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This handout illustrates the logic of precautionary saving by assuming that individuals
face only a single, simple kind of uncertainty: A small risk of becoming permanently
unemployed. More realistic assumptions yield similar conclusions (after much more
work).1

1 The Microeconomic Consumer’s Problem
The aggregate wage Wt grows by a constant factor G every period, reflecting exogenous
labor productivity improvements:

Wt+1 = GWt. (1)

The consumer lives in a small open economy – there is a constant interest factor R.
Defining m as market resources (net worth plus current income), a as end-of-period
assets after all actions have been accomplished (specifically, after the consumption
decision), and b as bank balances before receipt of labor income, the dynamic budget
constraint (DBC) can be decomposed into the following elements:

at = mt − ct

bt+1 = Rat

mt+1 = bt+1 + `t+1Wt+1ξt+1

(2)

where ` measures the consumer’s labor productivity (‘endowment’) and ξ is a dummy
variable indicating the consumer’s employment state: Everyone is either employed (state
‘e’), in which case ξ = 1, or unemployed (state ‘u’), in which case ξ = 0, so that for
unemployed individuals labor income is zero.2

1The model simplifies many of the key results in Carroll (1992) and Carroll (1997) using a discrete-
time version of the elegant continuous-time model of Toche (2005). For a brief summary of the
precautionary saving literature, see Carroll and Kimball (2007); for a more rigorous treatment of the
theoretical issues, see Carroll (Forthcoming).

2We could allow for unemployment insurance by modifying the values of ξ associated with the two
states. The key conclusions would not change.



1.1 The Unemployed Consumer’s Problem
Once a person becomes unemployed, that person can never become employed again (i.e.
if ξt = 0 then ξt+1 = 0). Consumers have a CRRA felicity function3 u(•) = •1−ρ/(1−ρ),
and they discount future felicity geometrically by β per period.
The solution to the unemployed consumer’s optimization problem is4

cut =

1−

≡ÞÞÞR︷ ︸︸ ︷
R−1(Rβ)1/ρ


︸ ︷︷ ︸

≡κ

bt, (3)

where the u superscript signifies the consumer’s (un)employment status; κ is the
marginal propensity to consume for the perfect foresight consumer, which is strictly
below the MPC for the problem with uncertainty (Carroll and Kimball (1996)); and ÞÞÞR

is what Carroll (Forthcoming) calls the ‘return patience factor.’5
We now impose the ‘return impatience condition’ (RIC),(

(Rβ)1/ρ

R

)
︸ ︷︷ ︸

=ÞÞÞR

< 1
(4)

which deserves its name because it is the condition that guarantees that κ > 0 – the
consumer must not be so patient that, given the interest rate, a boost to resources fails
to boost spending.6 An alternative (equally correct) interpretation is that the condition
guarantees that the PDV of consumption for the unemployed consumer is not infinity.7

For many purposes (not least, the calibration of the model), it turns out to be useful
to alternatviely express impatience conditions like (4) in terms of the upper bound of
the range of time preference factors β̄ that satisfy the condition; solving (4) for β, we
designate this object

β̄RIC = Rρ−1 (5)

3‘Felicity’ refers explicitly to a one-period, or in a continuous-time model, an instantaneous utility
function.

4See PerfForesightCRRA for a derivation, noting that human wealth is zero for the unemployed
consumer.

5The Old English letter ÞÞÞ = (Rβ)1/ρ, which conveniently looks something like a combination of R, β,
and ρ, is used to designate the ‘absolute patience factor’ which determines whether consumption will rise
(ÞÞÞ > 1), stay the same (ÞÞÞ = 1), or fall (ÞÞÞ < 1) in the perfect foresight problem (PerfForesightCRRA).
Terms like this are all defined in Carroll (2020) and citations to that paper will henceforth be omitted
when new terms are introduced, on the understanding that the reader knows to see Carroll (2020) for
further definition and discussion.

6‘Pathologically patient’ consumers who do not satisfy this condition can be thought of as people
who would hoard any incremental resources in order to enable even more extra spending in the distant
future.

7For a perfect foresight consumer, PerfForesightCRRA shows that consumption grows by the factor
ÞÞÞ = (Rβ)1/ρ, so if we do not impose the RIC, consumption would ‘want’ to grow by a factor greater
than the factor R by which it is being discounted.
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and write the alternative version of the constraint as

β < β̄RIC. (6)

ÞÞÞR is the ‘return patience factor’ because it defines the patience factor ÞÞÞ relative to
the return factor R; correspondingly, we define the ‘return patience rate’ as lower-case

þr ≡ logÞÞÞR

≈ ÞÞÞR − 1

= −κ
(7)

and we say that a consumer is ‘return impatient’ if the RIC (4) holds (equivalent
conditions are þr < 0 and κ > 0).8

1.2 The Employed Consumer’s Problem
1.2.1 Unemployment Risk as a Mean Preserving Spread in Human Wealth

If a person who is employed in period t (ξt = 1) is still employed next period (ξt+1 = 1),
market resources will be

me
t+1 = (me

t − cet )R + Wt+1`t+1. (8)

But employed consumers face a constant risk 0 of becoming unemployed. It will be
convenient to define��0 ≡ 1−0 as the probability that a consumer does not become un-
employed. Whether the consumer is employed or not, the consumer’s labor productivity
` is well-defined:9 For convenience, ` is assumed to grow by a factor ��0−1 every period,

`t+1 = `t/��0, (9)

which means that for a consumer who remains employed, labor income will grow by
factor

Γ = G/��0 (10)

so that the expected labor income growth factor for employed consumers is the same G
as in the perfect foresight case:

Et[Wt+1`t+1ξt+1] =

(
`tGWt

��0

)
(0× 0 +��0× 1)(

Et[Wt+1`t+1ξt+1]

Wt`t

)
= G,

which is the reason for (9)’s assumption about the growth of individual labor productiv-
ity: It implies that an increase in 0 is a pure increase in uncertainty with no effect on the

8Throughout, we will casually treat logs of factors like ÞÞÞR as equivalent to the level minus 1; that
is, we will treat expressions like those in (7) as interchangeable, which is an appropriate approximation
so long as the factor is ‘close’ to 1.

9‘Labor productivity’ is purely hypothetical for a consumer who is unemployed; but defining it even
for unemployed consumers simplifies notation and some later analysis.
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PDV of expected labor income (‘human wealth’); an increase in 0 therefore constitutes
a ‘mean-preserving spread’ in human wealth.

1.2.2 First Order Optimality Condition

The same solution methods used in PerfForesightCRRA can be applied here too (take
the first order condition with respect to c, use the Envelope theorem); the only difference
is the need to keep the expectations operator in place. Using • as a placeholder for ‘e’
or ‘u,’ the usual steps lead to the standard consumption Euler equation:

u′(cet ) = Rβ Et
[
u′(c•t+1)

]
1 = Rβ Et

[(
c•t+1

cet

)−ρ]
.

(11)

Defining nonbold variables as the bold equivalent divided by the level of permanent
labor income for an employed consumer, e.g. cet = cet/(Wt`t), we can rewrite the con-
sumption Euler equation as

1 = Rβ Et

[(
c•t+1Wt+1`t+1

cetWt`t

)−ρ]

= Rβ Et

[(
c•t+1

cet
Γ

)−ρ]

= Γ−ρRβ Et

[(
c•t+1

cet

)−ρ]

= Γ−ρRβ

{
(1− 0)

(
cet+1

cet

)−ρ
+ 0

(
cut+1

cet

)−ρ}
.

(12)

1.2.3 Analysis and Intuition of Consumption Growth

It will be useful now to define a ‘growth patience factor’ (terminology justified below):

ÞÞÞΓ =

(
(Rβ)1/ρ

Γ

)
, (13)

which is the factor by which ce would grow in the perfect foresight version of the model
with permanent income growth factor Γ (again see PerfForesightCRRA). Using this,
(12) can be written as10

10This is where the perfect foresight assumption is important; without it (15) would be

1 = ÞÞÞρΓ Et

[(
cet+1

cet

)−ρ{
1 + 0

[(
cut+1

cet+1

)−ρ
− 1

]}]
(14)

and we would be unable to proceed to the step from (15) to (15).
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1 = ÞÞÞρΓ

(
cet+1

cet

)−ρ{
(1− 0) + 0

[(
cut+1

cet

)(
cet
cet+1

)]−ρ}

= ÞÞÞρΓ

(
cet+1

cet

)−ρ{
1 + 0

[(
cut+1

cet+1

)−ρ
− 1

]}
(
cet+1

cet

)ρ
= ÞÞÞρΓ

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}
(
cet+1

cet

)
= ÞÞÞΓ

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}1/ρ

.

An interesting thought: Imagine the creation of an insurance system in which beginCDC

the consumer pledges their next period me
t+1 to the insurance company in

exchange for receiving a lognormally distributed m̂e
t+1 with an amount of variation

that is (according to some metric that deserves further thought) equivalent,
log ĉet+1 ∼ N (Et[cet+1] − σ2

ĉt+1
/2, σ2

ĉt+1
/2). In that case we would be able to

compute analytically the value of Et[(cet+1)−ρ] in (12) and might be able to proceed with
solving a version of the model with transitory as well as permanent shocks.

Second thoughts on this: This approach misses the concavity of the consumption
function, which may or may not matter much depending on the magnitude of the shocks.
If it does matter, it should be possible for the insurance company to provide a contract in
which the amount of consumption provided in the contract is, say, Et[cet+1](η)• where η is
lognormal and • gives the best approximation to the slope of the consumption function
around Et[cet+1]. How many people would buy the contract would depend on the profit
margin required by the insurance company, as well as consumption concavity. endCDC

Now define ∇t+1 ≡
(
cet+1−cut+1

cut+1

)
(which is the proportion by which consumption would

be greater next period for an employed than for an unemployed person), and define an
‘excess prudence’ factor

ω =

(
ρ− 1

2

)
. (15)

Appendix A shows that, with some approximations, we can rewrite (15) as(
cet+1

cet

)
≈ (1 + 0(1 + ω∇t+1)∇t+1)ÞÞÞΓ (16)

which can be simplified in the logarithmic utility case (where ω = 0) to(
cet+1

cet

)
≈ (1 + 0∇t+1)ÞÞÞΓ. (17)

Now since consumption if employed cet+1 is surely greater than consumption if unem-
ployed cut+1, ∇t+1 is certainly a positive number. But since ÞÞÞΓ is the value that cet+1/c

e
t

would exhibit in a perfect foresight model, this equation tells us that uncertainty boosts
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consumption growth11 – in the logarithmic case, consumption growth is augmented by an
amount proportional to the probability of becoming unemployed 0 multiplied by the size
of the ‘consumption risk’ (the amount by which consumption would fall if unemployment
occurs).

We noted above that for any given me
t , an increase in uncertainty constitutes a mean-

preserving spread in human wealth; thus the ‘human wealth effect’ of an increase in
0 would be zero for a consumer without a precautionary motive. In this small-open-
economy model a change in 0 also has no effect on the interest rate r, and so none of the
conventional determinants of consumption in the perfect foresight model (the income,
substitution, and human wealth effects) is affected by a change in uncertainty. The
increase in consumption growth from an increase in 0 in (16) or (17) therefore must
be entirely the result of the precautionary motive. Furthermore, because a profile with
faster consumption growth can only exhibit the same PDV if that faster growth starts
from a lower initial consumption level, we know that for any given initial value of me,
the introduction of a risk of becoming unemployed 0 induces a (precautionary) decline
in consumption (and corresponding increase in saving).

Furthermore, under the (compelling) assumption that ρ > 1, (16) implies that a con-
sumer with a higher degree of prudence (larger ρ and therefore larger ω) will anticipate
a greater increment to consumption growth as a consequence of the introduction of
uncertainty. This reflects the greater precautionary saving motive induced by a higher
degree of prudence.

1.2.4 Finding the Target

The target level ofme (if one exists) will be the point of intersection between the ∆ce = 0
and ∆me = 0 loci.

