
©2021-11-16, Christopher D. Carroll qModel

The Abel (1981)-Hayashi (1982) Marginal � Model
This handout presents a discrete-time version of the Abel (1981)-Hayashi (1982)

marginal � model of investment.
A corresponding Jupyter Notebook implements numerical solutions to the model using

HARK and dolo.

1 Definitions
To simplify some algebra, we assume that a unit of investment purchased in period t
does not become productive until t+1; the cost at t reflects the present discounted value
of the period-t+ 1 price of capital.1 Adjustment costs are priced the same way.2,3,4

kt - Firm’s capital stock at the beginning of period t
f(k) - Gross output excluding investment and adjustment costs
τ - Tax rate on corporate earnings
�τ - 1− τ = Portion of earnings remaining after corporate tax

πt = f(kt)�τ - After tax revenues
it - Investment in period t (affects capital stock in period t+ 1)

jt = j(it, kt) - AdJustment costs incurred in period t; smooth and convex
β = R−1 - Discount factor for future profits (inverse of interest factor)

ζ - Investment tax credit (ITC)
��ζ - = 1− ζ = Cost of investment after ITC
Pt - Price of one unit of investment

Pt = ��ζPt - Effective after-tax price of 1 unit of investment
ξt = (it + jt)Pt+1β - Total after-tax period-t spending on investment

δ - Depreciation rate
k - Depreciation factor = (1− δ)
ω - Adjustment cost parameter

1This assumption simplifies many of the expressions that arise in the discrete-time framework; in
continuous time the model presentation is simpler, but is hard to map the continuous-time theory into
a transparent computational solution like the one that accompanies these notes.

2To avoid arbitrage opportunities, assume that if you claimed an investment tax credit on a unit of
investment in period t, then if you resell the portion that remains after depreciation in a future period,
you must repay the ITC corresponding to the remaining capital. Actual tax treatment of depreciation
is too complicated be worth incorporating into the model; these assumptions capture the core of it.

3We repeatedly make approximations motivated by results from the continuous-time model; the key
approximation will be the usual calculus result that if ε and γ are ‘small’ then εγ can be approximated
by zero. (We will call this fact [SmallSmallZero] in MathFacts.)

4We neglect tax depreciation because, as shown in HallJorgenson, it matters only insofar as it
affects the cost of capital; since the investment tax credit has a more transparent and direct effect on
the cost of capital, including tax depreciation would add complication without adding any fundamental
insights to the analysis – in the perfect foresight framework analyzed here, any attempt to analyze the
effects of changes in tax depreciation should be translatable into an equivalent modification to the ITC.
See House and Shapiro (2008) for elaboration.
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2 The Problem
The � model assumes that firms maximize the net profits payable to shareholders,
definable as the present discounted value of after-tax revenues after subtracting off costs
of investment:

et(kt) = max
{i}∞t

Et

[
∞∑
n=0

βn (πt+n − ξt+n)

]
. (1)

Next period’s capital is what remains of this period’s capital after depreciation, plus
current investment,5

kt+1 = ktk + it. (2)

If capital markets are efficient, et(kt) will also be the stock market value (‘equity’ is
the mnemonic) of the profit-maximizing firm because it is precisely the amount that
a rational investor will be willing to pay if they care only about discounted after-tax
income derived from owning (a share of) the firm.
We can simplify by thinking about the firm’s shareholders as the suppliers of physical

capital, not just financial capital. In this interpretation, k represents not just the value
of the physical machinery owned by the firm, but also the number of shares of stock
outstanding in the firm. We can think of the firm in this way if we suppose that every
time the firm purchases new physical capital, it does so by issuing new shares at a price
equal to the marginal valuation of the firm’s capital stock, purchasing the unit of capital
at the price given by the after-tax cost of that capital (and after paying any associated
adjustment costs).6
The Bellman equation for the firm’s value can be derived from

et(kt) = max
it

πt − ξt + β Et

[
max
{i}∞t+1

∞∑
n=0

βn (πt+1+n − ξt+1+n)

]
= max

it
πt − ξt + β Et[et+1(ktk + it)]

(3)

which is equivalent to

et(kt) = max
kt+1

πt − (

=it︷ ︸︸ ︷
kt+1 − ktk+j(kt+1 − ktk, kt))Pt+1β + β Et[et+1(kt+1)]

 (4)

and defining jit = ji(it, kt) as the derivative of adjustment costs with respect to the
level of investment,7 the first order condition for optimization with respect to kt+1 (or,

5The software archive that produces the figures for this handout makes a slightly different
assumption about the timing of depreciation: kt+1 = (it + kt)k. The timing choice makes no
qualitative and very little quantitative difference, but the alternative specification is slightly better
for computational reasons.

