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Abstract 

Economists working with numerical solutions to the optimal consumption/saving 
problem under uncertainty have long known that there are quantitatively important 
interactions between liquidity constraints and precautionary saving behavior. This 
paper provides the analytical basis for those interactions. First, we explain why 
the introduction of a liquidity constraint increases the precautionary saving motive 
around levels of wealth where the constraint becomes binding. Second, we pro-
vide a rigorous basis for the oft-noted similarity between the e ects of introducing 
uncertainty and introducing constraints, by showing that in both cases the e ects 
spring from the concavity in the consumption function which either uncertainty or 
constraints can induce. We further show that consumption function concavity, once 
created, propagates back to consumption functions in prior periods. Finally, our 
most surprising result is that the introduction of additional constraints beyond the 
first one, or the introduction of additional risks beyond a first risk, can actually re-
duce the precautionary saving motive, because the new constraint or risk can ‘hide’ 
the e ects of the preexisting constraints or risks. 
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1 Introduction 

In the past decade, numerical solutions to the optimal consumption/saving prob-
lem have become the standard theoretical tool for modelling consumption behavior. 
Numerical solutions have become popular because analytical solutions are not avail-
able for realistic descriptions of utility and uncertainty, nor for the plausible case 
where consumers face both liquidity constraints and uncertainty. 

A drawback to numerical solutions is that it is often diÿcult to determine why 
results come out the way they do. A leading example of this problem comes in the 
relationship between precautionary saving behavior and liquidity constraints. At 
least since Zeldes 1984, economists working with numerical solutions have known 
that liquidity constraints can strictly increase precautionary saving under very gen-
eral circumstances - even for consumers with quadratic utility functions that provide 
no inherent precautionary saving motive.1 On the other hand, simulation results 
have sometimes seemed to suggest that liquidity constraints and precautionary sav-
ing are substitutes rather than complements. For example, Samwick 1995 has shown 
that unconstrained consumers with a precautionary saving motive in a retirement 
saving model behave in ways qualitatively and quantitatively similar to the behavior 
of liquidity constrained consumers facing no uncertainty. 

This paper provides the theoretical tools needed to make sense of the interac-
tions between liquidity constraints and precautionary saving. These tools provide 
a rigorous theoretical foundation that can be used to clarify the reasons for the 
numerical literature’s apparently contrasting findings. 

For example, one of the paper’s simpler points is a proof that when a liquidity 
constraint is added to the standard consumption problem, the resulting value func-
tion exhibits increased prudence around the level of wealth where the constraint 
becomes binding. (Kimball 1990 defines prudence of the value function and shows 
that it is the key theoretical requirement to produce precautionary saving.) Con-
straints induce precaution basically because constrained agents have less flexibility 
in responding to shocks because the e ects of the shocks cannot be spread out over 
time; thus risk has a bigger negative e ect on expected utility (or value) for con-
strained agents than for unconstrained agents. The precautionary saving motive is 
heightened by the desire (in the face of risk) to make such constraints less likely to 
bind. 

At a deeper level, we show that the e ect of a constraint on prudence is an 
example of a more general theoretical result: Prudence is induced by concavity of 
the consumption function. Since a constraint causes consumption concavity around 
the point where the constraint binds, adding a constraint necessarily boosts pru-
dence around that point. We show that this concavity-boosts-prudence result holds 
not just for quadratic utility functions but for any utility function in the Hyper-
bolic Absolute Risk Aversion (HARA) class (which includes Constant Relative Risk 

1For a detailed but nontechnical discussion of simulation results on the relation between liquid-
ity constraints and precautionary saving, see Carroll 2001. For a prominent numerical examination 
of some of the interactions between precautionary saving and liquidity constraints, see Deaton 1991, 
who also provides conditions under which the problem defines a contraction mapping. 
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Aversion, Constant Absolute Risk Aversion, and most other commonly used forms). 
These results tie in closely with findings in our previous paper, Carroll and 

Kimball 1996, which shows that within the HARA class, the introduction of uncer-
tainty causes the consumption function to become strictly concave (in the absence 
of constraints) for all but a few carefully chosen combinations of utility function and 
uncertainty. Indeed, taken together, the results of the two papers can be seen as 
establishing rigorously the sense in which precautionary saving and liquidity con-
straints are very close substitutes.2 In this paper, in fact, we provide an example 
of a specific kind of uncertainty that (under CRRA utility, in the limit) induces a 
consumption function that is pointwise identical to the consumption function that 
would be induced by the addition of a liquidity constraint. 

We further show that, once consumption concavity is induced (either by a con-
straint or by uncertainty), it propagates back to periods before the period in which 
the concavity is first created.3 But in the quadratic utility case the propagation 
is rather subtle: the prior-period consumption rules are concave (and prudence is 
higher) at any level of wealth from which it is possible that the constraint will 
bind, but also possible that it may not bind. Precautionary saving takes place in 
such circumstances because a bit more saving can reduce the probability that the 
constraint will bind. 

The fact that precautionary saving arises from the possibility that constraints 
might bind may help to explain why such a high percentage of households cite 
precautionary motives as the most important reason for saving (Kennickell and 
Lusardi 1999) even though the fraction of households who report actually having 
been constrained in the past is relatively low (Jappelli 1990). 

Our final theoretical contribution is to show that the introduction of further 
liquidity constraints beyond the first one may actually reduce precautionary saving 
by ‘hiding’ the e ects of the preexisting constraint(s); identical logic implies that 
uncertainty can hide the e ects of a constraint, because the consumer may need to 
save so much for precautionary reasons that the constraint becomes irrelevant. For 
example, a typical perfect foresight model of retirement consumption for a consumer 
with Social Security income implies that the legal constraint on borrowing against 
Social Security benefits will cause the consumer to run assets down to zero, then 
set consumption equal to income for the remainder of life. Now consider adding the 
possibility of large medical expenses near the end of life (e.g. nursing home fees). 
Under reasonable assumptions the consumer may save enough against this risk to 
render the constraint irrelevant. 

The rest of the paper is structured as follows. To fix notation and ideas, the 
next section presents a very brief review of the logic of precautionary saving in the 
standard case (without liquidity constraints). The third section sets out our general 
theoretical framework. The fourth section shows that concavity of the consump-

2See Fernandez-Corugedo 2000 for a related demonstration that ‘soft’ liquidity constraints 
bear an even closer resemblance to precautionary behavior. Mendelson and Amihud ? provide an 
impressive treatment of a similar problem. 

3Our previous paper showed that the concavity induced by uncertainty propagated backwards, 
but the proofs in that paper cannot be applied to concavity created by a liquidity constraint. 
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tion function heightens prudence. The fifth section shows how concavity, whether 
induced by constraints or uncertainty, propagates to previous periods. Section 6 
shows how the introduction of a constraint creates a precautionary saving motive 
for consumers with quadratic utility, and how that precautionary motive propagates 
backwards; it also shows that the introduction of additional liquidity constraints be-
yond the first constraint does not necessarily further increase (and can even reduce) 
the precautionary motive at any given level of wealth. The next section examines 
the e ects of introducing a constraint when utility is of the CRRA form, and con-
tains our example in which a constraint and uncertainty have identical e ects on 
the consumption function. It uses this example to make the point that introduction 
of uncertainty can hide the e ects of constraints or preexisting uncertainty. The 
final section concludes. 

2 A Brief Review 

We begin with a very brief review of the logic of precautionary saving in the two-
period case; with minor modifications this two-period model is directly applicable 
to the multiperiod case when the second period utility function is interpreted as the 
value function arising from optimal behavior from time t + 1 on. 

