{b1t, b2t, . . . , bAtt}. Note that we only observe At bids for each auction t. In what follows,
we use b to denote a randomly chosen bid from each auction.
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We assume the variables N , and N∗ are both discrete, and they have the same support
N = {2...,K} as the discretized second bid Z. Here K can be interpreted as the maximum
number of bidders, which is fixed across all auctions.7

For convenience, we first define the following matrices which we shall use repeatedly.
We use the notation g(· · · ) to denote, generically, a probability mass or density function.

Gb,N,Z ≡ [g(b,N = i, Z = j)]i,j ,
GN |N∗ ≡ [g (N = i|N∗ = k)]i,k ,
GN∗,Z ≡ [g (N∗ = k, Z = j)]k,j ,
GN,Z ≡ [g (N = i, Z = j)]i,j ,

and

Gb|N∗ ≡

 g(b|N∗ = 2) 0 0
0 ... 0
0 0 g(b|N∗ = K)

 . (4.10)

All of these are (K − 1)-dimensional square matrices.
The five conditions required for our identification argument are given here:

Assumption 4.2.1 g(b|N∗, N, Z) = g(b|N∗).

Assumption 4.2.2 g(N |N∗, Z) = g(N |N∗).

Assumption 4.2.3 Rank (GN,Z) = K − 1.

Assumption 4.2.4 For any i, j ∈ N , the set {(b) : g(b|N∗ = i) ̸= g(b|N∗ = j)} has nonzero
Lebesgue measure whenever i ̸= j.

Assumption 4.2.5 N ≤ N∗.

In this section, we will show how Conditions 1-5 lead to the identification of the unknown
elements Gb|N∗ , GN |N∗ and GN∗,Z (the former pointwise in b). The conditions will be
discussed as they arise in the identification argument.

Condition 1 implies that N or Z affects the equilibrium density of bids only through
the unknown number of potential bidders N∗. In the econometric literature, this is known
as the “nondifferential” measurement error assumption. In what follows, we only consider
values of b such that g(b|N∗) > 0, for N∗ = 2, . . . ,K. This requires, implicitly, knowledge
of the support of g(b|N∗), which is typically unknown to the researcher. Below, when we
discuss estimation, we present a two-step procedure to estimate g(b|N∗) which circumvents
this problem.

Condition 2 implies that the instrument Z affects the mismeasured N only through the
number of potential bidders. Roughly, because N is a noisy measure of N∗, this condition
requires that the noise is independent of the instrument Z, conditional on N∗.

7Our identification results still hold if Z has more possible values than N and N∗.
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Examples of N and Z Before proceeding with the identification argument, we consider
several examples of auxiliary variables (N,Z) which satisfy conditions 1 and 2.

1. One advantage to focusing on the IPV model is that A, the observed number of
bidders, can be used in the role of N . Particularly, for a given N∗, the sampling density of
any equilibrium bid exceeding the reserve price — as given in Eq. (4.8) above — does not
depend on A, so that Condition 1 is satisfied.8

A good candidate for the instrument Z is a discretized second bid, and it depends on
N∗ through Eq.(4.7):

Z = b(N∗, xz).

where xz denotes the valuation of the bidder who submits the second bid Z. In order to
satisfy conditions 1 and 2, we would require b ⊥ Z|N∗, and also A ⊥ Z|N∗, which are both
satisfied in the IPV setting. The use of a second bid in the role of the instrument Z echoes
the use of two bids per auction in the earlier identification results of Li et al. (2002) and
Krasnokutskaya (2011). Hence, just as in those papers, our identification and estimation
approach is applicable to any IPV auction with two or more bidders.

Because we are focused on the symmetric IPV model in this paper, we will consider this
example in the remainder of this section, and also in our Monte Carlo experiments and in
the empirical illustration.

2. A second possibility is that N is a noisy measure of N∗, as in example 2, but Z is an
exogenous variable which directly determines participation:

N = l(N∗, υ)
N∗ = k(Z, ν).

(4.11)

In order to satisfy conditions 1 and 2, we would require b ⊥ (υ, Z)|N∗, as well as υ ⊥ Z|N∗.
This implies that Z is excluded from the bidding strategy, and affects bids only through its
effect on N∗.

Furthermore, in this example, in order for the second step of the estimation procedure
(in which we recover bidders’ valuations) to be valid, we also need to assume that b ⊥ ν|N∗.
Importantly, this rules out the case that the participation shock ν is a source of unobserved
auction-specific heterogeneity.9 Note that ν will generally be (unconditionally) correlated
with the bids b, which our assumptions allow for. ■

By the law of total probability, the relationship between the observed distribution
g(b,N, Z) and the latent densities is as follows:

g(b,N, Z) =
K∑

N∗=2
g(b|N∗, N, Z)g(N |N∗, Z)g(N∗, Z). (4.12)

8This is no longer true in affiliated value models.
9In the case when N∗ is observed, correlation between bids and the participation shock ν can be accom-

modated, given additional restriction on the k(· · · ) function. See Guerre et al. (2009) and Haile et al. (2003)
for details. However, when N∗ is unobserved, as is the case here, it is not clear how to generalize these
results.
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Under conditions 1 and 2, Eq. (4.12) becomes

g(b,N, Z) =
K∑

N∗=2
g(b|N∗)g(N |N∗)g(N∗, Z). (4.13)

Eq. (4.13) can be written as

Gb,N,Z = GN |N∗Gb|N∗GN∗,Z . (4.14)

Condition 4.2.2 implies that

g(N,Z) =
K∑

N∗=2
g(N |N∗)g(N∗, Z), (4.15)

which, using the matrix notation above, is equivalent to

GN,Z = GN |N∗GN∗,Z . (4.16)

Equations (4.14) and (4.16) summarize the unknowns in the model, and the information
in the data. The matrices on the left-hand sides of these equations are quantities which can
be recovered from the data, whereas the matrices on the right-hand side are the unknown
quantities of interest. As a counting exercise, we see that the matrices Gb,N,Z and GN,Z
contain 2(K − 1)2 − (K − 1) known elements, while the unknown matrices GN |N∗ , GN∗,Z

and Gb|N∗ contain at most a total of also 2(K−1)2− (K−1) unknown elements. Hence, in
principle, there is enough information in the data to identify the unknown matrices. The
key part of the proof below is to characterize the solution and give conditions for uniqueness.
Moreover, the proof is constructive in that it immediately suggests a way for estimation.

Eq. (4.16) implies that

Rank (GN,Z) ≤ min
{
Rank

(
GN |N∗

)
, Rank (GN∗,Z)

}
. (4.17)

Hence, it follows from Condition 3 that Rank
(
GN |N∗

)
= K−1 and Rank (GN∗,Z) = K−1.

In other words, the matrices GN,Z , GN |N∗ , and GN∗,Z are all invertible.10 Therefore,
postmultiplying both sides of Eq. (4.14) by G−1

N,Z = G−1
N∗,ZG

−1
N |N∗ , we obtain the key

equation
Gb,N,ZG

−1
N,Z = GN |N∗Gb|N∗G−1

N |N∗ . (4.18)

The matrix on the left-hand side can be formed from the data. For the expression on
the right-hand side, note that because Gb|N∗ is diagonal (cf. Eq. (4.10)), the RHS matrix
represents an eigenvalue-eigenvector decomposition of the LHS matrix, with Gb|N∗ being the
diagonal matrix of eigenvalues, and GN |N∗ being the corresponding matrix of eigenvectors.
This is the key representation which will identify and facilitate estimation of the unknown

10Note that Condition 3 is directly testable from the sample. It essentially ensures that the instrument Z
affects the distribution of the proxy variable N (resembling the standard instrumental relevance assumption
in usual IV models).
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matrices GN |N∗ and b|N∗ .
In order to make the eigenvalue-eigenvector decomposition in Eq. (4.18) unique, Con-

dition 4 is required. This condition, which is actually implied by equilibrium bidding,
guarantees that the eigenvalues in Gb|N∗ are distinct for some bid b, which ensures that
the eigenvalue decomposition in Eq. (4.18) exists and is unique, for some bid b. More-
over, it guarantees that all the linearly independent eigenvectors are identified from the
decomposition in Eq. (4.18).11

Given Condition 4, Eq. (4.18) shows that an eigenvalue decomposition of the observed
Gb,N,ZG

−1
N,Z matrix identifies Gb|N∗ and GN |N∗ up to a normalization and ordering of the

columns of the eigenvector matrix GN |N∗ .
There is a clear appropriate choice for the normalization constant of the eigenvectors; be-

cause each column of GN |N∗ should add up to one, we can multiply each element GN |N∗(i, j)
by the reciprocal of the column sum

∑
iGN |N∗(i, j), as long as GN |N∗(i, j) is non-negative.

The appropriate ordering of the columns of GN |N∗ is less clear, and in order to complete
the identification, we need an additional condition which pins down the ordering of these
columns. Condition 5, which posits that N ≤ N∗ is one example of such an ordering
condition. It is natural, and automatically satisfied, when N = A, the observed number of
bidders. This condition implies that for any i, j ∈ N

g (N = j|N∗ = i) = 0 for j > i. (4.19)

In other words, GN |N∗ is an upper-triangular matrix. Since the triangular matrix GN |N∗

must be invertible (by Eq. (4.17), its diagonal entries are all nonzero, i.e.,

g (N = i|N∗ = i) > 0 for all i ∈ N . (4.20)

In other words, Condition 5 implies that, once we have the columns of GN |N∗ obtained as
the eigenvectors from the matrix decomposition (4.18), the right ordering can be obtained
by re-arranging these columns so that they form an upper-triangular matrix.

Hence, the arguments in this section have shown the following result:

Theorem 4.2.1 Under Conditions 4.2.1-4.2.5, Gb|N∗, GN |N∗ and GN∗,Z are identified (the
former pointwise in b).

4.2.3 Nonparametric Estimation: Two-step Procedure

In this section, we give details on the estimation of (b|N∗) given observations of (b,N, Z),
for the symmetric independent private values model. In the key equation (4.18), the matrix

11Specifically, suppose that for some value b̃, g(̃b|N∗ = i) = g(̃b|N∗ = j), which implies that the two
eigenvalues corresponding to N∗ = i and N∗ = j are the same. In this case, the two corresponding
eigenvectors cannot be uniquely identified, because any linear combination of the two eigenvectors is still an
eigenvector. Condition 4.2.4 guarantees that there exists another value b such that g(b|N∗ = i) ̸= g(b|N∗ =
j). Because Eq. (4.18) holds for every b, implying that g(̃b|N∗ = i) and g(b|N∗ = i) correspond to the same
eigenvector, as do g(̃b|N∗ = j) and g(b|N∗ = j), we can use the value b to identify the two eigenvectors
corresponding to N∗ = i and N∗ = j.
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GN |N∗ is identical for all b.12 This suggests a convenient two-step procedure for estimating
the unknown matrices GN |N∗ and G(b|N∗).

Step One In Step 1, we estimate the eigenvector matrix GN |N∗ . To maximize the con-
vergence rate in estimating GN |N∗ , we average across values of the bid b. Specifically, from
Eq. (4.13), we have

E(b|N,Z)g(N,Z) =
K∑

N∗=2
E(b|N∗)g(N |N∗)g(N∗, Z) (4.21)

where E[·|·] denote conditional expectation. Define the matrices

GEb,N,Z ≡ [E (b|N = i, Z = j) g(N = i, Z = j)]i,j , (4.22)

and

GEb|N∗ ≡

 E [b|N∗ = 2] 0 0
0 ... 0
0 0 E [b|N∗ = K]

 .
Then

GEb,N,Z = GN |N∗GEb|N∗GN∗,Z

and, as before, postmultiplying both sides of this equation by G−1
N,Z = G−1

N∗,ZG
−1
N |N∗ , we

obtain an integrated version of the key equation:

GEb,N,ZG
−1
N,Z = GN |N∗GEb|N∗G−1

N |N∗ . (4.23)

This implies
GN |N∗ = ψ

(
GEb,N,ZG

−1
N,Z

)
,

where ψ (·) denotes the mapping from a square matrix to its eigenvector matrix following
the identification procedure in the previous section.13 As mentioned in Hu (2008), the
function ψ (·) is a nonstochastic analytic function. Therefore,we may estimate GN |N∗ as
follows:

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (4.24)

12This also implies that there is a large degree of overidentification in this model, and suggests the
possibility of achieving identification with weaker assumptions. In particular, it may be possible to relax the
non-differentiability condition 1 so that we require g(b|N∗, N, Z) = g(b|N∗) only at one particular value of
b. We are exploring the usefulness of such possibilities in ongoing work.

13In order for GN|N∗ to be recovered from this eigenvector decomposition, Condition 4 from the previous
section must be strengthened so that the conditional means E[b|N∗], which are the eigenvalues from this
decomposition, are distinct for every N∗.
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where ĜEb,N,Z and ĜN,Z may be constructed directly from the sample. In our empirical
example, we estimate ĜEb,N,Z using a sample average:

ĜEb,N,Z =

 1
T

∑
t

1
Nj

Nj∑
i=1

bit1(Nt = Nj , Zt = Zk)


j,k

. (4.25)

Step Two In Step 2, we estimate g(b|N∗). With GN |N∗ estimated by ĜN |N∗ in step 1,
we may proceed to estimate g(b|N∗), pointwise in b. First, consider

g(b,N) =
∑
N∗

g(N |N∗)g(b,N∗)

which, in matrix form, is
−→g (b,N) = GN |N∗

−→g (b,N∗),

where the vector of densities −→g (·, ·) ≡
[
g(b,N = 2), g(b,N = 3), . . . , g(b,N = K)

]T .
Define eN∗ = (0, ..., 0, 1, 0, ..., 0)T , where 1 is at the N∗-th position in the vector. This

relation suggests that we may estimate the joint density g(b,N∗) as follows:

ĝ(b,N∗) = eTN∗Ĝ−1
N |N∗

−→̂
g (b,N),

where ĜN |N∗ is estimated in step 1, and we use a kernel estimate for each element of the
vector

−→̂
g (b,N) =

[
ĝ(b,N = 2), ĝ(b,N = 3), . . . , ĝ(b,N = K)

]T :

ĝ (b,Nj) =
[

1
Th

∑
t

1
Nt

Nt∑
i=1

K

(
b− bit
h

)
1(Nt = Nj)

]
. (4.26)

Given this estimate of ĝ(b,N∗), it is straightforward to estimate g(b|N∗). Define −→g N ,
and −→g N∗ as the vectors of distributions for N and N∗, respectively.14 Then,

−→g N = GN |N∗
−→g N∗ .

We may then estimate
P̂r(N∗) = eTN∗Ĝ−1

N |N∗
−→̂
g (N),

where
−→̂
g (N) ≡

[
1
T

∑
t 1Nt=2, . . . ,

1
T

∑
t 1Nt=K

]
can be recovered directly from the sample.

Therefore, the conditional bid densities g(b|N∗) may be estimated as

ĝ(b|N∗) =
eTN∗Ĝ−1

N |N∗
−→̂
g (b,N)

eTN∗Ĝ
−1
N |N∗

−→̂
g (N)

. (4.27)

Analogously, we can also recover F (b|N∗), the empirical conditional CDF’s for the bids,
14For example, if N∗ = {2, 3, 4}, then −→g N∗ =

{
Pr(N∗ = 2), Pr(N∗ = 3), Pr(N∗ = 4)

}T .
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using the conditional empirical CDF:

F̂ (b|N∗) =
eTN∗Ĝ−1

N |N∗

−→̂
F (b,N)

eTN∗Ĝ
−1
N |N∗

−→̂
g (N)

, (4.28)

where F̂ (b,N) denotes the vector of empirical CDF’s with elements:

F̂ (b,Nj) = 1
Nt

Nt∑
i=1

1
(
bit < b,Nt = Nj

)
, Nj = 2, . . . ,K (4.29)

which can be recovered from the sample.
In the Monte Carlo experiments and empirical application, we estimated both bid CDF’s

(using Eq. (4.28)) and bid densities (using Eq. (4.27)) to assess the performance of our
estimation procedure. An advantage of empirical CDFs over kernel density estimates is that
we do not need to worry about the effects of bandwidth choice on the performance of our
estimator.

Because Pr(N∗ = K|A = K) = 1, and GN |N∗ is an upper-triangular matrix, our
estimates of F (b|N∗ = K) and g(b|N∗ = K) are identical to, respectively, F (b|A = K) and
g(b|A = K). Our estimation requires a value for K, the upper bound for the number of
potential bidders. In practice, K is unknown, but we set it to be the maximum number of
observed bidders, which is a super-consistent estimate.15

The bid b may have a different unknown support for different N∗. That is,

g(b|N∗) =
{
> 0 for b ∈ [r, uN∗ ]
= 0 otherwise

,

where uN∗ , the upper bound of the support of g(b|N∗), may not be known by the researcher.
In practice, we estimate the upper bound uN∗ as follows:

ûN∗ = sup {b : ĝ(b|N∗) > 0} .

In general, using the supremum to estimate the upper bound of an observed random
sample is somewhat naïve. Estimation of the support of an observed random sample has
been extensively studied in the statistics literature (see Cuevas and Rodríguez-Casal (2004)
for i.i.d. data, and Delaigle and Gijbels (2006a, 2006b) for data measured with error), and
our estimate of uN∗ can be improved by employing these methods. However, because an
unbiased and consistent estimator of uN∗ is all we need, the naïve estimator ûN∗ is sufficient
for our purposes, and we do not consider more sophisticated estimators in this paper.16

The asymptotic properties of our estimator are analyzed in detail in the appendix. Here
15This is obvious if the reserve price is zero. However, this is also valid when the reserve price is greater

than zero because, even when r > 0, the probability that the observed number of bidders is equal to K is
still strictly positive.

16This naïve estimator for the upper bound of the support of bids is commonly used in the auction
literature, e.g., see Donald and Paarsch (1993) and Guerre et al. (2000), among others.
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we provide a brief summary. Given the discreteness of N , Z, and the use of a sample average
to construct ĜEb,N,Z (via. Eq. (4.25)), the estimates of ĜN |N∗ (obtained using Eq. (4.24))
and ĜN,Z should converge at a

√
T -rate (where T denotes the total number of auctions).

Hence, pointwise in b, the convergence properties of ĝ(b|N∗) to g(b|N∗), where ĝ(b|N∗)
is estimated using Eq. (4.27), will be determined by the convergence properties of the
kernel estimate of g(b,N) in Eq. (4.26), which converges at a rate slower than

√
T . In

the Appendix, we show that, pointwise in b, (Th)1/2 [ĝ(b|N∗)− g(b|N∗)] converges to a
normal distribution. We also present a uniform convergence rate for ĝ(b|N∗). As for the
empirical distribution F̂ (b|N∗), it is well known that T 1/2[F̂ (b,N)−F (b,N)] converges to a
normal distribution with mean zero. Because ĜN |N∗ converges at a

√
T -rate, F̂ (b|N∗) also

converges at
√
T -rate. We omit the proof of this as the argument is similar to the proof for

ĝ(b|N∗).
The matrix GN |N∗ , which is a by-product of the estimation procedure, can be useful for

specification testing, when N = A, the observed number of bidders. In the scenario where
the difference between the observed number of bidders A and the number of potential
bidders N∗ arises from a binding reserve price, and that the reserve price r is fixed across
all the auctions with the same N∗ in the dataset, it is well-known (cf. Paarsch (1997)) that

A|N∗ ∼ Binomial(N∗, 1− FN∗(r)) (4.30)

where FN∗(r) denotes the CDF of bidders’ valuations in auctions with N∗ potential bidders,
evaluated at the reserve price. This suggests that the recovered matrix GA|N∗ can be
useful in two respects. First, using Eq. (4.30), the truncation probability FN∗(r) could be
estimated, for each value of N∗. This is useful when we use the first-order condition (4.9)
to recover bidders’ valuations. Alternatively, we could also test whether the columns of
GA|N∗ , which correspond to the probabilities Pr(A|N∗) for a fixed N∗, are consistent with
the binomial distribution in Eq. (4.30).

4.2.4 Monte Carlo Evidence

In this section, we present some Monte Carlo evidence for our estimation procedure. We
consider first price auctions where bidders’ valuations xi ∼ U [0, 1], independently across
bidders i. With a reserve price r > 0, the equilibrium bidding strategy with N∗ bidders is:

b∗(x;N∗) = 1x≥r

{(
N∗ − 1
N∗

)
x+ 1

N∗

(
r

x

)N∗−1
r

}
(4.31)

For each auction t, we generate the equilibrium bids bjt, for j = 1, . . . N∗
t , as well as

(N∗
t , Nt, Zt). The proxy Nt is taken to be the number of observed bidders At, and Zt is a

discretized second bid. The number of potential bidders N∗
t for each auction t is generated

uniformly on {2, 3, . . . ,K}, where K, the maximum number of bidders, is set at 4. For each
auction t, and each bidder j = 1, . . . , N∗

t , we draw valuations xj ∼ U [0, 1], and construct
the corresponding equilibrium bids using Eq.(4.31). Subsequently, the number of observed
bidders is determined as the number of bidders whose valuations exceed the reserve price:
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At =
∑
j∈N ∗

t
1(xj ≥ r).

The estimation procedure in section 4.2.3 requires At ≥ 2 for each t, so that the supports
of At and N∗

t coincide. For this reason, we discard all the auctions with At = 1;17 for each
of the remaining auctions, we randomly pick a pair of bids (b1t, b2t), and use a discretized
version of the second bid b2t in the role of Zt.18

Results

We present results from S = 400 replications of a simulation experiment. The performance
of our estimation procedure is illustrated in Figures 4.1 and 4.4. The estimator performs
well for all values of N∗ = 2, 3, 4, and for modest-sized datasets of T = 1000 and T = 400
auctions, especially for the empirical bid distribution functions. Across the Monte Carlo
replications, the estimated distribution and density functions track the actual densities quite
closely. In these graphs, we also plot the bid CDF’s (labelled“G(b|A)") and densities (g(b|A))
conditional on A, which are “naïve” estimators for F (b|N∗), and g(b|N∗), respectively. For
N∗ = 2, 3, our estimator outperforms the naïve estimator, especially for the case of N∗ = 2.
As we mentioned earlier, for N∗ = 4, our estimates coincide with the naïve estimates.

In Figure 4.3 and 4.6, we present estimates of bidders’ valuations. In each graph on the
left-hand-side of the figure, we graph the bids against three measures of the corresponding
valuation: (i) the actual valuation, computed from Eq. (4.9) using the actual bid densities
g(b|N∗), and labeled “True values”; (ii) the estimated valuations using our estimates of
g(b|N∗), labeled “Estimated value”19; and (iii) naïve estimates of the values, computed
using g(b|A), the observed bid densities conditional on the observed number of bidders.20

The graphs show that there are sizable differences between the value estimates, across
all values of the bids. For all values of N∗, we see that our estimator tracks the true values
quite closely. In contrast, the naïve approach underestimates the valuations. This is to be
expected — because N∗ ≥ A, the set of auctions with a given value of A actually have
a true level of competition larger than A. Hence, the naïve approach overstates the true
level of competition, which leads to underestimation of bidders’ markdowns (x− b)/x. The
markdowns implied by our valuation estimates are shown in the right-hand-side graphs in
Figure 4.3 and Figure 4.6.

4.2.5 Empirical Illustration

In this section, we illustrate our methodology using a dataset of low-bid construction pro-
curement auctions held by the New Jersey Department of Transportation (NJDOT) in the

17Because of Condition 1, ignoring the auctions with At = 1 does not affect the consistency of the estimates
of the bid distributions g(b|N∗). There is only an efficiency impact from using fewer observations.

18Specifically, in this experiment, bids are distributed on [0.3, 0.75], and both N∗, A ∈ {2, 3, 4}. Hence,
the discretized second bid Zt also takes values {2, 3, 4} as follows: if b2t ∈ [0.3, 0.55], Z = 2; b2t ∈
[0.55, 0.675], Z = 3; b2t ∈ [0.675, 0.55], Z = 4.

19In computing these valuations, the truncation probability F (r) in Eq. (4.9) is obtained from the first-step
estimates of the misclassification probability matrix GN|N∗ as F̂ (r) = 1 −

[
Ĝ(N∗|N∗)

]1/N∗
.

20In computing the values for the naïve approach, we use the first-order condition ξ(b; A) = b+ G(b|A)
(A−1)·g(b|A) ,

which ignores the possibility of a binding reserve price.
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Figure 4.1: Estimates of bid distribution functions and densities: K = 4, T = 1000
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Figure 4.2: Estimates of bid distribution functions and densities: K = 4, T = 1000
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Figure 4.3: Estimates of bid functions and implied markdowns, K = 4, T = 1000
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Figure 4.4: Estimates of bid distribution functions and densities: K = 4, T = 400
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Figure 4.5: Estimates of bid distribution functions and densities: K = 4, T = 400
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Figure 4.6: Estimates of bid functions and implied markdowns, K = 4, T = 400
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years 1989–1997. This dataset was previously analyzed in Hong and Shum (2002), and a
full description of it is given there. Moreover, Hong and Shum’s (2002) analysis allows for
common values, whereas we just have a simpler IPV model in the application here.21

Among all the auctions in our dataset, we focus on highway work construction projects,
for which the number of auctions is the largest. In Table 4.1, we present some summary
statistics on the auctions used in the analysis. Note that there were six auctions with just
one bidder, in which non-infinite bids were submitted. If the observed number of bidders
A is equal to N∗, the number of potential bidders observed by bidders when they bid, then
the non-infinite bids observed in these one-bidder auctions is difficult to explain from a
competitive bidding point of view.22 However, occurrences of one-bidder auctions is a sign
that the observed number of bidders is less than the potential number of bidders, perhaps
due to an implicit reserve price. The methodology developed in this paper allows for this
possibility.

For the two auxiliary variables, we used A, the number of observed bidders, in the role
of the noisy measure N . We only analyze auctions with A = 2, 3, 4. Correspondingly, N∗

also takes three distinct values from {2, 3, 4}. Because we focus on this range of small A,
we assume that all the auctions are homogeneous.23 In the role of the instrument Z, we
use a second bid, discretized to take three values, so that the support of Z is the same as
that of A.24

Furthermore, we use the ordering condition 5, which implies A ≤ N∗, which is consistent
with the story that bidders decide not to submit a bid due to an implicit reserve price. By an
implicit reserve price, we mean a reserve price that bidders observe at the time of bidding,
while not the econometrician. While there was no explicit reserve price in these auctions,
there may have been an implicit reserve price, which can be understood as bidders’ common
beliefs regarding the upper bound of bids that the auctioneer is willing to consider.25

Because we model these auctions in a simplified setting, we do not attempt a full analysis
of these auctions. Rather, this exercise highlights some practical issues in implementing the

21We are uncertain how to extend our estimation approach to common (or affiliated) value settings, and
are exploring this in ongoing work.

22Indeed, (Li and Zheng, 2006, pg. 9) point out that even when bidders are uncertain about the number
of competitors they are facing, finite bids cannot be explained when bidders face a non-zero probability that
they could be the only bidder.

23We also considered an alternative specification where we control for observed auction-specific hetero-
geneity via preliminary regressions of bids on auction characteristics, and then perform the analysis using
the residuals from these regressions. The resulting estimates of the bid distributions (available from the
authors upon request) were qualitatively similar to, but noisier than the results presented here. This may
be due to the weak correlation between the residuals and N∗. Our identification scheme relies critically on
the correlation between bids and N∗, and if the auction characteristics were strongly related with, and affect
the bids through N∗, using the residuals from the regressions in place of the bids may eliminate much of the
correlation, leading to noisier estimates.

24Namely, we set Zt = 2 if the second bid bt is less than the 25th percentile of all the second bids; between
the 25th and the 75th percentile, Zt = 3; greater that the 75th, Zt = 4. We tried several other alternatives,
to ensure that the results are robust. In general, even if the support of Z exceeds that of A, the rank of
GA,Z remains the same, but the model is overidentified in the sense that there are more instruments than
needed. Our estimation approach can be extended to this case by using the generalized inverse of GA,Z , but
we did not pursue this possibility here.

25In conversations with a NJDOT authority, we were told that bids which were deemed excessive could be
rejected outright at the discretion of the auction officials, which is consistent with an implicit reserve price.
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Table 4.1: Summary statistics of procurement auction data
Highway work auctions, worktype=4:

Only auctions with A = 2, 3, 4 were used in empirical analysis

Observed # bidders (A) # aucs. Freq. avg. bida
1 6 2.96 0.575
2 11 5.42 1.495
3 31 15.27 1.692
4 46 22.67 1.843

5+ 109 53.69 4.034
a: in millions of 1989$

estimation methodology. There are three important issues. First, the assumption that
A ≤ N∗ implies that the matrix on the right-hand side of the key equation (4.23) should
be upper triangular, and hence that the matrix on the left-hand side, GEb,N,ZG−1

N,Z , which
is observed from the data, should also be upper-triangular. In practice, this matrix may
not be upper-triangular. However, we do not impose upper-triangularity on GEb,N,ZG

−1
N,Z

in the first step of estimation. Instead, we constrain the estimated matrix ĜA|N∗ to be
upper-triangular in the second step of estimation. Doing so has no effect on the asymptotic
consistency and convergence properties of ĜA|N∗ since GEb,N,ZG

−1
N,Z is upper-triangular

asymptotically, i.e., with probability 1, the lower-triangular elements ofGEb,N,ZG−1
N,Z vanish.

26

Second, even after imposing upper-triangularity on estimated GA|N∗ , it is still possible
that the eigenvectors and eigenvalues could have negative elements, which is inconsistent
with the interpretation of them as densities and probabilities.27 When our estimate of the
densities g(b|N∗) took on negative values, our remedy was to set the density equal to zero,
but normalize our density estimate so that the resulting density integrated to one.28

Third, for low-bid procurement auctions, the optimal bidding strategy, analogous to Eq.
(4.7) above, is:

b(xi;N∗) =

 xi +
∫ r

xi
(1−FN∗ (s))N∗−1ds

(1−FN∗ (xi))N∗−1 for xi ≤ r;
0 for xi > r.

(4.32)

26Indeed, in the Monte Carlo simulations, we sometimes also had to impose this on the simulated data,
as the GEb,N,ZG−1

N,Z matrix could be non-upper triangular due to small sample noise. In a previous version
of the paper, we imposed upper-triangularity directly on GEb,N,ZG−1

N,Z . Both methods have no effect on
the asymptotic consistency and convergence properties on our estimator, but clearly the method in current
version is more plausible since we did not impose any restriction on data-driven matrix GEb,N,ZG−1

N,Z .
27This issue also arose in our Monte Carlo studies, but went away when we increased the sample size.
28Here we follow the recommendation of Efromovich (1999), pg. 63. This remedy does not affect the

asymptotic properties of our estimator in that asymptotically g(b|N∗) is bounded away from zero on its
support, as we mentioned in footnote 4.



4. APPLICATIONS IN EMPIRICAL INDUSTRIAL ORGANIZATION ⇑ 120

Figure 4.7: Highway work projects, estimated densities: bootstrap 90% CI of the adjusted estimator
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Correspondingly, the valuation x is obtained by

ξ (b,N∗) = b− 1
N∗ − 1 ×

1− FN∗(r)G(b|N∗)
FN∗(r)g(b|N∗) . (4.33)

Results: Highway work auctions Figure 4.7 contains the graphs of the estimated
densities g(b|N∗) for N∗ = 2, 3, 4, for the highway work auctions. In each column of this
table, we present three estimates of each g(b|N∗): (i) the normalized estimate with the
negative portions removed, just following the remedy we mentioned above, labeled “trunc
est”; (ii) the un-normalized estimate, which includes the negative values for the density,
labeled “Orig est”; and (iii) the naïve estimate, given by g(b|A). In each plot, we also include
the 5% and 95% pointwise confidence intervals, calculated using bootstrap resampling.29

Figure 4.7 shows that the naïve bid density estimates, using A in place ofN∗, overweights
small bids, which is reminiscent of the Monte Carlo results. As above, the reason for
this seems to be that the number of potential bidders N∗ exceeds the observed number
of bidders A. In the IPV framework, more competition drives down bids, implying that

29The asymptotic variance is derived analytically in the appendix. However, it is tedious to compute in
practice, which is why we use the bootstrap to approximate the pointwise variance of the density estimates.
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Figure 4.8: Highway work projects, estimated distribution functions and densities
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using A to proxy for the unobserved level of competition N∗ may overstate the effects
of competition. Because in this empirical application we do not know and control the
data-generating process, these economically sensible differences between the naïve estimates
(using g(b|A)) and our estimates (using g(b|N∗)) serve as a confirmatory reality check on
the assumptions underlying our estimator. In order to observe the performances of these
estimators closely by comparisons, we also include estimated empirical CDFs and densities
for N∗ = 2, 3, 4 in Figure 4.8.

For these estimates, the estimated GA|N∗ matrix was

N∗ = 2 N∗ = 3 N∗ = 4
A = 2 1.0000 0.1300 0.4091
A = 3 0 0.8700 0.1041
A = 4 0 0 0.4868

Furthermore, for the normalized estimates of the bid densities with the negative portions
removed, the implied values for E[b|N∗], the average equilibrium bids conditional on N∗,
were 3.6726, 3.1567, 3.1776 for, respectively, N∗ = 2, 3, 4 (in millions of dollars).

The corresponding valuation estimates, obtained by solving Eq. (4.33) pointwise in b



4. APPLICATIONS IN EMPIRICAL INDUSTRIAL ORGANIZATION ⇑ 122

Figure 4.9: Highway work projects, estimated values and markups
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using our bid distribution and density estimates, are graphed in Figure 4.9. We present the
valuations estimated using our approach, as well as a naïve approach using g(b|A) as the
estimate for the bid densities. Note that the valuation estimates become negative within
a low range of bids, and then at the upper range of bids, the valuations are decreasing in
the bids, which violates a necessary condition of equilibrium bidding. These may be due to
unreliability in estimating the bid densities g(b|A) and g(b|N∗) close to the bounds of the
observed support of bids.

Comparing the estimates of valuations using g(b|N∗), and those obtained using g(b|A),
we see that the valuations using g(b|N∗) are smaller than those using g(b|A), for N∗ = 2, 3, 4
As in the Monte Carlo results, this implies that the markups (b− c)/b are larger using our
estimates of g(b|N∗). The differences in implied markups between these two approaches is
economically meaningful, as illustrated in the right-hand-side graphs in Figure (4.9). For
example, for N∗ = 4, at a bid of $2 million, the corresponding markup using g(b|A =
4) is around 30%, or $600,000, but using g(b|N∗ = 4) is around 55%, or $1.1 million.
This suggests that failing to account for unobservability of N∗ can lead the researcher to
understate bidders’ profit margins.
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4.2.6 Extensions

Only Winning Bids are Recorded

In some first-price auction settings, only the winning bid is observed by the researcher. This
is particularly likely for the case of descending price, or Dutch auctions, which end once
a bidder signals his willingness to pay a given price. For instance, Laffont et al. (1995)
consider descending auctions for eggplants where only the winning bid is observed, and
van den Berg and van der Klaauw (2007) estimate Dutch flower auctions where only a
subset of bids close to the winning bid are observed. Within the symmetric IPV setting
considered here, Guerre et al. (2000) and Athey and Haile (2002) argue that observing
the winning bid is sufficient to identify the distribution of bidder valuations, provided that
N∗ is known. Our estimation methodology can be applied to this problem even when the
researcher does not know N∗, under two scenarios.

First Scenario: Non-Binding Reserve Price In the first scenario, we assume that
there is no binding reserve price, but the researcher does not know N∗. (Many Dutch auc-
tions take place too quickly for the researcher to collect data on the number of participants.)
Because there is no binding reserve price, the winning bid is the largest out of the N∗ bids
in an auction. In this case, bidders’ valuations can be estimated in a two-step procedure.

In the first step, we estimate gWB(·|N∗), the equilibrium density of winning bids, con-
ditional on N∗, using the methodology above. In the second step, we exploit the fact that
in this scenario, the equilibrium CDF of winning bids is related to the equilibrium CDF of
the bids by the relation:

GWB(b|N∗) = G(b|N∗)N∗
.

This implies that the equilibrium bid CDF can be estimated as Ĝ(b|N∗) = ĜWB(b|N∗)1/N∗ ,
where ĜWB(b|N∗) denotes the CDF implied by our estimates of ĝWB(b|N∗). Subsequently,
upon obtaining an estimate of Ĝ(b|N∗) and the corresponding density ĝ(b|N∗), we can
evaluate Eq. (4.9) at each b to obtain the corresponding value.

Second Scenario: Binding Reserve Price, but A Observed In the second scenario,
we assume that the reserve price binds, but that A, the number of bidders who are willing
to submit a bid above the reserve price, is observed. The reason we require A to be
observed is that when reserve prices bind, the winning bid is not equal to bN

∗:N∗ , the
highest order statistic out of N∗ i.i.d. draws from g(b|N∗, b > r), the equilibrium bid
distribution truncated to [r,+∞). Rather, for a given N∗, it is equal to bA:A, the largest
out of A i.i.d. draws from g(b|N∗, b > r). Hence, because the density of the winning bid
depends on A, even after conditioning on N∗, we must use A as a conditioning covariate in
our estimation.

For this scenario, we estimate g(b|N∗, b > r) in two steps. First, treating A as a
conditioning covariate, we estimate gWB(·|A,N∗), the conditional density of the winning
bids conditional on both the observed A and the unobserved N∗. Second, for a fixed N∗,
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we can recover the conditional CDF G(b|N∗, b > r) via

Ĝ(b|N∗, b > r) = ĜWB(b|A,N∗)1/A, ∀A.

(That is, for each N∗, we can recover an estimate of G(b|N∗, b > r) for each distinct value
of A. Since the model implies that these distributions should be identical for all A, we can,
in principle, use this as a specification check of the model.)

In both scenarios, we need to find good candidates for the auxiliary variables N and Z.
Since typically many Dutch auctions are held in a given session, one possibility for N could
be the total number of attendees at the auction hall for a given session, while Z could be
an instrument (such as the time of day) which affects bidders’ participation for a specific
auction during the course of the day.30

Endogenous Entry

A second possible extension of our approach is to models of endogenous entry. In Samuel-
son’s (1985) model, N∗ potential entrants observe their valuations, and must decide whether
or not to pay an entry cost k > 0 to bid in the auction. In this model (cf. Li and Zheng
(2006), Marmer et al. (2013)), the distribution of the valuations of the bidders who enter
the auction, FN∗(v), varies depending on N∗. As Marmer et al. (2013) show, the inverse
bidding strategy for this model, analogous to Eq. (4.9), is:

ξ (b,N∗) = b+ 1− p(N∗) + p(N∗)G(b|N∗)
(N∗ − 1)p(N∗)g(b|N∗) (4.34)

where p(N∗) denotes the equilibrium entry probability with N∗ potential entrants.
We can apply our methodology to identify and estimate the valuation distributions

FN∗(v) in this model, even when the number of potential entrants N∗ is not observed. Let
A denote the number of bidders who enter, which we assume to be observed.31 First, using
our procedure, the equilibrium bid distributions G(b|N∗) and misclassification probabilities
GA|N∗ can be estimated using A as the proxy for N∗ and a second bid in each auction in
the role of Z. For recovering the valuations, note that, corresponding to Eq. (4.30), in
equilibrium we have

A|N∗ ∼ Binomial(N∗, p(N∗)) (4.35)

implying that p(N∗) can be recovered for each value of N∗ from the misclassification prob-
ability matrix GA|N∗ . Once p(N∗) is known, the valuations can be identified for each b in
the support of G(b|N∗) using Eq. (4.34).

30This corresponds to the scenario considered in the flower auctions in van den Berg and van der Klaauw
(2007).

31In this model, a reserve price is irrelevant, because all bidders with valuations below the reserve price
will never enter the auction. Hence, we do not need to distinguish between the number of bidders who enter
and those who enter and submit a nonzero bid.
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4.2.7 Asymptotic Properties of the Two Step Estimator

Proof of uniform consistency of ĝ(b|N∗).
In the first step, we estimate ĜN |N∗ from

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (4.36)

where ψ (·) is an analytic function as mentioned in Hu (2008) and

ĜEb,N,Z =

 1
T

∑
t

1
Nj

Nj∑
i=1

bit1(Nt = Nj , Zt = Zk)


j,k

,

ĜN,Z =
[

1
T

∑
t

1(Nt = Nj , Zt = Zk)
]
j,k

.

We summarize the uniform convergence of ĜN |N∗ as follows:

Lemma 4.2.1 Suppose that V ar(b|N,Z) <∞. Then,

ĜN |N∗ −GN |N∗ = Op
(
T−1/2

)
.

Proof. It is straightforward to show that ĜEb,N,Z − GEb,N,Z = Op
(
T−1/2

)
and ĜN,Z −

GN,Z = Op
(
T−1/2

)
. As mentioned in Hu (2008), the function ψ (·) is an analytic function.

Therefore, the result holds.
In the second step, we have

ĝ(b|N∗) =
eTN∗Ĝ−1

N |N∗
−→̂
g (b,N)

eTN∗Ĝ
−1
N |N∗

−→̂
g (N)

,

where

ĝ (b,Nj) = 1
Th

∑
t

1
Nj

Nj∑
i=1

K

(
b− bit
h

)
1(Nt = Nj).

Let ω := (b,N). Define the norm ∥·∥∞ as

∥ĝ(·|N∗)− g(·|N∗)∥∞ = sup
b

∣∣∣ĝb|N∗ (b|N∗)− gb|N∗ (b|N∗)
∣∣∣ .

The uniform convergence of ĝ(·|N∗) is established as follows:

Lemma 4.2.2 Suppose:
(2.1) ω ∈ W and W is a compact set.
(2.2) gb,N (·, Nj) is positive and continuously differentiable to order R with bounded

derivatives on an open set containing W.
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(2.3) K(u) is differentiable of order R, and the derivatives of order R are bounded. K(u)
is zero outside a bounded set.

∫∞
−∞K(u)du = 1 , and there is a positive integer m such that for

all j < m, K(j)(u) is absolutely continuous,
∫∞

−∞K(u)ujdu = 0, and
∫∞

−∞ |u|m|K(u)|du <
∞.

(2.4) h = cT−δ for 0 < δ < 1/2, and c > 0.
Then, for all j,

∥ĝ(·|N∗)− g(·|N∗)∥∞ = Op

{(
Th

lnT

)−1/2
+ hm

}
. (4.37)

The most important assumption for lemma 4.2.2 is (2.2), which places smoothness re-
strictions on the joint density g(b,N). Via Eq. (4.13), this distribution is a mixture of
conditional distributions g(b|N∗), which possibly have a different support for different N∗.
When the supports of g(b|N∗) are known, condition (2.2) only requires the smoothness
of g(b|N∗) on its own support [r, uN∗ ] because the distribution g(b|N) can be estimated
piecewise on [r, u2] , [u2, u3] , ..., [uK−1, uK ]. When the supports of g(b|N∗) are unknown,
condition (2.2) would require that the density g(b|N∗) for each value of N∗ to be smooth
at the upper boundary.32

Proof. By lemma 4.2.1, it is straightforward to show that

P̂r(N∗) = eTN∗Ĝ−1
N |N∗

−→̂
g (N)

= eTN∗G−1
N |N∗

−→g (N) +Op
(
T−1/2

)
Taking into account the fact that

−→̂
g (b,N) is bounded above, and P̂r(N∗) is of order 1, we

conclude that

ĝ(b|N∗) =
eTN∗G−1

N |N∗
−→̂
g (b,N)

eTN∗G
−1
N |N∗

−→g (N)
+Op

(
T−1/2

)
,

In order to show the consistency of our estimator ĝ(b|N∗), we need the uniform convergence
of ĝ (·, Nj). The kernel density estimator has been studied extensively. Following results
from lemma 5.4 and the discussion followed in Fan and Yao (2005) , under assumptions of
lemma 2, we have for all j33

sup
b

∣∣∣ĝb,N (·, Nj)− Eĝb,N (·, Nj)
∣∣∣ = Op

(
Th

lnT

)−1/2
. (4.38)

According to the discussion on Page 205 in Fan and Yao (2005), assumption (2.3) implies
32In ongoing work, we are exploring alternative methods, based on wavelet methods (eg. Hall et al.

(1996)), to estimate the joint density g(b, N) when there are unknown points of discontinuity, which can be
due to the non-smoothness of the individual densities g(b|N∗) at the upper boundary of their supports.

33The results in Fan and Yao (2005) are for m = 2 but they also hold for m > 2.
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that the bias
Eĝb,N (·, Nj)− gb,N (·, Nj) = Op (hm) . (4.39)

Consider that∣∣∣ĝb,N (·, Nj)− gb,N (·, Nj)
∣∣∣ ≤ ∣∣∣ĝb,N (·, Nj)− Eĝb,N (·, Nj)

∣∣∣+ ∣∣∣Eĝb,N (·, Nj)− gb,N (·, Nj)
∣∣∣.

From (4.38) and (4.39), we immediately conclude that

sup
b

∣∣∣ĝb,N (·, Nj)− gb,N (·, Nj)
∣∣∣ = Op

{(
Th

lnT

)−1/2
+ hm

}
.

The uniform convergence of ĝb|N∗ then follows.
Remark: Another technical issue pointed out in Guerre et al. (2000) is that the density

g(b|N∗) may not be bounded at the lower bound of its support, which is the reserve price
r. They suggest using the transformed bids b† ≡

√
b− r. Our identification and estimation

procedures remain the same if b replaced by b†, where an estimate of the reserve price r
could be the lowest observed bid in the dataset (given our assumption that the reserve price
is fixed in the dataset).

Proof of asymptotic normality of ĝ(b|N∗) In this section, we show the asymptotic
normality of ĝ(b|N∗) for a given value of b. Define γ0 (b) = {gb,N (b)} , a column vector
containing all the elements in the matrix g (b,N). Similarly, we define γ̂ (b) = {ĝb,N (b)}.
The proof of Lemma 4.2.2 suggests that

ĝ(b|N∗) = φ (γ̂ (b)) +Op
(
T−1/2

)
where

φ (γ̂ (b)) ≡
eTN∗G−1

N |N∗
−→̂
g (b,N)

eTN∗G
−1
N |N∗

−→g (N)
.

Notice that the function φ (·) is linear in each entry of the vector γ̂ (b). Therefore, we have

ĝ(b|N∗)− g(b|N∗) =
(
dφ

dγ

)T
(γ̂ (b)− γ0 (b)) + op

(
1/
√
Th
)
,

where dφ
dγ is nonstochastic because it is a function of GN |N∗ and −→g (N) only. The asymptotic

distribution of ĝ(b|N∗) then follows that of γ̂ (b). We summarize the results as follows:

Lemma 4.2.3 Suppose that assumptions in Lemma 4.2.2 hold with R = 2 and that

1. there exists some δ such that
∫
|K(u)|2+δ du <∞,

2. (Th)1/2 h2 → 0, as T →∞.

Then, for a given b and N∗,

(Th)1/2 [ĝ(b|N∗)− g(b|N∗)] d→ N(0,Ω),
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where

Ω =
(
dφ

dγ

)T
V (γ̂)

(
dφ

dγ

)
,

V (γ̂) = lim
T→∞

(Th)E
[
(γ̂ − E (γ̂)) (γ̂ − E (γ̂))T

]
.

Proof. As discussed above, the asymptotic distribution of ĝ(b|N∗) is derived from that of
γ̂ (b). In order to prove that the asymptotic distribution of the vector γ̂ (b) is multivariate
normal N (0, V (γ̂)), we show that the scalar λT γ̂ (b) for any vector λ has a normal distri-
bution N

(
0, λTV (γ̂)λ

)
. For a given value of b, it is easy to follow the proof of Theorems

2.9 and 2.10 in Pagan and Ullah (1999) to show that

(Th)1/2
[
λT γ̂ (b)− λTγ0 (b)

]
d→ N

(
0, V ar

(
λT γ̂ (b)

))
,

where V ar
(
λT γ̂ (b)

)
= λTV (γ̂ (b))λ is the variance of the scalar λT γ̂ (b). The asymptotic

distribution of ĝ(b|N∗) then follows.

4.3 Beliefs in Learning Models

How economic agents learn from past experience has been an important issue in both
empirical industrial organization and labor economics. (See Ching et al. (2013) and Ching et
al. (2017) for a review.)The key difficulty in the estimation of learning models is that beliefs
are time-varying and unobserved in the data. Hu et al. (2013b) use bandit experiments
to non-parametrically estimate the learning rule using auxiliary measurements of beliefs.
In each period, an economic agent is asked to choose between two slot machines, which
have different winning probabilities. Based on her own belief on which slot machine has a
higher winning probability, the agent makes her choice of slot machine and receives rewards
according to its winning probability. Although she does not know which slot machine has a
higher winning probability, the agent is informed that the winning probabilities may switch
between the two slot machines.

In addition to choices Yt and rewards Rt, researchers also observe a proxy Zt for the
agent’s belief X∗

t . Recorded by an eye-tracker machine, the proxy describes how much
more time the agent looks at one slot machine than at the other. Under a first-order
Markovian assumption, the learning rule is described by the distribution of the next period’s
belief conditional on previous belief, choice, and reward, i.e., Pr

(
X∗
t+1|X∗

t , Yt, Rt
)
. They

assume that the choice only depends the belief and that the proxy Zt is also independent of
other variables conditional on the current belief X∗

t . The former assumption is motivated
by a fully-rational Bayesian belief-updating rule, while the latter is a local independence
assumption widely-used in the measurement error literature. These assumptions imply a
2.1-measurement model with

Zt ⊥ Yt ⊥ Zt−1|X∗
t . (4.40)

Therefore, the proxy rule Pr (Zt|X∗
t ) is non-parametrically identified. Under the local in-



4. APPLICATIONS IN EMPIRICAL INDUSTRIAL ORGANIZATION ⇑ 129

dependence assumption, one can identify distribution functions containing the latent belief
X∗
t from the corresponding distribution functions containing the observed proxy Zt. That

means the learning rule Pr
(
X∗
t+1|X∗

t , Yt, Rt
)

can be identified from the observed distribution
Pr (Zt+1, Yt, Rt, Zt) through

Pr (Zt+1, Yt, Rt, Zt) (4.41)
=

∑
X∗

t+1

∑
X∗

t

Pr
(
Zt+1|X∗

t+1
)

Pr (Zt|X∗
t ) Pr

(
X∗
t+1, X

∗
t , Yt, Rt

)
.

The nonparametric learning rule they found implies that agents are more reluctant to “up-
date down” following unsuccessful choices, than “update up” following successful choices.
That leads to the sub-optimality of this learning rule in terms of profits. We provide de-
tails in Hu et al. (2013b), which investigate how individuals learn from past experience in
dynamic choice environments.

A growing literature has documented, using both experimental and field data, that the
benchmark fully-rational Bayesian learning model appears deficient at characterizing actual
decision-making in real-world settings. Other papers have demonstrated that observed
choices in strategic settings with asymmetric information are typically not consistent with
subjects’ having Bayesian (equilibrium) beliefs regarding the private information of their
rivals. Recently, non-Bayesian reinforcement learning (Sutton and Barto (1998)) models
have also been used to explain some observed anomalies in savings and investment behavior
(eg. Choi et al. (2009), Odean et al. (2004)).

Given the lack of consensus in the literature about what the actual learning rules used
by agents in real-world decision environments are, there is a need for these rules to be
estimated in a manner flexible enough to accommodate alternative models of learning.
In this paper, we propose a new approach for assessing agents’ belief dynamics. In an
experimental setting, we utilize data on subjects’ eye-movements during the experiment to
aid our inference regarding the learning (or belief-updating) rules used by subjects in their
decision-making process. Previous studies have established a connection between subjects’
eye movements and gaze durations and their valuations in choice experiments. We exploit
this connection and use gaze durations to pin down subjects’ evolving beliefs in a dynamic
choice setting.

This paper is the first to use such “neuroeconomic” data in estimating behavioral
decision-making models. Taking advantage of recent developments in the econometrics
of dynamic measurement error models, we use the observed choice and eye- tracking data
to estimate subjects’ decision rules and learning rules, without imposing a priori functional
forms on these functions. Estimating the learning rules in such a model-free manner allows
us to assess the optimality of subjects’ choices in learning experiments in a manner quite
distinct from that taken in the existing literature.

The main results are as follows. First, our estimated learning rules do not correspond to
any one of the existing learning models. Rather, we find that beliefs are reward-asymmetric,
in that subjects are more reluctant to "update down" following unsuccessful (low-reward)
choices, than "update up" following successful (high-reward) choices. Such asymmetries
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are novel relative to existing learning models (such as reinforcement or Bayesian learn-
ing); moreover, from a payoff perspective, they are suboptimal relative to the fully-rational
Bayesian benchmark.

Correspondingly, we find that, using the estimated learning rules, subjects’ payoffs are,
at the median, $4 (or about two cents per choice) lower than under the Bayesian benchmark;
this difference represents about 25% of typical experimental earnings (not including the
fixed show-up fee). However, subjects’ payoffs under the estimated choice and learning
rules are comparable to the profits from alternative non-Bayesian learning models, including
reinforcement learning.

4.3.1 Two-Armed Bandit “Reversal Learning” Experiment

Our experiments are adapted from the "reversal learning" experiment used in Hampton et
al. (2006). In the experiments, subjects make repeated choices between two actions (which
we call interchangeably “arms” or “slot machines” in what follows): in trial t, the subject
chooses Yt ∈ {1(= “green”), 2(= “blue”)}. The rewards generated by these two arms are
changing across trials, as described by the state variable St ∈ {1, 2}, which is never observed
by subjects. When St = 1, then green (blue) is the “good” (“bad”) state, whereas if St = 2,
then blue (green) is the “good” (“bad”) state.

The rewards Rt that the subject receives in trial t depends on the action taken, as well
as (stochastically) on the current state: the reward process is

Rt =
{
±$0.50 with prob. 50%± 20% if good arm chosen
±$0.50 with prob. 50%∓ 10% if bad arm chosen.

(4.42)

For convenience, we use the notation Rt = 1 to denote the negative reward (-$0.50), and
Rt = 2 to denote the positive reward ($0.50).

The state evolves according to an exogenous binary Markov process. At the beginning
of each block, the initial state S1 ∈ {1, 2} is chosen with probability 0.5, randomly across
all subjects and all blocks. Subsequently, the state evolves with transition probabilities34

P (St+1|St) St = 1 St = 2
St+1 = 1 0.85 0.15
St+1 = 2 0.15 0.85

. (4.43)

Because St is not observed by subjects, and is serially-correlated over time, subject have an
opportunity to learn and update their beliefs about the current state on the basis of past
rewards. Moreover, because St changes randomly over time, so that the identity of the good
arm varies across trials, this is called a “probabilistic reversal learning” experiment.

34This aspect of our model differs from Hampton et al. (2006), who make the non-Markovian assumption
that the state St changes with probability 25% after a subject has chosen the good arm four successive
times. Estimating such non-Markovian models would require alternative identification arguments than the
one considered in this paper.
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Figure 4.10: Timeline of a trial
After subjects fix their gaze on the cross (top screen), two slot machines are presented
(second screen). Subjects’ eye-movements are recorded by the eye-tracking machine here.
Subjects choose by pressing the left (right) arrow key to indicate a choice of the left (right)
slot machine. After choosing (third screen), a positive reward (depicted by two quarters) or
negative reward (two quarters covered by a red X) is delivered, along with feedback about
the subject’s choice highlighted against a background color corresponding to the choice.
In the bottom screen, a subject is transitioned to the next trial, and reminded that a slot
machine may switch from “good” to “bad” (and vice versa) with probability 15%.
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Table 4.2: Summary statistics for experimental data

1(green) 2(blue)
Y : subjects’ choices 2108 2092

2 ($0.50) 1 (-$0.50)
R: rewards 2398 1802

mean median upper 5% lower 5%
Z̃: eye movement measurea -0.0309 0 1.3987 -1.4091
RT : reaction time (10−2 secs) 88.22 59.3 212.2 36.8

aDefined in Eq. (4.44)

Experimental Data: Preliminary Analysis

The experiments were run over several weeks in November-December 2009. We used 21
subjects, recruited from the Caltech Social Science Experimental Laboratory (SSEL) subject
pool consisting of undergraduate/graduate students, post-doctoral students, and community
members,35 each playing for 200 rounds (broken up into 8 blocks of 25 trials). Most of the
subjects completed the experiment within 40 minutes, including instruction and practice
sessions. Subjects were paid a fixed show-up fee ($20), in addition to the amount won
during the experiment, which was $14.20 on average.36

Subjects were informed of the reward structure for good and bad slot machines, and the
Markov transition probabilities for state transitions (reversals), but were not informed which
state was occurring in each trial. Figure 4.10 contains the time line and some screenshots
from the experiment. In addition, while performing the experiment, the subjects were
attached to an eye-tracker machine, which recorded their eye movements. From this, we
constructed the auxiliary variable Z̃t, which measures the fraction of the reaction time (the
time between the onset of a new round after fixation, and the subject’s choice in that round)
spent gazing at the picture of the “blue” slot machine on the computer screen.37

For each subject, and each round t, we observe the data (Yt, St, Rt, Zt). Table 4.2
presents some summary statistics of the data. The top panel shows that, across all subjects
and all trials, “green” (2108 choices) and “blue” (2092 choices) are chosen in almost-equal

35Community members consisted of spouses of students at either Caltech or Pasadena City College (a
two-year junior college). While the results reported below were obtained by pooling the data across all
subjects, we also estimated the model separately for the subsamples of Caltech students, vs. community
members. There were few noticeable differences in the results across these classes of subjects.

36For comparison, purely random choices would have earned $10 on average.
37Across trials, the location of the “blue” and “green” slot machines were randomized, so that the same

color is not always located on the same side of the computer screen. This controls for any “right side bias”
which may be present (see discussion further below).
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proportions. Moreover, from the second panel, we see that subjects obtain the high reward
with frequency of roughly 57% (≈ 2398/(2398 + 1802)). This is slightly higher than, but
significantly different from, 55%, which is the frequency which would obtain if the subjects
were choosing completely randomly.38 Hence, subjects appear to be “trying”, which moti-
vates our analysis of their learning rules. On the other hand, simulation of the fully-rational
Bayesian decision rules (discussed above) show that the success rate from using the fully-
rational decision rule is only 58.4%, which is just slightly higher than the in-sample success
rate found in the experiments. It appears, then, that in the reversal learning setting, the
success rate intrinsically varies quite narrowly between 55% and 58.4%.

Table 4.3 contains the empirical frequencies of choices in period t, conditional on choices
and rewards from the previous period (Yt|Yt−1, Rt−1). This can be interpreted as a “reduced-
form” decision rule for the subjects. The top row in that table contains the empirical
frequencies, across all subjects, that the green arm is chosen, conditional on the different
values of (Yt|Yt−1, Rt−1). Looking at the second (fourth) entry in this row, we see that
after a successful choice of green (blue), a subject replays this strategy with probability
0.86 (0.88=1-0.12). Thus, on average, subjects appear to replay successful strategies, cor-
responding to a “win-stay” rule-of-thumb.

However subjects appear reluctant to give up unsuccessful strategies. The probability of
replaying a strategy after an unsuccessful choice of the same strategy is around 50% for both
the blue and green choices (ie. the first and third entries in this row). Thus, subjects tend
to randomize after unsuccessful strategies. As far as we are aware, such an “asymmetric”
choice rule is new in the literature; moreover, as we will see below, this is echoed in the
“asymmetric” belief-updating rule which we estimate.

