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ABSTRACT

The standard class of affine models produces poor forecasts of future Treasury
yields. Better forecasts are generated by assuming that yields follow random walks.
The failure of these models is driven by one of their key features: Compensation for
risk is a multiple of the variance of the risk. Thus risk compensation cannot vary
independently of interest rate volatility. I also describe a broader class of models.
These “essentially affine” models retain the tractability of standard models, but
allow compensation for interest rate risk to vary independently of interest rate
volatility. This additional f lexibility proves useful in forecasting future yields.

CAN WE USE FINANCE THEORY to tell us something about the empirical behavior
of Treasury yields that we do not already know? In particular, can we shar-
pen our ability to predict future yields? A long-established fact about Trea-
sury yields is that the current term structure contains information about
future term structures. For example, long-maturity bond yields tend to fall
over time when the slope of the yield curve is steeper than usual. These
predictive relations are based exclusively on the time-series behavior of yields.
To rule out arbitrage, the cross-sectional and time-series characteristics of
the term structure are linked in an internally consistent way. In principle,
imposing these restrictions should allow us to exploit more of the informa-
tion in the current term structure, and thus improve forecasts. But in prac-
tice, existing no-arbitrage models impose other restrictions for the sake of
tractability; thus their value as forecasting tools is a priori unclear.

I examine the forecasting ability of the affine class of term structure mod-
els. By “affine,” I refer to models where zero-coupon bond yields, their phys-
ical dynamics, and their equivalent martingale dynamics are all affine
functions of an underlying state vector. A variety of nonaffine models have
been developed, but the tractability and apparent richness of the affine class
has led the finance profession to focus most of its attention on such models.

Although forecasting future yields is important in its own right, a model
that is consistent with finance theory and produces accurate forecasts can
make a deeper contribution to finance. It should allow us to address a key
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issue: explaining the time variation in expected returns to assets. In the
context of the term structure, explaining time-varying returns means ex-
plaining the failure of the expectations hypothesis of interest rates. Put dif-
ferently, we would like to have an intuitive explanation for the positive
correlation between the yield curve slope and expected excess returns to
long bonds. If a model produces poor forecasts of future yields ~and thus poor
forecasts of future bond prices!, it is unlikely that the model can shed light
on the economics underlying the failure of the expectations hypothesis.

The first main conclusion reached here is that the class of affine models
studied most extensively to date fails at forecasting. I refer to this class,
which includes multifactor generalizations of both Vasicek ~1977! and Cox,
Ingersoll, and Ross ~1985!, and is analyzed in Dai and Singleton ~2000!, as
“completely affine.” I fit general three-factor completely affine models to the
Treasury term structure over the period 1952 through 1994. Yield forecasts
produced with these estimated models are typically worse than forecasts
produced by simply assuming yields follow random walks. This conclusion
holds for both in-sample forecasts and out-of-sample ~1995 through 1998!
forecasts.

Even more damning is the way in which the estimated models fail. They
produce yield forecast errors that are strongly negatively correlated with the
slope of the yield curve. In other words, the models fail to replicate the key
empirical relation between expected returns and the slope of the yield curve;
their underestimation of expected excess returns to long bonds tends to be
largest when the slope of the term structure is steep.

This failure is a consequence of two features of the Treasury term struc-
ture, combined with a restriction built into completely affine models. The
first feature is that the distribution of yields is not strongly skewed; yields
vary widely over time around both sides of their sample means. The second
feature is that, while the average excess return to Treasury bonds is not
much greater than zero, the slope of the term structure predicts a relatively
large amount of variation in excess returns to bonds. Fama and French ~1993!
note that this implies the sign of predicted excess returns to Treasury bonds
changes over time.

Completely affine models do not simultaneously reproduce these two fea-
tures of term structure behavior. The key restriction in these models is that
compensation for risk is a fixed multiple of the variance of the risk. This
structure ensures that the models satisfy a requirement of no-arbitrage: Risk
compensation goes to zero as risk goes to zero. But because variances are
nonnegative, this structure restricts the variability of the compensation that
investors expect to receive for facing a given risk. The compensation is bounded
by zero; therefore it cannot switch sign over time.

As will be made clear in the paper, the only way this framework can pro-
duce expected excess returns with low means and high volatilities is for
some underlying factors driving the term structure to be highly positively
skewed. But this strong positive skewness is inconsistent with the actual
distribution of yields. Thus completely affine models can fit either of these
features of Treasury yields, but not both simultaneously.
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All is not lost, however. The second main conclusion of this paper is that
the completely affine class can be extended to break the link between risk
compensation and interest rate volatility. This extension from the com-
pletely affine class to the “essentially affine” class described here is costless,
in the sense that the affine time-series and cross-sectional properties of bond
prices are preserved in essentially affine models. The existence of extensions
to the completely affine class is not new ~Chacko ~1997! constructs a general
equilibrium example!, but this paper is the first to describe and empirically
investigate a general, very tractable extension to completely affine term struc-
ture models. I find that essentially affine models produce more accurate
yield forecasts than completely affine models, both in sample and out of
sample. However, there is a trade-off between f lexibility in forecasting fu-
ture yields and f lexibility in fitting interest rate volatility.

The paper is organized as follows. The structure of affine models is dis-
cussed in detail in Section I. Section II explains intuitively why completely
affine models work poorly. Section III describes the estimation technique.
Section IV presents empirical results and Section V concludes.

I. Affine Models of the Term Structure

A. Affine Bond Pricing

The core of affine term structure models is the framework of Duffie and
Kan ~1996!. Their model, summarized here, describes the evolution of bond
prices under the equivalent martingale measure. Uncertainty is generated
by n Brownian motions, GWt [ ~ GWt,1, . . . , GWt, n!'. There are n state variables,
denoted Xt [ ~Xt,1, . . . , Xt, n!'. The instantaneous nominal interest rate rt is
affine in these state variables:

rt 5 d0 1 dXt ,

where d0 is a scalar and d is an n-vector. The evolution of the state variables
under the equivalent martingale measure is

dXt 5 @~Ku!Q 2 K QXt #dt 1 SSt d GWt , ~1!

where K Q and S are n 3 n matrices and ~Ku!Q is an n-vector. The Q super-
script distinguishes parameters under the equivalent martingale measure
from corresponding parameters under the physical measure. The matrix St
is diagonal with elements

St~ii ! [ !ai 1 bi
'Xt, ~2!

where bi is an n-vector and ai is scalar. It is convenient to stack the bi
vectors into the matrix b, where bi

' is row i of b. The scalars ai are stacked
in the n-vector a. The following discussion assumes that the dynamics of ~1!
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are well defined, which requires that ai 1 bi
'Xt is nonnegative for all i and

all possible Xt . Parameter restrictions that ensure these requirements are in
Dai and Singleton ~2000!.

Denote the time-t price of a zero-coupon bond maturing at time t 1 t as
P~Xt , t!. Duffie and Kan ~1996! show

P~Xt , t! 5 exp@A~t! 2 B~t!Xt # , ~3!

where A~t! is a scalar function and B~t! is an n-valued function. Thus, the
bond’s yield is affine in the state vector:

Y~Xt , t! 5 ~10t!@2A~t! 1 B~t!'Xt # . ~4!

The functions A~t! and B~t! can be calculated numerically by solving a
series of ordinary differential equations ~ODEs!.

B. The Price of Risk and Expected Returns to Bonds

The model is completed by specifying the dynamics of Xt under the phys-
ical measure, which is equivalent to specifying the dynamics of the price of
risk. Denote the state price def lator by pt . The relative dynamics of pt are

dpt

pt
5 2rt dt 2 Lt

' dWt , ~5!

where Wt follows a Brownian motion under the physical measure. Element
i of the n-vector Lt represents the price of risk associated with Wt, i . The
dynamics of Xt under the physical measure can be written in terms of Lt
and ~1!:

dXt 5 ~~Ku!Q 2 K QXt !dt 1 SSt Lt dt 1 SSt dWt . ~6!

Instantaneous bond-price dynamics can be written as

dP~Xt , t!

P~Xt , t!
5 ~rt 1 et, t !dt 1 vt, t dWt ,

where et, t denotes the instantaneous expected excess return to holding the
bond. An application of Ito’s lemma combined with the structure of the ODEs
in Duffie and Kan ~1996! reveals

et, t 5 2B~t!'SSt Lt , ~7!

vt, t 5 2B~t!'SSt . ~8!
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Equation ~7! says that variations over time in expected excess returns are
driven by variations in both the volatility matrix St and the price of risk
vector Lt . A parametric model for bond-yield dynamics requires a functional
form for Lt . This form should be sufficiently f lexible to capture the empir-
ically observed behavior of expected excess returns. Thus, to motivate the
choice of functional form for Lt , we brief ly review evidence on the behavior
of bond returns.

A large literature documents that expected excess returns to Treasury bonds
~over returns to short-term Treasury bills! are, on average, near zero, and
vary systematically with the term structure.1 When the slope of the term
structure is steeper than usual, expected excess returns to bonds are high,
while expected excess returns are low—often negative—when the slope is
less steep. Thus the ratio of mean expected excess bond returns to the stan-
dard deviation of expected excess bond returns is low.

Earlier work has also shown that the shape of the term structure is re-
lated to the volatility of yields.2 However, the slope-expected return relation
is not simply proxying for a volatility-expected return relation. Supporting
evidence is in Table I, which reports results from regressions of excess monthly
bond returns on the lagged slope of the term structure and lagged yield
volatility. Monthly returns to portfolios of Treasury bonds are from the Cen-
ter for Research in Security Prices. Excess returns to these portfolios are
produced by subtracting the contemporaneous return to a three-month Trea-
sury bill. The slope of the term structure is measured by the difference be-
tween month-end five-year and three-month zero-coupon yields. The yields
are interpolated from coupon bonds using the technique of McCulloch and
Kwon ~1993!, as implemented by Bliss ~1997!.3 Yield volatility is the stan-
dard deviation of the five-year zero-coupon yield, measured by the square
root of the sum of squared daily changes in the yield during the month.

The sample period is July 1961 through December 1998. The results in
Table I reveal that month t’s volatility has no statistically significant pre-
dictive power for excess bond returns in month t 1 1. By contrast, all of the
estimated slope parameters are significant at the 10 percent level and half
are significant at the 5 percent level. In addition, the variation in predicted
excess returns is large relative to mean excess returns. Consider, for exam-
ple, bonds with maturities between three and four years. The mean excess
return is 7 basis points per month, while the standard deviation of predict-
able excess returns is roughly 25 basis points. Armed with this information
about the empirical behavior of bond returns, we now discuss three different
parameterizations of Lt .