The ∆ce = 0 locus can be characterized by substituting cet+1 = cet ≡ ce:

1 =

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}
ÞÞÞρΓ

ÞÞÞ−ρΓ = (1− 0) + 0
(
cet
cut+1

)ρ
(
ÞÞÞ−ρΓ − 1 + 0

0

)1/ρ

︸ ︷︷ ︸
≡Π

=

(
cet
cut+1

)
 ≡$︷ ︸︸ ︷
0−1(ÞÞÞ−ρΓ − 1) +1

1/ρ

︸ ︷︷ ︸
Π=(1+$)1/ρ

=

(
cet
cut+1

)

11At least, for continuing-employed consumers.
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which boils down to

cet = cut+1Π. (18)

The importance of the linearity of the consumption function of the unemployed
consumer now becomes evident: It means that the RHS of (18) is linear in cet :

cet =

cut+1︷ ︸︸ ︷
(me

t − cet )RκΠ.
(19)

beginCDC
Without the linearity assumption, we would have

ce(me
t ) = cu((me

t − ce(me
t ))R)Π, (20)

and even if we had a solution for cu, this equation defines the consumption function
for the employed consumer only implicitly; this explains why the linearity of the con-
sumption function for the unemployed consumer is essential for the tractability of the
solution. endCDC

We know that me
t − cet > 0 because a consumer in these circumstances (facing possible

perpetual unemployment) will never borrow (see below for a full discussion of this point).
Since the RIC imposes κ > 0, (19) tells us that steady-state consumption (if it exists)12
is a positive finite number so long as Π > 0.13

1.2.5 Upper Bounds for β, Given Other Parameters

As with the RIC, it may be useful to rewrite this as defining an upper bound to the
permissible time preference rates:

β < β̄TBS =

(
Γρ

R(1− 0)

)
. (22)

In the limit as 0 approaches zero, (21) reduces to a requirement that the growth
patience factor is less than one,

ÞÞÞΓ < 1, (23)

which, as in PerfForesightCRRA, we call a ‘growth impatience condition’ (GIC) by
analogy to the ‘return impatience condition’ (4) imposed earlier. PerfForesightCRRA
shows that the limit of (21) as 0 ↓ 0, G > ÞÞÞ, ensures that a consumer facing no
uncertainty is sufficiently impatient that his wealth-to-permanent-income ratio will fall

12Under some parameter values, the model has solutions under which the consumer always spends
less than the amount that would leave me constant, and so accumulates forever.

13This will hold true iff the numerator on the LHS of (18) is a positive finite number; for this, we
we need the condition:

Γρ(Rβ)−1 − (1− 0) > 0

Γρ > (Rβ(1− 0))

1 >

(
(Rβ(1− 0))1/ρ

Γ

)
= ÞÞÞΓ(1− 0)1/ρ.

(21)
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over time. We label the weaker condition (21) the ‘GIC-TBS’ (the version of the GIC
required for a solution to exist in the Tractable Buffer Stock model). It will always hold
if the plain-vanilla GICG holds because 0 ≥ 0. Thus, a consumer who, in the absence of
uncertainty, would satisfy both the RIC and the GICG, will have a positive finite target
level of wealth when uncertainty is introduced.14
When it is useful to distinguish the version of the GIC that applies in the model with

income growth of G from the corresponding condition when growth is Γ we will label
the two conditions GICΓ and GICG, and the corresponding bounds on β are

β < β̄GICΓ
= Rρ−1Γρ

β < β̄GICG
= Rρ−1Gρ (24)

Using γ ≡ log Γ, we similarly define the corresponding ‘growth impatience rate’:

þγ ≡ logÞÞÞΓ ≈ ρ−1(r − ϑ)− γ (25)

so that the growth impatience condition (21) (the GIC-TBS) can also be written (ap-
proximately) as

þγ − ρ−10 < 0 (26)

or, since γ ≈ g + 0,

ρ−1(r − ϑ− 0)− (g + 0) < 0. (27)

1.2.6 Why Increased Unemployment Risk Increases Effective Growth Impatience

Equation (27) becomes easier to satisfy (in the sense of requiring a lower ϑ) as 0
increases, since in both places where 0 appears on the LHS it is with a negative
coefficient.

The reason the two appearances of 0 have not been combined in (27) is that the
separate terms reflect two logically distinct effects. The first appearance, where 0 is
premultiplied by −ρ−1, can be interpreted as capturing the sense in which an increase
in 0 is like an increase in the discounting of the future (the coefficient on 0 is the same
as that on ϑ). This downweighting of the future occurs precisely because that future
might not occur (if the consumer becomes unemployed).15 The effect is much like the
increase in discounting that occurs when a positive probability of death is introduced in
consumption problems, cf. Blanchard (1985).

The second, separate, reason 0 weakens growth impatience (that is, the GIC-TBS
holds in more circumstances than the GICG) is that we adjust labor productivity growth
so that γ = g + 0 in order to maintain constant human wealth for different values of 0
(eq. (9)). For higher 0, permanent income growth is greater conditional on remaining
employed; the continuously-employed consumer is effectively more ‘impatient’ in the
relevant sense of desiring consumption growth slower than income growth.

14See appendix B for a proof that the GICΓ condition is both necessary and sufficient for the existence
of a target level of wealth.

15A different future – with the consumer unemployed – does occur; but here we are effectively
analyzing the behavior of a consumer contingent on that consumer remaining employed.
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This is essentially a mechanical result, which reflects our model’s design for the
purpose of examining thought experiments that manipulate the degree of uncertainty
while leaving the perfect-foresight level of human wealth constant.

Note that although 0 is our measure of uncertainty, neither of these effects of 0 is in
any meaningful sense directly a ‘precautionary’ effect; instead, they both reflect effects
of 0 on the relevant degree of growth impatience in the GIC-TBS condition.

1.2.7 The Target Level of me

Appendix B demonstrates that the RIC and the GIC-TBS are necessary conditions for
the existence of a target value of market resources m̌e, and that the GICΓ is sufficient.
Appendix C solves for an explicit formula for that target.

Briefly, this is accomplished as follows. We can obtain the ∆ce = 0 locus by substi-
tuting cet+1 = cet = ce into equation (19):

ce = meRκΠ− ceRκΠ

ce =

(
RκΠ

1 +RκΠ

)
me.

(28)

Now we need to use a normalized version of the DBC (equation (8)),

me
t+1 = (me

t − cet )R+ 1 (29)

to derive the me
t+1 = me

t = me locus (also referred to as the ∆me = 0 locus):

R−1(me − 1) = me − ce

ce = me −R−1(me − 1)

= (1−R−1)me +R−1.

(30)

The steady-state levels of me and ce are the values of these two variables at which
both (30) and (28) hold. This is just a set of two linear equations and two unknowns,
and with a bit of algebra can be solved explicitly.

In the special case of logarithmic utility (ρ = 1), the appendix shows that (under some
strong assumptions) an approximation to target market resources will be given by

m̌e ≈ 1 +

(
1

(γ − r) + ϑ(1 + (γ + ϑ− r)/0)

)
(31)

and that the GIC and the RIC guarantee that the denominator of the fraction is a
positive number.

This expression encapsulates several of the key intuitions of the model. The ‘human
wealth effect’ of growth (cf. Summers (1981)) is captured by the first γ term in the
denominator; clearly, for any calibration for which the denominator is a positive number,
increasing γ will increase the size of the denominator and therefore reduce the target level
of wealth. The human wealth effect of interest rates is correspondingly captured by the
−r term. An increase in the future discounting rate, ϑ, will also increase the size of the
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denominator and therefore reduce target wealth. Finally, a reduction in unemployment
risk will boost (γ + ϑ− r)/0 and therefore reduce target wealth.16

The assumption of log utility is restrictive, and probably does not capture sufficient
aversion to consumption fluctuations. Fortunately, another special case helps to illumi-
nate the effect of higher levels of prudence. The appendix shows that, in the special case
where ϑ = r, the target level of wealth will be approximable by

m̌ ≈ 1 +

(
1

(γ − r) + ϑ(1 + (γ/0)(1− (γ/0)ω))

)
(32)

which is like (31) (with ϑ − r = 0) but with the addition of the final term involving
ω which measures the amount by which prudence exceeds the logarithmic benchmark.
An increase in ω reduces the denominator of (32) and thereby boosts the target level
of wealth: Exactly what would be expected from an increase in the intensity of the
precautionary motive.

Note that the different effects interact with each other, in the sense that the strength of,
say, the human wealth effect will vary depending on the values of the other parameters.
The ways in which these interactions make intuitive sense will repay deep reflection.
(Hint: How much I care about the future governs the power that future events have in
determining my targets; use the formula to think about why).

1.2.8 Conditions Required for a Perfect Foresight Solution; Existence of Target me

Interestingly, the limit of the buffer stock model as 0 ↓ 0 is not the perfect foresight
solution obtained when 0 is exactly equal to zero.

The handout PerfForesightCRRA shows that in the perfect foresight context, it is
necessary to impose the Finite Human Wealth Condition R > G (henceforth, FHWCG)
to obtain a sensible solution.17 But if the FHWCG holds, the GICG is strictly stronger
than the RIC, because the combination ÞÞÞ/G < 1 and R > G obviously implies ÞÞÞ/R < 1.
If we substitute Γ for G, we can define the corresponding version of the condition in the
case where growth is Γ: the FHWCΓ.
It turns out that in the buffer stock model, we can relax the requirement that human

wealth is finite.
We pointed out above that (21), which is necessary for the existence of a steady-

state level of consumption, implies that the GICΓ holds in the case being considered
here, the limit as 0 ↓ 0. The interesting question is therefore what happens when the
FHWCG does not hold (that is G > R).
Given that the GICG holds, if the FHWCG does not hold the RIC may or may not

hold: G > R implies that ÞÞÞ/R > ÞÞÞ/G but 1 > ÞÞÞ/G could be consistent with ÞÞÞ/R being
greater or less than one. But recall that our assumption is that the unemployed consumer
is assumed to behave according to the perfect foresight model with human wealth equal

16(γ + ϑ− r) > 0 is guaranteed by (27) under log utility (ρ = 1).
17The appendix to PerfForesightCRRA shows that if the FHWCG fails, the limit of the perfect

foresight model is c(m) =∞ ∀ m, which is not a useful or plausible solution.
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Figure 1 Phase Diagram
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to zero. We must therefore impose the RIC in order to obtain a nondegenerate solution.
We therefore impose the RIC.

For any finite horizon, human wealth is finite, and there is a positive probability that
income will be zero over the remainder of the horizon. This puts a strict bound on the
extent to which consumers are willing to rely for current consumption upon future income
that is unbounded in expectation (as the horizon extends) but potentially bounded
in practice. In effect, the precautionary motive introduces a self-imposed borrowing
constraint that prevents the (arbitrarily large) amount of future income from being
something the consumer is willing to borrow against.

The consequence is that the limiting model (as 0 ↓ 0) exhibits a solution with a
unique finite target me so long as (21) holds, even if human wealth is infinite; in this
case the ∆me = 0 locus is downward sloping (because 1−R−1 < 1; see (30)) while the
∆ce = 0 locus is upward sloping (as guaranteed by (21)). Thus, a target me will exist.

1.2.9 The Phase Diagram

Figure 1 presents the phase diagram.
The ∆me = 0 locus, given in (30), indicates, for a given level of me, how much

consumption ce would be exactly the right amount to leave me unchanged. Call this the
‘permanently sustainable consumption locus,’ or for short ‘sustainable consumption.’18
For any given me, consuming an amount less than the ‘sustainable’ level will cause

18Some authors refer to ∆me = 0 as giving the level of ‘permanent income,’ but this definition differs
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Figure 2 The Consumption Function
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wealth to rise (and conversely for points above ∆me = 0). This provides the logic for
the horizontal arrows of motion in the diagram: Above the sustainable consumption
locus they point left, and below they point right.

The intuition for the ∆ce = 0 locus (which comes from (28)) is a bit subtler. Take
a point on the ∆ce = 0 locus, and consider how things would change if me were a bit
higher at the same ce. Recall that the growth rate of consumption consistent with the
Euler equation (15) depends on the amount by which consumption will fall if the bad
state is realized, ∇t+1 = cet+1/c

u
t+1. But cut+1 = κR(me

t − cet ) so at the same cet but a
greater me

t , cut+1 will be larger. If cet+1 were to remain unchanged, then with the larger
cut+1 the ratio ∇t+1 = cet+1/c

u
t+1 − 1 would be smaller.