In the remainder of Table 4.3, we also present the same empirical frequencies, calculated
for each subject individually. There is some degree of heterogeneity in subjects’ strategies.
Looking at columns 2 and 4 or the table, we see that, for the most part, subjects pursue a
“win-stay” strategy: the probabilities in the second column are mainly >> 50%, and those
in the fourth column are most << 50%. However, looking at columns 1 and 3, we see that
there is significant heterogeneity in subjects’ choices following a low reward. In these cases,
randomization (which we classify as a choice probability between 40-60%) is the modal
strategy among subjects; strikingly, however, a number of subjects continue replaying an
unsuccessful strategy: for examples, subjects 3,8, and 11 continue to choose “green” with
probabilities of 79%, 89% and 79% even after a previous choice of green yielded a negative
reward.39

We define Z̃it, our raw eye-movement measure, as the difference in the gaze duration
directed at the blue and green slot machines, normalized by the total reaction time:

Z̃t = (Zb,t − Zg,t)/RTt; (4.44)
38This is the marginal probability of a good reward, which equals 0.5(0.7 + 0.4) from Eq. (4.42). The

t-statistic for the null that subjects are choosing randomly equals 169.67, so that hypothesis is strongly
rejected.

39In the reversal learning model, however, such a strategy is not obviously irrational; because the identity
of the good arm changes exogenously across periods, an arm that was bad last period (ie. yielding a low
reward) may indeed be good in the next period.
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Table 4.3: “Reduced form” decision rules: P (Yt = 1(green)|Yt−1, Rt−1)
Choice probabilities conditional on past choice Yt−1 and reward Rt−1

(Yt−1, Rt−1)= (1,1) (1,2) (2,1) (2,2)
Across All Subjects: 0.5075 0.8652 0.5089 0.1189

(0.0169) (0.0094) (0.1169) (0.0090)

For each individual subject:
Subject #1: 0.1799 0.5192 0.8128 0.364

(0.0655) (0.0684) (0.0595) (0.0603)
Subject #2: 0.1051 0.9820 0.9449 0

(0.0498) (0.0171) (0.0381) (0)
Subject #3: 0.7938 0.9859 0.3340 0

(0.0591) (0.0136) (0.0871) (0)
Subject #4: 0.3244 0.8796 0.6492 0.0610

(0.0704) (0.0514) (0.0726) (0.0283)
Subject #5: 0.0419 0.8796 0.6492 0.0610

(0.0292) (0.0236) (0.0325) (0.0461)
Subject #6: 0.2570 0.7498 0.8159 0.2021

(0.0652) (0.0592) (0.0602) (0.0532)
Subject #7: 0.5792 0.9242 0.4647 0.0796

(0.0751) (0.0371) (0.0731) (0.0379)
Subject #8: 0.8931 0.9803 0.1013 0.0165

(0.0496) (0.0186) (0.0482) (0.0163)
Subject #9: 0.6377 1.0000 0.2741 0

(0.0831) (0) (0.0655) (0)
Subject #10: 0.1986 0.9344 0.8037 0

(0.0622) (0.0352) (0.0587) (0)
Subject #11: 0.7859 1.0000 0.4306 0

(0.0575) (0) (0.0870) (0)
Subject #12: 0.5883 0.9262 0.3741 0.0131

(0.0841) (0.0406) (0.0733) (0.0129)
Subject #13: 0.6741 0.8907 0.1962 0.2085

(0.0705) (0.0462) (0.0581) (0.0539)
Subject #14: 0.4730 0.6147 0.5363 0.3842

(0.0831) (0.0653) (0.0735) (0.0664)
Subject #15: 0.6759 0.9789 0.3351 0

(0.0761) (0.0206) (0.0714) (0)
Subject #16: 0.4595 0.9135 0.5443 0.1953

(0.0715) (0.0316) (0.0742) (0.0666)
Subject #17: 0.6358 0.5202 0.5322 0.4644

(0.0660) (0.0706) (0.0780) (0.0748)
Subject #18: 0.6333 1.0000 0.2901 0

(0.0834) (0) (0.0734) (0)
Subject #19: 0.6144 0.8197 0.5808 0.2013

(0.0702) (0.0444) (0.0806) (0.0625)
Subject #20: 0.3699 0.5741 0.3699 0.3554

(0.0858) (0.0707) (0.0665) (0.0621)
Subject #21: 0.6990 0.9602 0.2934 0.0177

(0.0658) (0.0274) (0.0693) (0.0171)
Note: standard errors (in parentheses) computed using 1000 block-bootstrap resamples
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that is, for trial t, Zb(g),t is the gaze duration at the blue (green) slot machine, and RTt is
the reaction time, ie. the time between the onset of the trial after fixation, and the subject’s
choice.40 Thus, Z̃t measures how much longer a subject looks at the blue slot machine than
the green one during the t-th trial, with a larger (smaller) value of Z̃t implying longer gazes
directed at the blue (green) slot machine. Summary statistics on this measure are given in
the bottom panel of Table 4.2. There, we see that the average reaction time is 0.88 seconds,
and that the median value of Z̃t is zero, implying an equal amount of time directed to each
of the two slot machines.

Figure 4.11: Scatter plot of Zb (gaze at blue) and Zg (gaze at green)
Both Zb and Zg are reported in 2× 10−2 seconds.

Figure 4.11 contains the scatter plot of Zb,t versus Zg,t. In our empirical work, we will
discretize the eye-movement measure Z̃t; to avoid confusion, in the following we use Z̃t to
denote the undiscretized eye-movement measure, and Zt the discretized measure, which we
describe below.

4.3.2 Empirical Model

In this section, we introduce a model of dynamic decision-making in the two-armed ban-
dit experiment described above, and also discuss the identification and estimation of this
model. Because the gamut of learning models is very large, we start by discussing a bench-
mark model – the fully-rational Bayesian learning model. After considering that model,
we describe the empirical model which we take to the data, which allows for deviations
from the fully-rational benchmark. Importantly, in our empirical work, we will not consider
the whole gamut of learning models, but restrict attention to models which are “close” to

40Furthermore, in order to control for subject-specific heterogeneity, we normalize Z̃t across subjects by
dividing by the subject-specific standard deviation of Z̃t, across all rounds for each subject.



4. APPLICATIONS IN EMPIRICAL INDUSTRIAL ORGANIZATION ⇑ 136

fully-rational in that the structure of the learning and decision rules are the same as in the
benchmark fully-rational model; however, the rules themselves are allowed to be different.

Benchmark: Fully-rational Decision-Making in Reversal Learning Model

As in the experiments, we consider a finite (25 period) dynamic optimization problem, in
which each subject aims to choose a sequence of actions to maximize expected rewards
E
[∑25

t=1Rt
]
. (The details of this model are given in Appendix A.)

Let B∗
t denote the probability (given by Bayes’ Rule) that a subject places on “blue”

being the good arm in period t, conditional on the whole experimental history up to then.
We evaluate the fully-rational decision rules – the mapping from period t beliefs B∗

t to a
period t choice – in this dynamic Bayesian learning model by computer simulation. Im-
portantly, we accommodate nonstationarity in the problem, in that our simulations allow
the decision rules to differ arbitrarily across periods. This permits the relationship between
subjects’ choices and their beliefs B∗

t to vary across periods, depending perhaps on the
periods remaining in the experiment, or to allow for history dependence in either choices
or the belief-updating rule. An important maintained assumption in this paper is that
subjects’ decision rules are solely a function of the current state probabilities B∗

t , so that
by allowing the decision rules to vary across periods in these simulations, we can assess the
restrictiveness of such an assumption.

We plot the optimal decision rules for this model . Two features are apparent. First,
we see that the decision rules are identical across all the periods, indicating that they are
stationary. Second, the fully-rational decision rule takes a simple form: in each period, it
prescribes that subjects choose the blue arm whenever the current belief B∗

t that the blue
arm is “good” exceeds 50%. This is a myopic decision rule.

These optimal decision rules for the reversal learning model differ in important ways from
optimal decision-making in the standard multi-armed bandit (MAB) problem (cf. Gittins
and Jones (1974), Banks and Sundarum (1992)), in which the states of the bandits are
fixed over all periods and the bandits are “independent” in that a reward from one bandit is
uninformative about the state of another bandit. The Bayesian decision rule in the standard
MAB model features exploration (or “experimentation”), which recommends sacrificing
current rewards to achieve longer-term payoffs; this makes simple myopic decision-making
(choosing the bandit which currently has the higher expected reward) suboptimal.41 In our
reversal learning setting, however, the states of the bandits are negatively related, so that
positive information about one arm implies negative information about the other.

The Empirical Model

Having described fully-rational behavioral benchmark in our experimental setup, we now
describe the empirical model which we fit to the experimental data. As we remarked earlier,
the assumptions of this empirical model will be motivated by the nature of decision-making

41See Miller (1984), Erdem and Keane (1996), Ackerberg (2003), Crawford and Shum (2005), Chan and
Hamilton (2006), and Marcoul and Weninger (2008) for empirical studies of learning and experimentation
in a dynamic choice context.
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in the benchmark model. In that sense, we do not allow subjects to make arbitrarily
irrational decisions, but rather to use decision and belief-updating rules which are “close”
to fully-rational.

We introduce the variable X∗
t , which denotes the subject’s round t beliefs about the

current state St; obviously, subjects know their beliefs X∗
t , but these are unobserved by the

researcher.42 In what follows, we assume that both X∗ and Z are discrete, and take support
on K distinct values which, without loss of generality, we denote {1, 2, . . . ,K}. We make
the following assumptions regarding the subjects’ learning and decision rules:

Assumption 4.3.1 Subjects’ choice probabilities P (Yt|X∗
t ) only depend on current beliefs.

Moreover, the choice probabilities P (Yt = y|X∗
t ) varies across different values of X∗

t (ie.
beliefs affect actions).

Because we interpret the unobserved variables X∗
t here as a reflection of subjects’ current

beliefs regarding which arm is currently the “good” one, the choice probability P (Yt|X∗
t ) can

be interpreted as that which arises from a “myopic” choice rule. As we remarked before,
in Section 1.1, such an interpretation is justified by the simulation of the fully-rational
decision rules under the reversal learning setting, which showed that these rules are myopic
and depend only on current beliefs.

This assumption embodies the core of our strategy for estimating subjects’ beliefs; it
posits important exclusion restrictions that, conditional on beliefs X∗

t , the observed action
Yt is independent of everything else, including the eye movement Zt as well as past choices
Yt−1. Table 4.3 showed that choices are serially correlated across periods; assumption 1
implies that this serially correlation is due entirely to the unobserved beliefs X∗

t — thus,
beliefs (which are unobserved to the researcher) are the reason for serial correlation in
choices observed in Table 4.3.

Assumption 4.3.2 The law of motion for X∗
t , which describes how subjects’ beliefs change

over time given the past actions and rewards, is called the learning rule. This is a con-
trolled first-order Markov process, with transition probabilities P (X∗

t |X∗
t−1, Rt−1, Yt−1).

This assumption is motivated by the structure of the fully-rational Bayesian belief-
updating rule (cf. Eq. (4.50) in Appendix A), in which the period t beliefs depend only on
the past beliefs, actions, and rewards in period t− 1. However, we allow the exact form of
the learning rule to deviate from the exact Bayes formula.

Assumption 4.3.3 The eye movement measure Zt is a noisy measure of beliefs X∗
t :

(i) Eye movements are serially uncorrelated conditional on beliefs: P (Zt|X∗
t , Yt, Zt−1) =

P (Zt|X∗
t ).

(ii) For all t, the K×K matrix GZt|Zt−1, with (i, j)− th entry equal to P (Zt = i|Zt−1 = j),
is invertible.
(iii) E[Zt|X∗

t ] is increasing in X∗
t .

42X∗
t corresponds to the prior beliefs pt from the previous section except that, further below, we will

discretize X∗
t and assume that it is integer-valued. Therefore, to prevent any confusion, we will use distinct

notation pt, X∗
t to denote, respectively, the beliefs in the theoretical vs. the empirical model.
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Assumption 4.3.3 involves an important exclusion restriction that, conditional on X∗
t ,

the eye movement Zt in period t is independent of Zt−1. This assumption is reasonable
because, in the experimental setup, we require subjects to “fix” their gaze in the middle
of the computer screen at the beginning of each period. This should remove any inherent
serial correlation in eye movements which is not related to the learning task.43

The invertibility assumption 4.3.3(i) is made on the observed matrix GZt|Zt−1 with
elements equal to the conditional distribution of Zt|Zt−1; hence it is testable. Assumption
4.3.3(ii) “normalizes” the beliefs X∗

t in the sense that, because large values of Zt imply that
the subject gazed longer at blue, the monotonicity assumption implies that larger values of
X∗
t denote more “positive” beliefs that the current state is blue.

Assumption 4.3.4 The conditional probability distributions describing subjects’ choices
(P (Yt|X∗

t )), learning rules (P (X∗
t |X∗

t−1, Rt−1, Yt−1)), and eye movements (P (Zt|X∗
t )) are

the same for all subjects and trials t.

This stationarity and homogeneity assumption justifies pooling the data across all sub-
jects and trials for estimating the model. Stationarity is motivated by the structure of
optimal decision-making discussed above, where both the Bayesian belief-updating rule
(Eq. (4.50) in Appendix A) and optimal choice rules are indeed stationary.44

Estimation and identification

In the model described in previously, the unknown functions we want to estimate are:
(i) P (Yt|X∗

t ), the choice probabilities;
(ii) the learning rule P (X∗

t |X∗
t−1, Yt−1, Rt−1); and

(iii) the eye movement probabilities P (Zt|X∗
t ), the mapping between the auxiliary measure

Zt and the unobserved beliefs X∗
t .

Despite its simplicity, this model is not straightforward to estimate, because these un-
known functions depend on the latent beliefs X∗

t , which are not only unobserved but chang-
ing over time.45 Next, we show formally how the availability of the eye movements Zt allows
us to identify and estimate these unknown functions: essentially, given our assumptions,
the eye movements play the role of “noisy measurements” of the underlying latent belief
process.46 Our estimator for the learning rules is very simple, and involves only elementary
matrix calculations using matrices which can be formed from the observed data.

For simplicity, we will use the shorthand notation P (· · · ) to denote generically a proba-
bility distribution. The identification argument (and , subsequently, estimation procedure)

43At the same time, we have also estimated models in which we allow Zt and Zt−1 to be correlated, even
conditional on X∗

t . The results, which can be obtained from the authors upon request, indicate that the
results are quite similar, for different values of Zt−1, which imply that Assumption 3 is quite reasonable.

44The homogeneity assumption could be avoided at the (large) cost of gathering enough data per subject,
such that the model could be estimated for each subject individually. Given the eye fatigue facing subjects
who are attached to an eye tracker, running so many trials per subject is not feasible.

45Specifically, this model is a nonlinear “hidden state Markov” model, which are typically quite challenging
to estimate (cf. Ghahramani (2001) and Arcidiacono and Miller (2011)).

46We apply recent econometric tools developed for the estimation of nonclassical measurement error models
and dynamic discrete-choice models (Hu (2008), Hu and Shum (2012)).
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takes two-steps. In the first step, the goal is to recover the choice and eye movement prob-
ability functions – that is, the probabilities P (Yt|X∗

t ) (resp. P (Zt|X∗
t )) of a given choice

(resp. of given eye gaze duration) conditional on the latent beliefs. In the second step, we
recover the learning rules. We describe both steps in turn.

First step. The joint probability distribution P (Zt, Yt|Zt−1) can be factorized as fol-
lows:

P (Zt, Yt|Zt−1) =
∑
X∗

t

P (Zt|Yt, X∗
t , Zt−1)P (Yt|X∗

t , Zt−1)P (X∗
t |Zt−1)

=
∑
X∗

t

P (Zt|X∗
t )P (Yt|X∗

t )P (X∗
t |Zt−1)

where the last equality applies assumptions 1 and 3. For any fixed Yt = y, then, we can
write the above in matrix notation as:

Ay,Zt|Zt−1 = BZt|X∗
t
Dy|X∗

t
CX∗

t |Zt−1

where A, B, C, and D are all K ×K matrices, defined as:

Ay,Zt|Zt−1 =
[
PYt,Zt|Zt−1(y, i|j)

]
i,j

BZt|X∗
t

=
[
PZt|X∗

t
(i|k)

]
i,k

CX∗
t |Zt−1 =

[
PX∗

t |Zt−1(k|j)
]
k,j

Dy|X∗
t

=


PYt|X∗

t
(y|1) 0 0

0 PYt|X∗
t
(y|2) 0

0 . . . 0
0 0 PYt|X∗

t
(y|K)



(4.45)

Similarly to the above, we can derive that

GZt|Zt−1 = BZt|X∗
t
CX∗

t |Zt−1

where G is likewise a K ×K matrix, defined as

GZt|Zt−1 =
[
PZt|Zt−1(i|j)

]
i,j
. (4.46)

From Assumption 4.3.3(i), we combine the two previous matrix equalities to obtain

Ay,Zt|Zt−1G−1
Zt|Zt−1

= BZt|X∗
t
Dy|X∗

t
B−1
Zt|X∗

t
. (4.47)

Since Dy|X∗
t

is a diagonal matrix, this equation represents an eigenvalue decomposition of
the matrix Ay,Zt|Zt−1G−1

Zt|Zt−1
, which can be computed from the observed data sequence
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{Yt, Zt}.47 This shows that from the observed data, we can identify the matrices BZt|X∗
t

and Dy|X∗
t
, which are the matrices with entries equal to (respectively) the eye movement

probabilities P (Zt|X∗
t ) and choice probabilities P (Yt|X∗

t ).
In order for this argument to be valid, the eigendecomposition in Eq. (4.47) must be

unique. This requires the eigenvalues (corresponding to choice probabilities P (y|X∗
t )) to be

distinct; that is, P (y|X∗
t ) should vary inX∗

t – which Assumption 4.3.1 ensures. Furthermore,
the eigendecomposition in Eq. (4.47) is invariant to the ordering (or permutation) and
scalar normalization of eigenvectors. Assumption 4.3.3(ii) imposes the correct ordering on
the eigenvectors: specifically, it implies that columns with higher average value correspond
to larger value of X∗

t . Finally, because the eigenvectors correspond to the conditional
probabilities P (Zt|X∗

t ), it is appropriate to normalize each column so that it sums to one.
Second step. We begin by factorizing the conditional probability distribution

P (Zt+1, Yt, Rt, Zt) =
∑
X∗

t

∑
X∗

t+1

P (Zt+1|X∗
t+1)P (X∗

t+1|Yt, X∗
t , Rt)P (Zt|X∗

t )f (Yt, X∗
t , Rt)

=
∑
X∗

t

∑
X∗

t+1

P (Zt+1|X∗
t+1)P (X∗

t+1, Yt, X
∗
t , Rt)P (Zt|X∗

t )

where the second equality applies assumptions 1, 2, and 3. Then, for any fixed Yt = y and
Rt = r, we have the matrix equality

HZt+1,y,r,Zt = BZt+1|X∗
t+1

LX∗
t+1,X

∗
t ,y,r

B′
Zt|X∗

t
.

The K ×K matrices H and L are defined as

HZt+1,y,r,Zt =
[
PZt+1,Yt,Rt,Zt(i, y, r, j)

]
i,j

LX∗
t+1,X

∗
t ,y,r

=
[
PX∗

t+1,X
∗
t ,Yt,Rt(i, j, y, r)

]
i,j
.

(4.48)

By stationarity (assumption 4.3.4), we have BZt+1|X∗
t+1

= BZt|X∗
t
. Hence, we can obtain

LX∗
t+1,X

∗
t ,y,r

(corresponding to the learning rule probabilities) directly from

LX∗
t+1,X

∗
t ,y,r

= B−1
Zt+1|X∗

t+1
HZt+1,y,r,Zt [B′

Zt|X∗
t
]−1. (4.49)

This result implies that two consecutive periods of experimental and eye movement data
(Zt, Yt, Rt), (Zt−1, Yt−1, Rt−1) from each subject suffice to identify and estimate the decision
and learning rules in this model.

Our estimation procedure mimics the two-step identification argument from the previous
section. That is, for fixed values of (y, r), we first form the matrices A, G, and H (as defined
previously) from the observed data, using sample frequencies to estimate the corresponding
probabilities. Then we obtain the matrices B, D, and L using the matrix manipulations in
Eqs. (4.47) and (4.49). To implement this, we assume that the eye movement measures Zt
and the unobserved beliefs X∗

t are discrete, and take three values.48

47From Eq. (4.46), the invertibility of G (which is Assumption 4.3.3(i)) implies the invertibility of B.
48The details concerning the discretization of the eye movement measure Zt are given in Appendix C.
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Moreover, while the identification argument above was “cross-sectional” in nature, being
based upon two observations of {Yt, Zt, Rt} per subject, in the estimation we exploited
the long time series data we have for each subject, and pooled every two time-contiguous
observations {Yi,r,τ , Zi,r,τ , Ri,r,τ}τ=t

τ=t−1 across all subjects i, all blocks r, and all trials τ =
2, . . . , 25.49 Results from Monte Carlo simulations (available from the authors on request)
show that the estimation procedure produces accurate estimates of the model components.50

4.3.3 Results

Tables 4.4 and 4.5 present estimation results. The beliefs X∗
t are assumed to take the

three values {1, 2, 3}. We interpret X∗ = 1, 3 as indicative of “strong beliefs” favoring
(respectively) green and blue, while the intermediate value X∗ = 2 indicates that the
subject is “not sure”.51 Accordingly, the eye movements Zt have been discretized to also
take three values, as discussed before.

Table 4.4 contains the estimates of the choice and eye movement probabilities. The
first and last columns of the panels in this table indicate that choices and eyes movements
are closely aligned with beliefs, when beliefs are sufficiently strong (ie. are equal to either
X∗ = 1 or X∗ = 3). Specifically, in these results, the probability of choosing a color contrary
to beliefs – which is called the “exploration probability” in the literature – is small, being
equal to 1.3% when X∗

t = 1, and only 0.64% when X∗
t = 3.52

When X∗
t = 2, however, suggesting that the subject is unsure of the state, there is a

slight bias in choices towards “blue”, with Yt = 2 roughly 56% of the time. The bottom
panel indicates that when subjects are not sure, they tend to split their gaze more evenly
between the two colors (ie. Zt = 2) around 63% of the time.

The learning rule estimates are presented in Table 4.5. The left columns show how beliefs
are updated when “exploitative” choices (ie. choices made in accordance with beliefs) are
taken, and illustrate an important asymmetry in subjects’ belief-updating rules. When
current beliefs indicate “green” (X∗

1 = 1) and green is chosen (Yt = 1), beliefs evolve
asymmetrically depending on the reward: if Rt = 2 (high reward), then beliefs update

49Formally, this is justified under the assumption that the process {Yt, Zt, Rt} is stationary and ergodic
for each subject and each block; under these assumptions, the ergodic theorem ensures that the (across time
and subjects) sample frequencies used to construct the matrices A, G, and H converge towards population
counterparts.

50 Moreover, because all the elements in the matrices of interest B, D, and L correspond to probabilities,
they must take values within the unit interval. However, in the actual estimation, we found that occasionally
the estimates do go outside this range. In these cases, we obtained the estimates by a least-squares fitting
procedure, where we minimized the elementwise sum-of-squares corresponding to Eqs. (4.47) and (4.49),
and explicitly restricted each element of the matrices to lie ∈ [0, 1]. This was not a frequent recourse; only
a handful of the estimates reported below needed to be restricted in this manner.

51We have tried to re-estimate the model allowing for more belief states (≥ 4), but the results we obtained
were not encouraging. This is due to our relatively small sample size; since our estimation approach is
nonparametric, it is difficult to obtain reliable estimates with modest sample sizes.

52We also considered a robustness check against the possibility that subjects’ gazes immediately before
making their choices coincide exactly with their choice. While this is not likely in our experimental setting,
because subjects were required to indicate their choice by pressing a key on the keyboard, rather than clicking
on the screen using a mouse, we nevertheless re-estimated the models but eliminating the last segment of the
reaction time in computing the Zt. The results are very similar to the reported results, both qualitatively
and quantitatively.
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Table 4.4: Estimates of choice and eye movement probabilities

Estimated Choice Probabilities: P (Yt|X∗
t )

X∗
t : 1(green) 2(not sure) 3(blue)

Yt = 1 0.9866 0.4421 0.0064
(green) (0.0561) (0.1274) (0.0146)

2 0.0134 0.5579 0.9936
(blue)

Estimated eye movement probabilities: P (Zt|X∗
t )

X∗
t : 1(green) 2(not sure) 3(blue)

Zt = 1 0.8639 0.2189 0.0599
(green) (0.0468) (0.1039) (0.0218)

2 0.0815 0.6311 0.0980
(middle) (0.0972) (0.1410) (0.0369)

3 0.0546 0.1499 0.8421
(blue) (0.0581) (0.1206) (0.0529)

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses.
Each column sums to one.

towards green with probability 89%; however, if Rt = 1 (low reward), then belief still stay
at green with probability 57%. This tendency of subjects to update up after successes, but
not update down after failures also holds after a choice of “blue” (as shown in the left-hand
columns of the bottom two panels in Table 4.5): there, subjects update their belief on blue
up to 88% following a success (Rt = 2), but still give the event blue a probability of 53%
following a failure (R1 = 1). This muted updating following failures is a distinctive feature
of our learning rule estimates and, as we will see below, is at odds with optimal Bayesian
belief-updating.

The results in the right-most columns describe belief updating following “explorative”
(contrarian to current beliefs) choices. For instance, considering the top two panels, when
current beliefs are favorable to “blue” (X∗

t = 3), but “green” is chosen, beliefs update more
towards “green” (X∗

t+1 = 1) after a low rather than high reward (82% vs. 18%). However,
the standard errors (computed by bootstrap) of the estimates here are much higher than the
estimates in the left-hand columns; this is not surprising, as the choice probability estimates
in Figure 4.4 show that explorative choices occur with very low probability, leading to
imprecision in the estimates of belief-updating rules following such choices.

The middle columns in these panels show how beliefs evolve following (almost-) random
choices. Again considering the top two panels, we see that when current beliefs are unsure
(X∗

t = 2), subjects update more towards “green” when a previous choice of green yielded
the high rather than the low reward (66% vs. 31%). The results in the bottom two panels
are very similar to those in the top two panels, but describe how subjects update beliefs
following choices of “blue” (Yt = 2).
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Table 4.5: Estimates of learning (belief-updating) rules

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =1(green)
X∗
t : 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.5724 0.3075 0.1779
(green) (0.0694) (0.0881) (0.2257)

2 0.0000a 0.3138 0.4002
(not sure) (0.0662) (0.1042) (0.2284)

3 0.4276 0.3787 0.4219
(blue) (0.0624) (0.0945) (0.2195)

P (X∗
t+1|X∗

t , y, r), r =2(win), y =1(green)
X∗
t : 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.8889 0.6621 0.8242
(green) (0.0894) (0.1309) (0.2734)

2 0.0000 0.2702 0.1758
(not sure) (0.0911) (0.1297) (0.1981)

3 0.1111 0.0678 0.0000
(blue) (0.0340) (0.0485) (0.1876)

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =2(blue)
X∗
t : 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.5376 0.2297 0.2123

(blue) (0.0890) (0.0731) (0.1436)
2 0.0458 0.2096 0.1086

(not sure) (0.0732) (0.0958) (0.1524)
1 0.4166 0.5607 0.6792

(green) (0.0874) (0.0968) (0.1881)

P (X∗
t+1|X∗

t , y, r), r =2(win), y =2(blue)
X∗
t : 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.8845 0.6163 0.6319

(blue) (0.1000) (0.1136) (0.1647)
2 0.0000 0.3558 0.3566

(not sure) (0.0968) (0.1160) (0.1637)
1 0.1155 0.0279 0.0116

(green) (0.0499) (0.0373) (0.0679)
Each cell contains parameter estimates, with bootstrapped standard errors in parentheses.

Each column sums to one.
aThis estimate, as well as the other estimates in this table which are equal to zero, resulted from applying

the constraint that probabilities must lie between 0 and 1. See footnote 50.
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Table 4.6: Simulated payoffs from learning models
Fully-rational Nonparametric Pseudo- Reinforcement Win-stay

Bayesian Bayesian Learning
5-%tile $5 $1 $2 $1 $1
25-%tile $12 $8 $9 $8 $8
50-%tile $17 $13 $14 $13 $13
75-%tile $22 $18 $19 $18 $18
95-%tile $29 $25 $26 $25 $25

The fully-rational model is described in Section 1.1, while the Reinforcement learning, Pseudo-Bayesian,
and win-stay models are described in Appendix B. For each model, the quantiles of the simulated payoff
distribution (across 100,000 simulated choice/reward sequences) are reported.

4.3.4 How Optimal are Estimated Learning Rules

In the remainder of the paper, we compare our estimated learning rules to alternative learn-
ing rules which have been considered in the literature. We consider four alternative para-
metric learning rules: (i) the fully-rational Bayesian model, which is the model discussed
in Section 1.1 above; (ii) a pseudo-Bayesian model, which is a version of the fully-rational
Bayesian model in which the decision rules are smoothed relative to the step-function de-
cision rules in the fully-rational model ; (iii) reinforcement learning (cf. Sutton and Barto
(1998)); and (iv) win-stay, a simple choice heuristic whereby subjects replay successful
strategies. All of these models, except (i), contain unknown model parameters, which we
estimated using the choice data from the experiments. Complete details on these models,
and the estimated model parameters, are given in Appendix B.

The relative optimality of each learning model was assessed via simulation. For each
model, we simulated 100,000 sequences (each containing eight blocks of choices, as in the
experiments) of rewards and choices, and computed the distributions of payoffs obtained
by subjects. The empirical quantiles of these distributions are presented in Table 4.6.

As we expect, the fully-rational Bayesian model generates the most revenue for subjects;
the payoff distribution for this model stochastically dominates the other models, and the
median payoff is $17. The other models perform almost identically, with a median payoff
around $3-$4 less than the Bayesian model (or about two cents per choice). This difference
accounts for about 25% of typical experimental earnings (net of the fixed show-up fee).

In the next section, we seek explanations for the differences (and similarities) in perfor-
mance among the alternative learning models by comparing the belief-updating and choice
rules across the different models.

Comparing Choice and Belief-Updating Rules Across Different Learning Models

For the fully-rational Bayesian and reinforcement learning models, we can recover the “be-
liefs” corresponding to the observed choices and rewards, and compare them to the beliefs
from the nonparametric learning model.53 Appendix B contains additional details on how

53There are no beliefs in the win-stay model, which is a simple choice heuristic. The pseudo-Bayesian
model has the same beliefs as the fully-rational Bayesian model (with the difference that the choice rule is
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Table 4.7: Summary statistics for beliefs in three learning models

X∗: Beliefs from nonparametric model
B∗: Beliefs from fully-rational Bayesian model

V ∗: “Beliefs” (valuations) from reinforcement learning model

Panel 1: Belief frequency in nonparametric model
X∗ 1(green) 2(not sure) 3(blue)

1878 (45%) 366 (10%) 1956 (45%)

Panel 2: Beliefs from other models
mean median std. lower 33% upper 33%

B∗ (Bayesian Belief) 0.4960 0.5000 0.1433 0.4201 0.5644
V ∗(= Vb − Vg) -0.0104 0 0.4037 -0.2095 0.1694

All three measures of beliefs are oriented so that larger values correspond to a more favorable assessment
that “blue” is currently the good arm.

See Appendix B for details on computation of beliefs in these three learning models.

the beliefs were derived for the learning models.
Table 4.7 contains summary statistics for the implied beliefs from our nonparametric

learning model (denoted X∗
t ), vs. the Bayesian beliefs B∗ and the valuations V ∗ in the

Reinforcement Learning model. For simplicity, we will abuse terminology somewhat and
refer in what follows to X∗, V ∗, and B∗ as the “beliefs” implied by, respectively, our
nonparametric model, the Reinforcement Learning model, and the Bayesian model.

Panel 1 gives the total tally, across all subjects, blocks, and trials, of the number of
times the nonparametric beliefs X∗ took each of the three values. Subjects’ beliefs tended
to favor green and blue roughly equally, with “not sure” lagging far behind. The close split
between “green” and “blue” beliefs is consistent with the notion that subjects have rational
expectations, with flat priors on the unobserved state S1 at the beginning of each block. The
second panel summarizes the beliefs from the Reinforcement Learning and Bayesian models.
The Reinforcement Learning valuation measure V ∗ appears symmetric and centered around
zero, while the average Bayesian belief B∗ lies also around 0.5. Thus, on the whole, all three
measures of beliefs appear equally distributed between “green” and “blue”.

Next, we compare the learning rules from the nonparametric, fully-rational Bayesian,
and reinforcement learning models. In order to do this, we discretized the beliefs in each
model into three values, in proportions identical to the frequency of the different values of
X∗
t as reported in Table 4.7, and present the implied learning rules for each model.54 These

are shown in Table 4.8.
smoothed).

54Specifically, we discretized the Bayesian (resp. Reinforcement Learning) beliefs so that 45% of the beliefs
fell in the B∗

t = 1(resp. V ∗
t = 1) and B∗

t+1 = 3(resp. V ∗
t = 3) categories, while 10% fell in the intermediate

B∗
t = 2(X∗

t = 2) category, the same as for the nonparametric beliefs X∗
t (cf. Panel 1 of Table 6). The results

are even more striking when we discretized the Bayesian and Reinforcement Learning beliefs so that 33%
fell into each of the three categories.
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Table 4.8: Learning (belief-updating) rules for alternative learning models

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =1(green)
Fully-rational Bayesian Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 1(green) 2 (not sure) 3(blue) 1(green) 2 (not sure) 3(blue)
1 (green) 0.2878 0 0 0.6538 0 0

2 (not sure) 0.1730 0 0 0.1381 0.0115 0
3 (blue) 0.5392 1.0000 1.0000 0.2080 0.9885 1.0000

P (X∗
t+1|X∗

t , y, r), r =2(win), y =1(green)
Fully-rational Bayesian Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 1(green) 2 (not sure) 3(blue) 1(green) 2 (not sure) 3(blue)
1 (green) 1.0000 1.0000 0.6734 1.0000 0.8818 0.6652

2 (not sure) 0 0 0.1250 0 0.1182 0.1674
3 (blue) 0 0 0.2016 0 0 0.1674

P (X∗
t+1|X∗

t , y, r), r =1(lose), y =2(blue)
Fully-rational Bayesian Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 3(blue) 2 (not sure) 1(green) 3(blue) 2 (not sure) 1(green)
3 (blue) 0.3060 0 0 0.6576 0 0

2 (not sure) 0.1601 0 0 0.1261 0.0109 0
1 (green) 0.5338 1.0000 1.0000 0.2164 0.9891 1.0000

P (X∗
t+1|X∗

t , y, r), r =2(win), y =2(blue)
Fully-rational Bayesian Reinforcement Learning

Beliefs B∗
t+1, V ∗

t+1: 3(blue) 2 (not sure) 1(green) 3(blue) 2 (not sure) 1(green)
3 (blue) 1.0000 1.0000 0.6760 1.0000 0.8898 0.6983

2 (not sure) 0 0.0000 0.1440 0 0.1102 0.1379
1 (green) 0 0 0.1800 0 0 0.1638

All three measures of beliefs are oriented so that larger values correspond to a more favorable assessment
that “blue” is currently the good arm.
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Table 4.9: Choice probabilities for alternative learning models
Fully-rational Bayesian

Beliefs B∗
t : 1(green) 2(not sure) 3(blue)

Yt = 1 (green) 1.0000 0.5000 0.0000
2 (blue) 0.0000 0.5000 1.0000

Pseudo-Bayesian Learning
Beliefs B∗

t : 1(green) 2(not sure) 3(blue)
Yt = 1 (green) 0.5141 0.4996 0.4850

2 (blue) 0.4859 0.5005 0.5150

Reinforcement Learning
Beliefs V ∗

t : 1(green) 2(not sure) 3(blue)
Yt = 1 (green) 0.7629 0.4939 0.2250

2 (blue) 0.2371 0.5061 0.7750
All three measures of beliefs are oriented so that larger values correspond to a more favorable assessment

that “blue” is currently the good arm.

The most striking difference between the three sets of learning rules lies in how beliefs
update following unsuccessful choices (ie. choices which yielded a negative reward). Com-
paring the Bayesian and the nonparametric learning rules (in Table 4), we see that Bayesian
beliefs exhibit less “stickiness”, or serial correlation, following unsuccessful choices. For ex-
ample, consider the case of (Yt = 1, Rt = 1), so that an unsuccessful choice of green occurred
in the previous period. The nonparametric learning rule estimates (Table 4) show that the
weight of beliefs remain on green (X∗

t+1 = 1) with 57% probability, whereas the Bayesian
beliefs place only 28% weight on green. A similar pattern exists after an unsuccessful choice
of blue, as shown in the left-hand column of the third panel: the nonparametric learning
rule continues to place 54% probability on blue, whereas the fully-rational Bayesian belief
is only 30%.

On the other hand, the learning rules for the Reinforcement Learning model (also re-
ported in Table 4.8) are more similar to the nonparametric learning rule, especially following
unsuccessful choices. Again, looking at the top panel, we see that following an unsuccessful
choice of “green” (Yt = 1), subjects’ valuations are still favorable to green with probability
65%; this is comparable in magnitude to the 57% from the nonparametric learning rule.
Similarly, after an unsuccessful choice of blue (third panel), valuations in the Reinforcement
Learning model still favor blue with probability 66%, again comparable to the 54% for the
nonparametric model. It appears, then, that the updating rules from the Reinforcement
Learning and nonparametric model share a common defect: a reluctance to “update down”
following unsuccessful choices; this common defect relative to the fully-rational model may
explain the lower revenue generated by these models.

In Table 4.9 we compare the choice rules across the different models. As in the previous
table, we discretized the beliefs from each model into three values. Comparing the top two
panels, we see that, even though the belief-updating rule is the same for the fully-rational
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Bayesian and Pseudo-Bayesian models, the choice rules are strikingly different. Choice
rules in the fully-rational Bayesian model are binary deterministic functions of beliefs . In
contrast, the Pseudo-Bayesian model is a model in which the choice rule is a “smoothed”
probabilistic function of beliefs; the estimate of the smoothing parameter (discussed in
Appendix B) indicates a large amount of smoothing, such that choice probabilities in this
model are practically invariant to the Bayesian beliefs B∗

t , as shown in Table 4.9.
Overall, the estimated choice rules for the nonparametric model, in Table 4.4, are much

closer to the fully-rational model, than the Pseudo-Bayesian model. This suggests that
the lower payoffs from the nonparametric model relative to the fully-rational model arise
primarily not from the choice rules (which are very similar in the two models), but rather
from the belief-updating rules (which are quite different, as discussed previously).

The bottom panel of Table 4.9 contains the choice rules for the Reinforcement Learning
model. As shown there, the choice rules are much smoother than in the fully-rational
Bayesian model and the estimated model, but not as smooth as the Pseudo-Bayesian model.
This suggests that the similarities of the payoffs from the nonparametric and Reinforcement
Learning models (as shown in Table 4.6) are due to the similarities in belief-updating rules,
and not to the choice rules, which are quite different in the two models.

Finally, the similarity in payoffs between the nonparametric and win-stay models is not
surprising because, as we showed in Section 1.3 above, the reduced-form choice behavior
from the experimental data is in line with a “win-stay/lose-randomize” rule of thumb. Such
behavior is confirmed in the calibrated parameters for the win-stay model (presented in
Appendix B) which show that, after receiving a positive reward, subjects tend to repeat
the previous choice with probability 87% while, after a negative reward, subjects essentially
randomize. This asymmetry in choices following good/bad rewards echoes the estimated
learning rules from Table 4, which showed that subjects “update down” much less following
bad rewards than they “update up” following good rewards.

4.3.5 Additional Details

Details for Computing Fully-Rational Bayesian Learning Model

Here we provide more details about the simulation of the fully-rational model from Section
2.1. First we introduce some notation and describe the information structure and how
Bayesian updating would proceed in the reversal learning context. Let (Yt, St, Rt) denote
the actions, state, and rewards. Furthermore, let Q denote the 2 × 2 Markov transition
matrix for the state St, corresponding to Eq. (2).

Let B∗
t denote the prior belief that St = 2, at the beginning of period t, while B̃∗

t

denotes the posterior belief that St = 2, at the end of period t, after taking action Yt and
observing reward Rt. The relationship between B∗

t and B̃∗
t is given by Baye’s rule:

p̃t = P (St = 2|pt, Rt, Yt) = pt · P (Rt|St = 2, Yt)
(1− pt) · P (Rt|St = 1, Yt) + pt · P (Rt|St = 2, Yt)
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Combining this with Q, we obtain the period-by-period transition for the prior beliefs B∗
t :[

1−B∗
t+1

B∗
t+1

]
= Q ·

[
1− B̃∗

t

B̃∗
t

]
= Q ·

[
1− P (St = 2|B∗

t , Rt, Yt)
P (St = 2|B∗

t , Rt, Yt)

]
(4.50)

Next we describe a dynamic Bayesian learning model for the reversal-learning environment.
As in the experiments, we consider a finite (25 period) horizon, with t = 1, . . . T = 25. Each
subject’s objective is to choose sequence of actions to maximize expected rewards:

max
i1,i2,...,iT

E
[
T∑
t=1

Rt

]

The state variable in this model is B∗
t , the beliefs at the beginning of each period. Corre-

spondingly, the Bellman equation is:

Vt(B∗
t ) = max

Yt∈{1,2}

{
E
[
Rt + Vt+1(B∗

t+1)|Yt, B∗
t

]}
= max

Yt∈{1,2}

{
E [Rt|Yt, B∗

t ] + ERt|Yt,B∗
t
EB∗

t+1|B∗
t ,Yt,Rt

Vt+1(B∗
t+1)

} (4.51)

Above, the expectation EB∗
t+1|B∗

t ,Yt,Rt
is taken with respect to Eq. (4.50), the law of motion

for the prior beliefs, while the expectation ERt|Yt,B∗
t

is derived from the assumed distribution
of (Rt|Yt, ωt) via

P (Rt|Yt, B∗
t ) = (1−B∗

t ) · P (Rt|Yt, ωt = 1) +B∗
t · P (Rt|Yt, ωt = 2).

While we have not been able to derive closed-form solutions to this dynamic optimization
problem, we can compute the optimal decision rules by backward induction. Specifically,
in the last period T = 25, the Bellman equation is:

VT (B∗
T ) = max

Yt∈{1,2}
E [Rt|Yt, B∗

T ] . (4.52)

We can discretize the values of B∗
T into the finite discrete set B. Then for each B ∈ B,

we can solve Eq. (4.52) to obtain the period-T value and choice functions V̂T (B) and
ŷ∗
T (B) = argmaxiE[Rt|i, B] for each value of B ∈ B. Subsequently, proceeding backwards,

we can obtain the value and choice functions for periods t = T − 1, T − 2, . . . , 1.

Details on Model Fitting and Belief Estimation in Alternative Learning Models

In section 4.3.4, we compared belief dynamics in the nonparametric model (X∗) with coun-
terparts in other dynamic choice models. Here we provide additional details on how these
quantities were computing for each model.

Recovering belief dynamics X∗ in the nonparametric model. The values of X∗, the
belief process in our nonparametric learning model, were obtained by maximum likelihood.
For each block, using the estimated choice and eye movement probabilities, as well as the
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learning rules, we chose the path of beliefs {X∗
t }

25
t=1 which maximized P ({X∗

t } | {Zt, Rt}),
the conditional (“posterior”) probability of the beliefs, given the observed sequences of
eye-movements and rewards. Because

P ({X∗
t , Zt} | {Yt, Rt}) = P ({X∗

t } | {Zt, Rt}) · P ({Zt} | {Yt, Rt}),

where the second term on the RHS of the equation above does not depend on X∗
t , it is

equivalent to maximize P ({X∗
t , Zt} | {Yt, Rt}) with respect to {X∗

t }. Because of the Markov
structure, the joint log-likelihood factors as:

logL({X∗
t , Zt}|{Yt, Rt}) =

24∑
t=1

log
[
P (Zt|X∗

t )P (X∗
t+1|X∗

t , Rt, Yt)
]

+ log(P (Z25|X∗
25)).

(4.53)

We plug in our nonparametric estimates of P (Z|X∗) and P (X∗
t+1|X∗

t , Rt, Yt) into the above
likelihood, and optimize it over all paths of {X∗

t }25
t=1 with the initial condition restric-

tion X∗
1 = 2 (beliefs indicate "not sure" at the beginning of each block). To facilitate

this optimization problem, we derive the best-fitting sequence of beliefs using a dynamic-
programming (Viterbi) algorithm; cf. Ghahramani (2001).

In the above, we treated the choice sequence {Yt} as exogenous, and left the choice
probabilities P (Yt|X∗

t ) out of the log-likelihood function (4.53) above. By doing this, we
essentially ignore the implied correlation between beliefs and choices in estimating beliefs.
This was because, given our estimates that P (Yt = 1|X∗

t = 1) ≈ P (Yt = 2|X∗
t = 3) ≈ 1 in

Table 4.4, maximizing with respect to these choice probabilities would leads to estimates
of beliefs {X∗} which closely coincide with observed choices; we wished to avoid such an
artificially good “fit” between the beliefs and observed choices.

For robustness, however, we also estimated the beliefs {X∗} including the choice prob-
abilities P (Yt|X∗

t ) in the likelihood function. Not surprisingly, the correlation between
choices and beliefs Corr(Yt, X∗

t ) = 0.99, and in practically all periods, the estimated beliefs
and observed choices coincided (ie. X∗

t = Yt). However, we felt that this did not accurately
reflect subjects’ beliefs.

Beliefs in fully-rational Bayesian Model. The learning and decision rules for the
Bayesian model were described and computed in Section 1.1, with additional details pro-
vided in Appendix A. The sequence of Bayesian beliefs B∗

t is obtained from Eq. (4.50) and
evaluated at the observed sequence of choices and rewards (Yt, Rt).

Reinforcement Learning Model. We employ a variant of the TD (Temporal-Difference)-
Learning models (Sutton and Barto (1998) , section 6) in which action values are up-dated
via the so-called Recorla-Wagner rule. The value updating rule for a one-step TD-Learning
model is given by:

V t+1
Yt
←− V t

Yt
+ αδt. (4.54)
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where Yt denotes the choice taken in trial t, α denotes the learning rate, and δt denotes the
“prediction error” δt for trial t, defined as:

δt = Rt − V t
Yt
, (4.55)

the difference between Rt (the observed reward in trial t) and V t
Yt

(the current valuation).
In trial t, only the value for the chosen alternative Yt is updated; there is no updating of
the valuation for the choice that was not taken.

P tc , the current probability of choosing action c, is assumed to take the conventional
“softmax” (ie. logit) form with the smoothing (or “temperature”) parameter τ :

P tc = eV
t

c /τ/

[∑
c′

eV
t

c′/τ

]
(4.56)

We estimated the parameters τ and α using maximum likelihood. For greater model flex-
ibility, we allowed the parameter α to differ following positive vs. negative rewards. The
estimates (and standard errors) are:

τ = 0.2729 (0.0307)
α for positive reward (Rt = 2) = 0.7549 (0.0758)
α for negative reward (Rt = 1) = 0.3333 (0.0518).

(4.57)

We plug in these values into Eqs. (4.54), (4.55), and (4.59) to derive a sequence of valuations{
V ∗
t ≡ V t

b − V t
g

}
. The choice function (Eq. (4.56)) can be rewritten as a function of the

difference V ∗
t ; i.e. the choice probability for the blue slot machine is,

P tb = e(V t
b −V t

g )/τ

1 + e(V t
b

−V t
g )/τ = eV

∗
t /τ

1 + eV
∗

t /τ
(4.58)

and P tg = 1−P tb . Hence, V ∗
t plays a role in the TD-Learning model analogous to the belief

measures X∗
t and B∗

t from, respectively, the nonparametric and Bayesian learning models.

Pseudo-Bayesian Model. A Pseudo-Bayesian learner uses Bayes rule to update her
belief (as in the fully-rational model), but her choice probabilities are determined (subop-
timally) by the "softmax" rule, as in reinforcement learning:

P tc = eB
∗t

c/τ/

[∑
c′

eB
∗t

c′/τ

]
(4.59)

As the smoothing parameter τ → 0, the Pseudo-Bayesian model approaches the fully-
rational Bayesian model. Using the choice data form the experiments, we obtain a maximum-
likelihood estimate of 0.2176 for τ , with a bootstrapped standard error of 0.0138. This in-
dicates a large degree of smoothing in the choice probabilities relative to the fully-rational
decision rule, as shown in Table 4.9.
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Win-Stay Model. The final model is a simple behavioral heuristic. If subjects choose
a slot machine and receive the positive reward Rt = 1, they repeat the choice in the next
period with probability 1 − δ (and switch to the other choice with probability δ). If they
choose a slot machine but obtain the negative reward Rt = −1, they switch to the other
slot machine in the next trial with probability 1− ϵ.

We estimated the parameters δ and ϵ using maximum likelihood. The estimates we
obtained from the data were:

δ = 0.1268 (0.0142); ϵ = 0.4994 (0.0213). (4.60)

4.4 Effort and Types in Online Credit Market

Xin (2018) studies the impact of reputation/feedback systems on the operation of online
credit markets using data from Prosper.com. A major concern in markets of unsecured
loans is the ability of lenders to recover their loan due to the problems of asymmetric
information. On the one hand, borrowers differ in their inherent default costs c, which is
hidden information; on the other hand, borrowers’ efforts et to repay debts are hidden as
well, so additional incentives are necessary to motivate them.

Xin (2018) is the first to quantify the extent to which reputation/feedback systems
improve the total welfare of market participants when both hidden information (adverse
selection) and hidden actions (moral hazard) are present. She identifies and estimates a
finite-horizon dynamic model of a credit market in which borrowers and lenders interact
repeatedly over time. The observables include the outcome variables Ot, including default
and late payment performances, and individual characteristics Xt, such as debt-to-income
ratio and credit grade.

The dynamic structure implies that

f(Ot, Xt, Ot−1, Xt−1) =
∑
c

f(c,Xt−1, Ot−1)f(Xt|Xt−1, Ot−1, c)f(Ot|c,Xt)

The type distribution f(c|Xt−1, Ot−1) is identified for borrowers with multiple loans using
the identification results in Hu and Shum (2012).

Furthermore, loan outcomes include borrowers’ default and late payment performances,
Ot = {Dt, Lt}. The model implies that default and late payment are independent condi-
tional on effort, i.e.,

f(Ot|c,Xt) =
∑
et

f(Dt|et)f(Lt|et)f(et|c,Xt)

Following the results in Hu (2008), effort choice probabilities and outcome realization pro-
cess are identified.

These results lead to identification of utility parameters in borrowers’ payoff functions
and the outside option distributions for borrowers and lenders using variations in interest
rates. In the last step, given other primitives that have been recovered, she identifies
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the original type distribution for all borrowers before any selection occurs. Using these
structural estimates, the paper also conducts counterfactual experiments.

More detailed description can be found in Yi Xin’s presentation slides ↗.

http://www.econ2.jhu.edu/people/hu/Slides_YiXin.pdf


5

Applications in Labor Economics

5.1 Unemployment and Labor Force Participation

Unemployment rates may be one of the most important economic indicators. The official
US unemployment rates are estimated using self-reported labor force statuses in the Current
Population Survey (CPS). It is known that ignoring misreporting errors in the CPS may
lead to biased estimates. Feng and Hu (2013) use a hidden Markov approach to identify
and estimate the distribution of the true labor force status. Let X∗

t and Xt denote the true
and self-reported labor force status in period t. They merge monthly CPS surveys and are
able to obtain a random sample {Xt+1, Xt, Xt−9}i for i = 1, 2, . . . , N . Using Xt−9 instead
of Xt−1 may provide more variation in the observed labor force status. They assume that
the misreporting error only depends on the true labor force status in the current period,
and therefore,

Pr (Xt+1, Xt, Xt−9) (5.1)
=

∑
X∗

t+1

∑
X∗

t

∑
X∗

t−9

Pr
(
Xt+1|X∗

t+1
)

Pr (Xt|X∗
t ) Pr

(
Xt−9|X∗

t−9
)

Pr
(
X∗
t+1, X

∗
t , X

∗
t−9
)
.

With three unobservables and three observables, nonparametric identification is not feasible
without further restrictions. They then assume that Pr

(
X∗
t+1|X∗

t , X
∗
t−9
)

= Pr
(
X∗
t+1|X∗

t

)
,

which is similar to a first-order Markov condition. Under these assumptions, they obtain

Pr (Xt+1, Xt, Xt−9) (5.2)
=

∑
X∗

t

Pr (Xt+1|X∗
t ) Pr (Xt|X∗

t ) Pr (X∗
t , Xt−9) ,

which implies a 3-measurement model. This model can be considered as an application of
Theorem 2.4.1 to a hidden Markov model.

Feng and Hu (2013) found that the official U.S. unemployment rates substantially un-
derestimate the true level of unemployment, due to misreporting errors in the labor force
status in the Current Population Survey. From January 1996 to August 2011, the corrected
monthly unemployment rates are 2.1 percentage points higher than the official rates on

154
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average, and are more sensitive to changes in business cycles. The labor force participation
rates, however, are not affected by this correction.

5.1.1 Background

The unemployment rate is among the most important and carefully-watched economic in-
dicators in modern society, and often takes center stage in discussions of economic policy.
However, there is considerable disagreement over the precise definition and measurement
of unemployment, hence the other two labor force statuses: “employed” and “not-in-labor-
force”.1 In the United States, the Bureau of Labor Statistics (BLS) reports six alternative
measures of unemployment (U1-U6), including the official unemployment rate (U3) which
is based on the International Labor Organization (ILO)’s definition.2 Due to the intrin-
sic difficulties in classifying some groups of people, such as marginally-attached workers
and involuntary part-time workers, into three distinct labor force statuses, the U.S. official
unemployment rate is potentially subject to measurement error.

In this paper, we take a latent variables approach and view the reported labor force
statuses as functions of the underlying unobserved true labor force statuses. We then impose
a structure on the misclassification process and the dynamics of the underlying latent LFS.
Using recent results in the measurement error literature, we show that the official U.S.
unemployment rate substantially underestimates the true level of unemployment. During
the period from January 1996 to August 2011, our corrected unemployment rates are higher
than the corresponding official figures by 2.1 percentage points on average. In terms of the
monthly differences, the corrected rates are from 1 to 4.4 percentage points higher than the
official rates, and are more sensitive to changes in the business cycles.

Official unemployment statistics in U.S. are based on the Current Population Survey
(CPS) conducted by the Census Bureau. The CPS interviews around 60,000 households
each month to collect basic demographic and labor force status information. Based on the
answers to survey questions on job-related activities, the CPS records each individual’s la-
bor force status as “employed", “unemployed," or “not-in-labor-force." The misclassification
among the three possible values of the labor force status has been a substantial issue in the
CPS, as clearly demonstrated by the Reinterview Surveys, in which a small sub-sample of
the households included in the original CPS are recontacted and asked the same questions.
Treating the CPS reconciled Reinterview Surveys sample as reflecting true labor force sta-
tuses, researchers have found that there exists considerable error in the original CPS.3 Of
course, the actual misclassification errors in labor force status are likely to be substantially

1For example, using Canadian data, Jones and Riddell (1999) empirically examine labor market transi-
tions of people with different labor force statuses and find substantial heterogeneity within the nonemployed,
such that no dichotomy exists between those unemployed and not-in-labor-force among all nonemployed per-
sons.

2The ILO defines “unemployed” as those who are currently not working but are willing and able to work
for pay, currently available to work, and have actively searched for work.

3The CPS reinterview sample consists two components, one is “non-reconciled", in which case no attempt
is made to determine which answers are correct, the other is “reconciled", in which case the second interviewer
would compare the responses from the first survey with the reinterview answers and try to resolve any
conflicts (Poterba and Summers, 1984).
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larger than suggested in reconciled CPS reinterviews, as argued by Poterba and Summers
(1995), Biemer and Forsman (1992) and Sinclair and Gastwirth (1996).

The misclassification of labor force statuses in the CPS and other similar surveys has
received considerable attention in the literature. To identify the misclassification probabil-
ities, early studies typically relied on a particular exogenous sources of “truth", such as the
reconciled CPS reinterview surveys (see e.g. Abowd and Zellner 1985, Poterba and Sum-
mers 1986, and Magnac and Visser 1999). Nevertheless, the reinterview surveys are usually
small in sample size (approximately 3% of the corresponding CPS sample) and not readily
available to outside researchers. Reinterview surveys are also subject to misclassification
errors due to many practical limitations.4 Actually, some studies using other methods show
that the reconciled CPS reinterview data may contain even more errors than the original
CPS sample (Sinclair and Gastwirth, 1996). Other studies rely on two repeated measures
of the labor force status of the same individuals in the same period and assume that the
error probabilities are the same for different sub-samples.5 More recent studies, such as
Biemer and Bushery (2000) and Bassi and Trivellato (2008), explore the panel nature of
the surveys and treat the underlying true labor force status as a latent process to be jointly
modeled with the misclassification process.

Most existing studies focus on adjusting flows, i.e., the gross labor flows between two
consecutive months, not stocks, such as the unemployment rate and the labor market par-
ticipation rate. While those studies acknowledge that misclassification errors cause serious
problems for flows, they somewhat surprisingly assume that errors tend to cancel out for
stocks (e.g. Singh and Rao 1995). The only study that has tried to correct for the unemploy-
ment rate is Sinclair and Gastwirth (1998). However, their results rely on a key identification
assumption that males and females have the same misclassification error probabilities, which
we reject in this paper.

This paper uses recent results in the measurement error literature to identify the mis-
classification probabilities (Hu, 2008). Our method relies only on short panels formed
by matching the CPS monthly data sets, thus avoiding the use of auxiliary information
such as the reinterview surveys, which are usually small and subject to errors. Our ap-
proach is close to the Markov Latent Class Analysis (MLCA) method proposed by Biemer
and Bushery (2000), but we use an eigenvalue-eigenvector decomposition to establish a
closed-form global identification, while they took a maximum likelihood approach with lo-
cal identifiability. Generally speaking, parametric GMM or MLE methods typically rely on
a local identification argument that the number of unknowns does not exceed that of the
restrictions. Given the observed distribution, our identification and estimation procedure
directly leads to the unique true values of the unknown probabilities without using the

4The reinterview may not have been independent of the original interview to the extent that respondents
remembered and repeated their answers from the original interview. In addition, several factors make it
difficult to conduct the reinterview as an exact replication of the original interview, including (1) Only senior
interviewers conducted the reinterview, (2) Almost all reinterviews were conducted by telephone, even if the
original interview was conducted in person, and (3) The reinterview may not perfectly "anchor" respondents
in the original interview’s reference period.

5See Sinclair and Gastwirth (1996, 1998), which use the H-W model first proposed by Hui and Walter
(1980).
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regular optimization algorithms. Therefore, we do not need to be concerned about choosing
initial values or obtaining a local maximum in the estimation procedure. In that sense,
our estimates are more reliable than those based on local identification, including Biemer
and Bushery (2000). Our assumption regarding the dynamics of the underlying true labor
force status is also weaker than their first-order Markov chain assumption. In addition,
Biemer and Bushery (2000) use group-level data, which are subject to potential biases from
within-group heterogeneities. Our identification results enable us to take advantage of the
large sample size of the individual-level CPS data, and therefore, to achieve more efficient
estimates.

To control for individual heterogeneities, we separately estimate the misclassification
probabilities for each demographic group, defined by individual’s gender, race and age.
Based on those misclassification probabilities, we then estimate the corrected monthly un-
employment rates and the labor force participation rates for all demographic groups, and
for the US population as a whole. During the period from January 1996 to August 2011,
our corrected unemployment rates are higher than the official ones by up to 4.4 percentage
points and on average by 2.1 percentage points, with the differences always statistically
significant. The most substantial misclassification errors occur when unemployed individ-
uals misreport as either not-in-labor-force or employed. On the other hand, the corrected
labor force participation rates and the official ones are rather close and never statistically
significantly different.

