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Abstract 
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dynamic, no-arbitrage term structure models and their macro-finance extensions. It also 
reviews the empirical evidence concerning the predictability of future yields on Treasury 
bonds and future excess returns to holding these bonds. In particular, it critically evaluates 
theory and evidence that variables other than current bond yields are useful in forecasting. 

JEL Code: G12 
Key words: Term structure, affine models, predicting bond returns, predicting bond yields 

Prepared for the Handbook of Economic Forecasting, Vol. 2, edited by Allan Timmermann 
and Graham Elliott, to be published by Elsevier. Some of the material in this chapter 
also appears in “Bond pricing and the macroeconomy,” edited by George Constantinides, 
Milt Harris, and Rene Stulz, a chapter prepared for the Handbook of the Economics of 
Finance, also to be published by Elsevier. Thanks to two anonymous referees and many 
seminar participants for helpful comments and conversations. Voice 410-516-8828, email 
duffee@jhu.edu. Address correspondence to 440 Mergenthaler Hall, 3400 N. Charles St., 
Baltimore, MD 21218. 

mailto:duffee@jhu.edu


1 Introduction 

How are interest rates on Treasury securities likely to change during the next month, quarter, 

and year? This question preoccupies financial market participants, who attempt to profit 

from their views. Policymakers also care. They attempt to predict future rates (and attempt 

to infer market participants’ predictions) to help choose appropriate monetary and fiscal 

policies. More relevant for this chapter, academics use interest rate forecasts to help predict 

related variables, such as real rates, inflation, and macroeconomic activity. They also build 

term structure models that link interest rate forecasts to the dynamics of risk premia. 

This chapter describes and evaluates an approach to forecasting that is grounded in 

finance. Interest rates are functions of asset prices, thus their dynamics can be studied using 

tools of asset pricing theory. The theory is particularly powerful when applied to Treasury 

yields, since the underlying assets have fixed payoffs (unlike, say, stocks). Nonetheless, there 

are known limitations to this approach, and important questions that remain open. 

The most immediate implication of finance theory is that investors’ beliefs about future 

prices are impounded into current prices. Therefore forecasts made at time t should be 

conditioned on the time-t term structure. An incontrovertible conclusion of the literature is 

that the time-t term structure contains substantial information about future changes in the 

slope and curvature of the term structure. It is less clear whether the term structure has 

information about future changes in the overall level of the term structure. This chapter 

argues that according to the bulk of the evidence, the level is close to a martingale. 

Overfitting is always a concern in forecasting. Again, this chapter takes a finance-based 

approach to addressing this issue. Forecasts of future interest rates are also forecasts of future 

returns to holding bonds. Forecasts that imply substantial predictable variation in expected 

excess returns to bonds (i.e., returns less the risk-free return) may point to overfitting. For 

example, big swings in expected excess returns from one month to the next are hard to 

reconcile with risk-based explanations of expected excess returns. 

Gaussian dynamic term structure models are the tool of choice to describe joint forecasts 
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of future yields, future returns, and risk premia. These models impose no-arbitrage restric-

tions. Sharpe ratios implied by estimated models are helpful in detecting overfitting, and 

restrictions on the dynamics of risk premia are a natural way to address overfitting. One of 

the important open questions in the literature is how these restrictions should be imposed. 

The literature takes a variety of approaches that are largely data-driven rather than driven 

by economic models of attitudes towards risk. 

Macroeconomic variables can be added to a dynamic term structure model to produce a 

macro-finance model. From the perspective of forecasting interest rates, this type of exten-

sion offers many opportunities. It allows time-t forecasts to be conditioned on information 

other than the time-t term structure. In addition, the dynamics of interest rates are tied 

to the dynamics of the macro variables, allowing survey data on their expected values to 

be used in estimation. Finally, macro-finance models allow restrictions on risk premia to 

be expressed in terms of fundamental variables such as economic activity and consumption 

growth. 

Unfortunately, standard economic explanations of risk premia fail to explain the behavior 

of expected excess returns to bonds. In the data, mean excess returns to long-term Treasury 

bonds are positive. Yet traditional measures of risk exposure imply that Treasury bonds 

are not assets that demand a risk premium. Point estimates of their consumption betas 

are negative and point estimates of their CAPM betas are approximately zero. Moreover, 

although expected excess returns to bonds vary over time, these variations are unrelated to 

interest rate volatility or straightforward measures of economic growth. These facts are a 

major reason why applied models of bond risk premia shy away from approaches grounded 

in theory. 

Recent empirical work concludes that some macro variables appear to contain substantial 

information about future excess returns that is not captured by the current term structure. 

Some, but not all, of this evidence is consistent with a special case of macro-finance models 

called hidden-factor models. The only original contribution of this chapter is to take a 
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skeptical look at this evidence. Based on the analysis here, it is too soon to conclude that 

information other than the current term structure is helpful in forecasting future interest 

rates, excess returns, and risk premia. 

2 Forecasting methods from a finance perspective 

Figure 1 displays a panel of yields derived from prices of nominal Treasury bonds. The 

displayed yields are, for the most part, not yields on actual Treasury securities. The figure 

diplays zero-coupon bond yields. These yields are the objects of interest in most academic 

work. The Treasury Department issues both zero-coupon and coupon bonds. The former 

are Treasury bills, which have original maturities no greater than a year. The latter are 

Treasury notes and bonds. Academics typically use zero-coupon yields interpolated from 

yields on Treasury securities. (This chapter uses the terms “yield” and “interest rate” 

interchangeably.) The interpolation is inherently noisy. Bekaert, Hodrick, and Marshall 

(1997) estimate that the standard deviation of measurement error is in the range of seven 

to nine basis points of annualized yield for maturities of at least a year. 

The yields in Figure 1 are yields on actual three-month Treasury bills, zero-coupon yields 

on hypothetical bonds with maturities from one to five years constructed by the Center 

for Research in Security Prices (CRSP), and the yield on a zero-coupon hypothetical ten-

year bond constructed by staff at the Federal Reserve Board following the procedure of 

Gurkaynak, Sack, and Wright (2007). Yields are all continuously compounded. The CRSP 

data are month-end from June 1952 through December 2010. Until the 1970s, the maturity 

structure of securities issued by the Treasury did not allow for reliable inference of the 

ten-year zero-coupon yield. The first observation used here is January 1972. 

A glance at the figure suggests that yields are cointegrated. More precisely, spreads 

between yields on bonds of different maturities are mean-reverting, but the overall level of 

yields is highly persistent. A robust conclusion of the literature is that Standard tests cannot 
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reject the hypothesis of a unit root in any of these yields. From an economic perspective 

it is easier to assume that yields are stationary and highly persistent rather than truly 

nonstationary. Econometrically these alternatives are indistinguishable over available sample 

sizes. 

By contrast, another robust conclusion of the literature is that spreads are stationary. 

For example, the handbook chapter of Martin, Hall, and Pagan (1996) shows there is a 

single cointegrating vector in Treasury yields. Not surprisingly, early academic attempts to 

model the dynamic behavior of bond yields used cointegration techniques. It is helpful to set 

up some accounting identities before discussing the logic and limitations of a cointegration 

approach to forecasting. 

2.1 Notation and accounting identities 

Consider a zero-coupon bond that matures at t + n with a payoff of a dollar. Denote its 

time-t price and yield by 

(n)
P : Price  t 

(n)
p : Log pricet 

1(n) (n) (n)
y : Continuously compounded yield, y ≡ −  pt t t . 

n 

The superscript refers to the bond’s remaining maturity. Denote the return to the bond 

from t to t + 1, when its remaining maturity is n− 1, by 

(n) (n) (n−1) (n)
R : gross return to the bond from t to t + 1, R  ≡ P /Pt,t+1 t,t+1 t+1 t 

(n) (n) (n)
r : log return, rt,t+1 ≡ log Rt,t+1.t,t+1 
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The log return to the bond in excess of the log return to a one-period bond is denoted 

(n) (n) (n) (1)
xr : log excess return, xr ≡ r − y .t,t+1 t,t+1 t,t+1 t 

The yield on a bond can be related to future bond returns in two useful ways. The first 

links the bond’s current yield to the bond’s yield next period and the excess return to the 

bond. The relation is 

n − 1 1(n) (1) (n−1) (1) (n)
y = y + y − y + xr (1)t t t+1 t t,t+1 n n 

This is an accounting identity; the t + 1 realizations on the right side must equal the time-t 

value on the left. For example, a higher yield at t + 1 implies a lower price at t + 1, and thus 

a lower realized excess return. The second accounting identity links the current yield to the 

sum, during the life of the bond, of one-period yields and excess returns: 

n−1 (n−1) 
(n) 1 (1) 1 (n−j)

y xrty = t+j + t+j,t+j+1. (2) 
n n

j=0 j=0 

In words, holding a bond’s yield constant, a higher average short rate over the life of the 

bond corresponds to lower realized excess returns. 

Conditional expectation versions of these identities are 

n − 1 1(n) (1) (n−1) (1) (n)
y = yt + Et y − yt + Et xr (3)t t+1 t,t+1 n n 

and  ⎞ 
n−1 (n−1) 

(n) 1 (1) 1 (n−j)⎝ ⎠+ (4)yt = Et yt+j Et xrt+j,t+j+1 . 
n 

j=0 
n 

j=0 

These conditional expectations are also identities. They hold regardless of the information 

(n)
set used for conditioning, as long as the set contains the yield y . In particular, these t 

equations hold for investors’ information sets and econometricians’ information sets, which 
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may differ. 

2.2 Cointegration 

Campbell and Shiller (1987) motivate a cointegration approach to modeling the term struc-

ture. They make the simplifying assumption that the weak form of the expectations hypoth-

esis holds. Then the conditional expectation (4) can be written as 

n−1 
(n) (1) (n)1 
yt = Et y + c (5)t+jn 

j=0 

where c(n) is a maturity-dependent constant. The spread between the yield on an n-period 

bond and the one-period yield is then, after some manipulation, 

n−1 
(n) (1) (1) (1) ∗(n)− y = (n − j)Et y + c . (6)Sn,1 ≡ yt t t+j − yt+j−1 

j=1 

Spreads are sums of expected first differences of one-period yields. Therefore spreads are 

I(0) if one-period yields are I(1). 

Campbell and Shiller examine monthly observations of one-month and 20-year bond 

yields over the period 1959 to 1983. They cannot reject the hypotheses that yields are I(1) 

and the spread is I(0). Hence they advocate an error-correction model (ECM) to fit yield 

dynamics. For a vector of bond yields yt and a linearly independent vector of spreads St, an  

ECM(p) representation is 

p−1 

Δyt = ΘiΔyt−i + BSt + t+1 (7) 
i=1 

where Θi and B are matrices. The intuition is straightfoward and does not depend on 

the weak form of the expectations hypothesis. Investors impound their information about 

future short-term rates in the prices (and hence yields) of long-term bonds. If investors have 

information about future rates that is not captured in the history of short-term rates, then 
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yield spreads will help forecast changes in short-term rates. 

The first application of this type of model to forecasting interest rates is Hall, Andersen, 

and Granger (1992). Researchers continue to pursue advances in this general methodology. 

When many yields are included in the cross-section, the dimension of the estimated model 

is high. This can lead to overfitting and poor out-of-sample forecasts. Bowsher and Meeks 

(2008) use cubic splines to fit the cross-section. The knots of the spine are modeled with 

an ECM. Almeida, Simonsen, and Vicente (2012) take a similar approach, interpreting the 

splines as a way to model partially segmented markets across Treasury bonds. 

The ECM approach is based on asset-pricing theory. However, the theory is not pushed 

to its sensible conclusion. Spreads help forecast future yields because investors put their 

information into prices. The ECM approach does not recognize that period-t bond prices 

(yields) are determined based on all information that investors at t have about future interest 

rates. 