The consequences of this are easiest to see in the logarithmic case whose consumption
growth equation is derived in (17), which tells us that cet+1 ≈ cet (1 + 0∇t+1)ÞÞÞΓ, which
directly implies that the lower ∇t+1 will yield a lower cet+1. That is, for any point to the
right of the ∆cet+1 = 0 locus, the growth rate of consumption will be lower than at the
corresonding point on the locus. Since on the locus, growth was zero, this means that
to the right of the locus, ce is declining (hence the down arrow in the phase diagram).
Reciprocally, for any point to the left of ∆cet+1 = 0, the Euler equation implies that
consumption will rise.

from Friedman (1957)’s and is problematic because it could be confused with ‘permanent labor income’
Wt`t.
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1.2.10 The Consumption Function

The next figure shows the optimal consumption function c(m) for an employed consumer
(dropping the e superscript to reduce clutter). This is actually just the stable arm in
the phase diagram. (Think about why). Also plotted are the 45 degree line along which
c = me

t as well as the function

c̄(m) = (m− 1 + h)κ (33)

where

h =

(
1

1−G/R

)
(34)

is the level of (normalized) human wealth. c̄(m) is the solution to a perfect foresight
problem in which income grows by the factor G; it is depicted in order to introduce
a final fact: As wealth approaches infinity, the solution to the problem with uncertain
labor income approaches arbitrarily close to the perfect foresight solution.19
Note that c(m) is concave.20 That is, the marginal propensity to consume κκκ(m) ≡

dc(m)/dm is higher at low levels of m. This is because of the increase in the intensity
of the precautionary motive as resources m decline; the consequences of becoming
unemployed with little wealth are very painful. The MPC is high at low levels of m
because at low levels ofm the relaxation in the intensity of the precautionary motive with
each extra bit of m is quite large (Kimball (1990)). This diminution in the precautionary
motive translates into an increase in consumption; for m-poor consumers even a modest
increase in m can give a substantial boost to c.
This point is clearest as m approaches zero. Note that the consumption function

always remains below the 45 degree line. This is because if the consumer were to spend
all his resources in period t, ct = mt, then if he became unemployed next period he
would have mu

t+1 = (mt − ct)R = 0 which would induce cut+1 = κmu
t+1 = 0, yielding

negative infinite utility. Thus the consumer will never spend all of his resources - he will
always leave at least a little bit for next period in case of disaster (unemployment).21

1.2.11 Expected Consumption Growth Is Downward Sloping in me

The next figure (‘the growth diagram’) illustrates some of the same points in a different
way. It depicts the growth rate of consumption as a function of me

t . Since 0 ≥ 0, the

19This limiting result requires that we impose the FHWCΓ(Γ < R), because the perfect foresight
consumption function is not defined if Γ ≥ R. Informally, the proof is as follows. Define c ≡ (m−1)κ =
cu(m) as the consumption function for the unemployed consumer who will receive no future labor
income. Thenc(m) < c(m) ≤ c̄(m), and so 1 < c(m)/c(m) < c̄(m)/c(m). In the limit as m ↑ ∞,
however, human wealth accounts for an arbitrarily small proportion κh/κ(h+m− 1) of consumption,
so limm↑∞ ce(m)/cu(m) = 1 so the precautionary motive captured by ∇ vanishes.

20Carroll and Kimball (1996) prove that the consumption function must be concave for almost all
commonly-used assumptions about risk and utility functions.

21This is an implication not just of the CRRA utility function used here but of the general class of
continuously differentiable utility functions that satisfy the usual Inada condition u′(0) =∞.
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Figure 3 Income and Consumption Growth

⟵ Δ log ct+1
e ≈ þ + ℧(1+ω∇t+1)∇t+1

{Precautionary Increment: ℧(1+ω∇t+1)∇t+1

̌e

e

γ

ρ-1(r-ϑ)≈þ

Growth

GICΓ for this model implies:

γ > ρ−1(r − ϑ), (35)

a condition that can be visually verified for our benchmark calibration in figure 3. Now
multiply both sides of (15) by Γ, obtaining(

cet+1

cet

)
= (Rβ)1/ρ

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}1/ρ

∆ log cet+1 ≈ ρ−1(r − ϑ) + 0∇t+1,

(36)

where the last line uses the same (dubious) approximations used to obtain (16).22
Thus consumption growth is equal to what it would be in the absence of uncertainty,

plus a precautionary term. Furthermore, the precautionary contribution will become
arbitrarily large as mt ↓ 0 because cut+1 = mu

t+1κ = (mt − c(mt))Rκ approaches zero as
mt ↓ 0. Sure enough, figure 3 shows that as me

t gets low, expected consumption growth
gets very large.

Next, note that the point where the consumption growth locus meets the income
growth line is labelled m̌. This is because the place where consumption growth is equal
to income growth is at the target value of me.

22We have also assumed that (∇t+1)2 is ‘small’.

14



Figure 4 Effect of An Increase In r
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1.2.12 Summing Up the Intuition

We are finally in position to get an intuitive understanding of how the model works, and
why there is a target wealth ratio. On the one hand, consumers are growth-impatient.
This prevents their wealth-to-income ratio from heading off to infinity. On the other
hand, consumers have a precautionary motive that intensifies more and more as the level
of wealth gets lower and lower. At some point the precautionary motive gets strong
enough to counterbalance impatience. The point where impatience matches prudence
defines the target wealth-to-income ratio.

Now consider the results of increasing the interest rate to r̀ > r, depicted in figure 4.
Obviously the perfect foresight consumption growth locus will shift up, to ρ−1(̀r − ϑ),
inducing a corresponding increase in the expected consumption growth locus. But we
have not changed the expected growth rate of income. It is clear from the figure,
therefore, that the new target level of cash-on-hand `̌me will be greater than the original
target. That is, an increase in the interest rate increases the target level of wealth, as
would be expected on intuitive grounds.

The next exercise is an increase in the risk of unemployment 0. The principal effect
we are interested in is the upward shift in the expected consumption growth locus to
∆c̀t+1. If the household starts at the original target level of resources m̀, the size of the
upward shift at that point is captured by the arrow orginating at {m̌, γ}.
In the absence of other consequences of the rise in 0, the effect on the target level

of m would be unambiguously positive. However, recall our adjustment to the growth
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Figure 5 Effect of an Increase in 0
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rate conditional upon employment, (9); this induces the shift in the income growth
locus to γ̀ which has an offsetting effect on the target m ratio. Under our benchmark
parameter values, the target value of m is higher than before the increase in risk even
after accounting for the effect of higher γ, but in principle it is possible for the γ effect
to dominate the direct effect. Note, however, that even if the target value of m is lower,
it is possible that the saving rate will be higher; this is possible because the faster rate of
γ makes a given saving rate translate into a lower ratio of wealth to income. In any case,
the most useful calibrations of the model are those for which an increase in uncertainty
results in either an increase in the saving rate or an increase in the target ratio of
resources to permanent income. This is partly because our intent is to use the model to
illustate the general features of precautionary behavior, including the qualitative effects
of an increase in the magnitude of transitory shocks, which unambiguously increase both
target m and saving rates.

1.2.13 Death to the Log-Linearized Consumption Euler Equation!

Figures 3 and 4 show that, so long as consumers are impatient, the steady state growth
rate of consumption will be equal to the steady-state growth rate of income,

∆ log cet+1 = γ. (37)

Yet the approximate Euler equation for consumption growth, (36), does not contain
any term explicitly involving income growth; in the logarithmic utility case, for example,
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the expression is

∆ log cet+1 ≈ ρ−1(r − ϑ) + 0∇t+1. (38)

How can we reconcile these two expressions for consumption growth? Only by realizing
that the size of the precautionary term 0∇t+1 is endogenous: It depends on γ. Indeed,
we can solve (37) and (38) to determine that in steady-state we must have

0∇̌ ≈ γ − ρ−1(r − ϑ). (39)

We can use this equation to understand the relationship between parameters and
steady-state levels of wealth, by noting that ∇t+1(me

t ) is a downward-sloping function
of me

t (see figure 3 again). This is because at low levels of current wealth, much of the
spending of employed consumers is financed by their current income. If they lose that
income, they will have no choice but to cut consumption drastically; this is reflected in
a large value of ∇t+1.

For example, an increase in the growth rate of income implies that the RHS of equation
(39) increases. The new target level of m̌ must be lower, because lower wealth induces
greater consumption risk and a corresponding increase in the LHS of (39). This is
how the human wealth effect works in this framework: Consumers who anticipate faster
income growth will hold less market wealth.

The fact that consumption growth equals income growth in the steady-state poses
major problems for empirical attempts to estimate the Euler equation. To see why,
suppose we had a collection of countries indexed by i, identical in all respects except
that they have different interest rates ri. Then in the spirit of Hall (1988), one might be
tempted to estimate an equation:

∆ log ci = η0 + η1ri + εi, (40)

and to interpret the coefficient estimate on ri as an indication of the value of ρ−1.
But suppose that all of these countries contained impatient consumers and were in

their steady-states where ∆ log ci = γi. Suppose further that all countries had the same
steady-state income growth rate and unemployment rate.23 Then the regression equation
would return the estimates

η0 = γ

η1 = 0.
(41)

The econometric problem here is that there is an omitted variable from the regression
specification, the 0∇ term, which is (perfectly) correlated with the included variable ri.
Thus, Euler equation estimation cannot be expected to return an unbiased estimate of
ρ−1. For much more on this problem, see Carroll (2001). For empirical evidence that
the problem is important in macroeconomic practice, see Parker and Preston (2005).

23The key point holds even if countries have different growth rates, but is easiest to understand if
growth rates are identical.
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1.2.14 A Final Experiment

We now consider a final experiment: A decrease in the time preference rate. To
reduce clutter, we drop the ∆cet+1 = 0 locus from the phase diagram from Figure 1,
and everywhere drop e the superscripts. (In exam questions, a figure like this might
be referred to as the ‘simplified consumption phase diagram’ or just ‘the consumption
diagram’).

Figure 6 depicts the effect on the employed consumer’s spending by showing each
successive point in time as a dot. Starting at time 0 from the steady-state level of
consumption, the decrease in the future discounting rate (an increase in patience) causes
an instantaneous drop in the level of consumption. Starting from this diminished base,
consumption growth is subsequently faster than before the drop in ϑ.24

Eventually consumption approaches its new, higher equilibrium ratio to permanent
income at a new, higher level of equilibrium me. This higher level of consumption is
financed in the long run by the higher interest income earned on the higher level of
wealth.

Note again, however, that equilibrium steady-state consumption growth is still equal
to the growth rate of income (this follows from the fact that there is a steady-state level
for the ratio of consumption to income, c). This means that the higher level of wealth
in equilibrium ends up being precisely enough to reduce the precautionary term by an
amount that exactly offsets the fact that the −ρ−1ϑ term in the Euler equation is now
smaller.

The final figures depict the time paths of consumption, market wealth, and the
marginal propensity to consume κκκ(m) following the decline in ϑ. These are implicit
in the phase diagram analysis, but the dots in these two new diagrams are spread out
evenly over time to give a sense of the time scale over which the model adjusts toward
the steady state.

2 A Macroeconomic Interpretation
Loosely following Carroll and Jeanne (2009) (with some simplifications), this section
extends the model to analyze macroeconomic dynamics in a small open economy with
a large number of individuals, where the population statistics reflect the fulfillment
of individual consumers’ ex ante expectations; for example, exactly proportion 0 of
households who are employed in period t become ‘unemployed’ before t+ 1, so that the
aggregate labor supply of the ‘active’ (still employed) members of a generation evolves
according to

NNN t+1,t = ��0NNN t,t, (42)

where the first subscript denotes the date being examined and the second denotes the
period of birth of the generation being examined.

24We could also analyze the effects on growth, but the results would be essentially the same as in
preceding figure analyzing the effect of an increase the interest rate.
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Figure 6 Effect of Lower ϑ On Consumption Function
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Figure 7 Path of ce Before and After ϑ Decline
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Figure 8 Path of me Before and After ϑ Decline
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Figure 9 Marginal Propensity to Consume κt Before and After ϑ Decline
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We make strong assumptions that permit straightforward aggregation. The first such
assumption is that newly unemployed households immediately migrate out of the country
(think of British retirees moving to southern Spain).25 This means that macroeconomic
variables will reflect only the circumstances of employed consumers, rather than a blend
of the employed and the unemployed.

