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SUMMARY
This paper considers identification and estimation of a general model for online price competition. We show that
when the number of competing firms is unknown the underlying parameters of the model can still be identified
and estimated employing recently developed results on measurement errors. We illustrate our methodology using
UK data for personal digital assistants and employ the estimates to simulate competitive effects. Our results reveal
that heightened competition has differential effects on the prices paid by different consumer segments. Copyright
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1. INTRODUCTION

A fundamental query in industrial organization and antitrust concerns the impact of market struc-
ture on consumer surplus. Such analysis can be controversial and challenging in even fairly simple
brick-and-mortar retail environments. One major complication is that the relevant number of competi-
tors in such markets is often unobserved by the econometrician, especially in online markets. To the
best of our knowledge, there are no ready tools available to empirically analyze and assess potential
competitive effects in such situations. The absence of such tools or analyses stems, in part, from the
fact that (i) online prices display considerable price dispersion, which substantially complicates pre-
dicting the price effects for a change of market structure; and (ii) the number of (potential) competitors
in the online channel is typically an unknown.

This paper represents a first attempt to quantify the competitive effects of changes in the number of
firms in an online market when the number of sellers is unobserved. The model that we structurally
estimate assumes (i) online firms are symmetric, pure-play e-retailers; (2) the number of (potential)
online competitors at any point in time is known to firms but not to the econometrician; and (iii) online
buyers may be segmented into two types: price-sensitive ‘shoppers’, who rely on a price comparison
site to find the best deal, and price-insensitive ‘loyals’, who simply visit their preferred online firm’s
website. This benchmark environment is the standard framework for modeling e-retail competition;
see Baye et al. (2006) for a survey of this literature.

We first present a general model of online price competition that nests standard models ranging from
Varian (1980) to Iyer et al. (2005) as special cases. The model enriches existing models of online price
competition, including Baye and Morgan (2001), by adding two realistic features: (i) firms pay plat-
forms for clicks; and (ii) not all clicks result in sales. In such a model, the observed price distribution
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represents a combination of the realized number of firms choosing to list on the site together with their
realized prices, both of which are stochastic and depend on the unobserved number of actual competi-
tors. Thus it is essential to recover the price distribution conditional on the true number of competitors
in order to estimate the model parameters and conduct a competitive analysis. We show that, using
the results from the recent econometric literature on misclassfication (e.g. Hu, 2008), this price dis-
tribution can be nonparametrically identified from the observed number of competitors and the listed
prices. Based on the results of this identification, we present a two-step procedure to estimate model
parameters. A Monte Carlo experiment (see the online Appendix, provided as supporting information)
demonstrates that our procedure performs well, and that failing to account for the unobservability of
the potential number of firms can lead to biased estimates of model parameters. As an application of
our methodology, we structurally estimate the model based on UK data for personal digital assistants
(PDAs), and then use these estimates to simulate the competitive effects for changes in the number
of competitors.

Our empirical results indicate that, at least in some instances, competitive effects in online markets
are more similar to those predicted by the simple homogeneous product Bertrand model than might
be expected given the price dispersion observed in (and predicted by theoretical models of) e-retail
markets. However, unlike in Bertrand models, there are also distributional effects of equilibrium pric-
ing, e.g. if the number of firms decreases from three to two, the average transaction price paid by
price-sensitive ‘shoppers’ increases by 6.89%, while the average transaction price paid by consumers
‘loyal’ to a particular firm decreases by 3.19%.1

This paper makes two main contributions: (i) to present a methodology for identification and esti-
mation of online retail markets (or indeed any market characterized by a first-price all-pay auction)
in which the number of competitors/bidders is observed by insiders but unknown to the econometri-
cian; and (ii) to provide some empirical evidence on how consumer surplus is affected by the potential
number of competitors in an e-retail market.

Most closely related to our work is An et al. (2010), who identify and estimate a model of first-price
auctions where the number of bidders is known to the auction participants but unobserved by the
researcher. The present paper differs from An et al. (2010) in a number of respects. First, we focus
on a completely different pricing environment; they analyze a standard first-price winner-pay auction,
while our environment mirrors that in a first-price all-pay auction. Second, our application highlights
potential distributional effects of changes in competition in an online rather than auction market. Fur-
thermore, the present paper enriches the econometric methodology employed in An et al. (2010) by
showing that the method works well for a modest-sized sample even though the estimation involves
large-dimensional matrices.2

We organize the rest of the paper as follows. In Section 2 we present a general model of online
price competition. In Section 3 we show the nonparametric identification results. In Section 4 we
describe a two-step estimation procedure for the proposed general model. In Section 5 we present
an empirical application of our methodology using UK data for PDAs. Section 6 concludes. The
Appendix contains miscellaneous proofs. Monte Carlo evidence and some technical details omitted in
the paper are provided as supporting information in the online Appendix.

2. MODEL OF ONLINE PRICE COMPETITION

It is by now well established that price dispersion is considerable and ubiquitous in online markets.
Much of the prior empirical literature presumes such dispersion stems from costly consumer search.
This assumption is appropriate in environments where the information obtained from an initial search

1 Armstrong (2008) points out that silar distributional effects are theoretically possible in the context of consumer protection
policy, while Baye (2008) notes that this is a theoretical possibility in antitrust.
2 In our setting, the matrix dimension is 10� 10, whereas in An et al. (2010) it is 3� 3.
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query is insufficient to make a buying decision and hence subsequent investigation is required. For
example, a consumer might jump from website to website, perhaps guided by the results of the search
query, paying the associating (implicit) cost to search, and stopping as in standard models of offline
search. Hong and Shum (2006), Moraga-González and Wildenbeest (2008), and Moraga-González
et al. (2013) use such a model to derive a family of dispersed price distributions, which they then
structurally estimate to recover the implied distribution of consumer search costs.

While these models are appropriate in environments where it is costly to compare the prices that
different firms charge for their desired product, they seem less appropriate when the initial search is
conducted on a price comparison site (such as Kelkoo, which we examine in our empirical application).
These sites return the all-in prices (including shipping and VAT) that each seller charges for an identical
product. Consumers may readily sort these results to identify the firm charging the lowest price (or
a variety of other criteria). Similar shopping experiences are available on platforms such as Amazon,
where a search query also provides detailed information of products and a seller’s reputation. In such
settings, the scope of information available just from the initial search query significantly diminishes
the need to visit seller websites (other than to purchase) and hence drastically reduces the implied
search costs.

Search cost models typically assume that consumers are identical except for costs to search, yet
e-retailers spend vast amounts of money on brand marketing. Presumably they do this because they
believe that consumers can be made ‘sticky’, loyal in the language of our model, through brand attach-
ment. The model we describe, and which is the basis for our empirical application, takes these loyalty
distinctions seriously, but abstracts from search costs. In particular, we assume that search costs are
zero within the platform (e.g. it is costless to compare the prices returned at the comparison site),
that N firms are in the market for a given good (though not necessarily listing at the platform) and
that there are N C 1 distinct consumer segments. N of these segments represent customers loyal to
a particular seller, while the last segment consists of consumers holding no loyalties and choosing
purely on the basis of price. Of course, further segmentation is possible. For instance, a richer model
might allow loyalty to multiple firms, perhaps with slight preferences across each. Taken to extremes,
one could have up to 2N unique loyal segments, as well as a segment that engages in sequential or
fixed-sample search across other platforms. While theoretically possible, such a model is of limited
empirical use owing to the data demands required to separately identify each of the many segments,
let alone the other parameters of the model. Thus, for practical as well as parsimony reasons, we stick
to the simpler specification.

To fix ideas, suppose the market consists of a commonly known number of firms (N > 1) that
produce at a constant marginal cost of m � 0. Firms offer identical products for sale through their
individual websites, which may have different characteristics or provide different types of service.
Some consumers, who we call ‘loyals’, value these services and purchase by directly visiting the
website of their preferred firm. Other consumers, who we call ‘shoppers’, care only about price. They
first access a price comparison site to obtain a listing of the prices charged by sellers advertising at
the site and click through to the firm offering the lowest price. If no prices are listed, they visit the
website of a randomly selected firm.3 All consumers have unit demand and a maximal willingness
to pay r .