2.3 The term structure as a first-order Markov process 

Asset prices incorporate all information available to investors. This fact leads to a more 

parsimonious approach to modeling interest rates than an ECM. We first look at the general 

statement of the result, then consider some special cases and caveats. 

Assume that all of the information that determines investors’ forecasts at t can be sum-

marized by a p-dimensional state vector xt. More precisely, xt contains all information 

investors at t use to predict one-period bond yields and excess returns to multi-period bonds 

for all future periods t + 1, t  + 2 and so on. Substitute this assumption into the identity (4) 

to produce  ⎞ 
n−1 (n−1) 

(n) 1 (1) 1 (n−j)⎝ ⎠yt = E yt+j |xt + E xrt+j−1,t+j |xt . (8) 
n n

j=1 j=1 

It is trivial to see that the yield on the left side cannot be a function of anything other than 
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the state vector, since only xt shows up on the right side. Hence we can write 

y
(n) 
= y(xt; n).t 

This is simply a statement that investors determine the price of the n-period bond based on 

the predictions of short rates during the life of the bond and expected returns to the bond 

in excess of these short rates. 

Stack time-t yields on bonds with different maturities in a vector yt. These yields are a 

function of the state vector, 

yt = f (xt; N ) 

where the maturities of the bonds are in the vector N . The key step in the derivation is to 

assume there exists an inverse function such that 

xt = f−1 (yt; N ) . (9) 

The inverse function exists if yields contain the same information as xt. Therefore the rank 

of ∂f/∂x∗ t must be p. A necessary condition is that there are at least p yields in the vector 

yt. There are standard technical conditions associated with this result, but the intuition is 

straightforward. If each element of xt has its own unique effect on the time-t yield curve, 

the yield curve can be inverted to infer xt. Put differently, the time-t yield curve contains 

all information necessary to predict future values of xt, and thus future yield curves. This 

allows us to write 

Et(yt+k) =  g (yt; N ) (10) 

for some function g(·) that is determined by the mappings from factors to expected future 

one-period yields and excess bond returns. 

A slightly simplistic interpretation of (10) is that both xt and yt must follow first-order 

Markov processes. Intuitively, xt is Markov because it is defined as the set of information 
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relevant to forming conditional expectations for all future horizons. If information at time 

t other than xt were helpful in predicting future values of xt, then investors could use that 

additional information to refine their conditional expectations of future yields. Similarly, 

everything investors know about expected future yields shows up in the period-t term struc-

ture. This intuition does not quite correspond to the statement that xt and yt are Markov 

because (10) says nothing about conditional higher moments. For example, the vector xt 

need not contain all information relevant to forming conditional covariances among yields. 

Collin-Dufresne and Goldstein (2002) construct a general framework in which state variables 

that drive variations in conditional volatilities of yields do not affect the cross section of 

yields. 

Some readers may find it useful to compare this statement with the expectations hypoth-

esis. The weak form of the expectation hypothesis states that time-t forward rates differ 

from expected future yields by maturity-dependent constants. Forecasting with the weak 

form requires a parameterized model, but it is a trivial model: the only unknown parameters 

are the constants. When we step outside the weak form of the expectations hypothesis, we 

recognize that forward rates incorporate both expected future yields and time-varying ex-

pected excess returns. Equation (8) puts structure on expected excess returns by requiring 

that they depend on at most p state variables. Equation (9) implicitly says that by looking 

at the entire yield curve, we can disentangle shocks to expected excess returns from shocks 

to expected future yields. Disentangling these shocks requires estimation of the function g(·) 
in (10). 

There is a potentially important hole in this derivation. It is possible that some cancel-

lation may occur on the right side of (8). In other words, there may be a state variable that 

has equal and opposite effects on expected future short rates and expected future excess 

bond returns. This will reduce the dimension of the state vector that determines yields. 

“Hidden factor models,” introduced by Duffee (2011a) and Joslin, Priebsch, and Singleton 

(2010), capture this idea. State variables that drive this kind of variation drop out of the 
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left side, hence the period-t cross-section of yields does not contain all information relevant 

to forecasting future yields. We defer considering hidden factor models until Section 5.3. 

2.4 Methodological implications 

The previous argument has an important implication for the choice of forecasting method-

ology. When forming forecasts as of time-t, the use of information other than time-t yields 

requires a compelling justification. Such information includes yields dated prior to t, mea-

sures of inflation, central bank policy announcements, and economic activity. All of these 

variables are related to future yields. They may also be key components of the fundamental 

economic determinants of yields. But all of the information in these variables is already 

embedded in the time-t yield curve. 

One way to justify using non-yield information is ease of estimation. To take an extreme 

example, we can form a forecast of next year’s average three-month Treasury bond yield 

either by estimating a model or by reading a forecast off of survey responses of financial 

market participants. The latter approach is easier and probably more accurate. Unfortu-

nately, samples of survey data for interest rate forecasts are not as long as those for forecasts 

of important macro variables such as inflation. Moreover, surveys typically ask questions 

about only one or two maturities on the yield curve. Section 5.1 discusses alternate uses of 

survey data. 

A less extreme example is parameter stability over time. If there is a good reason to 

believe that the mapping from current yields to expected future yields is unstable over time, 

while the mapping from, say, current inflation to expected future yields is stable, then it 

makes sense to use inflation data to forecast yields. The literature contains considerable 

evidence for parameter instability in term structure models, but it is silent on the relative 

stability of forecasts using yields versus forecasts using other variables. 

Another justification for the use of non-yield information is that we may believe investors 

at time t were using the wrong model to forecast yields. For example, they may have 
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ignored a variable that we, as econometricians looking back in time, know is important. Yet 

another justification is the belief that the length of the state vector that drives expectations 

exceeds the number of available yields in the cross-section. Finally, measurement error can 

obscure the information in observed time-t yields. In practice, this is implausible because 

the measurement error in yields is very small relative to the measurement error in other 

relevant variables, such as observed inflation and output growth. 

It is also important to recognize that a Markov process for yields does not imply that 

yields follow a first-order VAR. Markov processes may be nonlinear. For example, there may 

be occasional regime shifts in yield dynamics. When yields follow a Markov process, the 

time-t regime can be backed out of time-t yields. But extracting this information requires a 

regime-shifting model rather than a VAR(1). 

Even if a VAR(1) is a reasonable model of yields, we must decide how to compress the 

information in the cross-section of yields. Yields on bonds of similar maturities are very 

highly correlated. Therefore a standard approach is to extract common factors from yields 

and apply a VAR to the factors. This procedure is the subject of the next section. 

3 Regression approaches to forecasting Treasury yields 

For forecasting purposes, an important difference between Treasury yields and macro vari-

ables such as GDP is the role of the cross-section. Since yields on bonds of different matu-

rities are highly correlated, it does not make much sense to estimate unrelated forecasting 

regressions for each yield.1 An almost universal approach to regression-based forecasting of 

Treasury yields is to first compress the cross-section into a low-dimensional vector, then use 

regressions to forecast elements of the vector. Forecasts of individual yields are determined 

by the cross-sectional mapping from the vector to the individual yield. We begin with the 

compression technique of principal components. 

1However, the important early contribution to forecasting of Fama and Bliss (1987) adopts this method. 
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3.1 Principal components of yields 

Following the spirit of Litterman and Scheinkman (1991), researchers often summarize term 

structures by a small set of linear combinations of yields.2 An uncontroversial conclusion 

of the term structure literature is that the first few principal components of the covariance 

matrix of yields capture almost all of the variation in the term structure. Table 1 illustrates 

this for the sample 1972 through 2010. The table reports the unconditional standard de-

viations of the seven bond yields over this sample. It also reports the standard deviations 

of the residuals after taking out the first n principal components. Standard deviations of 

residuals from using three principal components range from five to eleven basis points of 

annualized yields, which is roughly the same range as the measurement error described by 

Bekaert, Hodrick, and Marshall (1997). 

These first three principal components are commonly called “level,” “slope,” and “cur-

vature” respectively. The motivation behind the labels is illustrated in Figure 2, which is 

constructed from the sample 1972 through 2010. A change in the first principal component 

corresponds to a roughly level change in yields of different maturities. A change in the second 

component moves short-maturity yields in the opposite direction of long-maturity yields. A 

change in the third component moves the short end and the long end together, away from 

intermediate maturities. 

The figure includes loadings on the fourth and fifth components. From the scale of the 

figure, it is clear that level, slope, and curvature account for almost all of the variation in 

term structure shapes. Therefore forecasting future Treasury term structures is, for most 

purposes, equivalent to forecasting the first three principal components of yields. 

Equation (10) requires that expectations of future yields are determined by current yields. 

We implement this in a regression setting by forecasting future principal components with 

current principal components. One method uses separate regressions for each future horizon 

k. Carriero, Kapetanios, and Marcellino (2012) follow this path. In this chapter a VAR(1) 

2Litterman and Scheinkman use factor analysis rather than principal components. 
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is the primary tool for forecasting. Section 2.4 makes it clear that (10) does not imply 

that the yield curve follows a VAR(1) process. Nonetheless, it is the most obvious model 

with which to generate forecasts across various horizons that are consistent with each other. 

A VAR(1) applied to principal components allows us to use time-t principal components to 

predict time-(t+k) principal components. The mapping from principal components to yields 

translates these forecasts to expected future yields. 

We want to limit the number of principal components included in the VAR to avoid over-

fitting. The time-t term structure is almost entirely described by level, slope, and curvature, 

but it does not necessarily follow that a VAR(1) that includes only these first three principal 

components is an appropriate model.3 Other principal components may have information 

about expected future values of level, slope, and curvature. Cochrane and Piazzesi (2005) 

point out that a factor does not need to have a large effect on the time-t term structure in 

order to play an important role in time-t expectations of future yields and expected returns. 

Roughly, the factor could have partially offsetting effects on the right side of (8). There-

fore the appropriate number of principal components to include in the VAR is an empirical 

question. 

3.2 Forecasting principal components 

How much information is in the time-t term structure about future values of level, slope, 

and curvature? Stack the first five principal components of the term structure in the vector 

˜ ˜Pt and denote individual principal components by Pi,t. A tilde represents observed data, 

which may be contaminated by measurement error or market imperfections. The forecasting 

regressions are 

P̃i,t+k − P̃i,t = b0 + b ∗ 1P̃t + ei,t,t+k 

3Principal components are unconditionally orthogonal, but not necessarily conditionally orthogonal. 
Therefore a VAR(1) process for principal components will generally not equal a set of univariate AR(1) 
processes for the individual components. 
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Table 2 reports results for forecasts of the first three principal components. The regres-

sions are estimated for two sample periods and one-month, three-month, and twelve-month 

horizons. Of course, the longer-horizon regressions are superfluous if we are confident that 

the VAR(1) is an accurate description of monthly yield dynamics. Only non-overlapping 

observations are used for the latter two horizons. Overlapping observations contain some-

what more information. They also can have large discrepancies between finite-sample and 

asymptotic statistical properties, especially in a near unit-root setting. The choice here is to 

give up some of the information in the sample in exchange for more reliable test statistics. 

There are three main conclusions to draw from Table 2. First, there is no statistical 

evidence that changes in the first principal component (level) are forecastable. For both the 

1952–2010 and 1970–2010 samples, tests of the hypothesis that all five coefficients of b1 are 

zero cannot be rejected at the five percent level. (The covariance matrix of the parameter 

estimates is adjusted for generalized heteroskedasticity.) Only one p-value is less than ten 

percent, and that is for the annual-horizon regression in the shorter sample. This p-value 

should not be given much weight since there are only 38 observations for this regression. 

Second, slope and curvature are unquestionably forecastable. The p-values are approxi-

mately zero for both sample periods and all forecasting horizons. At the quarterly horizon, 

about 20 (30) percent of the variation in slope (curvature) is predictable. 