Each person is part of a single ‘generation’ of households born at the same time,
and every new generation is larger by the factor Ξ than the newborn generation in the
previous period:

NNN t+1,t+1 = ΞNNN t,t. (43)

We assume that total production by the (surviving) members of a generation grows
by the factor G every period. If total production is to grow despite a shrinking number
of surviving members of the generation, production per active capita must grow by G/��0
as per (9).

Consider the economy in some period 0 in which the size of the newborn population
and the wage rate have been normalized to NNN0,0 = W0 = 1. If the economy has existed
for −τ periods (where τ is a negative number, indicating that the economy was created
before period 0), the ratio of the total population to the population of newborns will be

1 + (��0/Ξ) + (��0/Ξ)2 + ...+ (��0/Ξ)−τ =

(
1− (��0/Ξ)−τ+1

1− (��0/Ξ)

)
(44)

whose limit is a finite number so long as ��0/Ξ < 1, which we require.
Relative to the labor income of period 0’s newborn cohort (NNN0,0W0 = 1), the total

labor income in period 0 of the generation born in period −1 is Ξ−1; the sum of the
incomes of all of the two-period-old individuals is Ξ−2, and so on; total labor income for
all generations in the economy in period 0 is

1 + Ξ−1 + Ξ−2 + ...+ Ξτ =

(
1− (Ξ−1)−τ+1

1− Ξ−1

)
, (45)

which is finite so long as either population growth is positive Ξ > 1 (which we will
assume) or the economy has existed for a finite period of time (τ > −∞). In either case,
the proportion of aggregate income accounted for by a generation born at any specific
moment declines toward zero as time passes (old generations never die, they just fade
away).

In the balanced growth equilibrium, the growth factor for aggregate population will
therefore be Ξ and output per capita will increase by G per period. Total labor income
therefore grows by ΞG.

25The qualitative story is not changed if the unemployed stay at home and live off their savings; since
they have a simple linear decision rule (they spend a constant proportion of their resources), accounting
for their behavior is straightforward but complicates the exposition without adding much substance.
See Carroll and Jeanne (2009) for a model that incorporates a stay-at-home unemployed population.
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2.1 Stakes
We now examine this model under two assumptions about the initial ‘stake’ of newborns
in the economy. (We use ‘stake’ to designate a transfer received by newborns). This
is explicitly not an inheritance, as we have assumed that individuals have no bequest
motive and newborns are unrelated to anyone in the existing population. Our motivation
is to make the model more tractable, rather than to represent an important feature of
the real world; we later perform simulations designed to show that the characteristics
of the model with no ‘stake’ are qualitatively and quantitatively similar to those of the
more tractable model with the ‘stake’ that makes the model tractable.

2.1.1 A ‘Stake’ That Yields a Representative Agent

We first consider a version of the model in which an exogenous redistribution program
guarantees that the behavior of employed households can be understood by analyzing
the actions of a “representative employed agent.”

If a benevolent source outside the economy were to provide every newborn with an
initial transfer upon birth of size b̌, then the newborn’s total monetary resources would
be

me
t,t = b̌ + 1

= m̌.

Thus, per-capita market resources for members of the newborn generation would be
exactly equal to the target level of market resources for a person anticipating the future
path of labor income that the members of the newborn generation actually anticipate
(which is the same as the future path anticipated by all other generations as well).

If such a transfer policy had been in place forever, the economy at every point in time
would consist of employed households whose consumption had been equal to its steady-
state value ce for their whole lives. That is, every individual agent in this economy
would be identical in their ratio of consumption, market resources, etc. to permanent
labor income. The behavior of any individual would therefore be fully captured by the
behavior of a representative employed agent.26

The foregoing scenario assumed that the ‘stake’ is provided by a mysterious ‘benev-
olent source outside the economy.’ Fortunately, there is an easy way to eliminate this
problematic assumption: Assume that the stakes are financed by a wage tax.

The size of the required tax rate is calculated as follows. The total size of the resources
transferred to the newborn generation must be

b̂et,t = b̂NNN t,tŴt (46)

26The level of permanent labor income will differ for different households, depending on their age
and accumulated wage seniority; the circumstances of individuals are identical only after their problem
has been normalized by their varying levels of permanent labor income.
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where
Ŵt = (1− τ)︸ ︷︷ ︸

≡�τ

Wt (47)

is the after-tax wage rate for the economy as a whole (and b̂ is the steady state target
ratio of bank balances to after-tax wages).

From (45), the ratio of total aggregate labor income to the labor income of the newborn
generation is (

1

1− Ξ−1

)
(48)

so the aggregate wage tax rate required to finance a ‘stake’ of size b̂ for newborns is
given by

b̂ =

(
τ

1− Ξ−1

)
τ = (1− Ξ−1)b̂.

(49)

Note, however, that in an economy where this tax has existed forever, the consequence
of the tax is effectively just a permanent reduction in after-tax labor income by propor-
tion �τ , compared to its value in the absence of the tax. Given the homotheticity of
the model, a permanent rescaling by a constant factor leaves the scaled version of the
individual’s problem (and its solution) unchanged. Thus we can conclude not only that
a representative agent exists in this economy, but that the steady-state characteristics
of the representative agent’s problem are identical (in ratio form) to the characteristics
of the unrescaled individual’s problem; that is, ĉ(m) = ce(m), b̂ = b̌, and so on.

Matters are not much more complicated outside the balanced growth steady state,
so long as we assume that the government always transfers the amount b̂ to newborn
households, financed by the tax τ derived above. Consider, for example, an economy that
was in steady-state equilibrium leading up to period t, and at the beginning of t there is
a sudden realization that future growth rates will be higher than those anticipated and
experienced in the past: G′ > G after t. Since expected growth rates affect b̌, the tax
rate must be immediately and permanently changed so that the generations born after
t− 1 receive a ‘stake’ of the proper new size. This change in τ has two consequences for
the generations that survive from periods prior to t. Under the old tax rate, they would
have experienced bet = bt/�τWt = b̌; the change in expectations has no effect on bt or Wt

but changes the tax rate to τ̀ . Thus these households will have an actual resource ratio
that differs from its new target value, bet 6=

`̌b, both because the after-tax income scaling
factor has changed and because the target ratio has changed from b̌ to `̌b.
However, if we started out in steady-state, the ratio problem of every member of

the continuing-employed population is identical to that of every other such household
(though, again, their masses differ depending on age, etc); as a result, the dynamics of
the economy are fully captured by keeping track of the relative weights in the economy of
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Figure 10 Aggregate c in PE/SOE Economy Before and After ϑ Decline
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the (gradually diminishing) ‘representative shocked agent’ and the (gradually increasing)
‘representative new agent’ whose behavior is locked at its steady-state value.27
Figure 10 illustrates the dynamics in this economy using an experiment identical to

one explored above for the individual’s problem: In period 0 there is a one-off decline in
the future discounting rate (assuming the economy was in steady state before period 0).
In the previous model, each individual consumer’s consumption function shifted down,
and consumption experienced a discrete jump downward, because the agent became
more impatient. Here, there is a modest further effect: With more-patient consumers,
the tax rate that the government sets to finance a transfer of b̌ to the newborns must be
larger (so that the ratio of initial assets to after-tax income is smaller). Qualitatively,
the dynamics are indistinguishable from the individual consumer’s dynamics obtainable
without working through the extra complication involved in accounting for the ‘stakes.’

2.1.2 No Stake

The polar alternative to assuming that newborns get a ‘stake’ is to assume that newborns
enter the economy with zero assets. Analysis of this version of the model must be
performed using simulation methods, because households of different ages will have

27If the economy has experienced multiple shocks, it will be necessary to retain a complete history
of the shocks in order to compute the properly population-weighted dynamics. This is not too hard to
do, if we start with the assumption that the economy started at its balanced growth equilibrium before
the shocks began to arrive.
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different levels of assets. (With a concave and nonanalytical consumption function,
analytical aggregation cannot be performed.)

Our simulation procedure assumes that at date 0 the economy has existed forever (so
that the age distribution of relative populations and productivities are at their steady-
state values), but saving has been impossible prior to period 0.28 With everyone’s bet = 0,
the ratio of market resources to permanent labor income is the same for all individuals:

me
0,τ = 1. (50)

The consumption ratio in period 0 is therefore c(1) for every household (regardless of
age), while the level of total labor income for a generation that is −τ periods old is��0τ .29
The population of such workers is (��0/Ξ)−τ , so aggregate consumption will be given
by the per-capita consumption ratio, multiplied by the per-capita level of permanent
income, multiplied by the population of workers still alive:

c0 =
−∞∑
τ=0

c(1)��0τ (��0/Ξ)−τ

= c(1)
−∞∑
τ=0

Ξτ

= c(1)

(
1

1− Ξ−1

)
.

(51)

The longer a generation lives, the more time it will have had to save toward its target
level of wealth; but newborns always begin life with no assets. After period 0, therefore,
age-heterogeneity in assets and consumption ratios creeps into the population.

The foregoing discussion contains (in some cases implicitly) all the assumptions nec-
essary to conduct a simulation of this economy. Figure 11 shows the path of the ratio
ct/WtNNN t starting from period 0 for an economy under our benchmark parameterization
that generated our earlier figures. The only extra parameter required beyond those used
before is Ξ; we choose Ξ = 1.01 corresponding roughly to the postwar population growth
rate in the United States. beginCDC

2.2 Unemployment Insurance
We consider now the consequences if the government creates a balanced-budget partial
‘unemployment insurance’ system. This system operates by imposing a labor income
tax on the employed in order to finance transfers to the unemployed.30

28In periods before 0, unemployment presumably would have meant immediate death by starvation;
we think of this more as a starting point for the simulations than as a realistic description of a plausible
economy.

29The absolute level of wages will have grown by G/�0 per period for these households since their
birth, but we have normalized by the level of wages for period-0 newborns, which cancels the G from
the expression.

30The case of perfect (full) insurance is not very interesting, because impatient agents like the ones
in our model would choose to run down their assets indefinitely, leaving no role for target saving and no
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Figure 11 Path of Aggregate c in Stakeless PE/SOE Economy From Date 0
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Our definition of partial insurance starts by assuming that the ‘true’ labor income
process is the one specified above, but the government interferes with this process by
selecting a constant proportion ζ of the newly unemployed in each period who will
be guaranteed a ‘wage-indexed unemployment benefit’ that yields the same income
they would have received if they had not become unemployed. The lucky recipients
of these payments, however, are subject to a risk of termination from the unemployment
insurance program that matches the risk of becoming unemployed for the still-employed
consumers.

Under these circumstances, the household does not care whether it remains employed,
or becomes unemployed but is selected for the unemployment insurance program: The
dynamics of idiosyncratic future income are identical in the two cases.

Each generation finances its own unemployment insurance (this assumption is made
to keep the model as transparent as possible; it would not change things much to have
the UI system financed by the general government, but this would require some extra
notation and derivations, and discussion of essentially inconsequential intergenerational
aspects of unemployment insurance). The government sets the overall uninsurance rate
ζ (‘uninsurance’ rather than ‘insurance’ rate because ζ = 0 will be ‘no uninsurance’ or
perfect insurance, while ζ = 1 will be no insurance) and enforces exogenous taxation
among the ‘truly employed’ in the generation in such a way as to yield a modified ‘post-
tax-and-transfer’ growth profile consistent with substituting 0̀ for 0 in the derivations

interesting dynamics. However, this is a knife-edge result that depends upon the complete elimination
of idiosyncratic uncertainty.
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above, where

0̀ = ζ0 (52)

and ζ < 1 guarantees that the insurance program results in a reduction of idiosyncratic
income risk.

Substituting 0̀ for 0 in the prior derivations, this scheme is consistent with the
generational budget constraint because, as noted above, the individual income growth
process was constructed so that the present discounted value of income remains invariant
to the size of 0, and the aggregate income of a generation grows by G regardless of the
underlying idiosyncratic unemployment risk.

This scheme is attractive because in practice it simply requires solving the model
specified above for a different value of 0. This will make solution and simulation of the
model particularly simple.