It is widely recognized that conversion rates in online markets are low: only a fraction of consumers
that click on a price at a comparison site follow through by making a purchase. Loyal consumers may
browse at their preferred company website, perhaps in search of new offerings, but not necessarily
with the intention of buying. Shoppers, even after locating the lowest price offer, may opt not to buy,

3 We assume that shoppers too are loyal in the following sense: they single home to the modeled price comparison site and
do not jump to another site in the event of unsuccessful search. This ensures that the model also applies to environments with
multiple comparison sites. Under this assumption, Proposition 1 in Baye and Morgan (2001) offers mild conditions that ensure
that the posited search strategy by shoppers is indeed optimal when endogenized.
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perhaps because of a bad user experience or because they were simply looking rather than buying on
this particular occasion. To account for this, we assume that, with probability � 2 .0; 1� a consumer
actually makes a purchase. At the price comparison site, � may be interpreted as the conversion rate,
the fraction of clicks that turn into sales. Finally, we assume a fixed total number of loyals,M , divided
evenly among symmetric competing firms, so each firm attracts M=N loyals. Moreover, there are a
total of S > 0 shoppers.

We now turn to the details of firm behavior. To advertise at the comparison site, a firm must pay an
(explicit or implicit) amount � > 0 to list its price, plus a cost per click (CPC) of c � 0 each time
a consumer clicks on its price advertisement (listing). Thus firm i ’s strategy consists of a continuous
pricing decision .pi / and a zero–one decision to advertise its price at the comparison site. Let ˛i denote
the probability that firm i chooses to advertise on the comparison site. A firm that does not advertise
its price on the comparison site avoids paying listing and click-through fees, but at the potential cost of
failing to attract the shoppers visiting the comparison site. The parameters of the model are commonly
known by firms.

When platform fees are not too high, one can readily show that there is an active market for listings
at the comparison site. A closed-form characterization of both advertising and pricing is available for
the case where firms are symmetric, which we report below. For this case, we characterize the sym-
metric equilibrium pricing and advertising strategies of firms competing in this online environment.
See the online Appendix for a proof.

Proposition 1. Suppose that firms are symmetric, and listing and click-through fees are not too
high, 0 < � < S

�
.r �m/ � N�1

N
� c

�
and 0 � c < .r �m/ � N�1

N
: Then in a symmetric

Nash equilibrium:
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˛� D 1 �
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(b) Conditional on listing a price at the comparison site, a firm’s advertised price may be viewed as a
random draw from
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�
2 .m; r/ :

(c) A firm that does not advertise on the comparison site charges a price of pi D r on its own website.
(d) Each firm earns an expected profit of E� D .r �m/ �M=N C �

N
�
1� c

.r�m/�

�
�1

.

Note that in the case of monopoly (N D 1) the firm’s strategy is to charge r on its own website but
not advertise on the comparison site. The monopolist attracts both loyals and shoppers to its site and
the expected profit is .r �m/�.M C S/.

Our model above extends the original Baye and Morgan (2001) model to an environment in which
all transactions take place online, and accounts for click-through fees as well as conversion rates that
are potentially less than unity. Consistent with the empirical literature, the model implies that prices
listed at the comparison site are necessarily dispersed in equilibrium, and that the number of firms
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actually listing prices at the comparison site on any given date is generally less than the total number of
firms in the market; see, for example Baye et al. (2006) for a survey of about 20 studies documenting
price dispersion of 10–50% in online markets. This model nests a variety of other models as special
cases, including Rosenthal (1980), Varian (1980), Narasimhan (1988), Iyer and Pazgal (2003), Baye
et al. (2004) and Iyer et al. (2005). Unlike some of these special cases, our general model is flexible
enough to allow differing competitive effects on consumer surplus. For instance, the Rosenthal model
implies that when there are two or more competitors average prices paid by all consumers rise with
the number of competing firms.

Under the maintained hypothesis that firms’ listed prices are distributed according to equation (1),
it is, in principle, possible to estimate the underlying parameters of the model. Unfortunately, data
from price comparison sites reveal A, the realized number of firms choosing to list prices at the
site at a given time, but not N , the total number of firms in the market. The model implies that
A is a binomially distributed random variable with parameters .˛;N /. The extant literature mostly
finesses this problem. For example, Baye et al. (2004), Moraga-González and Wildenbeest (2008) and
Moraga-González et al. (2013) use the number of observed prices as a proxy forN , in effect assuming
that N D A. Hong and Shum (2006) assume that N D C1 in their identification of price dispersion
models. The problem of the unobservability of N presents econometric challenges, especially when it
varies over time. The next section offers an identification procedure that explicitly accommodates the
unobservability of N .

3. IDENTIFICATION

The model of online price competition in Section 2 is modified from a low-bid auction in which the
firm offering the lowest price secures the price-sensitive shoppers when it lists on the comparison
site. Unlike a standard auction, where the payoff to a losing firm is independent of its bid, in our
setting the payoff (i.e. profits from sales to loyals) varies directly with one’s bid—a more aggressive
(i.e. lower) losing bid produces smaller rewards than a less aggressive losing bid. Thus the setting
may be thought of as a type of reverse first-price all-pay auction. Viewed from this perspective, it
is, ex ante, far from clear that estimation techniques designed for winner-pay auctions will also work
for their all-pay cousins. In this section we show how one can adapt the techniques of economet-
ric analysis built on a winner-pay auction model to our (all-pay) setting. Specifically, we show that
the equilibrium distribution of prices in Proposition 1 (along with one additional but rather mild
condition) implies the identification conditions for standard auctions pioneered by Hu (2008) and
An et al. (2010).

Following these authors, suppose the maximum number of (potential) firms is K, and is known
to the econometrician. The actual number of firms N 2 ¹2; 3; � � � ; Kº, which may vary, is com-
mon knowledge to the firms but unknown to the econometrician. We preclude the case of monopoly
(N D 1) since the firm only uses its own website and there will be no data on the comparison
site. Nonetheless, once the model parameters .r;m; �;M; S/ are identified, we can recover the price
charged by the monopolist r as well as its expected profit .r �m/�.M C S/. Let A denote the num-
ber of price listings on a given date and pj be the j th listed price, j D 1; � � � ; A. For reasons that
will become clear, consider only dates in which two or more firms listed prices, i.e. A � 2. As will
be shown, identification of price distribution in equation (1) will not be affected by dropping the
observations with A D 1, whereas recovering probability Pr.N / requires these observations.

We randomly choose a listed price pl ; l 2 ¹1; 2; � � � ; Aº from the A prices for each date for estima-
tion; from the remaining A�1 prices we choose another one pm; wherem 2 ¹1; 2; � � � ; Aº andm ¤ l ,
as our instrumental variable. To accommodate the discreteness of the potential number of firms, we
discretize pm to construct a discretized instrumental variable Z:
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Z D

8̂̂̂<̂
ˆ̂:
2 if pm 2 Œp; p.1/�
3 if pm 2 .p.1/; p.2/�
:::

K if pm 2 .p.K�2/; p�

where the support of prices, Œp; p�, is divided intoK�1 intervals by theK�2 cutoff points: p < p.1/ <
p.2/ < : : : < p.K�2/ < Np. The choice of the K � 2 cutoff points does not affect our identification and
estimation given Z satisfies a mild condition (Condition 1 below) which is empirically testable.

From the econometrician’s point of view: (a) N , A and Z share the same support ¹2; : : : ; Kº;
(b) r;m; �; �;M; and S are unknown parameters; and (c) N is unobservable or in dispute. In the
application that follows, the cost-per-click (c) is data and hence is not included in the set of parameters
to be estimated. Let � � .r;m; �; �;M; S/. Under the hypothesis that the prices at the comparison site
are generated according toF � in equation (1), we may write the underlying (undiscretized) distribution
of prices as F .pjN I �/ with its density being f .pjN I �/ : To ease the notational burden, we suppress
� whenever there is no confusion. The lemma below shows that the equilibrium density of listed prices
is independent of A and Z.

Lemma 1. f .pjN/ D f .pjA � 2;Z;N /.

This result follows directly from the fact that firms’ prices are determined prior to their knowing
realizations of A and Z: Next, note that, given the data and the model, conditional on the fact that at
least two firms list prices the probability that exactly A firms list at the comparison site is

g .AjN;A � 2/ D

�
N
A

�
.˛/A .1 � ˛/N�A

1 � .1 � ˛/N �N˛ .1 � ˛/N�1
for all 2 � A � N (2)

The lemma below immediately follows.