The rest of the paper is organized as follows. Section 2 provides theoretical results
on the identification and estimation of the misclassification probabilities and the marginal
distribution of the underlying labor force status. Section 3 presents our main empirical
results on the estimated misclassification probabilities and the corrected unemployment
rates, along with reported (official) ones. The last section concludes. Additional estimates
and simulation results are included in the online appendix of the paper.

5.1.2 A Closed-Form Identification Result

This section presents a closed-form identification and estimation procedure, which uniquely
maps the directly estimable distribution of the self-reported labor force status to the mis-
classification probabilities and the distribution of the underlying true labor force status.
We also evaluate the validity and robustness of the assumptions made in order to achieve
identification.

Assumptions and Identification Results

Let Ut denote the self-reported labor force status in month t, and X be a vector of demo-
graphic variables such as gender, race and age. By matching the monthly CPS samples, we
observe the self-reported labor force status in three periods (t + 1, t, t − 9), together with
the demographic variables X for each individual i.6 For example, if Ut stands for the labor

6Our identification strategy requires matching of three CPS monthly data sets in order to identify the
misclassification matrix for the month in the middle of the three months. We choose one month later, i.e.,
t + 1, and nine month earlier, i.e., t − 9, for the following reasons: 1) we want the three periods to be
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force status of an individual in January 2008, then Ut+1 and Ut−9 denote his or her labor
force status in February 2008 and in April 2007, respectively. We denote the i.i.d. sample
as {Ut+1, Ut, Ut−9, X}i for i = 1, 2, ..., N. The self-reported labor force status Ut is defined
as follows:

Ut =


1 employed
2 unemployed
3 not-in-labor-force

.

We denote the latent true labor force status at period t as U∗
t , which takes the same pos-

sible values as Ut. Let Pr (·) stand for the probability distribution function of its argument,
we outline our assumptions as follows.

Assumption 5.1.1 The distribution of misclassification errors only depends the true labor
force status in the current period, conditional on individual characteristics, i.e.,

Pr (Ut|U∗
t , X,U ̸=t) = Pr (Ut|U∗

t , X)

for all t with U ̸=t = {(Uτ , U∗
τ ), for τ ̸= t}.

Assumption 5.1.1 still allows the misclassification errors to be correlated with the true labor
force status U∗

t and other variables in other periods through U∗
t . This is weaker than the

classical measurement error assumption, where the error is independent of everything else,
including the true values. Assumption 1 is a standard assumption in the literature and
allows the misreporting behavior to be summarized by a simple misclassification matrix.
Moreover, Meyer (1988) examines this assumption and finds it likely to be valid for CPS
data. Assumption 5.1.1 implies that the joint probability of the observed labor force status
Pr (Ut+1, Ut, Ut−9|X) is associated with the unobserved ones as follows:

Pr (Ut+1, Ut, Ut−9|X) (5.3)
=

∑
U∗

t+1

∑
U∗

t

∑
U∗

t−9

Pr
(
Ut+1|U∗

t+1, X
)

Pr (Ut|U∗
t , X) Pr

(
Ut−9|U∗

t−9, X
)

Pr
(
U∗
t+1, U

∗
t , U

∗
t−9|X

)
.

Having established the conditional independence of the misclassification process, our
next assumption deals with the dynamics of the latent true labor force status.

Assumption 5.1.2 Conditional on individual characteristics, the true labor force status
nine months ago has no predictive power over the true labor force status in the next period
beyond the current true labor force status, i.e.,

Pr
(
U∗
t+1|U∗

t , U
∗
t−9, X

)
= Pr

(
U∗
t+1|U∗

t , X
)

for all t.

close enough to minimize attrition in CPS samples; 2) we want the three months to cover the 8-month
recess period in the CPS rotation structrue so that there are enough variations in the labor force status; 3)
Assumption 2 on the dynamics of the latent true labor force status is more likely to be satisfied if we use
the data reported a while ago, e.g., nine months earlier.
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Biemer and Bushery (2000) impose a first-order Markov restriction on the dynamics of
the latent labor force status, which states Pr

(
U∗
t+1|U∗

t , U
∗
t−1, ..., U

∗
1
)

= Pr
(
U∗
t+1|U∗

t

)
. That

assumption is likely to be too strong due to the presence of state dependency, serial cor-
relation among idiosyncratic shocks, and unobserved heterogeneity (see e.g. Hyslop 1999).
Our assumption 5.1.2 is considerably weaker because we use the true labor force status nine
month ago. Under Assumption 5.1.2, equation (5.3) may be simplified as follows:

Pr (Ut+1, Ut, Ut−9|X)
=

∑
U∗

t

Pr (Ut+1|U∗
t , X) Pr (Ut|U∗

t , X) Pr (U∗
t , Ut−9|X) . (5.4)

Following the identification results in Hu (2008), we show that all the probabilities contain-
ing the latent true labor force status U∗

t on the right-hand-side (RHS) of Equation (7.13)
may be identified under reasonable assumptions. Integrating out Ut+1 in Equation (7.13)
leads to

Pr (Ut, Ut−9|X) =
∑
U∗

t

Pr (Ut|U∗
t , X) Pr (U∗

t , Ut−9|X) . (5.5)

Following Hu (2008), we introduce our matrix notation. For any given subpopulation
with individual characteristics X = x, we define the misclassification matrix as follows.

MUt|U∗
t ,x

≡

 Pr (Ut = 1|U∗
t = 1, x) Pr (Ut = 1|U∗

t = 2, x) Pr (Ut = 1|U∗
t = 3, x)

Pr (Ut = 2|U∗
t = 1, x) Pr (Ut = 2|U∗

t = 2, x) Pr (Ut = 2|U∗
t = 3, x)

Pr (Ut = 3|U∗
t = 1, x) Pr (Ut = 3|U∗

t = 2, x) Pr (Ut = 3|U∗
t = 3, x)


≡ [Pr (Ut = i|U∗

t = k,X = x)]i,k .

Each column of the matrix MUt|U∗
t ,x

describes how an individual (mis)reports his or her
labor force status given a possible value of the true labor force status. The matrix MUt|U∗

t ,x

contains the same information as the misclassification probabilities Pr (Ut|U∗
t , x), which

means the identification of MUt|U∗
t ,x

implies that of Pr (Ut|U∗
t , x). Similarly, we may define

MUt,Ut−9|x ≡ [Pr (Ut = i, Ut−9 = k|x)]i,k ,
MU∗

t ,Ut−9|x ≡ [Pr (U∗
t = i, Ut−9 = k|x)]i,k ,

M1,Ut,Ut−9|x ≡ [Pr (Ut+1 = 1, Ut = i, Ut−9 = k|x)]i,k .

We also define a diagonal matrix as follows:

D1|U∗
t ,x

≡

 Pr (Ut+1 = 1|U∗
t = 1, x) 0 0

0 Pr (Ut+1 = 1|U∗
t = 2, x) 0

0 0 Pr (Ut+1 = 1|U∗
t = 3, x)

 .
As shown in Hu (2008), Equations (7.13) and (5.5) imply the following two matrix
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equations:
M1,Ut,Ut−9|x = MUt|U∗

t ,x
D1|U∗

t ,x
MU∗

t ,Ut−9|x (5.6)

and
MUt,Ut−9|x = MUt|U∗

t ,x
MU∗

t ,Ut−9|x. (5.7)

In order to solve for the unknown matrix MUt|U∗
t ,x

, we need a technical assumption as
follows.

Assumption 5.1.3 The distributions of the current self-reported labor force status con-
ditional on different self-reported labor force statuses nine month ago are linearly indepen-
dent, i.e., Pr (Ut|Ut−9 = 1, x) is not equal to a linear combination of Pr (Ut|Ut−9 = 2, x) and
Pr (Ut|Ut−9 = 3, x) for all Ut and x.

This assumption is equivalent to the condition that the matrix MUt,Ut−9|x is invertible. Since
it is imposed directly on the observed probabilities, this assumption is directly testable.
Under Assumption 5.1.3, Equation (5.7) implies that both MUt|U∗

t ,x
and MU∗

t ,Ut−9|x are
invertible. Eliminating matrix MU∗

t ,Ut−9|x in Equations (5.6) and (5.7) leads to

M1,Ut,Ut−9|xM
−1
Ut,Ut−9|x = MUt|U∗

t ,x
D1|U∗

t ,x
M−1
Ut|U∗

t ,x
. (5.8)

This equation implies that the observed matrix on the left-hand-side (LHS) has an
eigenvalue-eigenvector decomposition on the RHS. The three eigenvalues are the three di-
agonal entries in D1|U∗

t ,x
and the three corresponding eigenvectors are the three columns in

MUt|U∗
t ,x

. Note that each column of MUt|U∗
t ,x

is a distribution so that the column sum is 1,
which implies that the eigenvectors are normalized.

In order to make the eigenvector unique for each given eigenvalue, we need the eigen-
values to be distinct, which is formally stated as follows.

Assumption 5.1.4 A different true labor force status leads to a different probability of re-
porting “employed" in the next period, i.e., Pr (Ut+1 = 1|U∗

t = k, x) are different for different
k ∈ {1, 2, 3} .

This assumption is also testable from Equation (5.8). This is because Pr (Ut+1 = 1|U∗
t = k, x)

for k ∈ {1, 2, 3} are eigenvalues of the observed matrix M1,Ut,Ut−9|xM
−1
Ut,Ut−9|x. Therefore,

Assumption 5.1.4 holds if and only if all the eigenvalues of M1,Ut,Ut−9|xM
−1
Ut,Ut−9|x in Equa-

tion (5.8) are distinct. Intuitively, this assumption implies that the true labor force status
at period t has an impact on the probability of reporting to be employed one period later.

The distinct eigenvalues guarantee the uniqueness of the eigenvectors. Since we do not
observe U∗

t in the sample, we need to reveal the value u∗
t for each eigenvector Pr (Ut|U∗

t = u∗
t , x).

In other words, the ordering of the eigenvalues or the eigenvectors is still arbitrary in Equa-
tion (5.8). In order to eliminate this ambiguity, we make the following assumption.

Assumption 5.1.5 Each individual is more likely to report the true labor force status than
to report any other possible values, i.e.,

Pr (Ut = k|U∗
t = k, x) > Pr (Ut = j|U∗

t = k, x) for j ̸= k.
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This assumption does not reveal the value of these misclassification probabilities, nor re-
quire the probability of reporting the truth to be larger than 50%. Assumption 5.1.5 is
consistent with results from CPS reinterviews (see e.g.: Poterba and Summers, 1984) and
other validation studies discussed in Bound et al. (2001a).

Technically, Assumption 5.1.5 implies that the true labor force status is the mode of the
conditional distribution of the self-reported labor force status in each column of the eigen-
vector matrix. Therefore, the ordering of the eigenvectors is fixed and the the eigenvector
matrix MUt|U∗

t ,x
is uniquely determined from the eigenvalue-eigenvector decomposition of

the observed matrix M1,Ut,Ut−9|xM
−1
Ut,Ut−9|x. In particular, after diagonalizing the directly-

estimable matrix M1,Ut,Ut−9|xM
−1
Ut,Ut−9|x, we rearrange the order of the eigenvectors such that

the largest element of each column or each eigenvector, i.e, the mode of the corresponding
distribution, is on the diagonal of the eigenvector matrix. Consequently, the misclassification
probability Pr (Ut|U∗

t , X) may be expressed as a closed-form function of the observed proba-
bility Pr (Ut+1, Ut, Ut−9|X). Such a procedure is constructive because one may estimate the
misclassification probability Pr (Ut|U∗

t , X) by following the identification procedure above.
We summarize the closed-form identification and estimation of the misclassification

probability Pr (Ut|U∗
t , X) as follows.

Theorem 5.1.1 Under Assumptions 5.1.1, 5.1.2, 5.1.3, 5.1.4, and 5.1.5, the misclassi-
fication matrix Pr (Ut|U∗

t , X) is uniquely determined by the observed joint probability of
the self-reported labor force status in three periods, i.e., Pr (Ut+1, Ut, Ut−9|X) , through the
unique eigenvalue-eigenvector decomposition in equation (5.8).

Proof: The results directly follow from Theorem 1 in Hu (2008). A complete proof can
be found in the online appendix.
Finally, we may estimate the distribution of the latent true labor force status Pr (U∗

t |X)
using the misclassification probability Pr (Ut|U∗

t , X) from the following equation:

Pr (Ut|X) =
∑
U∗

t

Pr (Ut|U∗
t , X) Pr (U∗

t |X) .

This equation implies Pr (Ut = 1|x)
Pr (Ut = 2|x)
Pr (Ut = 3|x)

 = MUt|U∗
t ,x
×

 Pr (U∗
t = 1|x)

Pr (U∗
t = 2|x)

Pr (U∗
t = 3|x)

 .
Since we have identified the misclassification probability Pr (Ut|U∗

t , X), we may solve for the
distribution of the latent true labor force status Pr (U∗

t |X) from that of the self-reported
labor force status Pr (Ut|X) by inverting the matrix MUt|U∗

t ,x
. Therefore, the distribution

of the latent true labor force status for a given x is identified as follows: Pr (U∗
t = 1|x)

Pr (U∗
t = 2|x)

Pr (U∗
t = 3|x)

 = M−1
Ut|U∗

t ,x
×

 Pr (Ut = 1|x)
Pr (Ut = 2|x)
Pr (Ut = 3|x)

 . (5.9)
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Given the marginal distribution of the demographic characteristics X, Pr (X), we may
identify the marginal distribution of the latent true labor force status Pr (U∗

t ) as follows

Pr (U∗
t ) =

∑
X

Pr (U∗
t |X) Pr (X) .

This gives the unemployment rate

µ∗
t ≡

Pr (U∗
t = 2)

Pr (U∗
t = 1) + Pr (U∗

t = 2) ,

and the labor force participation rate

ρ∗
t ≡ Pr (U∗

t = 1) + Pr (U∗
t = 2) .

Our identification procedure is constructive as it leads directly to an estimator. A
nice property of our approach is that if there is no misclassification error in the data, our
estimator would produce the same unemployment rate and labor force participation rate as
those based on the raw data, under the assumptions above. Our estimator does not require
an initial consistent estimate or iterations as in the regular optimization algorithms do.

Evaluation of the Assumptions

Before proceeding to empirical work, we evaluate the key assumptions which are essential
for our identification results. We perform extensive Monte Carlo simulations to examine
the robustness of our estimator to deviations from Assumptions 1 and 2. We also test the
validity of Assumptions 3 and 4 directly using CPS data. For Assumption 5, we argue that
it is likely to hold based on previous empirical work in the literature. We summarize the
main things we have done here while leaving all detailed results in the online appendix.

Assumption 1 imposes conditional independence of the misreporting process. We have
considered three different kinds of deviations to this assumption in our Monte Carlo sim-
ulations. In the first case, we allow misreporting errors to be correlated with the latent
true labor force status in the previous period, i.e., Pr(Ut|U∗

t ,U ̸=t) = Pr(Ut|U∗
t , U

∗
t−1). In the

second case, misreporting errors may be correlated with the self-reported labor force status
in the previous period, i.e., Pr(Ut|U∗

t ,U ̸=t) = Pr(Ut|U∗
t , Ut−1). Lastly, we consider a special

case of a general relaxation of Assumption 1, i.e., Pr(Ut|U∗
t ,U ̸=t) = Pr(Ut|U∗

t , U
∗
t−1, Ut−1),

where people would report the same value as in the previous period with certain probability
if their true labor force status does not change, otherwise, they would report following the
baseline misclassification probability Pr(Ut|U∗

t ).7 In all cases, our simulation results show
that our estimator is robust to reasonable deviations from Assumption 1.8

Similarly, Assumption 2 imposes conditional independence on the transition of the un-
derlying true labor force status. In the Monte Carlo simulation setup, we relax this as-

7We do this in response to a referee’s concern that reporting behaviors might be serially-correlated.
8The detailed Monte Carlo setup can be found at section 3.1.2 in the online appendix and the simulation

results can be found at sections 3.2.2-3.2.4 in the online appendix.



5. APPLICATIONS IN LABOR ECONOMICS ⇑ 163

sumption to allow the transition of the true LFS to depend on that 9 periods earlier, i.e.,
Pr(U∗

t+1|U∗
t , U

∗
t−9) ̸= Pr(U∗

t+1|U∗
t ). Our simulation results show that the estimator is robust

to reasonable deviations to assumption 2.9

Assumption 3 requires an observed matrix to be invertible, and therefore, is directly
testable from the CPS data. We use bootstrapping to show that the determinant of this
matrix is significantly different from zero, which implies that the matrix is invertible.10

Under Assumptions 1, 2, and 3, Assumption 4 requires that the eigenvalues of an ob-
served matrix be distinct. We may also directly test this assumption using the CPS data
by estimating the differences between the eigenvalues. Our bootstrapping results show that
the absolute differences between the eigenvalues are significantly different from zero, which
implies that the eigenvalues are distinct.11

Assumption 5 implies that each individual is more likely to report the true labor force
status than any other possible values. We believe this assumption is intuitively reasonable.
Also, we are not aware of any studies in the literature (see e.g. previous studies cited in
our paper and those reviewed by Bound et al. (2001a)) that report anything in violation of
this assumption.

5.1.3 Empirical Results

Matching of Monthly CPS Data

We use the public-use micro CPS data to estimate the unemployment rate and the labor
force participation rate.12 Each CPS monthly file contains eight rotation groups that dif-
fer in month-in-sample. The households in each rotation group are interviewed for four
consecutive months after they enter, withdraw temporarily for eight months, then reenter
for another four months of interviews before exiting the CPS permanently. Because of the
rotational group structure, the CPS can be matched to form longitudinal panels, which
enable us to obtain the joint probabilities of the self-reported labor force statuses in three
periods.

We follow the algorithm proposed by Madrian and Lefgren (2000) to match adjacent
CPS monthly files.13 There are two main steps in the process of matching. First, the
CPS samples are matched based on identifiers. If two individuals in two CPS monthly files
(within the corresponding rotational groups) have the same household identifier, household
replacement number (which denotes whether this is a replacement of the initial household)
and personal identifier (which uniquely identifiers a person within a household), then the
two individuals are declared as a “crude match”. This step is not perfect and may result in
considerable matching errors because there might exist coding errors with respect to those

9The detailed Monte Carlo setup can be found at section 3.1.3 in the online appendix and the simulation
results can be found at section 3.2.5 in the online appendix.

10Detailed results can be found at section 4 (Table A11) in the online appendix.
11Results can be found at Table A12 of section 4 in the online appendix.
12All data are downloaded from www.bls.census.gov/cps_ftp.html. Following BLS practices, we restrict

the samples to those aged 16 and over. Sample summary statistics can be found at Table A1 in the online
appendix.

13See also Feng (2001) and Feng (2008).
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identifiers. Therefore, the second step uses information on sex, age and race to “certify”
the crude match. In the matching algorithm we use, if the sex or race reported in the two
monthly files corresponding to a crude match are different, or if the age difference is greater
than 1 or less than 0, then we discard the match as a false one.

As the previous literature (e.g.: Peracchi and Welch 1995 and Feng 2008) has docu-
mented, the matched sample is not representative of the cross-sectional sample in period t

due to sample attrition in matching. We use the matching weights to correct for attrition.
First, we run a Logit regression for the period t cross-sectional sample, where the dependent
variable is either 1 (the observation is matched) or 0 (the observation is not matched), and
the independent variables are sex, race, age, schooling, and the labor force status in period
t. We next calculate the predicted probabilities of being matched for all the observations
in the matched sample. The final matched sample is then weighted using the inverse of
the predicted match probabilities. This adjustment procedure ensures the cross-sectional
sample and the matched sample have the same marginal distributions on the key individual
characteristics for period t.14

Misclassification Probabilities

For each demographic group, we pool matched samples to estimate the misclassification
probabilities.15 Table 1 reports results for all the eight groups, including (1) white males
aged 40 and younger; (2) white males aged over 40; (3) nonwhite males aged 40 and younger;
(4) nonwhite males aged over 40; (5) white females aged 40 and younger; (6) white females
aged over 40; (7) nonwhite females aged 40 and younger; (8) nonwhite females aged over
40. There exist some consistent patterns across all the groups. When the actual labor force
status is either employed or not-in-labor-force, the probabilities of being misreported to a
different labor force status are typically small and never above 6%. The biggest errors come
from the unemployed people being misclassified as either not-in-labor-force or employed.
Only around 50-70% of unemployed people correctly report their true labor force status.
For example, for white males aged 40 and younger, 20% of the unemployed report to be
employed, while another 17% of them report as not-in-labor-force. On the other hand, there
are considerable heterogeneities among different demographic groups. For example, 10.8%
of the unemployed white females aged 40 and younger report as not-in-labor-force, while
all other groups have much higher probabilities of reporting to be not-in-labor-force while
unemployed.

14Under the assumption that attrition is solely based on observables, our correction method using match
weights is consistent. To check for robustness of our procedure we have also tried not using matching weights,
i.e., not correcting for attrition in matching, and found similar results in terms of corrected unemployment
rates. Details can be found at section 5.5 of the online appendix.

15To be consistent with the last version of the paper we pool data from January 1996 to December 2009.
The estimated misclassification probabilities do not change statistically significantly if we pool all data up
to August 2011. Please refer to section 5.3 of the online appendix for details and more elaborate discussions.
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Table 1: Misclassification probabilities (%) for different demographic groups
Pr(i|j) ≡ Pr(Ut = i|U∗

t = j)
Demographic group Pr(2|1) Pr(3|1) Pr(1|2) Pr(3|2) Pr(1|3) Pr(2|3)
(1) Male/White/age≤40 0.9 1.3 20.1 17.2 6.0 0.0

(0.06) (0.07) (1.28) (2.69) (0.42) (0.39)
(2) Male/White/age > 40 0.4 0.9 16.5 18.8 1.4 0.1

(0.03) (0.05) (1.14) (2.34) (0.07) (0.07)
(3) Male/Nonwhite/age ≤ 40 1.1 2.2 13.4 18.1 5.0 4.3

(0.10) (0.13) (1.21) (3.91) (0.36) (1.26)
(4) Male/Nonwhite/age > 40 0.7 1.5 15.5 22.0 1.2 0.0

(0.08) (0.10) (1.81) (5.55) (0.16) (0.12)
(5) Female/White/age≤40 0.6 2.1 18.6 10.8 4.4 0.0

(0.05) (0.10) (1.59) (4.10) (0.27) (0.08)
(6) Female/White/age>40 0.3 1.4 17.9 28.2 1.0 0.0

(0.03) (0.07) (1.46) (3.16) (0.06) (0.01)
(7) Female/Nonwhite/age≤40 1.1 2.6 11.8 29.4 2.2 0.0

(0.09) (0.16) (1.54) (8.24) (0.70) (0.01)
(8) Female/Nonwhite/age>40 0.4 1.8 13.9 25.0 1.2 0.7

(0.07) (0.11) (1.89) (5.82) (0.09) (0.17)
Overall 0.6 1.5 17.3 20.2 2.9 0.2

(0.02) (0.03) (0.59) (1.39) (0.10) (0.09)
Note: Bootstrap standard errors based on 500 repetitions are reported in parentheses.
We also formally test for the differences in the misclassification probabilities between

the groups. For example, we consider males vs. females, controlling for race and age
categories. We find that employed males are more likely to misreport as unemployed but
less likely to misreport as not-in-labor-force than employed females. The differences are
always statistically significant at the 5% significance level except for the comparison between
nonwhite males aged 40 and younger and nonwhite females aged 40 and younger. When
unemployed, the differences are mostly insignificant, with the only exception being that
white males aged over 40 are less likely to misreport as being not-in-labor-force compared
to white females aged over 40. In addition, when not-in-labor-force, males are more likely
to be misclassified as employed.16

Some previous studies have made strong assumptions regarding between-group misclas-
sification errors. For example, in order to achieve identification, Sinclair and Gastwirth
(1998) assume that males and females have the same misclassification error probabilities
(see also Sinclair and Gastwirth 1996), which we can safely reject.17 In general, our results
suggest that the equality assumptions of misclassification probabilities across different de-
mographic groups, which are essential for identification in the H-W models, are unlikely to
hold in reality.

The last two rows of Table 1 report misclassification probabilities and associated stan-
dard errors for the overall U.S. population. The results are broadly consistent with those
in the existing literature. When we compare our estimates of misclassification probabili-
ties with some of those obtained in the existing literature,18 we see the same general pat-

16Comparisons between males and females and other demographic characteristics can be found in Table
A13 in the online appendix.

17See the first panel in Table A13 in the online appendix.
18These estimates can be found in Table A14 in the online appendix.
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tern: the biggest misclassification probabilities happen when unemployed individuals misre-
port their labor force statuses as either not-in-labor-force (Pr (Ut = 3|U∗

t = 2)) or employed
(Pr (Ut = 1|U∗

t = 2)), while the other misclassification probabilities are all small. Our point
estimates of Pr (Ut = 3|U∗

t = 2) and Pr (Ut = 1|U∗
t = 2) are somewhat higher than many of

the existing estimates. But our estimates are well within the 95% confidence intervals in
many existing studies because of their large standard errors. Due to our methodological
advantages and the large sample size we use, we are able to produce much more precise
estimates.

The Unemployment Rate

Given the estimated misclassification matrices, we then calculate distribution of the latent
true labor force status for each demographic group based on Equation (5.9). To estimate
Pr (Ut|X) , we use all the eight rotation groups in any given CPS monthly file, which sub-
sequently give us the self-reported unemployment rate and the labor force participation
rate. Once we have Pr (U∗

t |X), we can calculate the corrected unemployment rate and the
corrected labor force participation rate. In order to be consistent with officially-announced
statistics, all numbers are weighted using final weights provided by CPS.19

Table 2 presents the results for each demographic group. We divide the study period into
three sub-periods based on the US business cycles.20 The first sub-period goes from January
1996 to October 2001, which is roughly the end of the 2001 recession. The second sub-period
is from November 2001 to November 2007, corresponding to the expansion period between
two recessions (the 2001 recession and the most recent 2007-09 recession). The third sub-
period goes from December 2007 to the end of our study period, i.e., Aug 2011, which
includes the 2007-2009 recession and its aftermath.

For each demographic group and each sub-period, the corrected unemployment rates
are always higher than the reported ones. Note also that for all demographic groups, sub-
period 3 posts the highest levels of unemployment, followed by sub-period 2, and then by the
first sub-period. This relationship is unchanged using either the reported or the corrected
rates. In addition, the degree of underestimation is larger when the level of unemployment
is higher. For example, for white males less than 40, in the first sub-period, the corrected
unemployment rate is 6.5%, which is higher than the reported unemployment rate by 1.5
percentage points. In the second sub-period, the corrected unemployment rate is 8.2%,
which is higher than the reported unemployment rate by 2.1%. The largest differential
appears in the latest recession period. In this case, the corrected unemployment rate is
14.5%, which is higher than the reported unemployment rate by 4.4% – a 44% upward
adjustment.

Table 2: Unemployment rates (%) averaged over three sub-periods for different demo-
graphic groups

19The final weights in the CPS micro data have been adjusted for a composite estimation procedure that
BLS uses to produce official labor force statistics (Appendix I in BLS, 2000).

20see http://www.nber.org/cycles.html.
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Sub-period 1 Sub-period 2 Sub-period 3
Demographic group (1996/01-2001/10) (2001/11-2007/11) (2007/12-2011/8)

reported corrected reported corrected reported corrected
(1) Male/White/age≤40 5.0 6.5 6.1 8.2 10.1 14.5

(0.2) (0.4) (0.3) (0.5) (0.5) (0.8)
(2) Male/White/age>40 2.7 3.4 3.4 4.5 6.3 8.9

(0.1) (0.2) (0.2) (0.2) (0.3) (0.5)
(3) Male/Nonwhite/age≤40 10.1 11.1 10.8 12.0 16.0 19.3

(0.5) (0.9) (0.5) (1.1) (0.7) (1.4)
(4) Male/Nonwhite/age>40 4.8 6.5 5.8 8.0 9.6 13.9

(0.2) (0.5) (0.3) (0.6) (0.4) (1.0)
(5) Female/White/age≤40 5.1 6.4 5.8 7.3 8.3 10.9

(0.2) (0.4) (0.3) (0.5) (0.4) (0.7)
(6) Female/White/age>40 2.7 4.4 3.2 5.3 5.4 9.1

(0.1) (0.3) (0.1) (0.3) (0.2) (0.5)
(7) Female/Nonwhite/age≤40 10.0 14.5 10.3 14.9 13.4 19.8

(0.5) (1.5) (0.5) (1.6) (0.6) (2.0)
(8) Female/Nonwhite/age>40 4.2 5.1 5.2 6.8 7.2 10.0

(0.2) (0.5) (0.2) (0.6) (0.3) (0.9)
Overall 4.4 5.9 5.1 6.9 8.1 11.5

(0.1) (0.2) (0.1) (0.2) (0.1) (0.3)

Note: Numbers reported in parentheses are bootstrap standard errors based on 500 repetitions.

We then estimate the unemployment rates and the corresponding standard errors for
the US population as a whole, based on the results for all the demographic groups. Based
on the last two rows of Table 2, corrected unemployment rates for the US population are
5.9%, 6.9% and 11.5% for the three sub-periods, respectively. Note that the degree of
underestimation is substantially larger in the third sub-period, official unemployment rate
is 3.4 percentage points lower than the corrected one, while in the first two sub-periods
the discrepancies are only 1.5 and 1.8 percentage points, respectively. Figure 1 displays
all the monthly values that are seasonally-adjusted. For the whole period, the corrected
unemployment rate is always higher than the reported one and the difference is between
1% and 4.4%, and 2.1% on average.

The substantial degree of underestimation of the unemployment rate may not be very
surprising because most of the misclassification errors are from the unemployed people
misreporting their labor force status as either employed or not-in-labor-force. We believe
this arises primarily due to the intrinsic difficulties in classifying labor force status for some
specific groups of people. Among those not-in-labor-force, marginally-attached workers,
especially discouraged workers, could be classified as unemployed because they also desire
a job although do not search in the job market. In fact, Jones and Riddell (1999) find
that some marginally-attached workers are behaviorally more similar to unemployed than
to the rest of those not-in-labor-force. On the other hand, involuntary part-time workers
are classified as employed according to the official definition. But many of them could be
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Figure 1: Corrected and official (reported) unemployment rates

Note: Figure displays seasonally-adjusted corrected unemployment rates (in solid line) and official unem-
ployment rates (in dashed line) for the whole population from Jan 1996 to Aug 2011. The corresponding thin
lines signify 95% upper and lower confidence bounds. For seasonally adjustment, we use Census Bureau’s
WinX12 software.

observationally more similar to unemployed workers.21 22

Table 3 decomposes the underestimation of unemployment rate. For the period of Jan-
uary 1996 to August 2011, the official statistics underestimate the unemployment rate on
average by 2.1 percentage points. The degree of underestimation varies, however, by demo-
graphic group. On the one hand, the young nonwhite female group posts the largest level
of underestimation, at 5 percentage points. On the other hand, the official statistics only
underestimate by 1.3 percentage points for white males over 40. In terms of contributions
to the total degree of underestimation (last column of Table 3), white females over 40 de-
clare the largest share of the total (27%), followed by white males 40 and younger (21%).
Nonwhite groups contributed relatively little as they account for relatively small portions
of the US total population.

21For example, Farber (1999) examine displaced workers and find temporary and involuntary part-time
jobs are part of the transitional process from unemployment to full-time work.

22According to the broadest concept of unemployment by BLS, U6, all marginally-attached workers and
involuntary part-time workers are counted as unemployed. Our corrected unemployment rate series are
substantially lower than U6, as shown by Figure A4 in the online appendix.
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Table 3: Decomposition of underestimation in unemployment rates by demographic
groups

Underestimation in
unemployment rate

Group share in
US population

Contribution to
underestimation

Relative
contribution

Demographic group (a) = µ̂∗
t − µt (b) (c) = (a) × (b) (d) = (c)∑

(c)

(1) Male/White/age≤40 2.41 18.24 0.44 20.57
(2) Male/White/age>40 1.34 21.80 0.29 13.65
(3) Male/Nonwhite/age≤40 1.72 4.46 0.08 3.59
(4) Male/Nonwhite/age>40 2.65 3.73 0.10 4.63
(5) Female/White/age≤40 1.68 17.91 0.30 14.08
(6) Female/White/age>40 2.37 24.20 0.57 26.82
(7) Female/Nonwhite/age≤40 5.05 4.99 0.25 11.79
(8) Female/Nonwhite/age>40 1.76 4.68 0.08 3.86
Total 100.00 2.14 100.00

Note: Table reports averages over the January 1996 to August 2011 period. All numbers are rounded.
(a) Underestimation in the unemployment rate (%), which equals the average corrected unemployment rate
µ̂∗

t minus the average official unemployment rate µt; (b) Population share of the demographic group; (c)
Contribution to the total US underestimation in the unemployment rate (%), which equals (a) times (b);
(d) Relative contribution to the total underestimation, which equals (c) divided by its column sum.

One particular concern is whether misclassification behaviors and the resulted corrected
unemployment rates would depend on labor market conditions. For example, when the labor
market is weak and the pool of unemployed people includes a larger share of job losers and
others whose status is unambiguous, then the misreporting of unemployment would tend to
be less prevalent. In order to test this hypothesis directly, we have estimated three different
misclassification probabilities for each demographic group for the three sub-periods. We
do find some evidence that the misclassification probabilities are different in different sub-
period corresponding to different labor market conditions. More specifically, sub-period 3
(December 2007 to August 2011), which is characterized by much higher rate of unemploy-
ment and presumably much weaker labor market conditions compared to the previous two
sub-periods, has lower levels of misclassification in general. Nevertheless, we show that the
corrected unemployment series are robust to whether we allow misclassification probabilities
to differ in different sub-periods.23.

We have also examined the effect of misclassification on the labor force participation
(LFP) rates. For each demographic group for the three sub-periods: January 1996 to
October 2001, November 2001 to November 2007, and December 2007 to August 2011,
the corrected labor force participation rates are always higher than the reported ones,
but the differences are small and not statistically significant. For the US population as a
whole, average difference between corrected and official LFP rates is less than 2%, and not
statistically significant. For the three sub-periods, the corrected labor force participation
rates are 68.1%, 67.3% and 66.8%, respectively. The reported rates are only slightly lower,
at 67.1%, 66.2% and 65.2%, respectively. 24 Therefore, misclassification errors cause little
change to the labor force participation rate. Compared with the number of unemployed

23Detailed results can be found at section 5.4 in the online appendix.
24Detailed results are shown in section 7 of the online appendix.
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people, the total number of people who are in labor force is much larger. Hence any
corrections due to misclassification errors will have a relatively small effect.

5.1.4 Summary

This paper examines misclassification errors in labor force status using CPS data. Similar
to previous studies, we show that there exist considerable misclassifications from unem-
ployed to not-in-labor-force and from unemployed to employed. The results at least partly
reflect the intrinsic difficulties in classifying labor force statuses of certain groups of people,
such as marginally attached workers (especially discouraged workers) and part-time workers
for economic reasons, into three distinct categories. We correct for such errors and show
that the official U.S. unemployment rate significantly underestimates the true level of un-
employment in the United States. For the period from January 1996 to August 2011, our
corrected unemployment rates are higher than the reported ones by 2.1 percentage points
on average, with differences ranging from 1 to 4.4 percentage points and always statistically
significant. In addition, our estimates suggest that unemployment might be much more
sensitive to business cycles than previously thought, as the degree of underestimation is
larger in magnitude when unemployment rate is higher.

5.2 Cognitive and Noncognitive Skill Formation

Cunha et al. (2010) consider a model of cognitive and non-cognitive skill formation, where
for multiple periods of childhood t ∈ {1, 2, . . . , T}, X∗

t =
(
X∗
C,t, X

∗
N,t

)
stands for cognitive

and non-cognitive skill stocks in period t, respectively. The T childhood periods are divided
into s ∈ {1, 2, . . . , S} stages of childhood development with S ≤ T . Let It = (IC,t, IN,t)
be parental investments at age t in cognitive and non-cognitive skills, respectively. For
k ∈ {C,N} , they assume that skills evolve as follows:

X∗
k,t+1 = fk,s (X∗

t , It, X
∗
P , ηk,t) , (5.10)

whereX∗
P =

(
X∗
C,P , X

∗
N,P

)
are parental cognitive and non-cognitive skills and ηt = (ηC,t, ηN,t)

is random shocks. If one observes the joint distribution of X∗ defined as

X∗ =
({
X∗
C,t

}T
t=1

,
{
X∗
N,t

}T
t=1

, {IC,t}Tt=1 , {IN,t}
T
t=1 , X

∗
C,P , X

∗
N,P

)
, (5.11)

one can estimate the skill production function fk,s.
However, the vector of latent factors X∗ is not directly observed in the sample. Instead,

they use measurements of these factors satisfying

Xj = gj (X∗, εj) (5.12)

for j = 1, 2, . . . ,M with M ≥ 3. The variables Xj and εj are assumed to have the same
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dimension as X∗. Under the assumption that

X1 ⊥ X2 ⊥ X3 | X∗, (5.13)

this leads to a 3-measurement model and the distribution of X∗ can then be identified
from the joint distribution of the three observed measurements. The measurements Xj

in their application include test scores, parental and teacher assessments of skills, and
measurements on investment and parental endowments. While estimating the empirical
model, they assume a linear function gj and use Kotlarski’s identity to directly estimate
the latent distribution.

5.3 Income dynamics

The literature on income dynamics has been focusing mostly on linear models, where identi-
fication is usually not a major concern. When income dynamics have a nonlinear transmis-
sion of shocks, however, it is not clear how much of the model can be identified. Arellano et
al. (2017) investigate the nonlinear aspect of income dynamics and also assess the impact
of nonlinear income shocks on household consumption.

They assume that the pre-tax labor income Yit of household i at age t satisfies

Yit = ηit + εit (5.14)

where ηit is the persistent component of income and εit is the transitory one. Furthermore,
they assume that εit has a zero mean and is independent over time, and that the persistent
component ηit follows a first-order Markov process satisfying

ηit = Qt (ηi,t−1, uit) (5.15)

where Qt is the conditional quantile function and uit is uniformly distributed and inde-
pendent of (ηi,t−1, ηi,t−2, . . .). Such a specification is without loss of generality under the
assumption that the conditional CDF F (ηit|ηi,t−1) is invertible with respect to ηit.

The dynamic process {Yit, ηit} can be considered as a hidden Markov process as {Xt, X
∗
t }

in equations (2.74) and (2.75). As we discussed before, the nonparametric identification is
feasible with three periods of observed income (Yi,t−1, Yit, Yi,t+1) satisfying

Yi,t−1 ⊥ Yit ⊥ Yi,t+1 | ηit (5.16)

which forms a 3-measurement model. Under the assumptions in Theorem 2.4.2, the dis-
tribution of εit is identified from f (Yit|ηit) for t = 2, . . . , T − 1. The joint distribution of
ηit for all t = 2, . . . , T − 1 can then be identified from the joint distribution of Yit for all
t = 2, . . . , T − 1. This leads to the identification of the conditional quantile function Qt.

For a non-Markovian process, Hu et al. (2018) consider the canonical model of earnings
dynamics developed in the 1970s and 1980s, which includes a random walk permanent
component and an ARMA transitory component, with the un- derlying permanent and
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transitory unobservable shocks assumed to be i.i.d. but otherwise unspecified. The observed
earnings Yt in year t is decomposed into two independent components:

Yt = Ut + Vt. (5.17)

The first one, Ut is the permanent component which follows the unit root process:

Ut = Ut−1 + ut, (5.18)

where ut is the permanent shock. The second one, Vt is the transitory component which
follows the ARMA(p,q) process:

Vt = ρt,1Vt−1 + ρt,2Vt−2 · · ·+ ρt,pVt−p +Gt (ϵt, ϵt−1, · · · , ϵt−q) , (5.19)

Define ∆Yt+1 = Yt+1 − Yt. For an ARMA(1,1) process, they show that the AR coefficient
can be directly estimated up to a normalization as follows:

ρt+1
1− ρt+2
1− ρt+1

= cov (∆Yt+2, Yt−1)
cov (∆Yt+1, Yt−1)

Furthermore, they show

Yt = Vt + Ut
∆Yt+2
ρt+2 − 1 −∆Yt+1 = Vt + Gt+2(ϵt+2, ϵt+1) + ut+2

ρt+2 − 1 − ut+1

The Kotlarski’s identity then implies that the distribution of Vt can be identified with a
closed-form. In the end, they show that the joint distribution of {Yt}t=1,...,T⩾3 uniquely
determines distributions of latent variables ut, ϵt, Ut, and Vt. Although this model imposes
parametric restrictions, such as random work and ARMA structures, the distributions of
shocks are left nonparametrically. The identification of such semiparametric dynamic mod-
els with latent variables is complimentary to the existing results, which all heavily rely on
a Markovian property of the dynamic structure. Hu et al. (2018) is the first to show the
identification of a non-Markovian process with latent variables. Their identification results
open the possibility of identification of more general non-Markovian processes with latent
variables, which could have broad applications in empirical research. We provide details in
Hu et al. (2018) as follows.

5.3.1 Background

Methods of estimating models with panel data have a long history. Those methods were
first developed in the 1950s and 1960s for panel data sets of firms and of state aggregates
for consumption (see Nerlove (2002) for a recounting of this period of development and
for the key historical references). What we term the “canonical” model was developed in
that period, consisting of a permanent component and a transitory component, distributed
independently of each other. In some variants, the transitory component was assumed to
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follow a simple low-order ARMA process. Because of its simplicity, its intuition, and its
alignment with economic theories which have permanent and transitory processes, the model
has been enormously influential and has found applications in dozens of areas. Models of
earnings dynamics, consumption dynamics, dynamics for firms or industries, and dynamics
for individual health, student academic achievement, and other individual outcomes are just
a few examples of applications.

This paper considers the identification and estimation of the canonical model under non-
parametric assumptions on the unobservables. While the literature on panel data models
since their development is enormous, most papers have generalized the model with addi-
tional parametric features (random walks, random growth terms, higher-order ARMAs, and
other stochastic processes) and most have concerned themselves with fitting the parameters
of the model only to the second moments of the data and hence fitting only the second
moments of the unobservables. Our goals are to determine under what assumptions the
full distribution of the unobservables in the model can be nonparametrically identified, to
provide an estimator for the relevant distributions, and to provide an empirical application.

We first establish identification for our model, which is a somewhat modified version
of the canonical model in several respects. For example, we allow a slightly generalized
version of the common MA process, allowing it to be nonlinear; we allow the AR process to
be nonstationary and to change with age; and we do not assume the shocks in each period to
be i.i.d. We prove identification of the model by showing that the key unobserved elements
have repeated measurements with classical measurement errors. We can, therefore, make
use of the Kotlarski’s identity (Kotlarski, 1967; Rao, 1992; Li and Vuong, 1998; Schennach,
2004; Bonhomme and Robin, 2010; Evdokimov, 2010) to provide closed-form identification
of the distribution of the unobservables. In the identification of the generalized MA process,
we rely on a recently developed result for nonlinear measurement error models (Schennach
and Hu, 2013). We also provide an estimator based on deconvolution methods, which is
similar to the existing estimators developed for this closed-form identification results (Li
and Vuong, 1998). An advantage of this closed-form estimator is that it requires many
fewer nuisance parameters than alternative semiparametric estimators.

Prior work on nonparametric identification and estimation of the canonical model and
expanded versions of it include Horowitz and Markatou (1996) and Bonhomme and Robin
(2010). Our paper differs from those by its approach. While the existing identification re-
sults for dynamic models with latent variables rely on a Markovian property of the dynamic
structure, our paper complements the existing literature by showing the identification of a
semiparametric unit-root process of a permanent state variable and a semiparametric non-
Markovian process of a transitory state variable. In particular, the transitory state variable
is generated by an ARMA process and does not follow a finite-order Markov process.25

Nonparametric approaches applied to earnings dynamics models have also been developed
by Geweke and Keane (2000), who allow some of the unobservables to be a mixture of nor-
mals, and by Arellano, Blundell, and Bonhomme (2017), who replace the unit root process

25In fact, the AR process is a higher-order Markov process, but the MA process is not a finite-order
Markov.



5. APPLICATIONS IN LABOR ECONOMICS ⇑ 174

on the permanent component with a nonparametric autoregressive function while maintain-
ing an independence assumption for the transitory error. Our model keeps the unit root
process and allow the transitory shocks to follow a semiparametric ARMA process as in
the canonical models. As mentioned above, such a process of the transitory state is not
Markovian and therefore can capture different dynamic structures. As for methodology,
Arellano, Blundell, and Bonhomme (2017) use the results in Hu and Schennach (2008) for a
general nonlinear nonclassical measurement error model with three observables. Our paper
uses the Kotlarski’s identity (Kotlarski, 1967; Rao, 1992; Li and Vuong, 1998; Schennach,
2004; Bonhomme and Robin, 2010; Evdokimov, 2010) and the results in Schennach and Hu
(2013) for a nonlinear model with classical measurement errors when only two observables
are available.

We also provide an application to the earnings dynamics of U.S. men using the Panel
Study on Income Dynamics (PSID), the data set most commonly used in the literature
on estimating models of individual earnings dynamics. There is a very large literature
on applications to earnings dynamics models, going back to early work by Hause (1977),
Lillard and Willis (1978), MaCurdy (1982), and Abowd and Card (1989), followed by many
contributions including those by Horowitz and Markatou (1996), Baker (1997), Meghir and
Pistaferri (2004), Guvenen (2007, 2009), Bonhomme and Robin (2010), Browning, Ejrnaes,
and Alvarez (2010), Hryshko (2012), Jensen and Shore (2014), Arellano, Blundell, and
Bonhomme (2017), and Botosaru and Sasaki (2018). A review of this literature, including
studies which have allowed the dynamic processes to shift with calendar time, can be found
in Moffitt and Zhang (2018).

Our results show that the marginal distributions of log earnings of U.S. men are non-
normal, with significant skewness and fatter tails of both the permanent and transitory
components of earnings than the normal. We also find earnings dynamics very different
than the normal, for our results show that the likelihood of remaining in a lower tail of the
permanent earnings distribution does not fall over time as much, suggesting considerably
less earnings mobility than would be found with a multivariate normality assumption. An-
other important finding from our empirical analysis is that the estimates of the marginal
distributions as well of persistence and dynamics of permanent earnings are very sensitive
to the degree of persistence in the transitory component. We find evidence for the exis-
tence of higher-order ARMA processes in the transitory component and that, with such
higher-order processes, the permanent component of earnings has much less variability in
marginal distributions and less mobility over time. Thus the transitory component makes a
much stronger relative contribution to the marginal earnings distributions and to earnings
mobility than in much of the prior literature, which often allows much less persistence in
the transitory component. Finally, we consider earnings dynamics in subsamples of men
with strong labor force attachment and of married men (both subsamples have been stud-
ied in the literature), finding both subsamples to have lower variances of permanent and
transitory shocks than for the full population but also more earnings mobility than that
population.
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5.3.2 A Semiparametric Canonical Permanent-Transitory Model

We consider the following setup of a semiparametric state space model. The measurement
Yt in time t is decomposed into two independent components:

Yt = Ut + Vt. (5.20)

The first one, Ut is the permanent state which follows the unit root process:

Ut = Ut−1 + ηt (5.21)

with innovation ηt. The second one, Vt is the transitory state which follows the ARMA(p,q)
process:

Vt = ρt,1Vt−1 + ρt,2Vt−2 · · ·+ ρt,pVt−p +Gt (εt, εt−1, · · · , εt−q) . (5.22)

For a short-hand notation, we write the vector of the AR coefficients by ρt = (ρt,1, · · · , ρt,p)′.
Note that the time effect is the source of non-stationarity in this model both through the
time-varying ARMA specifications (i.e, ρt and Gt) and through arbitrary time variations
in the distributions of the primitives (i.e., ηt and εt). Because of the nonparametric spec-
ification of these time-varying distributions of the primitives, the time effect may appear
in higher-order moments as well as in the first moment e.g., as commonly introduced by
additive time effects in (5.20), as is common in applications. In contrast to much of the
literature, we allow arbitrarily high-order ARMA processes and this will be a major feature
of our empirical application in Section 6.

Our first goal in this paper is the identification of the nonparametric distributions of
Ut, Vt, ηt, and εt as well as the function Gt and the AR parameters ρt in this state space
model. The following example illustrates an application of this general framework to a
semiparametric model of earnings dynamics.

Example 1 (The Model of Earnings Dynamics) One application is the model of earn-
ings dynamics, where the measurement Yt is the observed earnings at age t, the permanent
state Ut is the permanent component of earnings at age t, the innovation ηt is the permanent
shock at age t, and the transitory state Vt is the transitory component of earnings at age t.

5.3.3 An Illustration of the Identification Strategy

For an illustration, we focus on the model where the permanent state follows the unit root
process and the transitory state follows an ARMA(1,1) process. The general identification
results will follow in Section 6.2.3. In a random sample, we observe the joint distribution
of Yt for periods t = 1, 2, · · · , T . While we keep the parts (5.20) and (5.21) of the general
model, the ARMA part (5.22) simplifies to

Vt = ρtVt−1 +Gt (εt, εt−1) (5.23)

in the current section. The unknown coefficient ρt and the unknown function Gt may be
time-varying. Furthermore, we do not require a parametric or semiparametric specification
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of Gt. We assume the following independence condition.

Assumption 5.3.1 (i) The random variables ηT , · · · , η1, U0, εT , · · · , ε1, and the random
vector (ε0, V0) are mutually independent, i.e.,

f (ηT , · · · , η1, U0, εT , · · · , ε1, ε0, V0) = f (ηT ) · · · f(η1)f(U0)f(εT ) · · · f(ε1)f (ε0, V0) .

(ii) (ηT , · · · , η1, U0, V0) have zero means and E [Gt (εt, εt−1)] = 0 for t ∈ {1, · · · , T}.

This assumption implies that process {Ut} is independent of process {Vt}. We leave the
marginal distributions of ηt and εt unspecified and allow them to vary arbitrarily with t.
In this setup, we are interested in identification of the nonparametric distributions of the
primitives εt and ηt, the structures ρt and Gt, and the nonparametric distributions of the
components Ut and Vt. Our identification strategy is illustrated below in four steps.

Step 1: Identification of fVt

Consider the first difference:

∆Yt+1 = Yt+1 − Yt = (Ut+1 − Ut) + (Vt+1 − Vt) = ηt+1 + Vt+1 − Vt. (5.24)

This equation implies that we may replace Vt+1 by Vt, ηt+1 and ∆Yt+1 as

Vt+1 = Vt − ηt+1 + ∆Yt+1. (5.25)

Consider the following first difference for the next time period:

∆Yt+2 = Yt+2 − Yt+1 (5.26)
= ηt+2 + Vt+2 − Vt+1 = (ρt+2 − 1)Vt+1 +Gt+2 (εt+2, εt+1) + ηt+2.

Replacing Vt+1 by the expression in equation (5.25), we obtain

∆Yt+2
ρt+2 − 1 −∆Yt+1 = Vt + Gt+2 (εt+2, εt+1) + ηt+2

ρt+2 − 1 − ηt+1 ≡ Vt + et+1. (5.27)

With the pair of equations (5.20) and (5.27), we obtain two measurements, ∆Yt+2
ρt+2−1 −∆Yt+1

and Yt up to an unknown scalar parameter ρt+2, of the latent variable Vt with classical
measurement errors, Ut and et+1, satisfying the mutual independence among Vt, Ut and
et+1. By Kotlarski’s identity , the distribution of Vt is identified up to the unknown scalar
parameter ρt+2 as

fVt(v) = 1
2π

∫ ∞

−∞
e−iτvϕVt(τ)dτ, where i =

√
−1 (5.28)

ϕVt(τ) = exp

∫ τ

0

iE
[(

∆Yt+2
ρt+2−1 −∆Yt+1

)
exp (isYt)

]
E [exp (isYt)]

ds

 .



5. APPLICATIONS IN LABOR ECONOMICS ⇑ 177

For the current step, a well-definition of the last identifying formula requires the following
non-unit root assumption for the transitory state.

Assumption 5.3.2 ρt ̸= 1 for all t.

Step 2: Identification of ρt

The previous step shows identification of fVt up to the unknown scalar parameter ρt. We
now discuss alternative routes of identifying the AR parameter ρt. Combining (5.23) and
(5.26), we obtain

∆Yt+2 = (ρt+2 − 1)Vt+1 +Gt+2 (εt+2, εt+1) + ηt+2

= (ρt+2 − 1) (ρt+1Vt +Gt+1 (εt+1, εt)) +Gt+2 (εt+2, εt+1) + ηt+2 (5.29)

Eliminating Vt with (5.27) yields

∆Yt+2
(ρt+2 − 1) ρt+1

−
( ∆Yt+2
ρt+2 − 1 −∆Yt+1

)
= (ρt+2 − 1)Gt+1 (εt+1, εt) +Gt+2 (εt+2, εt+1) + ηt+2

(ρt+2 − 1) ρt+1
−
(
Gt+2 (εt+2, εt+1) + ηt+2

ρt+2 − 1 − ηt+1

)
.

Notice that the last expression is independent of Yt−1 = Vt−1 + Ut−1 under Assumption
7.4.1, and we get the moment restriction

cov

(( 1− ρt+1
ρt+1 (1− ρt+2)∆Yt+2 −∆Yt+1

)
, Yt−1

)
= 0. (5.30)

For a better view, we rewrite it as

ρt+1
1− ρt+2
1− ρt+1

= cov (∆Yt+2, Yt−1)
cov (∆Yt+1, Yt−1) . (5.31)

We can see from this equation that, by imposing one restriction on the sequence ρt+1, ρt+2, · · · ,
we can sequentially identify these AR parameters. Examples of such a restriction include

ρt+1 = a known constant, or
ρt+1 = ρt+2.

In the former case, one can recursively identify ρt+2, ρt+3, · · · by iterating (5.31). In the
latter case, (5.31) directly yields the identifying formula

ρt+1 = cov (∆Yt+2, Yt−1)
cov (∆Yt+1, Yt−1) , (5.32)

provided that cov (∆Yt+1, Yt−1) ̸= 0 and Assumption 5.3.2. We state this restriction as an
assumption below.

Assumption 5.3.3 cov (∆Yt+1, Yt−1) ̸= 0 and ρt+1 = ρt+2 for all t.
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Step 3: Identification of fηt, fU2,··· ,UT −2 and fV2,··· ,VT −2

Steps 1 and 2 identify the characteristic function ϕVt by (5.28) for t = 2, · · · , T − 2. Given
that Ut and Vt are independent, we identify the marginal distribution of Ut via the decon-
volution:

ϕUt = ϕYt

ϕVt

. (5.33)

Similarly and consequently, we also identify the marginal distribution of ηt by

ϕηt = ϕUt

ϕUt−1
. (5.34)

Notice that the independence between the permanent state Ut−1 and the innovation ηt
implies that

fUt|Ut−1 (ut, ut−1) = fηt (ut − ut−1) (5.35)

holds. Therefore, the joint distribution of (U2, U3, · · · , UT−2) is identified by

fU2,U3,··· ,UT −2 = fUT −2|UT −3fUT −3|UT −4 · · · fU3|U2fU2 . (5.36)

Moreover, the independence between the process {Ut} and the process {Vt} implies

ϕY2,··· ,YT −2 = ϕU2,··· ,UT −2ϕV2,··· ,VT −2 ,

where ϕY2,··· ,YT −2 is the joint characteristic function of Y2, · · · , YT−2. Therefore, the joint
distribution of the transitory states (V2, · · · , VT−2) is also identified from the corresponding
joint characteristic function

ϕV2,··· ,VT −2 =
ϕY2,··· ,YT −2

ϕU2,··· ,UT −2

. (5.37)

This step requires the following assumption.

Assumption 5.3.4 (i) ϕU1,··· ,UT
(s1, · · · , sT ) = E [exp(is1U1 + · · ·+ isTUT )] is not equal

to zero for any real (s1, · · · , sT ). (ii) For each of (Y1, · · · , YT ), (U1, · · · , UT ), (V1, · · · , VT ),
ηt and εt, the marginal and joint distributions are absolutely continuous with respect to
the Lebesgue measure, and the marginal and joint characteristic functions are absolutely
integrable.

Part (i) of this assumption is the assumption of non-vanishing characteristic function as
in Li and Vuong (1998) with a multivariate extension. It corresponds to the “completeness”
assumption for nonparametric identification as in Hu and Schennach (2008) and Arellano,
Blundell, and Bonhomme (2017) – see also D’Haultfoeuille (2011). In the univariate context,
this assumption is known to be satisfied by most of the popular continuous distribution
families, while counter-examples of distribution families violating this assumption are the
uniform, the truncated normal, and many discrete distributions (Evdokimov and White,
2012). Similar remarks apply to multivariate distribution families, though there are not
many stylized families of multivariate distributions. Particularly, the assumption is satisfied
by the multivariate normal distributions.
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We summarize the results as follows.

Proposition 3 Suppose that Assumptions 7.4.1, 5.3.2, 6.1.6, and 5.3.4 hold. The joint
distribution of (Y1, · · · , YT ) uniquely determines the marginal distribution of ηt for t =
3, 4, · · · , T−2, the joint distribution of (U2, · · · , UT−2), and the joint distribution of (V2, · · · , VT−2),
together with ρt for t = 3, 4, · · · , T .

Step 4: Identification of fεt and Gt

Since Gt is arbitrarily nonparametric, we cannot identify the nonparametric distribution
of εt in general. However, we may identify its distribution if the following restriction is
imposed.

Assumption 5.3.5 The MA function Gt takes the form Gt (εt, εt−1) = εt + gt (εt−1) with
the location normalizations E[εt] = E[gt(εt−1)] = 0.

Since we have identified ρt for t = 3, 4, · · · , T and the joint distribution fV2,··· ,VT −2 ,
we identify the joint distribution of two composite random variables (Vt − ρtVt−1) and
(Vt−1 − ρt−1Vt−2). These two random variables can be in turn rewritten as follows:

Vt − ρtVt−1 = εt + gt (εt−1) (5.38)
Vt−1 − ρt−1Vt−2 = εt−1 + gt−1 (εt−2)

The three shocks to the transitory states on the right-hand side are mutually independent.
When the function gt (x) = λtx is linear, Reiersol (1950) shows that the coefficient λt is
generally identified if εt is not normally distributed. Schennach and Hu (2013) generalize
this result to nonlinear cases. We may identify the function gt for t = 4, · · · , T − 2 and
the marginal distribution of εt for t = 3, · · · , T − 2 using the results in Schennach and Hu
(2013).

Assumption 5.3.6 (Schennach and Hu (2013)) (i) The marginal characteristic func-
tions of εt−1, εt, gt(εt−1), and gt−1(εt−2) do not vanish on the real line. (ii) The density
function fεt−1 of εt−1 exists and is uniformly bounded. (iii) gt is continuously differen-
tiable, strictly monotone, and is not exactly of the form gt(εt−1) = a + b ln(ecεt−1 + d) for
a, b, c, d ∈ R.

