$^{\scriptsize C}$ February 7, 2021, Christopher D. Carroll

The Random Walk Model of Consumption

This handout derives the Hall (1978) random walk proposition for consumption.

The consumption Euler equation when future consumption is uncertain takes the form 1

$$\mathbf{u}'(c_t) = \beta \mathsf{R} \, \mathbb{E}_t[\mathbf{u}'(c_{t+1})]. \tag{1}$$

Suppose the utility function is quadratic:

$$u(c) = -(1/2)(\not c - c)^2$$
(2)

where \not{e} is the "bliss point" level of consumption.² Marginal utility is

$$\mathbf{u}'(c) = (\not c - c) \tag{3}$$

and suppose further that $R\beta = 1$ so that (1) becomes

$$(\not c - c_t) = \mathbb{E}_t [(\not c - c_{t+1})]$$

$$\mathbb{E}_t [c_{t+1}] = c_t.$$

$$(4)$$

Defining the innovation to consumption as

$$\epsilon_{t+1} = c_{t+1} - c_t, \qquad (5)$$
$$\equiv \Delta c_{t+1},$$

the random walk proposition is simply that the expectation of consumption changes is zero:

$$\mathbb{E}_t[\Delta c_{t+1}] = 0. \tag{6}$$

This means that no information known to the consumer when the consumption choice c_t was made can have any predictive power for how consumption will change between period t and t + 1 (or for any date beyond t + 1).

References

HALL, ROBERT E. (1978): "Stochastic Implications of the Life-Cycle/Permanent Income Hypothesis: Theory and Evidence," *Journal of Political Economy*, 96, 971–87, Available at http://www.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.

RandomWalk

¹See handout Envelope for the derivation of the Euler equation in the perfect foresight case; we will show later that the consequence of uncertainty is simply to insert the expectations operator.

²Assume that the consumer is sufficiently poor that it will be impossible for them ever to achieve consumption as large as $\not e$.