Lemma 2. g .AjN;A � 2/ D g .AjZ;N;A � 2/.

Lemma 1 implies that auxiliary variables A and Z only affect the equilibrium density of prices
through the unobservable number of firms, N . Analogously, Lemma 2 states that the instrument Z
affects the number of listed prices only through N . To recover the price distribution f .pjN/, we
require the existence of two auxiliary variables .A;Z/ that satisfy Lemmas 1 and 2, where A is a
mismeasured version of N and Z is an instrumental variable of N . Roughly, because A is a noisy
measure of N , the two lemmas require that the noise is independent of the instrument Z, conditional
on N . A good candidate for the instrument Z is a discretized second price because, as shown in
Proposition 1, a price depends on N through all the model parameters � � .r;m; �; �;M; S/. In
general, an instrumental variable Z would require p ? ZjN and A ? ZjN , and Lemmas 1 and
2 provide such an instrument conditional on A � 2. The use of a second price in the role of the
instrument Z also requires at least two listings per date.4

Let h .p;A;ZjA � 2/ denote the observed joint density of p;A and Z given two or more firms
list their prices. Let  .N;ZjA � 2/ denote the joint density of N and Z conditional on A � 2,
which is unobserved becauseN is an unknown to the econometrician. This specification allows for the
possibility that the true number of firms N might vary across products and over time without placing

4 Of course, the restriction A � 2 may be relaxed if an instrumental variable other than the second price is available.
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parametric restrictions on the data-generating process in this respect. Now, the law of total probability
implies the following relationship between the observed and latent densities:

h .p;A;ZjA � 2/ D

KX
ND2

f .pjN;A � 2;Z/g.AjN;Z;A � 2/ .N;ZjA � 2/

D

KX
ND2

f .pjN/g.AjN;A � 2/ .N;ZjA � 2/

(3)

where the second equality follows from Lemmas 1 and 2. Define�
Hp;A;Z

�
i;j
D h.p;A D i; Z D j jA � 2/�

GAjN
�
i;k
D g .A D i jN D k;A � 2/�

‰N;Z
�
k;j
D  .N D k;Z D j jA � 2/

and the diagonal matrix

FpjN D diag .f .pjN D 2/; f .pjN D 3/; : : : ; f .pjN D K// (4)

All of these are .K � 1/-dimensional square matrices. Equation (3) may then be written in matrix
notation as

Hp;A;Z D GAjNFpjN‰N;Z (5)

Next, consider the observed joint density of A and Z: Again, the law of total probability together
with Lemma 2 enables us to obtain

b.A;ZjA � 2/ D

KX
ND2

g.AjN;A � 2/ .N;ZjA � 2/

or, using matrix notation analogous to that above,

BA;Z D GAjN‰N;Z (6)

Identification requires that the following rank condition to be satisfied.

Condition 1. Rank
�
BA;Z

�
D K � 1.

Since both A and Z are observables, Condition 1 is empirically testable from the data. Equation (6)
implies Rank

�
BA;Z

�
� min

®
Rank

�
GAjN

�
;Rank

�
‰N;Z

�¯
. Considering that all the three matrices

are of dimension .K�1/�.K�1/, Condition 1 is equivalent to a restriction that bothGAjN and‰N;Z
are of full rank and invertible. The full rank condition for GAjN imposes no restrictions to our model.
This is because GAjN is upper-triangular by construction (A � N ) and a sufficient and necessary
condition of full rank is that all the diagonal elements are nonzero, i.e. Pr.A D kjN D k/ > 0,
for all k D 2; : : : ; K. This condition requires that for any possible number of potential firms (N )
there is a positive probability that all of them advertise their products on the comparison site and this
is automatically satisfied due to equation (2). The full rank condition of ‰N;Z restricts its columns
to be linearly independent, i.e. there is sufficient variation of the joint probability Pr.N;ZjA � 2/.
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Roughly, it requires that listed prices (recall that Z is a discretized price) to vary sufficiently when
there are different potential numbers of firms N in the market. It is worth noting that the full rankness
of BA;Z implies Nt is varying across t . The reasoning is as follows. If there is no variation in Nt , e.g.
Nt D k 2 ¹2; : : : ; Kº for all t then Rank.GAjN / D 1 since only one column of this matrix is nonzero.
Consequently, the rank of the nonzero matrix BA;Z will be one rather than K � 1.

By inverting both sides of equation (6) and multiplying it by equation (5) from the right, we obtain
our key identifying equation:

Hp;A;Z
�
BA;Z

��1
D GAjNFpjN

�
GAjN

��1
(7)

The matrix on the left-hand side can be formed from the data. The right-hand side represents an
eigendecomposition (also called spectral decomposition) of the left-hand-side matrix since FpjN is
diagonal (cf. equation (4)). This representation allows us to identify the unknown matrices FpjN and
GAjN . However, the decomposition must be unique for the purpose of identification. The uniqueness
requires that any two of the eigenvalues are distinct, and the eigenvector matrix is normalized. Our
theoretical model implies the following matrix.

Lemma 3. The eigendecomposition in equation (7) is unique up to a normalization and ordering of
the columns of the eigenvector matrix GAjN .

For any price p, the matrixHp;A;Z
�
BA;Z

��1
has .K�1/ eigenvalues, f .pjN D 2/; : : : ; f .pjN D

K/. For a given set of parameters � , f .pjN/ ¤ f .pjN 0/ holds for any p except on a set of
zero Lebesgue measure, whenever N ¤ N 0.5 It then follows that the K � 1 eigenvalues of the
decomposition in equation (7) are distinct except on a set of zero Lebesgue measures. Hence the
eigendecomposition is unique up to a normalization and ordering of the columns.

With Lemma 3 in hand, it then follows that an eigendecomposition of the observed
Hp;A;Z

�
BA;Z

��1
matrix recovers the unknown FpjN and GAjN matrices up to a normalization and

ordering of the columns of the eigenvector matrix GAjN . There is a clear, appropriate choice for the
normalization of the eigenvectors because each column of GAjN should add up to one. The model
also implies a natural ordering for the columns of GAjN , since the matrix is upper-triangular and has
non-zero diagonal entries, as we discussed before.

Finally, having recovered GAjN ; from equation (6) we have

‰N;Z D
�
GAjN

��1
BA;Z

and hence ‰N;Z is also recovered. To summarize, we have shown the following.

Proposition 2. Suppose Condition 1 holds. Then FpjN , GAjN and ‰N;Z are identified (with FpjN
pointwise in p).

The identified joint distribution  .N;ZjA � 2/, i.e. the matrix ‰N;Z , needs to be treated with
caution. Consider that  .N;ZjA � 2/ D  .N;Z;A�2/

Pr.A�2/ D  .Z;A�2jN/ Pr.N/
Pr.A�2/ , where both Pr.A � 2/

and  .Z;A � 2jN/ can be expressed as functions of model parameters but not for the proba-
bility Pr.N /. Thus we consider  .N;ZjA � 2/ as reduced form in the identification argument
above. The probabilities Pr.N /;N D 2; 3; : : : ; K might be of interest for the purpose of some
counterfactual analyses. A convenient procedure to identify Pr.N / is to construct a linear system

5 An analytical proof of this statement is tedious owing to the complexity of the parametric form for f .pjN/ in equation (8),
and we do not provide a formal proof. Nevertheless, we do not find any counterexamples by numerically solving f .pjN/ D
f .pjN 0/.
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f .pj / D
PK
ND2 f .pj jN/Pr.N /, where f .p/ is the density of listed prices (including prices for

A D 1); pj ; j D 1; : : : ; K�1 are .K�1/ prices and f .pj jN/ is identified in Proposition 2. Pr.N / is
then identified as the solution of the linear system if the matrix constructed by f .pj jN/ is full rank.
We leave the technical details until Appendix A. Note that we preclude the case of N D 1. Thus a
monopoly firm’s behavior is merely characterized by the model parameters r , m, M, S and � , as we
discussed in Section 2.