In addition to the consumption function, the solution procedure produces an estimate
of the representative employed agent’s value function.31 Value depends on current
resources, but also (numerically) on all of the parameters in the calibration of the
model. We are particularly interested in how value relates to expected labor productivity
growth G, to the ‘true’ unemployment risk 0, and to the generosity of the unemployment
insurance program ζ. Writing

v(me
t ; G,0, ζ), (53)

(where we separate the state variable me
t from the parameters using a semicolon) we can

investigate a variety of interesting questions. Some examples:

• For an economy starting at the steady state without unemployment insurance,
how valuable is a given improvement in insurance? That is, what is the change
in monetary resources that would make the representative consumer indifferent to
the change in insurance? To answer this, we can find the ∆me such that

v(me + ∆me; G,0, 1) = v(me; G,0, ζ) (54)

• Suppose a policymaker considering is considering increasing the economy’s open-
ness or degree of ‘globalization.’ The benefit is faster productivity growth G. The
cost is increased unemployment risk 0. For a given generosity of unemployment
insurance, how much extra growth is necessary to offset the utility cost of greater
risk? That is, supposing the relationship between G and 0 is indexed by a
parameter γ, e.g. 0̀ = 0 + (G̀−G)γ, what is the γ for which

v(me; G,0, 1) = v(me; G̀, 0̀, 1) (55)

• If the policymaker can increase the generosity of unemployment insurance in
the face of increased unemployment risk stemming from globalization (perhaps
‘trade adjustment assistance’ is politically feasible even if increased unemployment
insurance per se is not), by how much would the unemployment insurance program
need to change in order to offset the utility consequences of a given increase in 0?

31See the appendix for a sketch of the method.
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Many more such questions can be imagined. endCDC

28



Appendix

A Approximate Formula for Consumption Growth
Using from MathFacts the second-order and then the first-order Taylor approximations
[TaylorTwo](1 + ε)ζ ≈ 1 + ζε + (1/2)ζ(ζ − 1)ε2 and then [TaylorOne](1 + ε)ζ ≈ 1 + ζε,
the expression in braces in (15) can be rewritten{

1 + 0
[(

cet+1

cut+1

)ρ
− 1

]}1/ρ

=

{
1 + 0

[(
cut+1 + cet+1 − cut+1

cut+1

)ρ
− 1

]}1/ρ

= {1 + 0 [(1 +∇t+1)ρ − 1]}1/ρ

≈
{

1 + 0
[
1 + ρ∇t+1 + ρ(∇t+1)2ω − 1

]}1/ρ

=
{

1 + ρ0(∇t+1 + (∇t+1)2ω)
}1/ρ

≈ 1 + 0 (1 +∇t+1ω)∇t+1,

which leads directly to (16) in the main text.

B Conditions for a Target to Exist

B.1 Using the Phase Diagram Loci
At a steady-state value of me, both ∆ce = 0 and ∆me = 0 hold (equations (28) and
(30)); for convenience defining µ = RκΠ + 1,

0 =

∆ce︷ ︸︸ ︷(
µ− 1

µ

)
me =

∆me︷ ︸︸ ︷(
R− 1

R

)
me +R−1 = 0.

(56)

But since R−1 is a positive number, at me = 0 the ∆me = 0 locus’s value is R−1 while
the value of the ∆ce = 0 locus is zero, the two loci can intersect for a positive me only
if the slope of the ∆ce = 0 locus is greater:32(

µ− 1

µ

)
>

(
R− 1

R

)
(57)

which is equivalent to
=µ−1︷ ︸︸ ︷
RκΠ > R− 1

(58)

where the LHS is (proportional to) the slope of ∆ce = 0 and the RHS is (proportional
to) the slope of ∆me = 0. beginCDC

32We also need µ to be nonnegative.
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It is not totally obvious why these are equivalent, so here’s the derivation.(
µ− 1

µ

)
>

(
R− 1

R

)
R(µ− 1) > µ(R− 1)

Rµ−R > µR− µ
−R > −µ
R < µ

R < R(κΠ +R−1)

1 < κΠ +R−1

R− 1 < κRΠ.

(59)

endCDC

For any fixed 0 and G and R we can find some α for which G = R(1−α0), and using
this α it turns out to be useful to rewrite

R−1 = Γ/R

= G/R(1− 0)

= R(1− α0)/R(1− 0)

= (1− α0 + 0− 0)/(1− 0)

= (1− 0 + (1− α)0)/(1− 0)

= 1 + (1− α)0/(1− 0).

(60)

Note for future use that (60) implies that whenever α ≤ 1, the FHWCΓ fails (‘human
wealth is infinite’) because R−1 > 1⇒ R/Γ = R < 1⇒ R < Γ.
Multiplying both sides of (58) by R−1 then substituting the expression for R−1 from

(60) gives

1−R−1 < κΠ

−(1− α)0/(1− 0) < κΠ
(61)

B.2 A Target Always Exists When Human Wealth Is Infinite
Since 0 < 0 < 1 and κ > 0 (as guaranteed by the RIC), (61) is satisfied whenever
the FHWCΓ fails (α ≤ 1) and Π > 0. We now show that under these conditions,
(1 +$)1/ρ = Π > 0.

Π from (18) is:

Π =

1 +

≡$︷ ︸︸ ︷
0−1(ÞÞÞ−ρΓ − 1)

1/ρ

(62)

but note that

ÞÞÞΓ = ÞÞÞR

=R︷ ︸︸ ︷
(R/Γ)

(63)
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and in the case where α = 1, R must also be 1, implying that ÞÞÞΓ = ÞÞÞR < 1 (the RIC)
so that ÞÞÞ−ρΓ > 1 and so $ > 0 and hence Π > 1 > 0. The other interesting case is when
α = 0 so that G = R and R = R/Γ = R(1− 0)/G = (1− 0) < 1. In this case ÞÞÞΓ < ÞÞÞR

and so ÞÞÞ−ρΓ > ÞÞÞ−ρR > 1 and so $ is even more positive so that Π is even more strongly
> 0. Similar logic holds for any α ≤ 1.
Thus, we can conclude that, when human wealth is infinite (that is, if α ≤ 1), a target

m̌e will exist.

B.3 Conditions Under Which a Target Exists When Human Wealth is
Finite

In the case where human wealth is finite (α > 1), we need the RHS of (61) not merely
to be positive, but to exceed a specific positive number, (α− 1)0/(1− 0):

κ(1 +$)1/ρ > (α− 1)0/(1− 0)

(1 +$)1/ρ >

(
(α− 1)0
κ(1− 0)

)
(1 +$) >

(
(α− 1)0
κ(1− 0)

)ρ
(ÞÞÞ−ρΓ − 1)0−1 = $ >

(
(α− 1)0
κ(1− 0)

)ρ
− 1

(ÞÞÞ−ρΓ − 1) > 0
[(

(α− 1)0
κ(1− 0)

)ρ
− 1

]
ÞÞÞ−ρΓ > 1 + 0

[(
(α− 1)0
κ(1− 0)

)ρ
− 1

]

ÞÞÞΓ <

1 + 0
[(

(α− 1)0
κ(1− 0)

)ρ
− 1

]
︸ ︷︷ ︸

≡χ


−1/ρ

(64)

and the boundary will be the point at which this expression holds with equality.
An increase in impatience caused by an increase in the pure time preference rate ϑ

(equivalently, a reduction in β) has the effect of reducing growth-patience (the LHS of
(64)) and of increasing the RHS. This means that there will be some time preference
rate sufficiently large (some β sufficiently small) to guarantee that the condition holds
with equality. Then (64) will always be satisfied by any β satisfying

β < β̄FHW. (65)
beginCDC

Here’s a more careful exposition of the above: Rewrite the boundary condition as

ÞÞÞR

=R/Γ︷ ︸︸ ︷(
1− 0

1− α0

)
= ÞÞÞΓ =

{
1 + 0

[(
(α− 1)0
κ(1− 0)

)ρ
− 1

]}−1/ρ
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and note that if we reduce α incrementally the denominator on the LHS increases so the
LHS decreases, while the RHS increases. Under the new value of α, therefore, ÞÞÞΓ, if the
condition held with equality before it now holds with inequality. endCDC

Since we have assumed the RIC (so that κ > 0), as 0 ↓ 0 or α ↓ 1, (64) asymptotes
to the GICΓ for any given value of β.
The apparently harder case is when α > 1 and 0 > 0. But note that we will have

found β̄FHW if we can find the corresponding κ at which the first term in χ reaches 1:(
(α− 1)0

(1−ÞÞÞR)(1− 0)

)ρ
= 1(

(α− 1)0
(1−ÞÞÞR)(1− 0)

)
= 1(

(α− 1)0
(1− 0)

)
= 1−ÞÞÞR

1−
(

(α− 1)0
(1− 0)

)
= ÞÞÞR[

1−
(

(α− 1)0
(1− 0)

)]
= (Rβ)1/ρ/R

Rρ
[
1−

(
(α− 1)0
(1− 0)

)]ρ
= (Rβ)

Rρ−1

[
1−

(
(α− 1)0
(1− 0)

)]ρ
= β̄FHW.

(66)

Somewhat miraculously, at this value of β, because χ = 0, (64) holds with equality,
which means that β̄FHW = β̄GICΓ

. This means that the GICΓ defines the definitive
boundary condition: A finite target me exists so long as β < β̄GICΓ

= Γρ/R.

B.4 Solutions Exist Even When Growth Impatience Fails
We have just demonstrated that satisfying the GICΓ condition is necessary and sufficient
to guarantee existence of a target m̌e. But we suggested earlier that a weaker condition,
the GIC-TBS, guarantees the existence of a well-defined consumption function.
This can be understood as follows. Rewrite the requirement for existence of a target,

(58), as

κ(1 +$)1/ρ + 1 > R, (67)

or taking logs we have approximately

κ(1 +$)1/ρ > r − γ. (68)

The LHS captures the slope of the ∆ce = 0 locus, which is κ modified by $ whose
difference from $ = 0 captures the degree of growth (im)patience.33 The RHS captures
the slope of the ∆me = 0 locus. Recall that the inequality captures the fact that a target

33‘Captures’ does not mean ‘is equal to.’ Equation (58) provides the actual formula for the slope.
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m̌e exists if these two loci intercept, which happens if the slope of ∆ce = 0 exceeds that
of ∆me = 0.
If the consumer is ‘growth patience poised’ (that is, ÞÞÞΓ = 1), then $ = 0 and the

slope of the ∆ce = 0 locus is identical to the κ that characterizes the perfect foresight
consumption function. In this case (68) becomes

r − ρ−1(r − ϑ) > r − γ
γ > ρ−1(r − ϑ),

(69)

which is the (log version of) the GICΓ. The condition cannot hold both as an equality
ÞÞÞΓ = 1 (our starting assumption) and an inequality ÞÞÞΓ < 1 (the conclusion of (69)).
This contradiction constitutes a proof that exactly at ÞÞÞΓ = 1 a target does not exist.
As noted above, if the consumer is growth-impatient (ÞÞÞΓ < 1) then $ > 0 and the

slope of ∆ce = 0 is monotonically increased as the degree of growth-impatience increases
(so that target m̌e is diminished).

But if the consumer is growth-patient (ÞÞÞΓ > 1) then $ < 0 and the slope of ∆ce = 0
is diminished (which reflects the fact that the greater the degree of patience, the lower
will consumption be for any given me).34 The lower bound is defined by the point at
which the degree of growth patience becomes so strong that the slope of ∆ce = 0 reaches
zero (when Π = 0; equivalently, $ reaches -1). This restricts the permissible degree of
growth patience, because Π > 0 requires (rewrite (21)):(

(Rβ(1− 0))1/ρ

G/(1− 0)

)
=

(
(Rβ(1− 0))1/ρ

Γ

)
< 1. (70)

Expanding on a discussion in the main text, the numerator in the leftmost expression
reflects the sense in which the unemployment risk acts in a manner similar to the effect
of an extra degree of discounting (reflecting the fact that the relevant condition applies
only so long as the consumer remains in employment – a condition whose probability
is (1 − 0)), while the denominator reflects the mechanical effect in which the relevant
measure of growth is boosted by the adjustment that preserves human wealth. Writing
the perfect foresight version of the growth patience factor as ÞÞÞG (which is just the limit
as 0 ↓ 0), we can see that the expression on the LHS is just ÞÞÞG(1 − 0)1+1/ρ which is
smaller than ÞÞÞG because 0 > 0 and 1 + ρ−1 > 0. So, the GIC-TBS holds whenever
the plain-vanilla GICΓ holds, but not vice-versa; there are parametric configurations in
which a perfect-foresight consumer with income growth rate G would not satisfy the
relevant GICG (so, their wealth-to-income ratio would go to infinity), but the same
consumer faced the same human wealth but with an unemployment risk 0 would have
a finite target wealth-to-income ratio.

