An Equiprobable Approximation to the Bivariate Lognormal

Economic agents face risks of many kinds, which may mutually covary. A stock broker, for example, is likely to earn a salary bonus that is positively related to the performance of the stock market; if that broker also has personal stock investments, his financial wealth and labor income will be positively correlated.

The first part of this handout presents a convenient (and empirically realistic) formulation in which a consumer faces two shocks (which can be interpreted as a shock to noncapital income and a shock to the rate of return) that are distributed according to a multivariate lognormal that allows for correlation between them. The second part describes a computationally simple and convenient method for approximating that joint distribution.

1 Theory

Consider a consumer who faces both a risk to transitory noncapital income

\[\theta_{1,t+1} \equiv \log \Theta_{1,t+1} \sim \mathcal{N}(-0.5\sigma_1^2, \sigma_1^2) \] (1)

and a risky log rate-of-return that is affected by following factors: the riskless rate \(r \); a risk premium \(\varphi \); an additional constant \(\zeta \) (whose purpose will become clear below); a component that is linearly related to \(\theta_{1,t+1} \); and an independent shock \(\theta_2 \sim \mathcal{N}(-0.5\sigma_2^2, \sigma_2^2) \):

\[r_{t+1} \equiv \log R_{t+1} = r + \varphi + \zeta + \omega \theta_{1,t+1}(\sigma_2/\sigma_1) + \theta_{2,t+1} \] (2)

for some constant \(\omega \). Since \((\sigma_2/\sigma_1)\omega \theta_{1,t+1} \) is the only component of \(r_{t+1} \) that covaries with \(\theta_{1,t+1} \),

\[
\text{cov}(\theta_{1,t+1}, r_{t+1}) = \text{cov}(\theta_{1,t+1}, (\sigma_2/\sigma_1)\omega \theta_{1,t+1}) \\
= \omega (\sigma_2/\sigma_1) \text{cov}(\theta_{1,t+1}, \theta_{1,t+1}) = \omega^2 \sigma_1^2.
\]

Equation (2) yields a description of the return process in which the parameter \(\omega \) controls the correlation between the risky log return shock and the risky log labor income shock. If \(\omega = 0 \) the processes are independent.

Now we want to find the value of \(\zeta \) such that the mean risky return is unaffected by \(\sigma_2^2 \) (so that we will be able to understand clearly the distinct effects of labor income risk, the independent component of rate-of-return risk \(\sigma_2^2 \), and the correlation between

1The assumed distribution has the property \(\mathbb{E}[\Theta_{1,t+1}] = 1 \), cf. MathFacts.
labor income risk and rate-of-return risk, \(\omega \). Thus, we want to find the \(\zeta \) such that
\[
E_t[R_{t+1}] = e^{r+\varphi}
\] (3)
regardless of the values of \(\sigma_1^2 \) and \(\sigma_2^2 \). We therefore need:
\[
E[e^{\zeta+(\sigma_2/\sigma_1)\omega\theta_{1,t+1}+\theta_{2,t+1}}] = 1. \tag{4}
\]
\[
\log E[e^{\zeta+(\sigma_2/\sigma_1)\omega\theta_{1,t+1}+\theta_{2,t+1}}] = 0. \tag{5}
\]
Using standard facts about lognormals (cf. MathFacts), and for convenience defining \(\hat{\omega} = (\sigma_2/\sigma_1)\omega \), we have
\[
0 = \zeta - 0.5\hat{\omega}\sigma_1^2 - 0.5\sigma_2^2 + 0.5\hat{\omega}^2\sigma_1^2 + 0.5\sigma_2^2 \tag{6}
\]
\[
= \zeta - 0.5\sigma_1^2\hat{\omega}(1 - \hat{\omega}) \tag{7}
\]
\[
\zeta = 0.5(\hat{\omega} - \omega^2)\sigma_1^2 = 0.5(\omega\sigma_2\sigma_1 - \omega^2\sigma_2^2). \tag{8}
\]

2 Computation

A key step in the computational solution of any model with uncertainty is the calculation of expectations. Writing \(\hat{\Theta}_1 \equiv \hat{\Theta}_{1,t+1} \) and \(\hat{R} \equiv R_{t+1} \) and \(E[\bullet] = E_t[\bullet_{t+1}] \), the expectation of some function \(h \) that depends on the realization of the risky return \(\hat{R} \) and the labor income shock is:
\[
E[h(\hat{\Theta}_1, \hat{R})] = \int_{\hat{\Theta}_1} \int_{\hat{R}} h(\hat{\Theta}_1, \hat{R}) dF(\hat{\Theta}_1, \hat{R}) \tag{9}
\]
where \(F(\hat{\Theta}_1, \hat{R}) \) is the joint cumulative distribution function. Standard numerical computation software can compute this double integral, but at such a slow speed as to be almost unusable. Computation of the expectation can be massively speeded up by advance construction of a numerical approximation to \(F(\hat{\Theta}_1, \hat{R}) \).

Such approximations generally take the approach of replacing the distribution function with a discretized approximation to it; appropriate weights \(w_{i,j} \) are attached to each of a finite set of points indexed by \(i \) and \(j \), and the approximation to the integral is given by:
\[
E[h(\hat{\Theta}_1, \hat{R})] \approx \sum_{i=1}^{n} \sum_{j=1}^{m} h(\hat{\Theta}_1[i,j], \hat{R}[i,j])w[i,j] \tag{10}
\]
where the \(\hat{\Theta}_1 \) and \(\hat{R} \) matrices contain the conditional means of the two variables in each of the \(\{i, j\} \) regions. Various methods are used for constructing the weights \(w[i,j] \) and the nodes (the \(i \) and \(j \) points for \(\Theta_1 \) and \(R \)).

Perhaps the most popular such method is Gauss-Hermite interpolation (see Judd (1998) for an exposition, or Kopecky and Suen (2010) for some alternatives). Here, we will pursue a particularly intuitive alternative: Equiprobable discretization. In
this method, \(m = n \) and boundaries on the joint CDF are determined in such a way as to divide up the total probability mass into submasses of equal size (each of which therefore has a mass of \(n^{-2} \)). This is conceptually easier if we represent the underlying shocks as statistically independent, as with \(\theta_{1,t+1} \) and \(\theta_{2,t+1} \) above; in that case, each submass is a square region in the \(\Theta_1 \) and \(\Theta_2 \) grid. We then compute the average value of \(\Theta_1 \) and \(R \) conditional on their being located in each of the subdivisions of the range of the CDF. Since, in this specification, \(R \) is a function of \(\Theta_1 \), the \(R \) values are indexed by both \(i \) and \(j \), but since we have written \(\Theta_1 \) as IID, the representation of the approximating summation is even simpler than (10):

\[
\mathbb{E}[h(\hat{\Theta}_1, \hat{R})] \approx n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} h(\hat{\Theta}_1[i], R(\hat{\Theta}_1[i], \hat{\Theta}_2[j]))
\]

where the function \(R(\Theta_1, \Theta_2) \) is implicitly defined by (2).

Details can be found in the Mathematica notebook associated with this handout.

A particular example, in which \(\sigma_2^2 = \sigma_1^2 \) and \(\omega = 0.5 \), is illustrated in figure 1; the red dots reflect the height of the approximation to the CDF above the conditional mean values for \(\Theta_1 \) and \(R \) within each of the equiprobable regions.
References