Upon identifying the price distribution conditional on the ‘true’ number of firms FpjN , the proba-
bility distribution Pr.N / and the probability of A firms listing their prices g.AjN/, the structural link
between these identified objectives and the parameter � specified in Proposition 1 allows us to iden-
tify � . First, the listing probability ˛� for each N can be recovered from g.AjN/. The equilibrium
condition that characterizes those firms who advertise a price r at the comparison site (see equation
(2) in the online Appendix) implies a tradeoff between the profit .r � m/� and the cost of listing
�=S per shopper. By varying N , the profit from shoppers changes, whereas the equilibrium condition
holds; this allows us to identify .r �m/� . Consequently, �=S can be recovered from its relationship
with .r � m/� at equilibrium. Next, we investigate the dependence of the price distribution FpjN on
� to further pin down the parameters. The cumulative distribution function (CDF) FpjN evaluated as
a given price p for different N describes the effects of number of firms on listing prices, and we can
identify � (recall that .r � m/� is identified) and .r � p0/�M by varying N . Therefore, S is deter-
mined by �=S . For a given N , the distribution of price FpjN evaluated at different prices provides a
system of equations for parameters, which allows us to identify � , r and M .

Note that the parameters associated with loyals, both their numberM and their willingness to pay r ,
entirely rely on the functional form in equation (1) owing to the absence of sales data to estimate these
parameters directly. In principle, this reliance on functional form represents an important limitation
to the analysis. Fortunately, our nonparametric identification procedure offers a test of its validity.
Specifically, if the nonparametrically identified FpjN agrees with the parametric specification, worries
about the dependence of our identification on functional form is reduced.

It is worth noting that, if the analogs of Lemmas 1 and 2 as well as Condition 1 continue to hold
in some alternative model of price dispersion, then, since our identification is independent of the
functional form of the equilibrium price distribution, the same procedure may be used to recover the
parameters of this alternative model as well.

4. ESTIMATION

We now describe how one may use the identification argument to estimate the structural model, given
data from a price comparison site. Let t D 1; 2; : : : ; T index each set of price observations. For
each t , we observe At , the number of firms choosing to list their prices at the comparison site. Let
pit ; i D 1; : : : ; At denote the At � 2 listed prices at t . Our estimation procedure accounts for the
fact that Nt is known to the competing firms at time t but is, in effect, a random variable from the
perspective of the econometrician. While we cannot recover the specific value ofNt pertaining to each
set of prices at each point in time, we are able to recover its marginal distribution.

To estimate the vector of parameters � , we use the following two-step estimation procedure. In the
first step, we use our key equation (7) to nonparametrically estimate GAjN and �N , where �N is
defined as a vector of marginal probabilities over the number of listings N conditional on A � 2.
Our methodology closely parallels the approach taken in An et al. (2010) and hence we relegate the
detailed derivation of these expressions to Appendix B. In the second step, based on the parametric
form of F.pjN I �/ in equation (1), we recover the parameters � by MLE. Let l .p; AI �/ denote the
joint density of prices and number of listings .A � 2/. In equilibrium, A and p are independent
conditional on N . Thus this density may be written as
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l.p; AI �/ D

KX
ND2

g.AjN;A � 2/f .pjN I �/� .N / D eAGAjNFpjN I��N

where eA D .0; 0; : : : ; 1; : : : ; 0/ is a row vector where the 1 appears as the Ath element. Hence the
likelihood function Lt for the t th set of prices is

Lt D
AtY
iD1

l.pit ; At I �/ D

AtY
iD1

eAtGAt jNFpit jN I��N

Using the first-step estimates, we can express the likelihood function L as

lnL D
TX
tD1

AtX
iD1

ln
�
eAt

bGAt jNFpit jN I�b�N�

where Fpit jN I� is a diagonal matrix with diagonal element being f .pit jN I �/ . From equation (1) it
may be shown that the density associated with F � .pjN I �/ is given by

f � .pjN I �/D
1

N � 1

�
1

˛�
�F � .pjN I �/

� 
�M=N

.r � p/ �M=N C .r�m/�N�Nc
.r�m/�.N�1/�Nc

�
C

�

.p �m/ � � c

!
(8)

for p 2 Œp0; r� and zero otherwise. Note that bGAt jN and b�N are estimated using the data, whereas
Fpit jN I� is based on the theory model.

As a check, we also consider the ‘naïve’ case where the number of potential firms is simply taken
to be the number of actual firms, i.e. N D A. In this case, the likelihood is

lnL D
TX
tD1

AtX
iD1

lnf .pit jAt I �/ (9)

where f .pjAI �/ D f � .pjN I �/.
Note that we deal with the probability GAjN nonparametrically while its parametric form (2) is

available. The advantage of such an approach is twofold. First, a nonparametric probability matrix
GAjN has the flexibility to incorporate general models of entry. For example, a tractable parametric
form similar to equation (2) may be difficult to obtain in a model with endogenous entry, while our
nonparametric approach may still apply. Second, the approach provides a specification test of the
model, i.e. to test the difference between the parametric and nonparametric version ofGAjN , where the
former matrix can be computed using the estimate of parameters and the latter is nonparametrically
estimated in the first step. Similarly, the parametric specification of the equilibrium price distribution
F.pjN/ in equation (1) can also be tested.

We present some Monte Carlo evidence in the online Appendix to demonstrate that our estimation
procedure performs well in a controlled, small-sample environment. Moreover, we also show that
failing to account for the unobservability of the potential number of firms can lead to biased estimates
of model parameters.
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5. EMPIRICAL APPLICATION

In this section we apply our methodology to daily price data obtained from the UK price comparison
site Kelkoo, during the period 18 September 2003 to 6 January 2004. Baye et al. (2009) use these data
along with proprietary data on clicks to demonstrate that behavior at the site is consistent with a ‘clear-
inghouse’ model that is nested as a special case of our formulation in Section 2. The goal of this section
is to use the econometric procedure described above to structurally estimate parameters of the model,
using only (publicly available) price data rather than both price and clicks data. Before proceeding, we
briefly explain why the model in Section 2 more closely matches the shopping environment at Kelkoo
than alternative models of online price dispersion, such as models with costly consumer search. Our
discussion summarizes key points in Baye et al. (2009); the interested reader may refer to that paper
for a more detailed description of the shopping environment at Kelkoo.

At the time these data were collected, Kelkoo was the largest price listing service in the world,
operating in nine other European countries besides the UK. Within the UK, Kelkoo was the third
largest retail website, with over 1800 participating retailers, including 18 of the largest 20 online
retailers in the UK. It attracted an average of 10 million individual users per month—more than twice
that of its closest rival. With a simple keyword search (e.g. ‘Compaq iPaq H3630’), a consumer visiting
the site during 2003 obtained a complete list of the prices that different sellers listing on Kelkoo
charged for the exact same product. Information about shipping and VAT were also displayed, such
that it was virtually costless for a shopper to identify the seller charging the lowest ‘all in’ price.
By simply clicking the name of the firm offering the lowest price, the consumer was directed to the
checkout page of the firm’s website to purchase the product.

For these reasons, the Kelkoo environment of 2003 shares many of the key features of the idealized
environment modeled in Section 2. Its dominant size, depth of participation and ease of use meant
there were few realistic alternative platforms for search by price conscious UK shoppers. UK branding
activities at the time were no less sophisticated than those in the USA; thus it seems realistic to suppose
that many consumers were loyal to one of the competing retail brands, which included such UK giants
as Tesco and Dixon’s, located on virtually every High Street in the country. Of course, a fringe of
consumers no doubt pursued other search strategies or were loyal to no firm in particular, but such
consumers were unlikely to be of a size so as to undo the main economic forces driving the model
and, presumably, real-world firm decisions by competitors in the consumer electronics retail market.
In any event, the price to be paid for the ability to recover deep parameters via structural estimation
is commitment to a model that, like all models, is necessarily an imperfect representation of the rich
tapestry comprising the actual real-world setting.

