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Dynamics of Consumption with Time Varying R
The intertemporal budget constraint for an infinite-horizon representative agent can

be written as

Pt(C) = Bt +

≡Ht︷ ︸︸ ︷
Pt(Y )

= Ot

(1)

where Bt is the consumer’s beginning-of-period stock of physical assets, Ht is human
wealth, and Ot is total wealth, human and nonhuman.
Rt+1 is the riskless, but time-varying, return factor at t+ 1, and so we can define the

dynamic budget constraint for total wealth as

Ot+1 = (Ot − Ct)Rt+1. (2)

Campbell and Mankiw (1989) show that the dynamic budget constraint can be manip-
ulated to generate an expression relating the current levels of wealth and consumption
to future interest rates. First, divide both sides of (2) by Ot to obtain(

Ot+1

Ot

)
=

(
1 − Ct

Ot

)
Rt+1

∆ot+1 ≈ rt+1 + log(1 − exp(ct − ot)),

(3)

where the lower-case variables represent the logarithms of their upper-case equivalents.
Define xt ≡ ct − ot and assume that any variations in interest rates over time are
stationary, limn→∞ Et[Rt+n] = R. In this case, the ratio of consumption to total wealth
xt will be a stationary variable. It seems reasonable, therefore, to consider a Taylor
expansion of the DBC around the steady-state value for ct− ot, which we will designate
as x

∆ot+1 ≈ rt+1 + log(1 − exp(xt))

≈ rt+1 + log(1 − exp(x)) +

(
d

dx
log(1 − exp(x))

)
(xt − x)

= rt+1 + log(1 − exp(x)) −
(

exp(x)

1 − exp(x)

)
(xt − x),

(4)

or, for simplicity defining a constant ξ = 1 − exp(x) (which will be a number slightly
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less than one)

∆ot+1 ≈ rt+1 + log ξ +

(
1 − exp(x) − 1

ξ

)
(xt − x)

= rt+1 + log ξ +

(
ξ − 1

ξ

)
(xt − x)

= rt+1 + log ξ +

(
1 − 1

ξ

)
(xt − x)

= log ξ − (1 − 1/ξ)x+ rt+1 +

(
1 − 1

ξ

)
(ct − ot)

= log ξ − (1 − 1/ξ) log ξ︸ ︷︷ ︸
≡k

+rt+1 +

(
1 − 1

ξ

)
(ct − ot)

= k + rt+1 +

(
1 − 1

ξ

)
(ct − ot).

(5)

But the definition of the change in wealth is

∆ot = ot+1 − ot

= ot+1 − ct+1 + ct+1 − ct + ct − ot

= ∆ct+1 + (ct − ot) − (ct+1 − ot+1)

(6)

Now set (6) equal to (5) and solve for ct − ot to get

∆ct+1 + (ct − ot) − (ct+1 − ot+1) = k + rt+1 +

(
1 − 1

ξ

)
(ct − ot)

(ct − ot)

[
1 −

(
1 − 1

ξ

)]
= k + rt+1 + (ct+1 − ot+1)

ct − ot = ξ(rt+1 − ∆ct+1) + ξ(ct+1 − ot+1) + ξk.

(7)

Of course, an equivalent expression can be derived for ct+1−ot+1; repeated substitution
leads to

ct − ot = ξ(rt+1 − ∆ct+1) + ξ(ξ(rt+2 − ∆ct+2) + ξ(ct+2 − ot+2) + ξk) + ξk

=
∞∑
j=1

ξj(rt+j − ∆ct+j) + ξk/(1 − ξ).

This equation is interesting: It says that the ratio of consumption to wealth today
(that is, the log difference) must equal the discounted value of the rate of return on
wealth minus the growth rate of consumption, plus a constant term. Thus, holding
consumption growth and current wealth constant, higher future interest rates must
correspond to higher current consumption. This is just the income effect: If interest
rates are higher and future consumption growth the same, you will have more lifetime
resources and therefore must spend more today if all resources are to be exhausted (as
the IBC requires). Alternatively, if you will have fast consumption growth in the future,
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you need to have either low consumption today or higher interest rates in the future to
earn the income required to finance that fast consumption growth.

This equation is purely the result of the dynamic budget constraint; so far we have
said nothing about how consumption is chosen. Now consider a perfect-foresight CRRA
utility u(c) = c1−ρ/(1 − ρ) model with risk aversion ρ, which implies the Euler equation(

Ct+1

Ct

)
= (Rt+1β)1/ρ

∆ct+1 = ρ−1 log β︸ ︷︷ ︸
≡µ

+ρ−1rt+1

(8)

where ρ−1 is the intertemporal elasticity of substitution. This equation for consumption
growth can be substituted into (8), to generate

ct − ot = (1 − ρ−1)
∞∑
j=1

ξjrt+j + ξ(k − µ)/(1 − ξ). (9)

All of these results were derived under the assumption of perfect foresight: Interest
rates vary over time, but the consumer knows in advance what the pattern of variation
will be. If we wish to allow for truly stochastic interest rates, things get somewhat more
complicated. Recall that if interest rates are fixed at R and income grows by factor G
from period to period, human wealth is

Ht =

(
Yt

1 − G/R

)
≈
(

Yt
r − g

)
.

(10)

Summers (1981) showed that a permanent change in interest rates has an enormous
effect on the value of human wealth. In a model with stochastic interest rates, there is
still a large human wealth effect even if interest rates eventually return to some ‘natural’
rate following a shock. Thus, a proper analysis of the effect of changes in interest rates
must take account of the effect of that change not only on the expectations of future
interest rates on the RHS of (9) but also on the level of total wealth ot on the LHS of
that equation.
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