Consider a consumer with initial wealth wt who anticipates uncertain future 
income yt+1 = ȳ + ζt+1 where ζt+1 is stochastic. This consumer solves the uncon-
strained optimization problem 

max u(ct) + Et [Vt+1(wt − ct + ȳ + ζt+1)] , (1) 
{ct} 

or, equivalently, 
max u(wt − st) + Et [Vt+1(st + ȳ + ζt+1)] . (2) 
{st} 

The familiar first-order condition for this problem is to set u ′ (ct) = Et[Vt 

′ 

+1(wt − 
ct + ȳ + ζt+1)] or, equivalently, u ′ (wt − st) = Et[Vt 

′ 

+1(st + ȳ + ζt+1)]. 
Figure 1 shows a standard example of this problem in which both u and Vt+1 

are Constant Relative Risk Aversion (CRRA) utility functions. The consumer is 
assumed to start period t with amount of wealth wt. The horizontal axis represents 
the choice of how much the consumer saves in period t, and the upward-sloping 
curve labelled u ′ (wt − st) reflects the period-t marginal utility of the consumption 
(wt −st) associated with that choice of saving. The downward-sloping curve labelled 
Vt 

′ 

+1(st + y) reflects the marginal value the consumer would experience in period 
t + 1 as a function of saving st in the previous period if she were perfectly certain 
to receive income y in period t + 1. This curve is downward-sloping as a function 
of st because the more the consumer saves in period t, the more is available for 
consumption in period t + 1 and thus the lower is the marginal utility of spending 
in t + 1. In this perfect-certainty case, the utility-maximizing level of consumption 
is found at the point of intersection between the u 

′ 
(wt − st) and the Vt 

′ 

+1(st + y) 
curves, i.e. the level of saving that equalizes the current and future marginal utility 
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Figure 1: Determining Consumption in the Two Period Case Given Initial Wealth 
wt 

of consumption. In the CRRA case where the period-utility functions u(c) and 
Vt+1(wt+1) are identical, the optimal solution is to consume exactly half of total 
lifetime resources in the first period; the point labelled s̄  reflects this level of saving. 

In the case where period t + 1 income is uncertain, first-period marginal utility 
must be equated to the expectation of the second-period marginal value function. 
That expectation will be a convex combination of the marginal values associated 
with each possible outcome, where the weights on each outcome are given by the 
probability of that outcome. For illustration, suppose there is a 0.5 probability that 
the consumer will receive income y + η and a 0.5 probability that she will receive 
income y −η. Since the probability of each outcome is 1/2, the consumer’s expected 
marginal value function for each st will be traced out by the midpoint of the line 
segment connecting V 

′ 
(st + ȳ + η) and V 

′ 
(st + ȳ  − η). Figure 2 illustrates the t+1 t+1 

construction of the Et[Vt 

′ 

+1(st +ȳ+ζt+1)] curve; for example, if the consumer chooses 
to save st = s, then her expected marginal value in the second period is given by 
.5V 

′ 
(s̄ + y + η) + .5V 

′ 
(s̄ + y − η), as shown in the figure. t+1 t+1 

The expected marginal value function traced out by this convex combination 
of the good and bad outcomes is reproduced and labelled Et[Vt 

′ 

+1(st + ȳ + ζt+1)] 
in figure 1. The optimal level of saving s ∗ under uncertainty is simply the level 
of st at the intersection of u ′ (wt − st) and Et[Vt 

′ 

+1(st + ȳ + ζt+1)], where the first 
order condition is satisfied. The magnitude of precautionary saving is the amount 
by which saving rises from the riskless case (s̄) to the risky case (s ∗). 
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Figure 2 illustrates the simple point that the magnitude of precautionary sav-
ing is related to the degree of convexity of the marginal value function. Jensen’s 
inequality guarantees that if V 

′ 
is strictly convex, then Et[V 

′ 
(st + ȳ + ζt+1)] >t+1 t+1 

Vt 

′ 

+1(st + Et[ȳ + ζt+1]) and consequently the intersection with u ′ (wt − st) will occur 
at a higher value of first-period saving. Clearly, if Vt 

′ 

+1 were linear (as is true in 
the case of quadratic utility in the absence of liquidity constraints), mean-zero risks 
in period t + 1 would not a ect the expectation of the marginal value function, 
because the curve generated by the ‘convex combination’ would lie atop the original 
marginal value function. Thus, the convexity in the marginal value function creates 
a precautionary saving motive. 

Formally, Kimball 1990 shows that the prudence of the value function (defined 
as −V ′′′ (w)/V ′′ (w)) measures the convexity of the marginal value function at w 
and therefore the intensity of the precautionary saving motive at that point. To be 
precise, given two di erent value functions V (w) and V̂ (w), if the absolute prudence 

V ′′′ (w)/V̂  ′′ (w) > −V ′′′ (w)/V ′′ (w)) of V̂ (w) is greater than for V (w) (that is, if − ̂  

then the addition of a risk causes a greater rightward shift of expected V̂  ′ (w) than 
of expected V 

′ 
(w). As figure 2 suggests, a greater rightward shift tends to produce 

a greater increase in precautionary saving. 
Thus, to analyze the multiperiod case, we need to be able to characterize the 

degree of convexity of the marginal value function or the prudence of the value 
function.4 

3 The Setup 

Before stating and proving our main theorems, we need to lay out the basic setup 
of the consumption/saving problem with many periods. Consider a consumer who 
faces some future risks but is not subject to any current or future liquidity con-
straints. Assume that the consumer is maximizing the time-additive present dis-
counted value of utility from consumption u(c). Denoting the (possibly stochastic) 
gross interest rate and time preference factors as Rt ∈ (0, ∞) and βt ∈ (0, ∞), 
respectively, and labelling consumption ct, stochastic labor income yt, and gross 
wealth (inclusive of period-t labor income) wt, the consumer’s problem can be writ-

4In order to use the prudence of the value function to gauge the e ect of a risk in labor income 
at time t + 1, we implicitly assume that this risk is independent of all the other risks realized 
in periods beyond t + 1 that are already built into the shape of Vt+1. In other words, the e ect 
of labor income on the value function must work entirely through its e ect on wealth at time 
t + 1. There are two possible approaches when the realization of yt+1 is correlated with future 
risks, incomes, or rates of return. First, each period could be decomposed into two transitions, 
one where the information is revealed about the distribution of future incomes, rates of return, 
etc. and a second where the labor income at time t + 1 is revealed. The other approach, which, 
when possible, is more powerful, is to capitalize all the future e ects of a shock into wealth at 
time t + 1. This approach is possible when the news revealed is mathematically equivalent to a 
particular e ect on the quantity of an asset in the model. 
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" ! # 
T s X Y 

Vt(wt) = max u(ct) + Et β̃  
j u(c̃s) (3) 

{ct} 
s=t+1 j=t+1 

s.t. wt+1 = Rt+1(wt − ct) + yt+1. 

As usual, the recursive nature of the problem makes this equivalent to the Bell-
man equation: 

Vt(wt) = max u(ct) + Et[β̃  
t+1Vt+1(R̃ 

t+1(wt − ct) + ỹt+1)]. (4) 
{ct} 

Defining 

t(st) = Et[β̃  
t+1Vt+1(R̃ 

t+1st + ỹt+1)] (5) 

where st = wt − ct is the portion of period t resources saved, this becomes6 

Vt(wt) = max u(ct) + t(wt − ct). (6) 
{ct} 

It is also useful to define c̆t(µt), s̆t(µt), and w̆t(µt) as: 

′−1(µt),c̆t(µt) = u (7) 

s̆t(µt) = t 

′−1(µt), (8) 

w̆t(µt) = Vt 

′ −1(µt). (9) 

In words, c̆t(µt) (‘c-breve’) indicates the level of consumption that yields marginal 
utility µt (note the mnemonic convenience of indicating marginal utility by the 
Greek letter spelled mu), s̆t(µt) indicates the level of end-of-period savings7 in pe-
riod t that yields a discounted expected marginal value of µt, and w̆t(µt) indicates 
the level of beginning-of-period wealth that would yield marginal value of µt assum-
ing optimal (though potentially constrained) disposition of that wealth between 

5We allow for a stochastic discount factor because some problems which contain a stochastic 
scaling variable (such as permanent income) can be analyzed more easily by dividing the problem 
through by the scale variable; this division induces a term that e ectively plays the role of a 
stochastic discount factor. 

6For notational simplicity we express the value function Vt(wt) and the expected discounted 
value function t(st) as functions simply of wealth and savings, but implicitly these functions 
reflect the entire information set as of time t; if, for example, the income process is not i.i.d., then 
information on lagged income or income shocks could be important in determining current optimal 
consumption. In the remainder of the paper the dependence of functions on the entire information 
set as of time t will be unobtrusively indicated, as here, by the presence of the t subscript. For 
example, we will call the policy rule in period t which indicates the optimal value of consumption 
ct(wt). In contrast, because we assume that the utility function is the same from period to period, 
the utility function has no t subscript. 