5.1. Data and Empirical Issues

The estimation dataset, which is fully described in Baye et al. (2009), includes 6151 daily listed prices
(inclusive of taxes and shipping) charged by firms selling 18 models of PDAs over the period from
18 September 2003 to 6 January 2004. Given the theory model and shopping environment at Kelkoo,
one empirical approach would be to produce separate estimates for each of these 18 different PDAs.
Unfortunately, we have a limited number of observations for each product and therefore pool data
across different PDAs. Fortunately, this problem is common in the literature (see Hong and Shum,
2006; Moraga-González and Wildenbeest, 2008; Moraga-González et al., 2013), and we may use
standard techniques to overcome these data limitations. In particular, we utilize information about the
characteristics of each product (e.g. brand, CPU clock, RAM capacity, and whether Bluetooth and
built-in camera are available) to construct ‘homogenized prices’ that control for product heterogeneity,
where characteristics associated with each model were obtained by merging the original dataset with
information from PDAdb.net, a mobile device database.

Table I provides summary statistics for our data. We can see that products with high average prices
also have higher standard deviation. This implies that products with high value are subject to a larger
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Table I. Summary statistics

Variable No. of obs. Mean SD Min. Max.

No. of listings 1 362 323.10 121.64 141.56 607.77
2 714 315.21 142.51 108.1 607.77
3 465 303.24 126.43 108.1 607.77
4 644 300.12 94.50 133.77 607.77
5 705 287.30 91.65 132.75 499
6 660 320.87 92.22 133.77 509.29
7 791 315.87 90.16 183.94 509.29
8 608 319.98 104.19 179.99 509.29
9 315 306.89 103.63 179.99 509.29
10 350 327.41 115.16 179.99 509.29
11 297 307.68 106.19 179.99 509.29
12 132 256.49 35.26 183.94 329.71
13 65 271.48 26.75 244.95 329.71
14 28 272.29 26.22 244.95 329.71
15 15 272.83 24.75 244.95 323.89

Month Sep. 2003 655 303.75 103.42 108.1 529.94
Oct.2003 1781 305.62 108.23 108.1 599
Nov.2003 1764 314.29 109.28 110.45 607.77
Dec.2003 1674 309.48 104.91 134.88 596.98
Jan.2004 277 307.43 104.62 141.56 596.98

Producta e740wi (Toshiba) 216 434.12 90.11 251.46 491.57
h1910 (HP) 171 223.83 30.54 169.49 309.98
h1940 (HP) 898 275.45 23.13 240.88 331.69
h2210 (HP) 184 332.26 26.22 295.98 374.83
h3950 (HP) 91 291.06 21.18 273.77 377.11
h3970 (HP) 131 328.30 25.94 298.74 415.07
h5550 (HP) 851 464.96 27.14 427.98 509.29
m515 (Palm) 44 198.85 19.79 166.98 219.00
nx70v (Sony) 164 291.22 61.02 234.42 379.00
nx73v (Sony) 501 379.66 28.58 338.94 446.45
nz90 (Sony) 151 541.47 34.57 499.95 607.77
sj22 (Sony) 368 151.62 16.02 132.75 183.94
sj33 (Sony) 44 173.89 5.85 168.29 179.95
tg50 (Sony) 428 272.55 20.09 203.94 309.54
treo90 (Handspring) 136 132.02 22.56 108.10 156.17
tungstent2 (Palm) 678 265.82 30.14 202.39 327.03
tungstenw (Palm) 295 406.17 42.08 376.98 499.00
zire71 (Palm) 800 210.73 15.76 179.99 253.94

Total No. of listings 6151 309.04 107.01 108.1 607.77
6151 5.90 3.07 1 15

Characteristics CPU speed (MHz) 6,151 220.23 120.47 33 400
RAM (MB) 6151 46.45 38.34 16 128
Bluetooth 6151 0.55 0.49 0 1
Built-in camera 6151 0.31 0.46 0 1

a A product is indicated by both its model and the brand (in parentheses), e.g. e740wi is produced
by Toshiba.

price dispersion, which may be caused by product characteristics. The table indicates that product
characteristics, as well as manufacturer and month effects, contribute to the observed variation of listed
prices over time and across different PDAs. This is more clearly seen in model 1 of Table II, which
shows the results of a regression of prices on the number of listings, characteristics of products, man-
ufacturer and month dummies. As the results of model 1 show, controlling for product heterogeneity
and seasonal (month) effects, the number of listing firms continues to have a negative and statistically
significant effect on price. On average, the listed price declines by 10.19 GBP with each additional
competing firm. Second, product characteristics and the specific brand of PDA all influence price. For
example, a built-in camera adds as much as 80 GBP to the price of a PDA. Third, the average listed
price in December (the omitted month) is higher than in September, October and January at the 5%
significance level.
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Table II. Reduced-form analysis

Model 1 Model 2

Number of listings �10.19���
(0.40)

Processor (MHZ) 0.17*** 0.29***
(0.023) (0.023)

Ram (GB) 2.57*** 2.30***
(0.061) (0.062)

Bluetooth 55.18*** 28.70***
(3.68) (3.70)

Camera 78.86*** 50.17***
(4.08) (4.10)

HP �102.47*** �116.95***
(4.41) (4.60)

Sony 24.58*** 41.76***
(2.67) (2.72)

Toshiba & Handspring �61.68*** �34.74***
(5.13) (5.28)

September �27.53***
(3.50)

October �15.0***
(2.63)

November �3.98
(2.48)

January �11.50**
(4.56)

Constant 201.5*** 142.88***
(3.98) (2.71)

N 6151 6151
R2 0.575 0.528
Adj.R2 0.574 0.528

Note: Standard errors in parentheses; *p < 0:10; **p <
0:05; ***p < 0:01.

To deal with product heterogeneities, we pool the data and construct homogenized prices by regress-
ing price on the product characteristics and brand fixed effects (model 2 in Table II) and then construct
‘homogenized’ prices using the regression results. These homogenized prices are the basis for our
structural estimation.6 Ideally, we may take into account the product heterogeneity in our analysis by
two alternative ways. First, we condition the estimation on the heterogeneity. This requires a large
sample size and is not plausible for our application owing to the limitation of data. Second, we employ
a structural method that allows the model parameters r , m, S and M to depend on the characteristics.
The dependence may be due to firms’ asymmetry in size, reputation, etc. However, such a generaliza-
tion comes at the cost of extending the theoretical model in Section 1 to an asymmetric one, which
requires a different characterization of equilibria as well as a quantitatively different argument of iden-
tification. It is still an open question whether such a more sophisticated model could be identified using
the kind of data scenario we consider here.

Homogenized prices control for differences in product characteristics or manufacturer, but they do
not (and cannot) account for the seasonal effects observed in model 1 of Table II. A key difficulty
stems from the multiple factors impacting price (which increased) during the holiday season (Decem-
ber). During this time period, there is undoubtedly a demand shock, though its composition between
shoppers .S/ and loyals .M/ is unclear. Also, there may be a supply shock (larger N ) as some firms
enter the market to take advantage of increased demand. This is consistent with the data, where we

6 Such an approach has been used in the literature to control for observed heterogeneity (see, for example, Haile et al., 2006;
Bajari et al., 2014). The main idea is to express prices as p D Wˇ C u, where W is a vector of characteristics and u ? W .
Thus the CDF of prices FpjW D Pr.Wˇ C u � p/ D Fu.p �Wˇ/. Homogenized prices p �Wˇ are then constructed
using the residuals when we regress prices on manufacturer and product characteristics as in model 2 of Table II.
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observe an average number of listings of 4.08, 4.68, 5.86, 7.84 and 6.54 during September, October,
November, December and January, respectively. Since we only observe the number of listings A and
the average price, we cannot disentangle the impact of the shock on various channels (N ,M , S and so
on) without detailed sales data. Therefore, as a robustness check, we separately estimate the structural
model at the exclusion of December, when a (positive) demand shock is most likely. As we shall see,
the parameter estimates are consistent with the estimates over all periods.

5.2. Structural Estimation

We now estimate the model parameters � by applying the two-step estimation procedure to the homog-
enized data. Our estimation is based on click-through fees at Kelkoo in 2003, which were 20 pence
per click, or c D 0:20. Out of 1591 product dates available, 1229 had two or more firms listed prices.

In constructing the GAjN matrix, we collapse observations where there are 10 or more listings into
a single bin owing to a paucity of data. Such pooling may be justified theoretically (see Baye and
Morgan, 2009) as well as on the practical grounds that the estimates in our simulation were relatively
invariant to the cutoff used for pooling. Correspondingly, both A and N take on 10 distinct values
from ¹2; 3; : : : ; 10;11+º. We use a discretized second listed price as the instrument Z, which also has
the same support. Hence GAjN is a 10� 10 matrix for purposes of estimation, with the first 9 columns
corresponding to N D 2; : : : ; 10 and the last bin corresponding to N > 10.