6This leads to some subtlety in thinking about what happens to the firm’s share price when an ITC
is introduced; we discuss this briefly below.

7We implicitly assume in the following derivations that the structure of the j function is appropriate
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equivalently, it) is

(1 + jit)Pt+1β = β Et[e
k
t+1(kt+1)]. (5)

Thus: The PDV of the marginal cost (after tax, including adjustment costs) of an
additional unit of investment should match the discounted expected marginal value of
the resulting extra capital.

Recalling that πt = �τ f(kt), the Envelope theorem for this problem can be used on
either (3) or (4):

ekt (kt) =�τ fk(kt)− jkt Pt+1β + kβ Et[e
k
t+1(kt+1)]

ekt (kt) =�τ fk(kt) + ((1 + jit)k− jkt )Pt+1β
(6)

and equivalently for period t + 1 so that (5) can be rewritten as the Euler equation for
investment,

(1 + jit)Pt+1 = Et[�τ fk(kt+1) + (k + kjit+1 − jkt+1)Pt+2β]

= Et[�τ fk(kt+1) + (k + jit+1 − δjit+1 − jkt+1)Pt+2β].
(7)

It will be useful to define the net investment ratio as the Greek letter ι (the absence of
a dot distinguishes ι from the level of investment i),

ιt = (it/kt − δ) (8)

which measures how much investment differs from the proportion δ necessary to maintain
the capital stock unchanged. It has derivatives

ιit = (1/kt)

ιkt = −(it/kt)/kt

= −(ιt + δ)/kt.

(9)

We now specify a convex (quadratic) adjustment cost function as

j(it, kt) = (kt/2)

(
it − δkt
kt

)2

ω

= (kt/2)ι2tω

(10)

to our needs; later we will define a specific j that will always work, but here we want to leave the
structure of the function general.
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with derivatives
ji = kιωιi

= ιω from (9)
jk =

(
ι2/2− kι(ι+ δ)/k

)
ω

=
(
ι2/2− ι(ι+ δ)

)
ω

= −
(
ι2/2 + ιδ

)
ω

ji − δji − jk =
(
ι− δι+

(
ι2/2 + ιδ

))
ω

=
(
ι+ ι2/2

)
ω

= ji + (ω/2)ι2

(11)

so the Euler equation for investment (7) can be written

(1 + jit)Pt+1 = Et[�τ fk(kt+1) + (k + jit+1 + (ω/2)ι2t+1)Pt+2β]. (12)

To begin interpreting this equation, consider first the case where the costs of adjust-
ment are zero, ω = 0. In this case ji = jk = 0 and the Euler equation reduces to

Pt+1 = Et[�τ fk(kt+1) + kPt+2β]. (13)

Simplifying further, suppose that capital prices are constant at Pt = 1 and the ITC is
unchanging so that the after-tax price of capital is constant at P. Then since 1 + r+ δ ≈
1/βk, the equation becomes

P = Et[�τ fk(kt+1)] + Pβk
(r + δ)P ≈ Et[�τ fk(kt+1)].

(14)

This says that the cost of buying one unit of capital, P, is equal to the opportunity cost
in lost interest plus the value lost to depreciation, (r + δ), which must match the (after-
tax) payoff from ownership of that capital. This corresponds exactly to the formula
for the equilibrium cost of capital in the HallJorgenson model: In the presence of an
investment tax credit at rate ζ, the after-tax price of capital is P = ��ζ, and the firm will
adjust its holdings of capital to the point where

��ζ(r + δ)/�τ = fk(k). (15)

Now define λt ≡ ekt as the marginal value to the firm of ownership of one more unit
of capital at the beginning of period t; using this definition the envelope condition can
be written

λt =�τ fk(kt)− jkt Pt+1β + βkEt[λt+1]