This assumption states Assumptions 1–6 and an additional condition of Theorem 1
in Schennach and Hu (2013) in terms of our notation. (The notations in Schennach and
Hu (2013) and our notations are reconciled by y := Vt − ρtVt−1, x := Vt−1 − ρt−1Vt−2,
x∗ := εt−1, ∆y := εt, ∆x := gt−1(εt−2) and g := gt.) The first part of Assumption 1 in
Schennach and Hu (2013) is implied by our Assumption 7.4.1 (ii), and hence is not included
in our Assumption 5.3.6. Likewise, the second part of Assumption 1 in Schennach and
Hu (2013) is implied by our Assumption 6.1.7, and hence is not included in Assumption
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5.3.6. Part (i) is similar to Assumption 5.3.4 (i). As discussed earlier, it corresponds to the
“completeness” assumption for nonparametric identification (D’Haultfoeuille, 2011). This
assumption is known to be satisfied by most of the popular continuous distribution families,
while counter-examples of distribution families violating this assumption are the uniform,
the truncated normal, and many discrete distributions (Evdokimov and White, 2012). Part
(ii) of the assumption is also satisfied by most of the popular continuous distribution families,
with the chi-square distribution of one degree of freedom being a major counter-example.
Part (iii) is a set of requirement for the function gt in the MA decomposition.

Proposition 4 Suppose that Assumption 6.1.7 and 5.3.6, in addition to the assumptions
in Proposition 3, are satisfied. The joint distribution of (Y1, · · · , YT ) uniquely determines
the marginal distribution of εt and the MA function Gt.

This result guarantees nonparametric identification but the identification is not con-
structive and therefore a plug-in estimator is not available. A closed-form estimator is
available at the cost of further assuming the linear MA structure as in Reiersol (1950):

gt (x) = λtx.

In this case, (5.38) simplifies to the classical repeated measurement model:

Vt − ρtVt−1 = εt + λtεt−1

Vt−1 − ρt−1Vt−2 = εt−1 + λt−1εt−2

Therefore, we may use Kotlarski’s identity to obtain the closed-form identifying formula

fεt(x) = 1
2π

∫ ∞

−∞
e−iτxϕεt(τ)dτ, where

ϕεt(τ) = exp

∫ τ

0

iE
[(

Vt+1−ρt+1Vt

λt+1

)
exp (is (Vt − ρtVt−1))

]
E [exp (Vt − ρtVt−1)] ds

 (5.39)

where the expectations can be computed using the closed-form identifying formula (5.37)
for the joint distribution of (Vt−1, Vt, Vt+1) obtained in the previous step.

To compute the closed form (5.39) it remains to identify the unknown scalar λt+1. We
can find the moment restrictions

var (εt+1) + λ2
t+1var (εt) = var (Vt+1 − ρt+1Vt)
λt+1var (εt) = cov (Vt − ρtVt−1, Vt+1 − ρt+1Vt) (5.40)

λt+2var (εt+1) = cov (Vt+1 − ρt+1Vt, Vt+2 − ρt+2Vt+1)

where the values on the right-hand sides can be computed again using the closed-form
identifying formula (5.37) for the joint distribution of (Vt−1, Vt, Vt+1, Vt+2) obtained in the
previous step. The left-hand sides contain four unknowns, var(εt), var(εt+1), λt+1 and
λt+2. Therefore, one restriction is necessary for identification of λt+1 using the above three
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equations.



6

Applications in Structural
Econometrics

6.1 Dynamic Discrete Choice with Unobserved State Vari-
ables

Hu and Shum (2012) show that the transition kernel of a Markov process {Wt, X
∗
t } can be

uniquely determined by the joint distribution of four periods of data {Wt+1,Wt,Wt−1,Wt−2}.
This result can be directly applied to identification of dynamic discrete choice model with
unobserved state variables. Such a Markov process may characterize the optimal path
of the decision and the state variables in Markov dynamic optimization problems. Let
Wt = (Yt,Mt), where Yt is the agent’s choice in period t, and Mt denotes the period-t
observed state variable, while X∗

t is the unobserved state variable. For Markovian dynamic
optimization models, the transition kernel can be decomposed as follows:

fWt,X∗
t |Wt−1,X∗

t−1
= fYt|Mt,X∗

t
fMt,X∗

t |Yt−1,Mt−1,X∗
t−1
. (6.1)

The first term on the right hand side is the conditional choice probability for the agent’s
optimal choice in period t. The second term is the joint law of motion of the observed and
unobserved state variables. As shown in Hotz and Miller (1993) , the identified Markov
law of motion may be a crucial input in the estimation of Markovian dynamic models. One
advantage of this conditional choice probability approach is that a parametric specification
of the model leads to a parametric GMM estimator. That implies an estimator for a dynamic
discrete choice model with unobserved state variables, where one can identify the Markov
transition kernel containing unobserved state variables, and then apply the conditional
choice probability estimator to estimate the model primitives. Hu and Shum (2013) extend
this result to dynamic games with unobserved state variables.
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6.1.1 Background

In this paper, we consider the identification of a Markov process {Wt, X
∗
t } when only {Wt},

a subset of the variables, is observed. In structural dynamic models, Wt typically consists
of the choice variables and observed state variables of an optimizing agent. X∗

t denotes
time-varying serially correlated unobserved state variables (or agent-specific unobserved
heterogeneity), which are observed by the agent, but not by the econometrician.

We demonstrate two main results. First, in the non-stationary case, where the Markov
law of motion fWt,X∗

t |Wt−1,X∗
t−1

, can vary across periods t, we show that, for any period
t, fWt,X∗

t |Wt−1,X∗
t−1

is identified from five periods of data Wt+1, . . . ,Wt−3. Second, in the
stationary case, where fWt,X∗

t |Wt−1,X∗
t−1

is the same across all t, only four observations
Wt+1, . . . ,Wt−2, for some t, are required for identification.

In most applications, Wt consists of two components Wt = (Yt,Mt), where Yt denotes the
agent’s action in period t, and Mt denotes the period-t observed state variable(s). X∗

t are
time-varying unobserved state variables (USV for short), which are observed by agents and
affect their choice of Yt, but unobserved by the econometrician. The economic importance
of models with unobserved state variables has been recognized since the earliest papers on
the structural estimation of dynamic optimization models. Two examples are:

[1] Miller’s 1984 job matching model was one of the first empirical dynamic discrete
choice models with unobserved state variables. Yt is an indicator for the occupation chosen
by a worker in period t, and the unobserved state variables X∗

t are the time-varying posterior
means of workers’ beliefs regarding their occupation-specific match values. The observed
state variables Mt include job tenure and education level. [2] Pakes (1986) estimates an
optimal stopping model of the year-by-year renewal decision on European patents. In his
model, the decision variable Yt is an indicator for whether a patent is renewed in year t,
and the unobserved state variable X∗

t is the profitability from the patent in year t, which
varies across years and is not observed by the econometrician. The observed state variable
Mt could be other time-varying factors, such as the stock price or total sales of the patent-
holding firm, which affect the renewal decision. ■

These two early papers demonstrated that dynamic optimization problems with an un-
observed process partly determining the state variables are indeed empirically tractable.
Their authors (cf. (Miller, 1984, section V); Pakes and Simpson (1989)) also provided
some discussion of the restrictions implied on the data by their models, thus highlighting
how identification has been a concern since the earliest structural empirical applications
of dynamic models with unobserved state variables. Obviously, the nonparametric identi-
fication of these complex nonlinear models has important practical relevance for empirical
researchers, and our goal here is to provide identification results which apply to a broad
class of Markovian dynamic models with time-varying unobserved state variables.

Our main result concerns the identification of the Markov law of motion fWt,X∗
t |Wt−1,X∗

t−1
.

Once this is known, it factors into conditional and marginal distributions of economic in-
terest. For Markovian dynamic optimization models (such as the examples given above),
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the law of motion fWt,X∗
t |Wt−1,X∗

t−1
factors into

fWt,X∗
t |Wt−1,X∗

t−1
= fYt,Mt,X∗

t |Yt−1,Mt−1,X∗
t−1

= fYt|Mt,X∗
t︸ ︷︷ ︸

CCP

· fMt,X∗
t |Yt−1,Mt−1,X∗

t−1︸ ︷︷ ︸
state law of motion

. (6.2)

The first term denotes the conditional choice probability for the agent’s optimal choice in
period t. The second term is the Markovian law of motion for the state variables (Mt, X

∗
t ).

Once the CCP’s and the law of motion for the state variables are recovered, it is straight-
forward to use them as inputs in a CCP-based approach for estimating dynamic discrete-
choice models. This approach was pioneered in Hotz and Miller (1993) and Hotz et al.
(1994).1 A general criticism of these methods is that they cannot accommodate unobserved
state variables. In response, Aguirregabiria and Mira (2007), Buchinsky et al. (2004), and
Houde and Imai (2006), among others, recently developed CCP-based estimation method-
ologies allowing for agent-specific unobserved heterogeneity, which is the special case where
the latent X∗

t is time-invariant. Arcidiacono and Miller (2011) developed a CCP-based
approach to estimate dynamic discrete models where X∗

t varies over time according to an
exogenous first-order discrete Markov process.2

While these papers have focused on estimation, our focus is on identification. Our
identification approach is novel because it is based on recent econometric results in nonlinear
measurement error models. Specifically, we show that the identification results in Hu and
Schennach (2008) and Carroll et al. (2010) for nonclassical measurement models (where the
measurement error is not assumed to be independent of the latent “true” variable) can be
applied to Markovian dynamic models, and we use those results to establish nonparametric
identification.

Our results extend nonparametric identification to classes of models not covered in the
existing identification literature. When the unobserved state variable X∗

t is discrete, our
results cover cases where X∗

t is time-varying and can evolve depending on past values of the
observed variables Wt−1. This is new in the literature. When X∗

t is continuous, however,
our identification results require high-level "completeness" assumptions which are difficult to
verify in practice. One worked-out example (in Section 4.2) shows that these completeness
assumptions are implied by independent initial conditions, in addition to other restrictions
on the laws of motion of the state variables: while this is new ground, these restrictions are
nevertheless strong. Because of this, when X∗

t is continuous, we see our results more as a
useful starting point, rather than a final word on the subject.

Kasahara and Shimotsu (2009) (hereafter KS) consider the identification of dynamic
models with discrete unobserved heterogeneity, where the latent variable X∗

t = X∗ is time-
1Subsequent methodological developments for CCP-based estimation include Aguirregabiria and Mira

Aguirregabiria and Mira (2002), Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler (2008),
Bajari et al. (2007a), Pakes et al. (2007), and Hong and Shum (2007).At the same time, Magnac and
Thesmar (2002) and Bajari et al. (2007b) use the CCP logic to provide identification results for dynamic
discrete-choice models.

2That is, X∗
t is discrete-valued, and depends stochastically only on X∗

t−1, and not on any other variables.
We relax this in Section 4.1 below.
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invariant and discrete. KS demonstrate that the Markov law of motion Wt+1|Wt, X
∗ is

identified in this setting, using six periods of data. Relative to this, we consider a more
general setting where the unobserved X∗

t is allowed to vary over time (as in the Miller and
Pakes examples above), and can evolve depending on past values of the observed variables
Wt−1.

Henry et al. (2008) (hereafter HKS) exploit exclusion restrictions to identify Markov
regime-switching models with a discrete and latent state variable. While our identification
arguments are quite distinct from those in HKS, our results share some of HKS’s intuition,
because we also exploit the feature of first-order Markovian models that, conditional on
Wt−1, Wt−2 is an “excluded variable” which affects Wt only via the unobserved state X∗

t .3

Cunha et al. (2010) apply the result of Hu and Schennach (2008) to show nonparametric
identification of a nonlinear factor model consisting of (Wt,W

′
t ,W

′′
t , X

∗
t ), where the observed

processes {Wt}Tt=1, {W ′
t}
T
t=1, and {W ′′

t }
T
t=1 constitute noisy measurements of the latent

process {X∗
t }
T
t=1, contaminated with random disturbances. In contrast, we consider a setting

where (Wt, X
∗
t ) jointly evolves as a dynamic Markov process. We use observations of Wt

in different periods t to identify the conditional density of
(
Wt, X

∗
t |Wt−1, X

∗
t−1
)
. Thus, our

model and identification strategy differ from theirs.

6.1.2 The Discrete Case

Identification in the Discrete Case

We start with the case where the unobserved state variable is discrete. Let (Wt, X
∗
t ) denote

a bivariate discrete first-order Markov process where Wt and X∗
t are both scalars sharing the

same support Wt ≡ {1, 2, ...,K}. The identification results below can be straightforwardly
extended to the case where Wt has more possible values than X∗

t . We assume

Assumption 6.1.1 Suppose Wt and X∗
t share the same support Wt ≡ {1, 2, ...,K} and the

dynamic process {Wt, X
∗
t } satisfy (i) First-order Markov: fWt,X∗

t |Wt−1,X∗
t−1,Ω<t−1 = fWt,X∗

t |Wt−1,X∗
t−1
,

where Ω<t−1 ≡
{
Wt−2, ...,W1, X

∗
t−2, ..., X

∗
1
}
, the history up to (but not including) t− 1.

(ii) Limited feedback: fWt|Wt−1,X∗
t ,X

∗
t−1

= fWt|Wt−1,X∗
t
.

3Similarly, Bouissou et al. (1986) exploit the Markov restrictions on a stochastic process X to formulate
tests for the noncausality of another process Y on X.
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Figure 6.1: Limited-feedback assumption

Assumption 6.1.1 implies that,

fWt+1,Wt,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1,Wt,X∗
t ,X

∗
t−1,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1|Wt,Wt−1,Wt−2,X∗
t ,X

∗
t−1
fWt,X∗

t |Wt−1,Wt−2,X∗
t−1
fX∗

t−1,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1|Wt,X∗
t
fWt,X∗

t |Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t |Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t |Wt−1,Wt−2,X∗
t−1
fX∗

t−1,Wt−1,Wt−2

=
∑
X∗

t

∑
X∗

t−1

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t ,X
∗
t−1,Wt−1,Wt−2 .

Assumption 7.4.1(ii) then implies

fWt+1,Wt,Wt−1,Wt−2 =
∑
X∗

t

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t

∑
X∗

t−1

fX∗
t ,X

∗
t−1,Wt−1,Wt−2


=

∑
X∗

t

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t
fX∗

t ,Wt−1,Wt−2 . (6.3)
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For any (wt, wt−1) ∈ Wt ×Wt−1, we define matrices as follows,

MWt+1,wt,wt−1,Wt−2 =
[
fWt+1,Wt,Wt−1,Wt−2 (i, wt, wt−1, j)

]
i=1,2,...,K;j=1,2,...,K

MWt+1|wt,X∗
t

=
[
fWt+1|Wt,X∗

t
(i|wt, j)

]
i=1,2,...,K;j=1,2,...,K

Dwt|wt−1,X∗
t

=

 fWt|Wt−1,X∗
t

(wt|wt−1, 1) 0 0
0 ... 0
0 0 fWt|Wt−1,X∗

t
(wt|wt−1,K)


MX∗

t ,wt−1,Wt−2 =
[
fX∗

t ,Wt−1,Wt−2 (i, wt−1, j)
]
i=1,2,...,K;j=1,2,...,K

In general, we define a matrix representation of a probability distribution as follows: for
discrete random variables R1, R2, R3, the (i+ 1, j + 1)-th element of the matrix MR1,r2,R3

contains the joint probability that (R1 = i, R2 = r2, R3 = j), for i, j ∈ {1, 2, ...,K}.
Equation (6.3) is then equivalent to

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
MX∗

t ,wt−1,Wt−2 . (6.4)

Notice that for fixed (wt, wt−1), we only have two measurements of the latent X∗
t .

However, an important observation is that for (wt, wt−1),

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t︸ ︷︷ ︸

no wt−1

Dwt|wt−1,X∗
t︸ ︷︷ ︸

only K unkowns.

MX∗
t ,wt−1,Wt−2︸ ︷︷ ︸

no wt

Therefore, we may consider different values of (Wt,Wt−1) as follows: for (wt, wt−1),
(wt, wt−1), (wt, wt−1) (wt, wt−1),

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t

Dwt|wt−1,X∗
t

MX∗
t ,wt−1,Wt−2︸ ︷︷ ︸

∥

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t︸ ︷︷ ︸

∥

Dwt|wt−1,X∗
t

︷ ︸︸ ︷
MX∗

t ,wt−1,Wt−2

MWt+1,wt,wt−1,Wt−2 =
︷ ︸︸ ︷
MWt+1|wt,X∗

t
Dwt|wt−1,X∗

t
MX∗

t ,wt−1,Wt−2︸ ︷︷ ︸
∥

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t

Dwt|wt−1,X∗
t

︷ ︸︸ ︷
MX∗

t ,wt−1,Wt−2

Under the assumption that the four matrices on the LHS are invertible, which is directly
testable, we may have

A ≡ MWt+1,wt,wt−1,Wt−2M
−1
Wt+1,wt,wt−1,Wt−2

= MWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
M−1
Wt+1|wt,X∗

t
.
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Similar manipulations lead to

B ≡ MWt+1,wt,wt−1,Wt−2M
−1
Wt+1,wt,wt−1,Wt−2

= MWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
M−1
Wt+1|wt,X∗

t
.

Assumption 7.4.4(i) guarantees that, for any wt, (wt, wt−1, wt−1) exist so that matrices A
and B exist. Finally, we obtain

AB = MWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t

(
M−1
Wt+1|wt,X∗

t
MWt+1|wt,X∗

t

)
×

×Dwt|wt−1,X∗
t
D−1
wt|wt−1,X∗

t
M−1
Wt+1|wt,X∗

t

= MWt+1|wt,X∗
t

(
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t

)
M−1
Wt+1|wt,X∗

t

≡ MWt+1|wt,X∗
t
Dwt,wt,wt−1,wt−1,X∗

t
M−1
Wt+1|wt,X∗

t
, (6.5)

where

Dwt,wt,wt−1,wt−1,X∗
t

= Dwt|wt−1,X∗
t
D−1
wt|wt−1,X∗

t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t

=

 k (wt, wt, wt−1, wt−1, 1) 0 0
0 ... 0
0 0 k (wt, wt, wt−1, wt−1,K)

 (6.6)

with

k (wt, wt, wt−1, wt−1, x
∗
t ) ≡

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )

This equation implies that the observed matrix AB on the left hand side has an inherent
eigenvalue-eigenfunction decomposition, with the eigenvalues corresponding to the function
k (wt, wt, wt−1, wt−1, x

∗
t ) and the eigenfunctions corresponding to the probability function

fWt+1|Wt,X∗
t
(·|wt, x∗

t ). Such a decomposition is similar to the decomposition in Hu (2008).
Under a similar set of assumptions as in Hu (2008), such as distinct eigenvalues and or-
dering assumptions (6.1.6 and 6.1.7), we may achieve a unique decomposition and identify
fWt+1|Wt,X∗

t
or equivalently MWt+1|wt,X∗

t
for all wt.

Next, we show that identification of fWt+1|Wt,X∗
t

leads to identification of the Markov
kernel fWt,X∗

t |Wt−1,X∗
t−1

. The Markov properties implies

fWt+1,Wt,Wt−1,Wt−2 =
∑
X∗

t

fWt+1|Wt,X∗
t
fWt,X∗

t ,Wt−1,Wt−2

fWt,X∗
t ,Wt−1,Wt−2 =

∑
X∗

t−1

fWt,X∗
t |Wt−1,X∗

t−1
fX∗

t−1,Wt−1,Wt−2 . (6.7)

In matrix notation, for fixed wt, wt−1, the above equations are expressed:

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t
Mwt,X∗

t ,wt−1,Wt−2

Mwt,X∗
t ,wt−1,Wt−2 = Mwt,X∗

t |wt−1,X∗
t−1
MX∗

t−1,wt−1,Wt−2 .
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Substituting the second line into the first, we get

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t
Mwt,X∗

t |wt−1,X∗
t−1
MX∗

t−1,wt−1,Wt−2

⇔Mwt,X∗
t |wt−1,X∗

t−1
MX∗

t−1,wt−1,Wt−2 = M−1
Wt+1|wt,X∗

t
MWt+1,wt,wt−1,Wt−2

. (6.8)

We then eliminate MX∗
t−1,wt−1,Wt−2 from the above. We have

fWt,Wt−1,Wt−2 =
∑
X∗

t−1

fWt|Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Wt−2 (6.9)

which, in matrix notation (for fixed wt−1), is

MWt,wt−1,Wt−2 = MWt|wt−1,X∗
t−1
MX∗

t−1,wt−1,Wt−2

⇒ MX∗
t−1,wt−1,Wt−2 = M−1

Wt|wt−1,X∗
t−1
MWt,wt−1,Wt−2

where MWt|wt−1,X∗
t−1

can be identified from the same procedure as in the identification of
MWt+1|wt,X∗

t
. Hence, substituting the above into Eq. (6.8), we obtain the desired represen-

tation

Mwt,X∗
t |wt−1,X∗

t−1

(
M−1
Wt|wt−1,X∗

t−1
MWt,wt−1,Wt−2

)
= M−1

Wt+1|wt,X∗
t
MWt+1,wt,wt−1,Wt−2

⇒ Mwt,X∗
t |wt−1,X∗

t−1
= M−1

Wt+1|wt,X∗
t
MWt+1,wt,wt−1,Wt−2

(
M−1
Wt|wt−1,X∗

t−1
MWt,wt−1,Wt−2

)−1

⇒ Mwt,X∗
t |wt−1,X∗

t−1
= M−1

Wt+1|wt,X∗
t
MWt+1,wt,wt−1,Wt−2

M−1
Wt,wt−1,Wt−2

MWt|wt−1,X∗
t−1
.(6.10)

Equation (6.10) implies that the Markov kernel fWt,X∗
t |Wt−1,X∗

t−1
for any fixed (wt, wt−1) as in

matrixMwt,X∗
t |wt−1,X∗

t−1
can be identified from the observed distribution fWt+1,Wt,Wt−1,Wt−2,Wt−3 .

Specifically, fWt+1,Wt,Wt−1,Wt−2 identifies fWt+1|Wt,X∗
t
, fWt,Wt−1,Wt−2,Wt−3 identifies fWt|Wt−1,X∗

t−1
,

and both fWt+1|Wt,X∗
t

and fWt|Wt−1,X∗
t−1

leads to the identification of the Markov kernel
fWt,X∗

t |Wt−1,X∗
t−1

.
We summarize the identification in the discrete case as follows:

Assumption 6.1.2 Invertibility: for any wt ∈ Wt, there exists wt−1, wt, wt−1 ∈ Wt−1 such
that,

Rank
(
MWt−2,w̃t−1,w̃t,Wt+1

)
= K

for (w̃t−1, w̃t) equal to (wt, wt−1), (wt, wt−1), (wt, wt−1), and (wt, wt−1); Furthermore,

k(wt, wt, wt−1, wt−1, x
∗
t ) ̸= k(wt, wt, wt−1, wt−1, x̃

∗
t )

for any x∗
t ̸= x̃∗

t ∈ X ∗
t , where

k (wt, wt, wt−1, wt−1, x
∗
t ) =

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )
.

This assumption is imposed on the observed distribution and is directly testable. In addi-
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tion, notice that this assumption implies that for any wt−1 ∈ Wt−1,

Rank
(
MWt−2,wt−1,Wt

)
= K.

Specifically, MWt−2,wt−1,Wt = MT
Wt,wt−1,Wt−2

with

MWt,wt−1,Wt−2 = MWt|wt−1,X∗
t−1
MX∗

t−1,wt−1,Wt−2 .

The invertibility of the two matrices on the right-hand side is implied by Assumption 6.1.2.

Assumption 6.1.3 Monotonicity and normalization: For any wt ∈ Wt, One of the follow-
ing conditions holds:

1) fWt+1|Wt,X∗
t

(
w1|wt, x∗

j

)
> fWt+1|Wt,X∗

t

(
w1|wt, x∗

j+1

)
for j = 1, 2, . . . ,K − 1;

2) The τ -th quantile of fWt+1|Wt,X∗
t

(·|wt, x∗) is monotonic in x∗.
3) There exists a function ω(·) such that

E
[
ω (Wt+1) |Wt = wt, X

∗
t = x∗

j

]
> E

[
ω (Wt+1) |Wt = wt, X

∗
t = x∗

j+1

]
.

In fact, condition 1) is a special case condition 3) with ω(x) = δ(x = w1).

Theorem 6.1.1 (Identification of Markov law of motion, discrete case):
Under the Assumptions 6.1.1, 6.1.2, and 6.1.3, the joint probability function fWt+1,Wt,Wt−1,Wt−2,Wt−3

for any t ∈ {4, . . . , T − 1} uniquely determines the Markov kernel fWt,X∗
t |Wt−1,X∗

t−1
.

Notice that the equality

fWt,Wt−1 =
∑
X∗

t−1

fWt|Wt−1,X∗
t−1
fWt−1,X∗

t−1

implies that, for any wt−1 ∈ Wt,

−→p Wt,Wt−1=wt−1 = MWt|wt−1,X∗
t−1
−→p Wt−1=wt−1,X∗

t−1

⇔ −→p Wt−1=wt−1,X∗
t−1

= M−1
Wt|wt−1,X∗

t−1

−→p Wt,Wt−1=wt−1

That means that the initial condition fWt−1,X∗
t−1

is also identified.
Additionally, in the stationary case where fWt+1|Wt,X∗

t
= fWt|Wt−1,X∗

t−1
, only four periods

of data, i.e., fWt+1,Wt,Wt−1,Wt−2 are enough to identify the Makov kernel fWt,X∗
t |Wt−1,X∗

t−1
.

Implication of Assumptions in the Discrete Case

For the illustration purpose, we consider the case where Wt and X∗
t are both binary scalars:

∀t, suppX∗
t = suppWt ≡ {0, 1}. This is the simplest example of the models considered in

our framework. One example of such a model is a binary version of Abbring, Chiappori,
and Zavadil’s 2008 “dynamic moral hazard” model of auto insurance. In that model, Wt is
a binary indicator of claims occurrence, and X∗

t is a binary effort indicator, with X∗
t = 1

denoting higher effort. In this model, moral hazard in driving behavior and experience rating
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in insurance pricing imply that the laws of motion for both Wt and X∗
t should exhibit state

dependence:

Pr(Wt = 1|wt−1, x
∗
t , x

∗
t−1) = p(wt−1, x

∗
t ); Pr(X∗

t = 1|x∗
t−1, wt−1) = q(x∗

t−1, wt−1). (6.11)

These laws of motion satisfy Assumption 6.1.1.
Relative to the continuous case presented beforehand, some simplifications obtain in

this finite-dimensional example. Notationally, the linear operators in the previous section
reduce to matrices, with the L operators in the main proof corresponding to K ×K square
matrices, and the D operators to K ×K diagonal matrices.

Assumptions 6.1.2 and 6.1.3 are quite transparent to interpret in the matrix setting.
Assumption 6.1.2 implies the invertibility of certain matrices. As shown above, our iden-
tification results require that there exist at least four different points in the support of
(Wt,Wt−1). In this dichotomous example, this implies that Assumptions 6.1.2 must hold
for all four possible values of the pair (wt, wt−1). The following matrix equality holds, for
all values of (wt, wt−1):

MWt+1,wt,wt−1,Wt−2 = MWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
MX∗

t ,wt−1,Wt−2 (6.12)
= MWt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,X∗
t−1
MX∗

t−1,wt−1,Wt−2 .

Assumption 6.1.2 requires that the square matrix MWt−2,wt−1,wt,Wt+1 = MT
Wt+1,wt,wt−1,Wt−2

is invertible, which implies that MWt+1,wt,wt−1,Wt−2 is also invertible. This matrix is observed
in the data, so that we can verify its invertibility directly.

Moreover, by Eq. (6.12), the invertibility of MWt+1,wt,wt−1,Wt−2 also implies the invert-
ibility of MWt+1|wt,X∗

t
, MX∗

t |wt−1,X∗
t−1

, and MX∗
t−1,wt−1,Wt−2 , and that all the elements in the

diagonal matrix Dwt|wt−1,X∗
t

are nonzero.
Assumption 6.1.2 also puts restrictions on the eigenvalues in the spectral decomposition

of the AB operator. In the discrete case, AB is an observed K ×K matrix, and the spec-
tral decomposition reduces to the usual matrix diagonalization. Assumption 6.1.6 implies
that the eigenvalues are nonzero and finite, and that the eigenvalues are distinct. For all
(wt, wt−1), these assumptions can be verified, by directly diagonalizing the AB matrix.

In this discrete case, Assumption 6.1.3 is to an “ordering” assumption on the columns
of the MWt+1|wt,X∗

t
matrix, which are the eigenvectors of AB. This is because, for a ma-

trix diagonalization T = SDS−1, where D is diagonal, and T and S are square matrices,
any permutation of the eigenvalues (the diagonal elements in D) and their corresponding
eigenvectors (the columns in S) results in the same diagonal representation of T .

In order to compare values of X∗
t across these two periods, we must invoke Assumption

6.1.3 to pin down values of X∗
t which are consistent across the two periods. For this example,

one reasonable monotonicity restriction is

for wt = {0, 1} : E[Wt+1|wt, X∗
t = 1] < E[Wt+1|wt, X∗

t = 0] (6.13)

The restriction (6.13) implies that future claims Wt+1 occur less frequently with higher
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effort today, and imposes additional restrictions on the the p(· · · ) and q(· · · ) functions in
(6.11).4

To see how this restriction orders the eigenvectors, and pins down the value of X∗
t ,

note that E[Wt+1|wt, X∗
t ] = f(Wt+1 = 1|wt, X∗

t ), which is the second component of each
eigenvector. Therefore, the monotonicity restriction (6.13) implies that the eigenvectors
(and their corresponding eigenvalues) should be ordered such that their second components
are decreasing, from left to right. Given this ordering, we assign a value of X∗

t = 0 to the
eigenvector in the first column, and X∗

t = 1 to the eigenvector in the second column.

6.1.3 The Discrete Case versus a Finite Mixture Model

Here, we provide some additional comparison with the results in Kasahara and Shimotsu
(2009) (KS), and show that KS’s identification results are not applicable to the dynamic
models with time-varying unobservables considered in Hu and Shum (2012).

We start by summarizing KS’s main results. Throughout, we state KS’s results using
the notation in this paper. Since KS assume that the unobserved heterogeneity X∗ is time-
invariant, we attach no t subscript to it.5 Using the notation in this paper, the second
equality of KS’s Eq. (3) is:

fY1,M1,...,YT ,MT

=
∑
X∗

fX∗fM1,Y1|X∗

T∏
t−2

fMt|Mt−1,Yt−1,...,M1,Y1,X∗fYt|Mt,Mt−1,Yt−1,X∗ .

In their baseline model (ie. their Assumption 1), they assume that the unobserved hetero-
geneity X∗ does not affect the law of motion for the observed state variable Mt, and that
Yt is independent of (Mt−1, Yt−1) conditional on Mt and X∗. This leads to

fY1,M1,...,YT ,MT

T∏
t−2

fMt|Mt−1,Yt−1

=
∑
X∗

fX∗fM1,Y1|X∗

T∏
t−2

fYt|Mt,X∗ , [Eq. (9) in KS (2009)]

which is Eq. (9) in KS. Notice that the LHS of the above is observed, and they demonstrate
(in their Proposition 1) that the unknown densities on the RHS are identified from the
observed quantity on the LHS for T ≥ 3. In fact, such a setting with T ≥ 3 forms a
3-measurement model as in section 2.5 so that its identification results based on Hu (2008)
apply.

In section 3.2 of their paper, they consider a first-order Markovian model where the
observed variables Wt can depend on Wt−1 and X∗. They show that, by using T ≥ 6

4See Hu (2008) for a number of other alternative ordering assumptions for the discrete case.
5The correspondence between KS’s notation and Hu and Shum’s is as follows:

KS (2009)︷ ︸︸ ︷[
at, xt, st, m, πm, Qm(st|st−1)

P m
t (at|xt, xt−1, at−1)

]
⇔

our notation︷ ︸︸ ︷[
Yt, Mt, Wt, X∗,fX∗ , fWt|Wt−1,X∗

fYt|Mt,Mt−1,Yt−1,X∗

]
.



6. APPLICATIONS IN STRUCTURAL ECONOMETRICS ⇑ 193

periods of data W1. . . . ,WT , and fixing the values in the odd periods w1, w3, w5, ..., wT−1,
one obtains

fw1,W2,w3,W4,...,wT −1,WT
=
∑
X∗

fw1,X∗

 T−2∏
t=2,4,...

fwt+1,Wt|wt−1,X∗

 fWT |wT −1,X∗ , [Eq. (27) in KS (2009)]

which is Eq. (27) in KS. As they note, Eq. (27) has the same “independent marginals” form
as Eq. (9), so that their identification scheme also applies to first-order Markov process
with time-invariant X∗ for T ≥ 6. This is their Proposition 6.

However, this scheme no longer works in the case where the latent variable X∗
t varies

over time, even if X∗
t is discrete. To see this, we consider a joint first-order Markov process

{Wt, X
∗
t } where both Wt and X∗

t vary over time, as in Example 1 in the main text of this
paper. Analogously to Eq. (27) in KS, we may have

fw1,W2,w3,W4,...,wT −1,WT
=
∑
X∗

T −1

...
∑
X∗

5

∑
X∗

3

∑
X∗

1

fw1,X∗
1

 T−2∏
t=2,4,...

fwt+1,X∗
t+1,Wt|wt−1,X∗

t−1

 fWT |wT −1,X∗
T −1

.

Obviously, this takes a very different form than Eq. (27) above, because the components
on the RHS involve values of the latent variable X∗

t in different periods. Hence, KS’s
identification scheme does not apply here. Notice that using more periods of data only
exacerbates the problem; the more periods of data one uses, the more latent variables X∗

t

appear when X∗
t is time-varying.

In conclusion, the identification strategy in KS does not apply to models where X∗
t is

time-varying, even if X∗
t is discrete. An important innovation of the present paper is that

it provides nonparametric identification for dynamic models with time-varying unobserved
variables.

6.1.4 Assumptions in the Continuous Case

Consider a dynamic process {(WT , X
∗
T ) , . . . , (Wt, X

∗
t ) , ..., (W1, X

∗
1 )}i for agent i. We as-

sume that for each agent i, {(WT , X
∗
T ) , . . . , (Wt, X

∗
t ) , ..., (W1, X

∗
1 )}i is an independent ran-

dom draw from a bounded continuous distribution f(WT ,X
∗
T ),...,(Wt,X∗

t ),...,(W1,X∗
1 ). The re-

searcher observes a panel dataset consisting of an i.i.d. random sample of {WT ,WT−1, . . . ,W1}i,
with T ≥ 5, for many agents i. We first consider identification in the nonstationary case,
where the Markov law of motion fWt,X∗

t |Wt−1,X∗
t−1

varies across periods. This model sub-
sumes the special case of unobserved heterogeneity, in which X∗

t is fixed across all periods.
Next, we introduce our four assumptions. The first assumption below restricts attention

to certain classes of models, while Assumptions 7.4.4-6.1.7 establish identification for the
restricted class of models. Unless otherwise stated, all assumptions are taken to hold for all
periods t.

Assumption 6.1.4 (i) First-order Markov: fWt,X∗
t |Wt−1,X∗

t−1,Ω<t−1 = fWt,X∗
t |Wt−1,X∗

t−1
,

where Ω<t−1 ≡
{
Wt−2, ...,W1, X

∗
t−2, ..., X

∗
1
}
, the history up to (but not including) t− 1.

(ii) Limited feedback: fWt|Wt−1,X∗
t ,X

∗
t−1

= fWt|Wt−1,X∗
t
.
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Assumption 7.4.1(i), a first-order Markov assumption, is satisfied for Markovian dynamic
decision models (cf. Rust (1994)). Assumption 7.4.1(ii) is a “limited feedback” assumption,
which rules out direct feedback from the last period’s USV, X∗

t−1, on the current value of
the observed Wt. When Wt = (Yt,Mt), as before, Assumption 1 implies:

fWt|Wt−1,X∗
t ,X

∗
t−1

= fYt,Mt|Yt−1,Mt−1,X∗
t ,X

∗
t−1

= fYt|Mt,Yt−1,Mt−1,X∗
t ,X

∗
t−1
· fMt|Yt−1,Mt−1,X∗

t ,X
∗
t−1

= fYt|Mt,X∗
t ,Yt−1,Mt−1 · fMt|Yt−1,Mt−1,X∗

t
.

In the bottom line of the above display, the limited feedback assumption eliminates
X∗
t−1 as a conditioning variable in both terms. In Markovian dynamic optimization models,

the first term (the CCP) further simplifies to fYt|Mt,X∗
t
, because the Markovian laws of

motion for (Mt, X
∗
t ) imply that the optimal policy function depends just on the current

state variables. Hence, Assumption 1 imposes weaker restrictions on the first term than
Markovian dynamic optimization models.6

In the second term of the above display, the limited feedback condition rules out di-
rect feedback from last period’s unobserved state variable X∗

t−1 to the current observed
state variable Mt. However, it allows indirect effects via X∗

t−1’s influence on Yt−1 or Mt−1.
Implicitly, the limited feedback assumption 7.4.1(ii) imposes a timing restriction, that X∗

t

is realized before Mt, so that Mt depends on X∗
t . While this is less restrictive than the

assumption that Mt evolves independently of both X∗
t−1 and X∗

t , which has been made in
many applied settings to enable the estimation of the Mt law of motion directly from the
data, it does rule out models such as Mt = h(Mt−1, X

∗
t−1) + ηt, which implies the alterna-

tive timing assumption that X∗
t is realized after Mt.7 For the special case of unobserved

heterogeneity, where X∗
t = X∗

t−1, ∀t, the limited feedback assumption is trivial. Finally,
the limited feedback assumption places no restrictions on the law of motion for X∗

t , and
allows X∗

t to depend stochastically on X∗
t−1, Yt−1,Mt−1. ■

For this paper, we assume that the unobserved state variable X∗
t is scalar-valued, and

is drawn from a continuous distribution.8 An important role in the identification argument
is played by many integral equalities which demonstrate the equivalence of multivariate
density functions which contain the latent variable X∗

t as an argument (which are not
identified directly in the data), and those containing only observed variables Wt (which are
identified directly from the data). To avoid cumbersome repetition, we will express these
integral equalities in the convenient notation of linear operators, which we introduce here.

6Moreover, if we move outside the class of these models, the above display also shows that Assumption
1 does not rule out the dependence of Yt on Yt−1 or Mt−1, which corresponds to some models of state
dependence. These may include linear or nonlinear panel data models with lagged dependent variables, and
serially correlated errors, cf. Arellano and Honore (2000). (Arellano, 2003, chs. 7–8) considers linear panel
models with lagged dependent variables and serially-correlated unobservables, which is also related to our
framework.

7Most empirical applications of dynamic optimization models with unobserved state variables satisfy the
Markov and limited feedback conditions: examples from the industrial organization literature include Erdem
et al. (2003), Crawford and Shum (2005), Das et al. (2007), Xu (2007), and Hendel and Nevo (2006).

8A discrete distribution for X∗
t , which is assumed in many applied settings (eg. Arcidiacono and Miller

(2011)) is a special case, which we will consider as an example in Section 4.1.
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Let R1, R2, R3 denote three random variables, with supportR1, R2, andR3, distributed
with joint density fR1,R2,R3(r1, r2, r3) with support R1 × R2 × R3.9 The linear operator
LR1,r2,R3 is a mapping from the Lp-space of functions of R3 to the Lp space of functions of
R1,10 defined as 11

(LR1,r2,R3h) (r1) =
∫
fR1,R2,R3(r1, r2, r3)h(r3)dr3; h ∈ Lp (R3) , r2 ∈ R2.

Similarly, we define the diagonal (or multiplication) operator(
Dr1|r2,R3h

)
(r3) = fR1|R2,R3(r1|r2, r3)h(r3); h ∈ Lp (R3) , r1 ∈ R1, r2 ∈ R2.

In the next section, we show that our identification argument relies on a spectral de-
composition of a linear operator generated from LWt+1,wt,wt−1,Wt−2 , which corresponds to
the observed density fWt+1,Wt,Wt−1,Wt−2 . (A spectral decomposition is the operator analog
of the eigenvalue-eigenvector decomposition for matrices, in the finite-dimensional case.)12

The next two assumptions ensure the validity and uniqueness of this decomposition.

Assumption 6.1.5 Invertibility: There exists variable(s) V ⊆W such that
(i) for any wt ∈ Wt, there exists a wt−1 ∈ Wt−1 and a neighborhood N r around (wt, wt−1)13

such that, for any (wt, wt−1) ∈ N r, LVt−2,wt−1,wt,Vt+1 is one-to-one;
(ii) for any wt ∈ Wt, LVt+1|wt,X∗

t
is one-to-one;

(iii) for any wt−1 ∈ Wt−1, LVt−2,wt−1,Vt is one-to-one.

Assumption 7.4.4 enables us to take inverses of certain operators, and is analogous to
assumptions made in the nonclassical measurement error literature. Specifically, treating
Vt−2 and Vt+1 as noisy “measurements” of the latent X∗

t , Assumption 7.4.4(i,ii) imposes
the same restrictions between the measurements and the latent variable as (Hu and Schen-
nach, 2008, Assumption 3) and (Carroll et al., 2010, Assumption 2.4). Compared with
these two papers, Assumption 7.4.4(iii) is an extra assumption we need because, in our
dynamic setting, there is a second latent variable, X∗

t−1, in the Markov law of motion
fWt,X∗

t |Wt−1,X∗
t−1

. Below, we show that Assumption 2(ii) implies that pre-multiplication by
the inverse operator L−1

Vt+1|wt,X∗
t

is valid, while 2(i,iii) imply that post-multiplication by,
respectively, L−1

Vt+1,wt,wt−1,Vt−2
and L−1

Vt,wt−1,Vt−2
is valid.14

9Here, capital letters denote random variables, while lower-case letters denote realizations.
10For 1 ≤ p < ∞, Lp(X ) is the space of measurable real functions h (·) integrable in the Lp-norm, ie.∫

X |h(x)|pdµ (x) < ∞, where µ is a measure on a σ-field in X . One may also consider other classes of
functions, such as bounded functions in L1, in the definition of an operator.

11Analogously, the operator LR1|r2,R3 , corresponding to the conditional density fR1|R2,R3 , is defined, for
all functions h ∈ Lp (R3), and r2 ∈ R2 as

(
LR1|r2,R3 h

)
(r1) =

∫
fR1|R2,R3 (r1|r2, r3)h(r3)dr3.

12Specifically, when Wt, X∗
t are both scalar and discrete with J (< ∞) points of support, the opera-

tor LWt+1,wt,wt−1,Wt−2 is a J × J matrix, and spectral decomposition reduces to diagonalization of the
corresponding matrix. This discrete case is discussed in detail in Section 4.1.

13A neighborhood of w ∈ Rk is defined as
{

w ∈ Rk : ∥w − w∥E < r
}

for some r > 0, where ∥·∥E is the
Euclidean metric.

14Additional details are given in Section 3 of the online appendix (Hu and Shum (2009)).
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The statements in Assumption 7.4.4 are equivalent to completeness conditions which
have recently been employed in the nonparametric IV literature: namely, an operator
LR1,r2,R3 is one-to-one if the corresponding density function fR1,r2,R3 satisfies a “complete-
ness” condition: for any r2,

(LR1,r2,R3h) (r1) =
∫
f(r1, r2, r3)h(r3)dr3 = 0 for all r1 implies h(r3) = 0 for all r3.

(6.14)
Completeness is a high-level condition, and special cases of it have been considered in,
eg. Newey and Powell (2003), Blundell et al. (2007a), D’Haultfoeuille (2011). However,
sufficient conditions are not available for more general settings. Below, in Section 4, we will
construct examples which satisfy the completeness requirements.

The variable(s) Vt ⊆ Wt defined in Assumption 7.4.4 may be scalar, multidimensional,
or Wt itself. Intuitively, by Assumption 7.4.4(ii), the variable(s) Vt+1 are components of
Wt+1 which “transmit” information on the latent X∗

t conditional on Wt, the observables
in the previous period. We consider suitable choices of V for specific examples in Section
4.15 Assumption 7.4.4(ii) also rules out models where X∗

t has a continuous support, but
Wt+1 contains only discrete components. In this case, there is no subset Vt+1 ⊆ Wt+1 for
which LVt+1|wt,X∗

t
can be one-to-one. Hence, dynamic discrete-choice models with a contin-

uous unobserved state variable X∗
t , but only discrete observed state variables Mt, fail this

assumption, and may be nonparametrically underidentified without further assumptions.
Moreover, models where the Wt and X∗

t processes evolve independently will also fail this
assumption. ■

Assumption 6.1.6 Uniqueness of spectral decomposition: For any wt ∈ Wt and any x∗
t ̸=

x̃∗
t ∈ X ∗

t , there exists a wt−1 ∈ Wt−1 and corresponding neighborhood N r satisfying As-
sumption 7.4.4(i) such that, for some (wt, wt−1) ∈ N r with wt ̸= wt, wt−1 ̸= wt−1:
(i) 0 < k (wt, wt, wt−1, wt−1, x

∗
t ) < C <∞ for any x∗

t ∈ X ∗
t and some constant C;

(ii) k(wt, wt, wt−1, wt−1, x
∗
t ) ̸= k(wt, wt, wt−1, wt−1, x̃

∗
t ), where

k (wt, wt, wt−1, wt−1, x
∗
t ) =

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )
.

Assumption 6.1.6 ensures the uniqueness of the spectral decomposition of a linear op-
erator generated from LVt+1,wt,wt−1,Vt−2 . As Eq. (6.30) below shows, the k(· · · ) function
in the assumption corresponds to the eigenvalues in this decomposition, so that conditions
(i) and (ii) guarantee that these eigenvalues are, respectively, bounded and distinct across
all values of x∗

t . In turn, this ensures that the corresponding eigenfunctions are linearly
independent, so that the spectral decomposition is unique.16 ■

15There may be multiple choices of V which satisfy Assumption 7.4.4. In this case, the model may be
overidentified, and it may be possible to do specification testing. We do not explore this possibility here.

16In the case where Wt = (Yt, Mt) and fWt|Wt−1,X∗
t

= fYt|Mt,X∗
t

· fMt|Yt−1,Mt−1,X∗
t

, Assumption 6.1.6
simplifies further. Specifically, because the CCP term fYt|Mt,X∗

t
does not contain Wt−1, Eq. (6.30) below

implies that the CCP term cancels out in the expression of eigenvalues in the spectral decomposition, so that
Assumption 6.1.6 imposes restrictions only on the second term fMt|Yt−1,Mt−1,X∗

t
. See additional discussion

in Example 2 below.
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Assumption 6.1.7 Monotonicity and normalization: For any wt ∈ Wt, there exists a
known functional G such that G

[
fVt+1|Wt,X∗

t
(·|wt, x∗

t )
]

is monotonic in x∗
t . We normal-

ize x∗
t = G

[
fVt+1|Wt,X∗

t
(·|wt, x∗

t )
]
.

The eigenfunctions in the aforementioned spectral decomposition correspond to the den-
sities fVt+1|Wt,X∗

t
(·|wt, x∗

t ), for all values of x∗
t . SinceX∗

t is unobserved, the eigenfunctions are
only identified up to an arbitrary one-to-one transformation of X∗

t . To resolve this issue, we
need additional restrictions deriving from the economic or stochastic structure of the model,
to “pin down” the values of the unobserved X∗

t relative to the observed variables. In As-
sumption 6.1.7, this additional structure comes in the form of the functional G which, when
applied to the family of densities fVt+1|Wt,X∗

t
(·|wt, x∗

t ), is monotonic in x∗
t , given wt. Given

the monotonicity restriction, we can normalize X∗
t by setting, x∗

t = G
[
fVt+1|Wt,X∗

t
(·|wt, x∗

t )
]

without loss of generality.17 The functional G, which may depend on the value of wt, could
be the mean, mode, median, or another quantile of fVt+1|Wt,X∗

t
. ■

Assumptions 1-4 are the four main assumptions underlying our identification arguments.
Of these four assumptions, all except Assumption 2(i,iii) involve densities not directly ob-
served in the data, and are not directly testable in the continuous case.

6.1.5 Nonparametric Identification in the Continuous Case

We present our argument for the nonparametric identification of the Markov law of motion
fWt,X∗

t |Wt−1,X∗
t−1

by way of several intermediate lemmas. The first two lemmas present con-
venient representations of the operators corresponding to the observed density fVt+1,wt,wt−1,Vt−2

and the Markov law of motion fwt,X∗
t |wt−1,X∗

t−1
, for given values of (wt, wt−1) ∈ Wt ×Wt−1:

Lemma 6.1.1 (Representation of the observed density fVt+1,wt,wt−1,Vt−2): For any t ∈
{3, . . . , T − 1}, Assumption 7.4.1 implies that, for any (wt, wt−1) ∈ Wt ×Wt−1,

LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . (6.15)

Proof: (Lemma 6.1.1)
17To be clear, the monotonicity assumption here is a model restriction, and not without loss of generality;

if it were false, our identification argument would not recover the correct CCP’s and laws of motion for
the underlying model. See Matzkin (2003a) and Hu and Schennach (2008) for similar uses of monotonicity
restrictions in the context of nonparametric identification problems.
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By Assumption 7.4.1(i), the observed density fWt+1,Wt,Wt−1,Wt−2 equals∫ ∫
fWt+1,Wt,X∗

t ,X
∗
t−1,Wt−1,Wt−2dx

∗
tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,Wt−1,Wt−2,X∗
t ,X

∗
t−1
fWt,X∗

t |Wt−1,Wt−2,X∗
t−1
fX∗

t−1,Wt−1,Wt−2dx
∗
tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗
t
fWt,X∗

t |Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Wt−2dx
∗
tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t |Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Wt−2dx
∗
tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t |Wt−1,Wt−2,X∗
t−1
fX∗

t−1,Wt−1,Wt−2dx
∗
tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗
t
fWt|Wt−1,X∗

t ,X
∗
t−1
fX∗

t ,X
∗
t−1,Wt−1,Wt−2dx

∗
tdx

∗
t−1.

(We omit all the arguments in the density functions.) Assumption 7.4.1(ii) then implies

fWt+1,Wt,Wt−1,Wt−2 =
∫
fWt+1|Wt,X∗

t
fWt|Wt−1,X∗

t

(∫
fX∗

t ,X
∗
t−1,Wt−1,Wt−2dx

∗
t−1

)
dx∗

t

=
∫
fWt+1|Wt,X∗

t
fWt|Wt−1,X∗

t
fX∗

t ,Wt−1,Wt−2dx
∗
t . (6.16)

In operator notation, given values of (wt, wt−1) ∈ Wt ×Wt−1, this is

LWt+1,wt,wt−1,Wt−2 = LWt+1|wt,X∗
t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Wt−2 . (6.17)

For the variable(s) Vt ⊆Wt, for all periods t, introduced in Assumption 7.4.4, Eq. (6.17)
implies that the joint density of {Vt+1,Wt,Wt−1, Vt−2} is expressed in operator notation as
LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , as postulated by Lemma 1. Q.E.D.

Lemma 6.1.2 (Representation of Markov law of motion): For any t ∈ {3, . . . , T − 1},
Assumptions 7.4.1, 7.4.4(ii), and 7.4.4(iii) imply that, for any (wt, wt−1) ∈ Wt ×Wt−1,

Lwt,X∗
t |wt−1,X∗

t−1
= L−1

Vt+1|wt,X∗
t
LVt+1,wt,wt−1,Vt−2L

−1
Vt,wt−1,Vt−2

LVt|wt−1,X∗
t−1
. (6.18)

Proof: (Lemma 6.1.2)
Assumption 7.4.1 implies the following two equalities:

fVt+1,Wt,Wt−1,Vt−2 =
∫
fVt+1|Wt,X∗

t
fWt,X∗

t ,Wt−1,Vt−2dx
∗
t

fWt,X∗
t ,Wt−1,Vt−2 =

∫
fWt,X∗

t |Wt−1,X∗
t−1
fX∗

t−1,Wt−1,Vt−2dx
∗
t−1. (6.19)

In operator notation, for fixed wt, wt−1, the above equations are expressed:

LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗
t
Lwt,X∗

t ,wt−1,Vt−2

Lwt,X∗
t ,wt−1,Vt−2 = Lwt,X∗

t |wt−1,X∗
t−1
LX∗

t−1,wt−1,Vt−2 .
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Substituting the second line into the first, we get

LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗
t
Lwt,X∗

t |wt−1,X∗
t−1
LX∗

t−1,wt−1,Vt−2

⇔ Lwt,X∗
t |wt−1,X∗

t−1
LX∗

t−1,wt−1,Vt−2 = L−1
Vt+1|wt,X∗

t
LVt+1,wt,wt−1,Vt−2

. (6.20)

where the second line uses Assumption 2(ii). Next, we eliminate LX∗
t−1,wt−1,Vt−2 from the

above. Again using Assumption 1, we have

fVt,Wt−1,Vt−2 =
∫
fVt|Wt−1,X∗

t−1
fX∗

t−1,Wt−1,Vt−2dx
∗
t−1 (6.21)

which, in operator notation (for fixed wt−1), is

LVt,wt−1,Vt−2 = LVt|wt−1,X∗
t−1
LX∗

t−1,wt−1,Vt−2 ⇒ LX∗
t−1,wt−1,Vt−2 = L−1

Vt|wt−1,X∗
t−1
LVt,wt−1,Vt−2

where the right-hand side applies Assumption 7.4.4(ii). Hence, substituting the above into
Eq. (6.20), we obtain the desired representation

Lwt,X∗
t |wt−1,X∗

t−1
L−1
Vt|wt−1,X∗

t−1
LVt,wt−1,Vt−2 = L−1

Vt+1|wt,X∗
t
LVt+1,wt,wt−1,Vt−2

⇒ Lwt,X∗
t |wt−1,X∗

t−1
L−1
Vt|wt−1,X∗

t−1
= L−1

Vt+1|wt,X∗
t
LVt+1,wt,wt−1,Vt−2

L−1
Vt,wt−1,Vt−2

⇒ Lwt,X∗
t |wt−1,X∗

t−1
= L−1

Vt+1|wt,X∗
t
LVt+1,wt,wt−1,Vt−2

L−1
Vt,wt−1,Vt−2

LVt|wt−1,X∗
t−1
. (6.22)

The second line applies Assumption 2(iii) to postmultiply by L−1
Vt,wt−1,Vt−2

, while in the third
line, we postmultiply both sides by LVt|wt−1,X∗

t−1
. Q.E.D.

Since LVt+1,wt,wt−1,Vt−2
and LVt,wt−1,Vt−2 are observed, Lemma 6.1.2 implies that the

identification of the operators LVt+1|wt,X∗
t

and LVt|wt−1,X∗
t−1

implies the identification of
Lwt,X∗

t |wt−1,X∗
t−1

, the operator corresponding to the Markov law of motion. The next lemma
postulates that LVt+1|wt,X∗

t
is identified just from observed data.

Lemma 6.1.3 (Identification of fVt+1|Wt,X∗
t
): For any t ∈ {3, . . . , T − 1}, Assumptions

7.4.1, 7.4.4, 6.1.6, 6.1.7 imply that the density fVt+1,Wt,Wt−1,Vt−2 uniquely determines the
density fVt+1|Wt,X∗

t
.

This lemma encapsulates the heart of the identification argument, which is the iden-
tification of fVt+1|Wt,X∗

t
via a spectral decomposition of an operator generated from the

observed density fVt+1,Wt,Wt−1,Vt−2 . Once this is established, re-applying Lemma 6.1.3 to
the operator corresponding to the observed density fVt,Wt−1,Wt−2,Vt−3 yields the identifica-
tion of fVt|Wt−1,X∗

t−1
. Once fVt+1|Wt,X∗

t
and fVt|Wt−1,X∗

t−1
are identified, then so is the Markov

law of motion fwt,X∗
t |wt−1,X∗

t−1
, from Lemma 6.1.2.

Proof: (Lemma 6.1.3)
For each wt, choose a wt−1 and a neighborhood N r around (wt, wt−1) to satisfy As-

sumptions 7.4.4(i) and 6.1.6, and pick a (wt, wt−1) within the neighborhood N r to satisfy
Assumption 6.1.6. Because (wt, wt−1) ∈ N r, also (wt, wt−1) , (wt, wt−1) ∈ N r. By Lemma
6.1.1, LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . The first term on the RHS,
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LVt+1|wt,X∗
t
, does not depend on wt−1, and the last term LX∗

t ,wt−1,Vt−2 does not depend
on wt. This feature suggests that, by evaluating Eq. (6.15) at the four pairs of points
(wt, wt−1), (wt, wt−1), (wt, wt−1), (wt, wt−1), each pair of equations will share one operator
in common. Specifically:

for (wt, wt−1) : LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (6.23)
for (wt, wt−1) : LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (6.24)
for (wt, wt−1) : LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 , (6.25)
for (wt, wt−1) : LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t ,wt−1,Vt−2 . (6.26)

Assumption 7.4.4(ii) implies that LVt+1|wt,X∗
t

is invertible. Moreover, Assumption 6.1.6(i)
implies fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t ) > 0 for all x∗

t so that Dwt|wt−1,X∗
t

is invertible. We can
then solve for LX∗

t ,wt−1,Vt−2 from Eq. (6.24) as

D−1
wt|wt−1,X∗

t
L−1
Vt+1|wt,X∗

t
LVt+1,wt,wt−1,Vt−2 = LX∗

t ,wt−1,Vt−2 .

Plugging in this expression to Eq. (6.23) leads to

LVt+1,wt,wt−1,Vt−2 = LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
L−1
Vt+1|wt,X∗

t
LVt+1,wt,wt−1,Vt−2 .

Lemma 1 of Hu and Schennach (2008) shows that, given Assumption 7.4.4(i), we can post-
multiply by L−1

Vt+1,wt,wt−1,Vt−2
, to obtain:

A ≡ LVt+1,wt,wt−1,Vt−2L
−1
Vt+1,wt,wt−1,Vt−2

= LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
L−1
Vt+1|wt,X∗

t
. (6.27)

Similar manipulations of Eqs. (6.25) and Eq. (6.26) lead to

B ≡ LVt+1,wt,wt−1,Vt−2L
−1
Vt+1,wt,wt−1,Vt−2

= LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
L−1
Vt+1|wt,X∗

t
. (6.28)

Assumption 7.4.4(i) guarantees that, for any wt, (wt, wt−1, wt−1) exist so that (9) and (10)
are valid operations. Finally, we postmultiply Eq. (6.27) by Eq. (6.28) to obtain

AB = LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t

(
L−1
Vt+1|wt,X∗

t
LVt+1|wt,X∗

t

)
×

×Dwt|wt−1,X∗
t
D−1
wt|wt−1,X∗

t
L−1
Vt+1|wt,X∗

t

= LVt+1|wt,X∗
t

(
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t

)
L−1
Vt+1|wt,X∗

t

≡ LVt+1|wt,X∗
t
Dwt,wt,wt−1,wt−1,X∗

t
L−1
Vt+1|wt,X∗

t
, where (6.29)
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Dwt,wt,wt−1,wt−1,X∗

t
h
)

(x∗
t ) =

(
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
Dwt|wt−1,X∗

t
D−1
wt|wt−1,X∗

t
h
)

(x∗
t )

=
fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )fWt|Wt−1,X∗
t
(wt|wt−1, x∗

t )
h(x∗

t )

≡ k (wt, wt, wt−1, wt−1, x
∗
t )h (x∗

t ) .
(6.30)

This equation implies that the observed operator AB on the left hand side of Eq. (6.29) has
an inherent eigenvalue-eigenfunction decomposition, with the eigenvalues corresponding to
the function k (wt, wt, wt−1, wt−1, x

∗
t ) and the eigenfunctions corresponding to the density

fVt+1|Wt,X∗
t
(·|wt, x∗

t ). The decomposition in Eq. (6.29) is similar to the decomposition in
Hu and Schennach (2008) or Carroll et al. (2010).