In estimating the matrix of conditional probabilities, GAjN , two potential problems must be over-
come. The first concerns the structure of the matrices comprising equation (7), used in the first step
of estimation. Since A � N; it then follows that the matrix comprising the right-hand side of this
equation should be upper triangular (as there is no chance of more listings than competing firms).
Consequently, so too should the left-hand side matrix, HEp;A;ZB�1A;Z , but this latter matrix is formed
using the data and so may not be upper triangular. Fortunately, this is of no consequence since, per-
forming the first step of the estimation without constraining the data in any way, while constraining
the estimated matrix bGAjN to be upper triangular in the second step of estimation, does no harm to
the asymptotic consistency or convergence of bGAjN : The reason, as argued in An et al. (2010), is that
HEp;N;ZB

�1
A;Z must be upper triangular asymptotically.

The second key hurdle concerns the non-negativity of the elements of bGAjN : Our main procedure
does not constrain these estimates to be non-negative and indeed, in some cases, negative values do
arise. This too may be overcome by adopting an alternative estimation procedure where we impose
non-negativity constraints to all elements of bGAjN and choose values to minimize the distance between
the left- and right-hand sides of equation (7) rather than solving it explicitly from the decomposition.
It is routine to show that this alternative procedure retains the asymptotic consistency and convergence
properties of the original estimation procedure. We opted to compute bGAjN both with and without
imposing constraints and derived similar estimates. The reported estimates derive from the constrained
version of bGAjN .

5.3. Estimation Results and Discussion

Table III reports the results of the first-stage estimates of the matrix GAjN . The elementbGADi jNDj .j � i/ corresponds to the estimated probability (in the data used) that there are A firms
listing prices on the comparison site when the population of firms is N . According to the discussion
on the full rankness of BA;Z in Section 3, this result also implies that there is sufficient variation of N
across time.

The resulting parameter estimates, along with bootstrapped standard errors, are reported in Table IV,
where columns (a) and (b) are obtained under different methods of pooling the larger values of A. For
comparison, we also provide in column (c) the ‘Naïve’ estimates which assume N D A and ignore
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Table III. Estimated GAjN matrix

Number of firms (N )

Number of listings (A) 2 3 4 5 6 7 8 9 10 >10

2 1.00 0.56 0.66 0.40 0.31 0.16 0.42 0.63 0.49 0.35
3 0 0.44 0.20 0.10 0.15 0.18 0.04 0.09 0.15 0.13
4 0 0 0.14 0.22 0.15 0.03 0.17 0.14 0.14 0.08
5 0 0 0 0.28 0.28 0.53 0.18 0.03 0.02 0.09
6 0 0 0 0 0.11 0.04 0.03 0.02 0.06 0.16
7 0 0 0 0 0 0.06 0.11 0.03 0.06 0.09
8 0 0 0 0 0 0 0.03 0.02 0.05 0.01
9 0 0 0 0 0 0 0 0.04 0.02 0.05
10 0 0 0 0 0 0 0 0 0.01 0.02
>10 0 0 0 0 0 0 0 0 0 0.02

Table IV. Parameter estimates and robustness check

Estimate Robustness check

Two-step Two-step ‘Naïve’ Discretization Discretization Exclude
estimate estimate estimate # 1 # 2 December

Param. (a) (b) (c) (d) (e) (f)

� 4.82 4.77 3.02 4.91 4.92 4.01
(0.45) (0.30) (0.22) (0.68) (0.81) (0.78)

r 452.75 452.76 319.49 466.18 445.37 426.78
(32.87) (25.12) (23.43) (56.21) (76.34) (65.34)

m 86.34 82.46 94.29 83.47 80.27 82.12
(25.08) (14.39) (17.09) (26.55) (28.19) (34.12)

M 25.84 23.82 35.36 27.81 25.20 29.13
(9.75) (14.10) (12.92) (8.10) (11.12) (8.66)

S 12.75 11.88 22.59 9.56 10.09 14.32
(1.91) (1.82) (2.02) (1.23) (2.65) (2.42)

� 0.076 0.069 0.14 0.065 0.069 0.077
(0.013) (0.0084) (0.01) (0.03) (0.02) (0.03)

Note: Column (d) contains the estimates when we pool observations with eight or more listings, and
column (e) reports the results when we choose a different price to be discretized to get Z. Specifi-
cally, the cutoff points are the 9th, 19th, 30th, 38th, 46th, 60th, 70th, 80th, and 95th percentile of the
chosen price.

the potential unobservability of the number of potential firms. The monetary parameters (r , m and
�) are denominated in GBP. As the table shows, all of the parameters are precisely estimated by our
two-step procedure.

The parameter estimates in column (a) of Table IV indicate that, on an average day in the UK
during 2003, a total ofM D 25:84 loyal consumers were interested in purchasing a PDA online, while
S D 12:75 consumers were interested in purchasing online from the firm charging the lowest price.
These estimates imply that about 33% of consumers in this online market are price-sensitive shoppers,
while 67% are loyals. It is interesting to contrast our estimates with those of Brynjolfsson and Smith
(2000), who find that around 13% of consumers in US e-retail markets were shoppers during that time
period. Given the somewhat less developed state of e-retail in the UK compared to the USA in 2003,
it is not altogether surprising to find that fewer UK customers had become ‘attached’ to a particular
online retailer. The estimated conversion rate, � D 0:08, implies that a firm listing on Kelkoo.com had
to receive, on average, about 12 clicks in order to generate one sale. At a cost of 20 pence per click,
this translates into an average cost per sale of 2.4 GBP in addition to the fixed listing fee of � D 4:82
GBP. Finally, note that the estimated monopoly markup for a PDA, .r �m/ =r; is about 80%.7

7 This is the monopoly markup of the ‘homogenized price’. As shown in column (h) of Table V, the profit of non-monopoly
retailers is much smaller.
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Table V. Estimated transaction prices and profit

Number of Prices Profit

firms Avg. Avg. Avg. Avg.
listed minimum trans. price trans. price Avg. ‘Naïve’ Two-step
price listed price loyals shoppers trans. price profit profit

(a) (b) (c) (d) (e) (f) (g) (h)

1 452.75 452.75 452.75 452.75 452.75 1827.05 1074.62
2 345.85 319.31 348.80 319.41 339.09 560.47 364.68
3 344.38 296.95 359.93 297.41 339.27 373.13 242.29
4 339.16 279.04 369.08 279.87 339.61 279.72 181.51
5 333.22 264.55 376.46 265.72 339.87 223.73 145.13
6 327.39 252.61 382.51 254.06 340.07 186.41 120.90
7 321.89 242.58 387.56 244.27 340.22 159.77 103.61
8 316.79 234.02 391.86 235.91 340.33 139.79 90.64
9 312.06 226.62 395.56 228.69 340.43 124.25 80.56
10 307.69 220.15 398.79 222.37 340.50 111.82 72.50
11 303.63 214.43 401.64 216.79 340.57 101.65 65.90
12 299.85 209.33 404.18 211.81 340.62 93.18 60.41
13 296.33 204.76 406.45 207.35 340.67 86.01 55.76
14 293.04 200.63 408.50 203.32 340.71 79.86 51.77
15 289.95 196.88 410.36 199.66 340.74 74.54 48.32

Consistent with our simulation in the online Appendix, the results in column (c) also show that the
naïve approach yields parameter estimates that substantially understate the level of e-retail competi-
tion, compared to our estimates that account for the unobservability of N . This is most clearly seen
from columns (g) and (h) in Table V, which reports the expected profit for each firm using the esti-
mates in columns (a) and (c) of Table IV and the formula in Proposition 1. For each N , the expected
profit using the naïve approach almost doubles those based on our estimates.

