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Consumption Models with Habit Formation

1 The Problem
Consider a consumer whose goal at date t is to solve the problem1

max
T−t∑
n=0

βnu(ct+n, ht+n) (1)

where ht+n is the habit stock, and all other variables are as usually defined. The DBC
is

mt+1 = (mt − ct)R + yt+1. (2)

However, when habits affect utility we must also specify a process that describes how
habits evolve over time. Our assumption will be:

ht+1 = ct. (3)

Bellman’s equation for this problem is therefore

vt(mt, ht) = max
{ct}

u(ct, ht) + βvt+1((mt − ct)R + yt+1, ct). (4)

To clarify the workings of the Envelope theorem in the case with two state variables,
let’s define a function

vt(mt, ht, ct) = u(ct, ht) + βvt+1((mt − ct)R + yt+1, ct) (5)

and define the function ct(mt, ht) as the choice of ct that solves the maximization (4),
so that we have

vt(mt, ht) = vt(mt, ht, ct(mt, ht)). (6)

1.1 Optimality Conditions
1.1.1 The First Order Condition

The first order condition for (4) with respect to ct is (dropping arguments for brevity
and denoting the derivative of f with respect to x at time t as fxt ):

0 = uct + β
(
vht+1 − Rvmt+1

)
(7)

or, equivalently,

uct = β
(
Rvmt+1 − vht+1

)
. (8)

The intuition is as follows. Note first that if utility is not affected by habits, then
vht+1 = 0 and equation (8) reduces to the usual first order condition for consumption,

1This handout is a simplified version of Carroll (2000).
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which tells us that increasing consumption by ε today and reducing it by Rε in the
next period must not change expected discounted utility. With habits, an increase in
consumption today has a consequence beyond its effect on tomorrow’s resources mt+1:
tomorrow’s habit stock will be changed as well. An increase in consumption today of
size ε increases the size of the habit stock which tomorrow’s consumption is compared to,
and therefore reduces tomorrow’s utility by an amount corresponding to the marginal
utility of higher habits tomorrow vht+1. Since vht+1 is negative (higher habits make utility
lower), this tells us that the RHS of equation (8) will be a larger positive number than
it would be without habits. This means that the level of ct that satisfies the first order
condition will be a lower number (higher marginal utility) than before. Hence, habits
increase the willingness to delay spending, and increase the saving rate.

Note that the first order condition also implies that
dvt
dct

= 0 (9)

when evaluated at ct = ct(mt, ht).

1.1.2 Envelope Conditions

Now consider the total derivative of vt(mt, ht, ct(mt, ht)) with respect to mt. (To reduce
clutter, I will write dct(mt, ht)/dmt as dct/dmt). The chain rule tells us that

dvt
dmt

=
dct
dmt

uct +

=0︷︸︸︷
dht
dmt

uht + β

(
(
dct
dmt

)(vht+1 − Rvmt+1) + Rvmt+1

)
=

(
dct
dmt

)
(uct + β

(
vht+1 − Rvmt+1

)
)︸ ︷︷ ︸

=0 at ct = ct(mt, ht) from (7)

+βRvmt+1

(10)

so we have that

vmt =
dvt
dmt

|ct=ct(mt,ht)

= βRvmt+1.

(11)

The Envelope theorem is the shortcut way to obtain this conclusion. The clearest way
to use the theorem is by taking the partial derivatives of the vt function with respect
to each of its three arguments, using the Chain Rule to take into account the possible
dependency of ht and ct on mt:

vt(mt, ht) = vt(mt, ht, ct(mt, ht))

vmt =
∂vt
∂mt

+
∂vt
∂ht

∂ht
∂mt︸︷︷︸
=0

+
∂vt
∂ct︸︷︷︸
=0

∂ct
∂mt

+
∂vt
∂ct

∂ct
∂ht

∂ht
∂mt︸︷︷︸
=0

(12)

where the Envelope theorem is what tells you that the ∂vt/∂ct term is equal to zero
because you are evaluating the function at ct = ct(mt, ht) (and ∂ht/∂mt is zero by the
assumed structure of the problem in which ht is predetermined).
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Now writing out ∂vt/∂mt, (12) becomes

vmt =
∂

∂mt

[βvt+1((mt − ct)R + yt+1, ht+1)] (13)

which the envelope theorem says is equivalent to

vmt = βRvmt+1. (14)

There is a potentially confusing thing about doing it this way, however: when you reach
an expression like (13) it is tempting to think to yourself as follows: “ct is a function
of mt, and ht+1 = ct is also indirectly a function of mt, so the chain rule tells me that
when I take the derivative in (13) I need to keep track of these.” In fact, you must treat
∂ct/∂mt and ∂ht+1/∂mt as zero here. The reason is that this is a partial derivative with
respect to mt. The dependence of ct (and indirectly ht+1) on mt has already been taken
care of in the two terms in (12) that were equal to zero. The confusion here is caused
largely by the fact that partial differentiation is an area where standard mathematical
notation is basically confusing and poorly chosen.2
The shortest way to obtain the end result is, as in the single variable problem, to

start with Bellman’s equation and take the partial derivative with respect to mt directly
(treating the problem as though ct were a constant):

vt(mt, ht) = u(ct, ht) + βvt+1((mt − ct)R + yt+1, ht+1)

vmt (mt, ht) = βRvmt+1(mt+1, ht+1).
(15)