Assumption 6.1.6 ensures that this decomposition is unique. Specifically, Eq. (6.29)
implies that the operator AB on the LHS has the same spectrum as the diagonal operator
Dwt,wt,wt−1,wt−1,X∗

t
. Assumption 6.1.6(i) guarantees that the spectrum of the diagonal op-

erator Dwt,wt,wt−1,wt−1,X∗
t

is bounded. Since an operator is bounded by the largest element
of its spectrum, Assumption 6.1.6(i) also implies that the operator AB is bounded, whence
we can apply Theorem XV.4.3.5 from Dunford and Schwartz (1971) to show the uniqueness
of the spectral decomposition of bounded linear operators.

Several ambiguities remain in the spectral decomposition. First, Eq. (6.29) itself does
not imply that the eigenvalues k (wt, wt, wt−1, wt−1, x

∗
t ) are distinct for different values x∗

t .
When the eigenvalues are the same for multiple values of x∗

t , the corresponding eigenfunc-
tions are only determined up to an arbitrary linear combination, implying that they are not
identified. Assumption 6.1.6(ii) rules out this possibility, and implies that for each wt, we
can find values wt, wt−1, and wt−1 such that the eigenvalues are distinct across all x∗

t .18,19

Second, the eigenfunctions fVt+1|Wt,X∗
t
(·|wt, x∗

t ) in the spectral decomposition (6.29) are
unique up to multiplication by a scalar constant. However, these are density functions, so
their scale is pinned down because they must integrate to one. Finally, both the eigenvalues
and eigenfunctions are indexed by X∗

t . Since our arguments are nonparametric, and X∗
t is

unobserved, we need an additional monotonicity condition, in Assumption 4, to pin down
the value of X∗

t relative of the observed variables. This was discussed earlier, in the remarks
following Assumption 4.

Therefore, altogether the density fVt+1|Wt,X∗
t

or LVt+1|wt,X∗
t

is nonparametrically identi-
fied for any given wt ∈ Wt via the spectral decomposition in Eq. (6.29). Q.E.D.

By re-applying Lemma 6.1.3 to the observed density fVt,Wt−1,Wt−2,Vt−3 , it follows that the
18Specifically, the operators AB corresponding to different values of (wt, wt−1, wt−1) share the same

eigenfunctions fVt+1|Wt,X∗
t

(·|wt, x∗
t ). Assumption 6.1.6(ii) implies that, for any two different eigenfunctions

fVt+1|Wt,X∗
t

(·|wt, x∗
t ) and fVt+1|Wt,X∗

t
(·|wt, x̃∗

t ), one can always find values of (wt, wt−1, wt−1) such that
the two different eigenfunctions correspond to two different eigenvalues, i.e., k (wt, wt, wt−1, wt−1, x∗

t ) ̸=
k (wt, wt, wt−1, wt−1, x̃∗

t ).
19When wt (resp. wt−1) is close to wt (resp. wt−1), Eq. (6.30) implies that the logarithm of the eigen-

values in this decomposition can be represented as a second-order derivative of the log-density fWt|Wt−1,X∗
t

.
Therefore, a sufficient condition for 6.1.6(ii) is that ∂3

∂zt∂zt−1∂x∗
t

log fWt|Wt−1,X∗
t

is continuous and nonzero,

which implies that ∂2

∂zt∂zt−1
log fWt|Wt−1,X∗

t
is monotonic in x∗

t for any (wt, wt−1), where zt is the continuous
component of wt.
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density fVt|Wt−1,X∗
t−1

is identified.20 Hence, by Lemma 6.1.2, we have shown the following
result:

Theorem 6.1.2 (Identification of Markov law of motion, non-stationary case):
Under the Assumptions 7.4.1, 7.4.4, 6.1.6, and 6.1.7, the density fWt+1,Wt,Wt−1,Wt−2,Wt−3

for any t ∈ {4, . . . , T − 1} uniquely determines the density fWt,X∗
t |Wt−1,X∗

t−1
.

Initial Conditions

Some CCP-based estimation methodologies for dynamic optimization models (eg. Hotz et
al. (1994), Bajari et al. (2007a)) require simulation of the Markov process (Wt, X

∗
t ,Wt+1, X

∗
t+1,Wt+2, X

∗
t+2, . . .)

starting from some initial values Wt−1, X
∗
t−1. When there are unobserved state variables,

this raises difficulties because X∗
t−1 is not observed. However, it turns out that, as a by-

product of the main identification results, we are also able to identify the marginal den-
sities fWt−1,X∗

t−1
. For any given initial value of the observed variables wt−1, knowledge of

fWt−1,X∗
t−1

allows us to draw an initial value of X∗
t−1 consistent with wt−1.

Corollary 6.1.1 (Identification of initial conditions, non-stationary case): Under
the Assumptions 7.4.1, 7.4.4, 6.1.6, and 6.1.7, the density fWt+1,Wt,Wt−1,Wt−2,Wt−3 for any
t ∈ {4, . . . , T − 1} uniquely determines the density fWt−1,X∗

t−1
.

Proof: (Corollary 6.1.1)
From Lemma 6.1.3, fVt|Wt−1,X∗

t−1
is identified from density fVt,Wt−1,Wt−2,Vt−3 . The equal-

ity fVt,Wt−1 =
∫
fVt|Wt−1,X∗

t−1
fWt−1,X∗

t−1
dx∗

t−1 implies that, for any wt−1 ∈ Wt,

fVt,Wt−1=wt−1 = LVt|wt−1,X∗
t−1
fWt−1=wt−1,X∗

t−1

⇔ fWt−1=wt−1,X∗
t−1

= L−1
Vt|wt−1,X∗

t−1
fVt,Wt−1=wt−1

where the second line applies Assumption 7.4.4(ii). Hence, fWt−1,X∗
t−1

is identified. Q.E.D.

Stationarity

In the proof of Theorem 6.1.2 from the previous section, we only use the fifth period of
data Wt−3 for the identification of LVt|wt−1,X∗

t−1
. Given that we identify LVt+1|wt,X∗

t
using

four periods of data, i.e., {Wt+1,Wt,Wt−1,Wt−2}, the fifth period Wt−3 is not needed when
LVt|wt−1,X∗

t−1
= LVt+1|wt,X∗

t
. This is true when the Markov kernel density fWt,X∗

t |Wt−1,X∗
t−1

is
time-invariant. Thus, in the stationary case, only four periods of data, {Wt+1,Wt,Wt−1,Wt−2},
are required to identify fWt,X∗

t |Wt−1,X∗
t−1

. Formally, we make the additional assumption:

Assumption 6.1.8 Stationarity: the Markov law of motion of (Wt, X
∗
t ) is time-invariant:

fWt,X∗
t |Wt−1,X∗

t−1
= fW2,X∗

2 |W1,X∗
1
, ∀ 2 ≤ t ≤ T.

20Recall that Assumptions 1-4 are assumed to hold for all periods t. Hence, applying Lemma 6.1.3 to the
observed density fVt,Wt−1,Wt−2,Vt−3 does not require any additional assumptions.
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Stationarity is usually maintained in infinite-horizon dynamic programming models.
Given the foregoing discussion, we present the next corollary without proof.

Corollary 6.1.2 (Identification of Markov law of motion, stationary case): Under
assumptions 7.4.1, 7.4.4, 6.1.6, 6.1.7, and 6.1.8, the observed density fWt+1,Wt,Wt−1,Wt−2 for
any t ∈ {3, . . . , T − 1} uniquely determines the density fW2,X∗

2 |W1,X∗
1
.

In the stationary case, initial conditions are still a concern. The following corollary,
analogous to Corollary 6.1.1 for the non-stationary case, postulates the identification of the
marginal density fWt,X∗

t
, for periods t ∈ {1, . . . , T − 3}. For any of these periods, fWt,X∗

t

can be used as a sampling density for the initial conditions.21

Corollary 6.1.3 (Identification of initial conditions, stationary case): Under assump-
tions 7.4.1, 7.4.4, 6.1.6, 6.1.7, and 6.1.8, the observed density fWt+1,Wt,Wt−1,Wt−2 for any
t ∈ {3, . . . , T − 1} uniquely determines the density fWt−2,X∗

t−2
.

Proof: (Corollary 6.1.3)
Under stationarity, the operator LVt−1|wt−2,X∗

t−2
is the same as LVt+1|wt,X∗

t
, which is iden-

tified from the observed density fVt+1,Wt,Wt−1,Vt−2 (by Lemma 6.1.3). Because fVt−1,Wt−2 =∫
fVt−1|Wt−2,X∗

t−2
fWt−2,X∗

t−2
dx∗

t−2, the same argument as in the proof of Corollary 6.1.1 then
implies that fWt−2,X∗

t−2
is identified from the observed density fVt−1,Wt−2 . Q.E.D.

6.1.6 Comments on Assumptions in Specific Examples

Even though we focus on nonparametric identification, we believe that our results can be
valuable for applied researchers working in a parametric setting, because they provide a
guide for specifying models such that they are nonparametrically identified. As part of
a pre-estimation check, our identification assumptions could be verified for a prospective
model via direct calculation, as in the examples here. If the prospective model satisfies
the assumptions, then the researcher could proceed to estimation, with the confidence that
underlying variation in the data, rather than the particular functional forms chosen, is
identifying the model parameters. If some assumptions are violated, then our results suggest
ways that the model could be adjusted in order to be nonparametrically identified.

To this end, we present an example of dynamic models here. Because some of the
assumptions that we made for our identification argument are quite abstract, we discuss
these assumptions in the context of these examples.22

21Even in the stationary case, where fWt,X∗
t

|Wt−1,X∗
t−1

is invariant over time, the marginal density of
fWt−1,X∗

t−1
may still vary over time (unless the Markov process (Wt, X∗

t ) starts from the steady-state). For
this reason, it is useful to identify fWt,X∗

t
across a range of periods.

22A third example, based on Rust (1987), is in the supplemental material (Hu and Shum (2009)).
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An Example: Generalized Investment Model

For the second example, we consider a dynamic model of firm R&D and product quality
in the “generalized dynamic investment” framework described in Doraszelski and Pakes
(2007).23 In this model, Wt = (Yt,Mt), where Yt is a firm’s R&D in year t, and Mt is the
product’s installed base. The unobserved state variable X∗

t is the firm’s product quality,
which is unobserved by the econometrician but observed by the firm, and affects their R&D
choices.

Product quality X∗
t ∈ R evolves as follows:

X∗
t = 0.8X∗

t−1 + 0.2 exp (ψ (Yt−1)) νt. (6.31)

In the above, νt ∈ R is a standard normal shock, distributed independently over t, and
ψ(·) <∞, ψ′(·) > 0. Eq. (6.31) implies fX∗

t |Yt−1,Mt−1,X∗
t−1

= fX∗
t |Yt−1,X∗

t−1
.

Installed base evolves as:

Mt+1 = Mt[1 + exp(ηt+1 +X∗
t+1)] (6.32)

where ηt+1 ∈ R is a random shock following the extreme value distribution, with density
fηt+1 (η) = exp(η − eη) for η ∈ R, independently across t. This law of motion also implies
that fMt+1|Yt,Mt,X∗

t ,X
∗
t+1

= fMt+1|Mt,X∗
t+1

. Eq. (6.32) implies that, ceteris paribus, product
quality raises installed base. Moreover, we also assume that the initial installed baseM1 > 0,
so that Mt > 0 for all t and, for a given Mt, Mt+1 ∈ (Mt,+∞).

Each period, a firm chooses its R&D to maximize its discounted future profits:

Yt = Y ∗(Mt, X
∗
t , γt)

= argmax0≤y≤Ī
[
Π(Mt, X

∗
t )︸ ︷︷ ︸

profits

− γt︸︷︷︸
shock

· Y 2
t︸︷︷︸

R&D cost

+βEV (Mt+1, X
∗
t+1, γt+1)︸ ︷︷ ︸

value fxn

] (6.33)

Ī is a cap on per-period R&D, and γt is a shock to R&D costs. We assume that γt ∈ (0,+∞)
follows a standard exponential distribution independently across t. The RHS of Eq. (6.33)
is supermodular in Yt and −γt, for all (Mt, X

∗
t ); accordingly, for fixed (Mt, X

∗
t ), the firm’s

optimal R&D investment Y ∗
t is monotonically decreasing in γt, and take values in (0, Ī].

We verify the assumptions out of order, leaving the most involved Assumption 2 to the
end. Since we focus here on the stationary case, without loss of generality we label the four
observed periods of data Wt as t = 1, 2, 3, 4.

Assumption 1 is satisfied for this model. Assumption 6.1.6 contains two restrictions
on the density fW3|W2,X∗

3
, which factors as

fW3|W2,X∗
3

= fY3|M3,X∗
3
· fM3|M2,X∗

3
. (6.34)

The first term in Eq. (6.34) is the density of R&D Y3. Because the first term is not a
function of M2, Eq. (6.30) implies that the investment density fY3|M3,X∗

3
cancels out from

23See (Hu and Shum, 2009, Section 1.2) for additional discussion of dynamic investment models.
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the numerator and denominator of the eigenvalues in the spectral decomposition as follows:

k (w3, w3, w2, w2, x
∗
3) =

fW3|W2,X∗
3
(w3|w2, x

∗
3)fW3|W2,X∗

3
(w3|w2, x

∗
3)

fW3|W2,X∗
3
(w3|w2, x∗

3)fW3|W2,X∗
3
(w3|w2, x∗

3)

=
fM3|M2,X∗

3
(m3|m2, x

∗
3)fM3|M2,X∗

3
(m3|m2, x

∗
3)

fM3|M2,X∗
3
(m3|m2, x∗

3)fM3|M2,X∗
3
(m3|m2, x∗

3) . (6.35)

Hence, to ensure that the eigenvalues are distinct, we only require fY3|M3,X∗
3
> 0 for all X∗

3 .
Given the discussions above, conditional on (M3, X

∗
3 ), investment Y3 will be monotonically

decreasing in the shock γ3. Since, by assumption, the density of γ3 is nonzero for γ3 > 0,
so also the conditional density fY3|M3,X∗

3
> 0 along its support (0, Ī], for all (M3, X

∗
3 ), as

required.
The second term fM3|M2,X∗

3
is the law of motion for installed base which, by assumption,

is an extreme value distribution with density

fM3|M2,X∗
3
(m3|m2, x

∗
3) = 1

(m3 −m2) exp
[
log

(
m3 −m2
m2

)
− x∗

3 − e
log
(

m3−m2
m2

)
−x∗

3

]

= e−x∗
3

m2
exp

(
−e−x∗

3

[
m3 −m2
m2

])
.

Plugging this into Eq. (6.35), we obtain an expression for the eigenvalues

k (w3, w3, w2, w2, x
∗
3) = exp

(
−e−x∗

3

[− (m3 −m3) (m2 −m2)
m2m2

])
. (6.36)

For given m3, we can pick a finite and nonzero m2,24 and set (m3,m2) = (m3 −∆,m2 + ∆),
with ∆ nonzero and small. At these values, the eigenvalues in Eq. (6.36) simplify to
exp

(
−e−x∗

3
[

∆2

m2(m2+∆)

])
so that, for fixed m3, and x∗

3 ∈ R, 0 < k (w3, w3, w2, w2, x
∗
3) < 1,

which satisfies Assumption 6.1.6(i). Moreover, the eigenvalues in Eq. (6.36) are monotonic
in x∗

3 for any given (w3, w3, w2, w2), which implies Assumption 6.1.6(ii).
To verify Assumption 6.1.7, we set Vt = Mt for all t. Note E[log M4−m3

m3
|m3, y3, x

∗
3] =

E[η4]+E[X∗
4 |x∗

3, y3]. Because the law of motion for product qualityX∗
4 = 0.8X∗

3 +0.2 exp (ψ (Y3)) ν4
implies that E[X∗

4 |x∗
3, y3] is monotonic in x∗

3, we set the functionalG to be x∗
3 = E[log M4−m3

m3
|m3, y3, x

∗
3].

Finally, Assumption 7.4.4 contains three injectivity assumptions. As before, we use
Vt = Mt, for all periods t. Here, we provide sufficient conditions for Assumption 2, in
the context of this investment model. We exploit the fact that the laws of motion for this
model (cf. Eqs. (6.31) and (6.32)) are either linear or log-linear to apply results from the
convolution literature, for which operator invertibility has been studied in detail.

For Assumption 2, it is sufficient to establish the injectivity of the operators LM1,w2,w3,M4 ,
LM4|w3,X∗

3
, and LM1,w2,M3 for any (w2, w3) in the support. We start by showing the injec-

tivity of LM4,w3,w2,M1 , LM4|w3,X∗
3
, and LM3,w2,M1 . As shown in the proof of Lemma 1,

24In verifying Assumption 2(i) below, we show that the assumption holds for all (w3, w2), so that the
neighborhood N r is unrestricted. Hence, in verifying Assumption 3(i) here, we can pick any m2, and also
pick any other point (m3, m2) as needed.
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Assumption 1 implies that

LM4,w3,w2,M1 = LM4|w3,X∗
3
Dw3|w2,X∗

3
LX∗

3 ,w2,M1

= LM4|w3,X∗
3
Dw3|w2,X∗

3
LX∗

3 |w2,X∗
2
LX∗

2 ,w2,M1 (6.37)
LM3,w2,M1 = LM3|w2,X∗

2
LX∗

2 ,w2,M1 . (6.38)

Furthermore, we have LM4|w3,X∗
3

= LM4|w3,X∗
4
LX∗

4 |w3,X∗
3
.

Hence, the injectivity of LM4,w3,w2,M1 , LM4|w3,X∗
3
, and LM3,w2,M1 is implied by the injec-

tivity of LM4|w3,X∗
4
, Dw3|w2,X∗

3
, LX∗

3 |w2,X∗
2

and LX∗
2 ,w2,M1 .25 It turns out that assumptions

we have made already for this example ensure that three of these operators are injective.
We discuss each case in turn.

(i) The diagonal operator Dw3|w2,X∗
3

has kernel function fw3|w2,X∗
3

= fy3|m3,X∗
3
fm3|m2,X∗

3
.

In the discussion on Assumption 6.1.6(i) above, we showed that fy3|m3,X∗
3

is nonzero along
its support and that fm3|m2,X∗

3
is nonzero for any (m3,m2, x

∗
3) in the support. Therefore,

Dw3|w2,X∗
3

is injective.
(ii) For LM4|w3,X∗

4
, we use Eq. (6.32) whereby, for every (y3,m3), M4 is a convolution

of X∗
4 , ie. log [M4 −M3]− logM3 = X∗

4 + η4. We have

g (m4) ≡
(
LM4|w3,X∗

4
h
)

(m4)

=
∫ ∞

−∞
fM4|w3,X∗

4
(m4|w3, x

∗
4)h(x∗

4)dx∗
4

=
∫ ∞

−∞

1
m4 −m3

fη4

(
log

(
m4 −m3
m3

)
− x∗

4

)
h(x∗

4)dx∗
4

= 1
m4 −m3

∫ ∞

−∞
fη4 (φ4 − x∗

4)h(x∗
4)dx∗

4,

[
φ4 ≡ log

(
m4 −m3
m3

)]
≡ 1

m4 −m3
×
(
Lφ4|X∗

4
h
)

(φ4)

Since the function 1
m4−m3

is nonzero, g (m4) = 0 for anym4 ∈ (m3,∞) implies
(
Lφ4|X∗

4
h
)

(φ4) =
0 for any φ4 ∈ R, where the kernel of the operator Lφ4|X∗

4
has a convolution form fη4 (φ4 − x∗

4).
As shown in Lemma 6.1.4, as long as the characteristic function of η4 has no real zeros,
which is satisfied by the assumed extreme value distribution,26 the corresponding operator
Lφ4|X∗

4
is injective. Therefore,

(
Lφ4|X∗

4
h
)

(φ4) = 0 for any φ4 ∈ R implies h (x∗
4) = 0 for

any x∗
4 ∈ R. Thus, the operator LM4|w3,X∗

4
is injective.

(iii) Similarly, for fixed w2, X∗
3 is a convolution ofX∗

2 , ie. X∗
3 = 0.8X∗

2 +0.2 exp (ψ (Y2)) ν3
(cf. Eq. (6.31)). By an argument similar to that for the previous operator, we can show
that LX∗

3 |w2,X∗
2

is injective.
(iv) For the last operator, corresponding to the density fX∗

2 ,w2,M1 , the model assumptions
do not allow us to establish injectivity directly. This is because this joint density confounds

25By stationarity, the operators LM4|w3,X∗
3

and LM3|w2,X∗
2

are the same, and do not need to be considered
separately. Our notion of stationarity here is distinct from the notion of covariance-stationarity for stochastic
processes. Indeed, as defined in Eq. (6.32), the Mt process may not be covariance-stationary, but the law
of motion fM4|w3,X∗

4
is still time-invariant.

26The characteristic function for η4 is ϕη4 (τ) = Γ (1 + iτ), which is nonzero for any τ ∈ R.
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both the structural components (laws of motion) in the model and the initial condition
fX∗

1 ,M1 . Thus in general, injectivity of this operator is not verifiable based only on the
assumptions made thus far about the laws of motion for the state variables.

However, in the special case where product quality X∗
t evolves exogenously – that is,

ψ(·) = 0 in Eq. (6.31) – it turns out that an additional independence assumption on
the initial values of the state variables (X∗

1 ,M1), i.e., fX∗
1 ,M1 = fX∗

1
fM1 , suffices to ensure

injectivity of the operator LX∗
2 ,w2,M1 :

Claim 1: If ψ(·) = 0 in Eq. (6.31), and the initial values of the state variables (X∗
1 ,M1)

are independently distributed, the operator LX∗
2 ,w2,M1 is injective.

Proof: in Appendix B.

Up to this point, we have shown the injectivity of LM4,w3,w2,M1 , LM4|w3,X∗
3
, and LM3,w2,M1 .

It turns out that this implies injectivity of LM1,w2,w3,M4 and LM1,w2,M3 , as required by As-
sumption 7.4.4:

Claim 2: LM1,w2,w3,M4 and LM1,w2,M3 are injective.
Proof: in Appendix B.

The assumptions underlying Claim 1, particularly the assumption that X∗
t evolves ex-

ogenously, are restrictive. However, we stress here that these are sufficient conditions, and
are not necessary for the general results. Moreover, a large class of investment models (eg.
Olley and Pakes (1996), Levinsohn and Petrin (2000)) assume that the unobserved vari-
able X∗

t (denoting productivity) evolves exogenously. Finally, these assumptions are needed
only in this example because we assume X∗

t to be continuous-valued. As Example 1 above
demonstrates, when X∗

t is discrete, we can verify the identification assumptions even when
the evolution of X∗

t depends on past values of the observed variables wt−1.

6.1.7 Summary

We have considered the identification of a first-order Markov process {Wt, X
∗
t } when only

{Wt} is observed. Under non-stationarity, the Markov law of motion fWt,X∗
t |Wt−1,X∗

t−1
is

identified from the distribution of the five observations Wt+1, . . . ,Wt−3. Under stationarity,
identification of fWt,X∗

t |Wt−1,X∗
t−1

obtains with only four observations Wt+1, . . . ,Wt−2. Once
fWt,X∗

t |Wt−1,X∗
t−1

is identified, nonparametric identification of the remaining parts of the
models – particularly, the per-period utility functions – can proceed by applying the results
in Magnac and Thesmar (2002) and Bajari et al. (2007b), who considered dynamic models
without unobserved state variables X∗

t .
For a general k-th order Markov process (k <∞), it can be shown that the 3k+2 observa-

tionsWt+k, . . . ,Wt−2k−1 can identify the Markov law of motion fWt,X∗
t |Wt−1,...,Wt−k,X

∗
t−1,...,X

∗
t−k

,
under appropriate extensions of the assumptions in this paper.

We have only considered the case where the unobserved state variable X∗
t is scalar-

valued. The case where X∗
t is a multivariate process, which may apply to dynamic game
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settings, presents some serious challenges. Specifically, when X∗
t is multi-dimensional, As-

sumption 7.4.4(ii), which requires that LVt+1|wt,X∗
t

be one-to-one, can be quite restrictive.
(Ackerberg et al., 2007, Section 2.4.3) discuss the difficulties with multivariate unobserved
state variables in the context of dynamic investment models.

Finally, this paper has focused on identification, but not estimation. In ongoing work,
we are using our identification results to guide the estimation of dynamic models with unob-
served state variables. This would complement recent papers on the estimation of paramet-
ric dynamic models with unobserved state variables, using non-CCP-based approaches.27

6.1.8 Proofs

Proofs of Claims for Example 2

Here we provide the proofs for Claims 1 and 2 in example 2. We start with a general lemma
regarding integral operators based on a convolution form, which is useful for what follows.
We consider the basic convolution case where X = Z + ϵ with Z ∈ R, ϵ ∈ R, and Z ⊥ ϵ.

The independence between Z and ϵ implies that fX|Z (x|z) = fϵ (x− z) . We define the two
operators (

LX|Zh
)

(x) =
∫
fϵ (x− z)h (z) dz(

L∗
X|Zh

)
(z) =

∫
fϵ (x− z)h (x) dx. (6.39)

Notice that L∗
X|Z maps functions of X to those of Z.

Lemma 6.1.4 Suppose that (i) the kernel of operator LX|Z is fϵ (x− z) ; (ii) the Fourier
transform of fϵ does not vanish on the real line. Then, operators LX|Z and L∗

X|Z are
injective.

Proof: (Lemma 6.1.4)
We have

g(x) ≡
(
LX|Zh

)
(x)

=
∫
fϵ (x− z)h (z) dz.

Let ϕg denote the Fourier transform of g, and ϕϵ that of fϵ. We have for any t ∈ R

ϕg(t) = ϕϵ(t)ϕh(t).

Therefore, ϕg = 0 implies ϕh = 0 if ϕϵ(t) ̸= 0 for any t ∈ R, which is assumed by hypothesis.
So LX|Z is injective.

27Imai et al. (2009) and Norets (2009) consider Bayesian estimation, and Fernandez-Villaverde and Rubio-
Ramirez (2007) consider efficient simulation estimation based on particle filtering.
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Next, we show the injectivity of L∗
X|Z . We consider

φ(z) ≡
(
L∗
X|Zψ

)
(z)

=
∫
fϵ (x− z)ψ (x) dx

≡
∫
κ (z − x)ψ(x)dx

where κ(x) ≡ fϵ (−x), i.e., ϕκ(t) = ϕϵ(−t). We then have

ϕφ(t) = ϕκ(t)ϕψ(t)
= ϕϵ(−t)ϕψ(t).

Again, ϕφ = 0 implies ϕψ = 0 because ϕϵ(t) ̸= 0 for any t ∈ R. Thus, L∗
X|Z is injective.

Q.E.D.

Given this lemma, we proceed to prove the two claims from Example 2.
Proof of Claim 1: The operator LX∗

2 ,w2,M1 has kernel function

fX∗
2 ,w2,M1 =

∫ ∫
fX∗

2 ,y2,m2,X∗
1 ,Y1,M1dy1dx

∗
1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1

∫ ∫
fX∗

2 |Y1,X∗
1
fY1|X∗

1 ,M1fX∗
1 ,M1dy1dx

∗
1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1

∫
fX∗

2 |X∗
1

(∫
fY1|X∗

1 ,M1dy1

)
fX∗

1 ,M1dx
∗
1

= fy2|m2,X∗
2
fm2|X∗

2 ,M1

(∫
fX∗

2 |X∗
1
fX∗

1
dx∗

1

)
fM1

= fy2|m2,X∗
2
fX∗

2
fm2|X∗

2 ,M1fM1

In the third line, we have utilized the restriction that ψ(·) = 0 in Eq. (6.31) so that the
density of fY1|X∗

1 ,M1 can be integrated out. The fourth line applies the independence of
(X∗

1 ,M1) so that fX∗
1 ,M1 = fX∗

1
fM1 . The corresponding operator equation is

LX∗
2 ,w2,M1 = Dy2|m2,X∗

2
DX∗

2
Lm2|X∗

2 ,M1DM1 . (6.40)

Given that all the densities in the diagonal operators are nonzero and bounded, it remains
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to show the injectivity of Lm2|X∗
2 ,M1 . For a fixed m2, we have:

g (x∗
2) ≡

(
Lm2|X∗

2 ,M1h
)

(x∗
2)

=
∫ m2

0
fm2|X∗

2 ,M1 (m2|x∗
2,m1)h(m1)dm1

=
∫ m2

0

1
m2 −m1

fη2

(
log

(
m2 −m1
m1

)
− x∗

2

)
h(m1)dm1

=
∫ m2

0

1
m2 −m1

( −m2
(m2 −m1)m1

)−1
fη2

(
log

(
m2 −m1
m1

)
− x∗

2

)
h(m1)d log

(
m2 −m1
m1

)
=

∫ 0

m2

m1
m2

fη2

(
log

(
m2 −m1
m1

)
− x∗

2

)
h(m1)d log

(
m2 −m1
m1

)
=

∫ ∞

−∞
fη2 (φ2 − x∗

2)h
(

m2
eφ2 + 1

) 1
eφ2 + 1dφ2,

[
φ2 ≡ log

(
m2 −m1
m1

)]
≡

∫ ∞

−∞
fη2 (φ2 − x∗

2) h̃ (φ2) dφ2,
[
h̃ (φ2) ≡ h

(
m2

eφ2 + 1

) 1
eφ2 + 1

]
=

(
L∗
φ2|X∗

2
h̃
)

(x∗
2),

where the operator L∗
φ2|X∗

2
is defined analogously to Eq. (6.39). As shown above, g (x∗

2) =

0 for any x∗
2 ∈ R implies that

(
L∗
φ2|X∗

2
h̃
)

(x∗
2) = 0 for any x∗

2 ∈ R, where the kernel
of L∗

φ2|X∗
2

has a convolution form fη2 (φ2 − x∗
2). Since the characteristic function of η2

has no zeros on the real line, we can apply Lemma 4 to obtain the injectivity of L∗
φ2|X∗

2
.

Accordingly,
(
L∗
φ2|X∗

2
h̃
)

(x∗
2) = 0 for any x∗

2 ∈ R implies h̃ (φ2) = 0 for any φ2 ∈ R. Next,

because h̃ (φ2) = h
(

m2
eφ2 +1

)
1

eφ2 +1 and 1
eφ2 +1 is nonzero, h̃ (φ2) = 0 for any φ2 ∈ R implies

h
(

m2
eφ2 +1

)
= 0 for any φ2 ∈ R. Given φ2 ≡ log

(
m2−m1
m1

)
, we have h (m1) = 0 for any

m1 ∈ (0,m2). Altogether, then, g (x∗
2) = 0 for any x∗

2 ∈ R implies h (m1) = 0 for any
m1 ∈ (0,m2), thus demonstrating the injectivity of the operator Lm2|X∗

2 ,M1 , as claimed.
Q.E.D.

Proof of Claim 2: First, we show the injectivity of LM1,w2,w3,M4 . For fixed (w2, w3):

fM1,w2,w3,M4 =
∫
fM4|w3,X∗

3
fw3|w2,X∗

3
fX∗

3 ,w2,M1dx
∗
3.

=
∫ (∫

fM4|w3,X∗
4
fX∗

4 |w3,X∗
3
dx∗

4

)
fw3|w2,X∗

3

(∫
fX∗

3 |w2,X∗
2
fX∗

2 ,w2,M1dx
∗
2

)
dx∗

3

=
∫ (∫

fM4|w3,X∗
4
fX∗

4 |w3,X∗
3
dx∗

4

)
fw3|w2,X∗

3

(∫
fX∗

3 |w2,X∗
2
fy2|m2,X∗

2
fX∗

2
fm2|X∗

2 ,M1fM1dx
∗
2

)
dx∗

3.

Therefore, the equivalent operator equation is

LM1,w2,w3,M4 = LM1,y2,m2,y3,m3,M4

= DM1L
∗
m2|X∗

2 ,M1
DX∗

2
Dy2|m2,X∗

2
L∗
X∗

3 |w2,X∗
2
Dw3|w2,X∗

3
L∗
X∗

4 |w3,X∗
3
L∗
M4|w3,X∗

4
.(6.41)

In the above, the L∗ operators are defined analogously to Eq. (6.39), and all the L∗ operators
are based on convolution kernels. Earlier, in the main text and Claim 1, we showed that the
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operators Lm2|X∗
2 ,M1 , LX∗

3 |w2,X∗
2
, LX∗

4 |w3,X∗
3
, and LM4|w3,X∗

4
are injective; hence, by applying

Lemma 4, we also obtain the injectivity of L∗
m2|X∗

2 ,M1
, L∗

X∗
3 |w2,X∗

2
, L∗

X∗
4 |w3,X∗

3
, and L∗

M4|w3,X∗
4

using an argument similar to that used in the proof of Claim 1 above.
Finally, all the densities corresponding to the diagonal operators in Eq.(6.41) are nonzero

and bounded, implying that these operators are injective. Hence, LM1,w2,w3,M4 is also
injective.

Second, for LM1,w2,M3 , we have

fM1,w2,M3 =
∫
fM3|w2,X∗

2
fX∗

2 ,w2,M1dx
∗
2

=
∫ (∫

fM3|w2,X∗
3
fX∗

3 |w2,X∗
2
dx∗

3

)
fX∗

2 ,w2,M1dx
∗
2

=
∫ (∫

fM3|w2,X∗
3
fX∗

3 |w2,X∗
2
dx∗

3

)
fy2|m2,X∗

2
fX∗

2
fm2|X∗

2 ,M1fM1dx
∗
2.

Therefore, the equivalent operator equation is

LM1,w2,M3 = DM1L
∗
m2|X∗

2 ,M1
DX∗

2
Dy2|m2,X∗

2
L∗
X∗

3 |w2,X∗
2
L∗
M3|w2,X∗

3
.

By stationarity, the injectivity of L∗
M3|w2,X∗

3
is implied by that of L∗

M4|w3,X∗
4
. All the other

operators on the RHS also appeared in Eq. (6.41), and we argued above that these were
injective. Thus, LM1,w2,M3 is injective. Q.E.D.

6.2 Closed-Form Estimation of DDC with Unobserved State
Variables

Although the nonparametric identification is quite general, it is still useful for empirical
research to provide a relatively simple estimator for a particular specification of the model
as long as such a specification can capture the key economic causality in the model. Given
the difficulty in the estimation of dynamic discrete choice models with unobserved state
variables, Hu and Sasaki (2018) consider a popular parametric specification of the model
and provide a closed-form estimator for the inputs of the conditional choice probability
estimator. Let dt denote firms’ exit decisions based on their productivity x∗

t and other
covariates wt. The law of motion of the productivity is

x∗
t = αd + γdx∗

t−1 + ηdt if dt−1 = d ∈ {0, 1} . (6.42)

In addition, they use residuals from the production function as a proxy xt for latent x∗
t

satisfying
xt = x∗

t + ϵt. (6.43)

Therefore, they obtain
xt+1 = αd + γdx∗

t + ηdt+1 + ϵt+1 (6.44)



6. APPLICATIONS IN STRUCTURAL ECONOMETRICS ⇑ 212

Under the assumption that the error terms ηdt and ϵt are random shocks, they first estimate
the coefficients

(
αd, γd

)
using other covariates Mt as instruments. The distribution of the

error term ϵt can then be estimated using Kotlarski’s identity. Furthermore, they are able
to provide a closed-form expression for the conditional choice probability Pr (dt|x∗

t , wt) as a
function of observed distribution functions.

6.2.1 Background

Forward-looking agents making dynamic decisions based on unobserved state variables are
of interest in economic researches. While econometricians may not observe the true state
variables, they often have access to or can construct proxy variables. To estimate the
dynamic discrete choice models, would it make sense to substitute a proxy variable for
the true state variable? Because of the nonlinearity of the forward-looking discrete choice
structure, a naive substitution of the proxy generally biases the estimates of structural
parameters, even if the proxy has only an independent error. In this paper, we develop
closed-form identification of dynamic discrete choice models when a proxy for an unobserved
continuous state variable is available.

Suppose that agent j at time t makes exit decisions dj,t based on its technology x∗
j,t.

Suppose also that we obtain a proxy xj,t = x∗
j,t + εj,t for the unobserved technology x∗

j,t

with a classical error εj,t. If x∗
j,t were observable, then identification of the structural

parameters of forward-looking agents follows from identification of two auxiliary objects:
(1) the conditional choice probability (CCP) denoted by Pr(dt | x∗

t ); and (2) the law of
state transition denoted by f(x∗

t | dt−1, x
∗
t−1) (Hotz and Miller, 1993). We show that these

two auxiliary objects, Pr(dt | x∗
t ) and f(x∗

t | dt−1, x
∗
t−1), are identified using the proxies xj,t

without observing the true states x∗
j,t.

Indeed, dynamic discrete choice models with unobservables are extensively studied in the
literature (e.g., Aguirregabiria and Mira, 2007; Kasahara and Shimotsu, 2009; Arcidiacono
and Miller, 2011; Hu and Shum, 2012 – see also the survey by Aguirregabiria and Mira,
2013), but no preceding work handles continuous unobservables like technologies. Our
methods allow for continuously distributed unobservables at the expense of the requirement
of proxy variables for the unobservables. The use of proxy variables in dynamic structural
models is related to Cunha, Heckman, and Schennach (2010) and Todd and Wolpin (2012).
Since we estimate the parameters of forward-looking structural models, however, we follow
a distinct approach outlined as follows.

In the first step, we identify the CCP and the law of state transition using a proxy
variable. For this step, we use an approach related to the closed-estimator of Schennach
(2004) and Hu and Sasaki (2015) for nonparametric regression models with measurement
errors (cf. Li, 2002), as well as the deconvolution methods (Li and Vuong, 1998; Bonhomme
and Robin, 2010). In the second step, the CCP-based method (Hotz, Miller, Sanders and
Smith, 1994) is applied to the preliminary non-/semi-parametric estimates of the Markov
components to obtain structural parameters of a current-time payoff in a simple closed-form
expression. Because of its closed form, our estimator is practical and is free from common
implementation problems of convergence and numerical global optimization.
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6.2.2 An Overview of the Methodology

In this section, we present a practical guideline of our methodology in the context of the
problem of firms’ exit decisions based on unobserved technologies. Formal identification
and estimation results follow in Sections 6.2.3 and 6.2.4.

Let dj,t = 1 indicate the decision of a firm to stay in the market, and let dj,t = 0 indicate
the decision to exit. The firm chooses dj,t given its technological level x∗

j,t, and based on its
knowledge of the law of stochastic motion of x∗

j,t. Suppose that the technological state x∗
j,t

of a firm evolves according to the first-order process

x∗
j,t = αt + γtx

∗
j,t−1 + ηj,t. (6.45)

A firm with its technological level x∗
j,t is assumed to receive the current payoff of the

affine form θ0 + θ1x
∗
j,t + ωdj,t if it is in the market, where ωdj,t is the choice-specific private

shock.28 On the other hand, the firm receives zero payoff if it is not in the market. Upon
exit from the market, the firm may receive a one-time exit value θ2, but they will not come
back once exited. With this setting, the choice-specific value of the technological state x∗

j,t

can be written as

With stay (dj,t = 1) : v1(x∗
j,t) = θ0 + θ1x

∗
j,t + ω1

j,t + E
[
ρV (x∗

j,t+1; θ) | x∗
j,t

]
With exit (dj,t = 0) : v0(x∗

j,t) = θ0 + θ1x
∗
j,t + θ2 + ω0

j,t

where ρ ∈ (0, 1) is the rate of time preference, V ( · ; θ) is the value function, and the
conditional expectation E[ · | x∗

j,t] is computed based on the the knowledge of the law
(6.45) including the distribution of ηj,t.

The fist step toward estimation of the structural parameters is to find a proxy variable
xj,t for the unobserved technology x∗

j,t with a classical error εj,t, i.e., xj,t = x∗
j,t + εj,t.

The second step is to estimate the parameters (αt, γt) of the dynamic process (6.45) by
the method-of-moment approach, e.g.,

[
α̂t
γ̂t

]
=


1

∑N

j=1 xj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}∑N

j=1 wj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}

∑N

j=1 xj,t−1wj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


−1 

∑N

j=1 xj,t1{dj,t−1=1}∑N

j=1 1{dj,t−1=1}∑N

j=1 xj,twj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


where wj,t−1 is some observed variable that is correlated with x∗

j,t−1, but uncorrelated with
the current technological shock ηj,t and the idiosyncratic shocks (εj,t, εj,t−1). Examples
include lags of the proxy, xj,t−2. Note that the proxy xj,t as well as wj,t and the choice dj,t
are observed, provided that the firm stays in the market. Because of the interaction with
the indicator 1{dj,t−1 = 1}, all the sample moments in the above display are computable
from observed data.

28For continuous state variables, a more generic structure would be non-parametric, but we consider this
parametric form in order to focus on the difficulty related to the unobservability of the state variable. Extend-
ing the model to a non-parametric one would entail the integral equation of second kind, the identification
of which is developed by Srisuma and Linton (2012).
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Having obtained (α̂t, γ̂t), the third step is to identify the distribution of the idiosyncratic
shocks εj,t. Applying the deconvolution method presented by the references listed in the
introduction, we can estimate its characteristic function by the formula

ϕ̂εt(s) =

∑N

j=1 e
isxj,t ·1{dj,t=1}∑N

j=1 1{dj,t=1}

exp
[∫ s

0
i·
∑N

j=1(xj,t+1−α̂t)·eis′xj,t ·1{dj,t=1}

γ̂t·
∑N

j=1 e
is′xj,t ·1{dj,t=1}

ds′

] .

All the moments in this formula involve only the observed variables xj,t, xj,t+1 and dj,t, as
opposed to the unobserved true state x∗

j,t. Thus, they are computable from observed data.
Note also that α̂t and γ̂t are already obtained in the previous step. Hence the right-hand
side of this formula is directly computable.

The fourth step is to estimate the CCP, Pr(dt | x∗
t ), of stay given the current technolog-

ical state x∗
t . Using the estimated characteristic function ϕ̂εt produced in the previous step

and then applying Schennach (2004) or Hu and Sasaki (2015), we can estimate the CCP by
the formula

pt(ξ) := P̂r(dj,t = 1 | x∗
j,t = ξ) =

∫ (∑N
j=1 1{dj,t = 1} · eis(xj,t−ξ)

)
· ϕ̂εj,t(s)−1 · ϕK(sh)ds∫ (∑N

j=1 e
is(xj,t−ξ)

)
· ϕ̂εj,t(s)−1 · ϕK(sh)ds

(6.46)
where ϕK is the Fourier transform of a kernel function K and h is a bandwidth parameter.
A similar remark to the previous ones applies here: since dj,t and xj,t are observed, this
CCP estimate is directly computable using observed data, even though the true state x∗

j,t

is unobserved.
The fifth step is to estimate the state transition law, f(x∗

j,t | x∗
j,t−1). Using the previously

estimated characteristic function ϕ̂εt , we can estimate the state transition law by the formula

f̂(x∗
j,t = ξt | x∗

j,t−1 = ξt−1) = 1
2π

∫ ϕ̂εj,t−1(sγt)
∑N
j=1 e

is(xj,t−ξt) · eis(αt+γtξt−1)

ϕ̂εj,t(s)
∑N
j=1 e

is(αt+γtx∗
j,t−1) · ϕK(sh)ds.

(6.47)
Finally, by applying our estimated CCP (6.46) and our estimated state transition law

(6.47) to the CCP-based method of Hotz and Miller (1993), we can now estimate the
structural parameters θ = (θ0, θ1, θ2). Specifically, if we follow the standard assumption
that the choice-specific private shocks independently follow the standard Gumbel (Type I
Extreme Value) distribution, then we obtain the restriction

ln pt(x∗
t )− ln (1− pt(x∗

t )) = E[ρV (x∗
t+1; θ) | x∗

t ]− θ2,
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where the discounted future value can be written in terms of the parameters θ as

E[ρV (x∗
t+1; θ) | x∗

t ] = E

[ ∞∑
s=t+1

ρs−t (θ0 + θ1x
∗
s + θ2(1− ps(x∗

s)) + ω̄

−(1− ps(x∗
s)) log(1− ps(x∗

s))− ps(x∗
s) log ps(x∗

s))

 s−1∏
s′=t+1

ps′(x∗
s′)

∣∣∣∣∣∣x∗
t

 ,
where ω̄ denotes the Euler constant≈ 0.5772. This conditional expectation can be computed
by the state transition law estimated with (6.47), and the CCP pt(x∗

t ) is estimated with
(6.46). Hence, with our auxiliary estimates, (6.46) and (6.47), the estimator θ̂ solves the
equation

ln p̂t(x∗
t )− ln (1− p̂t(x∗

t )) = Ê

[ ∞∑
s=t+1

ρs−t
(
θ̂0 + θ̂1x

∗
s + θ̂2(1− p̂s(x∗

s)) + ω̄ (6.48)

−(1− p̂s(x∗
s)) log(1− p̂s(x∗

s))− p̂s(x∗
s) log p̂s(x∗

s))

 s−1∏
s′=t+1

p̂s′(x∗
s′)

∣∣∣∣∣∣x∗
t

− θ̂2 for all x∗
t ,

which can be solved for θ̂ in an OLS-like closed form (cf. Motz, Miller, Sanders and Smith,
1994). The practical advantage of the above estimation procedure is that every single
formula is provided with an explicit closed-form expression, and hence does not suffer from
the common implementation problems of convergence and global optimization.

Given the structural parameters θ = (θ0, θ1, θ2) estimated through the above procedure,
one can conduct counter-factual policy predictions in the usual manner. For example,
consider the policy scenario where the exit value of the current period is reduced by rate r
at time t, i.e., the exit value becomes (1− r)θ2. To predict the number of exits under this
experimental setting, we can estimate the counter-factual CCP of stay by the formula

p̂ct(x∗
t ; r) =

exp
(
ln p̂t(x∗

t )− ln(1− p̂t(x∗
t )) + rθ̂2

)
1 + exp

(
ln p̂t(x∗

t )− ln(1− p̂t(x∗
t )) + rθ̂2

) .
Integrating p̂ct( · ; r) over the the unobserved distribution of x∗

j,t yields the overall fraction of
staying firms, where this unobserved distribution can be in turn estimated by the formula

f̂(x∗
j,t = ξt) = 1

2π

∫ ∑N
j=1 e

is(xj,t−xit)

N · ϕ̂εj,t(s)
· ϕK(sh)ds.

In this section, we proposed a practical step-by-step guideline of our proposed method.
For ease of exposition, this informal overview of our methodology in the current section
focused on a specific economic problem and skipped formal assumptions and formal justi-
fications. Readers who are interested in more details of how we derive this methodology
may want to go through Sections 6.2.3 and 6.2.4, where we provide formal identification
and estimation results in a more general class of forward-looking structural models.
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6.2.3 Markov Components: Identification and Estimation

Our basic notations are fixed as follows. A discrete control variable, taking values in{
0, 1, · · · , d̄

}
, is denoted by dt. For example, it indicates the discrete amounts of lumpy

R&D investment, and can take the value of zero which is often observed in empirical panel
data for firms. Another example is the binary choice of exit by firms that take into account
the future fate of technological progress. An observed state variable is denoted by wt. It
is for example the stock of capital. An unobserved state variable is denoted by x∗

t . It is
for example the stock of skills or technologies. Finally, a proxy for x∗

t is denoted by xt.
Throughout this paper, we consider the dynamics of this list of random variables.

Closed-Form Identification of the Markov Components

Our identification strategy is based on the assumptions listed below.

Assumption 6.2.1 (First-Order Markov Process) The quadruple {dt, wt, x∗
t , xt} jointly

follows a first-order Markov process.

This Markovian structure is decomposed into four independent modules as follows.

Assumption 6.2.2 (Independence) The Markov kernel can be decomposed as follows.

f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
= f (dt|wt, x∗

t ) f
(
wt|dt−1, wt−1, x

∗
t−1
)
f
(
x∗
t |dt−1, wt−1, x

∗
t−1
)
f (xt|x∗

t )

where the four components represent

f (dt|wt, x∗
t ) conditional choice probability (CCP);

f
(
wt|dt−1, wt−1, x

∗
t−1
)

transition rule for the observed state variable;
f
(
x∗
t |dt−1, wt−1, x

∗
t−1
)

transition rule for the unobserved state variable; and
f (xt|x∗

t ) proxy model.

The CCP is the firm’s investment or exit decision rule based on the observed capital
stocks wt and the unobserved productivity x∗

t for example. The two transition rules specify
how the capital stock wt and the technology x∗

t co-evolve endogenously with firm’s forward-
looking decision dt. The proxy model is a stochastic relation between the true productivity
x∗
t and a proxy xt. Because the state variable x∗

t of interest is unit-less and unobserved, we
require a restriction of location- and scale-scale normalization. To this goal, the transition
rule for the unobserved state variable and the state-proxy relation are semi-parametrically
specified as follows.

Assumption 6.2.3 (Semi-Parametric Restrictions on the Unobservables) The tran-
sition rule for the unobserved state variable and the state-proxy relation are semi-parametrically
specified by

f
(
x∗
t |dt−1, wt−1, x

∗
t−1
)

: x∗
t = αd + βdwt−1 + γdx∗

t−1 + ηdt if dt−1 = d(6.49)
f (xt|x∗

t ) : xt = x∗
t + εt (6.50)
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where εt and ηdt have mean zero for each d, and satisfy

εt ⊥ ({dτ}τ , {x∗
τ}τ , {wτ}τ , {ετ}τ ̸=t) for all t

ηdt ⊥ (dτ , x∗
τ , wτ ) for all τ < t for all t.

Remark 1 The decomposition in Assumption 6.2.2 and the functional form for the evolu-
tion of x∗

t in addition imply that ηdt ⊥ wt for all d and t, which is also used to derive our
result.

In case where we consider the discrete choice dt of investment decisions for example, it
is important that the coefficients, (αd, βd, γd), are allowed to depend on the amount d of
investments since how much a firm invests will likely affect the dynamics of technological
evolution. As such, we allow these parameters to have the d superscripts in (6.49). The semi-
parametric model (6.50) of the state-proxy relation specifies the proxy xt as a measurement
of the latent technology x∗

t with a classical error. Since it is often restrictive in applications,
we also discuss how to relax this classical-error assumption in the supplementary note.

By Assumption 6.2.3, closed-form identification of the transition rule for x∗
t and the

proxy model for x∗
t follows from identification of the parameters (αd, βd, γd) for each d and

from identification of the nonparametric distributions of the unobservables, εt, x∗
t , and

ηdt for each d. We show that identification of the parameters (αd, βd, γd) follows from the
empirically testable rank condition stated as Assumption 6.2.4 below.29 We also obtain
identification of the nonparametric distributions of the unobservables, εt, x∗

t , and ηdt , by
deconvolution methods under the regularity condition stated as Assumption 6.2.5 below.

Assumption 6.2.4 (Testable Rank Condition) Pr(dt−1 = d) > 0 and the following
matrix is nonsingular for each d. 1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]


Assumption 6.2.5 (Regularity) The random variables wt and x∗

t have bounded condi-
tional first moments given dt. The conditional characteristic functions of wt and x∗

t given
dt = d do not vanish on the real line, and is absolutely integrable. The conditional charac-
teristic function of (x∗

t−1, wt) given (dt−1, wt−1) and the conditional characteristic function
of x∗

t given wt are absolutely integrable. Random variables εt and ηdt have bounded first
moments and absolutely integrable characteristic functions that do not vanish on the real
line.

The validity of Assumptions 6.2.1, 6.2.2, and 6.2.3 can be discussed with specific eco-
nomic structures. Assumption 6.2.4 is empirically testable as is the common rank condition
in generic econometric contexts. Assumption 6.2.5 consists of technical regularity condi-
tions, but are automatically satisfied by common distribution families, such as the normal

29This matrix consists of moments estimable at the parametric rate of convergence, and hence the standard
rank tests (e.g., Cragg and Donald, 1997; Robin and Smith, 2000; Kleibergen and Paap, 2006) can be used.
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distributions among others. Under this list of five assumptions, we obtain the following
closed-form identification result for the four components of the Markov kernel.

Theorem 6.2.1 (Closed-Form Identification) If Assumptions 6.2.1, 6.2.2, 6.2.3, 6.2.4,
and 6.2.5 are satisfied, then the four components f (dt|wt, x∗

t ), f
(
wt|dt−1, wt−1, x

∗
t−1
)
, f
(
x∗
t |dt−1, wt−1, x

∗
t−1
)
,

f (xt|x∗
t ) of the Markov kernel f

(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
are identified with closed-

form formulas.

We also show the results with short-hand notations below for convenience of readers.
Let i :=

√
−1 denote the unit imaginary number. We introduce the Fourier transform

operators F and F2 defined by

Fϕ(ξ) = 1
2π

∫
e−isξϕ(s)ds for all ϕ ∈ L1(R) and ξ ∈ R

F2ϕ(ξ1, ξ2) = 1
4π2

∫
e−is1ξ1−is2ξ2ϕ(s1, s2)ds1ds2 for all ϕ ∈ L1(R2) and (ξ1, ξ2) ∈ R2.

First, with these notations, the CCP (e.g., the conditional probability of choosing the
amount d of investment given the capital stock wt and the technological state x∗

t ) is identified
in closed form by

Pr (dt = d|wt, x∗
t ) =

Fϕ(d)x∗
t |wt

(x∗
t )

Fϕx∗
t |wt

(x∗
t )

for each choice d ∈ {0, 1, · · · , d̄}, where ϕ(d)x∗
t |wt

(s) and ϕx∗
t |wt

(s) are identified in closed
form by

ϕ(d)x∗
t |wt

(s) = E[1{dt = d} · eisxt | wt]
ϕεt(s)

and ϕx∗
t |wt

(s) = E[eisxt | wt]
ϕεt(s)

,

respectively, where ϕεt(s) is identified in closed form by

ϕεt(s) = E[eisxt | dt = d′]

exp
[∫ s

0
E[i(xt+1−αd′ −βd′wt)·eis′xt |dt=d′]

γd′E[eis′xt |dt=d′] ds′
] (6.51)

with any choice d′. For this closed form identifying formula, the parameter vector (αd, βd, γd)T
is in turn explicitly identified for each d by the matrix composition 1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]
E[wt−1 | dt−1 = d] E[w2

t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]
E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]


−1  E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]
E[xtwt | dt−1 = d]

 .
Second, the transition rule for the observed state variable wt (e.g., the law of motion of

capital) is identified in closed form by

f
(
wt|dt−1, wt−1, x

∗
t−1
)

=
F2ϕx∗

t−1,wt|dt−1,wt−1(x∗
t−1, wt)∫

F2ϕx∗
t−1,wt|dt−1,wt−1(x∗

t−1, wt)dwt
,



6. APPLICATIONS IN STRUCTURAL ECONOMETRICS ⇑ 219

where ϕx∗
t−1,wt|dt−1,wt−1 is identified in closed form by

ϕx∗
t−1,wt|dt−1,wt−1(s1, s2) = E[eis1xt−1+is2wt | dt−1, wt−1]

ϕεt−1(s1) .

Third, the transition rule for the unobserved state variable x∗
t (e.g., the evolution of

technology) is identified in closed form by

f(x∗
t | dt−1, wt−1, x

∗
t−1) = Fϕηd

t
(x∗
t − αd − βdwt−1 − γdx∗

t−1),

where d := dt−1 for short-hand notation, and ϕηd
t

is identified in closed form by

ϕηd
t
(s) =

E[eisxt | dt−1 = d] · ϕεt−1(sγd)
E[eis(αd+βdwt−1+γdxt−1) | dt−1 = d] · ϕεt(s)

.

Lastly, the proxy model for x∗
t (e.g., the distribution of the idiosyncratic shock as the

proxy error) is identified in closed form by

f(xt | x∗
t ) = Fϕεt(xt − x∗

t ),

where ϕεt(s) is identified in closed form by (6.51).
In summary, we obtained the four components of the Markov kernel identified with

closed-form expressions written in terms of observed data even though we do not observe
the true state variable x∗

t . These identified components can be in turn plugged in to the
structural restrictions to estimate relevant parameters for the model of forward-looking
agents. We present how this step works in Section 6.2.4. Before proceeding with structural
estimation, we first show that these identified components of the Markov kernel can be
easily estimated by their sample counterparts.

Closed-Form Estimation of the Markov Components

Using the sample counterparts of the closed-form identifying formulas presented in Section
6.2.3, we develop straightforward closed-form estimators of the four components of the
Markov kernel. Throughout this section, we assume homogeneous dynamics, i.e., time-
invariant Markov kernel, for simplicity. This assumption is not crucial, and can be easily
removed with minor modifications. Let hw and hx denote bandwidth parameters and let ϕK
denote the Fourier transform of a kernel function K used for the purpose of regularization.

First, the sample-counterpart closed-form estimator of the CCP f(dt | wt, x∗
t ) is given

by

P̂r (dt = d|wt, x∗
t ) =

∫
e−isx∗

t · ϕ̂(d)x∗
t |wt

(s) · ϕK(shx)ds∫
e−isx∗

t · ϕ̂x∗
t |wt

(s) · ϕK(shx)ds
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for each choice d ∈ {0, 1, · · · , d̄}, where ϕ̂(d)x∗
t |wt

(s) and ϕ̂x∗
t |wt

(s) are given by

ϕ̂(d)x∗
t |wt

(s) =
∑N
j=1

∑T
t=1 1{Dj,t = d} · eisXj,t ·K

(
Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

) and

ϕ̂x∗
t |wt

(s) =
∑N
j=1

∑T
t=1 e

isXj,t ·K
(
Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

)
,

respectively, where ϕ̂εt(s) is given with any d′ by

ϕ̂εt(s) =
∑N
j=1

∑T
t=1 e

isXj,t · 1{Dj,t = d′}
/∑N

j=1
∑T
t=1 1{Dj,t = d′}

exp
[∫ s

0
i·
∑N

j=1

∑T −1
t=1 (Xj,t+1−αd′ −βd′Wj,t)·eis′Xj,t ·1{Dj,t=d′}

γd′ ·
∑N

j=1

∑T −1
t=1 eis′Xj,t ·1{Dj,t=d′}

ds′

] . (6.52)

While the notations may make things appear sophisticated, all these expressions are straight-
forward sample-counterparts of the corresponding closed-form identifying formulas provided
in the previous section. This CCP estimator is derived in a similar manner to Schennach
(2004) and Hu and Sasaki (2015). Large sample properties of this CCP estimator can be
found in the supplementary note.

Second, the sample-counterpart closed-form estimator of f(wt | dt−1, wt−1, x
∗
t−1) is given

by

f̂
(
wt|dt−1, wt−1, x

∗
t−1
)

=∫ ∫
e−s1x∗

t−1−s2wt · ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2∫ ∫ ∫

e−s1x∗
t−1−s2wt · ϕ̂x∗

t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2dwt
,

where ϕ̂x∗
t−1,wt|dt−1,wt−1 is given by

ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) =

∑N
j=1

∑T
t=2 e

is1Xj,t−1+is2Wj,t · 1{Dj,t−1 = dt−1} ·K
(
Wj,t−1−wt−1

hw

)
ϕ̂εt−1(s1) ·

∑N
j=1

∑T
t=2 1{Dj,t−1 = dt−1} ·K

(
Wj,t−1−wt−1

hw

) .