Third, factors other than the first three do not contribute much to forecasts of slope and 

curvature. For slope forecasts, tests of the hypothesis that the coefficients on the fourth and 

fifth principal components equal zero do not come close to rejection. The statistical evidence 

for curvature forecasts is mixed. In particular, these components appear to help predict 

quarter-ahead curvature. But recall from Figure 2 that curvature contributes relatively little 

to variations in the term structure over time. Moreover, the incremental R2 of the fourth 

and fifth principal components to curvature forecasts is economically small; between three 

and five percentage points at the quarterly horizon. (These details are not reported in any 

table.) 
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These results, combined with the idea that parsimonious dynamic models are better than 

complicated models, suggest that a reasonable forecasting model is a VAR(1) for level, slope, 

and curvature, combined with restriction that that level is a random walk, unforecastable 

by any of the principal components. The mapping from these factors to observed yields is 

3 

˜ỹt 
(n) 
= βi,nPi,t + n,t. (11) 

i=1 

The residual picks up cross-sectional variation in yields that is unexplained by the first three 

principal components. Duffee (2011b) takes this approach in forecasting future yields and 

concludes that the model works well in pseudo out-of-sample forecasting, relative to various 

other forecasting methods. 

The conclusion that the level is unforecastable may appear to rely heavily on a misspec-

ified model. There have been important shifts in the data-generating process of short rates 

during the past fifty years. The most prominent is the Federal Reserve’s monetarist exper-

iment from 1979 to 1983. Stationary regime-shifting processes can appear nonstationary 

from the perspective of a model that does not include regime shifts. 

A comprehensive analysis of regime shifts is beyond the scope of this chapter. However, it 

is worth noting that the unpredictability of the level factor is robust to allowing for a simple 

kind of structural change. In results not detailed in any table, I estimate a VAR(1) on the 

first three principal components of yields for the sample 1952 through 2010. Chow-type 

dummies are included for the period 1979:1 through 2003:12. The results overwhelmingly 

reject the null hypothesis of constant coefficients over the full sample. In particular, during 

the monetarist period the level factor exhibits strong mean reversion, both economically 

and statistically. But outside of this monetarist period, the hypothesis that the level is 

unpredictable is not rejected at the ten percent level. 
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3.3 Related models 

The previous subsection describes a simple model of the term structure. Three principal 

components follow a VAR(1), and yields are related to the principal components through 

the cross-sectional mapping (11). This model does not attempt to impose any no-arbitrage 

conditions, other than the Markov intuition of Section 2.3. Researchers have developed other 

models with VAR(1) factor dynamics and mappings from factors to yields that also ignore 

no-arbitrage considerations. 

Perhaps the best-known of these models is the contribution of Diebold and Li (2006). 

They build a dynamic version of the term structure introduced by Nelson and Siegel (1987). 

The cross-section of the term structure is summarized by the level, slope, and curvature 

factors of the Nelson-Siegel model. These three factors are assumed to follow a VAR(1). 

Diebold and Li find that the dynamics with the best pseudo out-of-sample properties are 

those without any feedback among the factors. In other words, level, slope, and curvature 

follow univariate AR(1) processes. The forecast accuracy of their model is discussed in 

Section 3.5. 

Other methods for compressing the information in yields can also be combined with a 

VAR(1). Perhaps the simplest approach is to choose a few bonds with maturities across the 

term structure—say, three months, two years, and ten years—and use the yields on these 

bonds as factors. This method ignores information in other bond yields. Other methods use 

information from the entire term structure. For example, the knot points of the cubic spline 

used by Bowsher and Meeks (2008) could be fit to a VAR(1) instead of the ECM model 

described in Section 2.2. Almeida and Vicente (2008) use Legendre polynomials to describe 

the cross-section of yields and fit them to a VAR(1). 

The Markov logic of Section 2.4 implies that there is a high bar to including non-yield 

variables in forecasting regressions. Simply noting that expected future yields should depend 

on, say, inflation or macroeconomic activity is not sufficient. Since this information is already 

in contemporaneous yields, including both yields and macro variables in a regression is a 
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recipe for overfitting, in both in-sample and pseudo out-of-sample forecasts. 

Perhaps not surprisingly, this logic is routinely ignored. A popular forecasting approach 

uses a VAR that includes both compressed information from the term structure and com-

pressed information from a large panel of macro variables. Recent examples are Koopman 

and van der Wel (2011) and Favero, Niu, and Sala (2012). Empirical evidence linking macro 

variables with term structure forecasts is discussed in Section 5. Much of the empirical work 

involving macro variables and the term structure focuses on forecasting future returns to 

bonds rather than future yields. The equivalence of these perspectives is discussed next. 

3.4 Predictable excess returns 

Forecasts of future yields using current yields (and perhaps other variables) are necessarily 

also forecasts of expected log returns to bonds. A derivation based on Campbell and Shiller 

(1991) makes this point starkly. The relevant accounting identity is 

1 1(n−1) (n) (n) (1)
y − y = y − y − xrt,t+1. (12)t+1 t t t n − 1 n − 1 

Campbell and Shiller (1991) use this equation as a test of the weak form of the expectations 

hypothesis by taking time-t expectations, then fixing the expected excess return to a con-

stant. They test whether the OLS coefficient on the first term on the right side equals one, 

and conclusively reject the hypothesis. 

The left side is the change in the yield on a bond from t to t + 1. For reasonably 

long maturities (say, a five-year bond), variations over time in the left side are very close 

to variations in the first principal component—the level—of the term structure. Therefore 

according to the results of Table 2, the left side is close to unforecastable with time-t yields. 

Since the left side equals the right side, the right side must also be unforecastable with time-t 

yields. The first term on the right side is a measure of the slope of the term structure, which 

varies widely over time; recall Figure 1. Since the sum on the right is unforecastable, the 
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second term, excess returns to the bond, must also be strongly forecastable and positively 

correlated with the slope of the term structure. 

This implication is confirmed with excess return regressions. Monthly simple returns 

to maturity-sorted portfolios of Treasury bonds are available from CRSP. Excess returns 

are constructed by subtracting the return to the shortest-maturity portfolio, which contains 

bonds with maturities less than six months. Excess returns for horizons longer than a 

month are constructed by compounding simple returns to the portfolios, then subtracting 

the compounded return to the shortest-maturity portfolio. 

Excess returns from month t to t + k are regressed on the first five principal components 

of the term structure at month t. Formally, the regressions have the form 

R̃e = b0 + b ∗ ˜ (13)i,t,t+k 1Pt + ep,t,t+k, 

where the notation on the left side indicates the observed simple excess return to portfolio 

i from t to t + k. As in Table 2, the regressions are estimated for monthly, quarterly, and 

annual horizons, and only non-overlapping observations are used for the latter two horizons. 

Point estimates for two portfolios are displayed in Table 3. There are two strong conclu-

sions to draw from the results. First, the level of the term structure is unrelated to future 

excess returns. None of the t-statistics comes close to rejecting the hypothesis that the point 

estimate is zero. Second, a less-steep slope (larger value of the second principal component) 

corresponds to lower future excess returns. A one standard deviation increase in the second 

principal component corresponds to a decrease of about 0.25 percent in next month’s excess 

return to bonds with maturities between five and ten years. The coefficients scale almost 

linearly in the return horizon, at least up to the annual horizon considered here. 

Less clear are the links between other principal components and future excess returns. 

There is reasonably strong statistical evidence that greater curvature (an increase in short-

maturity and long-maturity yields, a decrease in intermediate-maturity yields) predicts lower 
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excess returns. The magnitude of the predictability is about half of that associated with the 

slope of the term structure. Three of the four t-statistics for the 1952–2010 sample allow 

rejection at the five percent level of the null hypothesis that the coefficient is zero. 

Table 4 reports the R2s of these and related forecasting regressions. At the monthly 

horizon, roughly five percent of the variation in excess returns is predictable. The figure rises 

to roughly ten percent at the quarterly horizon. The R2s for annual horizons are intriguing. 

For the two sample periods emphasized in this paper, the R2s are between 25 and 30 percent. 

However, Table 4 also includes results for the sample 1964 through 2003, which matches the 

sample period studied by Cochrane and Piazzesi (2005). They report R2s up to 44 percent 

when annual excess returns are predicted by five forward rates. In Table 4 the R2s for  

the 1964 through 2003 sample exceed 50 percent, both because the predictors are slightly 

different than those used by Cochrane and Piazzesi (2005) and because the regressions use 

non-overlapping observations. There is unquestionably overfitting in these regressions, since 

only 39 observations are explained by five variables. But the annual regression for 1972 

through 2010 has fewer observations and yet a much smaller R2 . Section 7 discusses this 

result in detail. In this section it suffices to note that the high R2s realized over the sample 

period of Cochrane and Piazzesi are not matched in the full sample. 

3.5 Forecast accuracy evaluation 

At this point it is appropriate to discuss how we should evaluate forecasting models. In this 

Handbook, Clark and McCracken (2012) emphasize the important role of pseudo out-of-

sample forecasts in econometric evaluation of forecasting models. They discuss two reasons 

for this focus. First, forecasting models are often used to forecast (truly) out of sample, 

thus evaluation methodologies that mimic this procedure are sensible. Second, in-sample 

overfitting via data-mining is often detected with pseudo out-of-sample tests. 

Both explanations apply to forecasts of bond yields, and pseudo out-of-sample forecast 

accuracy plays a major role in much of the relevant research. Two particularly influential 
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contributions to the term structure literature recommend specific models based on their 

pseudo out-of-sample performance. Duffee (2002) and Diebold and Li (2006) conclude that 

their respective term structure models have pseudo out-of-sample forecasts of future yields 

that are more accurate than random walk forecasts. Their results are a major reason why 

much of the subsequent forecasting literature has explored variants of their models. 

Unfortunately, neither conclusion is robust. Carriero (2011) finds the Diebold-Li model 

performs poorly out-of-sample for the period 1983 through 2009, a result driven by the 

forecast errors in the latter part of the sample. Duffee (2011b) finds that forecasts from both 

models are inferior to random walk forecasts when the data samples in the original papers 

are expanded to include more recent observations. In other words, the pseudo out-of-sample 

performance of the models differs substantially from the true out-of-sample performance. 

Only the passage of additional time will reveal whether the conclusions of Duffee (2002) and 

Diebold and Li (2006) are examples of pseudo out-of-sample data-mining or whether the 

models’ recent performance is anomalous. 

This chapter advocates a different tool for evaluation: the conditional Sharpe ratio. The 

main advantage of the conditional Sharpe ratio is that it is a tool for ex ante evaluation of a 

forecast. Unlike out-of-sample forecasting errors, Sharpe ratios do not depend on sampling 

error inherent in out-of-sample realizations. 

The conditional Sharpe ratio for asset or portfolio i over the horizon from t to t + k is 

ReEt i,t,t+k 
si,t,t+k = . (14) 

Vart R
e 
i,t,t+k 

Fitted conditional Sharpe ratios that are implausibly large are evidence of overfitting. For 

the forecasting regressions (13), the numerator of (14) is the fitted value of the regression. If 

the return innovations are homoskedastic, the denominator is the standard deviation of the 

regression’s residuals. 

Figure 3 displays fitted values of (14) for the portfolio of Treasury bonds with maturities 
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between five and ten years. The fitted values are from monthly regressions for the sample 

1952 through 2010. The sample mean conditional Sharpe ratio is only 0.06, or about 0.24 

when multiplied by the square root of twelve to put it in annual terms. The fitted Sharpe 

ratios fluctuate substantially over time, reaching a maximum of 1.3 (4.7 in annual terms) and 

a minimum of −1.0 (−3.3 in annual terms), both during the Fed’s monetarist experiment 

period. Since conditional volatilities were relatively high during this same period, the as-

sumption of homoskedasticity exaggerates the fluctuations in conditional Sharpe ratios. But 

even outside of this period, the patterns in Figure 3 are hard to reconcile with our intuition 

about risk premia. For example, in the late 1960s and early 1970s, fitted conditional Sharpe 

ratios frequently flip back and forth from about one to minus one (in annual terms). 