≈�τ fk(kt)− jkt Pt+1β + (1− δ − r)Et[λt + λt+1 − λt]
=�τ fk(kt)− jkt Pt+1β + (1− δ − r)(λt + Et[∆λt+1])

(r + δ)λt ≈�τ fk(kt)− jkt Pt+1β + Et[∆λt+1]

(16)

where the last approximation uses [SmallSmallZero] in the form (r + δ)Et[∆λt+1] ≈ 0.
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(16) can be rearranged as

Et[∆λt+1] ≈ rλt −
[
�τ fk(kt)− jkt Pt+1β − δλt

]
. (17)

This equation can best be understood as an arbitrage equation for the share price of
the company if capital markets are efficient.8 The first term on the RHS rλt is the flow
of income that would be obtained from putting the value of an extra unit of capital in
the bank. The term in brackets [] is the flow value of having an extra unit of capital
inside the firm: Extra after-tax revenues are measured by the first term, the second
term accounts for the effect of the extra capital on costs of adjustment, and the final
term reflects the cost to the firm of the extra depreciation that results from having more
capital.

Think first about the Et[∆λt+1] = 0 case, in which the firm’s value, share price, and
size will be unchanging because the marginal value of capital inside the firm is equal to
the opportunity cost of employing that capital outside the firm (leaving it in the bank).
If these two options yield equivalent returns, it is because the firm is already the ‘right’
size and should be neither growing nor shrinking.

Now consider the case where Et[∆λt+1] < 0, because

rλt <
[
�τ fk(kt)− Pt+1βj

k
t − δλt

]
. (18)

This says that an extra unit of capital is more valuable inside the firm than outside
it, which means that 1) λt is above its steady-state value; 2) the firm will have positive
net investment; and 3) the firm’s share value will be falling over time (because the level
of its share value today is high, reflecting the fact that the high marginal valuation of
the firm’s future investment has already been incorporated into λt9
Now define ‘marginal �’ as the value of an additional unit of capital inside the firm

divided by the after-tax purchase price of an additional unit of capital,

�t = λt/Pt. (19)

The investment first order condition (5) implies

(1 + ji)Pt+1β = βλt+1

1 + ιtω = �t+1

(20)

which constitutes the implicit definition of a function

ιιι(�t+1) ≡ (�t+1 − 1)/ω

it = (ιιι(�t+1) + δ)kt
(21)

and notice that this implies

• At a value of �t+1 = 1, investment takes place at a rate exactly equal to the
depreciation rate (ιιι(1) = 0)

8This interpretation requires the assumption (made above) that the number of shares outstanding
for the firm is equal to the number of units of capital the firm has; this is justifiable by the assumption
that in an efficient capital market shares can always be issued or repurchased at an implicit interest
rate corresponding to the riskless rate.

9The case with rising share prices is symmetric.
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• The investment ratio ιt is monotonically increasing in �t+1 (ιιι′(�t+1) > 0)

• The strength with which ιt is related to �t+1 depends on the magnitude of adjust-
ment costs (d|ιιιt|/dω < 0)

3 Phase Diagrams

3.1 Dynamics of k
The capital accumulation equation can be rewritten as

kt+1 = (1− δ)kt + it

∆kt+1 = it − δkt
= ιιι(�t+1)kt.

(22)

3.2 Dynamics of �

To construct a phase diagram involving �, we need to transform our equation (16) for
the dynamics of λ into an equation for the dynamics of �. As a preliminary, define the
proportional change in the after-tax price of capital as

∇Pt+1 ≡ ∆Pt+1/Pt. (23)

Recalling that Pt+1 = ∆Pt+1 + Pt, dividing both sides of (16) by Pt yields

(r + δ)�t =�τ fk(kt)/Pt − jkt (∆Pt+1 + Pt)β/Pt + Et

[(
λt+1

Pt

)
−
(
λt
Pt

)]
≈�τ fk(kt)/Pt − (1 +∇Pt+1)j

k
t β + Et

[(
λt+1

Pt+1

(1 +∇Pt+1)

)
− �t

]
=�τ fk(kt)/Pt − (1 +∇Pt+1)j

k
t β + Et

[
(1 +∇Pt+1)�t+1 − �t

]
.