Whichever way you do it, substituting (14) into the FOC equation (8) gives

vmt = uct + βvht+1. (16)

The intuition for this is as follows. The marginal value of wealth must be equal to
the marginal value associated with a tiny bit more consumption. In the presence of
habits, the extra consumption yields extra utility today uct but affects value next period
by vht+1 (which is a negative number), the discounted consequence of which from today’s
perspective is the βvht+1 term.
In a problem with two state variables, the Envelope theorem can be applied to each

state (and indeed in general must be applied in order to solve the model).
Again let’s start the brute force way by working through the total derivative of vt.

For this problem, the total derivative (again denoting dct(mt, ht)/dht as dct/dht) is:

dvt
dht

=
dct
dht

uct + uht + β

(
dht+1

dht
vht+1 +

dmt+1

dht
vmt+1

)
=
dct
dht

uct + uht + β

(
dht+1

dct

dct
dht

vht+1 +
dmt+1

dct

dct
dht

vmt+1

)
= uht +

dct
dht

(
uct + β(vht+1 − Rvmt+1)

)︸ ︷︷ ︸
=0 at ct = ct(mt, ht) from (7)

(17)

2Google the string “partial differentiation confusing OCW” to find a fuller description of the problems
of standard notation on partial differentiation.
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so we have

vht =
dvt
dht
|ct=ct(mt,ht)

= uht .

(18)

Turning now to more direct use of the envelope theorem, the Chain Rule tells us

vht =
∂vt
∂mt

=0︷︸︸︷
∂mt

∂ht
+
∂vt
∂ht

+
∂vt
∂ct

∂ct
∂ht

while the Envelope theorem once again says ∂vt/∂ct = 0 at ct = ct(mt, ht) so we obtain

vht =
∂vt
∂ht

= uht

(19)

since ht appears directly only in the u(ct, ht) part of vt(mt, ht, ct). And once again,
the shortest way to the answer is to treat ct as though it were a constant in the value
function, which yields

vt(mt, ht) = u(ct, ht) + βvt+1((mt − ct)R + yt+1, ct)

vht (mt, ht) = uht .
(20)

From (16) this implies that

vmt = uct + βuht+1. (21)

Roll this equation forward one period and substitute into equation (14) to obtain:

uct + βuht+1 = Rβ
[
uct+1 + βuht+2

]
(22)

Note that if uht+1 = uht+2 = 0 so that habits have no effect on utility, (22) again is solved
by the standard time-separable Euler equation.
Now assume that the utility function takes the specific form

u(c, h) = f(c− αh) (23)

which implies derivatives of

uc = f ′

uh = −αf ′.
(24)

Substituting these into equation (22) we obtain,

f ′t − αβf ′t+1 = Rβ[f ′t+1 − αβf ′t+2] (25)

Now assume that there is a solution in which marginal utility of consumption grows
at a constant rate over time, f ′t = kf ′t+1 and substitute into (25)

f ′t+1(k − αβ) = Rβ[f ′t+2(k − αβ)]

kf ′t+2(k − αβ) = Rβ[f ′t+2(k − αβ)]

k = Rβ

(26)
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so marginal utility grows at rate 1/Rβ. Note that if we assume α = 0 so that habits do
not matter, we again obtain the standard result that u′(ct) = Rβu′(ct+1).

Now make the final assumption that f(z) = z1−ρ/(1 − ρ), implying of course that
f ′(z) = z−ρ. Equation (26) can be rewritten

1 = Rβ(zt+1/zt)
−ρ (27)

Now expand zt+1/zt

ct+1 − αct
ct − αct−1

=
ct+1/ct − α
1− αct−1/ct

(28)

≈ 1 + ∆ log ct+1 − α
1− α + α∆ log ct

(29)

=
1− α + ∆ log ct+1

1− α + α∆ log ct
(30)

=
1 + (∆ log ct+1)/(1− α)

1 + (α/(1− α))∆ log ct
(31)

≈ 1 +

(
1

1− α

)
(∆ log ct+1 − α∆ log ct) (32)

where (29) follows from (28) because ct+1/ct = 1 + (ct+1 − ct)/ct ≈ 1 + ∆ log ct+1 and
ct−1/ct = (ct− (ct− ct−1))/ct ≈ 1−∆ log ct, and (32) follows from (31) because for small
η and ε, (1 + η)/(1 + ε) ≈ 1 + η − ε.

Substituting (32) into (27) gives

1 ≈ Rβ(1 +

(
1

1− α

)
(∆ log ct+1 − α∆ log ct])

−ρ

0 ≈ log[Rβ]− ρ
(

1

1− α

)
(∆ log ct+1 − α∆ log ct)

∆ log ct+1 ≈ (1− α)ρ−1(r − ϑ) + α∆ log ct.

Thus, this formulation of habit formation implies that the growth rate of consumption
is serially correlated.
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