Although fitted Sharpe ratios can reveal overfitting, it is not easy to address the prob-

lem using finance theory at the level of accounting identities discussed in Section 2. If, say, 

a shrinkage principle is used to reduce the predictability of excess returns, the accounting 

identities (3) and (4) imply that forecasts of future yields will be affected in some way. But 

the effects could work through conditional variances of expected future yields, covariances 

among expected future yields, or covariances between expected future yields and current 

expected excess returns. There is insufficient structure to distinguish among these possibili-

ties. For this additional structure, we turn to term structure models that impose no-arbitrage 

restrictions on yield dynamics. 

4 A dynamic term structure framework 

This section presents the workhorse no-arbitrage framework used for forecasting. It first 

appears in Ang and Piazzesi (2003). In contrast to the early term structure models that are 

expressed in a continuous-time setting, the setting here builds on the discrete-time model of 

Backus and Zin (1994). The key assumptions are that interest rate dynamics are linear and 

homoskedastic with Gaussian shocks. Before presenting the model, it is worth discussing why 
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a model with such obviously counterfactual assumptions lays a central role in the literature. 

It is easy to find evidence of nonlinear, non-Gaussian dynamics. For example, Figure 

1 shows that conditional variances of yields vary substantially through time, reaching their 

peak during the monetarist experiment of 1979 through 1982. Gray (1996) concludes that 

a model of time-varying mean reversion and time-varying GARCH effects fits the dynamics 

of the short-term interest rate. The figure also shows that the zero bound imposes nonlinear 

dynamics on yields that bind in the last two years of the sample. Unfortunately, tractability 

must sometimes trump truth in dynamic term structure models. Dynamic term structure 

models describe the evolution of bond prices over time. This description requires (a) a 

method for computing bond prices that satisfy no-arbitrage; and (b) transition densities of 

prices from t to t + τ . Researchers naturally restrict their attention to models for which (a) 

and (b) are computationally feasible. 

The best-known class of models with tractable bond pricing is the affine class of Duffie 

and Kan (1996). This class includes both homoskedastic (Gaussian) and heteroskedastic 

models. Dai and Singleton (2000) and Duffee (2002) combine this affine class with linear 

dynamics of the underlying state vector to produce the “completely affine” and “essentially 

affine” classes respectively. One of the conclusions in Duffee (2002) is that only the Gaussian 

models in this class are sufficiently flexible to generate plausible forecasts of future yields. 

Gaussian no-arbitrage models are easy to understand and use, and can generate complicated 

yield dynamics. Although the models have fixed conditional variances, this is typically not a 

concern of the forecasting literature. This literature focuses on predicting yields and excess 

returns rather than constructing conditional second moments. 

Recent research has attempted to find alternatives to the Gaussian class. Cheridito, 

Filipović, and Kimmel (2007) extend the essentially affine class to give non-Gaussian versions 

greater flexibility. A nonlinear tweak to the completely affine class is introduced by Duarte 

(2004). The quadratic class, which has nonlinear dynamics, is developed by Leippold and 

Wu (2002) and Ahn, Dittmar, and Gallant (2002). Dai, Singleton, and Yang (2007) and Ang, 
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Bekaert, and Wei (2008) construct models with regime switches along certain dimensions. 

A fairly general nonlinear framework with affine pricing is developed by Le, Singleton, and 

Dai (2010). 

These and other approaches show promise, but none has gained much traction in the ap-

plied literature. The limited existing evidence suggests that further exploration is warranted. 

For example, Almeida, Graveline, and Joslin (2011) find that a stochastic volatility model 

in the extended affine class generates more accurate in-sample forecasts of yields than a 

comparable Gaussian model. Almeida and Vicente (2008) draw favorable conclusions about 

the forecast accuracy of no-arbitrage models that describe the term structure with Legendre 

polynomials. But as of this writing, the workhorse framework is the Gaussian essentially 

affine setting. 

4.1 The framework 

The continuously-compounded nominal one-period interest rate is rt. This can also be writ-

ten as yt 
(1) 
, the yield on a one-period bond. The short rate is a function of a length-p state 

vector, denoted xt. The function is 

rt = δ0 + δ1 
∗ xt. (15) 

The state vector has first-order Markov dynamics 

xt+1 = μ + Kxt + Σ  t+1,� t+1 ∼ N (0, I) . (16) 

Without loss of generality, Σ is lower triangular. The parameters of (16) are common knowl-

edge. An implication of this assumption is that an econometrician cannot hope to uncover 

a trading strategy with expected returns that exceed the compensation required for bearing 

the strategy’s risk. All expected excess returns must be explained by risk compensation 
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Using the notation of Section 2.1, no-arbitrage implies 

(n) (n−1)
P = Et Mt+1P (17)t t+1 

where Mt+1 is the strictly positive pricing kernel, or stochastic discount factor (SDF). The 

SDF is assumed to have the log-linear form 

log Mt+1 = −rt −  t 
∗ 

t+1 − 
1
  ∗ t t. (18)
2 

The vector  t is the compensation investors require to face the unit normal shocks t+1. The  

price of risk is a function of the state vector, thus it varies over time according to 

Σ t =  0 +  1xt. (19) 

The left side of (19) is the compensation investors require to face shocks to the state vector. 

Bonds are priced using the equivalent martingale dynamics 

xt+1 = μq + Kqxt + Σ  qt+1, (20) 

where the equivalent martingale parameters are 

μq = μ−  0, Kq = K −  1. (21) 

The discrete-time analogues of the restrictions in Duffie and Kan (1996) imply that zero-

coupon bond prices can be written as 

p
( 
t
n) 
= An + Bn 

∗ xt. (22) 
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The loading of the log price on the state vector is 

B ∗ ∗ −1 (I − (Kq)n 
n = −δ1 (I − Kq) ) (23) 

and the constant term satisfies the difference equation 

A1 = −δ0, An+1 = −δ0 + An + Bn 
∗ μq +

1 
Bn 
∗ ΣΣ ∗ Bn. (24)

2 

Zero-coupon yields are written as 

(n) ∗ y = An + B xt, (25)t n 

1 1 
An = − An, Bn = − Bn. (26) 

n n 

The log excess return to an n-period bond from t to t+ 1  is  

xr
(n) 

= B ∗ n−1 ( 0 +  1xt) − 
1 
B ∗ n−1ΣΣ ∗ Bn−1 + B ∗ (27)t,t+1 2 n−1Σ t+1. 

To understand this equation, begin with the final term on the right side, which is the return 

shock. The state-vector shock is Σ t+1. An  n-period bond at t is an (n − 1)-period bond 

at t + 1, and the sensitivity of its log price to the state vector is Bn−1. Investors require 

compensation to face innovations in the state vector. The risk compensation for holding the 

bond is the first term on the right, which is the exposure to the state-vector shock times 

the conditional compensation for the shock. The middle term on the right is a Jensen’s 

inequality adjustment for log returns. 

4.2 Empirical estimation 

Assume that we observe a panel of zero-coupon Treasury bonds. There are T time series 

observations of d ≥ p + 1 yields, stacked in vectors ỹt, t  = 1, T . Recall the tilde denotes 
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observed yields, which here must be distinguished from model-implied yields. The maturities 

of the bonds are n1, . . . , nd, which are fixed across time. There must be at least p+1  yields  to  

identify the model’s parameters. Using the language of the Kalman filter, the measurement 

equation is 

ỹt = A + Bxt + ηt, ηt ∼ N(0,Ω). (28) 

The mapping from the state vector to yields satisfies no-arbitrage, or 

∗ 
A = An1 . . .  And 

, 

∗ 
B = Bn1 . . .  Bnd 

, 

where An and Bn are defined by (26). The error term in (28) accounts for deviations from 

the exact no-arbitrage prices. The interpretation of this term that is consistent with the no-

arbitrage formulas is measurement error. In reality, it also picks up model misspecification, 

such as too few common factors, and components of yields related to market imperfections. 

Another way to write the measurement equation is 

ỹt = yt + ηt, (29) 

yt = A + Bxt. (30) 

The notation yt, without the tilde, indicates yields uncontaminated by measurement error 

(or model misspecification and market imperfections). 

The model can be estimated with maximum likelihood (ML) using the Kalman filter. Be-

cause the state vector is latent (i.e., not tied to anything observable), the model is unidentified 

unless identifying restrictions are imposed. Examples of identifying restrictions are discussed 

next. 
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4.3 What are the factors? 

What determines the dynamic behavior of the term structure? Although this is an important 

question, it is vacuous in the context of the simple factor model here. The question is 

effectively asking how we should interpret elements of the state vector. But the state vector 

is arbitrary. An observationally equivalent model is produced by scaling, rotating, and 

translating the state vector. Associated with each rotation is a different set of parameters 

of the transition equation (16) and the measurement equation (28). 

Define such a transformation as 

x ∗ 
t = Γ0 + Γ1 xt (31) ���� ���� 

p×1 p×p 

where Γ1 is nonsingular. Following Dai and Singleton (2000), an observationally equivalent 

model replaces xt with xt 
∗ , and replaces the parameters of (16) with 

∗ Γ−1 ∗ K = Γ1K 1 , μ = Γ1μ+ (I − K ∗ )Γ0, Σ ∗ = chol  (Γ1ΣΣ ∗ Γ ∗ 1) , 

where chol(·) indicates a Cholesky decomposition. Similarly, the parameters of the equivalent-

martingale dynamics (20) are replaced with 

q ∗ qΓ−1 q∗ q∗ K = Γ1K 1 , μ = Γ1μ
q + (I + K ) Γ0. 

There are many ways to identify the state vector and thus identify the model’s parameters. 

One way is to restrict the K matrix to a diagonal matrix, set μ to zero, and set the diagonal 

elements of Σ equal to one. These define a rotation, translation, and scaling respectively.4 

Another approach equates the state vector with linear combinations of yields. 

Consider any p × d matrix L with rank p. (Recall p < d.) Premultiply (30) by L to 

4This is slightly stronger than identification, since it imposes the restriction that the eigenvalues of K are 
real. 
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produce 

Lyt = LA + LBxt. (32) 

As long as LB is invertible, the left side of equation (32) defines a new state vector. A simple 

example is a diagonal L with p diagonal elements equal to one and the remainder equal to 

zero. This choice produces a state vector equal to p “true” yields, or yields uncontaminated 

by measurement error. Normalization restrictions for arbitrary L are described in Joslin, 

Singleton, and Zhu (2011). 

Another useful choice of L is based on principal components of yields. For a given data 

sample, the first p principal components can be written as 

P̃t = Lỹt, 

where L is a p × d matrix of loadings of the sample principal components on the observed 

yields. Figure 2 is a graphical illustration of this matrix for one sample. Then the factors 

correspond to “level,” “slope,” and so on. Regardless of the choice of L, this kind of state 

vector rotation emphasizes that the term structure model is really a model of one set of 

derivative instruments (yields) explaining another set of derivative instruments (more yields). 

4.4 No-arbitrage restrictions and Sharpe ratios 

No-arbitrage restrictions ensure that bonds are priced consistently with each other: equal risk 

receives equal compensation. The restrictions say nothing about the appropriate magnitude 

of the compensation, or how it should vary over time. Additional restrictions can be imposed 

on a no-arbitrage model to put more structure on risk premia. With this Gaussian model, 

the polar cases are unrestricted risk premia—the vector  0 and the matrix  1 in (19) are free 

parameters—and risk-neutrality, which sets both to zero. 