1 The literature is too large to cite in full here. Early research includes Fama and Bliss
~1987!. Two standard references are Fama and French ~1989, 1993!.

2 This literature is also too large to cite in full. Chan et al. ~1992! examine the sensitivity of
volatility to the level of short-term interest rates. Andersen and Lund ~1997! refine their work
by decomposing the variation in interest-rate volatility into a component related to the level of
short-term interest rates and a stochastic volatility component.

3 I thank Rob Bliss for providing me with the yield data.
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C. Completely Affine Models

Fisher and Gilles ~1996! and Dai and Singleton ~2000! adopt the follow-
ing form for Lt . Let l1 be an n-vector. Then the price of risk vector Lt is
given by

Lt 5 St l1. ~9!

This class nests multifactor versions of Vasicek ~1977! and Cox, Ingersoll,
and Ross ~1985; hereafter CIR!. The main reason for the popularity of this
form is that the vector St Lt is affine in Xt . This implies affine dynamics for
Xt under both the equivalent martingale and physical measures. Affine dy-
namics of Xt under the physical measure allow for closed-form calculation of
various properties of conditional densities of discretely sampled yields. These
properties are discussed in detail in Duffie, Pan, and Singleton ~2000! and
Singleton ~2001!. Of less importance is the fact that Lt

' Lt , which is the in-
stantaneous variance of the log state price def lator, is also affine in Xt . This
latter property motivates the term “completely affine,” as discussed in the
next subsection.

Table I

Regressions of Excess Returns to Treasury Bonds,
July 1961 through December 1998

Monthly excess returns to portfolios of Treasury bonds are regressed on the previous month’s
term-structure slope and an estimate of the interest rate volatility during the previous month.
The slope of the term structure is measured by the difference between five-year and three-
month zero-coupon yields ~interpolated from coupon bonds!. Monthly volatility is measured by
the square root of the sum of squared daily changes in the five-year zero-coupon bond yield.
Asymptotic t-statistics, adjusted for generalized heteroskedasticity, are in parentheses. There
are 449 monthly observations.

Coefficient on
Maturity
~years!

Mean Excess Return
~%! Slope Volatility

Std. Dev. of Fitted
Excess Rets

0 , m # 1 0.011 0.027 0.116 0.036
~1.76! ~0.96!

1 , m # 2 0.045 0.085 0.413 0.119
~1.85! ~1.27!

2 , m # 3 0.064 0.132 0.582 0.179
~1.88! ~1.20!

3 , m # 4 0.074 0.187 0.706 0.241
~2.38! ~1.35!

4 , m # 5 0.063 0.214 0.692 0.265
~2.37! ~1.16!

5 , m # 10 0.094 0.296 0.804 0.354
~2.69! ~1.08!
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This structure imposes two related limitations on Lt . First, variation in
the price of risk vector is completely determined by the variation in St . There-
fore, variations in expected excess returns to bonds are driven exclusively by
the volatility of yields, an implication that appears inconsistent with the
evidence in Table I. Second, the sign of element i of Lt is the same as that
of element i of l1, because the diagonal elements of St are restricted to be
nonnegative. The importance of this limitation will be clear in Section II.

D. Essentially Affine Models

The essentially affine class nests the completely affine class. We first de-
fine the elements of a diagonal matrix St

2 as

St~ii !
2 5 H ~ai 1 bi

'Xt !
2102, if inf~ai 1 bi

'Xt ! . 0;

0, otherwise.

Thus, if diagonal element i of St is bounded away from zero, its reciprocal
is diagonal element i of St

2. For any diagonal element of St with a lower
bound of zero ~whether or not it is accessible given the dynamics of Xt !, the
associated element of St

2 is set to zero. Therefore the elements of St
2 do not

explode as the corresponding elements of St approach zero.
The form of Lt used in the essentially affine model is

Lt 5 St l1 1 St
2 l2 Xt , ~10!

where l2 is an n 3 n matrix. This form shares with ~9! two important prop-
erties. First, if St~ii ! approaches zero, Lt does not go to infinity. Second, St Lt
is affine in Xt . Therefore, the physical dynamics of Xt are affine.

There are three important differences between ~9! and ~10!. First, with
l2 Þ 0, Lt

' Lt is not affine in Xt . Therefore, this model is not completely
affine, but the variance of the state price def lator does not affect bond prices.
This motivates the term “essentially affine.” Second, the tight link between
the price of risk vector and the volatility matrix is broken. The essentially
affine setup allows for independent variation in prices of risk, which is the
kind of f lexibility needed to fit the empirical behavior of expected excess
returns to bonds. Third, the sign restriction on the individual elements of Lt
is removed.

For future reference, we require an expression for the physical dynamics
of Xt . Substitute ~10! into ~6! and define I 2 as the n 3 n diagonal matrix
with Iii

2 5 1 if St~ii !
2 Þ 0, Iii

2 5 0 if St~ii !
2 5 0. Then the physical dynamics in the

essentially affine model are

dXt 5 ~~Ku!Q 2 K QXt !dt 1 S@St
2 l1 1 I 2l2 Xt # dt 1 SSt dWt . ~11!
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Combining terms and denoting element i of l1 by l1i , ~11! can be written as

dXt 5 ~Ku 2 KXt !dt 1 SSt dWt , ~12a!

where

K 5 K Q 2 S 1
l11 b1

'

.

.

l1n bn
'
2 1 SI 2l2 ~12b!

and

Ku 5 ~Ku!Q 1 S 1
a1l11

.

.

an l1n

2 . ~12c!

E. An Essentially Affine Example

The following two-factor model illustrates the essentially affine frame-
work. The instantaneous interest rate rt follows a Gaussian process and
there is some factor ft that follows a square-root process. It is convenient to
begin by modeling their dynamics under the physical measure. Under this
measure, the processes are independent:

dS ft

rt
D 5 S kf 0

0 kr
DSS NfSrD 2S ft

rt
DDdt

1S sf 0

0 sr
DS!ft 0

0 1
D dSWt,1

Wt,2
D.

~13!

The model is closed with a description of the dynamics of the market price
of risk. If we adopt the completely affine version in ~9!, the result is the
Vasicek ~1977! model for rt . In such a setup, the variable ft is irrelevant for
bond pricing, and we are left with a standard one-factor Gaussian model.

If, however, we use the essentially affine specification for the market price
of risk, the factor ft can affect bond prices, even though it cannot affect the
path of rt . The reason is that the compensation that investors require to face
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the risk of Wt,2 can vary with ft . The essentially affine model specifies the
price of risk Lt as

Lt 5S l11!ft

l12
D 1S 0 0

0 1
DS l2~11! l2~12!

l2~21! l2~22!
DS ft

rt
D

5 S l11!ft

l12
D 1S 0 0

l2~21! l2~22!
DS ft

rt
D.

The dynamics of the state price def lator are therefore

dpt

pt
5 2rt dt 2S l11!ft

l12 1 l2~21! ft 1 l2~22! rt
D' dSWt,1

Wt,2
D.

The dynamics of rt and ft under the equivalent martingale measure are,
from ~12a! and ~12b!,

dS ft

rt
D 5 S kf 1 sf l11 0

sr l2~21! kr 1 sr l2~22!
DSS Nf Q

Sr Q D 2S ft

rt
DDdt

1 S sf 0

0 sr
DS!ft 0

0 1
D dS GWt,1

GWt,2
D,

~14!

where Nf Q and Sr Q are the means of ft and rt under the equivalent martingale
measure.

There are three important differences between this description of bond-
price dynamics and the standard Vasicek model. First, the instantaneous
interest rate rt affects the price of interest rate risk, through the parameter
l2~22!. In Vasicek, the price of interest rate risk is constant. Second, there is
a source of uncertainty in bond prices that is independent of the physical
dynamics of rt . The factor ft affects bond prices through the parameter l2~21!.
Chacko ~1997! builds an affine term structure model expressly designed to
exhibit this second feature, and my example was inspired by his ~substan-
tially more complicated! model. We will see in Section IV that this kind of
feature is critical to understanding the actual dynamics of Treasury bond
yields. Third, the price of risk associated with innovations in Wt,2 can change
sign, depending on the level of the factor ft .

The essentially affine structure of Lt , although more f lexible than the
completely affine structure, nonetheless imposes limits on the possible dy-
namics of bond prices. Note that one element of K, which is the first matrix
on the right-hand side of ~13!, is the same as the corresponding element of
K Q, which is the first matrix on the right-hand side of ~14!. Element ~1,2!
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must be zero under both the physical and equivalent martingale measures.
Otherwise, the drift of ft at ft 5 0 could be negative ~because it would depend
on rt !, which cannot be allowed because !ft enters into St .

To free up this element, and thus allow for a more f lexible specification of
the price of risk, we could model ft as a Gaussian process. An example of
such a model is Fisher ~1998!. By contrast, if both ft and rt were modeled as
square-root diffusion processes, the essentially affine structure of L would
be identical to the completely affine structure. This illustrates a more gen-
eral point noted by Duffie and Kan ~1996! and Dai and Singleton ~2000!, and
that we will see in Section IV. With the affine setup, there is a trade-off
between constructing a model that can capture complicated dynamics in vol-
atilities and a model that can capture complicated dynamics in expected
returns.

F. Semi-affine Models

Duarte ~2000! chooses an alternative generalization of completely affine
models. Let l0 be an n-vector. The price of risk vector is

Lt 5 l0 1 St l1.

With this form, elements of Lt can switch sign over time, but they cannot
move independently of St . As noted in Section I.C, this latter feature ap-
pears inconsistent with the empirical evidence. Thus, at first glance, it seems
that the semi-affine setup allows for some, but not all, of the f lexibility of
the essentially affine setup. However, there are parameterizations of St for
which the semi-affine model offers more f lexibility than does the essentially
affine model. One example is the multifactor CIR model, which is the focus
of Duarte’s empirical work. The semi-affine form of Lt implies nonaffine
dynamics of Xt under the physical measure. Therefore, as noted by Duarte
~2000!, approximation or simulation techniques are typically necessary to
reproduce the properties of discretely sampled yields.

G. A Canonical Form for Essentially Affine Models

There are a variety of normalizations that can be imposed on affine mod-
els. I follow the lead of Dai and Singleton’s ~2000! canonical completely af-
fine model. They normalize S to the identity matrix. The form of the model
is determined by the total number of state variables n and the number of
state variables that affect the instantaneous variance of Xt , denoted m. The
state vector is ordered so these are the first m elements of Xt . The resulting
model is an Am~n! model. They set the first m elements of a to zero and the
remaining n 2 m elements to one. Their version of ~2! is

St~ii ! 5 H !Xt, i, i 5 1, . . . , m;

!1 1 bi
'Xt i 5 m 1 1, . . . , n,

~15!
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where for i 5 m 1 1, . . . , n,

bi
' 5 ~bi1 . . . bim 0 . . . 0!.