7We use the word ‘savings’ to indicate the level of wealth remaining in a period after that 
period’s consumption has occurred; ‘savings’ is therefore a stock variable, and is distinct from 
‘saving’ which is the di erence between income and consumption. 
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consumption and saving.8 In the absence of a liquidity constraint in period t, these 
definitions imply that for an optimizing consumer whose optimal choice of consump-
tion in period t yields marginal utility µt, 

ct = c̆t(µt), (10) 

st = s̆t(µt), (11) 

wt = w̆t(µt). (12) 

In the presence of a liquidity constraint that requires st ≥ 0, equation (11) 
becomes: 

st = max[0, s̆t(µt)]. (13) 

Note that the budget constraint wt = ct + st allows us to write: 

w̆t(µt) = c̆t(µt) + max[0, s̆t(µt)]. (14) 

4 Prudence and Consumption Concavity 

Our ultimate goal is to understand the relationship between liquidity constraints 
and precautionary saving. But the magnitude of precautionary saving depends 
on the absolute prudence of the value function. The purpose of this section is 
therefore to lay out the relationship between consumption concavity and prudence. 
Our analysis of consumption concavity is couched in general terms, and therefore 
applies whether the source of concavity is liquidity constraints or something else. 
This generality is useful, because there is a good candidate for the ‘something else’: 
uncertainty. Our treatment here will therefore alternate between discussion of the 
e ects of imposing liquidity constraints and the e ects of introducing uncertainty. 

4.1 Defining Utility, Concavity, and Prudence 

4.1.1 Definition of HARA Utility 

Carroll and Kimball (1996) show that the introduction of uncertainty into a stan-
dard unconstrained optimal consumption problem causes the consumption policy 
function to become concave for consumers with utility in the Hyperbolic Absolute 
Risk Aversion class, defined as utility functions that satisfy 

′′′ (c)uu ′ (c)/[(u ′′ (c))2] = k. (15) 

The HARA utility functions with positive, nonincreasing absolute prudence sat-
isfy this equation with k ≥ 1, quadratic utility satisfies it with k = 0, while the 
imprudent HARA utility functions satisfy it with k < 0. 

8We chose the slightly unusual breve accent (̆ ) because of its rough resemblance to the shape 
of marginal utility µ, which is the argument for the breve-accented functions. 
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The crucial element in the proof is to show that the value function satisfies the 
di erential inequality 

V ′′′ (w)V ′ (w)/[(V ′′ (w))2] ≥ k. (16) 

Since (as we show below) constraints can cause V ′′ to be discontinuous and V ′′′ 

to fail to exist entirely, the proof strategy of Carroll and Kimball (1996) involv-
ing condition (16) will not work when constraints exist. As a consequence, it will 
be more convenient to work with an alternative to (15) as our definition of the 
HARA class: Here we view the HARA class as those utility functions with nonneg-
ative, nonincreasing absolute prudence that (after normalization) satisfy, for some 
constant k, either (1) u ′ (c) = k − c, with the domain of c limited to c < k (the 
quadratic case); (2) u ′ (c) = (c − k)− with γ ≥ 0 and the domain of c limited to 
c > k (the main case); or (3) u ′ (c) = e−ac with a > 0 (the exponential case). 

4.1.2 Definition of Consumption Concavity 

The central issue in our new approach will involve whether the value function ex-
hibits what we will call “property CC”. (The mnemonic is that “CC” stands for 
“concave consumption.”) We will first consider property CC in a global sense, and 
then turn to definition of the property on a pointwise basis. 

Definition 1 A function F (x) has property CC in relation to a utility function u(c) 
with u ′ > 0, u ′′ < 0 i F ′ (x) = u ′ (φ(x)) for some monotonically increasing concave 
function φ. 

Thus, to say that property CC holds for a value function Vt(wt) is to say that 
there exists a concave φ(wt) such that 

Vt 

′ 
(wt) = u ′ (φ(wt)). 

But the envelope theorem tells us that 

Vt 
′ (wt) = u ′ (ct(wt)), (17) 

so property CC holding for Vt(wt) is equivalent to having a concave consumption 
function φ(wt) = ct(wt).

9 We will need to use property CC with respect both to 
beginning-of-period value functions Vt(wt) and end-of-period value functions t(st); 
to avoid confusion we will designate the concave function associated with t(st) (if 

t(st) has property CC) as χt(st) and will reserve ct(wt) for the beginning-of-period 
value functions. 

It is easy to show by taking derivatives that if V (w) satisfies property CC, then 
when V ′′′ (w) exists this condition reduces to the di erential inequality (16), with 
k = 0 in the quadratic case, k = 1 + (1/γ) in the main case and k = 1 in the 
exponential case. 

Definition 1 did not distinguish between the case where φ was strictly concave 
and where it is linear (weakly concave), nor did it define the interval over which 
concavity was measured. For our proofs, we will need more precise definitions. 

9Remember that the envelope theorem depends only on being able to spend current wealth on 
current consumption, so it holds whether or not there is a liquidity constraint. 
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Definition 2 A function F (x) has property strict CC over the interval between 
x1 and x2 > x1 in relation to a HARA utility function u(c) with nonnegative, 
nonincreasing prudence i 

F ′ (x) = u ′ (φ(x)) 

for some increasing function φ(x) that satisfies strict concavity over the interval 
from x1 to x2, defined by 

x2 − x x − x1
φ(x) > φ(x1) + φ(x2) (18) 

x2 − x1 x2 − x1 

for all x ∈ (x1, x2). 

Definition 3 A function F (x) has property borderline CC over the interval from 
x1 to x2 if equation (18) holds with equality. 

Definition 4 A function F (x) has property CC (strict or borderline, respectively) 
at a point x if there exists a δ > 0 such that for all x1, x2 such that x1 < x < x2 and 
|x2 − x1| < δ, the function exhibits property CC (strict or borderline, respectively) 
over the interval from x1 to x2. 

Note that if a function has property CC globally, then it will have either strict 
or borderline CC at every point. 

Finally, we need to define when one function exhibits greater concavity than 
another. 

Definition 5 Consider two functions F (x) and F̂ (x) that both exhibit property CC 
with respect to the same u ′ at a point x for some interval (x1, x2) such that x1 < 
x < x2. Then F̂ (x) exhibits property greater CC than F (x) if 

� � � � 
x2 − x x − x1 x2 − x x − x1ˆ ˆ ˆφ(x) − φ(x1) + φ(x2) ≥ φ(x) − φ(x1) + φ(x2) (19) 
x2 − x1 x2 − x1 x2 − x1 x2 − x1 

for all x ∈ (x1, x2), and property strictly greater CC if (20) holds as a strict in-
equality. 

The importance of strictly greater CC is its relationship to prudence. 

Lemma 1 If V̂  
t exhibits strictly greater CC than Vt at point wt, then absolute pru-

dence of V̂  
t(wt) is greater than absolute prudence of Vt(wt). 

Proof. Kimball 1990 following Pratt 1964 shows that greater prudence can be 
′ ′ ′ 

defined as V̂  
t (wt) being a convex function of Vt (wt). But since Vt (wt) = u ′ (ct(wt)) 

′ and V̂  
t 

′ 
(wt) = u ′ (ĉt(wt)) for the same monotonically downward sloping u , greater 

CC of V̂  
t than Vt at wt implies V̂  

t 

′ 
(wt) is a convex function of Vt(wt). 
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4.2 How Does Consumption Concavity Heighten Prudence? 

Our method in this section will be to compare prudence in a baseline case where the 
consumption function ct(wt) is linear to prudence in a modified situation in which 
the consumption function ĉt(wt) is a concavification of the baseline consumption 
function. 