It might seem natural to estimate the model with unrestricted risk premia, but Joslin, 

Singleton, and Zhu (2011) and Duffee (2011b) show that this version of the no-arbitrage 
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model is of no value in forecasting. There are two pieces to the argument, and both are 

worth describing in some detail. 

Joslin, Singleton, and Zhu (2011) conclude that no-arbitrage restrictions, in the absence 

of restrictions on risk premia, have no bite when estimating conditional expectations of future 

values of the state vector. These conditional expectations are determined by the parameters 

μ and K of the true, or physical measure, dynamics (16). No-arbitrage restrictions boil 

down to the existence of equivalent martingale dynamics, given by (20). When risk premia 

are unrestricted, the parameters μq and Kq of the equivalent martingale dynamics are un-

related to their physical-measure counterparts. Although the two measures share volatility 

parameters, in a Gaussian setting these parameters do not affect ML estimates of μ and K. 

If the state vector is rotated to, say, the first p principal components of yields, then the ML 

estimates of μ and K are essentially indistinguishable from VAR estimates. 

No-arbitrage restrictions do affect the mapping from the state vector to yields; in other 

words, they bite. Absent the no-arbitrage restrictions, the parameters A and B of the 

measurement equation (28) are restricted only by normalization requirements. But Duffee 

(2011b) points out that these parameters can be estimated with extremely high precision 

even if no-arbitrage restrictions are not imposed, since the measurement equation amounts 

to a regression of yields on other yields. The R2s of such regressions are very close to one. 

In practice, imposing the restrictions even when they are true does not improve estimates of 

the measurement equation. 

In a nutshell, the Gaussian no-arbitrage model, absent additional restrictions on risk 

premia, offers no advantages over a simple regression-based approach. First estimate a VAR 

on the first p principal components, then estimate cross-sectional regressions of yields on 

the components. Nonetheless, the no-arbitrage model is valuable because the estimated 

properties of risk premia, and hence fitted conditional Sharpe ratios, can be used to evaluate 

the reasonableness of the regression-based approach. 

This analysis of Sharpe ratios goes beyond the fitted Sharpe ratios (14) calculated with 

29 



�

forecasting regressions. The forecasting regressions produce Sharpe ratios for portfolios of 

Treasury bonds. This contrasts sharply with a no-arbitrage model, which can be used to 

determine Sharpe ratios for any dynamic trading strategy in fixed income, including all 

strategies that attain the maximum Sharpe ratio. 

With the log-normal SDF, the maximum conditional Sharpe ratio for simple returns is 

max Λ� 
s = e tΛt − 1. (33)t 

Duffee (2010) explains why bond portfolios do not attain this maximum Sharpe ratio. The 

intuition is that an asset with the maximum Sharpe ratio has a return that is perfectly neg-

atively correlated with the SDF. Log returns to bonds can be perfectly negatively correlated 

with the log of the SDF. If the SDF and bond returns both have low volatility, this is almost 

the same as a perfect negative correlation in levels. But with high volatilities, there can be 

a substantial wedge between Sharpe ratios of bonds and the maximum Sharpe ratio implied 

by a Gaussian term structure model. The higher the Sharpe ratios for bond portfolios, the 

more volatile is the SDF, and therefore the larger the wedge there is between Sharpe ratios 

for bond portfolios and the maximum Sharpe ratio. 

Fitted maximum Sharpe ratios for high-dimensional Gaussian models can be unreal-

istically high. Using a data sample of Treasury yields from 1971 to 2008, Duffee (2010) 

estimates Gaussian no-arbitrage models with two, three, four, and five factors. No restric-

tions are placed on risk premia. He calculates a monthly mean of (33) for each model. 

Annual-horizon maximum Sharpe ratios are about 2.7 for the four-factor model, a number 

that seems quite large until it is compared to the five-factor model figure of about 1030 . 

Sharpe ratios for two-factor and three-factor models are reasonable. 

This Sharpe ratio evidence points to overfitting with a four-factor model and severe 

overfitting with a five-factor model. One simple way to solve the overfitting problem is to 

simply build forecasting models with only three factors, sacrificing the ability to capture 
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more obscure information in the term structure. Another approach is to impose restrictions 

on risk premia dynamics. 

4.5 Restrictions on risk premia dynamics 

Restrictions on risk premia increase the precision of estimates of physical dynamics (16). 

The reason is that equivalent-martingale dynamics (20) are estimated with high precision, 

and risk premia restrictions tighten the relation between physical and equivalent-martingale 

dynamics. Thus imposing correct restrictions on risk premia should improve forecast accu-

racy. 

Risk premia are determined by the p-vector  0 and the p×p matrix  1. The compensation 

investors receive for facing a unit shock to element i of the state vector is an affine function 

of the state vector. The constant term of this risk compensation is element i of the vector 

 0, while the sensitivity of risk compensation to the state vector is row i of  1. 

There are many ways to impose restrictions on the elements of  0 and  1. One  is  to  

set to zero any parameters that are statistically indistinguishable from zero. A more formal 

frequentist approach is adopted by Christensen, Lopez, and Rudebusch (2010) and Joslin, 

Priebsch, and Singleton (2010), who use various information criteria. Bauer (2011) adopts 

a Bayesian approach to estimating these parameters. Another is to apply a shrinkage prin-

ciple, setting the parameters to a weighted average of their unrestricted estimates and their 

risk-neutral value of zero. A simple example of this is in Cochrane and Piazzesi (2008). 

Duffee (2010) takes yet another approach, estimating parameters subject to a restriction on 

maximum Sharpe ratios. 

Another common approach imposes a priori restrictions on the elements of  0 and  1 

based on a combination of tractability and beliefs about risk premia. For example, both 

Cochrane and Piazzesi (2008) and Duffee (2011a) assume that only shocks to the level of 

the term structure have time-varying risk compensation. For Duffee’s chosen factor rotation, 

this restriction implies that only one row of  1 is nonzero. Cochrane and Piazzesi go further 
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and choose a rotation for which a single factor drives time-variation in a single price of risk. 

A qualitatively similar approach is taken by Ang, Bekaert, and Wei (2008), who choose a 

factor rotation such that risk premia depend only on one of the factors. A weaker assumption 

that does not rely on a specific factor rotation is that the rank of  1 is less than p. Joslin, 

Singleton, and Zhu (2011) describe how to impose this restriction in ML estimation. 

An indirect method of imposing restrictions on risk premia dynamics is to impose restric-

tions on the physical dynamics (16). One example is Christensen, Diebold, and Rudebusch 

(2010), which is a dynamic model of the three factors of Nelson and Siegel (1987).5 The 

version of their model with the most accurate forecasts imposes the restrictions that the 

factors all follow univariate autoregressive processes. These restrictions implicitly restrict 

risk premia dynamics. 

Noticeably absent from this discussion of risk premia is any mention of fundamental 

determinants of risk compensation. The framework of Section 4 abstracts from consumption, 

inflation, output growth, and all other macroeconomic variables. With a yields-only model, 

it is difficult to impose restrictions that motivated by workhorse asset-pricing models of risk 

premia. The model must be extended to include macroeconomic variables. 

5 Macro-finance models 

The primary motivation behind macro-finance models is to ground term structure dynamics 

in the dynamics of variables, such as inflation, that are viewed as fundamental determinants 

of yields. A secondary motivation is to improve forecasts of yields out-of-sample by reducing 

the overfitting problem. 

Macro-finance models typically follow Ang and Piazzesi (2003) by expanding the mea-

surement equation of the yields-only framework. Assume we observe some variables at time t, 

stacked in a vector f̃t. In principle, this vector may contain any variable other than the price 

5Christensen et al. (2010) slightly modify the Nelson-Siegel factors to satisfy no-arbitrage. Their model 
does not fit into the framework of Section 4 because it is written in continuous time. The version in Diebold 
and Li (2006) is in discrete time, but does not satisfy no-arbitrage. 
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of a fixed-income derivative. Usually it contains macro variables, but it may also contain 

survey data. 

The macro-finance measurement equation is 

⎞ ⎞ ⎞  

ỹt Ay By⎜⎝ 
⎟⎠ = ⎜⎝ 

⎟⎠+ ⎜⎝ 
⎟⎠xt + ηt. (34) 

f̃t Af Bf 

No-arbitrage restrictions apply to the vector Ay and the matrix By. No such restrictions 

apply to the vector Af and the matrix Bf , although other restrictions may be imposed. 

The key assumption built into (34) is that the same state vector that determine the cross-

section of yields also determine the additional variables. This is a practical rather than a 

theoretical restriction. In theory, even if the term structure and the additional variables had 

nothing to do with each other, the state vector could be expanded to include the necessary 

state variables. But in practice, researchers use state vectors with three, four, or five factors. 

5.1 Survey data 

One of the most promising applications of the macro-finance framework has nothing to do 

with uncovering the fundamental determinants of yields or risk premia. Instead, it uses infor-

mation from surveys to improve estimates of the model’s dynamics. Investors’ expectations 

of future interest rates are measured directly with surveys. These survey-based expectations 

can be included in f̃t. The model’s parameters can then be estimated while imposing the 

restriction that the survey expectations equal the model’s expectations plus noise, as in Kim 

and Orphanides (2005). 

An extension of this approach is Chernov and Mueller (2011). They include both ob-

served inflation and survey expectations of future inflation to a yields-only model. Including 

inflation forces yields to share dynamics with inflation, and including inflation expectations 

helps to pin down those shared dynamics. Their use of survey data is consistent with the re-

sults of Ang, Bekaert, and Wei (2007), who find that surveys produce more accurate forecasts 
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of inflation than models. 

5.2 The factors of macro-finance models 

An important conceptual difficulty with macro-finance models is that the macro variables 

of interest, such as inflation, aggregate consumption, and output growth, are not spanned 

by the term structure. Recall from (32) that the length-p state vector can be rotated into 

p linearly independent combinations of “true” yields. The only requirement is that the 

mapping from the original state vector to the linear combinations is invertible. This result 

implies that, aside from cross-sectional measurement error, regressions of the macro factors 

on p linear combinations of contemporaneous yields should produce R2s of one.  

We do not observe variables in the absence of the cross-sectional error. The equivalent 

regressions using observed variables tell us about the magnitude of this error. For typical 

variables included in macro-finance models, the R2s are on the wrong side of 1/2. To illus-

trate the problem, consider quarterly observations of Treasury yields, inflation, per capita 

consumption growth, and industrial production growth. Quarter-t inflation is measured by 

the log change in the CPI from the final month of quarter t − 1 to the final month of quarter 

t. Per capita consumption growth is measured by the log change in real consumption per 

person on nondurables and services from quarter t − 1 to quarter  t. Consumption data are 

constructed following Piazzesi and Schneider (2007). Bond yields are for maturities of three 

months and one through five years. The sample period is 1952Q2 through 2010Q4. 

Table 5 reports R2s of cross-sectional regressions of the macro variables on the first five 

principal components of the Treasury yields. The implicit macro-finance model is one with 

five factors. The R2s range from 3 percent (industrial production) to 45 percent (inflation). 

As mentioned above, one interpretation of these low R2s is measurement error. We know 

from Section 3.1 that the measurement error of yields is tiny relative to the variability of 

yields over this sample. Thus if the five-factor model is correctly specified, the observed 

macro variables are primarily noise. 
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This seems implausible. But there is more direct evidence that the problem is misspeci-

fication. If yields are measured perfectly and the macro variables are measured with noise, 

then p linear combinations of yields contain all information relevant to forecasting future val-

ues of the macro variables. Lags of the macro variables should have no additional explanatory 

power. To test this implication, one-quarter-ahead values of inflation, consumption growth, 

and industrial production growth are first predicted with five principal components of yields, 

then with just the lagged value of the macro variable. Finally, all six explanatory variables 

are included. 