We also present several robustness checks to address concerns that our results may be sensitive to
accounting for seasonal demand shocks, pooling data for large N; or employing different instruments
and methods of discretization. These checks reveal that our findings are robust to these potential con-
cerns. The results in column (f) of Table IV deal with seasonality issues by using data at the exclusion
of December 2003. If interaction effects from time-varying demand were distorting our results, we
would expect wildly varying estimates compared to those reported in column (a) based on all the data.
Comparing the two sets of results we see, as expected, an increase in the number of shoppers and
loyals, but little change in the other parameters, thus mitigating concerns about results being driven
by a failure to account for demand shocks. Similarly, columns (d) and (e) of Table IV permit one to
compare results based on pooling observations with 11 or more listings (column (a)) with those aris-
ing by pooling observations with eight or more listings. The estimates do not vary substantially with
the method of pooling. Finally, we varied the construction of Z as well. Specifically, we chose alter-
native observed prices as the instrument Z and also used different methods of discretization. These
variations did not materially impact our parameter estimates. Indeed, provided the rank condition
Rank.BA;Z/ D K � 1 holds, the estimates are similar to those in columns (d) and (e) of Table IV and
quite robust to variation in discretization. Overall, these estimates suggest that the potential concerns
we highlighted earlier do not materially impact our parameter estimates.

We conclude this section by examining the goodness-of-fit of our parametric specification of the
price distribution F.pjN/ in Proposition 1.8 In particular, we compare the nonparametrically esti-

mated bF .pjN/ in the first step with that obtained by plugging O� into equation (1), i.e. F.pjN I O�/. For

8 An alternative goodness-of-fit test for specification involves the probability g.AjN/; one may use the chi-square diagnostic
tests proposed in Andrews (1988a,1988b) to test the difference between the nonparametrically estimatedbg.AjN/ and the

parametric one, g.AjN I O�/. Nevertheless, we focus onF.pjN/ since it incorporates the parametric specification of the listing
probability, ˛�.
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Figure 1. Price distributions. This figure is available in color online at wileyonlinelibrary.com/journal/jae

all N 2 ¹2; 3; : : : ; 10; 10Cº, the parametric distribution of price, F.pjN I O�/ is contained in the 95%
point-wise confidence band (estimated by bootstrapping 200 times) of bF .pjN/. Figure 1 illustrates
the results for the case where N D 8 and is typical of the patterns for other N . In the figure, the solid
and dotted lines represent F.pjN I O�/ and the mean of bF .pjN/, respectively, and the confidence band
consists of two dash lines. An important caveat to this comparison is that, owing to the small sample
size, the confidence band around bF .pjN/ is fairly wide, so having F.pjN I O�/ lie inside this band is
not a stringent test.

5.4. The Effects of Changes in Market Structure

The econometric framework described above, along with the structural estimates of the model of
online price competition, permit us to address a number of issues that arise in the evaluation of the
competitive effects when the number of online firms changes.

To accomplish this, we first substitute the parameter estimates reported in column (a) of Table
IV into the expressions summarizing equilibrium behavior in Proposition 1. We use carets to denote
the resulting estimates. Next, we calculate the implied average prices conditional on a given num-
ber of firms and display them in Table V. Column (a) in Table V lists the total number of firms in
the relevant market (N ), which is unknown. Column (b) provides the estimated average price listed
at the comparison site conditional on different numbers of competitors, where the average listed

price is E Œp� D
Rbrbp0 pdcF � .p/. As expected, Table V shows that the estimated average listed price

declines in the number of firms—rather abruptly as one moves from monopoly to a duopoly, and mod-
estly thereafter. Column (c) reports the estimated average minimum listed price, which is given by
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E Œpmin� D
1

1�.1�b̨�/N PN
AD1

�
N
A

�c̨�A.1 � c̨�/N�A Rbrbp0 pAŒ1 � cF � .p/�A�1dcF � .p/ : Note that this

calculation takes into account the effect of a change in N on the equilibrium distribution of prices,
firms’ propensities to advertise prices at the comparison site and the impact of a larger number of
listings on the minimum order statistic. Accounting for this, Column (c) of Table V shows that the
estimated average minimum listed price also declines as the number of firms increases.

Note that in our setting neither the average prices nor the average minimum prices represent aver-
age transaction prices. To calculate the average transaction price paid by loyals, one needs to account
for a firm’s propensity to list prices on the comparison site. When a firm chooses not to list, the model
implies that it charges the monopoly price, but this price is unobservable to us. Thus the average trans-
action price paid by a loyal customer isE

�
pL
	
D c̨�E Œp�C.1�c̨�/br . Column (d) of Table V reports

the estimated average transaction prices of loyal consumers. Note that it declines abruptly as one
moves from monopoly to duopoly, but then rises as the number of firms increases further.9 Likewise,
the average transaction price for shoppers must also account for listing decisions: the average transac-
tion price paid by a price-sensitive shopper is given byE

�
pS
	
D Œ1�.1�c̨�/N �E Œpmin�C.1�c̨�/Nbr .

Column (e) of Table V reports the estimated average transaction price of shoppers, which declines as
the number of firms increases.10

Columns (d) and (e) highlight that shoppers and loyals are impacted differently by heightened
competition: so long as there are at least two firms in the market, loyal consumers are harmed by
heightened competition, while shoppers are unambiguously made better off. The overall transaction
price, reported in Column (f) of Table V, is merely an average of the shoppers’ and loyals’ esti-
mated transaction prices, weighted by the estimated fraction of are shoppers versus loyals: E

�
pT
	
DbMbSCbME �pL	 C bSbSCbME �pS 	 : The first row of columns (b)–(f) presents the price charged by a

monopolist, .r �m/�.M C S/.
In summary, the estimates in Table V reveal that the average listed price and the average min-

imum listed price both decline as the number of firms increases. This is consistent with standard
reasoning, which suggests that heightened competition leads to lower prices. However, this ignores the
endogenous listing decisions of firms, which is, of course, relevant for the transaction prices paid by
consumers. Here, a more subtle story emerges. Both shoppers and loyals pay lower average transac-
tion prices as the online market moves from monopoly to duopoly. Thereafter, the effects of increased
competition diverge: loyal consumers are harmed (pay higher average transaction prices) as the num-
ber of firms further increases, while shoppers benefit from heightened competition. Intuitively, as the
number of firms increases, the minimum listed price decreases due to competition, as does the profit a
firm earns from the comparison website. This results in a smaller listing probability for a larger num-
ber of firms (using the estimate of column (a) in Table IV, we can verify that ˛ is decreasing in N ).
Thus, for a largerN , loyal consumers pay the monopoly price r and the average listed price EŒp� with
a larger and smaller probability, respectively, and this may lead to an increasing average transaction
price. Similarly, shoppers also pay r with an increasing probability .1 � ˛�/N and the average mini-
mum listed price EŒpmin� with a decreasing probability for a larger N . However, since the probability

9 That the transactions price increasing for loyals as competition increases is not purely an artifact of our two-consumer
type model. In fact, the result readily extends to situations where some of the loyals for each firm are only partially loyal
(‘quasi-loyals’) in the sense that they also search at a second firm. To see this, let " denote the fraction of ‘quasi-loyals’ in
the population. If the proportion of loyals 1 � " is sufficiently large, the effects of competition on loyals remains under this
alternative model.
10 There is an apparent discrepancy between the predictions as to average transaction prices on the comparison site, which are
falling inN (and hence also in A because the two are positively correlated) and our reported average transaction prices offered
in Table I, which are not strictly monotone in A. The difference stems from the fact that the measure contained in the summary
statistics does not account for instances where shoppers buy without using the comparison site because of the lack of listings.
These events are more likely whenN (and henceA) is small than when it is large; thus the summary statistics understate actual
transactions prices, though to a lessening degree as A increases.
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Table VI. Percentage change of transaction prices

Estimated change Estimated change Estimated change Estimated change Estimated change
Number of in average in avg. minimum in average in average in average
firms listed price listed price transaction price transaction price transaction price

loyals shoppers
(a) (b) (c) (d) (e) (f)

1 23.61% 29.47% 22.96% 29.45% 25.10%
2 0.43% 7.00% �3.19% 6.89% �0.05%
3 1.51% 6.03% �2.54% 5.90% �0.10%
4 1.75% 5.19% �2.00% 5.06% �0.08%
5 1.75% 4.51% �1.61% 4.39% �0.06%
6 1.68% 3.97% �1.32% 3.85% �0.04%
7 1.59% 3.53% �1.11% 3.42% �0.03%
8 1.49% 3.16% �0.95% 3.06% �0.03%
9 1.40% 2.86% �0.82% 2.76% �0.02%
10 1.32% 2.60% �0.71% 2.51% �0.02%
11 1.24% 2.38% �0.63% 2.29% �0.02%
12 1.17% 2.18% �0.56% 2.11% �0.01%
13 1.11% 2.02% �0.50% 1.94% �0.01%
14 1.05% 1.87% �0.46% 1.80% �0.01%

.1�˛�/N is much smaller than Œ1� .1�˛�/N �, the decreasing EŒpmin� dominates shoppers’ payment
as N increases. Thus shoppers benefit from heightened competition by paying less.