Using their framework, we can write the diagonal elements of St
2 and I 2 as

St~ii !
2 5 H 0, i 5 1, . . . , m;

~1 1 bi
'Xt !

2102, i 5 m 1 1, . . . , n

Iii
2 5 H 0, i 5 1, . . . , m;

1, i 5 m 1 1, . . . , n.
~16!

Note that in ~11!, the matrix l2 shows up only in the term I 2l2 Xt .
Therefore, we can normalize the first m rows of l2 to zero. Now reconsider
~7!, the instantaneous expected excess return to holding a bond with re-
maining maturity t. From ~10!, ~15!, and ~16!, in the canonical form, this
can be written as

et, t 5 2B~t!' 31
0m

l1~m11!

.

.

l1n

2 1SS Mm3m
a 0m3~n2m!

M~n2m!3m
b 0~n2m!3~n2m!

D 1S 0m3n

L~n2m!3n
DDXt4 .

~17!

In ~17!, 0m is an m-vector of zeros. The 0p3q matrices are defined similarly.
The submatrix M a is a diagonal matrix with the ith diagonal element equal
to element i of l1. Row i of M b is given by the first m elements of the vector
l1~m1i ! bm1i

' . The submatrix L consists of rows ~m 1 1! through n of l2.
The additional f lexibility of the essentially affine model in fitting time

variation in expected excess returns to bonds is captured by the matrix L. In
a completely affine setup, L is a zero matrix. Therefore, any elements of Xt
that do not affect the instantaneous volatility of Xt ~i.e., elements m 1 1, . . . , n!
also cannot affect instantaneous expected excess returns to bonds. When L
is nonzero, any such elements of Xt can affect expected excess returns. In
addition, L provides a mechanism for all other elements in Xt to affect ex-
pected returns through a channel other than M a or M b.

If all elements of Xt affect the instantaneous volatility ~i.e., a correlated
multifactor CIR model, or what Dai and Singleton ~2000! call an An~N ! model!,
there is no L matrix. Therefore, the essentially affine model generalizes the
completely affine model only when there is at least one element in Xt that
does not affect the instantaneous volatility of Xt .

Term Premia and Interest Rate Forecasts in Affine Models 415



II. The Intuition Behind the Failure of Completely Affine Models

A successful model of the term structure should be consistent with the
variety of term-structure shapes observed in the data. In other words, given
the model’s parameters, for each observed shape, there should be a valid
state vector Xt that can generate it. In addition, the model should reproduce
the empirically observed patterns in expected returns to bonds, or equiva-
lently, produce forecasts of future yields that subsume the forecasting infor-
mation in the slope of the term structure. This section explains that completely
affine models fit to the historical behavior of Treasury yields will not simul-
taneously achieve both of these goals.

For our purposes, the key features of the excess returns to bonds are that
they are, on average, small, and exhibit substantial predictable variation.
Recall from Section I that et, t denotes the instantaneous expected excess
return to a bond with maturity t. Although we do not observe instantaneous
returns, the evidence in Table I suggests that the ratio E~et, t !0!Var~et, t ! is
small—well below one—for all t. ~This ratio is the inverse of the coefficient
of variation for et, t .!

We will see below that completely affine models can be parameterized to
produce low values of E~et, t !0!Var~et, t ! for all t. However, completely affine
models can fit this behavior only by giving up the ability to fit a wide range
of term-structure shapes. Conversely, they can be parameterized to fit ob-
served term-structure shapes, but not the behavior of expected excess re-
turns. The intuition underlying this result is best seen in two steps. We first
examine the behavior of one-factor completely affine models. Then we will
see that the important properties of one-factor models carry over to multi-
factor models.

A. One-factor Models

The intuition in a completely affine one-factor model is straightforward.
Expected instantaneous excess bond returns, et, t , are proportional to the
factor’s variance; hence they are bounded by zero. For a random variable
that is bounded by zero to have a standard deviation substantially larger
than its mean, it must be highly skewed. This high skewness is a tight
restriction on the admissible values of et, t , and thus a tight restriction on
the admissible values of the factor.

To see this clearly, we work through the math. Our first goal is to repro-
duce the stylized fact that E~et, t !0!Var~et, t ! is small. We restrict our atten-
tion to a non-Gaussian model, because in a completely affine Gaussian model
Var~et, t ! 5 0. The model is

rt 5 d0 1 xt ,

dxt 5 k~u 2 xt !dt 1 s!xt dWt ,

Lt 5 l1!xt.
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From ~7!, the instantaneous expected excess return to a t-maturity bond is

et, t 5 2B~t!sl1 xt .

Therefore, the inverse of the et, t ’s coefficient of variation is

E~et, t !

!Var~et, t !
5

E~xt !

!Var~xt !
5

u

!Var~xt !
. ~18!

Equation ~18! implicitly imposes B~t!sl1 , 0, which is the condition that
mean excess bond returns are positive. We set E~et, t !0!Var~et, t ! 5 0.3, which
is a typical ratio for predictable excess returns in Table I. We set the uncon-
ditional mean and standard deviation of the instantaneous interest rate to
5.5 percent and 2.9 percent, respectively. These values correspond to the mo-
ments of the three-month bill yield over 1952 through 1998. In this model,
Var~rt!5Var~xt!. Plugging the standard deviation into ~18! produces u50.87 per-
cent. Therefore d0 5 4.63 percent.

The requirement that the mean of xt is small relative to its standard de-
viation gives the model little f lexibility in producing short-term interest rates
that are below average. The instantaneous interest rate rt cannot be less
than d0, or 4.63 percent. But over the period 1952 through 1998, three-
month yields have ranged from 0.6 to 16 percent. Put differently, the model’s
parameters and the observed variation in short-term interest rates over this
period imply a range of xt from 24.0 to 11.4; the implied xt is negative in
more than 40 percent of the monthly observations. If we parameterized the
model to be consistent with the observed distribution of short-term interest
rates ~i.e., nonnegative implied xt !, we would require u . 4.9 percent. But
then the ratio E~et, t !0!Var~et, t ! would exceed 1.6. We can parameterize the
model to fit either the expected excess returns or observed term structures,
but not both.

We can also think about this model’s restriction on the behavior of interest
rates in terms of skewness of expected excess returns. In order to produce a
small E~et, t !0!Var~et, t !, the model will generate expected excess returns that
are always positive, usually very close to zero, and occasionally well above zero.
But as noted in Section I, observed expected excess returns are not so posi-
tively skewed; they range from positive to negative.

B. Multifactor Models

Multifactor models are better at fitting the behavior of expected excess
bond returns. For example, it is simple to generate a near-zero value of
E~et, t !0!Var~et, t ! for a specified maturity, while retaining substantial f lex-
ibility in fitting term structure shapes. All that is required is prices of risk
~elements of Lt ! with different signs. If one element of Lt is positive and
another negative, then at some maturity t, the factor loadings will weight
these prices of risk such that E~et, t ! 5 0 and Var~et, t ! . 0.
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However, completely affine models will not produce near-zero values of
E~et, t !0!Var~et, t ! for all maturities while also allowing for a wide variety of
term-structure shapes. To slightly oversimplify, the intuition is that long-
maturity bond yields are affected by a single factor—the factor with the
greatest persistence under the equivalent martingale measure. Thus, we
can use the earlier intuition developed for one-factor models to conclude that
multifactor models cannot reproduce the observed behavior of long-maturity
yields.

The reason why only a single factor will affect long-maturity bond yields
is practical, not theoretical. There are a variety of types of shocks that affect
the term structure ~e.g., level, slope, twist!. Multifactor models capture this
variety through factors that die out at different rates under the equivalent
martingale measure. In principle, we could construct, say, a two-factor model
where both factors affected long-bond yields. The only requirement is that
the factors have the same speed of mean reversion. But by doing so, we
sacrifice the major advantage of multifactor models—the ability to fit dif-
ferent kinds of shocks to the term structure. Thus, such a model would pro-
duce a poor fit of term structure data relative to a model in which each
factor had its own speed of mean reversion.

The failure of completely affine models to fit the empirical behavior of
bonds can be seen in the parameter estimates of three-factor completely
affine models in Dai and Singleton ~2000!. They use U.S. dollar interest rate
swap yields to estimate the same general three-factor completely affine mod-
els that are estimated here. I use their data and the parameters of their
preferred model to produce implied time series of the state vector and ex-
pected excess returns to bonds. The results of this exercise, which are not
reported in any table, indicate the model captures the combination of low
mean and high volatility for expected excess returns. However, in over one-
quarter of the observations, the implied value of the state vector violates a
nonnegativity constraint. The violations tend to occur when the long end of
the term structure is well below its average. Thus the results in Dai and
Singleton support the conclusion that completely affine models do not simul-
taneously fit the behavior of expected excess returns to bonds and the ob-
served term structure shapes.

III. Estimation of Essentially Affine Models

A. Three-factor Affine Models

All of the affine models I estimate have three underlying factors ~n 5 3!.
Litterman and Scheinkman ~1991! find that three factors explain the vast
majority of Treasury bond price movements. This is fortunate, because gen-
eral three-factor affine models are already computationally difficult to esti-
mate owing to the number of parameters. Adding another factor would make
this investigation impractical. Seven models are estimated: four completely
affine models and three essentially affine models. A completely affine model
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is estimated for each possible number of factors that do not affect the in-
stantaneous volatility of Xt ~from three to zero!. Using the canonical form of
Section I.G, the estimated models are A0~3! through A3~3!. The other models
that are estimated are the essentially affine generalizations of A0~3!, A1~3!,
and A2~3!. ~Recall A3~3! has no essentially affine generalization.!

The estimated models share the following expressions for the instanta-
neous interest rate, the physical dynamics of Xt , and the price of risk vector:

rt 5 d0 1 d1 Xt,1 1 d2 Xt,2 1 d3 Xt,3, ~19a!

d 1
Xt,1

Xt,2

Xt,3

2 5 31
~Ku!1

~Ku!2

~Ku!3

2 2 1
k11 k12 k13

k21 k22 k23

k31 k32 k33

2 1
Xt,1

Xt,2

Xt,3

24 dt 1 St dWt , ~19b!

St~ii ! 5 !ai 1 ~bi1 bi2 bi3!Xt, ~19c!