Table 5 reports R2s for the first two regressions and reports t-statistics on the lagged 

macro variable for the third regression. The hypothesis that the term structure contains 

all information relevant for forecasting future values is overwhelmingly rejected for all three 

macro variables. In fact, the term structure has less information about future inflation and 

industrial production growth than is contained in the single lag of the forecasted variable. 

At first glance, a sensible interpretation of this evidence is that the macro variables all 

contain some component that is orthogonal to term structure dynamics. But there is another 

interpretation, suggested by regressions that forecast excess bond returns. Following the logic 

that the state vector can be rotated into linear combinations of yields, all information about 

future excess bond returns should be contained in current yields. 

Recent evidence undercuts this implication. Cooper and Priestly (2009) finds that the 

output gap forecasts excess bond returns even when information from the term structure 

is included in the forecasting regression. Ludvigson and Ng (2009, 2010), construct princi-

pal components of more than 130 macroeconomic and financial time series. They use the 

first eight principal components to predict excess bond returns. Cieslak and Povala (2011) 

construct a weighted average of past inflation, where the weights decline very slowly. Empir-

ically, both the principal components and the measure of past inflation contain substantial 

information about future excess returns that is not contained in the term structure. 

We take a close look at some of this evidence in Section 7. In the next subsection we 
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take the evidence at face value and consider its implications. 

5.3 Hidden factors 

Duffee (2011a) and Joslin, Priebsch, and Singleton (2010) develop a restricted form of Gaus-

sian no-arbitrage models called hidden factor models. A key feature of a hidden factor model 

is that no linear combinations of yields can serve as the model’s state vector. Mathemati-

cally, the matrix LB in (32) is not invertible for any choice of L. Somewhat less formally, the 
term structure of bond yields is not a first-order Markov process. Investors have information 

about future yields and future excess returns that is not impounded into current yields. 

The intuition behind a hidden factor model is easily expressed using equation (8). If there 

is some state variable (or linear combination of state variables) that has equal and opposite 

effects on time-t expectations of future short-term rates and time-t expectations of future 

excess returns, that state variable (or linear combination) will not affect the time-t term 

structure. Put differently, the state vector that determines yields is smaller than the state 

vector that determines expected future yields. Duffee (2011a) shows that a single parameter 

restriction on the Gaussian no-arbitrage model produces a hidden factor. 

Hidden factors can, in principle, explain all of the results in Table 5, as long as the 

factor(s) that are hidden from the term structure are revealed in macroeconomic data. For 

example, imagine that economic growth suddenly stalls. Investors anticipate that short-

term rates will decline in future months. But investors’ risk premia also rise because of 

the downturn. These effects move long-term bond yields in opposite directions. If they 

happen to equal each other in magnitude, the current term structure is unaffected. Nothing 

in the term structure predicts what happens next to either economic growth or bond yields. 

However, the lower economic growth will predict higher future excess bond returns. 

This kind of story motivates the empirical approach of Joslin, Priebsch, and Singleton 

(2010), who build a model with two hidden factors that are revealed in economic activity and 

inflation. Duffee (2011a) takes a different approach, using only yields and filtering to infer 
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the presence of a hidden factor. Both conclude hidden factors are important, as do Chernov 

and Mueller (2011), who use survey expectations of inflation to reveal such a factor. This 

preliminary evidence indicates that hidden factor models should be taken seriously. 

However, this evidence can also be used as a poor justification for data-mining. The 

spanning requirement of models without hidden factors reduces significantly the ability of 

researchers to fish for variables that forecast excess returns. Hidden factors remove this 

constraint. If a researcher finds a variable that has statistially significant forecast power 

when information from the term structure is included in the forecasting regression, they can 

simply say that yet another hidden factor is uncovered. 

Even with hidden factor models, data-mining would not be an important problem if we 

understood the economic fundamentals behind risk premia in the bond market. Armed with 

this knowledge, we could require that the only variables used to forecast excess returns be 

those linked to the fundamental determinants of risk premia. Unfortunately, the state of the 

art in term structure research tells us little about these fundamental determinants. 

6 Economic fundamentals and risk premia 

The workhorse models used in finance to explain risk premia are extensions of the classic 

case of a representative agent with power utility and an aggregate consumption endowment. 

An asset’s conditional expected excess return depends on the return’s conditional covariance 

with consumption growth (power utility and habit formation as in Campbell and Cochrane 

(1999)) and with the return to total wealth (recursive utility as in Epstein and Zin (1989)). 

To help judge whether these models can explain the dynamics of bond risk premia, this 

section presents two types of empirical evidence. The first subsection looks at consumption 

and CAPM betas. The second considers whether time-varying expected excess returns are 

related to macroeconomic conditions. 
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6.1 Bond return betas 

This empirical analysis uses quarterly returns to match up with quarterly observations of 

consumption growth. Excess bond returns are measured by the return to a portfolio of 

Treasury bonds with maturities between five and ten years. Quarter-end to quarter-end 

returns are simple returns cumulated from monthly returns from CRSP. The simple return 

to a three-month T-bill is subtracted to form excess returns. Excess returns to the aggregate 

stock market are constructed in the same way, using the CRSP value-weighted index. 

Table 6 reports correlations among these excess returns and log per capita consumption 

growth. The table also includes the same series of quarterly inflation and log growth in 

industrial production that are used in Section 5.2. The sample is 1952Q2 through 2010Q4. 

The most important information in the table is that at the quarterly frequency, excess 

Treasury bond returns are countercyclical. The correlations with consumption growth and 

industrial production growth are both negative. 

This pattern may surprise some readers. The influential handbook chapter of Campbell 

(2003) reports that the correlation between excess bond returns and consumption growth is 

slightly positive for the U.S., although the evidence for other countries is mixed. Campbell 

uses the “beginning of period” assumption for consumption growth. In Table 6 that is the 

correlation between excess bond returns and the lead of consumption growth, which is slightly 

positive. The motivation behind the beginning of period assumption is that aggregate stock 

returns are more closely correlated with future consumption growth than contemporaneous 

consumption growth. The usual interpretation is that the shock underlying the aggregate 

stock return is not fully incorporated into measured consumption until the next quarter. 

But that is not the case for the shock underlying bond returns; the immediate reaction of 

both consumption and industrial production is much stronger than the one-quarter-ahead 

reaction. 

The table also reports that the correlation between aggregate stock returns and aggregate 

bond returns is close to zero. This fact, combined with the negative correlation with con-
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sumption growth, spells trouble for simple consumption-based models of the term structure. 

On average, the nominal yield curve in the U.S. slopes up. This shape implies that expected 

excess returns to Treasury bonds are positive. But these correlations suggest that the risk 

premium should be negative. 

More formal evidence is in Table 7, which reports results of regressing excess bond returns 

on either contemporaneous consumption growth or contemporaneous aggregate stock returns. 

The table also reports the sample mean of excess returns. Over the full sample 1952 through 

2010, the consumption beta of excess bond returns is around minus one, while the stock 

market beta is almost exactly zero. Neither coefficient is statistically different from zero. 

Results are also displayed for the first and second halves of the sample. In one sense, these 

samples differ substantially from each other: the mean excess return in the first half is weakly 

negative, while the mean excess return in the second half is strongly positive. Yet in both 

cases, the coefficients are statistically indistinguishable from zero, the consumption beta is 

negative, and the stock market beta is almost zero. The table also contains results for a fairly 

homogeneous sample period, the Greenspan era of 1987 through 2006. The consumption beta 

over this period is about −1.8, while mean excess returns remain strongly positive. 

There are, of course, a variety of ways to reconcile these betas with a positively-sloped 

term structure. For example, it is possible that conditional betas covary with conditional 

risk premia in a manner that generates both unconditionally positive mean excess returns 

and unconditionally negative consumption betas. In addition, the aggregate stock return 

is not the return to total wealth. It is possible that the beta with respect to the return 

to total wealth is positive even though the beta with respect to the stock market is zero. 

Moreover, there are alternative utility-based models that introduce heterogeneous agents, 

heterogeneous goods, and different utility specifications. An evaluation of these approaches 

is outside the scope of this chapter. The handbook chapter Duffee (2012) discusses in detail 

some of the theory and evidence relating the term structure and the macroeconomy. 
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6.2 Predictable variation of excess bond returns 

Beginning with Kessel (1965) and Van Horne (1965), economists have proposed various 

theories of time-varying expected excess bond returns. Naturally, many theories imply that 

this variation is correlated with the state of the economy. Here we look at some empirical 

evidence to help us evaluate the theories. 

For this exercise, monthly excess returns to nominal Treasury bonds are defined as the 

simple return to a portfolio of bonds with maturities between five and ten years less the 

return to a portfolio with maturities under six months. The data are from CRSP. The 

forecasting regressions take the form 

R̃e = b0 + b ∗ X̃t + ebond,t,t+1, (35)bond,t,t+1 1 

˜where Xt is a vector of variables known at t. The focus on monthly returns is somewhat 

at odds with much of the recent literature that follows Cochrane and Piazzesi (2005) by 

studying annual returns. But the goal here is not to generate large R2s, but rather to judge 

the statistical significance of predictability. When necessary, here we follow the intuition of 

Hodrick (1992) by predicting monthly returns with annual averages of predictors rather than 

predicting annual returns with month-t values of the predictors. 

Panel A of Table 8 reports the results of a variety of forecasting regressions. Consistent 

with the evidence in Tables 3 and 4, the statistical evidence for predictability using infor-

mation in the term structure is overwhelming. The slope of the term structure, measured 

by the five-year yield less the three-month yield, is positively correlated with future excess 

returns. 

Although excess returns are clearly predictable, a couple of obvious choices of macroeco-

nomic determinants of risk premia have no predictive power. A measure of the conditional 

standard deviation of long-term bond yields is constructed using squared daily changes in 

yields. This measure has no ability to forecast excess bond returns; the p-value is about 0.5. 
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(Owing to the availability of daily observations of long-term yields, the sample period for 

this regression begins with 1962.) Many theories imply that risk premia are countercyclical. 

Yet over the 1952–2010 period, lagged changes in log industrial production have no ability 

to forecast excess returns, whether the changes are from month t − 1 to month  t or from 

month t − 12 to month t. 

The next regression uses the eight principal components of macroeconomic and financial 

times series constructed by Ludvigson and Ng (2010). Their data are available for 1964 

through 2007. Table 8 reports that when these eight principal components are used to 

forecast monthly excess returns, the adjusted R2 is more than eight percent. The hypothesis 

that the coefficients are jointly zero is rejected at any conceivable confidence level. Note 

that this regression does not include any information from the term structure. This evidence 

concerns the overall forecast power of the eight principal components, not their incremental 

explanatory power. 

Although this evidence is certainly encouraging to researchers searching for links between 

risk premia and the macroeconomy, there are three important caveats. First, it is not clear 

how to map much of this predictability to specific macroeconomic concepts. Ludvigson 

and Ng call the first principal component “real activity” because it is highly correlated 

with standard measures of real activity. For example, its correlation with log-differenced 

industrial production exceeds 0.8. But relatively little of the forecast power of the principal 

components comes from the measure of real activity. Table 8 reports that the adjusted R2 

using only the first principal component is about 1.6 percent. Interpreting the other principal 

components is more problematic. 

Second, the sample period 1964 through 2007, although very long, may be anomalous. 

Table 8 uses this shorter sample to redo the forecasting regression with industrial production 

growth. With the shorter sample, the p-value for growth in industrial production drops from 

0.5 to 0.02. Since the first principal component is highly correlated with the growth in 

industrial production, this result suggests that the predictability associated with Ludvigson 
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and Ng’s real activity factor may be sample-specific. 