The easiest way to understand all of this is graphically. A notebook Carroll (Ongoing)
(see references for details) in the code archive associated with these lecture notes shows
how this works for alternative values of β.

34Note that if the GICΓ fails so that Π < 1, the slope of the ∆ce = 0 locus is shallower than the
slope of the perfect foresight consumption function. The fact that these two loci never intersect reflects
the fact that the consumer will behave in such a way as to accumulate me forever.
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C The Exact Formula for Target m
To simplify the expressions in the derivations below, we define ζ ≡ RκΠ so that RκΠ =
ζΓ and we drop the e superscripts, allowing (28) to be rewritten as

c =

(
ζ

1 + ζ

)
m. (71)

If a target value m̌ exists it will be at the point of intersection between the ∆ce = 0
and the ∆me = 0 loci: (

ζ

1 + ζ

)
m̌ = (1−R−1)m̌ +R−1(

R ζ

1 + ζ

)
m̌ = (R− 1)m̌ + 1(

R
{

ζ

1 + ζ
− 1

}
+ 1

)
m̌ = 1(

R
{
ζ − (1 + ζ)

1 + ζ

}
+

1 + ζ

1 + ζ

)
m̌ = 1(

1 + ζ −R
1 + ζ

)
m̌ = 1

m̌ =

(
1 + ζ

1 + ζ −R

)
m̌ =

(
1 + ζ +R−R

1 + ζ −R

)
= 1 +

(
R

1 + ζ −R

)
= 1 +

(
R

Γ + ζΓ− R

)
.

(72)

A first point about this formula is suggested by the fact that

ζΓ = Rκ

(
1 +

(
ÞÞÞ−ρΓ − 1

0

))1/ρ

(73)

which is likely to increase as 0 approaches zero.35 Note that the limit as 0→ 0 is infinity,
which implies that lim0→0 m̌ = 1. This is precisely what would be expected from this
model in which consumers are impatient but self-constrained to haveme > 1: As the risk
gets infinitesimally small, the amount by which target me exceeds its minimum possible
value shrinks to zero.
We now show that the RIC and GICΓ ensure that the denominator of the fraction in

35‘Likely’ but not certain because of the fact that 0 affectsÞÞÞΓ as well as appearing in the denominator
of (72); however, for plausible calibrations the effect of the denominator predominates.
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(72) is positive:

Γ + ζΓ− R = Γ + RκΠ− R

= Γ + R

(
1− (Rβ)1/ρ

R

)(
( (Rβ)1/ρ

Γ
)−ρ − 1

0
+ 1

)1/ρ

− R

> Γ + R

(
1− (Rβ)1/ρ

R

)(
( (Rβ)1/ρ

Γ
)−ρ − 1

1
+ 1

)1/ρ

− R

= Γ + R

(
1− (Rβ)1/ρ

R

)
Γ

(Rβ)1/ρ
− R

= Γ + R
Γ

(Rβ)1/ρ
− Γ− R

= R

(
Γ

(Rβ)1/ρ
− 1

)
> 0.

However, note that 0 also affects Γ; thus, the first inequality above does not necessarily
imply that the denominator is decreasing as 0 moves from 0 to 1.

D Approximating Target m
Now defining

ℵ =

(
ÞÞÞ−ρΓ − 1

0

)
, (74)

under certain conditions we can obtain further insight into (72) using a judicious mix of
first- and second-order Taylor expansions (along with κ = −þr):36

ζΓ = Rκ (1 + ℵ)1/ρ

≈ −Rþr

(
1 + ρ−1ℵ+ (ρ−1)(ρ−1 − 1)(ℵ2/2)

)
= −Rþr

(
1 + ρ−1ℵ

{
1 +

(
1− ρ
ρ

)
(ℵ/2)

})
.

(75)

But

ℵ =

(
(1 + þγ)

−ρ − 1

0

)
≈
(

1− ρþγ − 1

0

)
≈ −

(
ρþγ
0

) (76)

36See below for caveats.
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which is guaranteed to be positive by the GICΓ, but which can take any value in the
interval (0,∞). Note, however, that the approximations above are valid only if ℵ is
‘small’ which requires that the degree of growth impatience be small relative to the
size of the unemployment risk. Thus, the formulae derived above (and used below) are
reliable only in rather special circumstances, in particular when the consumer is only
very slightly growth-impatient.37 Under these circumstances, this approximation can be
substituted into (75) to obtain

ζΓ ≈ −Rþr

(
1− (þγ/0)(1 + (1− ρ)(−þγ/0)/2)

)
≈ −Rþr︸ ︷︷ ︸

>0

1−(þγ/0)︸ ︷︷ ︸
>0

1 + (1− ρ)︸ ︷︷ ︸
<0

(−þγ/0)︸ ︷︷ ︸
>0

/2

 .
(77)

and inspired by Kimball (1990) defining a term related to the excess of prudence over
the logarithmic case,

ω =

(
ρ− 1

2

)
, (78)

(72) can be approximated by

m̌ ≈ 1 +

(
1

Γ/R− þr

(
1− (þγ/0)(1− (−þγ/0)ω)

)
− 1

)

≈ 1 +

(
1

(γ − r) + (−þr)
(
1 + (−þγ/0)(1− (−þγ/0)ω)

)) (79)

where negative signs have been preserved in front of the þr and þγ terms as a reminder
that the GICΓ and the RIC imply these terms are themselves negative (so that −þr and
−þγ are positive). Ceteris paribus, an increase in relative risk aversion ρ will increase ω
and thereby decrease the denominator of (79). This suggests that greater risk aversion
will result in a larger target level of wealth.38
The formula also provides insight about how the human wealth effect works in equi-

librium. All else equal, the human wealth effect is captured by the (γ − r) term in
the denominator of (79), and it is obvious that a larger value of γ will result in a
smaller target value for m. But it is also clear that the size of the human wealth
effect will depend on the magnitude of the patience and prudence contributions to the
denominator, and that those terms can easily dominate the human wealth effect. This
reduction in the human wealth effect is interesting because practitioners have known
at least since Summers (1981) that the human wealth effect is implausibly large in the
perfect foresight model.

For (79) to make sense, we need the denominator of the fraction to be a positive

37Other approximations are better for consumers who are highly impatient, relative to their
unemployment risk; in this case a better approximation to (75) is obtained by rewriting it as
ζΓ = Rκℵ1/ρ

(
ℵ−11 + 1

)1/ρ and approximating using (1 + ℵ−1)1/ρ ≈ 1 + ρ−1ℵ−1 + ρ−1(ρ−1 − 1)ℵ−2/2.
38“Suggests” because this derivation used some dubious approximations; the suggestion is verified,

however, for plausible numerical calibrations.
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number; defining

þ̂γ = þγ(1− (−þγ/0)ω), (80)

this means that we need:
(γ − r) > þr − þrþ̂γ/0

=
(
ρ−1(r − ϑ)− r

)
− þrþ̂γ/0

γ > ρ−1(r − ϑ)− þrþ̂γ/0

0 > ρ−1(r − ϑ)− γ︸ ︷︷ ︸
þγ

−þr(þ̂γ/0)

0 > þγ − þr(þ̂γ/0).

(81)

But since the RIC guarantees þr < 0 and the GICΓ guarantees þγ < 0 (which, in turn,
guarantees þ̂γ < 0), this condition must hold.39
The same set of derivations imply that we can replace the denominator in (79) with

the negative of the RHS of (81), yielding a more compact expression for the target level
of resources,

m̌ ≈ 1 +

(
1

þr(þ̂γ/0)− þγ

)

= 1 +

(
1/(−þγ)

1 + (−þr/0)(1 + (−þγ/0)ω)

)
.

(82)

This formula makes plain the fact that an increase in either form of impatience, by
increasing the denominator of the fraction in (82), will reduce the target level of assets.

We are now in position to discuss (79), understanding that the impatience conditions
guarantee that its denominator is a positive number.

Two specializations of the formula are particularly useful. The first is the case where
ρ = 1 (logarithmic utility). In this case

þr = −ϑ
þγ = r − ϑ− γ
ω = 0

(83)

and the approximation becomes

m̌ ≈ 1 +

(
1

(γ − r) + ϑ(1 + (γ + ϑ− r)/0)

)
(84)

which neatly captures the effect of an increase in human wealth (via either increased

39In more detail: For the second-order Taylor approximation in (75), we implicitly assume that the
absolute value of the second-order term is much smaller than that of the first-order one, i.e. |ρ−1ℵ| ≥
|(ρ−1)(ρ−1− 1)(ℵ2/2)|. Substituting (76), the above could be simplified to 1 ≥ (−þγ/0)ω, therefore we
have þ̂γ < 0. This simple justification is based on the confidence that we have proved above that RIC
and GICΓ guarantee the denominator of the fraction in (72) is positive.
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γ or reduced r), the effect of increased impatience ϑ, or the effect of a reduction in
unemployment risk 0 in reducing target wealth.

The other useful case to consider is where r = ϑ but ρ > 1. In this case, we have

þr = −ϑ
þγ = −γ
þ̂γ = −γ(1− (γ/0)ω)

(85)

so that

m̌ ≈ 1 +

(
1

(γ − r) + ϑ(1 + (γ/0)(1− (γ/0)ω))

)
(86)

where the additional term involving ω in this equation captures the fact that an increase
in the prudence term ω shrinks the denominator and thereby boosts the target level of
wealth.40

E Numerical Solution

E.1 The Consumption Function
To solve the model by the method of reverse shooting,41 we need cet as a function of cet+1.
Starting with (15):(

cet+1

cet

)
= Γ−1(Rβ)1/ρ

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}1/ρ

cet =

 cet+1

Γ−1(Rβ)1/ρ
{

1 + 0
[(

cet+1

κ(met+1−1)

)ρ
− 1
]}1/ρ


= Γ(Rβ)−1/ρcet+1

{
1 + 0

[(
cet+1

κ(me
t+1 − 1)

)ρ
− 1

]}−1/ρ

.

(87)

Inverting (29), the reverse shooting equation for me
t is

me
t = R−1(me

t+1 − 1) + cet . (88)

The reverse shooting approximation will be more accurate if we use it to obtain
estimates of the marginal propensity to consume as well. These are obtained by dif-
ferentiating the consumption Euler equation with respect to mt:

40It would be inappropriate to use the equation to consider the effect of an increase in r because the
equation was derived under the assumption ϑ = r so r is not free to vary.

41See Judd (1998) for a presentation of shooting methods of solution for numerical difference and
differential equations.
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u′(ce(mt)) =

i︷ ︸︸ ︷
RβΓ1−ρ Et[u′(c•(mt+1))]

u′′(ce(mt))κκκ
e(mt) = iR(1− κκκe(mt))Et[u′′(c•(mt+1))κκκ•(mt+1)]

(89)

so that defining, e.g., κet = κκκe(mt) we have

κet = (1− κet )iR(1/u′′(cet ))Et
[
u′′(c•t+1)κ•t+1

]︸ ︷︷ ︸
≡\t+1

(1 + \t+1)κet = \t+1

κet =

(
\t+1

1 + \t+1

)
.