Third, the sample-counterpart closed-form estimator of f(x∗
t | dt−1, wt−1, x

∗
t−1) is given

by

f(x∗
t | dt−1, wt−1, x

∗
t−1) = 1

2π

∫
e−is(x∗

t −αd−βdwt−1−γdx∗
t−1) · ϕ̂ηd

t
(s) · ϕK(shx)ds,

where d := dt−1 for short-hand notation, and ϕ̂ηd
t

is given by

ϕ̂ηd
t
(s) =

ϕ̂εt−1(sγd) ·
∑N
j=1

∑T
t=2 e

isXj,t · 1{Dj,t−1 = d}
ϕ̂εt(s) ·

∑N
j=1

∑T
t=2 e

is(αd+βdWj,t−1+γdXj,t−1) · 1{Dj,t−1 = d}
.
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Lastly, the sample-counterpart closed-form estimator of f(xt | x∗
t ) is given by

f̂(xt | x∗
t ) = 1

2π

∫
e−is(xt−x∗

t ) · ϕ̂εt(s) · ϕK(shx)ds,

where ϕ̂εt(s) is given by (6.52).
In each of the above four closed-form estimators, the choice-dependent parameters

(αd, βd, γd) are also explicitly estimated by the matrix composition:

1
∑N

j=1

∑T −1
t=1 Wjt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}

∑N

j=1

∑T −1
t=1 Xjt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}∑N

j=1

∑T −1
t=1 Wjt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}

∑N

j=1

∑T −1
t=1 W 2

jt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}

∑N

j=1

∑T −1
t=1 XjtWjt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}∑N

j=1

∑T −1
t=1 Wj,t+11{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}

∑N

j=1

∑T −1
t=1 WjtWj,t+11{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}

∑N

j=1

∑T −1
t=1 XjtWj,t+11{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}



−1

×



∑N

j=1

∑T −1
t=1 Xj,t+11{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}∑N

j=1

∑T −1
t=1 Xj,t+1Wjt1{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}∑N

j=1

∑T −1
t=1 Xj,t+1Wj,t+11{Djt=d}∑N

j=1

∑T −1
t=1 1{Djt=d}


.

Each element of the above matrix and vector consists of sample moments of observed data.
In fact, not only these matrix elements, but also all the expressions in the estimation
formulas provided in this section consist of sample moments of observed data. Thus, despite
their apparently sophisticated expressions, computation of these estimators is not that
difficult.

6.2.4 Structural Dynamic Discrete Choice Models

In this section, we focus on a class of concrete structural models of forward-looking economic
agents. We apply our earlier auxiliary identification results to obtain closed-form estimation
of the structural parameters. Agents observe the current state (wt, x∗

t ), where x∗
t is not

observed by econometricians. Recall that we deal with a continuous observed state variable
wt and a continuous unobserved state variable x∗

t , and it is not practically attractive to
work with nonparametric current-time payoff functions with respect to these continuous
state variables. As such, suppose that agents receive the the current payoff of the affine
form

θ0
d + θwd wt + θxdx

∗
t + ωdt

at time t if they make the choice dt = d under the state (wt, x∗
t ), where ωdt is a private

payoff shock at time t that is associated with the choice of dt = d. We may of course extend
this affine payoff function to higher-order polynomials at the cost of increased number of
parameters. The closed-form identifiability continues to hold as far as the payoff linear with
respect to the parameters. Forward-looking agents sequentially make decisions {dt} so as
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to maximize the expected discounted sum of payoffs

Et

[ ∞∑
s=t

ρs−t
(
θ0
ds

+ θwds
ws + θxds

x∗
s + ωdss

)]
,

where ρ is the rate of time preference. To conduct counterfactual policy predictions,
economists estimate these structural parameters, θ0

d, θwd , and θxd .
For ease of exposition under many notations, let us focus on the case of binary decision,

where dt takes values in {0, 1}. Since the payoff structure is generally identifiable only
up to differences, we normalize one of the intercept parameters to zero, say θ0

1 = 0. 30

Furthermore, we assume that ωdt is independently distributed according to the Type I
Extreme Value Distribution in order to obtain simple closed-form expressions, although
this distributional assumption is not essential. Under this setting, an application of Hotz
and Miller’s (1993) inversion theorem and some calculations yield the restriction

ξ(ρ;wt, x∗
t ) = θ0

0 · ξ0
0(ρ;wt, x∗

t ) + θw0 · ξw0 (ρ;wt, x∗
t ) + θw1 · ξw1 (ρ;wt, x∗

t )
+θx0 · ξx0 (ρ;wt, x∗

t ) + θx1 · ξx1 (ρ;wt, x∗
t ) (6.53)

for all (wt, x∗
t ) for all t, where

ξ(ρ;wt, x∗
t ) = ln f(1 | wt, x∗

t )− ln f(0 | wt, x∗
t ) + (6.54)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x∗
s) · ln f(0 | ws, x∗

s) | dt = 1, wt, x∗
t ] +

∞∑
s=t+1

ρs−t · E [f(1 | ws, x∗
s) · ln f(1 | ws, x∗

s) | dt = 1, wt, x∗
t ]−

∞∑
s=t+1

ρs−t · E [f(0 | ws, x∗
s) · ln f(0 | ws, x∗

s) | dt = 0, wt, x∗
t ]−

∞∑
s=t+1

ρs−t · E [f(1 | ws, x∗
s) · ln f(1 | ws, x∗

s) | dt = 0, wt, x∗
t ]

ξ0
0(ρ;wt, x∗

t ) =
∞∑

s=t+1
ρs−t · E [f(0 | ws, x∗

s) | dt = 1, wt, x∗
t ]− (6.55)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x∗
s) | dt = 0, wt, x∗

t ]− 1

30We may alternatively impose a system of restrictions and augment the least-square estimator following
Pesendorfer and Schmidt-Dengler (2007) – see also Sanches, Silva, and Srisuma (2013).



6. APPLICATIONS IN STRUCTURAL ECONOMETRICS ⇑ 223

ξwd (ρ;wt, x∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x∗
s) · ws | dt = 1, wt, x∗

t ]− (6.56)

∞∑
s=t+1

ρs−t · E [f(d | ws, x∗
s) · ws | dt = 0, wt, x∗

t ]− (−1)d · wt

ξxd (ρ;wt, x∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x∗
s) · x∗

s | dt = 1, wt, x∗
t ]− (6.57)

∞∑
s=t+1

ρs−t · E [f(d | ws, x∗
s) · x∗

s | dt = 0, wt, x∗
t ]− (−1)d · x∗

t

for each d ∈ {0, 1}. See the supplementary note for derivation of (6.53)–(6.57).
In the context of their model, Hotz, Miller, Sanders, and Smith (1994) propose to

use (6.53) to construct moment restrictions. We adapt this approach to our model with
unobserved state variables. To this end, define the function Q by

Q(ρ, θ;wt, x∗
t ) = ξ(ρ;wt, x∗

t )− θ0
0 · ξ0

0(ρ;wt, x∗
t ) + θw0 · ξw0 (ρ;wt, x∗

t )
−θw1 · ξw1 (ρ;wt, x∗

t )− θx0 · ξx0 (ρ;wt, x∗
t )− θx1 · ξx1 (ρ;wt, x∗

t )

where θ = (θ0
0, θ

w
0 , θ

w
1 , θ

x
0 , θ

x
1 )′. From (6.53), we obtain the moment restriction

E[R(ρ, θ;wt, x∗
t )′ Q(ρ, θ;wt, x∗

t )] = 0 (6.58)

for any list (row vector) of bounded functions R(ρ, θ; ·, ·). This paves the way for GMM
estimation of the structural parameters (ρ, θ). Furthermore, if the rate ρ of time preference
is not to be estimated (which is indeed the case in many applications in the literature),31

then the moment restriction (6.58) can even be written linearly with respect to the structural
parameters θ by defining the function R by

R(ρ;wt, x∗
t ) = [ξ0

0(ρ;wt, x∗
t ), ξw0 (ρ;wt, x∗

t ), ξw1 (ρ;wt, x∗
t ), ξx0 (ρ;wt, x∗

t ), ξx1 (ρ;wt, x∗
t )].

(Note that we can drop the argument θ from this function since none of the right-hand-side
components depends on θ.) In this case, the moment restriction (6.58) yields the structural
parameters θ by the OLS-like closed-form expression

θ = E
[
R(ρ;wt, x∗

t )′ R(ρ;wt, x∗
t )
]−1

E
[
R(ρ;wt, x∗

t )′ ξ(ρ;wt, x∗
t )
]
, (6.59)

provided that the following condition is satisfied.

Assumption 6.2.6 (Rank Condition) E [R(ρ;wt, x∗
t )′ R(ρ;wt, x∗

t )] is nonsingular.

While this result is indeed encouraging, an important remark is in order. Since the
generated random variables R(ρ;wt, x∗

t ) and ξ(ρ;wt, x∗
t ) depend on the unobserved state

31This rate is generally non-identifiable together with the payoffs (Rust, 1994; Magnac and Thesmar,
2002).
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variables x∗
t and their unobserved dynamics by their definitional equations (6.54)–(6.57),

they need to be constructed properly based on observed variables. This issue can be solved
by using the components of the Markov kernel identified with closed-form formulas in Section
6.2.3. Note that the elements of all these generated random variables R(ρ;wt, x∗

t ) and
ξ(ρ;wt, x∗

t ) take the form E[ζ(ws, x∗
s) | dt, wt, x∗

t ] of the unobserved conditional expectations
for various s > t, where ζ(ws, x∗

s) consists of the explicitly identified CCP f(ds | ws, x∗
s)

and its interactions with ws, x∗
s, and the log of itself in the formulas (6.54)–(6.57). We can

recover these unobserved components in the following manner. If s = t+ 1, then

E[ζ(ws, x∗
s) | dt, wt, x∗

t ] =
∫ ∫

ζ(wt+1, x
∗
t+1) · f(wt+1 | dt, wt, x∗

t )×

f(x∗
t+1 | dt, wt, x∗

t ) dwt+1dx
∗
t+1 (6.60)

where f(wt+1 | dt, wt, x∗
t ) and f(x∗

t+1 | dt, wt, x∗
t ) are identified with closed-forms formulas

in Theorem 6.2.1. On the other hand, if s > t+ 1, then

E[ζ(ws, x∗
s) | dt, wt, x∗

t ] =
1∑

dt+1=0
· · ·

1∑
ds−1=0

∫
· · ·
∫
ζ(ws, x∗

s) · f(ws | ds−1, ws−1, x
∗
s−1)×

f(x∗
s | ds−1, ws−1, x

∗
s−1) ·

s−2∏
τ=t

f(dτ+1 | wτ , x∗
τ ) · f(wτ+1 | dτ , wτ , x∗

τ )×

·f(x∗
τ+1 | dτ , wτ , x∗

τ ) dwt+1 · · · dws dx∗
t+1 · · · dx∗

s, (6.61)

where f(dt | wt, x∗
t ), f(wt+1 | dt, wt, x∗

t ), and f(x∗
t+1 | dt, wt, x∗

t ) are identified with closed-
form formulas in Theorem 6.2.1.

In light of the explicit decompositions (6.60) and (6.61), the generated random variables
ξ(ρ;wt, x∗

t ) andR(ρ;wt, x∗
t ) = [ξ0

0(ρ;wt, x∗
t ), ξw0 (ρ;wt, x∗

t ), ξw1 (ρ;wt, x∗
t ), ξx0 (ρ;wt, x∗

t ), ξx1 (ρ;wt, x∗
t )]

defined in (6.54)–(6.57) are identified with closed-form formulas. Therefore, the structural
parameters θ are in turn identified in the closed form (6.59). We summarize this result as
the following corollary.

Corollary 6.2.1 (Closed-Form Identification of Structural Parameters) Suppose that
Assumptions 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.5, and 6.2.6 are satisfied. Given ρ, the structural
parameters θ are identified in the closed form (6.59), where the generated random variables
ξ(ρ;wt, x∗

t ) and R(ρ;wt, x∗
t ) = [ξ0

0(ρ;wt, x∗
t ), ξw0 (ρ;wt, x∗

t ), ξw1 (ρ;wt, x∗
t ), ξx0 (ρ;wt, x∗

t ), ξx1 (ρ;wt, x∗
t )]

which appear in (6.59) are in turn identified with closed-form formulas through Theorem
6.2.1, (6.54)–(6.57), (6.60), and (6.61).

Remark 2 We have left unspecified the measure with respect to which the expectations in
(6.58) and thus in (6.59) are taken. The choice is in fact flexible because the original
restriction (6.53) holds point-wise for all (wt, x∗

t ). A natural choice is the distribution of
(wt, x∗

t ), but it is unobserved. In in the supplementary note, we propose how to evaluate
those expectations with respect to this unobserved distribution of (wt, x∗

t ) using observed
distribution of (wt, xt) while, of course, keeping the closed form formulas. We emphasize
that one can pick any distribution with which the testable rank condition of Assumption
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6.2.6 is satisfied.

The closed-form identifying formula for the structural parameters directly translates into
a closed-form estimator by substituting the closed-form estimators of the Markov kernel .
In the supplementary note, we provide a concrete expression for the closed-form estimator
of the structural parameters. Due to the consistency of the Markov component estimators
, the consistency of the sample-counterpart estimator of the structural parameters also
follows by the continuous mapping theorem. However, asymptotic normality does not hold
under mild conditions, as it requires among others sufficiently fast convergence rates of the
preliminary Markov component estimators, which do not hold in general.32

6.3 Estimation of DDC with unobserved state variables using
reinforcement learning

To be added.

6.4 Multiple Equilibria in Incomplete Information Games

Xiao (2018) considers a static simultaneous move game, in which player i for i = 1, 2, . . . , N
chooses an action ai from a choice set {0, 1, . . . ,K}. Let a−i denote actions of the other
players, i.e., a−i = {a1, a2, . . . , ai−1, ai+1, . . . , aN}. The player i’s payoff is specified as

ui (ai, a−i, ϵi) = πi (ai, a−i) + ϵi (ai) , (6.62)

where ϵi (k) for k ∈ {0, 1, . . . ,K} is a choice-specific payoff shock for player i. The object
of interest contains the payoff primitives and the equilibrium selection probability. Here
we omit other observed state variables. These shocks ϵi (k) are assumed to be private
information to player i, while the distribution of ϵi (k) is common knowledge to all the
players. A widely used assumption is that the payoff shocks ϵi (k) are independent across
all the actions k and all the players i. Let Pr (a−i) be player i’s belief of other player’s
actions. The expected payoff of player i from choosing action ai is then∑

a−i

πi (ai, a−i) Pr (a−i) + ϵi (ai) ≡ Πi (ai) + ϵi (ai) (6.63)

The Bayesian Nash Equilibrium is defined as a set of choice probabilities Pr (ai) such that

Pr (ai = k) = Pr
({

Πi (k) + ϵi (k) > max
j ̸=k

Πi (j) + ϵi (j)
})

. (6.64)

32Specifically, super-smooth distributions cause logarithmic rates of convergence – see Fan (1991), Fan
and Truong (1993). Also see the supplementary note for some details. In previous versions of this draft,
we used to propose the asymptotic normality under many strong restrictions. In the current draft, we now
desist from doing that due to the potential conflicts among the restrictive assumptions that were hard to
check.
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The existence of such an equilibrium is guaranteed by the Brouwer’s fixed point theorem.
Given an equilibrium, the mapping between the choice probabilities and the expected payoff
function has also be established by Hotz and Miller (1993) .

However, multiple equilibria may exist for this game, which means the observed choice
probabilities are a mixture from different equilibria. Let e∗ denote the index of equilibria.
Under each equilibrium e∗, the players’ actions ai are independent because of the indepen-
dence assumption of private information, i.e.,

a1 ⊥ a2 ⊥ . . . ⊥ aN |e∗. (6.65)

Therefore, the observed correlation among the actions contains information on multiple
equilibria. If the support of actions is larger than that of e∗, one can use three players’
actions as three measurements for e∗. Otherwise, if there are enough players, one can par-
tition the players into three groups and use the group actions as the three measurements.
Comparing with many existing studies on multiple equilibria, using the results for measure-
ment error models makes the nonparametric identification in Xiao (2018) more transparent
on why and where the assumptions are imposed and what can and can not be identified.

More detailed description can be found in Ruli Xiao’s presentation slides ↗.

6.5 Matching Models with Latent Indices

Diamond and Agarwal (2017) consider an economy containing n workers with characteristics
(Xi, εi) and n firms described by (Zj , ηj) for i, j = 1, 2, . . . , n. For example, wages offered
by a firm is public information in Zj or ηj . They assume that the observed characteristics
Xi and Zi are independent of other characteristics εi and ηj unobserved to researchers. A
firm ranks workers by a human capital index as

v (Xi, εi) = h (Xi) + εi. (6.66)

The workers’ preference for firm j is described by

u (Zj , ηj) = g (Zj) + ηj . (6.67)

The preferences on both sides are public information in the market. Researchers are inter-
ested in the preferences, including functions h, g, and distributions of εi and ηj .

A match is a set of pairs that show which firm hires which worker. The observed
matches are assumed as outcomes of a pairwise stable equilibrium, where no two agents
on opposite sides of the market prefer each other over their matched partners. When
the numbers of firms and workers are both large, it can be shown that in the unique
pairwise stable equilibrium the firm with the q-th quantile position of preference value,
i.e., FU (u (Zj , ηj)) = q is matched with the worker with the q-th quantile position of the
human capital index, i.e., FV (v (Xi, εi)) = q, where FU and FV are cumulative distribution
functions of u and v.

http://www.econ2.jhu.edu/people/hu/Slides_RuliXiao.pdf
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The joint distribution of (X,Z) from observed pairs then satisfies

f (X,Z) =
∫ 1

0
f (X|q) f (Z|q) dq, (6.68)

This forms a 2-measurement model. Under the specification of the preferences above, i.e.,

f (X|q) = fε
(
F−1
V (q)− h(X)

)
(6.69)

f (Z|q) = fη
(
F−1
U (q)− g(Z)

)
,

the functions h and g can be identified up to a monotone transformation. The intuition
is that under suitable conditions if two workers with different characteristics x1 and x2
are hired by firms with the same characteristics, i.e., fZ|X (z|x1) = fZ|X (z|x2) for all z,
then the two workers must have the same observed part of the human capital index, i.e.,
h (x1) = h (x2). A similar argument also holds for function g. In order to further identify
the model, Diamond and Agarwal (2017) consider many-to-one matching where one firm
may have two or more identical slots for workers. In such a sample, they can observe the
joint distribution of (X1, X2, Z), where (X1, X2) are observed characteristics of the two
matched workers. Therefore, they obtain

f (X1, X2, Z) =
∫ 1

0
f (X1|q) f (X2|q) f (Z|q) dq. (6.70)

This is a 3-measurement model, for which nonparametric identification is feasible under
suitable conditions.



7

Applications in Reduced-Form
Econometrics

7.1 Fixed Effects in Panel Data Models

Evdokimov (2010) considers a panel data model as follows: for individual i in period t

Yit = g (Xit, αi) + ξit, (7.1)

where Xit is a explanatory variable, Yit is the dependent variable, ξit is an independent
error term, and αi represents fixed effects. In order to use Kotlarski’s identity, he considers
the event where {Xi1 = Xi2 = x} for two periods of data to obtain

Yi1 = g (x, αi) + ξi1, (7.2)
Yi2 = g (x, αi) + ξi2.

Under the assumption that ξit and αi are independent conditional on Xit, the paper is
able to identify the distributions of g (x, αi) , ξi1 and ξi2 conditional on {Xi1 = Xi2 = x}.
That means this identification strategy relies on the static aspect of the panel data model.
Assuming that ξi1 is independent of Xi2 conditional Xi1, he then identifies f (ξi1|Xi1 = x) ,
and similarly f (ξi2|Xi2 = x), which leads to identification of the regression function g (x, αi)
under a normalization assumption.

Shiu and Hu (2013) consider a dynamic panel data model

Yit = g (Xit, Yi,t−1, Uit, ξit) , (7.3)

where Uit is a time-varying unobserved heterogeneity or an unobserved covariate, and ξit is
a random shock independent of (Xit, Yi,t−1, Uit). They impose the following Markov-type
assumption

Xi,t+1 ⊥ (Yit, Yi,t−1, Xi,t−1) | (Xit, Uit) (7.4)

228
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to obtain

fXi,t+1,Yit,Xit,Yi,t−1,Xi,t−1 =
∫
fXi,t+1|Xit,Uit

fYit|Xit,Yi,t−1,Uit
fXit,Yi,t−1,Xi,t−1,UitdUit. (7.5)

Notice that the dependent variable Yit may represent a discrete choice. With a binary Yit
and fixed (Xit, Yi,t−1), equation (7.5) implies a 2.1-measurement model. Their identification
results require users to carefully check conditional independence assumptions in their model
because the conditional independence assumption in equation (7.4) is not directly motivated
by economic structure.

Freyberger (2018) embeds a factor structure into a panel data model as follows:

Yit = g
(
Xit, α

′
iFt + ξit

)
, (7.6)

where αi ∈ Rm stands for a vector of unobserved individual effects and Ft is a vector
of constants. Under the assumption that ξit for t = 1, 2, . . . , T are jointly independent
conditional on αi and Xi = (Xi1, Xi2, . . . , XiT ), he obtains

Yi1 ⊥ Yi2 ⊥ . . . ⊥ YiT | (αi, Xi) , (7.7)

which forms a 3-measurement model. A useful feature of this model is that the factor
structure α′

iFt provides a more specific identification of the model with a multi-dimensional
individual effects αi than a general argument as in Theorem 2.4.2.

Sasaki (2015) considers a dynamic panel with unobserved heterogeneity αi and sample
attrition as follows:

Yit = g (Yi,t−1, αi, ξit) (7.8)
Dit = h (Yit, αi, ηit)
Zi = ς (αi, ϵi)

where Zi is a noisy signal of αi and Dit ∈ {0, 1} is a binary indicator for attrition, i.e., Yit is
observed if Dit = 1. Under suitable restrictions on the error terms, the following conditional
independence holds

Yi3 ⊥ Zi ⊥ Yi1 | (αi, Y2 = y2, D2 = D1 = 1) . (7.9)

In the case where αi is discrete, the model is identified using the results in Theorem 2.4.1.
Sasaki (2015) also extends this identification result to more general settings.

Below we provide details in Shiu and Hu (2013).

7.1.1 Background

There are very few papers that provide full nonparametric identification of panel data mod-
els in the existing literature. This paper provides sufficient conditions for nonparametric
identification of nonlinear dynamic models for panel data with unobserved covariates. These
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models take into account the dynamic processes by allowing the lagged value of the depen-
dent variable as one of the explanatory variables as well as containing observed and unob-
served permanent (heterogeneous) or transitory (serially-correlated) individual differences.
Let Yit be the dependent variable at period t and Xit be a vector of observed covariates for
individual i. We consider nonlinear dynamic panel data models of the form:

Yit = g (Xit, Yit−1, Uit, ξit) , ∀i = 1, ..., N ; t = 1, ..., T − 1, (7.10)

where g is an unknown nonstochastic function, Uit is an unobserved covariate correlated
with other observed explanatory variables (Xit, Yit−1) , and ξit stands for a random shock
independent of all other explanatory variables (Xit, Yit−1, Uit). The focuses of the above
model are on the cases in which the time dimension, T , is fixed and the cross section dimen-
sion, N , grows without bound. The unobserved covariate Uit may contain two components
as follows:

Uit = Vi + ηit,

where Vi is the unobserved heterogeneity or the random effects correlated with the observed
covariates Xit and ηit is an unobserved serially-correlated component.

If the unobserved heterogeneity Vi is treated as a parameter for each i, then both Vi and
other unknown parameters need to be estimated for the model (1). When T tends to infinity,
the MLE provides a consistent estimator for Vi and other unknown parameters. However,
T is fixed and usually small for the panel data model considered here, and therefore, there
are not enough observations to estimate these parameters. The model suffers from an
incidental parameters problem (Neyman and Scott (1948)). In this paper, the unobserved
heterogeneity, Vi, is treated as an unobservable random variable which may be correlated
with observed covariates from the same individual. This correlated random effect1 approach
(treating Vi as a random variable correlated with the covariates) allows us to integrate
out unobserved variables to construct sieve MLE. This reduces potential computational
burden from the incidental parameters problem for sieve MLE estimators in the estimation.2

The transitory component ηit may be a function of all the time-varying RHS variables in
the history, i.e., ηit = φ

(
{Xiτ , Yiτ−1, ξiτ}τ=0,1,...,t−1

)
for some function φ.3 Both observed

explanatory variables Xit and Yit−1 become endogenous if the unobserved covariate Uit is
ignored. In this paper, we provide assumptions, including high-level injectivity restrictions,
under which the distribution of Yit conditional on (Xit, Yit−1, Uit), i.e., fYit|Xit,Yit−1,Uit

, is
nonparametrically identified. The nonparametric identification of fYit|Xit,Yit−1,Uit

may lead
to that of the general form of our model (7.10) under certain specifications of the distribution

1In several studies, random effect means Vi is a random variable independent of the explanatory variables.
The discussion here is based on definitions on page 286 of Wooldridge (2010).

2The estimation of an individual parameter Vi along with other model parameters leads to an incidental
parameters problem. Our sieve MLE has a feature of random effect, treating Vi as a random variable and
integrating out a composite unobserved variable to construct a likelihood function. Thus, the proposed sieve
MLE has a computational advantage over a fixed effect approach because the individual parameter Vi does
not appear in the likelihood function.

3By the definition of ηit, Uit might not only contain the error terms in panels but also some unobserved
covariates from the past. Hence, Uit denotes an unobserved covariate in this paper.
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of the random shock ξit.
In this paper we adopt the correlated random effect approach for nonlinear dynamic

panel data models without specifying the distribution of the initial condition. We treat the
unobserved covariate in nonlinear dynamic panel data models as the latent true values in
nonlinear measurement error models and the observed covariates as the measurement of the
latent true values.4 We then utilize the identification results in Hu and Schennach (2008),
where the measurement error is not assumed to be independent of the latent true values.
Their results rely on a unique eigenvalue-eigenfunction decomposition of an integral operator
associated with joint densities of observable variables and unobservable variables. Hu and
Shum (2012) uses an identification technique described in Carroll et al. (2010). The two
identification strategies are different although both use the spectral decomposition of linear
operators. The discussion of the difference in the two techniques can be found in Carroll
et al. (2010). The conditional independence assumptions in Hu and Shum (2012) are more
general than those here but their results require five periods of data in the comparable
setting. Our assumptions are more suitable for panel data models. Although some of
our assumptions are stronger, our estimator requires only two periods of the dependent
variable Yit and three periods of the covariate Xit. This advantage is important because
semi-nonparametric estimators usually require the sample size to be large.

The strength of our approach is that we provide nonparametric identification of nonlin-
ear dynamic panel data model using two periods of the dependent variable Yit and three
periods of the covariate Xit without specifying initial conditions. The model may be de-
scribed by,fYit|Xit,Yit−1,Uit

, the conditional distribution of the dependent variable of interest
for an individual i, Yit, conditional on a lagged value of that variable Yit−1, explanatory
variables Xit, and an unobserved covariate Uit. We show that fYit|Xit,Yit−1,Uit

can be non-
parametrically identified from a sample of

{
Xit+1, Yit, Xit,Yit−1, Xit−1

}
without parametric

assumptions on the distribution of the individuals’ dependent variable conditional on the
unobserved covariate in the initial period. The main identifying assumption requires that
the dynamic process of the covariates Xit+1 depends on the unobserved covariate Uit but is
independent of the lagged dependent variables Yit, Yit−1, and Xit−1 conditional on Xit and
Uit.

The identification of fYit|Xit,Yit−1,Uit
leads to the identification of the general form of our

model in equation (7.10). We present below two motivating examples in the existing liter-
ature. The specifications in these two types of models can be used to distinguish between
dynamic responses to lagged dependent variables, observed covariates, and unobserved co-
variates. While the state dependence Yit−1 reflects that experiencing the event in one period
should affect the probability of the event in the next period, the unobserved heterogeneity
Vi represents individual’s inherent ability to resist the transitory shocks ηit.

Example 1 (Dynamic Discrete-choice Model with an Unobserved Covariate): A binary
4An ideal candidate for the “measurement" of the latent covariate would be the dependent variable because

it is inherently correlated with the latent covariate. However, such a measurement is not informative enough
when the dependent variable is discrete and the latent covariate is continuous.
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case of dynamic discrete choice models is as follows:

Yit = 1
(
X ′
itβ + γYit−1 + Vi + εit ≥ 0

)
with ∀i = 1, ..., n; t = 1, ..., T − 1,

where 1 (·) is the 0-1 indicator function and the error εit follows an AR(1) process εit =
ρεit−1 + ξit for some constant ρ. The conditional distribution of the interest is then:

fYit|Xit,Yit−1,Uit
=
(
1− Fξit

[
−
(
X ′
itβ + γYit−1 + Uit

)])Yit Fξit

[
−
(
X ′
itβ + γYit−1 + Uit

)]1−Yit ,

where Fξit
is the CDF of the random shock ξit, Uit = Vi + ηit, and ηit = ρεit−1. Empirical

applications of the dynamic discrete-choice model above have been studied in a variety of
contexts, such as health status (Contoyannis et al. (2004), Halliday (2002)), brand loyalty
(Chintagunta et al. (2001)), welfare participation (Chay et al. (2001)), and labor force par-
ticipation (Heckman and Willis (1977), Hyslop (1999)). Among these studies, the intertem-
poral labor participation behavior of married women is a natural illustration of the dynamic
discrete choice model. In such a model, the dependent variable Yit denotes the t-th period
participation decision and the covariates Xit are the non-labor income or other observable
characteristics in that period. The heterogeneity Vi is the unobserved individual skill level
or motivation, while the idiosyncratic disturbance ξit denotes unexpected change of child-
care cost or fringe benefit for married women from working. Heckman (1978, 1981a,b) has
termed the presence of Yit−1 “true" state dependence and Vi “spurious" state dependence.

Example 2 (Dynamic Censored Model with an Unobserved Covariate): In many applica-
tions, we may have

Yit = max
{
X ′
itβ + γYit−1 + Vi + εit, 0

}
with ∀i = 1, ..., n; t = 1, ..., T − 1,

with εit = ρεit−1 + ξit. It follows that

fYit|Xit,Yit−1,Uit
= Fξit

[
−
(
X ′
itβ + γYit−1 + Uit

)]1(Yit=0)
fξit

[
Yit −X ′

itβ − γYit−1 − Uit
]1(Yit>0)

.

(7.11)
where Fξit

and fξit
are the CDF and the PDF of the random shock ξit respectively. The de-

pendent variable Yit may stand for the amount of insurance coverage chosen by an individual
or a firm’s expenditures on R&D. In each case, an economic agent solves an optimization
problem and Yit = 0 may be an optimal corner solution. For this reason, this type of
censored regression models is also called a corner solution model or a censored model with
lagged censored dependent variables.5 Honoré (1993) and Honoré and Hu (2004) use a
method of moments framework to estimate the model without making distributional as-
sumptions about Vi.

Based on our nonparametric identification results, we propose a semi-parametric sieve
MLE for the model. We show the consistency of our estimator and the asymptotic normality

5This setting rules out certain types of data censoring. For example, if the censoring is due to top-coding,
then it makes sense to consider a lagged value of the latent variable, i.e., Y ∗

it = X ′
itβ + γY ∗

it−1 + vi + εit and
Yit = max[Y ∗

it , ct]. This top-coded dynamic censored model has been considered in Hu (2002).
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of its parametric components. The finite sample properties of the proposed sieve MLE
are investigated through Monte Carlo simulations of dynamic discrete choice models and
dynamic censored models. Our empirical application focuses on how the labor participation
decisions of married women respond to their previous participation states, fertility decisions,
and non-labor incomes. We develop and test a variety of dynamic econometric models
using a seven year longitudinal sample from the Panel Study of Income Dynamics (PSID)
in order to compare the results with those in Hyslop (1999). In the empirical application,
we examine three different estimation specifications, i.e., a static probit model, a maximum
simulated likelihood (MSL) estimator, and the sieve MLE estimator. Our results find a
large significant state dependence of labor force participation, smaller significant negative
effects on non-labor income variables, and also negative effects of children age 0-2 in the
current period and past period.

The paper is organized as follows. Section 2 provides a brief review of studies in the
context of dynamic panel data models. We present the nonparametric identification of
nonlinear dynamic panel data models in Section 3. Section 4 discusses our proposed sieve
MLE. Section 5 provides the Monte Carlo study. Section 6 presents an empirical application
describing the intertemporal labor participation of married women. Section 7 concludes.
Appendices include proofs of consistency and asymptotic normality of the proposed sieve
MLE and discussions on how to impose restrictions on sieve coefficients in the sieve MLE.

7.1.2 Related Studies

In the econometric literature, there are two approaches to tackling the unobserved hetero-
geneity Vi: random effects and fixed effects. In the fixed effect approach, much attention
has been devoted to linear models with an additive unobserved effect. The problem can be
solved by first applying an appropriate transformation to eliminate the unobserved effect and
then implementing instrument variables (IV) in a generalized method of moments (GMM)
framework. Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and Bover
(1995) and Ahn and Schmidt (1995) employ an IV estimator on a transformation equa-
tion through first-differencing. Eliminating the unobserved effects is notably more difficult
in nonlinear models, and some progress has been made in this area. Chamberlain (1980,
1984) consider a conditional likelihood approach for logit models. Honoré and Kyriazidou
(2000) generalize the conditional probability approach to estimate the unknown parameters
without formulating the distribution of the unobserved individual effects or the probability
distribution of the initial observations for certain types of discrete choice logit models. Their
results rely on matching the explanatory variables in different time-periods. Honoré (1993),
Hu (2002) and Honoré and Hu (2004) obtain moment conditions for estimating dynamic
censored regression panel data models. Altonji and Matzkin (2005) develop two estimators
for panel data models with nonseparable unobservable errors and endogenous explanatory
variables.

On the other hand, it is often appealing to take a random effect specification by making
assumptions on the distribution of the individual effects. The main difficulty of this ap-
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proach is the so-called initial conditions problem.6 With a relatively short panel, the initial
conditions have a very strong impact on the entire path of the observations, but they may
not be observed in the sample. One remedy to this problem is to specify the distribution of
the initial conditions given the unobserved heterogeneity. The drawbacks of this approach
are that the corresponding likelihood functions typically involve high order integration and
that misspecification of the distributions generally results in inconsistent parameter esti-
mates. The associated computational burden of high order integration has been reduced
significantly by recent advances in simulation techniques.7 Hyslop (1999) analyzes the in-
tertemporal labor force participation behavior of married women using maximum simulated
likelihood (MSL) estimator to simulate the likelihood function of dynamic probit models
with a nontrivial error structure. Wooldridge (2005) suggests a general method for handling
the initial conditions problem by using a joint density conditional on the strictly exogenous
variables and the initial condition. Honoré and Tamer (2006) relax the distributional as-
sumption of the initial condition and calculate bounds on parameters of interest in panel
dynamic discrete choice models. Evdokimov (2010) considers a nonparametric panel data
model with nonadditive unobserved heterogeneity: Yit = m (Xit, Vi) + εit where individual-
specific effects are allowed to be correlated with the covariates in an arbitrary manner.
That model has a different focus from ours since our model includes lags of the endogenous
dependent variable Yit−1 and a nonadditive εit.

While the proposed model (7.10) focuses on nonlinear dynamic panel data models, there
are several studies on panel data models that are close in spirit to our work. Chernozhukov
et al. (2009) derive bounds for marginal effects in nonlinear panel models and show that
they can tighten rapidly as the number of time series observations grows. They also pro-
vide two novel inference methods that produce uniformly valid confidence regions in large
samples. Hoderlein and White (2009) consider identification of marginal effects in general
nonseparable models with unrestricted correlated unobserved effects and without lagged de-
pendent variables, even if there are only two time periods. Arellano and Bonhomme (2009)
provide a characterization of the class of weights for nonlinear panel data models that pro-
duce first-order unbiased estimators. Although the focus of the models in this paper is on

6The random effect approach for dynamic models requires the specification on the initial conditions of
the process. Specifically, consider a special case of our model (7.10), dynamic discrete choice models without
observed covariates Xit, in the following form:

Yit = 1 (γYit−1 + Vi + ξit ≥ 0) .

Then the conditional distribution fYit|Yit−1,Vi
can be specified and the corresponding likelihood function has

the structure

L =
∫

fYi0|Vi

T −1∏
t=1

fYit|Yit−1,Vi
fVi dvi,

where fYi0|Vi
denotes the marginal probability of Yi0 given Vi. If the process is not observed from the start

then the initial state for individual i, yi0 cannot be assumed fixed. However, it is not clear how to derive the
initial condition fYi0|Vi

from fYit|Yit−1,Vi
so it could be internally inconsistent across different time periods

if the evolution of these two process cannot be connected. Heckman (1981b) suggested that using a flexible
functional form to approximate the initial conditions.

7See Gourieroux and Monfort (1993), Hajivassiliou (1993), Hajivassiliou and Ruud (1994) and Keane
(1993) for the reviews of the literature.
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the fixed time dimension, the results can be generalized to large T cases.
In this paper, we provide nonparametric identification of nonlinear dynamic panel data

models with unobserved covariates, show the models are identified using only two periods of
the dependent variable Yit and three periods of the covariate Xit without initial conditions
assumptions, and propose a sieve MLE estimator. The advantages of our results include
that the point identification results are nonparametric and global, the model is quite general
comparing with the existing ones and makes use of the recently developed techniques, and
the proposed sieve estimator is known to be convenient in computation. Meanwhile, our
results have their disadvantages. The general nonparametric identifiction requires high-
level technical assumptions. In particular, the injectivity assumption is not testable and its
implication is still an active reseach area. The proposed sieve estimator also has its known
shortcomings, such as the difficulty in choosing nuisance parameters.

7.1.3 Nonparametric Identification

Main Assumptions

In this section, we present the assumptions under which the distribution of the dependent
variable Yit conditional on Yit−1, covariates Xit, and the unobserved covariate Uit, i.e.,
fYit|Xit,Yit−1,Uit

, is nonparametrically identified. As discussed above, some of our assump-
tions are high-level because we are providing nonparametric identification of the model. We
assume

Assumption 7.1.1 (Exogenous shocks) Assume fYit|Xit,Yit−1,Xit−1,Uit
= fYit|Xit,Yit−1,Uit

.

A sufficient condition for Assumption 3.1 is that the random shock ξit is indepen-
dent of ξiτ for any τ ̸= t and {Xiτ , Uiτ} for any τ ≤ t. Given Eq. (1), the condition
fYit|Xit,Yit−1,Xit−1,Uit

= fYit|Xit,Yit−1,Uit
holds if the random shock ξit is independent of the

covariate Xit−1. This assumption can be called an exogenous shocks condition. As shown in
the two examples above, this sufficient assumption has been used in many existing studies.

Both ξit and Uit are scalar unobservables in the latent variable formulation of the depen-
dent variable Yit and account for the particular error structure in the formulation. While
ξit is an exogenous random shock in period t, Uit = Vi + ηit is the sum of the time-invariant
heterogeneity and a function of all time-varying variables in the past.

The exogeneity of ξit can be relaxed to allow some dependence between ξit and (Xit, Yit−1).
For example, for some positive function h, write ξit = h (Xit, Yit−1)1/2 eit for an exoge-
nous random shock eit with unit variance. Hence, ξit contains heteroskedasticity and
Var(ξit|Xit, Yit−1) = h (Xit, Yit−1). In this case, the conditional distribution of the interest
in Example 1 changes into:

fYit|Xit,Yit−1,Uit

=
(

1− Fξit

[
− (X ′

itβ + γYit−1 + Uit)
h (Xit, Yit−1)1/2

])Yit

Fξit

[
− (X ′

itβ + γYit−1 + Uit)
h (Xit, Yit−1)1/2

]1−Yit

.
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Making ξit heteroskedastic generalizes the functional form of the dynamic panel data models
considered in this paper. However, for simplicity we assume ξit is exogenous with a constant
variance.

The existence of the exogenous random shock ξit in the error term of the latent variable
formulation means that (Xit, Yit−1) fully capture the dynamics conditional on Uit since fur-
ther lags of Yit−1 or lags of Xit are not important once (Xit, Yit−1, Uit) have been controlled
for. To some extent, Assumption 7.1.1 has assumed dynamic completeness since

fYit|Xit,Yit−1,Uit
= fYit|Xit,Yit−1,Uit,Xit−1,Yit−2,Uit−1,...,Xi1,Yi0,Ui1 , t = 1, ..., T − 1,

and once Uit is controlled for, no past values of Xit or Yit−1 appear in the conditional density
in the RHS of the above equation.

We simplify the evolution of the observed covariates Xit as follows:

Assumption 7.1.2 (Covariate evolution) Assume the covariate evolution satisfies the equa-
tion fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

= fXit+1|Xit,Uit
.

Note that the assumption can be written as Xit+1⊥(Yit, Yit−1, Xit−1)
∣∣(Xit, Uit) and the

lagged effects of Yit such as Yit−1, Yit−2, ... enter the evolution of Xit+1 through the unob-
served covariate Uit. A sufficient condition for Assumption 7.1.2 is that Xit+1 is strictly
exogenous and follows a first order Markov, conditional on Uit. Another sufficient con-
dition for Assumption 3.2 is constituted of three steps, (i)(Markov evolution of Xit+1)
fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

= fXit+1|Yit,Xit,Uit
, (ii)(No impact of ξit onXit+1) fXit+1|Yit,Yit−1,Xit,Uit

=
fXit+1|Yit−1,Xit,Uit

, and (iii)(Limited feedback) fXit+1|Yit−1,Xit,Uit
= fXit+1|Xit,Uit

.
The first step (i) is a Markov-type assumption fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

= fXit+1|Yit,Xit,Uit
,

which implies that the evolution of the observed covariate Xit+1 only depends on all the
explanatory variables in the previous period (Yit, Xit, Uit). The implication of the Markov
assumption is that while the time-varying component of Uit, ηit, captures all the serially-
correlated variation in the process of Xit+1, the corresponding time-invariant component
Vi controls the time-invariant part of Xit+1. If Xit+1 contains a time-invariant component
other than Vi then the Markov assumption may fail. For example, suppose that we have8

Xit+1 = ρXit +Wi + Vi + vit,

where vit are i.i.d, and a latent Wi is not perfectly correlated with Vi. In this case, given
Uit, Xit−1 will contain some information about Wi, even given Xit. Thus, Xit−1 can be
informative on Xit+1 given (Yit, Xit, Uit) and the Markov condition does not hold. However,
the composite error Uit is a scalar unobservable in the latent variable formulation of the
dependent variable Yit and should also take account of the variation of Xit. If the time-
varying component of Uit contains vit and its time-invariant component has Wi + Vi, the
Markov assumption may hold. Our assumption rules out the situation that the evolution of
Xit depends on other time-invariant element not in the latent variable formulation of Yit.

8We thank an anonymous referee for suggesting this example.
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The second step (ii) is that conditional on Yit−1, Xit and Uit, Xit+1 is independent
of the exogenous shock ξit. Since Uit is a function of all past shocks {ξiτ}τ<t, this step
only excludes the immediate effect of the current shock ξit on the future covariate Xit+1.9

This implies that fXit+1|Xit,Yit−1,Uit,ξit
= fXit+1|Xit,Yit−1,Uit

. The third step (iii) is a limited
feedback assumption, i.e., fXit+1|Xit,Yit−1,Uit, = fXit+1|Xit,Uit

which rules out direct feedback
from the lagged dependent variable Yit−1 on the future value of the observed covariate Xit+1.
The effect of Yit−1 on Xit+1 is indirectly through Xit, and Uit.

Overall, Assumption 7.1.2 implies that conditional on Xit and Uit, Xit+1 is independent
of the exogenous shock ξit. In other words, conditional on the past information, the future
covariate Xit+1 rules out the immediate effect of the current shock ξit of the dependent
variable Yit.

Let Lp(X ), 1 ≤ p < ∞ stand for the space of function h(·) with
∫

X |h(x)|pdx < ∞.
Suppose Xt, and Ut be the supports of the random variables Xit and Uit, respectively. For
any 1 ≤ p ≤ ∞ and we define operators as follows: for any given (xit, yit−1),

LXit+1,xit,yit−1,Xit−1 : Lp(Xt−1)→ Lp(Xt+1)

(LXit+1,xit,yit−1,Xit−1h)(u) =
∫
fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x)h(x)dx,

and for any given xit,

LXit+1|xit,Uit
: Lp(Ut)→ Lp(Xt+1)

(LXit+1|xit,Uit
h)(x) =

∫
fXit+1|Xit,Uit

(x|xit, u)h(u)du,

Assumption 7.1.3 (Invertibility) For any (xit, yit−1) ∈ Xit × Yit−1, LXit+1,xit,yit−1,Xit−1

and LXit+1|xit,Uit
are invertible.

This is a high-level assumption, which is hard to avoid for nonparametric identification.
Intuitively, this assumption guarantees that the observables contain enough information
on the unobserved covariate Uit and the covariates in period t + 1, Xit+1, depend on Xit.
However, the invertibility of LXit+1,xit,yit−1,Xit−1 , which is equivalent to a completeness con-
dition on an observed distribution fXit+1,Xit,Yit−1,Xit−1 . Its testibility is shown in Canay et
al. (2013b) and Freyberger (2017).

If an operator is constructed by a density of independent variables, the operator cer-
tainly fails to be invertible. Since fXit+1,Xit,Yit−1,Xit−1 is the density of correlated variables,
it provide at least some justification for the completeness property.10 Thus, the invertibility
may require functional form restrictions on fXit+1,Xit,Yit−1,Xit−1 . For example, if Xt+1 con-

9The assumption imposes some restriction to regressors in panel data setting. For example, suppose that
Uit = Vi. The assumption that Xit+1 is independent of ξit given Xit and Vi implies that E[Xit+1ξit] = 0.
If the future covariate Xit+1 is predetermined, in the sense that E[Xit+1ξis] ̸= 0 for s < t + 1 and zero
otherwise, then the assumption fails when the Xit+1 is predetermined. However, the assumption permits a
weaker version of a predetermined variable such as E[Xit+1ξis] ̸= 0 for s < t and zero otherwise.

10That the variables Xit+1, Xit ,Yit−1, and Xit−1 are highly correlated can be justified by the fact
that most variables in economics are correlated across time which reveal a pattern of serial correlation
or autocorrelation.
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tains an open set then fXit+1,Xit,Yit−1,Xit−1 = ϕ(Xit−1−α1Xit+1−α2Xit−α3Yit−1) satisfies
Assumption 7.1.3 where ϕ is the standard normal pdf and αi ̸= 0.11 Besides a linear process,
another example may be that fXit+1,Xit,Yit−1,Xit−1 belongs to an exponential family. Given
a fixed (xit, yit−1). Suppose that

fXit+1,xit,yit−1,Xit−1

= s(xit, yit−1, Xit−1)t(Xit+1, xit, yit−1) exp [µ(Xit+1, xit, yit−1)τ(xit, yit−1, Xit−1)]

where s(xit, yit−1, Xit−1) > 0, τ(xit, yit−1, Xit−1) is one-to-one in Xit−1, and support of
µ(Xit+1, xit, yit−1) ∈ Xt+1 is an open set. Theorem 2.2 in Newey and Powell (2003) shows
the family of the joint density functions {fXit+1,xit,yit−1,Xit−1 : Xit+1 ∈ Xt+1} is complete
over Lp(Xt−1) for each (xit, yit−1).12 This also implies the invertibility of LXit+1,xit,yit−1,Xit−1

in Assumption 7.1.2.
On the other hand, the invertibility of LXit+1|xit,Uit

requires the covariates in period
t + 1, Xit+1, contains enough information on the unobserved covariate Uit conditional on
Xit. Hahn (2001) considers a dynamic logit model with individual effects where the regres-
sors include the lag dependent variable, time dummies and possibly other strictly exogenous
variables. He shows that the semi parametric information bound for any estimator of the
state dependence coefficient is zero. Our results do not cover the dynamic logit model in
Hahn (2001) because the invertibility of LXit+1|xit,Uit

in Assumption 3.3 requires some de-
pendence between Uit and Xit+1. If Xit+1 only contains time dummies and possibly other
strictly exogenous variables, the condition will fail to hold. This is intuitive: the existence
of a degree of dependence between Uit and Xit+1 allows us to control the unobservable Uit
from the observable Xit+1. It reflects the methodology of our identification method that
provides an alternative way to deal with an unobservable term inside a nonlinear econo-
metric model, tackling down an unobserved effect with an observable correlated covariate
instead of eliminating the unobserved effect by transformations. For example, we may have
Xit+1 = Xit+Uit+h(Xit)ϵit, where ϵit is independent of Xit and Uit and has a nonvanishing
characteristic function on the real line. We use Xit+1 instead of Yit+1 for the information
on Uit because the dependent variable Yit+1 is discrete and Uit is continuous in many in-
teresting applications. In that case, the operator mapping from functions of Uit to those
of Yit+1 cannot be invertible. Additionally, when Yit+1 is continuous, it would be more
reasonable to impose invertibility on the operator mapping from functions of Uit to those of
Yit+1, while Uit or Vi is allowed to be independent of the observed covariates Xit.

13 Neces-
11The result is from Theorem 2.3 in Newey and Powell (2003). Suppose that the distribution of x condi-

tional on z is N(a + bz, σ2) for σ2 > 0 and the support of z contains an open set, then the integral operator
corresponding to 1

σ
ϕ( x−a−bz

σ
) is invertible from Lp(X ) to Lp(Z) where ϕ is the standard normal PDF.

There are more detailed discussions and general conditions for an invertible integral operator or complete
conditional distributions in Lp(X ) in Hu and Shiu (2018) .

12The whole statement of the theorem is the following: Let f(x|z) = s(x)t(z) exp [µ(z)τ(x)], where s(x) >
0, τ(x) is one-to-one in x, and support of µ(z), Z, is an open set, then E [h(·)|z] = 0 for any z ∈ Z implies
h(x) = 0 almost everywhere in X ; equivalently, the family of conditional density functions {f(x|z) : z ∈ Z}
is complete in Lp(X ).

13Assumption 7.1.3 requires LXit+1|xit,Uit
is invertible and it demands the unobservable Uit to be correlated

with the observed Xit+1. This case is complementary to the existing models where Uit is independent of
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sary conditions for Assumption 7.1.3 include that fXit+1,Yit−1,Xit|Xit−1 ̸= fXit+1,Yit−1,Xit and
fXit+1|Xit,Uit

̸= fXit+1|Xit
. These necessary conditions rule out the case where Xit+1 and

Xit−1 are independent or Xit+1 and Uit are independent. In other words, Assumption 7.1.3
permits the existence of serial correlation among Xit and correlation between Xit+1 and
Uit.

The invertibility of the integral operator LXit+1|xit,Uit
is equivalent to saying that the

family {fXit+1|Xit,Uit
(xit+1|xit, uit) : xit+1 ∈ Xt+1} is complete over Lp(Ut). Hu and Shiu

(2018) showed that if the conditional density f(x|z) can form a linearly independent se-
quence and coincides with a known complete density at a limit point in the support of z,
then f(x|z) itself is complete. They also provide examples of complete families other than
trivial linear/exponential family cases. For example, suppose ϕ is the standard normal pdf,
consider

f(x|z) = λ (z)h(x|z) + [1− λ (z)]ϕ(x− z), (7.12)

which is a mixture of two continuous conditional densities, h and ϕ, and the weight λ in
the mixture depends on z.14 Sufficient conditions for the completeness of f(x|z) are (i)
limzk→z0 λ (z) = 0; and (ii) limx→−∞

h(x|zk)
ϕ(x−zk)) <∞. Following this result, construct

fXit+1|Xit,Uit
(xit+1|xit, uit)

= λ (xit+1)h(xit+1, xit, uit) + [1− λ (xit+1)]ϕ(xit+1 − ψ(xit)− uit),

with limxit+1,k→xit+1,0 λ (xit+1) = 0; and (ii) limuit→−∞
h(xit+1,k,xit,uit)

ϕ(xit+1,k−ψ(xit)−uit) < ∞. The
completeness of {fXit+1|Xit,Uit

(xit+1|xit, uit) : xit+1 ∈ Xt+1} implies that the operator
LXit+1|xit,Uit

is invertible. In this case, there is only the tail condition on the function
h(xit+1,k, xit, uit) and we can regard h as nonparametric deviation or oscillation from the
normal ϕ. Therefore, the invertibility of the integral operator LXit+1|xit,Uit

is appropriate
in a nonparametric setting. The condition contains a restriction on the unobsevable and it
cannot be verified. A way to justify the condition is invoking the central limit theorem to
conclude that fXit+1|Xit,Uit

(xit+1|xit, uit) has an approximate normal distribution and the
invertibility permits nontrivial variation around a normal distribution.

In addition, the invertibility of the operator LXit+1,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Lxit,yit−1,Xit−1,Uit

does imply restrictions on the initial condition through the operator Lxit,yit−1,Xit−1,Uit . For
example, in a case where Xit and Uit are discrete and the linear operators are matrices, the
invertibility of these operators are equivalent to the invertibility of corresponding matrices.
However, the operators or matrices may still have a flexible form so that there is no need
to specify the initial condition.

Note that when the unobserved component Uit is continuous, the invertibility of LXit+1|xit,Uit

implies that the explanatory variables Xit contain a continuous element Zit. The existence
of the continuous component, Zit is essential. It is impossible to nonparametrically identify
a distribution of a continuous unobservable variable only by observed discrete variables. The

Xit+1. Honoré and Kyriazidou (2000) and Honoré and Tamer (2006) identify the parameters under certain
assumptions on the strictly exogenous covariates.

14The choice of ϕ is for simplicity. Please see Hu and Shiu (2018) for general results.
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restriction imposed on the continuous Zit+1 guarantees that the explanatory variables Xit+1
contains enough information to identify unobserved component Uit. A sufficient condition
for identification with continuous Uit can be obtained from the well-known completeness
property of exponential families.15 Thus, if Uit is an open set then Xit+1 must be an open
set.16 In the case of the intertemporal labor force participation behavior of married women,
the covariates Xit contain wage and Uit includes the unobserved individual skill level or
motivation.

Assumption 7.1.4 (distinct eigenvalues) There exists a known function ω (·) such that
E [ω (Yit) |xit, yit−1, uit] is monotonic in uit for any given (xit, yit−1) .

The function ω (·) may be specified by users, such as ω (y) = y, ω (y) = I (y > 0), or
ω (y) = y2. For example, we may have ω (y) = I (y = 0) in the two examples above. In
both cases, E [I (Yit = 0) |xit, yit−1, uit] = Fξit

[− (x′
itβ + γyit−1 + uit)] , which is monotonic

in uit. Assumption 7.1.4 implies that for all Ûit, Ũit ∈ U , the set {y : fYit|Xit,Yit−1,Ûit
̸=

fYit|Xit,Yit−1,Ũit
} for any given (xit, yit−1) has a positive probability whenever Ûit ̸= Ũit.

Assumption 7.1.5 (Normalization) For any given xit ∈ Xit, there exists a known func-
tional G such that G

[
fXit+1|Xit,Uit

(·|xit, uit)
]

= uit.

The functional G may be the mean, the mode, median, or a quantile. For exam-
ple, we may have Xit+1 = Xit + Uit + h(Xit)ϵit with an unknown function h (·) and
a zero median independent error ϵit. Then Uit is the median of the density function
f(Xit+1−Xit)|Xit,Uit

(·|xit, uit). The purpose of Assumption 3.5 is to normalize fXit+1|Xit,Uit
to

be unique in the spectral decomposition and it requires the functional G to map the eigen-
function to a real number. The condition can also be written as G

[
fXit+1|Xit,Uit

(·|xit, uit)
]

=
l(uit) for some one-one function l(·) and thus it is not very restrictive.

This assumption imposes a restriction on the covariate evolution. A choice of G depends
on how the covariate Xit changes over time given the unobserved covariate Uit. Hence,
observations on the conditional temporal correlation of Xit may shed a light on the pick of
G. In the case of the intertemporal labor force participation behavior of married women, Xit

may include annual family income, which often varies with the unobserved time-invariant
family characteristics and past economy shock. In this case, settingG as the mode functional
seems appropriate.

Main Identification Results

We start our identification with a panel data containing two periods of the dependent
variable Yit and three periods of the covariate Xit, {Xit+1, Yit, Xit, Yit−1, Xit−1} for i =
1, 2, ..., n. The law of total probability leads to

fXit+1,Yit,Xit,Yit−1,Xit−1 =
∫
fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

fYit|Xit,Yit−1,Xit−1,Uit
fXit,Yit−1,Xit−1,UitdUit,

15See Newey and Powell (2003) for details.
16Assumption 3.3 impose the invertibility of the linear operator LXit+1|xit,Uit

which maps from the domain
space Lp(Ut) to the range space Lp(Xt+1). The invertibility implies a cardinality relation, the cardinality of
Ut is smaller than the cardinality of Xt+1. If Uit takes continuous values then Xit+1 must continuous values.
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where we omit the arguments in the density function to make the expressions concise.
Assumption 7.1.1 implies

fXit+1,Yit,Xit,Yit−1,Xit−1 =
∫
fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

fYit|Xit,Yit−1,Uit
fXit,Yit−1,Xit−1,UitdUit.

Then, Assumption 7.1.2 suggests that

fXit+1,Yit,Xit,Yit−1,Xit−1 =
∫
fXit+1|Xit,Uit

fYit|Xit,Yit−1,Uit
fXit,Yit−1,Xit−1,UitdUit. (7.13)

Based on this equation, we may apply the identification results in Hu and Schennach (2008)
to show the all the unknown densities on the RHS are identified from the observed density
on the LHS. For any given (yit, xit, yit−1), we define operators as follows:

LXit+1,yit,xit,yit−1,Xit−1 : Lp(Xt−1)→ Lp(Xt+1)

(LXit+1,yit,xit,yit−1,Xit−1h)(u) =
∫
fXit+1,Yit,Xit,Yit−1,Xit−1(u, yit, xit, yit−1, x)h(x)dx,

and

Dyit|xit,yit−1,Uit
: Lp(U)→ Lp(U)

(Dyit|xit,yit−1,Uit
h)(u) = fYit|Xit,Yit−1,Uit

(yit|xit, yit−1, u)h(u).

Similarly, define

(Lxit,yit−1,Xit−1,Uith)(u) =
∫
fXit,Yit−1,Xit−1,Uit(xit, yit−1, x, u)h(x)dx.

Eq. (7.13) is equivalent to the following operator relationship:

LXit+1,yit,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Dyit|xit,yit−1,Uit

Lxit,yit−1,Xit−1,Uit .

Integrating out Yit in Eq. (7.13) leads to fXit+1,Xit,Yit−1,Xit−1 =
∫
fXit+1|Xit,Uit

fXit,Yit−1,Xit−1,UitdUit,
which is equivalent to

LXit+1,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Lxit,yit−1,Xit−1,Uit .

with (LXit+1,xit,yit−1,Xit−1h)(u) =
∫
fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x)h(x)dx. We may then

apply the spectral decomposition results in Hu and Schennach (2008) to identify fXit+1|Xit,Uit
,

fYit|Xit,Yit−1,Uit
, and fXit,Yit−1,Xit−1,Uit from fXit+1,Yit,Xit,Yit−1,Xit−1 . Assumption 7.1.1-7.1.3

enable us to have

LXit+1,yit,xit,yit−1,Xit−1L
−1
Xit+1,xit,yit−1,Xit−1

= LXit+1|xit,Uit
Dyit|xit,yit−1,Uit

L−1
Xit+1|xit,Uit

,

which implies a spectral decomposition of the observed operators on the LHS. The eigenval-
ues are the kernel function of the diagonal operator Dyit|xit,yit−1,Uit

and the eigenfunctions
are the kernel function fXit+1|Xit,Uit

of the operator LXit+1|xit,Uit
. Assumption 7.1.4 make
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the eigenvalues distinct. Since the identification from the spectral decomposition is only
identified up to uit and its monotone transformation, we make a normalization assumption,
Assumption 7.1.5, to pin down the unobserved covariate uit.