Lt 5 St 1
l11

l12

l13

2 1 St
2 1

l2~11! l2~12! l2~13!

l2~21! l2~22! l2~23!

l2~31! l2~32! l2~33!

2Xt . ~19d!

Depending on the model, restrictions are placed on the parameters in ~19a!
through ~19d!.

B. The Data

I use month-end yields on zero-coupon Treasury bonds, interpolated from
coupon bonds using the method in McCulloch and Kwon ~1993!. Their sam-
ple, which ends in February 1991, is extended by Bliss ~1997!. The entire
data set covers the period January 1952 through December 1998.4 The range
of maturities is three months to ten years.

To perform both in-sample and out-of-sample tests, I estimate term-
structure models using data from 1952 through 1994. The final four years of
data are reserved for constructing out-of-sample forecast errors.

C. The Estimation Technique

I estimate these models using quasi maximum likelihood ~QML!, which is
particularly easy to implement with completely and essentially affine mod-
els. Although QML does not use all of the information in the probability
density of yields, it fully exploits the information in the first and second

4 Bliss and McCulloch-Kwon ~1993! use slightly different filtering procedures; thus the yields
they report over periods of overlapping data do not match exactly. I use the yields in McCulloch
and Kwon over their entire sample period and use the Bliss ~1997! data after February 1991.
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conditional moments of the term structure. Thus, QML will capture the ten-
sion in affine models between fitting conditional means and conditional
variances.

Another advantage of QML ~which it shares with maximum likelihood and
related techniques! is that there is a positive probability that the estimated
model could actually generate the observed time series of term structures.
This is an important concern in estimating affine term structure models. As
the discussion in Section II highlighted, there is a tradeoff between fitting
the coefficients of variation for expected excess bond returns and fitting the
term structure shapes in the data. A model estimated with QML will guar-
antee that the time-t state vector implied by time-t yields is in the state
vector’s admissible space ~to avoid a likelihood of zero!. By contrast, consider
techniques such as Efficient Method of Moments ~EMM! that compare sam-
ple moments from the data with population moments simulated from the
model. These techniques do not require that the estimated term structure
model be sufficiently f lexible to reproduce the term structure shapes in the
data. The parameters of the model in Dai and Singleton ~2000!, which were
estimated with EMM, illustrate this point.

I implement QML following Fisher and Gilles ~1996!, which contains fur-
ther details. I assume that at each month-end t, t 5 1, . . . ,T, yields on n
bonds are measured without error. These bonds have fixed times to maturity
t1, . . . , tn. Yields on k other bonds are assumed to be measured with serially
uncorrelated, mean-zero measurement error.

Stack the perfectly observed yields in the vector Yt and the imperfectly
observed yields in the vector EYt . Denote the parameter vector by Q. Given Q,
Yt can be inverted using ~4! to form an implied state vector ZXt , as in ~20!.

ZXt 5 H1
21~Yt 2 H0!. ~20!

In ~20!, H0 is an n-vector with element i given by A~ti!0ti , and H1 is an n 3 n
matrix with row i given by B~ti!0ti . The candidate parameter vector is re-
quired to be consistent with Yt . This is enforced by requiring ZXt to be in the
admissible space for Xt , which is equivalent to requiring that the diagonal
elements of St in ~19c! be real.

Given ZXt , implied yields for the other k bonds can be calculated. Stack
them in ZEYt . The measurement error is et 5 ZEYt 2 EYt . The variance–covariance
matrix of the measurement error is assumed to have the following time-
invariant Cholesky decomposition:

E~et et
'! 5 CC '. ~21!

To compute the quasi-likelihood value, assume that the one-period-ahead
conditional distribution of the state variables is multivariate normal and
equal to

fX ~Xt116Xt !.
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The mean and variance–covariance matrix of Xt11 are known ~see the
Appendix!; thus, fX ~Xt116Xt ! is known. Then the distribution of Yt11 condi-
tional on Yt is

fY ~Yt116Yt ! 5
1

6det~H1!6
fX ~ ZXt116 ZXt !.

Also, assume that the measurement error is jointly normally distributed
with distribution fe~et !. The log likelihood of observation t is then

lt ~Q! 5 log fY ~Yt 6Yt21! 1 log fe~et !. ~22!

Stationarity is imposed by requiring that the eigenvalues of K are posi-
tive, allowing fY ~Y16Y0! to be set equal to the unconditional distribution of
Yt . The estimated parameter vector Q* is chosen to solve

max
Q

L~Q! 5 (
t51

T

lt ~Q!.

In the estimation that follows, I assume that the bonds with no measure-
ment error are those with maturities of 6 months, 2 years, and 10 years.
This choice was motivated by the desire to span as much of the term struc-
ture as possible without assuming that the 3-month yield, which exhibits
some idiosyncratic behavior, is observed without error. The bonds with mea-
surement error fill in the gaps in this term structure, with maturities of 3
months, 1 year, and 5 years.

D. The Maximization Technique

The QML functions for these models have a large number of local maxima.
The most important reason for this is the lack of structure placed on the
feedback matrix K. Similar QML values can be produced by very different
interactions among the elements of the state vector. Another reason is that
the feasible parameter space is not convex for any model with nonconstant
volatilities. A feasible parameter vector satisfies the requirement that the
diagonal elements of St are real for all t. Because I use the canonical form of
Section I.G, this requirement is satisfied when ZXt, i $ 0 for i # m. ~Recall
that m is the number of state variables that affect the instantaneous vola-
tility of Xt .! Therefore, the requirement imposes m 3 T restrictions on the
parameter vector. The restrictions are nonlinear functions of the parameters
and the data. These problems led to the following maximization technique.

Step 1. Randomly generate parameters from a multivariate normal dis-
tribution with a diagonal variance-covariance matrix. The means and vari-
ances were set to ‘plausible’ values.
Step 2. Use ~20! to calculate ZXt for all t.

Term Premia and Interest Rate Forecasts in Affine Models 421



Step 3. If the parameter vector is not feasible, return to step 1; otherwise
proceed.
Step 4. Use Simplex to determine the parameter vector that maximizes
the QML value.
Step 5. Using the final parameter vector from Step 4 as a starting point,
use NPSOL to make any final improvements in the QML value.

This procedure is repeated until Step 5 is reached 1,000 times. For most of
the models, there was little improvement in the QML value after the first
few hundred iterations.

E. Specification Tests

These specification tests use the fact that QML estimation can be viewed
as a GMM estimator. The moments are the first derivatives of the quasi log
likelihood function with respect to the parameter vector, resulting in an ex-
actly identified model. By imposing overidentifying moment conditions we
test the adequacy of the model.

E.1. Tests of Nested Models

For m , n, the completely affine model Am~n! is nested in a corresponding
essentially affine model. The essentially affine version has an additional
n~n 2 m! free parameters corresponding to the bottom n 2 m rows in the
matrix l2. We can test the null hypothesis that these free parameters are all
equal to zero, using the GMM version of a likelihood ratio test. A textbook
discussion is in Greene ~1997!. Define the column vector ht ~Q! as the deriv-
ative of ~22! with respect to the parameter vector Q, and define h~Q! as the
mean of these T vectors. Define the ~inverse of ! the weighting matrix Wt as

Wt
21~Q! 5 ~10T ! (

t51

T

ht ~Q!ht ~Q!'. ~23!

Denote the parameter vector for the essentially affine model estimated by
QML as Q0

*. The parameter vector Q1 is an alternative vector that imposes
the completely affine restriction on l2. Choose it to solve

q 5 min
Q1

Th~Q1!'Wt ~Q0
* !h~Q1!. ~24!

The results of Hansen ~1982! imply that under the null hypothesis, q is
distributed as x2~~n 2 m!n!. Similar tests can be used to evaluate other
parametric restrictions on the estimated models. These other tests are dis-
cussed in more detail in Section IV.
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E.2. Testing the Covariance Between Forecast Errors
and the Term Structure Slope

This test asks whether the yield forecasts produced by the estimated mod-
els include the information in the slope of the term structure. Given a pa-
rameter vector Q associated with a particular model, the implied state vector
ZXt2D is given by inverting yields observed at time t 2 D. The D-period-ahead

conditional mean E~Xt 6 ZXt2D! can then be constructed. Given this expected
state vector, expected D-period-ahead bond yields and associated forecast
errors can also be constructed. We need some notation for forecast errors.
Denote by et, D, ti

the forecast error realized at time t for a ti-maturity bond,
where the forecast is made at time t 2 D. The forecast errors for v bonds of
different maturities are stacked in the vector et, D.

et, D [ ~et, D, t1
et, D, t2

. . . et, D, tv!
' .

If an estimated term structure model does not make systematic forecast
errors, forecasts of time-t yields made at time t 2 D should have forecast
errors uncorrelated with any variable known at time t 2 D. This motivates
the specification test. Denote the slope of the yield curve at time t 2 D by
st2D. If the model is correctly specified,

E @~et, D 2 et, D!~st2D 2 st2D!# 5 0. ~25!

Equation ~25! contains v moments that can be used as overidentifying
restrictions in GMM estimation of an affine model. The other moments are
standard QML moments, which are the derivatives of ~22! with respect to
each element of the parameter vector. The weighting matrix is calculated at
the QML parameter estimates, which are consistent under the null hypoth-
esis that the model is correctly specified. Then an analogue to q in ~24! is
calculated. Again from the results of Hansen ~1982!, this value is distributed
as x2~v! under the null hypothesis. The use of overlapping observations in
these moment conditions produces sample moments that exhibit serial cor-
relation. I therefore construct the weighting matrix following Newey and
West ~1987!.

To implement this test, I set D 5 102, so that six-month-ahead forecasts
are examined. This horizon was chosen arbitrarily. A cursory investigation of
other forecast horizons indicated that the results were insensitive to this
choice. I used eight lags in the Newey–West calculation of the weighting
matrix; experimentation with similar lag lengths did not materially affect
the results. I set v 5 3, and formed forecasts for maturities of 6 months, 2
years, and 10 years. ~These are the same maturities that are assumed to
have no measurement error.! The slope of the term structure is measured by
the difference between the 5-year bond yield and the 3-month bond yield.
The first six observations are dropped to account for the length of the fore-
cast horizon.
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IV. Results

A. Overview

Table II reports the QML values for each estimated model. Results for 10
models are shown. The first 7 model specifications are labeled “unrestrict-
ed.” This means that the only parameter restrictions imposed are those im-

Table II

Statistical Comparison of Estimated Models
Three-factor affine models are estimated with quasi maximum likelihood ~QML!. The data are
month-end yields on zero-coupon bonds with maturities between three months and 10 years,
from January 1952 through December 1994. The models differ in the number of factors m that
affect the instantaneous variance of yields and in the f lexibility of the price of risk parameter-
ization. Essentially affine models allow the price of risk to vary independently from the in-
stantaneous variance of yields, while completely affine models do not. “Unrestricted” models
impose no restrictions on the parameters other than those required by no-arbitrage. “Preferred”
models drop parameters that contribute little to the models’ QML values.