4.2.1 The CRRA Case 

Our first baseline ct(wt) will be the linear consumption function that arises under 
CRRA utility in the absence of labor income risk or constraints.10 Below we show 
that imposing a constraint concavifies the consumption function. Similarly, Carroll 
and Kimball 1996 show that the addition of labor income risk renders the risk-
modified consumption rule concave. In either case it is possible to show that as 
wealth approaches infinity the consumption rule in the modified situation ĉt(wt) 
approaches the consumption rule in the baseline situation. When the experiment is 
the imposition of a liquidity constraint, ĉt(wt) approaches ct(wt) because as wealth 
approaches infinity the constraint becomes irrelevant because the probability that 
it will ever bind becomes zero. When the treatment is the addition of labor income 
risk, ĉt(wt) approaches ct(wt) because as wealth approaches infinity the portion 
of future consumption that the consumer plans on financing out of the uncertain 
labor income stream becomes vanishingly small.11 Formally, we can capture both 
the liquidity constraint and the precautionary saving cases with the assertion that 

lim ĉ(wt) − c(wt) = 0. 
wt→∞ 

′′ (c) < 0,Theorem 1 Consider an agent who has a utility function with u ′ (c) > 0, u 
u ′′′ (c) > 0 and nonincreasing absolute prudence −u ′′′ (c)/u ′′ (c) in two di erent situa-
tions. If optimal consumption in the baseline situation is described by a neoclassical 
consumption function ct(wt) that is linear, while optimal behavior in the modified 
situation (indicated by a hat) is described by a concave neoclassical consumption 
function ĉt(wt) and if lim ĉt(wt)−ct(wt) = 0, then at any given level of wealth wt 

wt→+∞ 

the value function in the modified situation exhibits greater absolute prudence than 
in the baseline situation. Prudence at wt in the modified situation is strictly greater 
if and only if the modified consumption function is strictly concave at some wealth 
level at or above wt. 

Proof. By the envelope theorem, the marginal value of wealth is always equal to 
the marginal utility of consumption as long as it is possible to spend current wealth 

10The analysis below goes through even if there is rate-of-return risk in the problem, so long as 
the rate-of-return risk is not modified when the labor income risk is added. 

11Since in the CRRA case the proportionate e ect of risk on consumption depends on the square 

of the standard deviation of the risk relative to wealth, as this ratio gets small as wealth approaches 
infinity, the absolute size of the e ect of the risk in reducing consumption approaches zero. 
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for current consumption. That is, 

Vt 
′ (wt) = u ′ (ct(wt)) (20) 

V̂  
t 
′ (wt) = u ′ (ĉt(wt)). (21) 

Di erentiating each of these equations with respect to wt, 
12 

V ′′ ′ 
t (wt) = u ′′ (ct(wt))ct(wt) (22) 

V̂  ′′ ′′ (ˆ ′ 
t (wt) = u ct(wt))ĉt(wt). (23) 

Taking another derivative can run afoul of the possible discontinuity in ĉt 
′ (wt) 

that we will show below can arise from liquidity constraints, but to establish intu-
ition it is useful to consider first the case where ĉt 

′′ (wt) exists; we will then adapt the 
proof for the case where ĉt 

′′ (wt) does not exist. For the baseline linear consumption 
function, 

′′′ ′′′ ′′ 
Vt (wt) = u (ct(wt))[ct 

′ (wt)]
2 + u ′′ (ct(wt))[ct (wt)] (24) 

′ = u 
′′′ 
(ct(wt))[ct(wt)]

2 , (25) 

where the second line follows because with a linear consumption function c ′′ t (wt) = 0. 
Thus, 

� �
′′′ ′′′ 

−Vt (wt) −u (ct(wt)) ′ Absolute Prudence = = c (wt).′′ ′′ tVt (wt) u (ct(wt)) 

In the modified situation with a concave consumption function, where ĉ  ′′ t (wt) exists, 

′′′ ′′′ ′′ 
V̂  

t (wt) = u (ĉt(wt))[ĉt 
′ (wt)]

2 + u ′′ (ĉt(wt))[ĉt (wt)] (26) 
� �

′′′ ′′′ ′′ ′ V̂  
t (wt) u (ĉt(wt))[ĉt(wt)]

2 + u ′′ (ĉt(wt))[ĉt (wt)] 
− = − (27) 

′′ 
V̂  

t (wt) u ′′(ĉt(wt))ĉt 
′ (wt) 

� �
′′′ ′′′ ′′ 

V̂ (wt) −u (ĉt(wt)) ĉ (wt)t ′ t− = ĉ (wt) − . (28) 
ˆ ′′ t 
Vt (wt) u ′′ (ĉt(wt)) ĉt 

′ 
(wt) 

As can be seen from Figure 3,13 the assumption that the two consumption func-
tions converge asymptotically, lim ĉt(wt) − ct(wt) = 0, together with the linear-

wt→+∞ 

ity of ct(wt) and concavity of ĉt(wt), guarantees that the marginal propensity to 

12Since ĉ(wt) is concave, it has left-hand and right-hand derivatives at every point, though 
the left-hand and right-hand derivatives may not be equal. Equation (23) should be interpreted 
accordingly as applying to left-hand and right-hand derivatives separately. (Reading (23) in this 

′ − ′ + ′′(w − ′′ + way implies that ĉ (w ) ≥ ĉ (w ); therefore V̂ ) ≤ V̂ (w )). 
t t t t t t 

13This figure was generated using simulation programs written for Carroll 2001; these programs 
are available on Carroll’s web page. The parameterization is as follows. The coeÿcient of relative 
risk aversion is ˆ = 2, the time preference factor is = 0.95, the gross interest factor is R = 1.04, 
the growth factor for permanent income is G = 1.01. The stochastic process for transitory income 
for ĉ(w) involves a small probabilitly (0.005) that income will be zero; if it is not zero, then the 
transitory shock is lognormally distributed with standard deviation of 0.2. Both rules reflect the 
limit as the number of remaining periods of life approaches infinity. 
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consume is higher and the level of consumption lower in the modified situation, 
ĉ  ′ t(wt) ≥ c ′ t(wt) and ĉt(wt) ≤ ct(wt). The inequalities are strict if there is any 
strictness to the concavity of ĉt(·) at any level of wealth above wt. 

In conjunction with the assumption of nonincreasing absolute prudence of the 
utility function, ĉt(wt) ≤ ct(wt) implies that 

′′′ (ˆ ′′′ (ct(wt)) −u ct(wt)) −u 
≥ . (29) 

u ′′(ĉt(wt)) u ′′(ct(wt)) 

Therefore, where ĉt 
′′ (wt) exists, 

≤0 >0 
′′′ 

V̂ (wt)t− 
′′ 

V̂ (wt)t 

= 

� 
′′′ � z }| { z }| {−u (ĉt(wt)) ′′ ′ ′ ĉ ĉ ĉ

′′ (wt) − (wt) / (wt)t t tu (ĉt(wt)) | {z } 

≤0 

(30) 

� 
′′′ � 

≥ 
−u (ct(wt)) 

′′ u (ct(wt)) 
′ c (wt)t (31) 

′′′ 

= 
V (wt)t− 

′′ . 
V (wt)t 

(32) 

That is, concavity of ĉt(wt) along with limwt→∞ ct(wt) − ĉt(wt) = 0 implies that the 
absolute prudence of V̂  

t(wt) is greater than the absolute prudence of Vt(wt). 
Even when the absolute prudence of the utility function is constant, (31) is 

strict whenever either (1) ĉt(·) is strictly concave at some level of wealth above 
wt (because, with weak concavity everywhere, strict concavity anywhere above wt 

implies that ĉ  ′ t(wt) > c ′ t(wt)); or (2) ĉt(·) is strictly concave exactly at wt (because 
′′ 

ĉ (wt)tstrict concavity at wt implies that − > 0). Conversely, if ĉt(·) is linear at wt′ 
ĉ (wt)t 

and all higher levels of wealth, (31) clearly holds with equality. We can summarize 
by saying that the inequality (31) which expresses the result of the theorem is strict 
if and only if ĉt(·) is strictly concave at or above wt. 