Notice that Theorem 1 in Hu and Schennach (2008) implies that all three densities
fXit+1|Xit,Uit

, fYit|Xit,Yit−1,Uit
, and fXit,Yit−1,Xit−1,Uit are identified under the assumptions

introduced above. The model of interest is described by the density fYit|Xit,Yit−1,Uit
. While

the initial condition at period t− 1 is contained in the joint distribution fXit,Yit−1,Xit−1,Uit ,
the evolution of the covariates Xit is described by fXit+1|Xit,Uit

.
We summarize our identification results as follows:

Theorem 7.1.1 Under Assumptions 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.1.5, the observable joint
distribution fXit+1,Yit,Xit,Yit−1,Xit−1 uniquely determines the model of interest fYit|Xit,Yit−1,Uit

,
together with the evolution density of observed covariates fXit+1|Xit,Uit

and the initial joint
distribution fXit,Yit−1,Xit−1,Uit.

The identification procedure is also illustrated in subsection 7.1.7 using a finite dimen-
sional discrete example where the linear operators become matrices. Since the unobserved
covariate Uit appearing in fYit|Xit,Yit−1,Uit

does not have natural units of measurement or
it is unclear which values are appropriate for Uit, the partial effects averaged across the
distribution of Uit are more appealing. The average partial effects are based on the effect
on a mean response after averaging the unobserved heterogeneity across the population.
Theorem 7.1.1 allows us to obtain the marginal distribution of Uit,

fUit =
∫

Xit

∫
Yit−1

∫
Xit−1

fXit,Yit−1,Xit−1,UitdXitdYitdXit−1.

Suppose that we are interested in the conditional mean of ω (yt), which is a scalar function
of yt. Given (Xit, Yit−1) the average structural function (ASF) is defined by

ASF (Xit, Yit−1) =
∫

Uit

[∫
Yit

ω (yt) fYit|Xit,Yit−1,Uit
dYit

]
fUitdUit, (7.14)

whose identification has been shown in Corollary 2.1. Then the average partial effect (APE)
can be defined by taking derivatives or differences of the above expression (7.14) with respect
to elements of (Xit, Yit−1). These discussions lead to the following result:

Corollary 7.1.1 Under Assumptions 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.1.5, average structural
function (ASF) defined in Eq. (7.14) and the average partial effect (APE) can be identified
and estimated by a panel data containing two periods of the dependent variable Yit and three
periods of the covariate Xit, {Xit+1, Yit, Xit, Yit−1, Xit−1} for i = 1, 2, ..., n.

Discussion of Assumptions

We discussed the identification assumptions separately in subsection 7.1.3 and now we
illustrate these assumptions jointly for the models in Example 1 and Example 2. These



7. APPLICATIONS IN REDUCED-FORM ECONOMETRICS ⇑ 243

models can be used to describe the following economic behaviors. While Yit denotes the t-
th period labor force participation decision and the amount of insurance coverage chosen by
an individual for Example 1 and Example 2 respectively, the covariate Xit is the non-labor
income in both models. Assumptions 7.1.1 allows us to separate the exogenous random
shock of the dependent variable in period t, ξit, from all time-varying error term in the
past. It follows that ξit and Uit can be used to decompose the particular error structure
in the latent variable formulation of the dependent variable Yit. While ξit is an exogenous
random shock in period t, Uit = Vi+ηit is the sum of the time-invariant heterogeneity and a
function of all time-varying variables in the past. This implies that both time-invariant and
the past time-varying information are in Uit, and the observed (Xit, Yit−1) has completely
captured the contemporaneous information of Yit other than ξit. Hence, the present time-
varying shocks of labor force participation decision or the amount of insurance coverage are
independent of the lagged dependent variables, the non-labor income, and Uit.

The definition of Uit indicates that conditional on Uit, the variation of all past shocks
before period t {ξiτ}τ<t become trivial.17 Thus, Assumption 7.1.2 only rules out the imme-
diate effect of the current shock ξit on the future covariate Xit+1. In the economic contexts,
the assumption reflects the current exogenous shocks of labor force participation decision
or the amount of insurance coverage do not affect the non-labor income in the next period.

The linear independence interpretation for the invertibility of an operator in Hu and
Shiu (2011) suggests that the invertibility of LXit+1,xit,yit−1,Xit−1 in Assumption 7.1.3 can be
stated as (1) the family of the joint distributions {fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x) : u ∈
X̃t+1} where X̃t+1 ⊂ Xt+1 has nontrivial variation over the index u in X̃t+1 in the function
space Lp(Xt−1), and (2) the variation is big enough that every function in Lp(Xt−1) can be
approximated by the distributions in the family. The assumption requires some dependence
of observed covariates over time. If Xit is constant across time, then it violates the condition.
In this case, the serially correlated nature of Xt over time can provide some support of
statement (1) but statement (2) is the key assumption to make the invertibility hold.

Next, we discuss the invertibility in Example 1 or the empirical application using the
linear independence interpretation. Recall that the dynamic discrete-choice model with
an unobserved covariate Uit: Yit = 1 (X ′

itβ + γYit−1 + Uit + ξit ≥ 0) where Yit denotes the
t-th period participation decision, and Xit is the wage or income variable in that period.
First, the invertibility of LXit+1,xit,yit−1,Xit−1 implies that the conditional distribution of
wage or income variables fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x) over some subset of Xt+1 can
approximate distributions of wage or income in period t− 1 well and hence, any income or
wage distribution in period t− 1 has been accounted for by this functional form using the
variation in period t + 1. The independence of income or wage variables over time clearly
cause the invertibility to fail. Second, if the unobserved covariate Uit contains time-invariant
heterogeneity such as motivation or inherent health, the invertibility of LXit+1|xit,Uit

suggests
that given the current income variable xit the variation of the functional form fXit+1|Xit,Uit

over the future income variables can fully capture the changes or movement of unobserved
17Recall Uit = Vi + ηit and ηit = φ

(
{Xiτ , Yiτ−1, ξiτ }τ=0,1,...,t−1

)
, ηit is a function of all time-varying

variables in the past.
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motivation or inherent health.
These two models have a point mass at y = 0, so we can choose ω (y) = I (y = 0).

Assumption 7.1.4 is automatically satisfied for these limited dependent variable models.
Finally, the covariate evolution represents the changing of the non-labor income over time
in these models. As mentioned in Assumption 7.1.5, the functional G can be the mean,
mode, median, or a quantile. Thus, one of the conditions for Assumption 7.1.5 is that
the mode of the distribution of the non-labor income in the next period conditional on the
current non-labor income and unobserved covariate uit is equal to the unobserved covariate.
Since the unobserved covariate Uit contains time-invariant heterogeneity such as motivation
or inherent health, it means that the value of non-labor income that occurs most frequently
around the location of true level of unobserved motivation or inherent health.

Set εit = ρεit−1 + ξit and ξit ∼ N(0, σ2
ξ ). Consider the following data generating process

(DGP):

Yit = g (β0 + β1Xit + γYit−1 + Uit + ξit) with (7.15)
Uit = Vi + ρεit−1 ∀ i = 1, ..., N ; t = 1, ..., T − 1,

where g(·) can be the 0-1 indicator function or g(·) = max(0, ·) and Vi ∼ N(µv, σ2
v). The

generating process of covariate evolution has the following form Xit+1 = Xit+h(Xit)ϵit+Uit
or

fXit+1|Xit,Uit
(xt+1|xt, u) = 1

h(xt)
fϵ

(
xt+1 − xt − u

h(xt)

)
, (7.16)

where fϵ is a density function that can be specified under different identification conditions
of Assumption 7.1.5.18 For example, take fϵ(x) = exp(x− ex) and the mode as the choice
of G for Assumption 7.1.5. We will use these settings in the Monte Carlo simulation.

It is straightforward to verify the assumptions with the specific data generating processes
except for Assumption 7.1.3. The invertibility of LXit+1|xit,Uit

is equivalent to the complete-
ness of the family {fXit+1|Xit,Uit

(xt+1|xt, u) : xt+1 ∈ Xit+1}. When fϵ(x) = exp(x− ex), the
covariate evolution belongs to one of exponential families and it is complete by Theorem 2.2
in Newey and Powell (2003). Therefore, LXit+1|xit,Uit

is invertible. Applying the invertibility
of LXit+1|xit,Uit

to the integral relation LXit+1,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Lxit,yit−1,Xit−1,Uit

implies that the invertibility of LXit+1,xit,yit−1,Xit−1 is equivalent to the invertibility of
Lxit,yit−1,Xit−1,Uit . Utilize Theorem 2.2 in Newey and Powell (2003) again to the family
{fUit−1|Xit,Xit−1 = 1

h(xt−1)fϵ
(

−u+xt−xt−1
h(xt−1)

)
: u ∈ Uit−1} for each given xt and then use it to

obtain the completeness of the family {fXit,Xit−1,Uit−1(xt, xt−1, u) : u ∈ Uit−1}.19 Next, pass
the completeness of {fXit,Xit−1,Uit−1(xt, xt−1, u) : u ∈ Uit−1} to {fXit,Xit−1,Uit(xt, xt−1, u) :

18This generating process is also adopted in Hu and Schennach (2008) and it can be adjusted to a variety
of identification conditions, the mean, the mode, median, or a quantile.

19Suppose that h ∈ Lp(Xit−1) and
∫

h(xt−1)fXit,Xit−1,Uit−1 (xt, xt−1, u)dxt−1 = 0 for any xt. The equa-
tion can be rewritten as

∫
h(xt−1)fXit,Xit−1 fUit−1|Xit,Xit−1 dxt−1 = 0 for any uit−1. The completeness of

{fUit−1|Xit,Xit−1 : u ∈ Uit−1} implies that h(xt−1)fXit,Xit−1 = 0 and then h = 0. We obtain the complete-
ness of the family {fXit,Xit−1,Uit−1 (xt, xt−1, u) : u ∈ Uit−1} over Lp(Xit−1).
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u ∈ Uit} using an integral equation

fXit,Xit−1,Uit =
∫
fUit|Uit−1fXit,Xit−1,Uit−1dUit−1.

Since Uit = Uit−1+a normal error, fUit|Uit−1 is a complete distribution by the normality. We
can express the integral equation as an operator relationship and show the operator using
fXit,Xit−1,Uit as a kernel is invertible. This implies {fXit,Xit−1,Uit(xt, xt−1, u) : u ∈ Uit} is
complete and then the family {fXit,Yit−1,Xit−1,Uit(xt, yt−1, xt−1, u) : u ∈ Uit} is also complete
over Lp(Xit−1). We have reached LXit+1,xit,yit−1,Xit−1 is invertible.

7.1.4 Estimation

The dynamic panel data model (7.10) specifies the relationship between the dependent
variable of interest for an individual i, Yit, and the explanatory variables including a lagged
dependent variable Yit−1, a set of possibly time-varying explanatory variables Xit, and an
unobserved covariate Uit. If we are willing to make a normality assumption on ξit, then the
model in Example 1 becomes a probit model and the model in Example 2 becomes a tobit
model. The general specification here covers a number of other dynamic nonlinear panel
data model in one framework.

Given that the random shocks {ξit}Tt=0 are exogenous, the conditional distribution
fYit|Xit,Yit−1,Uit

is a combination of the function g and the distribution of ξit. In most
applications, the function g and the distribution of ξit have a parametric form. That means
the model may be parameterized in the following form,

fYit|Xit,Yit−1,Uit
(yit|xit, yit−1, uit; θ),

where θ includes the unknown parameters in both the function g and the distribution of ξit.
Under the rank condition in the regular identification of parametric models, the nonparamet-
ric identification of fYit|Xit,Yit−1,Uit

implies that of the parameter θ, and therefore, the iden-
tification of the function g and the distribution of ξit. In general, we may allow θ = (b, λ)T ,
where b is a finite-dimensional parameter vector of interest and λ is a potentially infinite-
dimensional nuisance parameter or nonparametric component.20 What is not specified in
the model is the evolution of the covariate Xit, together with the unobserved component
Uit, i.e., fXit+1|Xit,Uit

, and the initial joint distribution of all the variables fXit,Yit−1,Xit−1,Uit .
We consider the nonparametric elements (fXit+1|Xit,Uit

, λ, fXit,Yit−1,Xit−1,Uit)T as infinite-
dimensional nuisance parameters in our semi-parametric estimator.

Our semi-parametric sieve MLE does not require the initial condition assumption for
the widely used panel data models, such as dynamic discrete-response models and dynamic
censored models. In Section 7.1.3, we have shown equation (7.13) uniquely determines
(fXit+1|Xit,Uit

, fYit|Xit,Yit−1,Uit
, fXit,Yit−1,Xit−1,Uit)T . While the dynamic panel data model

component fYit|Xit,Yit−1,Uit
will be parameterized, the other components are treated as non-

20A partition of θ into finite-dimensional parameters and infinite-dimensional parameters does not affect
our sieve MLE. More examples of a partition can be found in Shen (1997).
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parametric nuisance functions. Equation (7.13) implies

α0 ≡ (fXit+1|Xit,Uit
, θ0, fXit,Yit−1,Xit−1,Uit)T

= arg max
(f1,θ,f2)T ∈A

E ln
∫
f1(xit+1|xit, uit)fYit|Xit,Yit−1,Uit

(yit|xit, yit−1, uit; θ)

× f2(xit, yit−1, xit−1, uit)duit,

which suggests a corresponding semi-parametric sieve MLE using an i.i.d. sample
{
xit+1, yit, xit

, yit−1, xit−1
}n
i=1

,

α̂n ≡
(
f̂1, θ̂, f̂2

)T
(7.17)

= arg max
(f1,θ,f2)T ∈An

1
n

n∑
i=1

ln
∫
f1(xit+1|xit, uit)fYit|Xit,Yit−1,Uit

(yit|xit, yit−1, uit; θ)

× f2(xit, yit−1, xit−1, uit)duit.

The function space A contains the corresponding true densities and An is a sequence of
approximating sieve spaces.

Our estimator is a direct application of the general semi-parametric sieve MLE in Shen
(1997), Chen and Shen (1998), and Ai and Chen (2003). In the appendix, we provide
sufficient conditions for the consistency of our semi-parametric estimator α̂n and those
for the

√
n asymptotic normality of the parametric component b̂. The asymptotic theory

of the proposed sieve MLE and the detailed development of sieve approximations of the
nonparametric components are also provided in Online Appendix.

With the consistency of the semi-parametric estimator α̂n, a consistent estimator of the
average structural function (ASF) can be obtained by

ASF (Xt, Yt−1) =
∫

Ut

[∫
Yt

ω (yt) fYt|Xt,Yt−1,Ut
(yt|xt, yt−1, ut; θ̂)dYt

]
f̂2(ut)dut, (7.18)

where f̂2(Ut) =
∫

Xt

∫
Yt−1

∫
Xt−1

f̂2(Xt, Yt−1, Xt−1, Ut)dXtdYt−1dXt−1. Thus, the average par-
tial effects of the state dependence at interesting values of the explanatory variables can be
computed by changes or derivatives of equation (7.18) with respect to Yt−1.

Note that the proposed sieve MLE only needs 3 periods. This means that when a DGP
is generated through the dynamic process (7.10), three-periods data are enough to recovery
the parameter of the interest θ. When there are more periods of data, the approach is still
tractable. For example, if T = 4 and we assume the dynamic panel data specification (7.10),
then estimation results from periods 1, 2, and 3 should be the same as ones from 2, 3, and 4.
If the estimated results are significantly different, we would suspect model misspecification.
Under the assumptions of stationary and ergodicity, an alternative way to deal with data
more than 3 periods is to transform the data into 3 periods of data by rearranging them as 3
periods of data and stacking them into a larger cross-sectional data. For example, suppose
that there are 5 periods of data {Dt, Dt+1, Dt+2, Dt+3, Dt+4}. It can be transformed into
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three observations of three periods of data, i.e., {Dt, Dt+1, Dt+2} , {Dt+1, Dt+2, Dt+3}, and
{Dt+2, Dt+3, Dt+4} .

For a model with a larger number of observed covariates, we can consider a single-index
response model with X ′

itβ. That is: Xit is a d-dimensional vector of explanatory variables,
X ′
itβ is the index, the scalar product of Xit with β, a vector of parameters whose values

are unknown. Since our assumptions do not exclude time dependence in covariates, time
dummies are allowed to be in Xit. Many widely used parametric models have this form.
In our empirical application, we adopt this approach to deal with a case of many observed
covariates. The part (ii) of Assumption B.4. requires that kni/n→ 0 for i = 1, λ, 2. Thus,
the rate of convergence depends on the degree of the sieve approximations since higher degree
of sieve spaces provide better approximations. When Xit is a d-dimensional vector and the
index form is not used, the degrees of approximation has to be increased proportionally
in order to get better approximation of these nuisance component, f1(xt+1|xt, ut; δ1) and
f2(xt, yt−1, xt−1, ut; δ2). It follows that the larger the dimension of Xit, the slower the
rate of convergence. Thus, the curse of dimensionality may be an issue if researchers are
interested in the nuisance component f1(xt+1|xt, ut; δ1) and f2(xt, yt−1, xt−1, ut; δ2), but the
convergence speed of the parametric part is still root-n.

Implementation

As we discussed above, we propose a semi-parametric sieve MLE using an i.i.d. sample
{xit+1, yit, xit, yit−1, xit−1} for i = 1, 2, ..., n. The unknown densities are associated with the
observed distribution as follows:

fXit+1,Yit,Xit,Yit−1,Xit−1 =
∫
fXit+1|Xit,Uit

fYit|Xit,Yit−1,Uit
fXit,Yit−1,Xit−1,UitdUit.

The parametric part is the model of interest fYit|Xit,Yit−1,Uit
(yit|xit, yit−1, uit; θ). The two

nonparametric nuisance functions include fXit+1|Xit,Uit
and fXit,Yit−1,Xit−1,Uit . The sieve

MLE transforms a semi-parametric MLE to a parametric MLE by replacing the nonparamet-
ric nuisance functions with their Fourier approximations. For example, the sieve estimator
for the covariate evolution may be constructed by the Fourier series as follows:

f1(xt+1|xt, ut; δ1) =
in∑
i=0

jn∑
j=0

kn∑
k=0

δ1,ijkφ1i(xt+1 − ut)φ2j(xt)φ3k(ut),

where in, jn, kn are smoothing parameters and φ1i, φ2j , φ3k are known basis functions. Simi-
larly, we may have a sieve approximation of the initial joint density, f2(xit, yit−1, xit−1, uit; δ2),
where δ2 is a vector of all the sieve coefficients. The fact that the parametric functions
f1(xt+1|xt, ut; δ1) and f2(xit, yit−1, xit−1, uit; δ2) are approximations of probability density
functions implies certain restrictions on the sieve coefficients (δ1, δ2) , which is discussed in
Online Appendix. In the sieve MLE, we may estimate (θ, δ1, δ2) as a parametric MLE with
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a density function as follows:

f (xit+1, yit, xit, yit−1, xit−1; θ, δ1, δ2) =
∫
f1(xit+1|xit, ut; δ1)fYit|Xit,Yit−1,Uit

(yit|xit, yit−1, uit; θ)

× f2(xit, yit−1, xit−1, uit; δ2)duit.

In Online Appendix, we show the consistency and asymptotic normality as sample size goes
to infinity.

7.1.5 Monte Carlo Evidence

In this section we present a Monte Carlo study that investigates the finite sample properties
of the proposed sieve MLE estimators in the two different settings, dynamic discrete choice
models and dynamic censored models. We start with the specification of the models as
follows.

Semi-parametric Dynamic Probit Models
First, we adopt a parametric assumption for εit. Suppose that εit has a stationary AR(1)
with an independent Gaussian white noise process, εit = ρεit−1+ξit, ξit ∼ N(0, 1/2). Denote
Φξit

and ϕξit
as the CDF and PDF of the independent error ξit, respectively. We have

fYit|Xit,Yit−1,Uit
= Φξit

(
X ′
itβ + γYit−1 + Uit

)Yit
[
1− Φξit

(
X ′
itβ + γYit−1 + Uit

)]1−Yit ,

with Uit = Vi + ρεit−1.

The density fYit|Xit,Yit−1,Uit
is fully parameterized and θ only contain the parametric

component b = (γ, β)T . We approximate fXit+1|Xit,Uit
, and fXit,Yit−1,Xit−1,Uit by truncated

series in the estimation. The estimator of average structural function (ASF) in the dynamic
probit model is

ASF (Xt, Yt−1) =
∫

Ut

Φξit

(
X ′
tβ + γYt−1 + Ut

)
f2(Ut)dUt, (7.19)

which represents the conditional mean of ω (yt) = yt.
Semi-parametric Dynamic Tobit Models:
We also assume that εit has a stationary AR(1) with an independent Gaussian white noise
process, εit = ρεit−1 + ξit. This gives

fYit|Xit,Yit−1,Uit
=
[
1− Φξit

(
X ′
itβ + γYit−1 + Uit

)]1(Yit=0)
ϕξit

(yit −X ′
itβ − γYit−1 − Uit)1(Yit>0)

(7.20)

=
[
1− Φ

(
X ′
itβ + γYit−1 + Uit

σξ

)]1(Yit=0)

×

[
1
σξ
ϕ

(
yit −X ′

itβ − γYit−1 − Uit
σξ

)]1(Yit>0)

,
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and the parameter is θ = b = (γ, β, σ2
ξ )T . Since ξit ∼ N(0, σξ), EYt [yt|Xt, Yt−1, Ut] =

Φ
(
X′

tβ+γYt−1+Ut

σξ

)
(X ′

tβ + γYt−1 + Ut) + σξϕ
(
X′

tβ+γYt−1+Ut

σξ

)
. The estimator of ASF in the

dynamic tobit model is

ASF (Xt, Yt−1) =
∫

Ut

[
Φ
(
X ′
tβ + γYt−1 + Ut

σξ

)
(X ′

tβ + γYt−1 + Ut) (7.21)

+ σξϕ

(
X ′
tβ + γYt−1 + Ut

σξ

)]
f2(Ut)dUt.

The data generating process for dynamic discrete choice models and dynamic censored
models in the Monte Carlo experiments are according to the following processes respectively:

Yit = 1 (β0 + β1Xit + γYit−1 + Uit + ξit ≥ 0) with (7.22)
Uit = Vi + ρεit−1 ∀ i = 1, ..., N ; t = 1, ..., T − 1.

and

Yit = max {β0 + β1Xit + γYit−1 + Uit + ξit, 0} with (7.23)
Uit = Vi + ρεit−1 ∀ i = 1, ..., N ; t = 1, ..., T − 1.

where Vi ∼ N(1, 1/2). To construct the sieve MLE, it is necessary to integrate out the
unobserved covariate Uit. Here Uit has an unbounded domain (−∞,∞) and we adopted
Gauss-Hermite quadrature for approximating the value of the integral. We consider the
mode condition for Assumption 7.1.5, and use fϵ(x) = exp(x − ex) in equation (7.16) for
all simulated data. In addition, we set h(x) = 0.3 exp(−x) to allow heterogeneity and
assume the initial observation (y0, x0) and the initial component ξ0 (=ϵi0) equal to zero.
As discussed in subsection 3.3, these data generating processes satisfy the identification
Assumptions 7.1.1-7.1.5.

We consider five different values of (γ, σ2
ξ , ρ) in the experiments: (γ, σ2

ξ , ρ) = (0,0.5,0),
(0,0.5,0.5), (1,0.5,0), (1,0.5,0.5), (1,0.5,-0.5) and the parameters of the intercept and the
exogenous variable are held fixed: β0 = 0 and β1 = −1. In summary, the data generating
processes are as follows:

DGP I: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0)

DGP II: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0.5)

DGP III: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0)

DGP IV: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0.5)

DGP V: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5,−0.5).

The first two DGPs are not state dependence (γ = 0) while the rest are state dependent
with γ = 1. A sample size N=500 is considered.21 To secure a more stationary sample, the

21Simulation results for other two different sample sizes, N=250, 1000 are online.



7. APPLICATIONS IN REDUCED-FORM ECONOMETRICS ⇑ 250

sampling data are drawn over T = 7 periods but only last three periods are utilized. 100
simulation replications are conducted at each estimation.

Table 7.1 presents simulation results under the semi-parametric probit model. The
simulation results of DGP I (only allows for unobserved heterogeneity) show small standard
deviations exist in the structural model coefficients (β0, γ) comparing to the benchmark
estimator. For DGP II, the results have downward bias in the structural model coefficient
β1. In addition, with nontrivial transitory component (ρ ̸= 0) in DGP II, the standard
deviations of (β0, β1, γ) are not much different from DGP I. As for DGPs with nontrivial
state dependence, bias for (β0, β1, γ) for these DGPs is around 0.01 or less and their standard
deviations are around 0.1. The coefficient estimators of γ in these DGPs have very small bias
for all sample sizes, which means that our estimation for state dependence is very precise
among processes with serial correlation (ρ ̸= 0). In general, the means and medians of
(β1, γ) are very close to each other, reflecting little skewness in their respective distributions.
Table 7.2 shows the simulation of the average partial effects in dynamic probit models in
these DGPs. When there is no state dependence (DGP I & II), the estimates for average
partial effects do not vary much with the lagged value Yt−1. However, when DGPs contain
state dependence, the difference in the average responses are up to 0.12. Results using the
benchmark estimator have much larger standard deviations than ones using the proposed
estimator.

Table 7.3 reports the results of estimates for the semi-parametric tobit model. In the
tobit model, there is negative bias in β1 for all DGPs. In tobit case, we have additional
parameters to estimate, σ2

ξ . There is upward bias of the parameter in all DGPs and their
standard deviations are a little bit higher in DGPs with nontrivial state dependence. For
these DGPs with positive state dependence, estimation results of γ show that there is small
bias and precision is within 0.05. Also, the means and medians of all model parameters are
not much different, reflecting low degree of skewness in distributions. Table 7.4 shows the
results of the average partial effects in dynamic tobit models. There are larger standard
deviations of average structural functions and state dependence in DGPs with positive state
dependence. Similar to the results in Table 7.2, results using the benchmark estimator have
much larger standard deviations than ones in the proposed estimator.

In some estimation results of parameters, the simulation standard deviation is smaller
for the proposed semi-parametric estimator than for the benchmark parametric MLE. An
explanation for this observation is that we have adopted Gauss-Hermite quadrature for
approximating the value of the integral in the sieve MLE and the distribution of the weights
of Gauss-Hermite quadrature are close to a normal distribution. On the other hand, in our
simulation design, the unobserved covariate Uit is normally distributed. This may reduce
the simulated standard deviation because in this case the weight function used in numerical
integration has the same functional form as a normal PDF.

There are two nuisance parameters, fXt+1|Xt,Ut
and fXt,Yt−1,Xt−1,Ut in our Monte Carlo

simulation and we use Fourier series to approximate the evolution density and the square
root of the initial joint distribution. Since a higher dimensional sieve space is constructed
by tensor product of univariate sieve series, approximation series can be formed from several
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univariate Fourier series. In the semi-parametric probit model, while in the approximation
of the evolution densities we use three univariate Fourier series with the number of term,
in = 5, jn = 2, and kn = 2, in the approximation of the initial joint distribution we
have in = 5, jn = 2, kn = 2, and ln = 2.22 While a formal selection rule for these
smoothing parameters would be desirable, it is difficult to provide a general guideline.
From our experience, the estimation of the finite-dimensional parameters θ is not very
sensitive to these smoothing parameters. If one cares about estimation of nonparametric
density functions, one should pick the smoothing parameters to minimize the approximate
mean squared errors of the estimator. In the Monte Carlo study, this is relatively easy to do
because the true values are known. But in empirical applications where the true values of the
parameters are unknown, it is still a difficult task. A rule of thumb is to pick the smoothing
parameters such that the estimates are not sensitive to small variations in the smoothing
parameter.23 While the Fourier approximations to the evolution density fXt+1|Xt,Ut

have the
density restriction and the identification restriction, there exists only a density restriction
for the approximations to the square root of the initial joint distribution f

1/2
Xt,Yt−1,Xt−1,Ut

using Fourier basis.24 The semi-parametric sieve MLE using this construction does not
encounter any negative integral inside the logarithm on equation (7.17) in our Monte Carlo
study. As for the semi-parametric tobit model, we have similar choices of approximation
series. The detailed sieve expression of these nuisance parameters can be found in Online
Appendix.

The standard deviations can be computed from bootstraps from draws of the original
sample. The use of nonparametric bootstrap provides an asymptotically valid standard de-
viations for the sieve MLE estimate for the finite dimensional parameters θ. The discussion
of the consistency of the ordinary nonparametric bootstrap for θ can be found in Chen et
al. (2003). Set Zti = (Xit+1, Yit, Xit, Yit−1, Xit−1) and then define a moment function as

22The numbers of term, in, jn, and kn represent the length of three univariate Fourier series. See Online
Appendix for details.

23There is no justified general rule on the choice of number of series terms. For each smoothing parameter,
a minimum choice of number of terms is 2 because a sieve series with each smoothing parameter less than
2 is too restrictive and may not approximate well. Thus, each smoothing parameter should be at least 2.
Start with an approximation series whose smoothing parameter is 2 in each univariate series and construct
a corresponding likelihood to conduct Monte Carlo experiment. If the result of the simulation based on the
approximation series is not satisfactory, then try to add more terms. In this case, we added more terms in
p1i and qi while fixing other univariate series because it is easier to add terms in one particular univariate
series without changing the whole structure of the approximation series. If this does not work well then
do the adding and fixing step to other univariate series. The process can continue to an approximation
series whose smoothing parameter is at least 3 in each univariate series. Therefore, the search procedure is
complete and help us determine the number of series terms. In addition, a discussion in Hu and Schennach
(2008) suggests that a suitable choice of the smoothing parameters lies between short series and long series
where the smoothing bias and the statistical noise dominate respectively.

24An approximation series to a positive density function may take negative values. A natural log value of
a negative value is infinity and this may make the construction of log likelihood function infeasible. Using
an approximation series to the square root of the initial joint distribution yields an positive approximation
to the positive density function.
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m(Zt, θ, f1, f2) = ln f (xt+1, yt, xt, yt−1, xt−1; θ, δ1, δ2), where

f (xt+1, yt, xt, yt−1, xt−1; θ, δ1, δ2) =
∫
f1(xt+1|xt, ut; δ1)fYt|Xt,Yt−1,Ut

(yt|xt, yt−1, ut; θ)

× f2(xt, yt−1, xt−1, ut; δ2)dut.

The notation connects the proposed sieve MLE to the setting in Chen et al. (2003). Suf-
ficient conditions for the bootstrap validity in Chen et al. (2003) include the identification
of a parameter, the approximation of a sequence of sieve spaces to infinite dimensional pa-
rameters, and the regularity conditions of the moment function. These conditions are close
to conditions of the consistency and asymptotic normality in the Appendix B.25 In a sieve
related estimation method, Ai and Chen (2003) also adopted bootstrap standard deviations
as standard deviations of their sieve minimum distance estimator in the simulation study.

In summary, the Monte Carlo study shows that our semi-parametric sieve MLE performs
well with a finite sample since mean and median estimates are close to the true values with
reasonable standard deviations.

25For example, we have Assumption B.5 for that ln fZt (zt; α) is Hölder continuous and Chen et al. (2003)
provided Hölder continuity as one of primitive sufficient assumptions for their bootstrap result. Therefore,
we may not need to impose extra assumptions on the validity of bootstrapping standard errors.
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Table 7.1: Monte Carlo Simulation of Semi-parametric Probit
model (n=500)

Parameters
DGP β0 β1 γ

DGP I: true value 0 -1 0
mean benchmark -0.033 -1.011 0.059
median benchmark 0.017 -1.016 0.008
standard deviation 0.387 0.065 0.452
mean estimate 0.008 -0.994 -0.013
median estimate 0.010 -1.006 -0.002
standard deviation 0.086 0.103 0.108

DGP II: true value 0 -1 0
mean benchmark 0.015 -1.013 0.024
median benchmark 0.006 -1.011 0.021
standard deviation 0.125 0.065 0.101
mean estimate -0.003 -1.010 0.007
median estimate -0.012 -1.004 0.011
standard deviation 0.087 0.095 0.110

DGP III: true value 0 -1 1
mean benchmark 0.002 -1.004 0.998
median benchmark -0.001 -1.005 0.997
standard deviation 0.134 0.071 0.093
mean estimate 0.008 -0.991 0.997
median estimate 0.016 -0.994 1.000
standard deviation 0.093 0.105 0.106

DGP IV: true value 0 -1 1
mean benchmark -0.052 -0.999 1.056
median benchmark -0.014 -1.000 1.015
standard deviation 0.412 0.055 0.411
mean estimate -0.005 -1.005 1.008
median estimate 0.003 -1.024 1.010
standard deviation 0.092 0.104 0.121

DGP V: true value 0 -1 1
mean benchmark 0.012 -1.010 1.000
median benchmark 0.001 -1.011 1.001
standard deviation 0.112 0.066 0.096
mean estimate -0.001 -0.996 0.996
median estimate 0.012 -1.002 0.982
standard deviation 0.112 0.095 0.093

Note: The simulated date has 7 periods but only last 3 periods are
used to construct the sieve MLE in the semi-parametric probit model.
The benchmark estimator is an unfeasible MLE using the unobserved
covariate Uit. Standard deviations of the parameters are computed
by the standard deviation of the estimates across 100 simulations and
called (simulation) standard deviations.
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Table 7.2: Simulation of Average Structural Functions in Pro-
bit model (n=500)

State Dependence Average Structural Functions
DGP I: Yt−1 = 0 mean benchmark 0.281

standard deviation (0.214)
mean estimate 0.574
standard deviation (0.029)

Yt−1 = 1 mean benchmark 0.281
standard deviation (0.214)
mean estimate 0.572
standard deviation (0.035)

DGP II: Yt−1 = 0 mean benchmark 0.307
standard deviation (0.216)
mean estimate 0.582
standard deviation (0.029)

Yt−1 = 1 mean benchmark 0.307
standard deviation (0.216)
mean estimate 0.580
standard deviation (0.034)

DGP III: Yt−1 = 0 mean benchmark 0.301
standard deviation (0.219)
mean estimate 0.572
standard deviation (0.021)

Yt−1 = 1 mean benchmark 0.640
standard deviation (0.204)
mean estimate 0.696
standard deviation (0.028)

DGP IV: Yt−1 = 0 mean benchmark 0.265
standard deviation (0.220)
mean estimate 0.584
standard deviation (0.036)

Yt−1 = 1 mean benchmark 0.587
standard deviation (0.233)
mean estimate 0.707
standard deviation (0.045)

DGP V: Yt−1 = 0 mean benchmark 0.282
standard deviation (0.203)
mean estimate 0.586
standard deviation (0.036)

Yt−1 = 1 mean benchmark 0.614
standard deviation (0.218)
mean estimate 0.717
standard deviation (0.048)

Note: The average structural functions are reported at the mean value of
the explanatory variable and two different outcomes of Yt−1, 0 and 1. Stan-
dard deviations of these average structural functions are computed by the
standard deviation of the estimates across 100 simulations and called (simu-
lation) standard deviations. The true values of ASF are computed using the
unobserved covariate Uit. Average partial effects of Yt−1 can be obtained by
taking differences of average structural functions at Yt−1 = 0, and Yt−1 = 1.
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Table 7.3: Monte Carlo Simulation of Semi-parametric Tobit
model (n=500)

Parameters
DGP β0 β1 γ σ2

ξ

DGP I: true value 0 -1 0 0.5
mean benchmark 0.001 -1.002 -0.023 0.502
median benchmark -0.003 -1.003 0.002 0.502
standard deviation 0.103 0.064 0.289 0.084
mean estimate 0.007 -1.006 0.002 0.525
median estimate 0.006 -0.992 0.009 0.523
standard deviation 0.092 0.111 0.103 0.031

DGP II: true value 0 -1 0 0.5
mean benchmark -0.013 -0.994 -0.009 0.494
median benchmark -0.003 -0.991 -0.009 0.496
standard deviation 0.088 0.049 0.128 0.065
mean estimate 0.001 -1.009 0.017 0.526
median estimate -0.014 -1.009 0.019 0.524
standard deviation 0.112 0.096 0.098 0.030

DGP III: true value 0 -1 1 0.5
mean benchmark 0.001 -1.004 1.002 0.499
median benchmark 0.004 -1.000 1.000 0.500
standard deviation 0.096 0.057 0.052 0.052
mean estimate 0.015 -1.011 0.989 0.528
median estimate 0.014 -1.003 0.994 0.526
standard deviation 0.100 0.112 0.114 0.035

DGP IV: true value 0 -1 1 0.5
mean benchmark -0.001 -1.006 1.004 0.501
median benchmark -0.002 -1.013 1.001 0.506
standard deviation 0.084 0.056 0.047 0.051
mean estimate 0.007 -1.015 0.988 0.501
median estimate 0.017 -1.023 0.986 0.523
standard deviation 0.093 0.103 0.101 0.036

DGP V: true value 0 -1 1 0.5
mean benchmark 0.001 -1.007 1.005 0.502
median benchmark 0.003 -1.003 1.007 0.505
standard deviation 0.072 0.045 0.057 0.055
mean estimate -0.002 -1.030 0.997 0.528
median estimate 0.008 -1.026 0.996 0.527
standard deviation 0.108 0.099 0.120 0.035

Note: The simulated date has 7 periods but only last 3 periods are used to con-
struct the sieve MLE in the semi-parametric Tobit models. The benchmark esti-
mator is an unfeasible MLE using the unobserved covariate Uit. Standard devia-
tions of the parameters are computed by the standard deviation of the estimates
across 100 simulations and called (simulation) standard deviations.
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Table 7.4: Simulation of Average Effects in Tobit model
(n=500)

Average Structural Functions State Dependence
DGP I: mean benchmark 0.171 mean benchmark 0.314

standard deviation (0.243) standard deviation (0.253)
mean estimate 0.357 mean estimate 0.399
standard deviation (0.080) standard deviation (0.069)

DGP II: mean benchmark 0.131 mean benchmark 0.263
standard deviation (0.164) standard deviation (0.210)
mean estimate 0.360 mean estimate 0.407
standard deviation (0.096) standard deviation (0.086)

DGP III: mean benchmark 0.474 mean benchmark 1.189
standard deviation (0.353) standard deviation (0.519)
mean estimate 0.620 mean estimate 1.016
standard deviation (0.146) standard deviation (0.187)

DGP IV: mean benchmark 0.437 mean benchmark 1.116
standard deviation (0.353) standard deviation (0.537)
mean estimate 0.652 mean estimate 1.045
standard deviation (0.106) standard deviation (0.143)

DGP V: mean benchmark 0.468 mean benchmark 1.159
standard deviation (0.361) standard deviation (0.535)
mean estimate 0.655 mean estimate 1.073
standard deviation (0.149) standard deviation (0.180)

Note: The average structural functions are reported at the mean value of the explanatory
variable including the lagged dependent variable. Standard deviations of these estimation
results are computed by the standard deviation of the estimates across 100 simulations and
called (simulation) standard deviations. Average partial effects of Yt−1 or State Dependence
can be obtained by taking the derivative of ASF at means. The true values of ASF and State
Dependence are computed using the unobserved covariate Uit.

7.1.6 Empirical Example

In this section, we apply our estimator to a dynamic discrete choice model, which describes
the labor force participation decisions of married women given their past participation
state and other covariates. The advantage of our estimator is that our model may include
(i) arbitrary and unspecified correlated random effects between unobserved time-invariant
factors such as skill level or motivation and time-varying X ′

its, and (ii) we require no initial
conditions assumption.26 Hyslop (1999) also studied a similar empirical model with less
general assumptions but specified parametric forms of the unobserved heterogeneity Vi and
AR(1) time dependence ρ of the transitory error component εit. Since these two terms are

26In Hyslop (1999), a correlated random-effects (CRE) specification for vi is:

vi =
T∑

s=0

(δ1s · (#Kids0-2)is + δ2s · (#Kids3-5)is + δ3s · (#Kids6-17)is) +
T −1∑
s=0

δ4s · ymtis + ηi,

where ymtis is i’s transitory nonlabor income in year s. An alternative CRE specification can be:

vi = δ1 · (#Kids0-2)i + δ2 · (#Kids3-5)i + δ3 · (#Kids6-17)i + δ4 · ȳmti + ηi,

where x̄i =
T∑

t=0
xit.
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not separately identified from our main result Theorem 7.1.1, the empirical study here will
focus on the parameters of exogenous explanatory variables and lagged dependent variable
not the distributions of the error terms. On the other hand, these estimations might not be
comparable across specifications, because of the estimator-specific normalizations in binary
choice models. Since the average partial effect is identified in Corollary 7.1.1, the empirical
study also focuses on comparable average partial effects.

Specifications and Estimation Results

According to a theoretical model in Hyslop (1999), the labor force participation decisions of
married women depend on whether or not their market wage offer exceeds their reservation
wage, which in turn may depend on their past participation state. Suppose Yt is the t-th
period participation decision, Wt is the wage, and W ∗

0t is a reservation wage. Then period
t participation decision can be formulated by

Yt = 1(Wt > W ∗
0t − γYt−1) (7.24)

where 1(·) denotes an indicator function that is equal to 1 if the expression is true and 0
otherwise. An empirical reduced form specification for equation (7.24) is the following

Yit = 1(X ′
itβ + γYt−1 + Uit + ξit > 0) ∀i = 1, ..., N ; t = 1, ..., T − 1

where Xit is a vector of observed demographic and family structure variable Uit captures
the effects of unobserved factors, and β and γ are parameters. There are two latent sources
for the unobserved term Uit:

Uit = Vi + ρεit−1

where Vi is an individual-specific component, which captures unobserved time invariant
factors possibly correlated with the time-varying X ′

its such as skill level or motivation; εit is
a serially correlated error term, which captures factors such as transitory wage movements.

In order to provide comparison of the estimators developed in this paper and by Hyslop
(1999), we also use the data related to waves 12-19 of the Michigan Panel Survey of Income
Dynamics from the calendar years 1979-85 to study married women’s employment decisions.
The seven-year sample consists of women aged 18-60 in 1980, continuously married, and
the husband is a labor force participant in each of the sample years. A woman is defined
to be a labor market participant if she works for money any time in the sample year.27 We
obtain a sample having 1752 married women.28

As the identification of the models hinges on assumptions in Section 7.1.3, a careful dis-
cussion of them in this labor force application is necessary, while we realize that testing these
assumptions is not feasible as discussed before. Assumption 7.1.1 is a model specification

27A standard definition of a participant is that an individual reports both positive annual hours worked
and annual earnings. Hyslop (1995) provided a description of the extent of aggregation bias which results
from ignoring intra-year labor force transition.

28Hyslop (1995) obtains a sample consisted of 1812 observations. The descriptive statistics of our sample
is very close to Hyslop (1995).
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and it implies that regardless of whatever is in Xit, Yit−1, and Uit, enough information has
been included so that further lags of participation decision and the explanatory variables
including nonlabor income, fertility status, etc, do not matter for explaining the current
participation decision Yit directly. Assumption 7.1.3 imposes functional form restrictions
on the covariate evolution and the initial joint distribution. Assumption 7.1.4 in the empir-
ical application may be E [I (Yit = 0) |xit, yit−1, uit] = Fξit

[− (x′
itβ + γyit−1 + uit)] , which

is decreasing in uit. Since uit can represent or contain unobserved heterogeneity such as
individual ability or motivation, the assumption suggests that the conditional expectation
of absence from labor force decreases with ability or motivation. Our choice of G in As-
sumption 7.1.5 is the mode since the covariate Xit contains income variables. In Current
Population Survey (CPS), it was found that the mode of misreported income conditional on
true income is equal to the true income (see Bound and Krueger (1991) and Chen, Hong,
and Tarozzi (2008)). Using the mode condition may relieve concerns on measurement er-
rors. Obviously, this is not the only choice of the functional G. As discussed before, we
may use mean or median as well.

We then focus on Assumption 7.1.2. The discussion of the assumption in Section 7.1.3
suggests that it imposes the key restriction that conditional on Xit and Uit, Xit+1 is in-
dependent of the exogenous shock ξit and the lagged effects of Yit enter the evolution of
Xit+1 through Uit. The regressors of interest in this empirical application are the nonlabor
income variables and the fertility variables. There are several scenarios for the exogenous
participation shock ξit. First, if ξit denotes measurement error, then the conditional inde-
pendence between ξit and the future nonlabor income and fertility variables is plausible.
Second, if ξit represents luck in labor markets such as unexpected change of child-care cost
or fringe benefit for married women from working, the assumption rules out the immedi-
ate effect of the current shock ξit on the future nonlabor income and fertility variables.
This implies that married women do not adjust their nonlabor income and fertility vari-
ables to the latest participation shock ξit but consider all other past period information. If
there was a negative shock on participation, married women’s nonlabor income and fertility
decisions would wait one period to respond to it. Therefore, Assumption 7.1.2 may be
plausible in our model of the intertemporal labor force participation behavior of married
women. Nevertheless, Assumption 7.1.2 does rule out the possible correlation between the
fertility decisions in Xit+1 and a negative shock on labor force participation ξit even con-
ditioning on the fertility decisions in the previous period in Xit. While the lagged effects
of Yit enter the evolution of Xit+1 indirectly here, our identification strategy still applies
with fXit+1|Yit,Xit,Yit−1,Xit−1,Uit

= fXit+1|Xit,Yit−1,Uit
in Assumption 7.1.2 if Yit−1 has direct

influence on Xit+1. This alternative specification implies that the labor force participation
in period t− 1 affect married women’s future nonlabor income and fertility decisions.

We then apply the sieve MLE method introduced in Section 7.1.4 & 7.1.5 and maintain
a single-index form and a mode condition. The estimation results for the various models
of labor force participation are presented in Table 7.5 which includes estimates from static
probit models with random effect (column 1), a maximum simulated likelihood (MSL) es-



7. APPLICATIONS IN REDUCED-FORM ECONOMETRICS ⇑ 259

timator29 (column 2), and the sieve MLE estimator (column 3) for dynamic models. All
specifications include unrestricted time effects, a quadratic in age, race, years of education,
permanent and transitory nonlabor income ymp & ymt, current realizations of the number
of children aged 0-2, 3-5, and 6-17, and lagged realizations of the number of children aged 0-
2.30 While the first two estimators are estimated using full seven years of data, the last one
is estimated over three periods of data. In addition, the last estimator is for the dynamic
model without an initial conditions specification. The static probit model is estimated
by MSL with 200 replications. It allows for individual-specific random effects but ignores
possible dynamic effects of the past employment and potential correlation between the un-
observed heterogeneity and the regressors. The estimation results of coefficients and APEs
indicate that permanent nonlabor income has a significantly negative effect, transitory in-
come reduces the contemporaneous participation, and preschool children have substantially
negative effect. In addition, the variance of unobserved heterogeneity is 0.786. We now
turn to dynamic specifications. The specifications in the MSL estimator contain random
effects, a stationary AR(1) error component, and first-order state dependence (SD(1)). The
estimated coefficients and APEs share a similar pattern. The APE estimates show a large
and significant first-order state dependence effect reduces the labor force participation prob-
ability by about 0.325. The addition of SD(1) and AR(1) error component greatly reduced
the effects of nonlabor income variables (-0.002 & -0.001) and the contemporaneous fertility
variables like #Kid3-5t and #Kid6-17t. But the estimated effects of younger kids in the
past and current periods #Kid0-2t−1 and #Kid0-2t have stronger negative effects on the
probability of women’s participation decisions (-0.036 & -0.112). Including state dependence
and serial correlation error component reduce the error variance (0.313) due to unobserved
heterogeneity. The estimated AR(1) coefficient ρ is -0.146.31

29A detailed discussion of MSL estimators can be found in Hyslop (1999). There are more specifications
in the paper. Here we only compare the models allowing the three sources of persistence.

30The labor earnings of the husband are used as a proxy for nonlabor income. Permanent nonlabor income
ymp is estimated by the sample average, and transitory income ymt is measured as deviations from the sample
average

31A correlated random-effects (CRE) is adopted in Hyslop (1999) to test the exogeneity of fertility with
respect to participation decisions. His results show that there is no evidence against the exogeneity of fertility
decision in dynamic model specifications.
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Table 7.5: Estimates of Married Women’s Participation Out-
comes

Static MSL, RE Semi-parametric
Probit+RE AR(1)+SD(1) Probit

(1) (2) (3)
Coefficient APE Coefficient APE Coefficient APE

yt−1 – – 1.117 0.325 1.089 0.225
– – (0.528) (0.015) (0.077) (0.014)

ymp -0.312 -0.070 -0.007 -0.002 -0.221 -0.048
(0.045) ( 0.005) (0.017) (0.001) (0.012) (0.003)

ymt -0.106 -0.024 -0.004 -0.001 -0.106 -0.023
(0.026) (0.002) (0.028) (0.001) (0.056) (0.001)

#Kid0-2t−1 -0.022 -0.005 -0.117 -0.036 -0.055 -0.012
(0.010) (0.001) (0.013) (0.002) (0.048) (0.001)

#Kid0-2t -0.330 -0.070 -0.380 -0.112 -0.316 -0.065
(0.021) (0.005) (0.145) (0.006) (0.061) (0.004)

#Kid3-5t -0.400 -0.086 -0.206 -0.062 -0.137 -0.029
(0.015) (0.007) (0.027) (0.003) (0.028) (0.002)

#Kid6-17t -0.120 -0.028 -0.056 -0.018 -0.062 -0.014
(0.011) (0.002) (0.037) (0.001) (0.011) (0.001)

Cov. Parameters
σ2
v 0.786 – 0.313 – – –

(0.071) – (0.323) – – –
ρ – – -0.146 – – –

– – (0.140) – – –
Note: Bootstrap (simulation) standard errors are reported in parentheses, using 100 bootstrap repli-
cations. The models in the first two columns are estimated using full seven years of data but the
last two columns are estimated over three-period data. APEs are reported by taking derivatives or
differences of ASF at the sample mean of (xt, yt−1).

The results also show first-order state dependence has a significant positive effect on
the probability of participation (0.225). There exists a strong dependence between married
women’s current labor force participation and past labor force participation, and relaxing
the initial conditions assumption increase the negative effects of nonlabor income variables
and their significance in the dynamic models. Permanent income and transitory income
both reduce the probability of participation but the effect of permanent nonlabor income
has substantially greater magnitude.

The fertility variables in the estimation are generally similar to those in column (1)
and (2) but with smaller magnitude. That is: each of them has a significantly negative
effect on married women’s current labor force participation status, and younger children
have stronger effect than older. In our semi-parametric probit estimator, the unobserved
heterogeneity and the AR(1) component have been mixed into the unobserved covariate
Uit. They are not identified so there are not any estimation results.

In comparison to the results across specifications allowing for CRE, AR(1), and SD(1),
using unspecified CRE and avoiding initial conditions have significant effect on the esti-
mation. The APE estimates find a larger significant negative effects on nonlabor income
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variables (-0.048 and -0.002 v.s. -0.023 and -0.001, respectively) and negative effects of
children age 0-2 in the current period and past period which decreases by 42% (from -0.112
to -0.065) and decline by 66% (from -0.036 to -0.012) respectively.

7.1.7 Identification in the Discrete Case

We will show how to utilize the identification techniques in Section 2 for the discrete case.
The discrete case refers to that the variables Xit and Uit is discrete:

Xit ∈ Xt ≡ {1, 2, ..., J1} and Uit ∈ U ≡ {1, 2, ..., J2}.

In this finite dimensional discrete example, linear integral operators are matrices, which
might be useful to give some intuition about how the identification is achieved. For simplic-
ity, assume that J1 = J2 = J . Based on Eq. (7.13) which is the consequence of Assumption
7.1.1 and 7.1.2, the key equation of the discrete case is:

fXit+1,Yit,Xit,Yit−1,Xit−1 =
J∑

Uit=1
fXit+1|Xit,Uit

fYit|Xit,Yit−1,Uit
fXit,Yit−1,Xit−1,Uit . (7.25)

Given (yit, xit, yit−1), define J-by-J matrices

LXit+1,yit,xit,yit−1,Xit−1 =
[
fXit+1,Yit,Xit,Yit−1,Xit−1(u, yit, xit, yit−1, x)

]
u,x

LXit+1,xit,yit−1,Xit−1 =
[
fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x)

]
u,x

LXit+1|xit,Uit
=

[
fXit+1|Xit,Uit

(x|xit, u)
]
x,u

Lxit,yit−1,Xit−1,Uit =
[
fXit,Yit−1,Xit−1,Uit(xit, yit−1, x, u)

]
u,x

and a J-by-J diagonal matrix

Dyit|xit,yit−1,Uit
=

 fYit|Xit,Yit−1,Uit
(yit|xit, yit−1, 1) 0 0
0 . . . 0
0 0 fYit|Xit,Yit−1,Uit

(yit|xit, yit−1, J)

 .
Using these matrixes, Eq. (7.25) can be expressed into a matrix notation as

LXit+1,yit,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Dyit|xit,yit−1,Uit

Lxit,yit−1,Xit−1,Uit . (7.26)

Integrating out Yit in Eq. (7.25) leads to

fXit+1,Xit,Yit−1,Xit−1 =
J∑

uit=1
fXit+1|Xit,Uit

fXit,Yit−1,Xit−1,Uit . (7.27)

which is equivalent to

LXit+1,xit,yit−1,Xit−1 = LXit+1|xit,Uit
Lxit,yit−1,Xit−1,Uit . (7.28)
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Assumption 7.1.3 guarantees that the above matrix LXit+1,xit,yit−1,Xit−1 is invertible. It
follows that

LXit+1,yit,xit,yit−1,Xit−1L
−1
Xit+1,xit,yit−1,Xit−1

= LXit+1|xit,Uit
Dyit|xit,yit−1,Uit

L−1
Xit+1|xit,Uit

.

The observed matrix on the LHS has a matrix factorization, the product of a diagonal
matrix with a matrix of eigenvectors. Uniqueness of the factorization requires the distinct
eigenvalues and normalization of the unobserved covariate Uit. Assumption 7.1.4 and 7.1.5
are imposed to make these conditions hold. Since the eigenvalues and eigenvectors in the
matrix factorization are fYit|Xit,Yit−1,Uit

and fXit+1|Xit,Uit
respectively, the identification of

the model is reached. By Eq. (7.26), the initial joint distribution fXit,Yit−1,Xit−1,Uit is also
identified.

7.2 Misclassification in Treatment Effect Models

7.2.1 Treatment Effect Models

This and the next few sections provide a brief introduction of causal Inference in a treatment
effect framework.32 We are interested in estimating the effect of an intervention on an
outcome variable, or vector of outcome variables. Examples of interventions and outcome
variables may be

Treatment D Outcome variable Y
Cancer treatment Survival time of patients
Job training program Earnings after training
Change in class size Students’ test scores

Here we only consider a 0-1 binary D. A simple regression model is

Y = α+ βD + ε

This OLS estimator of β is

β̂ =
∑N
i=1 YiDi∑N
i=1Di

−
∑N
i=1(1−Di)Yi∑N
i=1(1−Di)

There are various problems with this approach. First, D and ε may be correlated.
Second, the treatment effects may be heterogeneous, i.e., β need not be the same for every
member of the population. Third, the OLS estimator is the difference between the average
outcome in the treatment and the control group. To analyze this, we consider the so-called
Holland-Rubin causal model.

Consider a population with members i = 1, . . . , N . For each member of the population
32This part is based on, my thesis advisor, Geert Ridder’s lecture notes. All errors are still mine.
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we consider {Yi, Xi, Di}, i = 1, . . . , N with

Y = Outcome variable
D = Treatment indicator
X = Vector of other variables (7.29)

Potential or latent outcomes

Yi(0) = Outcome if i is not treated
Yi(1) = Outcome if i is treated

Y (1) is called the treated outcome and Y (0) the control outcome. And the treatment effect
for individual i is defined as

Yi(1)− Yi(0)

However, for each i we cannot observed both Yi(0) and Yi(1), but only

Yi = DiYi(1) + (1−Di)Yi(0)

In other words: For each individual i, either Yi(0) (if Di = 1) or Yi(1) (if Di = 0) is missing.
Furthermore, we assume that Xi is always observed and unaffected by treatment. We
refer to such variables as covariates, regressors, or independent variables. We also assume
treatment of i only affects i and not j ̸= i.

Since the individual treatment effect Yi(1) − Yi(0) cannot be estimated, the best we
can hope for is to recover the marginal distributions of Y (1) and Y (0) or quantities that
can be found from these marginal distributions, i.e. parameters defined on these marginal
distributions. We can also derive bounds on the cdf and quantiles of the distribution of
individual treatment effects. There are two popular parameters of interest:

• Average Treatment Effect (ATE):

E[Y (1)− Y (0)] = 1
N

N∑
i=1

(Yi(1)− Yi(0)) = 1
N

N∑
i=1

Yi(1)− 1
N

N∑
i=1

Yi(0)

• Average Treatment Effect on the Treated (ATET)

E[Y (1)− Y (0)|D = 1] = 1∑N
i=1Di

N∑
i=1

Di[Yi(1)− Yi(0)]

=
∑N
i=1DiYi(1)∑N

i=1Di

−
∑N
i=1DiYi(0)∑N

i=1Di

=
∑N
i=1DiYi∑N
i=1Di

−
∑N
i=1DiYi(0)∑N

i=1Di

(7.30)

ATE and ATET are the most common parameters. Note that the ATE is the only feature
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of the distribution of Y (1)− Y (0) that can be recovered from the marginal distributions of
Y (0) and Y (1).

The observed treatment effect, i.e., the simple OLS, can be decomposed as follows:

E(Y |D = 1)− E(Y |D = 0)
= E(Y (1)|D = 1)− E(Y (0)|D = 0)
= E(Y (1)− Y (0)|D = 1) + E(Y (0)|D = 1)− E(Y (0)|D = 0) (7.31)

where E(Y (1) − Y (0)|D = 1) is the ATET and E(Y (0)|D = 1) − E(Y (0)|D = 0) is the
so-called selection effect. The key to estimation of ATE or ATET is to find a way to deal
with the selection effect, E(Y (0)|D = 1)− E(Y (0)|D = 0).

There are a few existing solutions, or assumptions, that are known to work

1. Direct randomization,

2. Conditional randomization: Unconfounded assignment or conditional independence,

3. Indirect randomization: Instrumental variables,

4. Local randomization: Regression discontinuity,

5. Second-order randomization: Difference-in-difference.

7.2.2 Direct Randomization

Randomized assignment of treatment means

{Y (0), Y (1)}⊥D

This implies mean independence

E[Y (0)|D = 1] = E[Y (0)]

E[Y (1)|D = 1] = E[Y (1)]

Hence
E[Y (0)|D = 1]− E[Y (0)|D = 0] = 0

i.e. the selection effect is 0. In addition,

E[Y (1)− Y (0)|D = 1] = E[Y (1)− Y (0)]

That means ATET=ATE.
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7.2.3 Conditional Randomization: Unconfounded Assignment

Unconfounded assignment means that

{Y (1), Y (0)}⊥D|X.

This assumption implies that X contains all variables that affect both the selection for
treatment and the outcomes. With unconfounded assignment {Y (1), Y (0)}⊥D|X, we have

E(Y (0)|X,D = 1)− E(Y (0)|X,D = 0) = 0

and
E(Y (1)− Y (0)|X,D = 1) = E(Y (1)− Y (0)|X)

Hence
E(Y |X,D = 1)− E(Y |X,D = 0) = E(Y (1)− Y (0)|X)

In other words, observed treatment effect given X is equal to the ATE and ATET given X.
By the law of iterated expectations, the unconditional treatment effects are

E[Y (1)− Y (0)] = Ex [ E(Y (1)− Y (0)|X)]

and
E[Y (1)− Y (0)|D = 1] = Ex [ E(Y (1)− Y (0)|X) |D = 1]

Note that in general ATE ̸= ATET.
Another issue is that non-parametric regressions E(Y |X,D = 1), E(Y |X,D = 0) suffer

from curse of dimensionality. The question is whether we can summarize X is a lower
dimension. Define

p(X) = Pr(D = 1|X)

This is the probability of selection or propensity score. Rosenbaum and Rubin (1983) proved
two results

• Balancing score property

• Sufficiency of the propensity score for unconfoundedness

Balancing score property or sufficiency of the propensity score for D

D⊥X|p(X)

Proof: Because
X = x⇒ p(X) = p(x)

we have
Pr(D = 1|X = x, p(X) = p(x)) =

= Pr(D = 1|X = x) = p(x)
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By the law of iterated expectations

Pr(D = 1|p(X) = p(x)) =

= Ex [Pr(D = 1|X, p(X) = p(x))|p(X) = p(x)] =

= Ex [p(X)|p(X) = p(x)] = p(x)

Hence
Pr(D = 1|X = x, p(X) = p(x)) =

= Pr(D = 1|p(X) = p(x))

so that D⊥X|p(X) 2.