At the target level of me we have
\/Ri︷ ︸︸ ︷

(1/u′′(če))Et [u′′(c•)κ•] = ��0

=1︷ ︸︸ ︷
(u′′(če)/u′′(če))κe + 0(u′′(ču)/u′′(če))κ

so that

\ = iR(��0κe + 0(ču/če)−ρ−1κ) (90)

yielding from (90) a quadratic equation in κe:(
1 + iR(��0κe + 0(ču/če)−ρ−1κ)

)
κe = iR(��0κe + 0(ču/če)−ρ−1κ) (91)

which has one solution for κe in the interval [0, 1], which is the MPC at target wealth.42
The limiting MPC as consumption approaches zero, κ̄e, will also be useful; this is

obtained by noting that utility in the employed state next year becomes asymptotically
irrelevant as cet approaches zero, so that

lim
cet→0

\t+1︷ ︸︸ ︷
iRκet+1

(
��0(cet+1/c

e
t )
−ρ−1 + 0(cut+1/c

e
t )
−ρ−1κ

)
= iR0(cut+1/c

e
t )
−ρ−1κ

= iR0(κRaet/(aet (κ̄e/(1− κ̄e)))−ρ−1)κ

= iR0(κR((1− κ̄e)/κ̄e))−ρ−1κ

so that from (90) we have

κ̄e ≡ lim
mt→0

κκκe(mt) =

(
iR0(κR((1− κ̄e)/κ̄e))−ρ−1κ

1 + iR0(κR((1− κ̄e)/κ̄e))−ρ−1κ

)
(92)

which implicitly defines κ̄e. An explicit solution is not available, but after parameter
values have been defined a numerical rootfinder can calculate a solution almost instantly.
Finally, it will be useful to have an estimate of the curvature (second derivative) of the

consumption function. This can be obtained by a procedure analogous to the one used
to obtain the MPC: differentiate the differentiated Euler equation (89) again. Noting

42The Mathematica code constructs this derivative and solves the quadratic equation analytically;
the Matlab code simply copies the analytical formula generated by Mathematica .
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that κu′ = 0 we can obtain:
(κκκet )

2u′′′(cet ) + κκκe′t u′′(cet ) =

iR
{

(−κκκe′t )Et[u′′(c•t+1)κκκ•t+1] +R(1− κκκet )2
(
Et[(κκκ•t+1)2u′′′(c•t+1)] +��0u′′(cet+1)κκκe′t+1

)}
so that

κκκe′t =

(
iR2(1− κκκet )2

(
Et[(κκκ•t+1)2u′′′(c•t+1)] +��0u′′(cet+1)κκκe′t+1

)
− (κκκet )

2u′′′(cet )

u′′(cet ) + iREt[u′′(c•t+1)κκκ•t+1]

)

which can be further simplified at the target because κκκe′t (m̌) = κκκe′t+1(m̌) = κe′ so that

κe′ =

(
iR2(1− κe)2 Et[(κ•)2u′′′(c•)]− (κe)2u′′′(če)

u′′(če) + iREt[u′′(c•)κ•]− iR2(1− κe)2��0u′′(če)

)
. (93)

Another differentiation of (93) similarly allows the construction of a formula for the
value of κe′′ at the target m̌; in principle, any number of derivatives can be constructed
in this manner.43 beginCDC

It is plausible to hypothesize that in the limit as me
t approaches infinity, the ratio

κe′t+1/κ
e′
t approaches a constant µ. If we make such an assumption, then we can use

other results to show that

lim
met→∞

κκκe′t =

(
iR2(1− κ)2 (κ2u′′′(ct+1) +��0u′′(ct+1)µκκκe′t )− κ2u′′′(ct)

u′′(ct) + iRu′′(ct+1)κ

)
=

(
iR2(1− κ)2 (κ2u′′′(ct+1))− κ2u′′′(ct)

u′′(ct) + iRu′′(ct+1)κ− iR2(1− κ)2��0u′′(ct+1)µ

)
=

(
iR2(1− κ)2 (κ2u′′′(ctÞÞÞΓ))− κ2u′′′(ct)

u′′(ct) + iRu′′(ctÞÞÞΓ)κ− iR2(1− κ)2��0u′′(ctÞÞÞΓ)µ

)
=

(
u′′′(ct)

u′′(ct)

)(
iR2(1− κ)2

(
κ2ÞÞÞ−ρ−2

Γ

)
− κ2

1 + iRÞÞÞ−ρ−1
Γ κ− iR2(1− κ)2��0ÞÞÞ−ρ−1

Γ µ

)

= −
(

(1 + ρ)

ct

)(
iR2(1− κ)2

(
κ2ÞÞÞ−ρ−2

Γ

)
− κ2

1 + iRÞÞÞ−ρ−1
Γ κ− iR2(1− κ)2��0ÞÞÞ−ρ−1

Γ µ

)
(94)

endCDC

beginCDCSeparately, the limit of (93) as cet → 0 will be dominated by the outcomes for the
unemployed consumer so that

lim
cet→0

{
(κ̄e)2u′′′(cet ) + κe′t u′′(cet )

}
= lim

cet→0

{
iR(−κe′t )0u′′(cut+1)κ+ iR2(1− κ̄e)20(κ)2u′′′(cut+1)

}

43Mathematica permits the convenient computation of the analytical derivatives, and then the
substitution of constant target values to obtain analytical expressions like (93). These solutions are
simply imported by hand into the Matlab code.
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becomes
κe′t (u′′(cet ) + iR0u′′(cut+1)) = iR2(1− κ̄e)20(κ)2u′′′(cut+1)− (κ̄e)2u′′′(cet )

κe′t =

(
iR2(1− κ̄e)20(κ)2u′′′(cut+1)− (κ̄e)2u′′′(cet )

u′′(cet ) + iR0u′′(cut+1)

)
(95)

which approaches a function γ/cet as cet approaches zero. This is inconvenient, because
an infinite second derivative cannot be used for a data point in the set of interpolating
points. endCDC

Reverse shooting requires us to solve separately for an approximation to the consump-
tion function above the steady state and another approximation below the steady state.
Using the approximate steady-state κe and κe′ obtained above, we begin by picking a
very small number for N and then creating a Taylor approximation to the consumption
function near the steady state:

me
t̀ = m̌ + N

c̃(N) = če + Nκe + (N2/2)κe′ + (N3/6)κe′′

and then iterate the reverse-shooting equations until we reach some period n in which
me
t̀−n escapes some pre-specified interval [me, m̄e] (where the natural value for me is 1

because this is the m that would be owned by a consumer who had saved nothing in
the prior period and therefore is below any feasible value of m that could be realized by
an optimizing consumer). This generates a sequence of points all of which are on the
consumption function. A parallel procedure (substituting − for + in (96) and where
appropriate in the corresponding equation for c generates the sequence of points for
the approximation below the steady state. Taken together with the already-derived
characterization of the function at the target level of wealth, these points constitute
the basis for a piecewise second-order interpolating approximation to the consumption
function on the interval [me, m̄e].

E.2 The Value Function
As a preliminary, note that since u(xy) = u(x)y1−ρ, value for an unemployed consumer
is

Vu
t = u(Cu

t ) + βu(Cu
t+1) + β2u(Cu

t+2) + ...

= u(Cu
t )
(

1 + β{(Rβ)1/ρ}1−ρ + β2
{

(Rβ)2/ρ
}1−ρ

+ ...
)

= u(Cu
t )

(
1

1− β(Rβ)(1/ρ)−1

)
︸ ︷︷ ︸

≡v

(96)

where the RIC guarantees that the denominator in the fraction is a positive number.
From this we can see that value for the normalized problem is similarly:

vu(mt) = u(κmt)v. (97)
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Turning to the problem of the employed consumer, we have

ve(mt) = u(cet ) + βΓ1−ρ Et[v•(mt+1)] (98)

and at the target level of market resources this will be unchanging for a consumer who
remains employed so that

v̌e = u(če) + βΓ1−ρ (��0v̌e + 0vu(aeR))

(1− βΓ1−ρ
��0)v̌e = u(če) + βΓ1−ρ0vu(aeR)

v̌e =

(
u(če) + βΓ1−ρ0vu(aeR)

(1− βΓ1−ρ��0)

)
.

(99)

Given these facts, our recursion for generating a sequence of points on the consumption
function can be used at the same time to generate corresponding points on the value
function from

vet = u(cet ) + βΓ1−ρ (
��0vet+1 + 0vu(aetR)

)
(100)

with the first iteration point generated by numerical integration from

vet̀ = v̌e +

∫ N

0

u′(c̃(•))d• (101)
beginCDC

An alternative method (which does not require numerical integration but does not
work as well) is to use the Envelope theorem to compute an approximation to the value
function in the vicinity of the steady state:

ve′(me
t ) = u′(c(me

t ))

ve′′(me
t ) = u′′(c(me

t ))κ
e
t

ve′′′(me
t ) = u′′(c(me

t ))κ
e′
t + u′′′(c(me

t ))(κ
e
t )

2

(102)

which leads to an approximation of the level of value at m̌ + N using

ve(m̌ + N) ≈ v̌e + u′(če)N + (N2/2)u′′(če)κe + (N3/6)
(
u′′(če)κe′ + u′′′(če)(κe)2

)
.

endCDC

F The Algorithm
With the above results in hand, the model is solved and the various functions constructed
as follows. Define ?t = {me

t , c
e
t , κ

e
t , v

e
t , κ

e′
t } as a vector of points that characterizes a

particular situation that an optimizing employed household might be in at any given
point in time. Using the backwards-shooting functions derived above, for any point ?t̀
we can construct the sequence of points that must have led up to it: ?t̀−1 and ?t̀−2 and
so on. And using the approximations near the steady state like (96), we can construct
a vector-valued function ◦◦◦(N) that generates, e.g., {m̌ + N, c̃(N), ...}.
Now define an operator · · · as follows: · · · applied to some starting point ?t uses the

backwards dynamic equations defined above to produce a vector of points ?t−1, ?t−2, ...
consistent with the model until the me

t−n that is produced goes outside of the pre-defined
bounds for solving the problem.
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We can merge the points below the steady state with the steady state with the points
above the steady state to produce ...? = · · · (◦◦◦(−ε)) ∪ ◦◦◦(0) ∪ · · · (◦◦◦(ε)). These points can
then be used to generate appropriate interpolating approximations to the consumption
function and other desired functions.

Designate, e.g., the vector of points on the consumption function generated in this
manner by ...?[c], so that

{...?[m], {...?[c], ...?[κe], ...?[κe′]}ᵀ}ᵀ =


m[1] {c[1], κe[1], κe′[1]}
m[2] {c[2], κe[2], κe′[2]}
... ...

m[N ] {c[N ], κe[N ], κe′[N ]}

 (103)

where N is the number of points that have been generated by the merger of the backward
shooting points described above.
The object (103) is not an arbitrary example; it reflects a set of values that uniquely

define a fourth order piecewise polynomial spline such that at every point in the set
the polynomial matches the level and first derivative included in the list. Standard
numerical mathematics software can produce the interpolating function with this input;
for example, the syntax in Mathematica is simply

cE = Interpolation[{...?[m], {...?[c], ...?[κe], ...?[κe′]}ᵀ}ᵀ]. (104)

which creates a function cE that is a C4 interpolating polynomial connecting these
points. beginCDC

With these points it is feasible to construct an approximating interpolation that will
be quite accurate within the bounds [0, m̄e].44 This approximation, however, becomes
highly problematic when evaluated outside of this range. (Polynomial interpolations
tend to ‘blow up’ when extended outside the interval on which they are constructed.) endCDC

The reverse shooting algorithm terminates at some finite maximum point m̄, but for
completeness it is useful to have an approximation to the consumption function that is
reasonably well behaved for any m̌ no matter how large.45
Since we know that the consumption function in the presence of uncertainty asymp-

totes to the perfect foresight function, we adopt the following approach. Defining the
level of precautionary saving as46

�c(m) = c̄(m)− c(m), (105)

we know (see the discussion below in appendix section G) that

lim
m→∞ �c(m) = 0. (106)

Defining ~m = m− m̄, a convenient functional form to postulate for the propensity to

44A little bit of work is required to obtain a good representation all the way down to 0; see the
software for the solution.

45An extrapolation of the approximating interpolation will not perform well; a polynomial
approximation will inevitably “blow up” if evaluated at large enough m̌.

46Mnemonic: This is the amount of consumption that is cancelled as a result of uncertainty.
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precautionary-save is

�c(m) = eφ0−φ1 ~m + eγ0−γ1 ~m (107)

with derivatives

�c
′(m) = −φ1e

φ0−φ1 ~m − γ1e
γ0−γ1 ~m

�c
′′(m) = φ2

1e
φ0−φ1 ~m + γ2

1e
γ0−γ1 ~m

�c
′′′(m) = −φ3

1e
φ0−φ1 ~m − γ3

1e
γ0−γ1 ~m.