Third, the predictability of excess bond returns is not accompanied by similar predictabil-

ity of excess stock returns. In models that link time-varying bond risk premia to the macroe-

conomy, this variation is typically accompanied by varying equity risk premia. But Panel B of 

Table 8 reports that the shape of the term structure contains little information about future 

aggregate equity excess returns. These regressions take the same form as (35), with excess 

stock returns replacing excess bond returns on the left side. The eight principal components 

of macroeconomic and financial variables collectively have substantial forecasting power, but 

the coefficients on the principal components do not line up with those that forecast bond 

returns. The correlation between the fitted values of the regressions is only 0.39. For the 

aggregate stock excess return, the coefficient on real activity is statistically indistinguishable 

from zero. 

7 A robustness check 

Is there really information about future excess returns that is not captured by the current 

term structure? Section 5.2 briefly discusses empirical evidence that macroeconomic variables 

have incremental explanatory power. We take a closer look at that evidence here. We also 

consider one of the results in Cochrane and Piazzesi (2005), hereafter CP. The material in 

this section is new to the literature. 

In an influential paper, CP find that five month-t forward rates constructed with yields 

on bonds with maturities of one through five years contain substantial information about 

excess bond returns over the next year (the end of month t to the end of month t + 12). 

Their evidence is surprising along many dimensions. In particular, they conclude that lags 

of forward rates (dated t − 1 and earlier) contain information about the excess returns that 

is not in month t forward rates. 

As CP note, this result is inconsistent with the logic that the time-t term structure 
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contains all information relevant to forecasting future yields and excess excess returns. In 

this sense, the evidence is similar to the evidence that macro variables help predict excess 

returns. Hidden factors help justify the macro evidence. But even if there are hidden factors 

(a theoretical development not available to CP), it is hard to understand why the information 

is hidden from the time-t term structure but not hidden in earlier term structures. CP suggest 

measurement error in yields that is averaged away by including additional lags of yields. 

Rather than examine the annual horizon returns of CP, here we look at monthly returns. 

Consider forecasting monthly excess returns using both the time t term structure and lagged 

information, as in 
11 

R̃e ˜ ˜
bond,t,t+1 = b0 + b ∗ 1Pt + b2 

∗ Ft−i + ebond,t,t+1. (36) 
i=0 

In (36), the notation F̃t refers to a vector of forward rates observed at month t, 

∗ 
F̃t = ˜ ˜ ˜ ˜ ˜ ,F0,1,t F1,2,t F2,3,t F3,4,t F4,5,t 

where F̃j−1,j,t is the forward rate from year j−1 to  year  j as of month t. The notation P̃t refers 

to the vector of five principal components of the term structure. If the principal components 

are excluded from this regression, it is the Hodrick (1992) version of the regressions in CP. 

Instead of using month-t forward rates to forecast annual excess returns, the sum of the 

previous twelve months of forward rates are used to forecast monthly excess returns. The 

excess bond return is for a portfolio of Treasury bonds with maturities between five and ten 

years. 

The regression is estimated for the 1964 through 2003 sample studied by CP and for the 

full 1952 through 2010 sample. Two versions are estimated. One excludes the forward rates 

and the other includes both sets of explanatory variables. Results are in Table 9, as are 

other results that are discussed below. 

When the forward rates are excluded, the R2 for the 1964 through 2003 sample is 5.8 

percent. (This duplicates one of the regressions reported in the last line of Table 4.) Including 
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lagged forward rates raises the R2 to 11.0 percent. The null hypothesis that the coefficients 

on the forward rates are all zero is overwhelmingly rejected. However, over the full sample, 

the incremental explanatory power of the forward rates is modest; the comparable R2s are  5.0  

percent and 6.6 percent respectively. For the full sample, the hypothesis that the coefficients 

on the forward rates are all zero cannot be rejected at the five percent level. 

These results are qualitatively similar to the forecasting regression R2s in Table  4  and  

discussed in Section 3.4. In Table 4, five principal components of yields are used to predict 

excess returns at horizons of one, three, and twelve months. The R2s for one month are 

approximately the same for the three sample periods 1952–2010, 1972–2010, and 1964– 

2003. The same result holds for the three-month horizon. But at the annual horizon, the 

1964 through 2003 period stands out, with R2s that are about 20 percentage points greater 

than the R2s for the other two periods. The results of Table 9 explain the discrepancy, at 

least in a mechanical sense. Over the 1964 to 2003 sample, lagged term structures have 

incremental predictive power for monthly excess returns. Thus the forecast power of lagged 

term structures is unusual in a statistical sense: it is overwhelmingly significant over most 

of the 1952 through 2010 sample, but insignificant over the entire period. 

The forecast power of lagged term structures is unusual in another way. Recall the dis-

cussion in Section 3.2 that future changes in the level of the term structure are unforecastable 

with the current term structure. Only changes in the slope and curvature are forecastable. 

Yet over the 1964 through 2003 sample, lagged forward rates predict future changes in the 

level. 

The evidence is again in Table 9. The relevant regressions replace the excess return on 

the left side of (36) with changes in the first three principal components of yields. Over 

the sample period of CP, the null hypothesis that lagged forward rates have no incremental 

explanatory power for changes in the level is rejected at the three percent level. Similar 

hypotheses for slope and curvature are not rejected. Over the full sample period, lagged 

forward rates have no ability to forecast the level of yields. 

44 



The level of the term structure is a random walk: it exhibits no mean reversion. But 

during the period 1964 through 2003, lagged term structures contained information about 

future increments to the level. This is why the lags have incremental explanatory power for 

excess returns. The next major result of this section is that the same statement applies to 

macro variables known to forecast excess returns. 

Denote the eight principal components of macro and financial variables constructed by 

˜ 6Ludvigson and Ng (2010) by Mt. The excess return forecasting regression is 

R̃e = b0 + b ∗ P̃t + b ∗ ˜ (37)bond,t,t+1 1 2Mt + ebond,t,t+1. 

The sample period is 1964 through 2007. 

The first panel of Table 10 reports the results. When the Ludvigson-Ng data are ex-

cluded, the R2 is 5.5 percent. When they are included, the R2 jumps to 13.8 percent, and 

the hypothesis that the coefficients on the principal components are all zero is overwhelm-

ingly rejected. The next set of regressions replace the excess return on the left side of (37) 

with changes in level, slope, and curvature. The macro/financial factors have substantial 

incremental forecast power for the level of the term structure and none for either slope or 

curvature. 

Next, replace the macro/financial principal components with the measure of lagged in-

flation constructed by Cieslak and Povala (2011).7 The sample period is 1972 through 2009, 

determined by the availability of the inflation measure. The results are in the second panel 

of Table 10. Including this single predictive variable raises the R2 of excess returns from 

6.5 percent to 10.6 percent. The hypothesis that the coefficient is zero is overwhelmingly 

rejected. The same result holds for forecasts of changes in the level of the term structure. 

Again, the variable has no incremental explanatory power for slope or curvature. 

These results raise two important questions about the robustness of the results of Ludvig-

6Thanks to the authors for making their data available. 
7Thanks the the authors for making their data available. 
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son and Ng (2009, 2010) and Cieslak and Povala (2011). First, how reliable is the statistical 

inference? Drawing correct inferences inferences about the finite-sample behavior of a ran-

dom walk process is often difficult. Consider, for example, Figure 4, which displays the 

three-month yield, the five-year yield, and the lagged inflation measure of Cieslak and Po-

vala. Over the sample period 1970 through 2010, the level of yields rises steadily for 12 years, 

then drops for the next 30 years. The behavior of the lagged inflation measure is similar. 

This kind of pattern can easily produce spurious predictability. Both Ludvigson and Ng 

(2009, 2010) and Cieslak and Povala (2011) are concerned about statistical reliability, and 

employ pseudo out-of-sample tests. But true out-of-sample tests require patience. 

Second, what kind of hidden-factor story is consistent with this evidence? Macro stories 

are typically cyclical. But to explain the patterns here, a hidden-factor story has to explain 

why macro news today corresponds to an expected future permanent shock to short rates. 

Moreover, the shock has to temporarily change risk premia in the opposite direction. 

To answer the question posed at the beginning of the section: perhaps not. There are good 

theoretical and empirical reasons to be skeptical of the evidence that there is information 

about expected excess returns beyond that contained in bond yields. 

8 Concluding comments 

Finance theory provides some specific guidance when forming forecasts of future interest 

rates. Nonetheless, important questions remain open. The Holy Grail of this literature is 

a dynamic model that is parsimonious owing to economically-motivated restrictions. The 

requirement of no-arbitrage is motivated by economics, but by itself it is too weak to mat-

ter. Economic restrictions with bite require, either directly or indirectly, that risk premia 

dynamics be tied down by economic principles. There no consensus in the literature about 

how this should be done. To date, no restrictions that come out of our workhorse models of 

asset pricing appear to be consistent with the observed behavior of Treasury bond yields. 
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Another open question is whether any variables contain information about future interest 

rates that is not already in the current term structure. Recent empirical work suggests that 

both lagged bond yields and certain macroeconomic variables have incremental information, 

but this chapter argues that the robustness of these results is not yet known. A closely related 

question is whether changes in the overall level of the term structure are forecastable. Again, 

recent empirical work suggests (at least implicitly) they are forecastable, but the nature of 

this forecastability raises some statistical and economic problems that are not yet resolved. 
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Table 1. Cross-sectional fitting errors using principal components 

Principal components of zero-coupon nominal bond yields are calculated for the sample 
January 1972 through December 2010. The maturities range from three months to ten 
years. The table reports cross-sectional residuals from using the first n components to fit the 
cross-section of yields, from n = 0  to  n = 5. The values for n = 0 are the sample standard 
deviations of the yields. Standard deviations measured in basis points of annualized yields. 

Number of 
components  3 mon  1 yr  2 yr  3 yr  4 yr  5 yr  10 yr  

0 322.2 319.7 310.3 298.9 290.0 281.3 250.8 
1 75.3 44.0 16.3 18.8 30.2 38.9 65.0 
2 21.4 14.5 14.6 12.4 9.4 6.4 22.1 
3 5.0 10.9 6.1 6.2 8.1 6.4 7.4 
4 0.5 3.4 6.0 5.0 5.2 5.6 1.9 
5 0.2 0.3 2.6 4.9 4.4 5.1 1.2 
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Table 2. Predicting level, slope, and curvature with the term structure 

Principal components of month-end observations of nominal bond yields are constructed 
for the specified samples. Changes in these principal components from month t to months 
t + 1,  t + 3,  and  t + 12 are forecast in-sample with OLS using the month-t values of the 
first five principal components. The table reports R2s of these regressions and p-values of 
tests of the hypothesis that all five coefficients are zero. For forecasts of the second and 
third principal components, the table also reports p-values of tests of the hypothesis that the 
coefficients on the fourth and fifth principal components are zero. The tests use the White 
heteroskedasticity-consistent covariance matrix. 

The 1952 through 2010 sample uses yields with maturities of three months and one 
through five years. For this sample the forecasting regressions use 702 monthly observations 
from 1952:7 through 2010, 234 quarterly observations from 1952Q3 through 2010Q4, and 
58 annual observations from 1953 through 2010. The 1972 through 2010 sample adds a 
ten-year maturity. For this sample the regressions use 467 monthly, 155 quarterly, and 38 
annual observations. 