′′ What if ĉt (wt) and V̂  
t 

′′′ 
(wt) do not exist? Informally, if nonexistence is caused 

by a constraint binding at wt, the e ect will be a discrete decline in the marginal 
propensity to consume at wt, which can be thought of as ĉt 

′′ (wt) = −∞, implying 
positive infinite prudence at that point (see (30)). Formally, if ĉt 

′′ (wt) does not exist 
V (wt)tgreater prudence of V̂  

t than Vt is defined as 
ˆ ′′ 

being a decreasing function of ′′ V (wt)t 

wt. By (22) and (23), 

� �� � 
V̂  ′′ ′′ (ˆ ′ 

t (wt) u ct(wt)) ĉt(wt)
≡ . (33) 

V ′′ ′ 
t (wt) u ′′(ct(wt)) ct(wt) 

′ ĉ (wt)tThe second factor, , is globally decreasing (see Figure 3; it declines mono-′ c (wt)t 

tonically toward 1). At any specific value of wt where ĉ  
′′ 

t (wt) does not exist because 
the left and right hand values of ĉ  

′ 

t are di erent, we say that ĉ  
′ 

t is decreasing if 

lim ĉt 
′ 
(wt) > lim ĉt 

′ 
(wt). (34) 

w−→w w+→w 
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′′′ ′′ 
As for the first factor, note that nonexistence of V̂  

t (wt) and/or ĉt (wt) do not 
′′′ ′ 

spring from nonexistence of either u (c) or limw↑wt 
ĉt(w) (for our purposes, when 

the left and right derivatives of ĉt(wt) di er at a point, the relevant derivative is the 
one coming from the left; rather than carry around the cumbersome limit notation, 
read the following derivation as applying to the left derivative). To discover whether 
ˆ ′′ V (wt)t is decreasing we can simply di erentiate: ′′ V (wt)t 

� � 
′′′ ′ ′′ ′′ ′′′ ′ 

d u ′′ (ĉt(wt)) u (ĉt(wt))ĉt(wt)u (ct(wt)) − u (ĉt(wt))u (ct(wt))ct(wt) 
= . (35) 

dwt u ′′(ct(wt)) [u ′′(ct(wt))]2 

Since the denominator is always positive, this will be negative if the numerator 
is negative, i.e. if 

′′′ ′′ ′ ′′ ′′′ ′ 
u (ĉt(wt))u (ct(wt))ĉt(wt) ≤ u (ĉt(wt))u (ct(wt))ct(wt) (36) 

� � � �′′′ ′′′ 
u (ĉt(wt)) ′ u (ct(wt)) 

ĉ (wt) ≤ c 
′ 
(wt) (37) 

′′ ′′ u (ĉt(wt)) 
t u (ct(wt)) 

t 

� � � �
′′′ ′′′ 

−u (ĉt(wt)) ′ −u (ct(wt)) 
ĉ (wt) ≥ c 

′ 
(wt). (38) 

′′ t ′′ t u (ĉt(wt)) u (ct(wt)) 
| {z } | {z } 

Absolute prudence at ĉt(wt) Absolute prudence at ct(wt) 

Recall that ĉt(wt) ≤ ct(wt) (see figure 3), so the assumption of nonincreasing 
absolute prudence tells us that the absolute prudence term on the LHS of (38) is 
greater than that on the RHS. But by the assumption of concavity of ĉt(wt) we also 
know that ĉt 

′ 
(wt) ≥ ct 

′ 
(wt). Hence both terms on the LHS are greater than or equal 

to the corresponding terms on the RHS. The inequality is strict at any point for 
which ĉt 

′ 
(wt) > ct 

′ 
(wt). 

Note finally that condition (38) is equivalent to our definition of property greater 
CC for consumption functions for which c 

′ 
(wt) and ĉ  

′ 
(wt) exist in the sense of left 

and right derivatives. 
Thus, combining all of the factors involved in comparing the prudence of V̂  

t(wt) 
to the prudence of Vt(wt), we have shown that the value function in the modified 
situation will exhibit strictly greater prudence at any given wt than the value func-
tion in the baseline situation if and only if ĉt(wt) is strictly concave at wt or at some 
level of wealth above wt. 

4.2.2 Counterclockwise Concavification Causes a Strict Increase in Pru-

dence 

We assumed above that the baseline consumption function was linear. It will be 
useful for later purposes to have a slightly more general analysis. The idea is to 
think of the consumption function in the modified situation as being a twisted 
version of the consumption function in the baseline situation, where the kind of 
twisting allowed is a progressively larger increase in the MPC as the level of wealth 
gets lower. We call this a ‘counterclockwise’ concavification, to capture the sense 
that at any specific level of wealth, we can think of the increase in the MPC at 
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lower levels of wealth as being a counterclockwise rotation of the lower portion of 
the consumption function around that level of wealth. 

Definition 6 Function ĉt(wt) is a counterclockwise concavification of ct(wt) around 
ω# if the following conditions hold: 

1. ĉt(ω) = ct(ω) for ω ≥ ω# 

� �
′ 

ĉ (!)t2. lim!↑wt 
is weakly decreasing in wt everywhere below ω# 

′ 
c (!)t 

� �
′ 

ĉ (!)t3. lim!↑!# ≥ 1′ 
c (!)t 

� � � �
′ ′′ 

ĉ (!) ĉ (!)t t4. If lim!↑!# = 1, then lim!↑!# > 1′ ′′ 
c (!) c (!)t t 

where the limits using ω are necessary to allow for the possibility of discrete drops 
in the MPC at potential ‘kink points’ in the two consumption functions. (This is a 
generalization of the original situation considered in theorem 1 in the sense that the 
original proof can be thought of as a specialization of this setup in the case where 
ω# approaches infinity and where the initial consumption function is restricted to 
linearity). 

Given this definition, we have 

Theorem 2 Consider an agent who satisfies the conditions of theorem 1 except 
that, rather than being linear, the optimal neoclassical consumption function in the 
baseline situation ct(wt) is concave. If ĉt(wt) is a counterclockwise concavification 
of ct(wt) around ω# then the value function associated with ĉt(wt) exhibits greater 
prudence than the value function associated with ct(wt). Prudence at wt is strictly 
greater in the modified situation than in the baseline situation all levels of wealth wt 

below ω# . 

Proof. The proof is identical to the proof of theorem 1, except where that 
� �

′ 
ĉ (wt)tproof demonstrates that is weakly decreasing for the setup described in the ′ 
c (wt)t 

theorem; that requirement is now assumed directly. 
We will also need to define a sense in which ĉt(wt) is a global counterclockwise 

concavification of ct(wt): 

Definition 7 Function ĉt(wt) is a global counterclockwise concavification of ct(wt) 
if ĉt(wt) can be constructed from ct(wt) by sequence counterclockwise concavifications 
around a set of points ~ω. 

4.2.3 The Exponential Case 

The assumption lim ĉt(wt) − ct(wt) = 0 will be true if consumers have CRRA 
wt→∞ 

utility and if the di erence between the baseline and the modified situations is 
the addition of either labor income risk or a liquidity constraint. However, if the 
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consumer’s utility function is of the CARA form, a labor income risk simply shifts 
the entire consumption function down by an equal amount at all levels of wt, and 
so the level of consumption in the modified case does not approach the level in the 
baseline case as wealth approaches infinity. We therefore need a modified version 
of the theorem to apply in this case. 

′′ (c) < 0,Corollary 1 Consider an agent who has a utility function with u ′ (c) > 0, u 
u ′′′ (c) > 0 and nonincreasing absolute prudence −u ′′′ (c)/u ′′ (c) in two di erent sit-
uations. If the consumption function in the modified situation ĉt(wt) is a counter-
clockwise concavification of the consumption function in the baseline situation and 

lim ĉt(wt) − ct(wt) ≤ 0, then the value function in the modified situation has 
wt→+∞ 

greater absolute prudence at wt than does the value function for baseline situation. 
The inequality of prudence is strict if the modified consumption function is strictly 
concave at or above wt. 

The proof of the corollary follows the proof of the main theorem, except where 
limwt→+∞ ĉt(wt) − ct(wt) = 0 and concavity of ĉt(wt) were used to demonstrate that 
ĉ  
′ 

t(wt) ≥ c 
′ 

t(wt) and that ĉt(wt) ≤ ct(wt); here we assume both propositions. 

4.2.4 The Quadratic Case 

The quadratic case requires a somewhat di erent approach. First, the limit wt → ∞ 
′′′ (·) = 0, is not as meaningful, since it goes beyond the bliss point. Second, since u 

strict inequality between the prudence of V̂  and the prudence of V will hold only 
at those points where ĉt(·) is strictly concave. 