Implication: In regression of D on X, p(X), the coefficients of X are 0 (or not significantly
different from 0).

Unconfounded assignment given the propensity score

Y (0), Y (1)⊥D|X ⇒ Y (0), Y (1)⊥D|p(X)

Proof: We have
Pr(D = 1|Y (0), Y (1), p(X) = p(x)) =

= Ex [Pr(D = 1|Y (0), Y (1), p(X) = p(x), X)|Y (0), Y (1), p(X) = p(x)] =

= Ex [Pr(D = 1|Y (0), Y (1), X)|Y (0), Y (1), p(X) = p(x)] =

= Ex [p(X)|Y (0), Y (1), p(X) = p(x)] = p(x) =

= Pr(D = 1|p(X) = p(x))

2.
By this result the observed treatment effect given p(X) is

E(Y |p(X), D = 1)− E(Y |p(X), D = 0) =

= E(Y (1)− Y (0)|p(X), D = 1)+

+E(Y (0)|p(X), D = 1)− E(Y (0)|p(X), D = 0) =

= E(Y (1)− Y (0)|p(X))

Define P = p(X), then

ATE = Ep [E(Y |P,D = 1)− E(Y |P,D = 0)]
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and
ATET = Ep [E(Y |P,D = 1)− E(Y |P,D = 0)|D = 1]

E(Y |P,D = 1), E(Y |P,D = 0) are non-parametric regressions on one variable P instead of
a vector X.

Based on these observations, we can propose a simple non-parametric estimator: propen-
sity score matching. We subdivide interval [0, 1] into 0 = p0 < p1 < p2 < . . . < pK−1 <

pK = 1 and compute

mk1 =
∑N
i=1DiI(pk−1 ≤ Pi < pk)Yi∑N
i=1DiI(pk−1 ≤ Pi < pk)

mk0 =
∑N
i=1(1−Di)I(pk−1 ≤ Pi < pk)Yi∑N
i=1(1−Di)I(pk−1 ≤ Pi < pk)

Then

ATE =
K∑
k=1

∑N
i=1 I(pk−1 ≤ Pi < pk)

N
(mk1 −mk0)

ATET =
∑N
i=1 YiDi∑N
i=1Di

−
K∑
k=1

∑N
i=1 I(pk−1 ≤ Pi < pk)

N
mk0

Estimation as Missing Data Models

Key problem for causal inference is the fact that the counterfactual outcome is missing: for
the treated we do not observe the non-treated outcome Y0 and for the non-treated we do
not observed the treated outcome Y1. Analogy with the missing data problem where we
observe {D,D × Y,X}, D is the observation indicator, and 0 is the label for missing Y . If
Y ≡ Y1, then we do not observe Y1 for the non-treated D = 0. Hence, the causal inference
problem is equivalent to two missing data problems with Y ≡ Y1 and Y ≡ Y2, respectively.
The assumption of unconfounded assignment is equivalent to the assumption

Y⊥D|X

i.e. the assumption that Y is Missing-at-Random (MAR). The parameter of interest in the
missing data problem is E(Y ), and the question becomes: what is the best estimator of
E(Y ) if we observe {D,D × Y,X}.

If we observe Y directly, i.e. if we have a random sample Yi for i = 1, 2, . . . , N , then the
sample mean

1
N

N∑
i=1

Yi

is the (semi-)parametrically efficient estimator of E(Y ) (if E(Y 2) <∞, i.e. it has the small-
est variance. Same argument as sufficiency of propensity score for treatment assignment
gives

D⊥Y |X ⇒ D⊥Y |p(X)
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with p(X) = Pr(D = 1|X).

Using this, and the law of iterated expectations, we have the identity for E(Y )

E(Y ) = Ep(X)[EY (Y |p(X))] = (7.32)

= Ep(X)[EY (Y |D = 1, p(X))]

An alternative identity is

E

(
D × Y
p(X)

)
= ED,p(X)

[
EY

(
D × Y
p(X)

∣∣∣D, p(X)
)]

= (7.33)

= Ep(X)

[
EY (Y |p(X)) Pr(D = 1|p(X))

p(X)

]
=

= Ep(X) [EY (Y |p(X)] = E(Y )

because by D⊥X|p(X), Pr(D = 1|X, p(X)) = Pr(D = 1|X) = p(X).
The two identities correspond to two methods to estimate E(Y )

• Regress Y in the sample, i.e. given D=1, on p(X). Average the predicted value
E(Y |D = 1, p(X)) over p(X). This is the imputation estimator with imputed missing
potential outcomes

Ŷi(1) = Ê(DY |Xi)
p̂(Xi)

,

Ŷi(0) = Ê((1−D)Y |Xi)
1− p̂(Xi)

.

Hahn (1998) shows that this imputation leads to a semi-parametrically efficient esti-
mator of treatment effects.

• Weight the observed Y by 1
p(X) , i.e. the inverse probability of observation, and take

the average. This the weighting estimator.

For a sample {Di, Di.Yi, Xi}, i = 1, . . . , N , the estimator is

τ̂ = 1
N

N∑
i=1

Di × Yi
p̂(Xi)

Note that the weight must be estimated. Hirano et al. (2003) show that this estimator
leads to an semiparametric efficient estimator of treatment effects, i.e.,

1
N

N∑
i=1

(
Di × Yi
p̂(Xi)

− (1−Di)× Yi
1− p̂(Xi)

)
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7.2.4 Indirect Randomization: Instrumental Variables

A simple linear regression model of relation between treatment and outcome is

Y = α+ βD + u.

This corresponds to constant treatment effect model with potential outcomes

Y0 = α+ u

Y1 = α+ β + u

The constant ATE=ATET is β if D⊥u or E(u|D = 0) = E(u|D = 1) Then the OLS
estimator of β

β̂ =
∑N
i=1DiYi∑N
i=1Di

−
∑N
i=1(1−Di)Yi∑N
i=1(1−Di)

is unbiased.
When the treatment is endogenous or a self-selected choice, we have

E(u|D = 0) ̸= E(u|D = 1)

i.e., the regressor D is endogenous. One solution is to introduce an instrument. We consider
an instrument Z, which is a 0-1 variable with

• E(u|Z = 1) = E(u|Z = 0)

• Pr(D = 1|Z = 0) ̸= Pr(D = 1|Z = 1)

Then the IV or 2SLS estimator of β is

β̂IV =

∑N

i=1 YiZi∑N

i=1 Zi

−
∑N

i=1 Yi(1−Zi)∑N

i=1(1−Zi)∑N

i=1 DiZi∑N

i=1 Zi

−
∑N

i=1 Di(1−Zi)∑N

i=1(1−Zi)

This converges in probability to

plim β̂IV = E(Y |Z = 1)− E(Y |Z = 0)
Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0) =

= βE(D|Z = 1)− βE(D|Z = 0)
E(D|Z = 1)− E(D|Z = 0) = β

One application is Angrist (1990), which investigates the effect of participation in Viet-
nam war on lifetime earnings . The treatment is

D = 1 if in Vietnam war
= 0 if not
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The outcome variable is
Y = lifetime earnings

The observed effect is
E(Y |D = 1)− E(Y |D = 0)

But this may not be equal to ATE or ATET because

E(Y |D = 1)− E(Y |D = 0)
= E(Y1 − Y0|D = 1) + E(Y0|D = 1)− E(Y0|D = 0) (7.34)

The first term on the right-hand side is ATET, the second term is the selection effect. For
the constant treatment effect model this is equal to

β + E(u|D = 1)− E(u|D = 0)

The instrument Z is the randomized treatment assignment

• Conscription with all men born in 1950-1953 potential conscripts.

• Not all men in birth cohort needed.

• For reasons of equity all potential conscripts should have same chance of being drafted:
Draft lottery.

• Example: 1971 lottery for men born in 1951.

– In December 1970 random numbers 1-365 assigned to days in 1971, e.g. January
1 is 33, January 2 is 288, etc.

– Based on need of army, all men born on a date with a random number below
125 were drafted.

The instrument is defined as follows:

Z = 1 if draft eligible
= 0 if not

Note that

Z = 1, D = 0 → draft avoiders
Z = 0, D = 1 → volunteers

In this application, it is obvious that

Z⊥{Y0, Y1}

That data also show
Pr(D = 1|Z = 1) ̸= Pr(D = 1|Z = 0)
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Table 7.6: Endogenous treatment with randomized assignment as IV
Randomized assignment

Z = z
z = 0 z = 1 Type

Endogenous D(z) = 0 D(z) = 0 Never takers
treatment D(z) = 0 D(z) = 1 Compliers
or D(z) = 1 D(z) = 0 Deniers
choice D(Z) D(z) = 1 D(z) = 1 Always takers

Hence we use the IV estimator with the 0-1 Z as instrument.
Until now we have been considering constant treatment effect, what would the IV es-

timator estimate if the treatment effects are heterogeneous? We consider the case where
treatment Z is randomly assigned and individuals make the choice of whether to take
the treatment, i.e. there is non-compliance. We define Y0, Y1 as potential outcomes ,
D0 = D(z = 0), D1 = D(z = 1) as potential treatments for Z = z. Observed treatment or
choice is

D = ZD1 + (1− Z)D0

In general, Angrist et al. (1996) suggest that there are four types in the population as shown
in Table 7.6

We assume

Z⊥{Y0, Y1, D0, D1}

We have

Y = DY1 + (1−D)Y0 =

= (ZD1 + (1− Z)D0)Y0 + (1− ZD1 − (1− Z)D0)Y0

so that

Y |Z = 1 d= Y0 +D1(Y1 − Y0)|Z = 1

Y |Z = 0 d= Y0 +D0(Y1 − Y0)|Z = 0

Hence, the (reduced form) effect of Z on Y is

E(Y |Z = 1)− E(Y |Z = 0) = E [(D1 −D0)(Y1 − Y0)] =

= E(Y1 − Y0|D1 −D0 = 1) Pr(D1 −D0 = 1)−

−E(Y1 − Y0|D1 −D0 = −1) Pr(D1 −D0 = −1)
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Monotonicity
D1 ≥ D0 or D1 ≤ D0

Hence for all members of population i = 1, . . . , I

D1i ≥ D0i or D1i ≤ D0i

If Z is treatment assignment and D treatment choice, then this is equivalent to

• i chooses non-treatment when assigned treatment, i.e. D1i = 0 ⇒ i chooses non-
treatment when not assigned treatment, i.e. D0i = 0

• i chooses treatment when not assigned treatment, i.e. D0i = 1 ⇒ i chooses treatment
when assigned treatment, i.e. D1i = 0

Because this involves counterfactual treatments, monotonicity not testable. Assume D1 ≥
D0, i.e. there is no “Deniers". Then

E(Y |Z = 1)− E(Y |Z = 0) = E [(D1 −D0)(Y1 − Y0)] =

= E(Y1 − Y0|D1 −D0 = 1) Pr(D1 −D0 = 1)

Hence

E(Y1 − Y0|D1 −D0 = 1) = E(Y |Z = 1)− E(Y |Z = 0)
Pr(D1 −D0 = 1)

Because D1 −D0 is 0-1

Pr(D1 −D0 = 1) = E(D1 −D0) =

= Pr(D1 = 1)− Pr(D0 = 1)

Hence

E(Y1 − Y0|D1 = 1, D0 = 0) = E(Y |Z = 1)− E(Y |Z = 0)
Pr(D1 = 1)− Pr(D0 = 1)

The left-hand side is the so-called Local Average Treatment Effect (LATE).

Consider potential outcomes

Y0 = α+ u

Y1 = α+ β + η + u

with E(η) = 0. Individual treatment effect is

Y1 − Y0 = β + η
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Assume

η⊥{D0, D1} (7.35)

i.e. if D0, D1 are treatment choices (for Z = 0, 1), then these choices are independent of the
effect heterogeneity, i.e. units do not choose on their individual effect.

Under this assumption

E(Y |Z = 1)− E(Y |Z = 0) = E [(D1 −D0)(Y1 − Y0)] =

βE(D1 −D0) + E [(D1 −D0)η] =

β(Pr(D1 = 1)− Pr(D0 = 1))

Because D is a function of D0, D1, Z also

β = E(Y1 − Y0) = E(Y1 − Y0|D = 1)

Hence LATE=ATE=ATET. This is not true if the assumption in equation (7.35) does not
hold!

IV and Marginal Treatment Effects

Our latent variable model for potential outcomes and treatment assignment is specified as
follows:

Y0 = µ0 + U0

Y1 = µ1 + U1

D∗ = γ0 + γ1Z − UD
D = I(D∗ ≥ 0)

The random errors U0, U1, UD have a joint distribution with U0, UD and U1, UD correlated.
Because either Y0 or Y1 are observed, we have no information on the joint distribution of
U0, U1. The individual treatment effect equals

Y0 − Y1 = (µ0 − µ1) + (U1 − U0)

with U1 − U0 being the effect heterogeneity. The ATE is

E(Y1 − Y0) = µ1 − µ0
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And the ATET is

E(Y1 − Y0|D = 1) = µ1 − µ0 + E(U1 − U0|UD ≤ γ0 + γ1Z)

Note that
D(z) = I(UD ≤ γ0 + γ1z)

i.e. assignment for different levels of z. We change the notation from Dz to D(z). If z′ > z

and γ1 > 0, then LATE is

E(Y1 − Y0|D(z) = 0, D(z′) = 1) = µ1 − µ0+

+E(U1 − U0|γ0 + γ1z < UD ≤ γ0 + γ1z
′)

Note that {D(z) = 1, D(z′) = 0} ⇔ {UD ≤ γ0 + γ1z, UD > γ0 + γ1z
′}. This latter event is

an empty set, which implies that in latent variable model monotonicity always holds.
The marginal treatment effect (MTE) is defined as

E(Y1 − Y0|UD = u) = µ1 − µ0 + E(U1 − U0|UD = u).

Below we should how it is related with ATE, ATET, and LATE. Note that

f(v2|v1 ≤ V1 ≤ v1 + ε) =
∫ v1+ε
v1

f(s, v2)ds∫ v1+ε
v1

f(s)ds

For ε ↓ 0

lim
ε↓0

f(v2|v1 ≤ V1 ≤ v1 + ε) = f(v2|v1)

Hence for LATE

lim
z′−z↓0

E(Y1 − Y0|D(z) = 0, D(z′) = 1) =

= µ1 − µ0 + E(U1 − U0|UD = γ0 + γ1z)

This is the MTE for UD = γ0 + γ1z, which is the ATE for units that are at the margin
between treatment and non-treatment. We may integrate the MTE to obtain LATE.

E(Y1 − Y0|D(z) = 0, D(z′) = 1) = µ1 − µ0+

+
∫ γ0+γ1z′

γ0+γ1z
E(U1 − U0|UD = u)fD(u|γ0 + γ1z ≤ UD ≤ γ0 + γ1z

′)du

For ATET
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E(Y1 − Y0|D(z) = 1) = µ1 − µ0+

+
∫ γ0+γ1z

−∞
E(U1 − U0|UD = u)fD(u|UD ≤ γ0 + γ1z)du

For ATE

E(Y1 − Y0) = µ1 − µ0+

+
∫ ∞

−∞
E(U1 − U0|UD = u)fD(u)du = µ1 − µ0

because E(U1−U0) = 0. If E(U1−U0|UD = u) = 0, i.e. UD is mean independent of U1−U0,
then ATE=ATET=LATE=MTE.

Furthermore, because

P (z) = Pr(D = 1|Z = z) = FD(γ0 + γ1z)

we may have
γ0 + γ1z = F−1

D (p(z))

All expressions for treatment effects above are functions of γ0 +γ1z and hence of p(z). This
property of the latent variable selection model is called index sufficiency, which is compa-
rable with the sufficiency of the propensity score for unconfounded treatment assignment.
However, index sufficiency is a restriction. There are models in which index sufficiency does
not hold.

Under index sufficiency, we may estimate the treatment effects based on the estimation
of MTE. We consider ATE

E(Y1 − Y0) =∫ ∞

−∞
(µ1 − µ0 + E(U1 − U0|UD = u)) fD(u)du =

=
∫ ∞

−∞
MTE(u)fD(u)du =

∫ 1

0
MTE(p)dp

ATET given Z = z

E(Y1 − Y0|D(z) = 1, Z = z) =∫ γ0+γ1z

−∞
(µ1 − µ0 + E(U1 − U0|UD = u)) .

.fD(u|UD ≤ γ0 + γ1z)du =
∫ p(z)

0
MTE(p) 1

p(z)dp

so that ATET

E(Y1 − Y0|D = 1) = EZ

[∫ p(Z)

0
MTE(p) 1

p(Z)dp |D = 1
]
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If the instrument z varies in z0 ≤ z ≤ z1, then p(z0) ≤ p ≤ p(z1). We can estimate
E(Y |p(Z) = p) on this interval by (one-dimensional) non-parametric regression, and the
derivative w.r.t p is MTE(p). For ATE we need MTE(p) for 0 ≤ p ≤ 1 and for ATET we
need MTE(p) for 0 ≤ p ≤ p(z1)

The key issue is not variation in p, but the extremes of p. Assume z0, z1 with p(z0) = 0
and p(z1) = 1. Then

E(Y |Z = z0) = p(z0)E(Y1|D = 1, Z = z0)+

+(1− p(z0))E(Y0|D = 0, Z = z0) =

= E(Y0|D(z0) = 0, Z = z0) = E(Y0|Z = z0) = E(Y0)

Analogously, we have E(Y |Z = z1) = E(Y1) so that we identify ATE.
If only p(z0) = 0, then

E(Y |Z = z0) = E(Y0)

and because

E(Y0) = E(Y0|D = 1) Pr(D = 1)+

+E(Y0|D = 0) Pr(D = 0)

we have

E(Y0|D = 1) = E(Y0)− E(Y |D = 0) Pr(D = 0)
Pr(D = 1)

Because E(Y |D = 1) = E(Y1|D = 1) we identify ATET.

However, what to do if we only have 0 < p(z0) ≤ p ≤ p(z1) < 1? One solution is to
make distributional assumptions U0

U1
UD

 ∼ N
0,

 σ2
0 . ρ0σ0
. σ2

1 ρ1σ1
ρ0σ0 ρ1σ1 1


Then

E(U1 − U0|UD) = (ρ1σ1 − ρ0σ0)UD

Hence
MTE(p) = (ρ1σ1 − ρ0σ0)Φ−1(p)

The parametric assumption allows us to extrapolate MTE(p) from any small interval to
[0, 1]. LaLonde (1986) shows that this is not a good idea, which stimulated the nonpara-
metric estimation of treatment effect models, such as Dehejia and Wahba (1999).
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Another solution is to estimate bounds on the treatment effects. Suppose

YL ≤ Y0, Y1 ≤ YH

then
YL − YH ≤ MTE(p) = E(Y1 − Y0|p) ≤ YH − YL

and
ATE =

∫ p(z0)

0
MTE(p)dp+

∫ p(z1)

p(z0)
MTE(p)dp+

∫ 1

p(z1)
MTE(p)dp

Hence
(YL − YH)[p(z0) + (1− p(z1))] +

∫ p(z1)

p(z0)
MTE(p)dp ≤ ATE ≤

≤ (YH − YL)[p(z0) + (1− p(z1))] +
∫ p(z1

p(z0)
MTE(p)dp

7.2.5 Local Randomization: Regression Discontinuity

Identification of treatment effects requires an exogenous change in the treatment decision,
which is independent of the outcomes. In this section, we consider the case where the
treatment assignment changes discontinuously at Z = z0. The continuity of the outcomes
then brings in identification of treatment effects around the discontinuous point. There are
two types of regression discontinuity designs as follows:

• Sharp design: D = I(Z ≥ z0)

• Fuzzy design: p(z0+) ̸= p(z0−), where

p(z0+) ≡ lim
z↓z0

Pr(D = 1|Z = z)

p(z0−) ≡ lim
z↑z0

Pr(D = 1|Z = z)

.

For simplicity, we assume that the treatment effect is constant, i.e., Y1 − Y0 = β, which
implies

Y = Y0 + βD.

The key assumption for regression discontinuity design is that

Assumption 7.2.1 E(Y0|Z = z) is continuous in z0.

We then have

E(Y |Z = z0 + ε)− E(Y |Z = z0 − ε)
= E(Y0|Z = z0 + ε)− E(Y0|Z = z0 − ε) +

+β × [E(D|Z = z0 + ε)− E(D|Z = z0 − ε)]
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For ε ↓ 0, Assumption 7.2.1 implies that

lim
ε↓0

[E(Y0|Z = z0 + ε)− E(Y0|Z = z0 − ε)] = 0.

so that

µ(z0+)− µ(z0−) ≡ lim
ε↓0

[E(Y |Z = z0 + ε)− E(Y |Z = z0 − ε)]

= β × [p(z0+)− p(z0−)] (7.36)

Therefore, the treatment effect is identified as

β = µ(z0+)− µ(z0−)
p(z0+)− p(z0−)

In fact, this is comparable with the Wald estimator with 0-1 instrument.

7.2.6 Second-Order Randomization: Difference-in-Differences

When the data contain more information, the randomization can be imposed on the second-
order variation of the data. For example, suppose we observe individuals’ behavior for dif-
ferent time periods in panel data, instead of in cross-sectional data as before. For individual
i = 1, 2, ..., N and two periods t, we observe

{Yit, Dit, Xit} t = 1, 2

We assume there are only treatment in period 2, i.e.,

D1 = 0

For simplicity, we assume constant treatment effects with potential outcomes satisfying

Yit = αt + βDit + ηi + uit, t = 1, 2

with ηi an individual effect. Notice that the treatment Dit may be correlated with the
individual effect ηi, i.e.,

Pr(Di2 = 1|ηi) ̸= Pr(Di2 = 1)

More importantly, we assume that

Assumption 7.2.2 The error term uit is independent of the treatment, i.e.,

Pr(Di2 = 1|ui1, ui2) = Pr(Di2 = 1).

To eliminate the individual effect, we take the first-difference to have

Yi2 − Yi1 = α2 − α1 + βDi2 + ui2 − ui1
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The treatment effect β can be estimated by OLS because Assumption 7.2.2 implies that

E(ui2 − ui1|Di2 = 1) = E(ui2 − ui1|Di2 = 0) = 0

The OLS estimator is unbiased for

β = E(Y2 − Y1|D2 = 1)− E(Y2 − Y1|D2 = 0)
= {E(Y2|D2 = 1)− E(Y2|D2 = 0)} − {E(Y1|D2 = 1)− E(Y1|D2 = 0)}

The first term on the right-hand side is for period 2 and the second for period 1, i.e. the
observed treatment effect for period 2 minus the observed treatment effect for period 1 (pre-
treatment). The OLS estimator for the change is the difference-in-differences or dif-in-dif
estimator. Notice that this estimator does not required panel data. A repeated cross-section
is sufficient.

If we consider the potential outcomes, we have

t = 1 Y01
t = 2 Y02 Y12

For convenience, we let D ≡ D2. In two periods, the researcher observes

Y2 = DY12 + (1−D)Y02

Y1 = Y01

The key assumption here is

Assumption 7.2.3
(Y02 − Y01) ⊥ D

or
E(Y02 − Y01|D = 1) = E(Y02 − Y01|D = 0).

This assumption means that the treatment assignment can be on basis of non-treated out-
come level, but not on basis of change in non-treated outcome. Hence

Y2 − Y1 = Y02 − Y01 +D(Y12 − Y02)

and

E(Y2 − Y1|D = 1) = E(Y02 − Y01|D = 1) + E(Y12 − Y02|D = 1)
E(Y2 − Y1|D = 0) = E(Y02 − Y01|D = 0)

with the observed difference equal to

E(Y2 − Y1|D = 1)− E(Y2 − Y1|D = 0) = E(Y12 − Y02|D = 1)

which is the ATET. Note that E(Y2 − Y1|D = 0) is the observed average change in non-
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treated outcome for the non-treated population. By the assumption this is also the unob-
served change in the average outcome in the non-treated state for the treated population.

7.2.7 Misclassification of Treatments

After the introduction of treatment effect models, this section shows how the results for
measurement error models are applicable when treatments are mismeasured. Lewbel (2007)
considers identification and estimation of the effect of a mismeasured binary regressor in a
nonparametric or semiparametric regression, or the conditional average effect of a binary
treatment or policy on some outcome where treatment may be misclassified. Let’s consider
a simplified version of the model without covariates. Define Y as the outcome variable,
T ∗ is the true binary treatment, and V is an exogenous variable. The research observes
a mismeasured binary treatment T instead of the true treatment. The key assumption is
that the variable V only affects the true treatment probability but not the treatment effect
nor misclassification probability. Lewbel (2007) imposed restrictions on the support of V ,
such as at least three values in the support, and the relationship between V and an explicit
function of mislassification probability to avoid directly imposing conditional independence.
In fact, the intuition is better captured by a 3-measurement model satisfying

f(Y, T, |V ) =
∑

T ∗∈{0,1}
f(Y |T ∗)f(T |T ∗)f(T ∗|V )

This is similar to the mean regression case in Mahajan (2006), where the key relationship
can be described as

E(Y |T, V ) = 1
f(T |V )

∑
T ∗∈{0,1}

E(Y |T ∗)f(T |T ∗)f(T ∗|V ).

In fact, Hui and Walter (1980) considers the same theoretical framework with different
interpretation, where T ∗ is the true binary indictor of whether an individual has certain
disease, Y and T are two separate diagnostic tests’ binary outcome, and V stands for
different subpopulations. In this case, the conditional independence assumptions seem very
reasonable, i.e.,

Y ⊥ T ⊥ V | T ∗.

Let Y, T, V ∈ {0, 1}. They further specify the likelihood function as follows:

f(Y, T, |V ) (7.37)
=

∑
T ∗∈{0,1}

f(Y |T ∗)f(T |T ∗)f(T ∗|V )

≡ [fY |T ∗(1|0)]Y [1− fY |T ∗(1|0)]1−Y [fT |T ∗(1|0)]T [1− fT |T ∗(1|0)]1−T [1− fT ∗|V (1|v)]
+ [1− fY |T ∗(0|1)]Y [fY |T ∗(0|1)]1−Y [1− fT |T ∗(0|1)]T [fT |T ∗(0|1)]1−T fT ∗|V (1|v)



7. APPLICATIONS IN REDUCED-FORM ECONOMETRICS ⇑ 281

Notice that fT ∗|V (1|v) stands for the probability of a diseased individual in subpopulation
V = v, fY |T ∗(1|0) is the false positive rate of test Y , and fY |T ∗(0|1) is the false negative
rate of test Y . Similarly, fT |T ∗(1|0) and fT |T ∗(0|1) are the false positive and false negative
rates of test T .

Using their notation, we define

pgij = f(Y = i, T = j|V = g)

with for g, i, j ∈ {0, 1} (their paper uses g, i, j ∈ {1, 2}) the true probability of test outcomes
i in test Y and j in test T . Let the notation "." in pg.j or pgi. denote summation over an
index. Hui and Walter (1980) first show that this identification problem can be reduced to
solving a quadratic equation and provide closed-form solutions as follows:
The false positive rates are

fY |T ∗(1|0) = (p00.p1.0 − p0.0p10. + p100 − p000 +D)/2E0

fT |T ∗(1|0) = (p10.p0.0 − p1.0p00. + p100 − p000 +D)/2E1

The false negative rates are

fY |T ∗(0|1) = (p0.1p11. − p01.p1.1 + p011 − p111 +D)/2E0

fT |T ∗(0|1) = (p1.1p01. − p11.p0.1 + p011 − p111 +D)/2E1

The probability of being diseased is in subpopulation g ∈ {0, 1} is

fT ∗|V (1|g) = 1
2 + {pg0.(p0.0 − p1.0) + pg.0(p00. − p10.) + p100 − p000}/2D

where
E0 = p1.0 − p0.0

E1 = p10. − p00.

D = ±{(p00.p1.0 − p10.p0.0 + p000 − p100)2 − 4(p00. − p10.)(p000p1.0 − p100p0.0)}1/2.

The sign of D is not determined because they don’t impose the ordering assumption sum-
marized in Hu (2008).
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7.3 Measurement Errors in Quantile Regressions

7.3.1 Quantile Regressions

For a random variable Y with a monotonic CDF, its medium my minimizes an expected
absolute deviation criterion, i.e.,

my = arg min
β
E[ |Y − β| ]. (7.38)

= arg min
β
E[ sign(Y − β)× (Y − β) ],

where the sign function is defined as

sign(u) = 2× ( 0.5− 1(u < 0) ).

In this case, the first-order condition for the minimization is

E[ sign(Y −my)× (−1) ] = 0, (7.39)

which implies that Pr(Y < my) = 0.5.
In a simple medium regression model, we assume

Yi = Xiβ0 + ϵi (7.40)

where ϵ has a unique zero medium conditional on X, i.e., E[ 1(ϵi < 0) |Xi] = 0.5 or equiva-
lently E[ sign(ϵi) |Xi] = 0. The true parameter then satisfies

β0 = arg min
β
E[ |Yi −Xiβ| ], (7.41)

with the first-order condition

E[ sign(Yi −Xiβ0)× (−Xi) ] = 0, (7.42)

which directly implies an M -estimator.
This M -estimator can be extended to a general quantile τ by observing that the τ -th

quantile of the random variable Y denoted by qτ satisfies

qτ = arg min
β
E[ (τ − 1(Y − β < 0))× (Y − β) ]. (7.43)

with the first-order condition

E[ (τ − 1(Y − qτ < 0))× (−1) ] = 0, (7.44)

which implies that Pr(Y < qτ ) = τ . In a simple τ -th quantile regression, we just assume
that the regression error ϵi has a unique zero τ -th quantile conditional on X, i.e., E[ 1(ϵi <



7. APPLICATIONS IN REDUCED-FORM ECONOMETRICS ⇑ 283

0) |Xi] = τ . The true parameter then satisfies

β0 = arg min
β
E[ (τ − 1(Yi −Xiβ < 0))× (Yi −Xiβ) ], (7.45)

with the first-order condition

E[ (τ − 1(Yi −Xiβ0 < 0)× (−Xi) ] = 0, (7.46)

which also implies an M -estimator.

7.3.2 Quantile Regressions with Measurement Errors

While there is a huge literature on measurement errors in mean regressions, the same issue
has not been forgotten for quantile regressions. The relevant statistical literature tends to
focus on estimation of quantile regression models when the measurement error distribution
can be reasonably well estimated or belongs to a parametric family, e.g., Wei and Carroll
(2009) and Wu et al. (2015). The related literature in econometrics focuses more on how
both parameters of interest and the error distribution can be identified and estimated from
the same data, e.g., Schennach (2008) and Firpo et al. (2017).

In this section, they provide some details in Firpo et al. (2017), which uses the Kotlarski’s
identity to deal with measurement errors in quantile regressions. We consider a quantile
regression model as follows:

Yi = X∗
i β0(τ) + Ziδ0(τ) + ϵi(τ) (7.47)

where Yi is the dependent variable, X∗
i is a scalar continuous covariate prone to measure-

ment error, and Zi is a vector of accurately-measured covariates. The τ -th quantile of the
error term ϵi(τ) equals zero conditional on (X∗

i , Zi). The parameter of interest includes
(β0(τ), δ0(τ)), which satisfies

Q(β0, δ0) = E
[
ψτ (Yi −X∗

i β0 − Ziδ0)[X∗
i , Zi]

]
(7.48)

= 0

with ψτ (u) = (τ − 1(u < 0)). When X∗
i is correctly observed, this equation can provide

a moment condition to consistently estimate the parameter of interest. Notice that this
moment condition may also be expressed as

Q(β0, δ0) =
∫ ∫ ∫

ψτ (Yi −X∗
i β0 − Ziδ0)[X∗

i , Zi]f(X∗
i , Yi, Zi)dX∗

i dYidZi

= E
[ ∫

ψτ (Yi −X∗β0 − Ziδ0)[X∗, Zi]f(X∗|Yi, Zi)dX∗] (7.49)

The last expression implies that if one can identify and estimate the conditional density
f(X∗

i |Yi, Zi), then the moment condition can be used for estimation without observing X∗
i .
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Firpo et al. (2017) consider the case where there are two measurements of X∗
i as follows:

X1i = X∗
i + U1i (7.50)

X2i = X∗
i + U2i.

The paper assumes that the two error terms U1i and U1i satisfies the assumptions in the
Kotlarski’s setting. Therefore, the distribution f(X∗|Y,Z) can be identified and estimated
from its characteristic function E[eitX∗ |Y,Z] as follows:

E[eitX∗ |Y = y, Z = z] = E[eitX2 |Y = y, Z = z]
E[eitX2 ] exp

∫ t

0

iE
[
X1e

isX2
]

E [eisX2 ] ds

 (7.51)

Notice that the right-hand side is directly estimable from the data. They then provide an
estimator of (β0, δ0) based on the empirical moment condition:

Q̃n(β, δ) = 1
n

n∑
i=1

[∫
ψτ (Yi −X∗β − Ziδ)[X∗, Zi]f̂(X∗|Yi, Zi)dX∗

]
. (7.52)

The notation f̂(X∗|Yi, Zi) stands for the estimator of f(X∗|Yi, Zi) specified as follows

f̂(X∗|Yi, Zi) = 1
2π

∫
κ(ht)Ê[eitX∗ |Y = y, Z = z]exp(−itX∗)dt (7.53)

Ê[eitX∗ |Y = y, Z = z] = Ê[eitX2 |Y = y, Z = z]
Ê[eitX2 ]

exp

∫ t

0

iÊ
[
X1e

isX2
]

Ê [eisX2 ]
ds

 (7.54)

where ÊeitW stands for the empirical characteristic function of W , κ(.) is the Fourier trans-
form of a kernel function, and h is the bandwidth. The paper also shows that the estimator
of (β0, δ0) is consistent and asymptotic normal.

7.4 Identification of Causal Models with Unobservables

In a complete causal model, we are interested in the impact of an agent’s behavior or
characteristics, i.e., explanatory variables, on an outcome Y . The explanatory variables
include a variable X which is observed in a sample and an unobservable U . The complete
causal model can be described by a conditional distribution 33

fY |X,U

or equivalently a function Y = h(X,U, ϵ), where ϵ is a white noise. Inherently, the outcome
should be realized after the explanatory variables are realized, i.e., t2 > t1 in Figure 7.1.
In this section, I propose a novel self-report approach to identify the complete model by
identifying the joint distribution fY,X,U .

33We use fA|B to stand for the conditional distribution function of variable A conditional on variable B.
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Figure 7.1: A causal model with an unobservable

An explanatory variable, X or U , may be an individual characteristic or a choice variable.
The former includes, for example, age, race, ability or risk aversion level, and the latter may
be program participation decision, education level, or effort level. Here we consider four
possible cases without specifying the causality between X and U :

• Case 1: X is a choice variable and U is an unobserved heterogeneity or characteristics.
This is a typical treatment effect model with unobserved heterogeneity. For example,
X can be education or program participation and U can be ability or risk aversion
level.

• Case 2: Both X and U are a choice variable. For example, U can be an effort level or
a subjective belief.

• Case 3: U is a choice variable and X is an observed characteristics. For example, X
can be race, gender, or family background.

• Case 4: Both X and U are an individual characteristics.

A typical example in Case 1 includes X as an indicator of a treatment choice with X = x1
standing for being treated, x0 otherwise. In the complete model describing the causal
relationship between Y and (X,U), the causal effect is defined as

CE(U) = E(Y |X = x1, U)− E(Y |X = x0, U).

This causal effect CE(U) can be directly estimated when we know the joint distribution of
f(Y,X,U).

When U is unobserved, the causal model becomes incomplete and X becomes endoge-
nous. The average treatment effect (ATE) defined as EU [CE(U)], where expectation EU
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is with respect to the marginal distribution of U . Furthermore, the average treatment ef-
fect on the treated (ATET) becomes EU |X=x1 [CE(U)] where expectation EU |X=x1 is with
respect to distribution of U conditional on being treated, i.e., X = x1.

The existing literature on treatment effects is based on the randomization approach,
which is widely adopted in the biostatistic and medical research. It eliminates the correlation
between X and U through a direct randomization, an indirect randomization (instrument
variables), a conditional randomization (unconfounded assignments), a local randomization
(regression discontinuity), or a second-order randomization (difference-in-difference). This
approach focuses on the ATE and the ATET without estimating the complete model. In
addition, the randomization approach only applies to cases 1 and 2, where the endogenous
X is a choice variable. I refer to Imbens and Rubin (2015), Pearl (2009) and Heckman
and Vytlacil (2007a,b) for a review of the huge literature on treatment effects in economics,
biostatistics, and other disciplines.

In this section, I propose a self-report approach to identification of the complete model
by identifying the joint distribution fY,X,U . Apparently, such an identification leads to
identification of all the treatment effects above, i.e., ATE and ATET. Instead of taking the
popular approach in biomedical research, we noninvasively measure the unobservable in the
model through surveys and then identify a complete model as in physics and chemistry.
Given that we have developed powerful tools to handle self-reporting errors in survey data,
I propose a self-report procedure through surveys to collect more information on unobserv-
ables to identify the complete model. This self-report survey procedure will be guided by
a model in mind in the sense that if a model can guide researchers on what U is about,
then it is more likely to design surveys satisfying the conditions we need. In that case, the
proposed approach makes use of some information from a structural model without further
specification. Nevertheless, A key assumption in such a self-report approach is that the
self-report procedure in surveys will not intervene the causal relationship in the complete
model.

We design the survey questions under the belief that an individual characteristics, ob-
served or unobserved, will generally affect all the answers to survey questions, and that a
choice variable will only affect answers to survey questions about the choice. Therefore, if
U is an unobserved heterogeneity, we should expect that all the measurements, i.e., survey
answers, are a function of U . If U is an unobserved choice variable, we will need a model to
guide us on what U is about and design a question targeting at it. In Case 1, which is widely
used in the causal inference literature, I propose to measure the unobserved heterogeneity U
before and after the outcome is realized. Because X is a choice variable, one can design the
second measurement such that it does not depend on the choice X but depends on outcome
Y and U . When both X and U are a choice variable as in Case 2, we will need a model to
guide us on how to design a survey question about U . But the self-report procedure and the
identification strategy for Case 1 still applied. In Case 3, where U is a choice variable and
X is an observed characteristics, X will affect all the survey answers. We not only need a
model to design a measurement targeting at U , but also a different identification strategy,
i.e., repeated measurements before the outcome is realized. When both U and X are in-
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dividual characteristics as in Case 4, the repeated measurement procedure still applies. In
summary, if the measurements are well designed and don’t change the causal relationship
of interest, we are able to identify the complete model in all the four cases above.

7.4.1 A Self-Report Approach

In the benchmark setting, we consider the case where X is a choice variable as in Cases 1
and 2. Inherently, the explanatory variables X and U should be realized before the outcome
Y does as shown in Figure 7.1. For example, an economic agent makes a choice X at time
t1 and the outcome Y is realized at time t2 in case 1 with t2 > t1. I propose a self-report
survey procedure as follows:

1. Between t1 and t2, we take a measurement Z of U by asking a question related to X.

2. After t2, we take a measurement W of U by asking a question related to Y ,

How to specify survey questions will be guided by a model, which should show what the
unobservable U is about. In Case I, where X is a choice variable and U is an unobserved
heterogeneity, the first survey may ask “Why did you choose X?" and the second may have
“What impact do you expect from Y?" In Case 2 and Case 3, where U is, say, a choice of
an effort level, the first survey may ask “How much effort did you make given X?". In Case
4, where U is an ability level, the first survey may ask about previous test scores.

The surveys should not intervene the causal relationship in the complete model fY |X,U
itself. And given the timing structure of the explanatory variables and the outcome, as
shown in Figure 7.2, the measurement procedure intends to guarantee that measurement
W only depends on outcome Y , unobserved U and an conditionally independent measure-
ment error and that measurement Z is a function of choice X, unobserved U , and another
measurement error. The measurement errors need to satisfy assumptions as follows:

Assumption 7.4.1 (Conditional independence) The two measurements, Z and W , satisfy:

fW |Y,X,Z,U = fW |Y,U (7.55)

fY |Z,X,U = fY |X,U (7.56)

Assumption 7.4.1 implies that how an agent answers the first survey will not affect the
causality in the model and that the agent will only consider what is being asked in the
second survey, i.e., U and Y , instead of X. This assumption is particularly suitable for the
widely studied scenario as in Case 1, where X is a choice variable and U is the unobserved
heterogeneity. Section 4 will provide another self-report procedure more suitable for the
case where X is the individual characteristics. The self-reporting errors don’t need to
be classical, i.e, additive to and independent of the true values, but need to satisfy the
conditional independence so that

fW,Y,Z,X,U = fW |Y,Z,X,UfY |Z,X,UfZ,X,U

= fW |Y,UfY |X,UfZ,X,U .
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Figure 7.2: Measurements of an unobservable in a causal model. Measurements are “caused
by" the variables in the model. The measurement procedure should not intervene with the
causality among the variables in the model, i.e., outcome Y and explanatory variables X
and U .

We then present the sufficient conditions under which the joint distribution of observables
and unobservables, i.e., fW,Y,Z,X,U , is uniquely determined by the distribution of observables
fW,Y,Z,X .

Given that the randomization approach and the self-report approach can both identify
and estimate the ATE and the ATET, the comparison between estimates from two ap-
proaches can provide a test on the key conditional independence in Assumption 7.4.1. In
that sense, the randomization approach is still the gold standard. Furthermore, researchers
can adjust the self-report procedure such that the ATE and ATET estimates from the
self-report approach are consistent with those from the randomization approach. With a
validated self-report procedure, the new approach will be able to reveal complete causal
models.

7.4.2 Nonparametric Identification

For simplicity of the analysis, we focus on the discrete case. The results can be extended
to the case with a continuous U with the same intuition. We assume

Assumption 7.4.2 The two measurements, Z and W , and the unobservable U share the
same known support U = {1, 2, ...,K}.

Here we assume K is known. In fact, if the support of measurements Z and W are large
enough, we can identify K from the rank of an observed matrix under conditional indepen-
dence. Since this is not a main focus of this section, we simply assume K is known. The
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observed distribution is associated with the unknown ones as follows:

fW,Y,Z,X =
∑
U

fW |Y,UfY |X,UfZ,X,U (7.57)

Inspired by the identification strategy in Carroll et al. (2010) and Hu and Shum (2012), we
define for any fixed (y, x)

MW,y,Z,x = [fW,Y,Z,X(i, y, j, x)]i=1,2,...,K;j=1,2,...,K (7.58)

MW |y,U =
[
fW |Y,U (i|y, j)

]
i=1,2,...,K;j=1,2,...,K

.

MZ,x,U = [fZ,X,U (i, x, j)]i=1,2,...,K;j=1,2,...,K .

Dy|x,U =

 fY |X,U (y|x, 1) 0 0
0 ... 0
0 0 fY |X,U (y|x,K)

 (7.59)

Equation (7.57) then implies

MW,y,Z,x = MW |y,UDy|x,U (MZ,x,U )T (7.60)

where superscript T stands for matrix transpose. Our identification results rely on a key
invertibility assumption as follows:

Assumption 7.4.3 (Matrix invertibility) for any y ∈ Y, there exists a (x, x, y) such that
i) MW,y,Z,x, MW,y,Z,x, MW,y,Z,x, and MW,y,Z,x are invertible and ii) for all u ̸= ũ in U

∆y∆x ln fY |X,U (u) ̸= ∆y∆x ln fY |X,U (ũ)

where ∆y∆x ln fY |X,U (u) is defined as

∆y∆x ln fY |X,U (u) =
[
ln fY |X,U (y|x, u)− ln fY |X,U (y|x, u)

]
−
[
ln fY |X,U (y|x, u)− ln fY |X,U (y|x, u)

]
.

The first part of Assumption 7.4.3 is directly testable from the data. The second part of
Assumption 7.4.3 imposes restrictions on the model, which rules out the case where ln fY |X,U
is additively separable in X and U . Nevertheless, we will show below that Assumption
7.4.3(ii) is also testable. That means Assumption 7.4.3 is testable from the data given the
conditional independence in Assumption 7.4.1. Given the matrix invertibility, we may have

A ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

Similar matrix manipulations lead to

B ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .
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Finally, we obtain

AB = MW |y,UDy|x,UD
−1
y|x,UDy|x,UD

−1
y|x,UM

−1
W |y,U

≡ MW |y,UDy,y,x,x,UM
−1
W |y,U , (7.61)

where

Dy,y,x,x,U =


exp

(
∆y∆x ln fY |X,U (1)

)
0 0

0 ... 0
0 0 exp

(
∆y∆x ln fY |X,U (K)

)
 (7.62)

Notice that Equation (7.61) implies an eigenvalue-eigenvector decomposition of a directly
estimable matrix AB. The second part of Assumption 7.4.3 means that all the eigen-
values are distinct. Because the eigenvalues and eigenvectors are directly estimable from
the observed matrices, Assumption 7.4.3 is testable from the data. Given that the eigen-
decomposition has distinct eigenvalues, the eigenvectors in MW |y,U are identified up to the
permutation of the values of U . To pin down the ordering in one of the decompositions, we
impose a normalization assumption as follows:

Assumption 7.4.4 There is a y1 ∈ Y such that i) for any y ∈ Y, there exists a (x, x, y1)
satisfying Assumption 7.4.3; and ii) E[W |Y = y1, U = u] is increasing in u.

Other normalization assumptions can be found in Hu (2008). In applications where possible
values of U doesn’t matter, Assumption 7.4.4 is not necessary.

Finally, we have identified fW |Y,U (·|y, ·) for all y, and further identify distributions fY |X,U
and fZ,X,U . We summarize the results as follows:

Theorem 7.4.1 Under assumptions 7.4.1, 7.4.2, 7.4.3, and 7.4.4, the joint distribution of
four variables fW,Y,Z,X uniquely determines the joint distribution of five variables fW,Y,Z,X,U ,
which satisfies

fW,Y,Z,X,U = fW |Y,UfY |X,UfZ,X,U (7.63)

Proof: See Appendix.
The constructive proof of Theorem 7.4.1 implies that it is a global nonparametric point

identification result. We not only identify the complete causal model itself through fY |X,U
but also the joint distribution of the explanatory variables f(X,U). Therefore, it is possible
for researchers to integrate out U to estimate ATE and ATET and compare with other
approaches.

7.4.3 An Alternative Self-Report Procedure

In the case where X is an observed characteristics as in Cases 3 and 4, X will affect all the
survey answers and the first part of Assumption 7.4.1 may not hold. To be specific, the
first part of Assumption 7.4.1 contains two restrictions

fW |Y,X,Z,U = fW |Y,X,U = fW |Y,U . (7.64)
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Figure 7.3: Repeated measurements of an unobservable in a causal model.

The first step requires that the self-report procedure doesn’t interfere with the causality
in the model. The second step requires that the observed explanatory variable X has no
impact on the measurement W . The second step may be too strong when X is an individual
characteristics. Therefore, we propose another measurement procedure to generate repeated
measurements before the outcome is realized. Instead of take a measure of U after the
outcome is realized, we may take another measurement Z ′ of U before the outcome is
realized as in Figure 7.3. The new measurement is supposed to satisfy the assumptions as
follows:

Assumption 7.4.5 (Conditional independence) The two measurements, Z and Z ′, satisfy:

fZ|Z′,X,U = fZ|X,U , (7.65)

fY |Z,Z′,X,U = fY |X,U . (7.66)

Again, we assume for simplicity,

Assumption 7.4.6 The two measurements, Z ′ and Z, and the unobservable U share the
same known support U = {1, 2, ...,K}.

This assumption implies that the measurements through surveys will not interfere with
the relationship between Y and (X,U), and that the two measurements are independent
of each other conditional on (X,U). Given that we may take the surveys at two different
times, it is reasonable to assume that this conditional independence. Assumption 7.4.2 then
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implies

fY,Z′,Z,X,U = fY |Z′,Z,X,UfZ′|Z,X,UfZ,X,U

= fY |X,UfZ′|X,UfZ,X,U . (7.67)

Given X = x, three variables Y , Z ′, and Z are independent conditional on U so that we
can use the seminal identification result in Hu (2008) to show that fY,Z′,Z,X,U is identified.
We define for any fixed (y, x)

My,Z′,Z,x =
[
fY,Z′,Z,X(y, i, j, x)

]
i=1,2,...,K;j=1,2,...,K (7.68)

MZ′,Z,x =
[
fZ′,Z,X(i, j, x)

]
i=1,2,...,K;j=1,2,...,K (7.69)

MZ′|,x,U =
[
fZ′|X,U (i|x, j)

]
i=1,2,...,K;j=1,2,...,K

.

Equation (7.67) is equivalent to

My,Z′,Z,x = MZ′|,x,UDy|x,U (MZ,x,U )T (7.70)

Similarly,
MZ′,Z,x = MZ′|,x,U (MZ,x,U )T (7.71)

We assume

Assumption 7.4.7 (Invertibility) for any x, MZ′,Z,x is invertible.

To eliminate MZ,x,U , we follow Hu (2008) to show

My,Z′,Z,xM
−1
Z′,Z,x = MZ′|,x,UDy|x,UM

−1
Z′|,x,U (7.72)

The right hand side is an eigenvalue-eigenvector decomposition of the directly estimable
matrix on the left hand side. In order to achieve distinct eigenvalues, we assume

Assumption 7.4.8 for any x ∈ X , there exist a y ∈ Y, such that fY |X,U (y|x, u) ̸=
fY |X,U (y|x, u) for any u ̸= u in U .

Assumption 7.4.8 guarantees that all the eigenvectors in columns of MZ′|,x,U are identified.
Therefore, MZ′|,x,U is identified up to the permutation of columns. In order to pin down
that ordering, we may impose a normalization assumption as follows:

Assumption 7.4.9 For any x ∈ X , E[Z ′|X = x, U = u] is increasing in u.

We summarize the results as follows:

Theorem 7.4.2 Under Assumptions 7.4.5, 7.4.6, 7.4.7, 7.4.8 and 7.4.9, the joint distri-
bution of four variables fY,Z′,Z,X uniquely determines the joint distribution of five variables
fY,Z′,Z,X,U , which satisfies

fY,Z′,Z,X,U = fY |X,UfZ′|X,UfZ,X,U . (7.73)
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Proof: See Appendix.
This identification result is a direct application of Hu (2008). Theorem 7.4.2 again

implies that it is a global nonparametric point identification of the joint distribution of Y ,
X, and U . Therefore, the treatment effects can also be identified and estimated accordingly.

In summary, this section presents a novel self-report approach to identify causal mod-
els with unobservables. It shows that using a carefully designed self-report procedure re-
searchers are able to identify the complete causal model through the joint distribution of the
observables and the unobservables. Given the powerful tools provided in the measurement
error literature, it is ready to use this self-report approach to estimate the complete causal
model as in physics and chemistry. This section focuses on a global nonparametric point
identification result, but the identification result can be extended in different directions.
First, it will be interesting to know how survey can be carefully designed to provide more
useful measurements, just as researchers search for better instruments to obtain more accu-
rate measurements in physics and chemistry. Second, one may explore partial identification
of the complete model when some of the conditional independence assumptions are relaxed.
Third, the estimation of the complete model is straightforward when all the assumptions
are satisfied. When the measurements don’t contain enough information, for example, the
support of measurements is smaller than that of the unobservable, it would be useful to
develop partial estimation and inferences in that case.

7.4.4 Proofs

Proof of Theorem 7.4.1: We start with the joint distribution of four variables fW,Y,Z,X .
The conditional independence in Assumptions 7.4.1 and 7.4.2 implies that

fW,Y,Z,X =
∑
U

fW,Y,Z,X,U

=
∑
U

fW |Y,Z,X,UfY |Z,X,UfZ,X,U

=
∑
U

fW |Y,UfY |X,UfZ,X,U . (7.74)

For any (y, x) ∈ Yt ×X , we define matrices as follows,

MW,y,Z,x = [fW,Y,Z,X(i, y, j, x)]i=1,2,...,K;j=1,2,...,K

MW |y,U =
[
fW |Y,U (i|y, j)

]
i=1,2,...,K;j=1,2,...,K

.

MZ,x,U = [fZ,X,U (i, x, j)]i=1,2,...,K;j=1,2,...,K .

Dy|x,U =

 fY |X,U (y|x, 1) 0 0
0 ... 0
0 0 fY |X,U (y|x,K)


Equation (7.74) is then equivalent to

MW,y,Z,x = MW |y,UDy|x,U (MZ,x,U )T (7.75)
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A useful observation is that y and x only appear together in the diagonal matrix Dy|x,U .
Therefore, we may consider different values of (y, x) as follows: for (y, x), (y, x), (y, x) (y, x),

MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U )T
MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U )T
MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U )T
MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U )T

Assumption 7.4.3 guarantees that for any y ∈ Y, there exist four matrices on the LHS, which
are invertible. And there are four common matrices on the RHS. Therefore, we eliminate
MZ,x,U by considering

A ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

Similar matrix manipulations eliminates MZ,x,U as follows:

B ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

Finally, we eliminate MW |y,U to obtain

AB = MW |y,UDy|x,UD
−1
y|x,UDy|x,UD

−1
y|x,UM

−1
W |y,U

≡ MW |y,UDy,y,x,x,UM
−1
W |y,U , (7.76)

where

Dy,y,x,x,U =


exp

(
∆y∆x ln fY |X,U (1)

)
0 0

0 ... 0
0 0 exp

(
∆y∆x ln fY |X,U (K)

)


Notice that Equation (7.76) implies an eigenvalue-eigenvector decomposition of matrix
AB, which only contains the joint distribution f(W,Y,Z,X). The eigenvalues are diagonal
entries in matrix Dy,y,x,x,U . The eigenvectors are columns in matrix MW |y,U , which is a
conditional distribution of W given y and a possible value of U . Therefore, the eigenvectors
are automatically normalized because all the entries are nonnegative and sum up to 1. The
second part of Assumption 7.4.3 guarantees that all the eigenvalues are distinct, which
implies that all the corresponding eigenvectors are uniquely determined. Given that the
decomposition in Equation (7.76) has distinct eigenvalues, the eigenvectors in MW |y,U are
identified up to the permutation of the possible values of U . For any Y = y and X = x,
the unknown distribution fY |X,UfZ,X,U can be identified from

Dy|x,U (MZ,x,U )T = M−1
W |y,UMW,y,Z,x. (7.77)

Because Assumption 7.4.3 holds for any y ∈ Y, we have identified distribution fW,Y,Z,X,U
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satisfying
fW,Y,Z,X,U = fW |Y,UfY |X,UfZ,X,U (7.78)

up to the permutation of the possible values of U .
If we need to pin down the values of U in fW,Y,Z,X,U , we can use Assumption 7.4.4. It

guarantees that there is a common y1 such that for any y ∈ Y the decomposition above
holds with y = y1. Therefore, we have

A ≡ MW,y,Z,xM
−1
W,y1,Z,x

= MW |y,UDy|x,UD
−1
y1|x,UM

−1
W |y1,U

.

and therefore,

MW |y1,U = A−1MW |y,UDy|x,UD
−1
y1|x,U .

Each column in MW |y1,U corresponds to a conditional distribution fW |Y=y1,U=u for some u ∈
U . Assumption 7.4.4 implies that we can sort the columns in MW |y1,U by its corresponding
conditional mean such that E[W |Y = y1, U = u] is increasing in u. Therefore, the ordering
the columns in MW |y,U is also determined. Therefore, the joint distribution of four variables
fW,Y,Z,X uniquely determines the joint distribution of five variables fW,Y,Z,X,U . Q.E.D.

Proof of Theorem 7.4.2: We start with Equation (7.67)

fY,Z′,Z,X,U = fY |Z′,Z,X,UfZ′|Z,X,UfZ,X,U

= fY |X,UfZ′|X,UfZ,X,U . (7.79)

We define for any fixed (y, x)

My,Z′,Z,x =
[
fY,Z′,Z,X(y, i, j, x)

]
i=1,2,...,K;j=1,2,...,K (7.80)

MZ′,Z,x =
[
fZ′,Z,X(i, j, x)

]
i=1,2,...,K;j=1,2,...,K (7.81)

MZ′|,x,U =
[
fZ′|X,U (i|x, j)

]
i=1,2,...,K;j=1,2,...,K

.

Equation (7.67) is equivalent to

My,Z′,Z,x = MZ′|,x,UDy|x,U (MZ,x,U )T (7.82)

Similarly, we can show
MZ′,Z,x = MZ′|,x,U (MZ,x,U )T (7.83)

Assumption 7.4.7 implies that

My,Z′,Z,xM
−1
Z′,Z,x = MZ′|,x,UDy|x,UM

−1
Z′|,x,U (7.84)

The left hand side is composed of observed matrices. The right hand side forms an
eigenvalue-eigenvector decomposition, where each diagonal element in Dy|x,U is an eigen-
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value of the matrix on the left hand side and each corresponding column in MZ′|,x,U is an
eigenvector. Assumption 7.4.8 guarantees that all the eigenvalues are distinct so that each
corresponding eigenvector in columns of MZ′|,x,U are uniquely identified. Therefore, MZ′|,x,U
is identified up to the permutation of columns. Each eigenvector is a conditional distribu-
tion, and therefore, contains non-negative elements, which add up to one. Assumption
7.4.9 pins down the permutation by ordering the conditional expectations corresponding to
the eigenvectors. That identifies MZ′|,x,U and Dy|x,U for all (x, y). MZ,x,U may then be
identified from MZ′,Z,x. That means all the distributions in Equation (7.67) are identified.
Q.E.D.

7.5 Other Applications: GDP and Deforestation measure-
ments

Hu and Yao (2022) use a 2-measurement model to show that nightlight intensity measured
by satellite can be useful to provide more accurate estimates for GDP growth.

Torchiana et al. (2023) use a hidden Markov model with Satellite-based image classifica-
tion to provide better measurements of the earth’s surface composition, which helps study
deforestation in environmental economics.

To be added.



8

Retrospect and Prospect

This manuscript reviews recent developments in nonparametric identification of measure-
ment error models and their applications in microeconomic models with latent variables.
The powerful identification results promote a close integration of microeconomic theory and
econometric methodology, especially when latent variables are involved. With econometri-
cians developing more application-oriented methodologies, we expect such an integration to
deepen in the future research.

Besides the methodologies and the applications of measurement error models presented
here, we expect this literature to advance further, with more important results. For example,
the flexible nonclassical measurement error models may also provide new and convincing
solutions to the endogeneity problem, a fundamental problem in econometrics. Presumably,
a complete economic model should explain the causality among all the variables in the
model. Endogeneity then occurs when some of the variables in the model are unobserved
by the researcher. Nonclassical measurement error models may then be used to handle the
unobservables, and therefore, solve the endogeneity problem under certain assumptions.

With more and more data available for researchers, we look forward to more extensive
applications of the measurement error models. Given the nonparametric identification, non-
parametric or semiparametric estimation of the models with latent variables may become
easier than before. On the one hand, sample sizes will become much larger than before
with the abundance of observations; on the other hand, researchers may observe more mea-
surements of the latent variables. Therefore, we expect that the literature of measurement
error models and their applications will keep thriving.
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