(108)

Evaluated at m̄ (for which �c and its derivatives will have numerical values assigned by
the reverse-shooting solution method described above), this is a system of four equations
in four unknowns and, though nonlinear, can be easily solved for values of the φ and γ
coefficients that match the level and first three derivatives of the “true” �c function.47 beginCDC

An alternative approximation can be obtained by defining an ‘inverted’ value function
which is much closer to being linear. Using �ρ = 1− ρ, we define

n(m) = (�ρv)1/�ρ (109)

which has many useful properties, among them that as v → ∞, n → 0. The values of
{n, n′, n′′} can be computed at the same points for which values of v and its derivatives
were constructed using the reverse-shooting method. Outside of the interval, we can use
the consumption function to produce n by numerical integration from the boundaries of
the interval.

To complete this scheme, we will need the derivatives:

n′ = (�ρv)(1/�ρ)−1v′

= (n�ρ)(1/�ρ)−1u′

n′′ = �ρ((1/�ρ)− 1)(n�ρ)(1/�ρ)−2(u′)2 + (�ρv)(1/�ρ)−1u′′κκκ.

(110)

along with the limits:

lim
m→0

n(m) = 0

lim
m→0

n′(m) = lim
m→0

(κ̄em)−ρ(�ρv)
1−�ρ

�ρ

= lim
m→0

(κ̄em)−ρ(�ρ(u(κ̄em) + βΓ1−ρ Et[v•t+1]))
ρ

1−ρ

= lim
m→0

(κ̄em)−ρ(�ρ(u(κ̄em) + βΓ1−ρ0vut+1(m(1− κ̄e))))
ρ

1−ρ

= lim
m→0

(κ̄em)−ρ(�ρ(u(κ̄em) + βΓ1−ρ0u(m(1− κ̄e)κ̄e)v))
ρ

1−ρ

= lim
m→0

(κ̄em)−ρ((κ̄em)1/(1−ρ)(1 + βΓ1−ρ0(1− κ̄e)1−ρv))
ρ

1−ρ

= lim
m→0

(1 + βΓ1−ρ0(1− κ̄e)1−ρv)
ρ

1−ρ

(111)

Carroll (Forthcoming) shows that the value function can be bounded for m > 0 by a

47The exact symmetry in the treatment of γ and φ means that there will actually be two symmetrical
solutions; either can be used.
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function of the form
z(m) = η +m1−ρ

z′(m) = (1− ρ)m−ρ

z′′(m) = −ρ(1− ρ)m−ρ−1

(112)

for any η > η = 2i/(1− i).
Thus, dropping arguments we define

w = vz−1

w′ = v′z−1 − vz−2z′

= (v′ − vz−1z′)z−1

w′′ = v′′z−1 − v′z−2z′ − (v′z−2z′ − 2vz−3(z′)2 + vz−2z′′)
=
(
v′′ − 2v′z−1z′ + 2vz−2(z′)2 − vz−1z′′

)
z−1

(113)

Thus, dropping arguments we define

wz = v

w′z + wz′ = v′

w′′z + w′z′ + w′z′ + wz′′ = v′′

w′′z + 2w′z′ + wz′′ = v′′

w′′′z + w′′z′ + 2 (w′′z′ + w′z′′) + w′z′′ + wz′′′ = v′′′

w′′′z + 3w′′z′ + 3w′z′′ + wz′′′ = v′′′

(114)

and w(0) must be computed by application of L’Hopital’s rule from

lim
m→0

w(m) = lim
m→0

(
u(mκ̄) + βvu(m(1− κ̄))

η +m+m1−ρ

)
= u(κ̄) + vu(1− κ̄)

(115)

and

w′(0) =

(
u′(c(m))− w(0)z′

z

)
=

(
u′(c(m))− w(0)(1− (1− ρ)m−ρ)

η +m+m1−ρ

) (116)

w′′′ = (v′′′ − 3w′′z′ − 3w′z′′ − wz′′′)z−1 (117)
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Finally, the limit as m goes to zero will be useful:

w ≡ lim
m→0

(
v(m)

η +m+m1−ρ

)
= lim

m→0

(
v′(m)

1 + (1− ρ)m−ρ

)
= lim

m→0

(
u′(c(m))

1 + (1− ρ)m−ρ

)
= lim

m→0

(
(mκ̄e)−ρ

1 + (1− ρ)m−ρ

)
=

(
(κ̄e)−ρ

(1− ρ)

)
lim
m→0

w′(m) = lim
m→0

(
u′(c(m))− (1 + (1− ρ)m−ρ)v/(η +m+m1−ρ)

η +m+m1−ρ

)
= lim

m→0

(
u′(c(m))− (1 + (1− ρ)m−ρ)w

η +m+m1−ρ

)
= lim

m→0

(
−ρ(κ̄em)−ρ−1κ̄e + ρ(1− ρ)m−ρ−1w

(1 + (1− ρ)m−ρ)

)
= lim

m→0

(
−ρ(κ̄em)−1κ̄e + ρ(1− ρ)m−1w

(1− ρ)

)
= lim

m→0

(
−ρm−1 + ρ(1− ρ)m−1w

(1− ρ)

)
(118)

Another solution is to note that value for this problem is bounded below by the value
that would be experienced by an unemployed consumer and above by the value that
would be experienced by a consumer with the same PDV of income but whose income
was perfectly certain,

v(m) <ve(m) < v̄(m)

0 <ve(m)− v(m) < v̄(m)− v(m)

0 <

(
ve(m)− v(m)

v̄(m)− v(m)

)
︸ ︷︷ ︸

≡ς(m)

< 1
(119)

so that for any m value can be represented by

v(m) = ς(m)(v̄(m)− v(m)) + v(m) (120)

Since v̄ and v are analytical functions, this means that our problem is effectively
reduced to approximating the function ς(m) whose value is bounded in the [0, 1] interval. endCDC

G Modified Formulas For Case Where Γ ≥ R

The text asserts that if Γ < R the consumption function for a finite-horizon employed
consumer approaches the c̄t(m) function that is optimal for a perfect-foresight consumer
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with the same horizon,

lim
m↑∞

c̄t(m)− ct(m) = 0. (121)

This proposition can be proven by careful analysis of the consumption Euler equation,
noting that as m approaches infinity the proportion of consumption will be financed out
of (uncertain) labor income approaches zero, and that the magnitude of the precaution-
ary effect is proportional to the square of the proportion of such consumption financed
out of uncertain labor income.
A footnote also claims that for employed consumers, c(m) approaches a different, but

still well-defined, limit even if Γ ≥ R, so long as the impatience condition holds.
It turns out that the limit in question is the one defined by the solution to a perfect

foresight problem with liquidity constraints. A semi-analytical solution does exist in
this case, but it requires formidable notation and analysis to present and understand, so
the details are not presented here. A continuous-time treatement can be found in Park
(2006).

47



References
Blanchard, Olivier J. (1985): “Debt, Deficits, and Finite Horizons,” Journal of
Political Economy, 93(2), 223–247.

Carroll, Christopher (2020): “Theoretical Foundations of
Buffer Stock Saving,” Econ-ARK REMARK, Available at
https://econ-ark.github.io/BufferStockTheory.

Carroll, Christopher D. (1992): “The Buffer-Stock Theory of Saving: Some
Macroeconomic Evidence,” Brookings Papers on Economic Activity, 1992(2), 61–156,
http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf.

(1997): “Buffer Stock Saving and the Life Cycle/Permanent In-
come Hypothesis,” Quarterly Journal of Economics, CXII(1), 1–56, http:
//econ.jhu.edu/people/ccarroll/BSLCPIH.zip.

(2001): “Death to the Log-Linearized Consumption Euler Equation! (And Very
Poor Health to the Second-Order Approximation),” Advances in Macroeconomics,
1(1), Article 6, http://econ.jhu.edu/people/ccarroll/death.pdf.

(Forthcoming): “Theoretical Foundations of Buffer Stock Saving,” Quantitative
Economics.

(Ongoing): “Mathematica Notebook Illustrating Target Wealth In Cases Where
FHWC-TBS Fails,” ./Code/Mathematica/Examples/ManipulateParameters/When-
FHWC-Holds.nb, Download archive and open Mathematica notebook.

Carroll, Christopher D., and Olivier Jeanne (2009): “A
Tractable Model of Precautionary Reserves, Net Foreign Assets, or
Sovereign Wealth Funds,” NBER Working Paper Number 15228,
http://econ.jhu.edu/people/ccarroll/papers/cjSOE.

Carroll, Christopher D., and Miles S. Kimball (1996): “On the
Concavity of the Consumption Function,” Econometrica, 64(4), 981–992, http:
//econ.jhu.edu/people/ccarroll/concavity.pdf.

(2007): “Precautionary Saving and Precautionary Wealth,”
Palgrave Dictionary of Economics and Finance, 2nd Ed.,
http://econ.jhu.edu/people/ccarroll/papers/PalgravePrecautionary.pdf.

Friedman, Milton A. (1957): A Theory of the Consumption Function. Princeton
University Press.

Hall, Robert E. (1988): “Intertemporal Substitution in Consumption,”
Journal of Political Economy, XCVI, 339–357, Available at
http://www.stanford.edu/~rehall/Intertemporal-JPE-April-1988.pdf.

48

https://econ-ark.github.io/BufferStockTheory
http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf
http://econ.jhu.edu/people/ccarroll/BSLCPIH.zip
http://econ.jhu.edu/people/ccarroll/BSLCPIH.zip
http://econ.jhu.edu/people/ccarroll/death.pdf
http://econ.jhu.edu/people/ccarroll/public/lecturenotes/consumption/TractableBufferStock.zip
http://econ.jhu.edu/people/ccarroll/papers/cjSOE
http://econ.jhu.edu/people/ccarroll/concavity.pdf
http://econ.jhu.edu/people/ccarroll/concavity.pdf
http://econ.jhu.edu/people/ccarroll/papers/PalgravePrecautionary.pdf
http://www.stanford.edu/~rehall/Intertemporal-JPE-April-1988.pdf


Judd, Kenneth L. (1998): Numerical Methods in Economics. The MIT Press,
Cambridge, Massachusetts.

Kimball, Miles S. (1990): “Precautionary Saving in the Small and in the Large,”
Econometrica, 58, 53–73.

Park, Myung-Ho (2006): “An Analytical Solution to the Inverse Consumption
Function with Liquidity Constraints,” Economics Letters, 92, 389–394.

Parker, Jonathan A., and Bruce Preston (2005): “Precautionary Saving and
Consumption Fluctuations,” American Economic Review, 95(4), 1119–1143.

Summers, Lawrence H. (1981): “Capital Taxation and Accumulation in a
Life Cycle Growth Model,” American Economic Review, 71(4), 533–544, http:
//www.jstor.org/stable/1806179.

Toche, Patrick (2005): “A Tractable Model of Precautionary
Saving in Continuous Time,” Economics Letters, 87(2), 267–272,
http://ideas.repec.org/a/eee/ecolet/v87y2005i2p267-272.html.

49

http://www.jstor.org/stable/1806179
http://www.jstor.org/stable/1806179
http://ideas.repec.org/a/eee/ecolet/v87y2005i2p267-272.html

	The Microeconomic Consumer's Problem
	The Unemployed Consumer's Problem
	The Employed Consumer's Problem
	Unemployment Risk as a Mean Preserving Spread in Human Wealth
	First Order Optimality Condition
	Analysis and Intuition of Consumption Growth
	Finding the Target
	Upper Bounds for , Given Other Parameters
	Why Increased Unemployment Risk Increases Effective Growth Impatience
	The Target Level of me
	Conditions Required for a Perfect Foresight Solution; Existence of Target me
	The Phase Diagram
	The Consumption Function
	Expected Consumption Growth Is Downward Sloping in me
	Summing Up the Intuition
	Death to the Log-Linearized Consumption Euler Equation!
	A Final Experiment


	A Macroeconomic Interpretation
	Stakes
	A `Stake' That Yields a Representative Agent
	No Stake

	Unemployment Insurance

	Approximate Formula for Consumption Growth
	Conditions for a Target to Exist
	Using the Phase Diagram Loci
	A Target Always Exists When Human Wealth Is Infinite
	Conditions Under Which a Target Exists When Human Wealth is Finite
	Solutions Exist Even When Growth Impatience Fails

	The Exact Formula for Target m
	Approximating Target m
	Numerical Solution
	The Consumption Function
	The Value Function

	The Algorithm
	Modified Formulas For Case Where R