To gain intuition for the quadratic problem, consider the Euler equation in the 
second-to-last period of a lifetime that ends at T , under the assumption that there 
is no chance that wealth in period T will be greater than the bliss-point level of 
consumption:14 

h i 

u ′ (cT −1) = ET −1 β̃  
T R̃ 

T u ′ (R̃ 
T (wT −1 − cT −1) + ỹT ) (39) 

n � h i�o 

˜ ˜ ˜α(κ − cT −1) = ET −1 βT RT α κ − RT (wT −1 − cT −1) + ỹT (40) 

ET −1[β̃  
T R̃ 

T 
2 wT −1] + ET −1[β̃  

T R̃ 
T ỹT ] + κ(1 − ET −1[β̃  

T R̃ 
T ]) 

cT −1 = .(41) 
1 + ET −1[β̃  

T R̃ 
T 
2 ] 

This equation illustrates the well-known fact that in the quadratic case in the ab-
sence of liquidity constraints and rate-of-return risk, the solution exhibits certainty 
equivalence with respect to risks to labor income yT . 

15 

14If there is a chance that wT could exceed the bliss point, then the kink point in the period-T 

consumption rule can impart concavity to the period-T − 1 consumption rule. 
15An interesting subtlety is that even though the solution is linear in wealth, it does not exhibit 

certainty equivalence with respect to rate-of-return risk, since the level of consumption is related 
to the expectation of the square of the gross return, in a way that implies that an increase in rate-
of-return risk increases the marginal propensity to consume. Note also that interactions between 
rate-of-return risk and income risk can cause the consumption function to shift up or down by a 
potentially large amount. 
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Recall now from equation (33) that greater prudence of V̂  
t(wt) than Vt(wt) occurs 

if 

V̂  ′′ ′′ (ˆ ′ 
t (wt) u ct(wt)) ĉt(wt)

≡ (42) 
V ′′ u ′′(ct(wt)) ′ ct (wt) t(wt) 

ĉ  ′ (wt) 
= t (43) 

ct 
′ (wt) 

is a decreasing function of wt (the second line follows because for quadratic utility 
u ′′ (c) is a constant). 

Thus, prudence of the value function can be increased in the quadratic case only 
by something that causes the MPC to decrease as wealth rises. We will show below 
that in the quadratic case ĉt 

′ 
(wt) experiences a discrete decline at values of wt where 

a future liquidity constraint potentially begins to impinge on current consumption. 

Corollary 2 Consider an agent who has a quadratic utility function in two di erent 
situations. If the baseline situation has a consumption function that is concave over 
some range wt < ω and the consumption function in the modified situation is a 
counterclockwise concavification of ct(wt), prudence of V̂  

t(wt) will be strictly greater 
than prudence of Vt(wt) at points where ĉ  

′ 

t(wt)/c 
′ 

t(wt) strictly declines. 

The proof is simply to note that equation (43) holds only at points where ĉ  
′ 

t(wt)/c 
′ 

t(wt) 
declines with wt. 

5 The Recursive Propagation of Consumption Con-

cavity 

In this section, we provide conditions guaranteeing that if the consumption function 
is concave in period t + 1, it will be concave in period t and earlier, whatever the 
source of that concavity may be. 

5.1 Horizontal Aggregation of Pointwise Strict and Border-

line CC 

First we establish that property CC of the value function is preserved through the 
process we call “horizontal aggregation,” in which the utility from optimal current 
consumption and the expected utility from optimal saving are aggregated to yield 
the value function for current wealth.16 Rather than stating results separately for 
strict and borderline CC, we state the results once under the convention that if 
words or expressions in brackets are ignored the result stated applies for strict CC, 
while if the expressions in brackets are retained but the immediately preceding text 
is ignored, the result applies for borderline CC. 

16We call the intertemporal summing of utility ‘horizontal aggregation’ because it is easy to 
visualize as the sum of a series of (expected) marginal values laid out horizontally through time. 
See Carroll and Kimball 1996 for a more detailed justification of this terminology. 
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Lemma 2 If t(st) exhibits property strict [borderline] CC at level of saving st and 
no liquidity constraint applies at the end of period t, then Vt(wt) exhibits property 
strict [borderline] CC at the (unique) level of wealth wt such that optimal consump-
tion at that level of wealth yields st = wt − ct(wt). 

Proof. If t(st) exhibits strict [borderline] CC at a specific point st, then for 
any s1 < st < s2 which are close enough to st (e.g. satisfying |s2 − s1| < δ as per 
definition 4) we can write 

′ 
(st) = u ′ (χ(st)) (44) t 

for some monotonically strictly increasing function χ(st) for which 

χ(ps1 + (1 − p)s2) > [=] pχ(s1) + (1 − p)χ(s2) (45) 

holds for 0 < p < 1. Now take χ−1 of both sides, yielding 

ps1 + (1 − p)s2 > [=] χ−1(pχ(s1) + (1 − p)χ(s2)). (46) 

Now note that the first order condition implies generically that 

u ′ (c) = 
′ 
(s)t (47) 

= u ′ (χ(s)) (48) 

c = χ(s) (49) 

χ−1(c) = s. (50) 

This can be used to find the levels of beginning-of-period consumption corre-
sponding to s1 and s2. 

17 Substituting (49) and (50) into (46) yields 

s1 s2 
z }| { z }| { 

p χ−1(c1) +(1 − p) χ−1(c2) > [=] χ−1(pc1 + (1 − p)c2) (51) 

which means that χ−1 satisfies the definition of a strictly [weakly] convex increasing 
function in a neighborhood from c1 to c2 around ct. 

But wealth is divided between savings and consumption, 

wt = χ−1(ct) + ct (52) 

ωt(ct) ≡ χ−1(ct) + ct, (53) 

17This first order condition holds with equality if there are no constraints that apply in the 
current period. It does not hold with equality at every point if there is a constraint in force at 
the end of the current period, because in that case there will be a level of wealth !# at which the 
constraint becomes binding and below which all levels of wealth lead to zero savings; hence when 
there is a constraint at the end of period-t there is not a one-to-one mapping from st to a unique 
corresponding ct and wt. As noted above, we defer to later sections discussion of what happens 
when a such an additional constraint is imposed. 
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and since ωt(ct) is the sum of the increasing convex [linear] function and an in-
creasing linear function, it is itself an increasing convex [linear] function, so by the 
definition of an increasing convex [linear] function we have 

pωt(c1) + (1 − p)ωt(c2) > [=] ωt(pc1 + (1 − p)c2) (54) 

ω−1 
t (pw1 + (1 − p)w2) > [=] pc1 + (1 − p)c2 (55) 

ct(pw1 + (1 − p)w2) > [=] pct(w1) + (1 − p)ct(w2) (56) 

where (55) follows from (54) because the inverse of an increasing convex [linear] 
function is an increasing concave [linear] function and (56) follows because the 
definition of ωt 

−1 implies that it yields the level of consumption that satisfies the 
first order condition of the maximization problem for the given level of wealth. 
Thus, ct(wt) satisfies the definition of a strictly [borderline] concave function at 
wealth level w = ˘ 

′ 
(st)). wt( t 

This can be stated more formally by defining a set St which contains the points 
st at which t exhibits property strict CC. Since we are assuming that t satisfies 
property global CC, knowing the set St tell us the concavity status of all feasible 
values of st, since global CC means that either strict CC or borderline CC must 
hold at each point. 

Since the consumption function in the absence of a liquidity constraint is a one-
to-one mapping, we can now easily construct a set Wt which contains the values of 
beginning-of-period wealth wt at which ct exhibits property strict CC, from 

Wt = w̆t( 
′ 

t(St)), (57) 

while at the feasible values of wealth not in Wt the value function must exhibit 
property weak CC. 

5.2 Vertical Aggregation 

Our next result specifies when and how property CC of Vt+1 translates into property 
CC for t. When a risk could intervene between the end of t and the beginning of t+ 
1, this involves taking expectations; we refer to the taking of expectations as ‘vertical 
aggregation’ because it is easy to visualize as the vertical stacking and summation 
of all possible outcomes at a point in time, weighted by their probabilities.18 We 
assume here that Vt+1 exhibits property global CC, with the points at which it 
exhibits property strict CC contained in the set Wt+1. 