Two specification tests are reported. The first is of the null hypothesis that the model’s
parameter restrictions are true. For “unrestricted” models, the test compares completely affine
models to their more general essentially affine counterparts. For “preferred” models, the test
compares the preferred model to its unrestricted counterpart. The second tests the null hypoth-
esis that the six-month-ahead yield forecast errors for bonds of three different maturities are
uncorrelated with the slope of the term structure at the time the forecasts are made. Under the
null, the test statistics are distributed as x2~number of param restrictions! and x2~3!, respectively.

Model Type m
Number of

Free Params QML value
First Test Stat

~ p-value!
Second Test Stat

~ p-value!

Unrestricted
Completely 0 19 15,171.94 62.689 12.297

~0.000! ~0.006!
Completely 1 23 15,380.31 26.133 18.521

~0.000! ~0.000!
Completely 2 24 15,395.74 0.860 9.938

~0.835! ~0.019!
Completely 3 25 15,396.34 33.482

~0.000!
Essentially 0 28 15,196.45 2.385

~0.596!
Essentially 1 29 15,392.47 16.639

~0.001!
Essentially 2 27 15,396.04 11.381

~0.010!

Preferred
Completely 2 19 15,393.55 1.238 10.406

~0.941! ~0.015!
Essentially 0 21 15,190.68 3.443 1.449

~0.841! ~0.694!
Essentially 1 22 15,387.91 17.882 14.361

~0.013! ~0.002!
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plied by the canonical form. These restrictions are either normalizations or
requirements of no-arbitrage. To both limit the danger of overfitting and to
aid in the interpretation of the parameter estimates, more parsimonious spec-
ifications are also estimated. They are discussed in Section IV.B.

There are three main points to take from Table II. First, models that are
better able to produce time-varying volatilities have higher QML values.
The A0~3! models ~both completely and essentially affine!, which have time-
invariant yield volatilities, have the lowest QML values. As the number of
factors that affect volatilities increases from zero through three, QML val-
ues monotonically rise.

Second, the additional f lexibility offered by essentially affine models over
completely affine models is important. The first specification test reveals
that the completely affine A0~3! and A1~3! models are overwhelmingly re-
jected by their more general essentially affine counterparts. Recall that as
m increases, the f lexibility provided by essentially affine models diminishes.
We see empirical evidence of this in decreasing values of the first test sta-
tistic as m increases, culminating in the lack of rejection of the completely
affine A2~3! model relative to its essentially affine counterpart.

Third, only the essentially affine model with the greatest f lexibility in
producing time-varying risk premia can capture the forecasting power of the
term-structure slope. According to the second specification test, the yield
forecast errors produced by the purely Gaussian essentially affine model
~A0~3!! are uncorrelated with the slope of the term structure. For this model,
all elements of l2 are free. When m 5 1, the top row of l2 is set to zero. This
additional restriction leads to a strong rejection by the second specification
test. A similar rejection accompanies the A2~3! essentially affine model. None
of the completely affine models pass this second specification test.

We can see from these results the trade-off between fitting conditional
volatilities and producing accurate forecasts of future yields. The essentially
affine model with the greatest forecasting power also has the least ability to
fit conditional volatilities. An increase in m provides for greater f lexibility in
fitting conditional variances of yields but also provides for less f lexibility ~in
an essentially affine model! in fitting expected excess returns to bonds. The
QML values indicate that the overall goodness of fit of first and second
moments is increased by giving up f lexibility in forecasting to acquire f lex-
ibility in fitting conditional variances.

B. Parameter Estimates

To limit the size of the paper, I report more detailed information for only
three of the models. They are the essentially affine A0~3!, A1~3!, and com-
pletely affine A2~3! models. The first is of particular interest because of its
forecasting ability, the second illustrates the trade-off between forecasting
ability and fitting conditional variances, while the third is the completely
affine model that does the best at forecasting, as measured by the x2 sta-
tistic on the second specification test.
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For each of these models, I estimate a more parsimonious specification by
first computing the t-statistics for the unrestricted parameter estimates. I
then set to zero all parameters for which the absolute t-statistics did not
exceed one and reestimated the models.5 This procedure eliminated five pa-
rameters from the completely affine A2~3! model and seven parameters from
both the essentially affine A0~3! model and the essentially affine A1~3! model.
For each preferred model, a joint test of the parameter restrictions is con-
structed using an analogue to ~24!. The test statistics and corresponding
p-values are reported in the “First Test Stat” column.6

Parameter estimates for these preferred models are in Tables III through
V. To conserve space, parameter estimates for the other models are not re-
ported in the paper, and are available on request.

Table III reports the parameter estimates for the A0~3! essentially affine
model. The canonical form imposes a lower triangular structure on K and
imposes a 5 1, b 5 0, Ku 5 0. Table IV reports the parameter estimates for
the A1~3! essentially affine model. One feature of this table deserves high-
lighting. The parameter ~Ku!2 is nonzero, but no standard error is reported.
This is the result of two normalizations imposed on the model: u2 5 u3 5 0.
The normalizations are imposed by setting ~Ku!2 and ~Ku!3 to the necessary
values given K. Other restrictions imposed in the canonical form are a1 5
k12 5 k13 5 0, a2 5 a3 5 b11 5 1, and bij 5 0, i $ 1, j . 1. Finally, Table V
reports the parameter estimates for the A2~3! completely affine model. In
the canonical form of the A2~3! model, a1 5 a2 5 b33 5 0, a3 5 b11 5 b22 5 1,
bij 5 0 for i , 3, i Þ j, and l2 5 0. The preferred specification sets b31 5 0
and b32 5 1, so that the second state variable drives the conditional volatil-
ities of both the second and third state variables. The element ~Ku!3 is non-
zero with no standard error, because u3 5 0 in the canonical model.

C. An Analysis of Forecast Errors

The estimated models, combined with month t bond yields, can be used to
construct forecasts of month t 1 i bond yields. Here we examine the accuracy
of these forecasts, both in sample and out of sample. The in-sample period is
January 1952 through December 1994. The out-of-sample period is January
1995 through December 1998. We focus on bonds with maturities of 6 months,
2 years, and 10 years, and forecast horizons of 3, 6, and 12 months. Forecast
accuracy is measured by the root mean squared forecast error ~RMSE!. In-
sample RMSEs are reported in Table VI and out-of-sample RMSEs are re-

5 With the completely affine A2~3! model, the parameter b32 was set to one instead of zero.
6 The test statistic for the essentially affine A1~3! model suggests a rejection of the preferred

model in favor of the unrestricted model. However, the large test statistic appears to be a
consequence of approximation errors in numerical computation of the derivative of the log-
likelihood function with respect to k32. The Numerical Recipes dfridr routine ~a robust method
for calculating derivatives and estimates of errors in the derivatives! reported large errors
regardless of the initial stepsize. Because the estimate of parameter in the unrestricted model
was nearly zero, and setting it to zero had a negligible effect on the QML likelihood function,
I set it to zero in the preferred model.
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ported in Table VIII. In Tables VII ~in-sample! and IX ~out-of-sample!, forecast
errors are regressed on the slope of the yield curve to determine whether the
models’ forecasts capture the forecasting power of the slope.

We need benchmarks to use in evaluating forecast accuracy. The simplest
benchmark is a random walk. The month t yield on a t-maturity bond is
used as a forecast of the month t 1 i yield on a t-maturity bond. The RMSEs
associated with this forecast method are reported in the “RW” columns of
Tables VI and VIII. Note that the tables report different patterns in RMSEs
across bonds. In the earlier period, yields were more volatile, with volatility
declining with maturity. In the later period, yield volatility was higher at

Table III

Parameter Estimates for the Preferred Essentially
Affine A0(3) Model

The model is defined in equation ~19!. With this version of the model, a is a vector of ones and
both b and Ku are identically zero. The matrix C is the Cholesky decomposition V 5 CC ' of the
variance–covariance matrix of the cross-sectional errors in fitting yields on bonds with matu-
rities of three months, one year, and five years. Parameters are estimated with QML. Asymp-
totic standard errors are in parentheses.

Constant Term

d0 0.044
~0.025!

Index Number ~i !

Parameter 1 2 3

di 0.01895 0.00790 0.00992
~0.00223! ~0.00218! ~0.00051!

k1i 0.564 0 0
~0.047!

k2i 0 3.257 0
~0.672!

k3i 20.545 0 0.062
~0.202! ~0.051!

l1i 20.625 20.235 20.207
~0.146! ~0.099! ~0.057!

l2~1i ! 0 1.742 0
~0.254!

l2~2i ! 0 21.711 0
~0.717!

l2~3i ! 0.648 0.297 20.061
~0.206! ~0.186! ~0.051!

C1i 0.00227 0 0
~0.00013!

C2i 20.00050 0.00084 0
~0.00007! ~0.00004!

C3i 0 20.00017 0.00093
~0.00006! ~0.00004!
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long maturities than at short maturities. Thus, the out-of-sample period
should provide a good test of the robustness of the estimated affine models.

A more sophisticated benchmark uses OLS regressions that predict future
changes in yields with the current slope of the term structure. The regres-
sion is

Yt, t1i 2 Yt, t 5 b0 1 b1~Y5yr, t 2 Y3mo, t ! 1 et, t1i . ~26!

Table IV

Parameter Estimates for the Preferred Essentially
Affine A1(3) Model

The model is defined in equation ~19!. With this version of the model, a1 5 b12 5 b13 5 0,
a2 5 a3 5 b11 5 1, and the first row of l2 is zero. The matrix C is the Cholesky decomposition
V 5 CC ' of the variance–covariance matrix of the cross-sectional errors in fitting yields on
bonds with maturities of three months, one year, and five years. Parameters are estimated with
QML. Asymptotic standard errors are in parentheses.

Constant Term

d0 0.014
~0.005!

Index Number ~i !

Parameter 1 2 3

di 0.00088 0.00118 0.00256
~0.00021! ~0.00053! ~0.00124!