First PC Second PC Third PC 
1-5 1-5 4-5 1-5 4-5 

Freq R2 Test R2 Test Test R2 Test Test 

1952 through 2010 sample 

M 0.016 0.219 0.077 0.000 0.946 0.125 0.000 0.048 

Q 0.038 0.192 0.198 0.000 0.842 0.300 0.000 0.011 

A 0.143 0.247 0.549 0.000 0.229 0.496 0.000 0.993 

1972 through 2010 sample 

M 0.029 0.125 0.082 0.002 0.784 0.089 0.000 0.246 

Q 0.055 0.160 0.220 0.000 0.580 0.255 0.000 0.005 

A 0.161 0.062 0.582 0.000 0.439 0.469 0.000 0.406 
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Table 3. Forecasting excess returns to Treasury bonds with the yield curve 

Excess returns to maturity-sorted portfolios of Treasury bonds from month t to month t + k 
are regressed on the month-t values of the first five principal components of the Treasury term 
structure. The horizons are one month, one quarter, and one year. Only non-overlapping 
observations are used. Returns are expressed in percent. The principal components are all 
normalized to have unit standard deviation. The table reports parameter estimates and 
asymptotic t-statistics. The covariance matrices of parameter estimates are adjusted for 
generalized heteroskedasticity. 

Maturity 
Freq bucket PC 1 PC 2 PC 3 PC 4 PC 5 

1952 through 2010 sample 

M 2-3 years 0.028 −0.110 −0.068 0.050 −0.027 
(0.54) (−2.06) (−1.97) (1.43) (−0.47) 

M 5-10 years 0.041 −0.257 −0.139 0.199 −0.011 
(0.44) (−3.03) (−2.08) (2.60) (−0.12) 

Q 5-10 years 0.206 −0.730 −0.573 0.183 −0.056 
(0.67) (−2.26) (−3.26) (0.87) (−0.17) 

A 5-10 years 0.861 −2.799 −0.833 −0.187 −1.254 
(1.13) (−3.86) (−1.48) (−0.22) (−1.49) 

1972 through 2010 sample 

M 2-3 years 0.012 −0.117 −0.082 0.082 −0.081 
(0.18) (−1.84) (−1.59) (1.20) (−0.96) 

M 5-10 years 0.005 −0.285 −0.151 0.237 −0.217 
(0.04) (−2.73) (−1.63) (1.88) (−1.70) 

Q 5-10 years 0.137 −0.847 −0.572 0.630 −0.057 
(0.37) (−2.58) (−2.19) (1.49) (−0.10) 

A 5-10 years 0.396 −2.639 −1.103 −0.027 −2.096 
(0.40) (−2.77) (−1.58) (−0.02) (−1.96) 
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Table 4. R2s of excess-return forecasting regressions 

Excess returns to maturity-sorted portfolios of Treasury bonds from month t to month t + k 
are regressed on the month-t values of the first five principal components of the Treasury term 
structure. The horizons are one month, one quarter, and one year. Only non-overlapping 
observations are used. The table reports R2s for various combinations of sample periods and 
maturity-sorted portfolios. 

Maturity 
Sample period bucket Month Quarter Annual 

1952–2010 2-3 years 0.030 0.075 0.252 

1972–2010 2-3 years 0.040 0.098 0.243 

1964–2003 2-3 years 0.036 0.097 0.526 

1952–2010 5-10 years 0.050 0.107 0.309 

1972–2010 5-10 years 0.064 0.132 0.343 

1964–2003 5-10 years 0.058 0.129 0.525 
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Table 5. Explaining macroeconomic variables with the term structure 

The term structure at the end of quarter t is summarized by its first five principal compo-
nents. CPI inflation is measured from the last month of quarter t − 1 to the  last  month  
of quarter t. Industrial production growth is measured similarly. Log aggregate per capita 
consumption growth is measured from quarter t − 1 to quarter t. The table reports R2s of  
regressions of the macro variables on the five principal components of the term structure. 
Regressions are both cross-sectional and one-quarter-ahead forecasts. Univariate R2s are  for  
AR(1) regressions of the macro variables. The column labeled “T-statistic” is the t-statistic 
on the lagged macro variable when it is included in a forecasting regression with the five 
principal components. It is adjusted for generalized heteroskedasticity. The data sample is 
1952Q2 through 2010Q4. 

Forecasting, Forecasting, 
Cross section principal components univariate T-statistic 

Inflation 0.451 0.429 0.376 3.54 

Consumption growth 0.090 0.110 0.143 4.69 

IP growth 0.032 0.081 0.146 3.87 
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Table 6. Sample correlations, 1952 through 2010 

Excess returns to a portfolio of long-term Treasury bonds and the aggregate stock market are 
measured from the end of quarter t− 1 to the end of quarter t. Contemporaneous per capita 
consumption growth is the log change in aggregate per capita consumption from quarter t−1 
to quarter t, Δct. Industrial production growth and CPI inflation are both log changes from 
the final month of quarter t − 1 to the final month of quarter t, ΔIPt and πt respectively. 
The sample period is 1952Q2 through 2010Q4. 

Excess Excess 
bond ret stock ret Δct Δct+1 ΔIPt ΔIPt+1 πt 

Excess bond return 1.00 
Excess stock return 0.06 1.00 
Δct −0.13 0.20 1.00 
Δct+1 0.07 0.26 0.38 1.00 
ΔIPt −0.28 0.04 0.50 0.26 1.00 
ΔIPt+1 −0.13 0.36 0.42 0.52 0.38 1.00 
πt −0.29 −0.15 −0.25 −0.30 −0.13 −0.19 1.00 
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Table 7. Consumption and CAPM betas for excess bond returns 

Excess returns to a portfolio of long-term Treasury bonds and the aggregate stock market 
are measured from the end of quarter t − 1 to the end of quarter t. Contemporaneous 
consumption growth is the log change in aggregate per capita consumption from quarter 
t − 1 to quarter t, Δct. The table reports coefficients of regressions of excess bond returns 
on either consumption growth or stock returns. Asymptotic t-statistics, in parentheses, use 
a Newey-West adjustment with two lags. The units are percent per quarter. 

Consumption aggregate 
Sample Constant growth stock return 

1952:2–2010:4 0.40 
(1.91) 

0.77 −0.86 
(2.41) (−1.81) 
0.36 0.02 

(1.64) (0.63) 

1952:2–1980:4 −0.15 
(−0.67) 

0.29 −0.88 
(0.66) (−1.40) 
−0.27 0.07 

(−1.14) (1.93) 

1981:1–2010:4 0.92 
(2.90) 

1.11 −0.51 
(2.52) (−0.65) 
0.94 −0.01 

(2.88) (−0.27) 
1986:1–2007:4 0.74 

(2.64) 

1.47 −1.76 
(3.06) (−1.97) 
0.85 −0.06 

(2.99) (−1.38) 
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Table 8. Predictability of excess returns to bonds and stocks 

Monthly excess returns to long-term nominal Treasury bonds and the aggregate stock market 
are regressed on a variety of predetermined variables. The column labeled “Test Stat” is the 
p-value of the test that the coefficient(s) are all zero. The covariance matrix of the estimated 
coefficients uses the Newey-West adjustment for five lags of moving average residuals. For 
regressions with a single predictor, the sign of the estimated coefficient is reported. 

Predictors Sample Adj. R2 Test stat Sign 

A. Excess bond returns 

Slope 1952:7 – 2010:12 0.0256 0.002 Pos 

Conditional SD of yields 1962:3 – 2010:12 0.0007 0.486 Pos 

Log change of industrial prod. 

12-month average 
of log change of industrial prod. 

1952:7 – 2010:12 

1952:7 – 2010:12 

0.0016 

0.0007 

0.111 

0.225 

Neg 

Neg 

8 principal components of 
of macro/financial variables 1964:2 – 2008:1 0.0864 0.000 — 

“Real activity” principal component 
of macro/financial variables 1964:2 – 2008:1 0.0161 0.002 Neg 

Log change of industrial prod. 1964:2 – 2008:1 0.0066 0.017 Neg 

B. Excess stock returns 

Slope 

Log change of industrial prod. 

1952:7 – 2010:12 

1952:7 – 2010:12 

0.0047 

−0.0012 

0.066 

0.774 

Pos 

Pos 

8 principal components of 
of macro/financial variables 1964:2 – 2008:1 0.0408 0.000 — 

“Real activity” principal component 
of macro/financial variables 1964:2 – 2008:1 0.0018 0.245 Neg 
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Table 9. The incremental explanatory power of lagged term structures 

The month-t term structure is summarized in two ways: the first five principal components of 
yields and five forward rates from year-ahead j−1 to year-ahead j, j = 1, . . . , 5. The forward 
rates are then averaged over months t− 11, . . . , t. This term structure information is used to 
predict excess returns to a portfolio of Treasury bonds from month t to t+1. It is also used to 
predict changes in the level, slope, and curvature of the term structure (first three principal 
components) from t to t + 1. The table reports R2s for the forecasting regressions. It also 
reports the p-value of a test that the averaged forward rates have no incremental explanatory 
power when the five principal components are included in the regression. The covariance 
matrices of the parameter estimates are adjusted for generalized heteroskedasticity. 

Forecasted Five principal Principal components Test of 
Variable components and average forward rates forwards 

1964 through 2003 sample 

Excess returns 0.058 0.110 0.001 

First PC (level) 0.020 0.066 0.023 

Second PC (slope) 0.079 0.098 0.336 

Third PC (curve) 0.129 0.147 0.098 

1952 through 2010 sample 

Excess returns 0.050 0.066 0.094 

First PC (level) 0.016 0.028 0.322 

Second PC (slope) 0.077 0.097 0.101 

Third PC (curve) 0.125 0.145 0.015 
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Table 10. The incremental explanatory power of macroeconomic variables 

The month-t term structure is summarized by the first five principal components of yields. 
These principal components are used to predict excess returns to a portfolio of Treasury 
bonds from month t to t + 1. Other predictors are the eight principal components of many 
macroeconomic time series, constructed by Ludvigson and Ng (2010), and a weighted average 
of past inflation constructed by Cieslak and Povala (2011). These variables are also used to 
predict changes in the level, slope, and curvature of the term structure (first three principal 
components) from t to t + 1. The table reports R2s for the forecasting regressions. It also 
reports the p-value of a test that other predictors have no incremental explanatory power 
when the five principal components are included in the regressions. The covariance matrices 
of the parameter estimates are adjusted for generalized heteroskedasticity. 

Forecasted Five Yield PCs Test of 
Variable yield PCs and macro PCs macro PCs 

1964:1 through 2007:12 sample 

Excess returns 0.058 0.138 0.000 

First PC (level) 0.021 0.140 0.000 

Second PC (slope) 0.080 0.117 0.056 

Third PC (curve) 0.130 0.159 0.232 

Forecasted Five Yield PCs and Test of 
Variable yield PCs past inflation past inflation 

1971:11 through 2009:12 sample 

Excess returns 0.065 0.106 0.000 

First PC (level) 0.027 0.056 0.000 

Second PC (slope) 0.078 0.079 0.406 

Third PC (curve) 0.130 0.131 0.757 
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Fig. 1. Yields on nominal Treasury zero-coupon bonds. The maturities range from three 
months to ten years. 
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Fig. 2. Principal components of nominal bond yields. The figure displays loadings of yields 
on their first five principal components, multiplied by the sample standard deviations of the 
components. The first, second, and third principal components, termed “level,” “slope,” and 
“curvature,” are displayed with solid, dashed, and dotted-dashed lines. The data sample is 
January 1972 through December 2010. 
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Fig. 3. Conditional monthly Sharpe ratios. The figure displays fitted conditional Sharpe 
ratios from month t to month t + 1 for a portfolio of Treasury bonds with maturities be-
tween five and ten years. Monthly excess returns are predicted using the first five principal 
components of Treasury yields. The Sharpe ratios are calculated assuming that conditional 
standard deviations of excess returns are constant over time. 
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Fig. 4. Treasury bond yields and a backward-looking measure of long-run inflation. The 
figure plots yields on three-month and ten-year zero-coupon Treasury bonds. It also plots a 
weighted average of past inflation, denoted τCPI , constructed by Cieslak and Povala (2011). 
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