In the case without risk, if next period’s nonstochastic income is yt+1 = ȳ  and 
the nonstochastic interest factor is Rt+1, vertical aggregation is simple: 

Lemma 3 In the absence of any risk that could intervene between periods t and 
t + 1, St consists of the set of points st such that Rt+1st + ȳ  ∈ Wt+1. That is, 

t exhibits property strict [borderline] CC at the points st such that Vt+1 exhibits 
property strict [borderline] CC at wt+1 = Rt+1st + ȳ. 

18Again, see Carroll and Kimball 1996 for a more detailed justification of this terminology. 
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The proof is identical to the proof for horizontal aggregation presented earlier, 
since here there is a one-to-one mapping between values of wt+1 and st just as in 
the horizontal aggregation case there was a one-to-one mapping between st and wt. 

Now assume that the interest factor is nonstochastic and equal to 1, (equivalent 
results go through for Rt+1 6= 1, but exposition is messier). Next assume that next 
period’s income process is 

yt+1 = ȳ + ζ (58) 

for ζ which has a maximum realiztion with positive probability of ζ̄  and a minimum 
realization with positive probability of ζ < ζ̄  and Et[ζ ] = 0. 

5.2.1 The Quadratic Case 

In the quadratic case, linearity of marginal utility implies that 

u ′ (χt(st)) = Et[u ′ (ct+1(st + ỹ))] (59) 

χt(st) = Et[ct+1(st + ỹ)] (60) 

where ỹ  represents the various possible realizations of yt+1. So χt is simply the 
weighted sum of a set of concave functions where the weights correspond to the 
probabilities of the various possible outcomes for y. The sum of concave functions 
is itself strictly concave at any point at which any of the functions being summed 
is strictly concave, and weakly concave elsewhere. If we denote as ζ+ all values of 
ζ for which there a positive probability mass (in the case of a discrete distribution) 
or positive probability density (in the case of a continuous distribution), 

St = {s|s + ȳ + ζ+ ∈ Wt+1 for some ζ+}. (61) 

That is, St is the set of values of st from which there is a positive probability of 
arriving next period at a value of wt+1 ∈ Wt+1. 

5.2.2 The CRRA Case 

In the CRRA case, 
h i 

′ ′ 
(st)t = Et V (st + ỹ)t+1 (62) 

� � 
= Et ct+1(st + ỹ)− . (63) 

Concavity of ct+1(wt+1) implies that 

ct+1(st + ỹ) ≥ pct+1(s1 + ỹ) + (1 − p)ct+1(s2 + ỹ) (64) 

for all ỹ  if st = ps1 + (1 − p)s2 with p ∈ [0, 1]. Since this holds for all ỹ, we know 
that 
� � � � � �−1/ −1/
Et ct+1(st + ỹ)− ≥ Et {pct+1(s1 + ỹ) + (1 − p)ct+1(s2 + ỹ)}− , 

(65) 
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and the inequality is strict if (64) is strict for any possible realization of ỹ. 
Now we need to use Minkowski’s inequality, which says that 

n h io−1/ � − −1/ −1/Et (ãt+1 + b̃t+1)
− ≥ Et[ãt+1] + {Et [̃b

− 
t+1]} (66) 

for γ > 1 if at+1 and bt+1 are positive, and the expression holds with equality i 
ãt+1 and b̃t+1 are proportional.19 

Minkowski’s inequality implies that 

   
˜ 

 −1/ 
 =ãt+1 =bt+1   z }| { z }| {  

 
Et {pct+1(s1 + ỹ) + (1 − p)ct+1(s2 + ỹ)}− 

 
    

�� −1/ −1/
≥ Et[{pct+1(s1 + ỹ)}− ] + Et[{(1 − p)ct+1(s2 + ỹ)}− ] 

� �−1/ −1/ 
= p Et[ct+1(s1 + ỹ)− ] + (1 − p) Et[ct+1(s2 + ỹ)− ] 

= p{ t 

′ 
(s1)}

−1/ + (1 − p){ t 

′ 
(s2)}

−1/ . (67) 

Combining (63) with (65) and (67), 

′ ′ ′ 
{ t(st)}

−1/ ≥ p{ t(s1)}
−1/ + (1 − p){ t(s2)}

−1/ . (68) 

where the inequality is strict unless ct+1(s2 + ỹ)/ct+1(s1 + ỹ) is a constant for all 
realizations of ỹ. But for this to be true for any s1 and s2 it must be the case that 

! � �� � 
d ct+1(s2 + ỹ) c 

′ 

t+1(s1 + ỹ) 
= = ν (69) 

ds2 ct+1(s1 + ỹ) ct+1(s1 + ỹ) 
s2=s1 

for some constant ν, which is true only if the consumption function is ct+1(w) = 
exp(νw), which is not true. Thus, defining χt(st) = { t 

′ 
(st)}

−1/ , (68) becomes 

χt(st) > pχt(s1) + (1 − p)χt(s2) (70) 

for all st, so in the CRRA case t(st) if the risk is nondegenerate then χt(s) exhibits 
property strict CC for all feasible values of s. 

5.2.3 The Exponential Case 

For the exponential case, property CC holds at st if 

exp(−γχt(st)) = Et[exp(−γct+1(st + ỹ))] (71) 

for some χt(st) which is strictly concave at st. 

19For a proof, see Hardy, Littlewood, and Polya 1967, page 146, Theorem 198, equation (6.13.2). 
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Consider first a case where ct+1 is linear over the range of possible values of 
wt+1 = st + ȳ + ζ ; then (setting absolute risk aversion γ = 1 to reduce clutter; 
results hold for γ 6= 1), 

−ct+1(st+ỹ)]χt(st) = − log Et[e (72) 
′ 

−(ct+1(st+ȳ)+(ỹ−ȳ)c 
t+1)]= − log Et[e (73) 

= ct+1(st + ȳ) − log Et[e 
−�c 

t 

′ 
+1 ] (74) 

which is linear in st since the second term is a constant. 
¯Now consider a value of st for which st + ȳ + z ∈ Wt+1 for some z ∈ (ζ, ζ); that 

is, ct+1 is strictly concave for some z between the minimum and maximum possible 
draws of ζ . (Note that if ζ has a discrete distribution, z need not correspond to one 
of the possible draws). 

Global weak concavity of ct+1 tells us that for every ζ 

−ct+1(st + ỹ) ≤ −((1 − p)ct+1(s1 + ỹ) + pct+1(s2 + ỹ)) 
−ct+1(st+ỹ)] −((1−p)ct+1(s1+ỹ)+pct+1(s2+ỹ))].Et[e ≤ Et[e (75) 

Meanwhile, the arithmetic-geometric mean inequality states that for positive a 
and b, if ā = Et[ã] and b̄ = Et [̃b], then 

h i h i 

Et (ã/ā)p(b̃/b̄)1−p ≤ Et p(ã/ā) + (1 − p)(b̃/b̄) = 1, (76) 

implying that 
pb̃1−p] ≤ ¯pb̄1−pEt[ã a , (77) 

where the expression holds with equality only if b is proportional to a. Substituting 
−ct+1(s1+˜ −ct+1(s2+ỹ)in a = e y) and b = e , this means that 

−pct+1(s1+ỹ)−(1−p)ct+1(s2+ỹ)] 
� 

−ct+1(s1+ỹ)] 
p � −ct+1(s2+ỹ)] 

1−p
Et[e ≤ Et[e Et[e (78) 

and we can substitute for the LHS from (75), obtaining 

−ct+1(st+ỹ)] 
� 

−ct+1(s1+ỹ)] 
p � −ct+1(s2+ỹ)] 

1−p
Et[e ≤ Et[e Et[e (79) 

−ct+1(st+ỹ)] −ct+1(s1+˜ −ct+1(s2+ỹ)]log Et[e ≤ p log Et[e 
y)] + (1 − p) log Et[e (80) 

which holds with equality only when e−ct+1(s1+yt+1)/e−ct+1(s2+yt+1) is a constant, 
which will happen only if ct+1(s1 + yt+1) − ct+1(s2 + yt+1) is constant, which (given 
that the MPC is strictly positive everywhere) requires ct+1(st + ȳ + z) to be linear 

¯for z ∈ (ζ, ζ). For an st from which ct+1 is strictly concave for some z, (80) becomes 

χt(st) > pχt(s1) + (1 − p)χt(s2). (81) 

Thus, in the exponential case, St includes any value of st from which, for some 
point w ∈ Wt+1, there is positive probability of arriving at a wt+1 > w and a positive 
probability of arriving at a wt+1 < w. Formally, 

St = {s|s + ȳ + ζ ∈ Wt+1} (82) 

for some ζ ∈ [ζ, ζ̄]. In words, St is the set of values of s from which the outcome 
of the risk a ects which side of w the consumer ends up on for some w ∈ Wt+1, or 
from which there is a positive probability of ending up exactly at some w ∈ Wt+1. 
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6 Liquidity Constraints, Consumption Concav-

ity, and Precautionary Saving 

We next show how liquidity constraints create strict convexity of the marginal value 
function. 