Now assuming that ∆�t+1, ∇Pt+1, r, and jkt are all ‘small’ so that their interactions
are approximately 0, we have

Et

[
∆�t+1

]
≈ (r + δ −∇Pt+1)�t − [�τ fk(kt)/Pt − jkt β]. (24)

Simplifying further, if the ITC is unchanging, and the pretax price of capital is
unchanging at Pt+1 = Pt = 1, and δ = 0, (24) becomes

Et[∆�t+1] ≈ r�t − fk(kt)/Tt + jkt β (25)

where

Tt = ��ζt/�τ t (26)

combines the effects of the corporate tax and the investment tax credit into a single tax
term.
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3.3 Results
Figure 1 presents two phase diagrams, one for k and λ and one for k and �.

For most purposes, � diagram is simpler, because our facts about the ι function imply
that the ∆kt+1 = 0 locus is always a horizontal line at � = 1. This is because � = 1
always corresponds to the circumstance in which the value of a unit of capital inside the
firm, λ, matches the after-tax cost of a unit of capital, P; � = 1 is the only value of � at
which the firm does not wish to change size (∆kt+1 = 0).

The slope of the Et[∆�t+1] locus is easiest to think about near the steady state value
of k where we can approximate jkt ≈ 0.
Pick a point on the Et[∆�t+1] = 0 locus. Now consider a value of � that is slightly

larger. From (25), at the initial value of k we would have Et[∆�t+1] > 0. Thus, the
value of k corresponding to Et[∆�t+1] = 0 must be one that balances the higher � by a
higher value of fk, which is to say a lower value of k. This means that higher � will be
associated with lower k so that the locus is downward-sloping.
For appropriate choices of parameter values the problem satisfies the usual conditions

for stability and will therefore have a saddle path solution, as depicted in the diagram.
The λ diagram is virtually indistinguishable from the � diagram; the only difference is

that the ∆kt+1 locus is located at the point λ = P (i.e. the marginal value of investment
is equal to the price of a unit of investment). The distinction between the diagrams
reflects the fact that an increase in the investment tax credit will result in a rise in the
steady-state value of k which implies a fall in the pretax marginal product of capital.

4 Dynamics

4.1 Steady State
The key to understanding the model’s dynamics (as, really, with all infinite horizon
models) is to figure out the steady state toward which it is heading, then to work out
how it gets there. The key to the steady state, in turn, is that the capital stock will
eventually reach a point where jk = ji = 0.

4.2 A Positive Shock to Productivity
Suppose that the production function for the firm suddenly, permanently, and unex-
pectedly improves; specifically, leading up to period t the firm was in steady state, but
in periods t + 1 and beyond the production function will be f≥(k) = Ψf<(k) for some
Ψ > 1 where f< and f≥ indicate the production functions before and after the increase
in productivity.
Note first that none of the tax terms has changed, and in the long run there is nothing

to prevent the firm from adjusting its capital stock to the point consistent with the new
level of productivity and then leaving it fixed there so that jk = ji = 0. Thus (25) implies
that at the new steady state ǩ≥ we will have r�̌ = T −1fk≥(ǩ≥) = ΨT −1fk<(ǩ≥) which
implies ǩ≥ > ǩ<, since the steady state value of � never changes: �̌≥ = �̌< = 1. That is,
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with higher productivity, the equilibrium capital stock is larger, but the equilibrium tax
adjusted marginal product of capital is the same.
Obviously in order to get from an initial capital stock of ǩ< to a larger equilibrium

capital stock of ǩ≥ the firm will need to engage in investment in excess of the depreciation
rate, incurring costs of adjustment. In the absence of a change in the environment,
expected costs of adjustment will always be declining toward zero, because the firm’s
capital stock will always be moving toward its equilibrium value in which those costs
are zero.

So we can tell the story as follows. Suppose that leading up to period t the firm was
in its steady-state. When the productivity shock occurs, fk jumps up. jkt had been zero
(because the firm was at steady state), but now the firm wishes it had more capital
because extra capital would reduce future adjustment costs (the firm knows that its
old steady-state capital stock is now too small, so it will have to be engaging in ι > 0
for a while), so jkt becomes negative (that is, the firm knows that having more capital
will reduce the adjustment costs associated with the higher investment that it will be
undertaking). The combination T −1fkt −jkt β therefore becomes a larger positive number,
so at the initial level of � the RHS of (25) would imply Et[∆�t+1] less than zero, so the
new Et[∆�t+1] = 0 locus must be higher (because the equilibrating value of � is higher
for any k). The saddle path is therefore also higher. So �, and therefore ι, jump up
instantly when the new higher level of productivity is revealed, corresponding also to
an immediate increase in the firm’s share price (the marginal valuation of an additional
unit of capital), since T has not changed.