~Ku!i 0.155 21.910 0
~0.048!

k1i 0.031 0 0
~0.020!

k2i 20.383 0.594 5.340
~0.235! ~0.053! ~3.833!

k3i 0 0 2.832
~0.490!

b2i 10.269 0 0
~9.96!

b3i 0.291 0 0
~0.261!

l1i 20.042 23.844 0
~0.020! ~2.415!

l2~2i ! 39.334 0 5.259
~53.816! ~3.647!

l2~3i ! 0 0 21.311
~0.565!

C1i 0.00227 0 0
~0.00013!

C2i 20.00049 0.00084 0
~0.00007! ~0.00004!

C3i 0 20.00016 0.00094
~0.00006! ~0.00004!
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The parameters of ~26! are estimated using in-sample data. The equation
is then used to construct forecasts and forecast errors for both the in-sample
and out-of-sample periods. The resulting RMSEs are in the columns labeled
“OLS” in Table VI and Table VIII. Although the in-sample RMSE for the
regression is guaranteed to be no larger than the random walk RMSE, that
is not true out of sample. Indeed, for eight of the nine combinations of ma-
turity and forecast horizon, the out-of-sample OLS RMSE exceeds that of
the random walk.

The in-sample parameter estimates from ~26! are reported in Table VII in
the column labeled “RW.” This may seem like a misprint ~why aren’t they
labeled “OLS”?!, but recall that Table VII reports the parameter estimates of
regressions of forecast errors on the month t slope of the yield curve. With
the random-walk method of forecasting, the regression examined in Table VII
is identical to the regression used to produce OLS forecasts. The results

Table V

Parameter Estimates for the Preferred Completely
Affine A2(3) Model

The model is defined in equation ~19!. With this version of the model, a1 5 a2 5 0, a3 5 b11 5
b22 5 b32 5 1, the remaining elements of the b matrix are zero, and l2 is a matrix of zeros. The
matrix C is the Cholesky decomposition V 5 CC ' of the variance–covariance matrix of the
cross-sectional errors in fitting yields on bonds with maturities of three months, one year, and
five years. Parameters are estimated with QML. Asymptotic standard errors are in parentheses.

Constant Term

d0 0.018
~0.004!

Index Number ~i !

Parameter 1 2 3

di 0.00066 0.00136 0.00598
~0.00021! ~0.00050! ~0.00077!

~Ku!i 0 0.222 22.299
~0.103!

k1i 0.172 20.295 0
~0.064! ~0.056!

k2i 20.197 0.406 0
~0.066! ~0.059!

k3i 0.564 21.669 1.721
~0.279! ~0.234! ~0.176!

l1i 20.042 0 20.208
~0.018! ~0.058!

C1i 0.00227 0 0
~0.00013!

C2i 20.00049 0.00084 0
~0.00007! ~0.00004!

C3i 0 20.00017 0.00094
~0.00006! ~0.00004!
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document that short-maturity yields tend to rise and long-maturity yields
tend to fall when the slope is steeper than average, although the statistical
evidence at the short end is weak. These results correspond to the standard
violations of the expectations hypothesis of interest rates.

This violation is also apparent in the behavior of bond yields in the out-
of-sample period. The “RW” column in Table IX reports the results of esti-
mating ~26! from January 1995 through December 1998. The point estimates
are typically more negative than their counterparts in Table VII, although
the t-statistics are smaller owing to fewer observations.

The final six columns in Table VI through Table IX examine the forecast-
ing ability of various affine models. The results document that the com-
pletely affine A2~3! model is a failure at forecasting future interest rates.
Table VI reports that in sample, both the unrestricted and preferred speci-
fications produce forecasts that are worse than those produced by the as-
sumption that yields follow random walks. This unimpressive performance
is mirrored by the performance of the other completely affine models exam-
ined in this paper. For every estimated model, the assumption that yields
follow a random walk produces superior in-sample forecasts for each of these

Table VI

Comparison of In-sample Forecasting Performance
This table reports root mean squared errors ~RMSE ! for month t forecasts of month t 1 i bond
yields. Eight different forecast methods are compared. The column labeled “RW” ~random walk!
uses month t yields as forecasts of future yields. The column labeled “OLS” uses a univariate
OLS regression to form forecasts, where the dependent variable is change in the yield from t to
t 1 i and the regressor is the month t slope of the yield curve. The final six columns use either
completely affine ~C.A.! or essentially affine ~E.A.! three-factor models to form forecasts. Pre-
ferred models are restricted versions of unrestricted models. The models differ in the number of
factors j that are allowed to affect conditional volatility ~Aj~3!!.

The regression and affine models are estimated using data from January 1952 through De-
cember 1994, and the forecasts are produced over the same period ~in-sample forecasts!. The
slope of the yield curve is the five-year zero-coupon yield less the three-month zero-coupon
yield. Bond yields are measured in decimal form ~i.e., 0.04 corresponds to four percent0year!.

Unrestricted Preferred

E. A. E. A.
Bond

Maturity
Forecast
Horizon RW OLS

C. A.
A2~3! A0~3! A1~3!

C. A.
A2~3! A0~3! A1~3!

6 months 3 1.023 1.020 1.045 1.009 1.019 1.048 1.009 1.019
2 years 3 0.871 0.869 0.880 0.837 0.847 0.883 0.837 0.853
10 years 3 0.549 0.532 0.554 0.526 0.543 0.554 0.528 0.547
6 months 6 1.376 1.370 1.418 1.342 1.367 1.427 1.345 1.368
2 years 6 1.154 1.149 1.173 1.091 1.121 1.181 1.089 1.133
10 years 6 0.760 0.722 0.774 0.711 0.756 0.772 0.713 0.764
6 months 12 1.803 1.797 1.843 1.731 1.798 1.868 1.742 1.798
2 years 12 1.541 1.529 1.566 1.450 1.527 1.583 1.445 1.544
10 years 12 1.109 1.018 1.137 1.011 1.121 1.131 1.009 1.133
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maturities and forecast horizons. ~These additional results are not reported
in any table.!

The regressions reported in Table VII show that the forecast errors of the
completely affine A2~3! model are strongly negatively correlated with the
slope of the term structure. The parameter estimates are more negative than
are the corresponding parameter estimates in the random walk case. The
model completely misses the forecasting information in the slope of the term
structure. When the term structure is more steeply sloped than usual, the

Table VII

The Relation Between In-sample Forecast Errors and
the Yield-curve Slope

Various models are used to produce month t forecasts of month t 1 i bond yields and the
corresponding forecast errors are constructed. This table reports parameter estimates from
regressions of forecast errors on the month t slope of the yield curve. Six forecast methods are
compared. The column labeled “RW” ~random walk! uses month t yields as forecasts of future
yields. Therefore, the forecast error regression is simply a regression of changes in bond yields
from t to t 1 i on the month t yield-curve slope. The final six columns use either completely
affine ~C.A.! or essentially affine ~E.A.! three-factor models to form forecasts. Preferred models
are restricted versions of unrestricted models. The models differ in the number of factors j that
are allowed to affect conditional volatility ~Aj~3!!.

The regression and affine models are estimated using data from January 1952 through De-
cember 1994, and the forecasts are produced over the same period ~in-sample forecasts!. The
slope of the yield curve is the five-year zero-coupon yield less the three-month zero-coupon
yield. Asymptotic t-statistics, in parentheses, are adjusted for generalized heteroskedasticity
and moving average residuals.

Unrestricted Preferred

E. A. E. A.
Bond

Maturity
Forecast
Horizon RW

C. A.
A2~3! A0~3! A1~3!

C. A.
A2~3! A0~3! A1~3!

6 months 3 0.072 20.182 20.041 20.135 20.182 0.019 20.124
~0.73! ~21.84! ~20.42! ~21.39! ~21.83! ~0.19! ~21.27!

2 years 3 20.043 20.182 20.043 20.134 20.183 0.013 20.129
~20.52! ~22.22! ~20.54! ~21.69! ~22.22! ~0.16! ~21.63!

10 years 3 20.125 20.159 20.027 20.141 20.158 20.018 20.140
~22.72! ~23.50! ~20.61! ~23.19! ~23.49! ~20.39! ~23.15!

6 months 6 0.118 20.324 20.085 20.252 20.326 0.015 20.233
~0.91! ~22.55! ~20.69! ~22.03! ~22.53! ~0.12! ~21.88!

2 years 6 20.082 20.326 20.091 20.261 20.330 20.003 20.249
~20.76! ~23.17! ~20.91! ~22.60! ~23.17! ~20.03! ~22.51!

10 years 6 20.220 20.280 20.049 20.255 20.280 20.031 20.252
~23.45! ~24.48! ~20.78! ~24.14! ~24.46! ~20.50! ~24.09!

6 months 12 0.129 20.567 20.208 20.484 20.575 20.058 20.453
~0.70! ~23.30! ~21.21! ~22.74! ~23.30! ~20.33! ~22.60!

2 years 12 20.158 20.551 20.191 20.486 20.560 20.069 20.462
~21.06! ~23.86! ~21.32! ~23.26! ~23.86! ~20.48! ~23.15!

10 years 12 20.410 20.506 20.135 20.480 20.507 20.101 20.472
~23.62! ~24.53! ~21.22! ~24.24! ~24.52! ~20.92! ~24.19!
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OLS forecast is that long-maturity yields will fall, but the model forecasts
that the yields will rise. Put differently, the model is consistent with the
expectations hypothesis, and the observed bond yields are not.

This poor forecasting performance carries over to the out-of-sample pe-
riod. Table VIII documents that the unrestricted specification produces fore-
casts that are inferior to random-walk forecasts in five of the nine combinations
of maturity and forecast horizon. The preferred specification does even worse,
producing inferior forecasts for seven of the nine combinations. The point
estimates in Table IX confirm that the model’s forecasts get the wrong sign
of the relationship between the slope of the term structure and future changes
in yields.

The essentially affine models produce dramatically better forecasts. The
most successful forecasting model, both in sample and out of sample, is the
essentially affine, completely Gaussian model. Table VI documents that within
the sample, both the unrestricted and preferred A0~3! models outforecast the
OLS regressions ~and therefore also outforecast the random-walk assump-
tion! for each combination of maturity and forecast horizon. Table VIII makes
the same point out of sample. Moreover, these forecasts capture the predic-

Table VIII

Comparison of Out-of-sample Forecasting Performance
This table reports root mean squared errors ~RMSE! for month t forecasts of month t 1 i bond
yields. Eight different forecast methods are compared. The column labeled “RW” ~random walk!
uses month t yields as forecasts of future yields. The column labeled “OLS” uses a univariate
OLS regression to form forecasts, where the dependent variable is change in the yield from t to
t 1 i and the regressor is the month t slope of the yield curve. The final six columns use either
completely affine ~C.A.! or essentially affine ~E.A.! three-factor models to form forecasts. Pre-
ferred models are restricted versions of unrestricted models. The models differ in the number of
factors j that are allowed to affect conditional volatility ~Aj~3!!.