Table VI uses the results in Table V to compute the price effects when the number of firms declines
from N to N � 1, where column (a) represents the post-decline number of firms. So long as there
is more than one firm in the market, a change of market structure will not harm the ‘average’ online
consumer. This conclusion is based on the assumption that firms in the online channel do not compete
against firms in other channels. In effect, column (f) reveals that—even though models of online com-
petition are more complex than standard homogeneous product Bertrand competition and the ‘law of
one price’ does not hold online—the conclusions based on our estimates are similar to what one would
have concluded based on the simple Bertrand model, at least in this particular online market: there are
no adverse effects from a consolidation in market structure in this online market so long as there are
two firms in the market.

It is interesting to compare our results above with a Bertrand competition model without segmen-
tation where all the M C S consumers are shoppers (if all the consumers are loyal, each firm charges
r on its own site). In such a model, a monopoly firm (N D 1) charges r on its own website. Once
N > 1, a firm without advertising its product on the comparison website attracts no shoppers and
earns zero profit. On the other hand, due to Bertrand competition, firms listed on the comparison site
charge a uniform price, which is the sum of marginal cost, listing and click cost. Therefore, similar
to our model, if there is more than one firm in the market, a change of market structure may benefit
the consumers.

We may also compute the competitive effects using the naïve estimates in Table IV. The results
show that one may underestimate competitive effects by failing to account for the unobserved number
of potential firms in the market. For example, if the number of firms decreases from three to two, our
estimates indicate that the average transaction price paid by price-sensitive ‘shoppers’ and ‘loyals’
increases by 6.89%, and declines by 3.19%, respectively. Using the naïve estimates results in smaller
predicted price effects (12% smaller for ‘shoppers’ and 15% smaller for ‘loyals’).

6. CONCLUSIONS

We have shown that the econometric methodology from winner-pay auctions may be used to identify
and structurally estimate standard models of online competition, even when the number of competing
firms is unobserved. The estimates can be employed to analyze the competitive effects induced by the
change of number of firms. Our empirical results suggest that: (i) online markets are less vulnerable
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to adverse competitive effects from reductions in the number of firms than one might expect given the
plethora of papers documenting significant price dispersion in online markets; (ii) reductions in the
number of competitors in online retail markets harm price-sensitive shoppers but benefit customers
who are loyal to a particular firm; and (iii) using the observed number of firms as a proxy for the
number of potential firms may lead to estimates that significantly understate the degree of competition
in online markets. We stress, however, that these findings are based on data from one e-retail market
in the UK and a particular structural model that we believe fits that market environment. While the
model and econometric techniques developed in this paper are useful more generally, one should
tread cautiously in generalizing the results from our study to environments where search costs play an
important role in determining equilibrium prices.
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APPENDIX A: IDENTIFICATION OF Pr.N /

In this section, we discuss the identification of Pr.N /, the probability distribution of the number of
firms, N . We first construct a linear system f .pj / D

PK
ND2 f .pj jN/Pr.N /, where f .p/ is the

density of listed prices including A D 1. pj ; j D 1; 2; : : : ; K � 1 are .K � 1/ prices and f .pj jN/ is
identified in Proposition 2. For ease of exposition, we rewrite the linear system as a matrix equation:

ˆp;N†N D P (A.1)

where the matrix ˆp;N is defined as .ˆp;N /j;k D f .p D pj jN D k/. †N denotes the vector of
the unknown frequency distribution of N , †N � .Pr.N D 2/;Pr.N D 3/; : : : ;Pr.N D K//T and
P is the vector of K � 1 prices, P � .f .p1/; f .p2/; : : : ; f .pK�1//

T . The vector †N is uniquely
determined by the linear system if the following full rank condition holds.

Condition 2. There exist K � 1 prices, p1; p2; : : : pK�1, such that Rank
�
ˆp;N

�
D K � 1.

Note that Condition 2 is testable because f .pjN/ is identified in Proposition 2 and the matrixˆp;N
is observable once the choice of the K � 1 prices is given. Under Condition 2, all the elements of the
vector †N are uniquely solved from the linear system using Cramer’s rule. We summarize the results
above in the following corollary of Proposition 2.

Corollary 1. Suppose Conditions 1–2 hold. The probability distribution of N is identified for N D
2; 3; : : : ; K.

APPENDIX B: THE FIRST STEP OF ESTIMATION

In this section we describe how to use observable data on prices .p/ and the number of listing firms
.A/ to estimate GAjN and the probability distribution �N using the data with A � 2. We suppress
the condition A � 2 whenever there is no ambiguity. Our methodology closely parallels the approach
taken in An et al. (2010). While the key identification equation (3) is stated in terms of the joint density
h .p;A;Z/, faster convergence is achieved if instead we take the expectation over all prices given
.A;Z/. Specifically, let EŒpjA;Z� D

R
p h.p;A;Z/

b.A;Z/
dp; i.e. the expected price conditional on some

realization A; Z: It then follows from equation (7) that

E ŒpjA;Z� b .A;Z/ D

KX
ND2

E ŒpjN� � g.AjN/ .N;Z/

where EŒpjN� D
R
pf .pjN/ dp:

Now define the matrices:

HEp;N;Z � ŒE .pjA D i; Z D j / b.A D i; Z D j /�i;j (B.1)
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and

FEpjN � diag .EŒpjN D 2�; : : : ; EŒpjN D K�/

Then we have

HEp;A;Z D GAjNFEpjN‰N;Z

which is analogous to equation (5). Similarly, we can obtain the estimating equation by
post-multiplying both sides of this equation byB�1A;Z . This yields the analogous identification equation:

HEp;A;Z
�
BA;Z

��1
D GAjNFEpjN

�
GAjN

��1
(B.2)

Consequently,

GAjN D �
�
HEp;A;Z

�
BA;Z

��1�
where � .�/ denotes the mapping from a square matrix to its eigenvector matrix. Note that if the distri-
bution of listed prices is such that the average price is monotonically ordered in N , then an analog of
Lemma 3 holds for expected prices as well. This guarantees that � is a unique mapping. Following Hu
(2008), we may estimate the relevant matrices using sample averages:

bGAjN � � �bHEp;A;Z

�bBA;Z��1� (B.3)

where

bHEp;A;Z D

24 1
T

X
t

1

Aj

AjX
iD1

pit1.At D Aj ; Zt D Zk/

35
j;k

(B.4)

In general, Z can be obtained by different choices of discretization, and this may result in different
matrices Hp;A;Z and ‰N;Z . However, both the main identification equation (8) and Proposition 2
hold for those methods of discretization such that Condition 1 holds. Our procedure of identification
and estimation is based on the main identification equation (8), which is pointwise in p, a continuous
variable. Therefore, we are still dealing with continuous price and discretization will have no impact
on our estimation results.

Finally, let g .A/ be a vector of marginal probabilities over the number of listings and let �N denote
the vector of the unknown frequency distribution of N conditional on A � 2. Then

g .A/ D GAjN�N

and we may estimate the unknown distribution �N using the data as follows:

b�N D �bGAjN��1 Og.A/ (B.5)

where Og.A/ denotes the empirical frequency of the number of listings.
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Finally, we propose a least squares estimate for †N according to the linear system equation (A.1)
in Corollary 1. Without taking an average with respect to price p, the eigendecomposition in the pre-
ceding step can be used to estimate the conditional density f .pjN/. Let Of .pjN/ denote the estimate;
then we have a linear system Of .pit / D

PK
ND2

Of .pit jN/Pr.N /, where Of .�/ is a kernel density esti-
mate. The probabilities Pr.N / then are estimated using a least squares estimator. It is worth noting
that we use all the observation including those A D 1 in this step of estimation.
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