The phase diagrams with the saddle paths before and after the productivity increase
together with the impulse response functions are plotted in figure 2.

4.3 A Permanent Tax Cut
Again starting from the steady state equilibrium, suppose T unexpectedly and perma-
nently decreases, which could happen because of a cut in corporate taxes or an increase
in the ITC. (25) implies that in steady state

r

=1︷︸︸︷
�̌ = fk/T
fk = rT .

(27)

Dynamically, the story is as follows. (25) implies that following the tax change
the Et[∆�t+1] = 0 locus must be higher because at any given � the −fk/T term is
a larger negative number, while at the initial k the jkt term is also now negative; so the
Et[∆�t+1] = 0 locus shifts up.
In contrast to the case with a productivity shock, the equilibrium marginal product

of capital will be lower than before. Arbitrage equalizes the after-tax marginal product
of capital with the interest rate, but with a lower tax rate, that equilibration will occur
at a higher level of capital.

Notice that the qualitative story is the same whether the change in T is due to a
permanent reduction in the corporate tax rate (increase in�τ) or a permanent increase
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in the investment tax credit (reduction in ��ζ). In either case, � and investment jump
upward at time t and then gradually decline back downward (though the equilibrium
level of investment is higher than before the change).

There is, however, one interesting distinction between a decrease in T due to a
reduction in corporate taxes and a decrease caused by an increase in ζ. Since λ = ��ζ�,
an increase in ζ reduces ��ζ and therefore reduces the equilibrium value of λ, while a
change in�τ has no effect on equilibrium λ. This reflects a subtle distinction. λ is the
after-tax marginal value of extra capital, and the equilibrium in this model will occur at
the point where that marginal value is equal to the marginal cost. Changing ζ changes
that marginal cost, so it changes the equilibrium after-tax marginal value. Changing
�τ does not change the marginal cost of capital, so the equilibrium after-tax marginal
value of capital is unchanged. The marginal product of capital is lower after a tax cut
(equilibrium fk is smaller), but that is exactly counterbalanced by the larger value of�τ
so that�τ fk is unchanged in the long run by the change in�τ .

The phase diagrams with the saddle paths before and after the corporate tax reduction
and the ITC increase, together with the impulse response functions, are respectively
plotted in figures 3 and 4. Note that the λ saddle path actually jumps downward after
the ITC increase. This is not an error; rather, recall that λ reflects marginal value of a
unit of capital inside the firm, and recall that the price of purchasing that capital has
gone down. Remembering that we are assuming that capital can move in and out of
the firm, this has the surprising consequence that, for the original owners of the firm,
the ITC is bad news because it means that the capital they own has a lower value (its
value is ultimately tied to the price of capital, which has gone down). For a potential
new shareholder, the investment tax credit means that you can obtain ownership of a
share of the firm’s capital by buying the capital at the ITC-discounted price, paying
the adjustment costs, then giving the capital to the firm. Thus, the ITC has the effect
of increasing the absolute value of a dollar of money relative to the value of a unit of
capital inside the firm. So in this special case, you should think of the ITC as something
that provides a discount to purchasing shares or capital λ. While the new saddle path
for λ is lower than the old one, that does not reflect the adjustment for the fact that the
new capital is being purchased at a cheaper price. The dynamics of �, in this case, are
more intuitive than those of λ: � unambiguously increases, reflecting the fact that the
value of capital to the firm exceeds its new (cheaper) cost.

In sum: In terms of effects on capital, the outcome from a corporate tax cut and an
ITC tax cut are similar, but the analytics of λ are different, because the former affects
the after-tax interest rate while the latter affects the after-tax cost of capital.

4.4 A Future Shock to Productivity
Now consider a circumstance where the firm knows that at some date in the future, t+n,
the level of productivity will increase so that f≥t+n = Ψf<t+n for Ψ > 1.