The regression and affine models are estimated using data from January 1952 through De-
cember 1994, while the forecasts are produced over January 1995 through December 1998
~out-of-sample forecasts!. For each bond there are 48 2 i forecasts and associated errors. The
slope of the yield curve is the five-year zero-coupon yield less the three-month zero-coupon
yield. Bond yields are measured in decimal form ~i.e., 0.04 corresponds to four percent0year!.

Unrestricted Preferred

E. A. E. A.
Bond

Maturity
Forecast
Horizon RW OLS

C. A.
A2~3! A0~3! A1~3!

C. A.
A2~3! A0~3! A1~3!

6 months 3 0.298 0.298 0.325 0.281 0.288 0.350 0.281 0.284
2 years 3 0.499 0.511 0.501 0.454 0.458 0.523 0.457 0.450
10 years 3 0.484 0.498 0.476 0.460 0.457 0.485 0.469 0.453
6 months 6 0.400 0.413 0.483 0.373 0.399 0.548 0.365 0.385
2 years 6 0.652 0.675 0.656 0.565 0.576 0.711 0.566 0.560
10 years 6 0.669 0.693 0.647 0.623 0.616 0.669 0.636 0.606
6 months 12 0.484 0.523 0.621 0.434 0.488 0.778 0.421 0.455
2 years 12 0.762 0.787 0.759 0.608 0.635 0.879 0.600 0.606
10 years 12 0.815 0.829 0.764 0.724 0.719 0.811 0.738 0.698
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tive power of the term-structure slope. In Tables VII and IX, the only evi-
dence for predictability of forecast errors is in the out-of-sample forecast
errors for 10-year bonds at the 12-month horizon.

The essentially affine A1~3! model is not quite as successful as the Gauss-
ian model at forecasting. From Table VI, we see that in-sample forecasts
from both the unrestricted and preferred specifications are typically supe-

Table IX

The Relation Between Out-of-sample Forecast Errors and
the Yield-curve Slope

Various models are used to produce month t forecasts of month t 1 i bond yields and the
corresponding forecast errors are constructed. This table reports parameter estimates from
regressions of forecast errors on the month t slope of the yield curve. Six forecast methods are
compared. The column labeled “RW” ~random walk! uses month t yields as forecasts of future
yields. Therefore, the forecast error regression is simply a regression of changes in bond yields
from t to t 1 i on the month t yield-curve slope. The final six columns use either completely
affine ~C.A.! or essentially affine ~E.A.! three-factor models to form forecasts. Preferred models
are restricted versions of unrestricted models; model parameters that add little to the model’s
QML value are set to zero. The models differ in the number of factors j that are allowed to affect
conditional volatility ~Aj~3!!.

The regression and affine models are estimated using data from January 1952 through De-
cember 1994, while the forecasts are produced over January 1995 through December 1998
~out-of-sample forecasts!. For each bond, there are 48 2 i forecasts and associated errors. The
slope of the yield curve is the five-year zero-coupon yield less the three-month zero-coupon
yield. Asymptotic t-statistics, in parentheses, are adjusted for generalized heteroskedasticity
and moving average residuals.

Unrestricted Preferred

E. A. E. A.
Bond

Maturity
Forecast
Horizon RW

C. A.
A2~3! A0~3! A1~3!

C. A.
A2~3! A0~3! A1~3!

6 months 3 0.121 20.206 0.039 20.074 20.220 0.113 20.064
~1.04! ~21.71! ~0.35! ~20.66! ~21.82! ~1.01! ~20.57!

2 years 3 20.151 20.268 20.002 20.108 20.284 0.056 20.104
~20.76! ~21.37! ~20.01! ~20.59! ~21.45! ~0.30! ~20.57!

10 years 3 20.265 20.280 20.107 20.220 20.286 20.112 20.219
~21.42! ~21.51! ~20.59! ~21.23! ~21.55! ~20.61! ~21.22!

6 months 6 0.034 20.497 20.094 20.272 20.525 0.014 20.258
~0.20! ~22.48! ~20.56! ~21.65! ~22.59! ~0.09! ~21.56!

2 years 6 20.380 20.560 20.153 20.324 20.588 20.071 20.318
~21.11! ~21.68! ~20.52! ~21.10! ~21.75! ~20.24! ~21.08!

10 years 6 20.552 20.571 20.305 20.485 20.583 20.307 20.483
~21.60! ~21.68! ~20.92! ~21.49! ~21.71! ~20.91! ~21.49!

6 months 12 20.086 20.825 20.245 20.482 20.882 20.116 20.468
~20.35! ~23.22! ~21.09! ~22.28! ~23.39! ~20.52! ~22.19!

2 years 12 20.844 21.037 20.500 20.734 21.088 20.405 20.727
~22.27! ~23.00! ~21.55! ~22.39! ~23.13! ~21.24! ~22.35!

10 years 12 21.085 21.083 20.737 20.977 21.105 20.730 20.975
~23.75! ~23.89! ~22.58! ~23.68! ~23.95! ~22.52! ~23.66!
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rior to random-walk forecasts, but outforecast OLS regressions for only half
of the maturity0horizon combinations. Moreover, from Table VIII, the fore-
cast errors are negatively correlated with the slope of the yield curve. The
statistical strength of this negative correlation rises as both the bond’s ma-
turity and the forecasting horizon lengthen.

An examination of Table VIII indicates that this essentially affine model
performs somewhat better out of sample. Forecasts from the preferred spec-
ification are superior to random-walk and OLS forecasts at all maturities
and forecast horizons. Nonetheless, Table IX indicates that the model’s out-
of-sample forecast errors are negatively correlated with the slope of the yield
curve. Thus, the model misses some of the explanatory power of the term-
structure slope.

Overall, these results indicate that for the purposes of forecasting, com-
pletely affine models are largely useless. Even the simplest, most naive rule—a
random walk—dominates the explanatory power of completely affine mod-
els. A corollary is that we should not use completely affine models to attempt
to understand why the expectations hypothesis fails, because the models
cannot reproduce this failure.7 By contrast, forecasts from a purely Gaussian
essentially affine model dominate naive forecasts.

D. The Predictability of Excess Returns and Volatilities

A few diagrams help shed light on the behavior of these competing models.
Figure 1 is a graphical summary of the behavior of the preferred essentially
affine A0~3! model. Panel A displays instantaneous effects that one-standard-
deviation shocks to each factor have on the term structure of yields. The
three shocks can be interpreted as a level shock ~the long dashes!, a slope
shock ~the solid line!, and a twist ~the short dashes!. Panel B displays the
~nonexistent! instantaneous effect of these shocks on yield variances.

Panel C displays the effect that these shocks have on bonds’ instantaneous
expected excess returns ~over rt !. There are two distinct types of shocks to
expected returns. The short dashes correspond to the twist shock in Panel A.
This shock has a strong effect on instantaneous expected returns, but it is
also very short-lived. ~This latter fact cannot be seen in the panel.! Thus,
this shock is responsible for high-frequency f luctuations in expected excess
returns.

The other type of shock to expected excess returns corresponds to the slope
shock in Panel A. It is more persistent ~this also cannot be seen in the panel!,
and thus accounts for more persistent f luctuations in expected returns. The
combined effects of these shocks on expected excess returns to 2-year bonds
are displayed in Panel E. Panel F is the same plot for 10-year bonds. These
latter panels show that expected excess returns f luctuate sharply and widely
around zero. For example, the expected instantaneous excess return in Panel
E has a mean of 1.25 percent and a standard deviation of 3.09 percent.

7 See Dai and Singleton ~2001! for a related perspective.
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Because this model is so successful at forecasting future yields, it is worth
a more careful examination. An intuitive way to interpret shocks to bond
yields is to decompose the shocks into shocks to expected future short-term
interest rates and shocks to expected excess returns. This decomposition is
straightforward; thus I will not discuss it in detail here. Instead, I will sim-
ply summarize the results.

A positive level shock corresponds to an immediate, near-permanent in-
crease in short-term interest rates. The half-life of the shock to short-term
interest rates is more than 11 years. Because the shock does not substan-
tially alter investors’ required excess returns to bonds, short-maturity and
long-maturity bond yields respond in the same way to this shock.

A positive slope shock corresponds to an immediate increase in short-term
interest rates that lasts about as long as a business cycle. The half-life of the
shock is four years. Because short-term interest rates are expected to de-
cline over time, the shock lowers the slope of the term structure. The shock

Figure 1. Summary of the estimated essentially affine A0(3) model. Panels A through C
display the instantaneous responses of yields, variances, and expected excess returns ~over rt !
to one-standard-deviation shocks to each of the three factors. Panels D through F display fitted
expected instantaneous returns over the sample period January 1952 through December 1994.
Panel D is the instantaneous interest rate. Panels E and F are the instantaneous expected
excess returns to the 2-year and 10-year bonds.
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also lowers expected excess returns to bonds by affecting the price of risk
vector. We can see this in the parameters of l2 in Table III. An increase in
the first factor ~the slope factor! affects the price of risk of the third factor
~the level factor! through element ~3,1! of l2. This decrease in expected re-
turns further decreases the slope of the term strucure because longer-
maturity bond returns are more sensitive than shorter-maturity bond returns
to level shocks, and thus to the price of risk of level shocks.

Twists are very similar to the “ft” factor in the two-factor example dis-
cussed in Section II. A twist shock has basically no effect on current or fu-
ture short-term interest rates. Instead, the shock changes investors’ required
excess returns to bonds by affecting the price of risk associated with the
level and slope factors. The half-life of such a shock is less than three months.
We can call this a “f light to quality” shock. Investors experience short-lived
periods of unwillingness to hold risky Treasury instruments, thus driving
expected excess bond returns higher.

Figure 2 contains information about the preferred essentially affine A1~3!
model. Panel A displays a level shock, a slope shock, and a twist shock. The
solid line is the level shock, and it affects the conditional variance of yields, as
shown in Panel B. The long-dashed line is the twist shock, and in Panel C, we
see its strong effect on expected excess returns. However, Panel C also indi-
cates that the other two shocks have little effect on expected excess returns.
The net effect is that in Panels E and F, the f luctuations in expected excess
returns are less volatile than the f luctuations in the corresponding panels in
Figure 1. For example, the expected instantaneous excess return in Panel E
has a mean of 1.90 percent and a standard deviation of 1.85 percent.