The long run steady state is of course the same as in the example where the increase
in productivity is immediately effective.
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To determine the short run dynamics, notice several things. First, there can be no
anticipated big jumps in the share price of the firm (the marginal productivity of capital
inside the firm). Thus, if the productivity jump occurs in period t + n and the time
periods are short enough, we must have

Et+n−1[λt+n − λt+n−1] ≈ 0. (28)

But because the equilibrium capital stock is larger, we know that jk≥t+n < 0 and will
stay negative thereafter (asymptoting to zero from below). This reflects the fact that if
you know you will need higher capital in the future, the most efficient way to minimize
the cost of obtaining that capital is to gradually start building some of it even before
you need it, rather than trying to do it all at once. Note further that before period t+n
the model behaves according to the equations of motion defined by the problem under
the < parameter values,10 while at t + n and after it behaves according to the new ≥
equations of motion.

Putting all this together, the story is as follows. Upon announcement of the pro-
ductivity increase, λ jumps to the level such that, evolving exactly according to its <
equations of motion, it will arrive in period t+n at a point exactly on the saddle path of
the model corresponding to the ≥ equations of motion. Thereafter it will evolve toward
the steady state, which will be at a higher level of capital than before, ǩ≥ > ǩ<, because
the greater productivity justifies a higher equilibrium capital stock.

Thus, λ jumps up at time t, evolves to the northeast until time t+ n, and thereafter
asymptotes downward toward the same equilibrium value it had originally before the
productivity change. Since T has not changed, the dynamics of � and ι are the same as
those of λ.

4.5 A Future Increase in the ITC
Consider now the consequences if a surprise increase in the investment tax credit is
passed at date t that will become effective at date t+ n > t.

Inspection of (25) might suggest that the effects of a future tax cut would be identical
to the effects of a future increase in fk, since the terms enter multiplicatively via T −1fk.
And indeed, with respect to the dynamics of λ the two experiments are basically the
same. And of course the steady-state value of � is always equal to one.
During the transition, however, � has interesting dynamics. From periods t to t+n−1,

the ITC does not change, leaving T −1 and the after-tax marginal product of capital
unchanged, and so the dynamics of � are basically the same as those of λ. But between

10Strictly speaking, this is not true, because jkt will now differ from the value associated with
the initial problem. For purposes of analyzing problems of this kind (announced future changes in
parameters) we will neglect the effects of the path of jkt on the equations of motion. Except under
extreme circumstances, this should not change the qualitative results of the analysis, and doing anything
else would require a very intricate analysis. This treatment is admittedly a bit inconsistent, since in
the case under consideration it is precisely the change in jkt that motivates the firm to start adjusting
its capital stock before the productivity change comes into effect; effectively, we are taking into account
the effect of jkt on the level of λ before period t+ n while neglecting its effects on λ’s dynamics during
this interval. C‘est la vie.
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t+n− 1 and t+n, λ cannot jump but T −1 does jump, which implies that � must jump
(so there is a predictable change in �).

Dynamics of investment are determined by dynamics of �, so the path of ι is: At t, a
discrete jump up; between t and t + n− 1, a gently rising path; between t + n− 1 and
t + n, an upward jump; and after t + n, a path that asymptotes downward toward the
steady state level of investment.
The steady-state effects on λ are of course determined by the same considerations as

apply to the unanticipated tax cut, so they depend on whether the tax change is a drop
in τ or an increase in ζ.

5 More Figures
Figures for a variety of other experiments have been constructed using the notebook.
Such figures are contained in the “Figures” subdirectory.
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Figure 1 Phase Diagrams
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Figure 2 Increase in productivity
Phase diagrams with saddle paths (dashed-black and continuous-red lines respectively pre and post the
productivity increase) and impulse response functions
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Figure 3 Corporate tax reduction
Phase diagrams with saddle paths (dashed-black and continuous-red lines respectively pre and post the
corporate tax reduction) and impulse response functions

15



k
Ç

pre k
Ç

post

kt

Ppre

Ppost

Λt

k
Ç

pre k
Ç

post

kt

1

ºt

t

kt

t

Λt

t

it

t

1

ºt

Figure 4 ITC increase
Phase diagrams with saddle paths (dashed-black and continuous-red lines respectively pre and post the
ITC increase) and impulse response functions
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