Why does a shock to the slope affect expected excess returns in Figure 1
but not in Figure 2? The answer is that the channel that operates in the
model underlying Figure 1 is unavailable in the model underlying Figure 2.
Panel C in Figure 1 ref lects a relationship between shocks to the slope and
shocks to the price of risk of level shocks. These cross-factor relationships
are more limited in the essentially affine A1~3! model. In the canonical form,
the first factor drives conditional volatilities; thus its price of risk cannot be
affected by any other factors. Figure 2 indicates that this first factor is the
level factor; shocks to the slope cannot affect its price of risk. Therefore, this
model produces poorer forecasts of future bond yields than does the essen-
tially affine A0~3! model.

Figure 3 displays the same panels for the preferred completely affine A2~3!
model. The model generates a richer pattern of time variation in volatilities
than do the other two models. The cost of these more accurate measures of
volatility is an inability to fit expected excess returns. Expected excess re-
turns in Panels E and F are always positive, never large, and not volatile.
For example, the expected instantaneous excess return in Panel E has a
mean of 0.79 percent and a standard deviation of 0.41 percent. Moreover,
these expected excess returns roughly track the instantaneous interest rate
displayed in Panel D. Because higher short-term rates typically correspond
to lower slopes, the figure indicates that expected excess returns move in-
versely with the slope of the yield curve, but this is counterfactual.

436 The Journal of Finance



The results discussed in this section indicate that the completely affine
A2~3! model fails to reproduce the behavior of expected excess returns to
Treasury bonds. The same conclusion holds for the other completely affine
models estimated in this paper that are not discussed in detail here. The
models systematically fail to capture the large f luctuations in expected ex-
cess returns to bonds. Essentially affine models do a better job of reproduc-
ing the behavior of expected excess returns, although the magnitude of the
improvement is inversely related to the ability of the models to fit the time
variation in conditional variances of yields.

V. Concluding Comments

Recent term structure research has concentrated on what I call completely
affine models. This paper documents that completely affine models do not
forecast future yields well over the nearly 50-year period examined here.

Figure 2. Summary of the estimated essentially affine A1(3) model. Panels A through C
display the instantaneous responses of yields, variances, and expected excess returns ~over rt !
to one-standard-deviation shocks to each of the three factors. Panels D through F display fitted
expected instantaneous returns over the sample period January 1952 through December 1994.
Panel D is the instantaneous interest rate. Panels E and F are the instantaneous expected
excess returns to the 2-year and 10-year bonds.
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They consistently underestimate future returns to bonds when the term struc-
ture is more steeply sloped than usual; put differently, these models do not
reproduce the well-known failure of the expectations hypothesis.

Essentially affine models generalize completely affine models. They allow
greater f lexibility in fitting variations in the price of interest rate risk over
time, while retaining the affine time-series and cross-sectional properties of
bond prices. One of the essentially affine models investigated in this paper—
the pure Gaussian model—generates reasonable forecasts of future yields,
in the sense that the predictive power of the term structure is subsumed
within the model’s forecasts.

The forecast accuracy of this Gaussian model allows us to properly inter-
pret the usual level, slope, and twist yield-curve factors in terms of their
predictions for future short-term interest rates and excess returns to longer-
term bonds. Level shocks correspond to near-permanent changes in interest

Figure 3. Summary of the estimated completely affine A2(3) model. Panels A through C
display the instantaneous responses of yields, variances, and expected excess returns ~over rt !
to one-standard-deviation shocks to each of the three factors. Panels D through F display fitted
expected instantaneous returns over the sample period January 1952 through December 1994.
Panel D is the instantaneous interest rate. Panels E and F are the instantaneous expected
excess returns to the 2-year and 10-year bonds.
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rates and only minimal changes in expected excess returns. Slope shocks
correspond to business-cycle-length f luctuations in both interest rates and
expected excess returns to bonds, while twist shocks correspond to short-
lived “f light to quality” variations in expected excess returns. In other words,
twist shocks do not affect current or expected future short-term interest
rates; they are pure shocks to risk premia.

Essentially affine models are not magic bullets. The models cannot cap-
ture time variation in conditional variances without giving up part of their
f lexibility in fitting time variation in the price of interest rate risk. It re-
mains to be seen whether an essentially affine model can be constructed
that reproduces the time variation observed in both the conditional vari-
ances of yields and expected returns to bonds.

Appendix

This appendix gives closed-form representations for first and second con-
ditional moments of a state vector that follow the affine process of ~12a! and
~2!. The results are an application ~and a specialization! of the results in
Fisher and Gilles ~1996!.

Assume that K can be diagonalized, or

K 5 NDN 21, D diagonal. ~A1!

The diagonal elements of D are denoted di , . . . , dn. A discussion of computing
moments when K cannot be diagonalized is in Fisher and Gilles ~1996!.

The approach taken here is to compute the first and second conditional
moments of a linear transformation of Xt . The transformation is chosen so
that the feedback matrix K is diagonal under the transformation. The linear
transformation is then reversed to calculate the conditional moments of Xt .
Define

Xt
* [ N 21Xt . ~A2!

Then the dynamics of Xt
* are, from ~12a!, ~2!, ~A1!, and ~A2!,

dXt
* 5 D~u* 2 Xt

*! 1 S*St
* dWt , ~A3!

where

St~i, i !
* 5 !ai 1 bi

*'Xt
*,

u* 5 N 21u,

S* 5 N 21 S,

b* 5 bN.
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We now calculate the first and second moments of Xt
*. Some notation is

helpful. If Z is an n-vector, the n 3 n diagonal matrix in which element ~i, i !
equals Zi is denoted diag~Z!. If Z is a diagonal matrix, the diagonal matrix
in which element ~i, i ! equals eZii is denoted eZ. Finally, the n-vector b•i is
column i of b.

A. Conditional Mean

The expectation of XT
* conditional on Xt

* is given by

E @XT
* 6Xt

*# 5 u* 1 e2D~T2t! ~Xt
*2 u* !. ~A4!

Because e2D~T2t! is diagonal, this expectation can also be simply expressed
element-by-element:

E @XT
* 6Xt

*# 5 ui
*1 e2di ~T2t! ~Xt, i

* 2 ui
*!. ~A49!

Another useful way to express ~A4! is by separating the terms that depend
on Xt

* from the terms that do not:

E @XT
* 6Xt

*# 5 ~I 2 e2D~T2t! !u* 1 e2D~T2t!Xt
* . ~A499!

Given this conditional mean of XT
* , we reverse the transformation to ex-

press the conditional mean of XT :

E @XT 6Xt # 5 NE @XT
* 6Xt # 5 N~I 2 e2D~T2t! !u* 1 Ne2D~T2t!N 21Xt .

Note that the conditional mean of XT could be expressed directly in terms
of the parameters of ~12a!; no transformation into Xt

* is required, because
the above expression is equivalent to

E @XT 6Xt # 5 ~I 2 e2K~T2t! !u 1 e2K~T2t!Xt ,

where e2K~T2t! is the fundamental matrix associated with 2K~T 2 t!. The
value of the approach taken here is that ~A4' ! is used in determining the
conditional variance–covariance matrix of Xt .

B. Conditional Variance

The matrix S*St
*St
*'S*' is the instantaneous variance–covariance matrix

of the transformed state vector. We can write this as

S*St
*St
*'S*' 5 S* diag~a * !S*' 1 (

i51

n

S* diag~b•i
* ! S*'Xt, i

*

[ G0 1 (
i51

n

Gi Xt, i
* ,

~A5!
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where G0 [ S* diag~a * !S*' and the n 3 n matrices Gi are defined as
@S* diag~b•i

* !S*' # . Define the n 3 n matrix F~t,s! as

F~t,s! [ G0 1 (
i51

n

Gi @E~Xs
*6Xt

*!# i .

This matrix is the instantaneous variance–covariance matrix of Xs
* , but

evaluated at the expectation of Xs
* ~conditional on time-t information! in-

stead of at the true value of Xs
*. Using ~A4' !, this matrix can be expressed as

F~t,s! 5 G0 1 (
i51

n

Gi @ui
*1 e2di ~s2t! ~Xt, i

* 2 ui
*!# . ~A6!

Fisher and Gilles ~1996! show the conditional variance of XT
* can be writ-

ten as

Var@XT
* 6Xt

*# 5E
t

T

e2D~T2s!F~t,s!e2D~T2s! ds. ~A7!

Substituting ~A6! into ~A7! produces ~A8!:

Var@XT
* 6Xt

*# 5E
t

T

e2D~T2s!G0 e2D~T2s! ds

1 (
i51

n Fui
*E

t

T

e2D~T2s!Gi e2D~T2s! dsG
1 (

i51

n F~Xt, i
* 2 ui

*!E
t

T

e2D~T2s!Gi e2D~T2s!e2di ~s2t! dsG. ~A8!

If f ~ j, k! maps ~ j, k! into the scalar value f, the notation $ f ~ j, k!% denotes
the matrix with element ~ j, k! given by f ~ j, k!. The conditional variance can
then be written as

Var@XT
* 6Xt

*# 5E
t

T

$@G0# j, k e ~s2T !~dj1dk! %ds

1 (
i51

n Fui
*E

t

T

$@Gi # j, k e ~s2T !~dj1dk! %dsG
1 (

i51

n F~Xt, i
* 2 ui

*!E
t

T

$@Gi # j, k e ~s2T !~dj1dk!2di ~s2t! %dsG. ~A9!
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Integrating ~A9! produces ~A10!:

Var@XT
* 6Xt

*# 5 $~dj 1 dk!21 @G0# j, k~1 2 e2~T2t!~dj1dk! !%

3 (
i51

n

@ui
*$~dj 1 dk!21 @Gi # j, k~1 2 e2~T2t!~dj1dk! !%#

1 (
i51

n

@~Xt, i
* 2 ui

*!$~dj 1 dk 2 di !
21 @Gi # j, k

3 ~e2di ~T2t! 2 e2~dj1dk!~T2t! !%#. ~A10!

Note that by collecting terms, the variance–covariance matrix in ~A10! can
be rewritten in terms of the individual elements of Xt

* as in ~A11!:

Var @XT
* 6Xt

*# 5 b0 1 (
i51

n

bi Xt, i
* . ~A11!

The n 3 n matrices bi , i 5 0, . . . , n depend on the horizon T 2 t. We now
calculate the conditional variance of XT using the notation of ~A11!. Since

Var~XT 6V! 5 N Var~XT
* 6V!N ',

we have

Var~XT 6Xt ! 5 Nb0 N ' 1 (
i51

n S(
j51

n

Nbj N 'Nj, i
21DXt, i .
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