6.1 Piecewise Linearity of the Perfect Foresight Consump-

tion Function Under Constraints 

Consider a consumer in an initial situation in which he is solving a perfect foresight 
optimization problem with a finite horizon that begins in period t and ends in 
period T . The consumer begins with wealth wt and earns a nonstochastic but 
potentially time-varying income ȳ  ̋ +1 in each period; wealth accumulates according 
to w˝+1 = R˝+1s˝ + ȳ  ̋ +1 where R˝+1 is nonstochastic. We are interested in how this 
consumer’s behavior in period t changes from this unconstrained initial situation to 
a final situation in which a given set of liquidity constraints, Tt, has been imposed. 

6.1.1 The Simplest Case 

We begin by considering a simpler context, in which the consumer’s income is not 
only nonstochastic but is not time-varying, ȳ  t+1 = ȳ  ∀ t; the consumer is assumed to 
be impatient in the sense of having a time preference rate greater than the interest 
rate in every period, R˝ β˝ < 1 ∀ τ ; and only the simplest kind of constraint exists: 
If there is a constraint at date t, the constraint requires ct ≤ wt. 

Define Tt as an ordered set of dates ≥ t at which, in the final situation, a relevant 
constraint exists (that is, a constraint that will bind for a consumer who starts from 
some feasible value of initial wealth wt). We define Tt[1] = T because we think 
of the intertemporal budget constraint as being the first ‘constraint’ that must be 
satisfied. Tt[2] is the date of the last period before T in which a constraint exists, 
Tt[3] is the second-to-last period before T in which a constraint exists, and so on. 
For any τ such that t ≤ τ < T , define c˝,n as the optimal consumption function in 
period τ assuming that the first n constraints in Tt have been imposed; thus, c˝,1(w) 
is the consumption function in period τ when no constraints (aside from the IBC) 
have been imposed, c˝,2(w) is the consumption function after the chronologically 
last constraint has been imposed, and so on through ct,kt 

where kt is the number of 
dates in Tt. Define w̆t,n, t,n, Vt,n and other functions correspondingly. 

Now consider imposing the constraints sequentially, as follows. Start with the 
unconstrained case, for which the consumption rule in the last period is cT,1 = wT . 
For a perfect foresight unconstrained problem, the marginal propensity to consume 
in period t can be obtained from the MPC in period t + 1 from the Euler equation, 

u ′ (ct,n(wt)) = Rt+1βt+1u ′ (ct+1,n(Rt+1(wt − ct,n(wt)) + ȳ  t+1)). (83) 

Di erentiating both sides with respect to wt, dropping subscripts on R and β 
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and omitting arguments to reduce clutter we obtain 

′ ′ ′ u ′′ (ct,n)ct,n = Rβu ′′ (ct+1,n)ct+1,nR(1 − ct,n) (84) 
� � 

Rβu ′′ (ct+1,n)Rc ′ 
′ t+1,n 
c = (85) 

′′′(ut,n u −1(Rβu′(ct+1,n))) + Rβu′′(ct+1,n)Rc ′ t+1,n 
� � 

c ′ t+1,n 
= 

′ (86) 
+ u ′′(u ′ c −1(Rβu′(ct+1,n))/(Rβu′′(ct+1,n)R)) t+1,n 

and it is straightforward to verify that for all three of our utility options this is a 
number less than c ′ .t+1,n 

Now setting τ = Tt[2], note first that if τ < T − 1 then behavior in periods τ +1 
through T − 1 is una ected by this constraint, so we have c˝+1,2 = c˝+1,1 and so on 
through c˝+1,kt 

= c˝+1,1. For period τ we can calculate the level of consumption at 
which the constraint binds by realizing that a consumer for whom the constraint 
binds will save nothing, and that the maximum amount of consumption at which the 
constraint binds will satisfy the Euler equation (only points where the constraint is 
strictly binding violate the Euler equation; the point on the cusp does not). Thus, 
if we define c˝,n 

# as the level of consumption in period τ at which the n’th constraint 

stops binding (with c # 
˝,1 = ∞ because the IBC always binds), we have 

u ′ (c # 
˝,2) = R˝+1β˝+1u ′ (c˝+1,1(ȳ)) (87) 

c # 
˝,2 = u 

′−1 (R˝+1β˝+1u ′ (c˝+1,1(ȳ))) , (88) 

and the level of wealth at which the constraint stops binding can be obtained from 

ω˝,2 = w̆˝,1(u ′ (c˝, 
#

2)). (89) 

Below this level of wealth, we have c˝,2(w) = w so the MPC is one, while above 
it we have c˝,2(w) = c˝,1(w) where the MPC c ′ equals the constant MPC that ˝,1 

obtains for an unconstrained perfect foresight optimization problem with a horizon 
of T − τ . Thus, c˝,2 satisfies our definition of a counterclockwise concavification of 
c˝,1 around ω˝,2. 

We can obtain the value of period τ − 1 consumption at which the period τ 
constraint stops a ecting period τ − 1 behavior from 

u ′ (c # ) = R˝ β˝ u ′ (c # ) (90) ˝−1,2 ˝,2 

and we can obtain ω˝−1,2 via the analogue to (89). Iteration generates the remaining 

c ., 
#
2 and ω.,2 values back to period t. 
We have thus established an apparatus that can determine how a constraint 

in any future period a ects consumption in a current period. In order to have a 
distinct terminology for the e ects of current-period and future-period constraints, 
we will restrict the use of the term ‘binds’ to the e ects of a constraint in the period 
in which it applies, and will use the term ‘impinges’ to describe the e ect of a future 
constraint on current consumption. 

27 



We now define a ‘kink point’ in a consumption function as a point like ω˝,2 

at which there is a discrete decline in the marginal propensity to consume that 
corresponds to a transition from a level of wealth where a current constraint binds, 
or a future constraint impinges, to a level of wealth where that constraint no longer 
binds or impinges. 

Now consider the behavior of a consumer in period τ − 1 with a level of wealth 
w < ω˝−1,2. This consumer knows he will be constrained and will spend all of his 
resources next period, so at w his behavior will be identical to the behavior of a 
consumer whose entire horizon ends at time τ . For all three of our utility classes, the 
consumption function is linear for perfect foresight consumers with finite horizons, 
and the MPC declines with the horizon. The MPC for this consumer is therefore 
strictly less than the MPC of the unconstrained consumer whose horizon ends at 
T > τ . Thus, in each period τ before τ +1, the consumption function c˝ ,2 generated 
by imposition of the constraint constitutes a counterclockwise concavification of the 
unconstrained consumption function around the kink point ω˝ ,2. 

Now consider imposing the second constraint (that is, the constraint that ap-
plies in the second-to-last period in which there is a constraint), and suppose for 
concreteness that it applies at the end of period τ − 1. It will stop binding at a level 
of consumption defined by 

# u ′ (c )˝−1,3 = R˝ β˝ u ′ (c˝,2(ȳ)) (91) 

= R˝ β˝ u ′ (ȳ) (92) 

where the second line follows because it is easy to show in a context like this that 
an impatient consumer with total resources ȳ  will be constrained. But note that we 
can combine (90) and (87), along with our assumption that R˝+1β˝+1 < 1 to obtain 

u ′ (c˝ 
# 
−1,2) = R˝ β˝ R˝+1β˝+1u ′ (ȳ) (93) 

< R˝ β˝ u ′ (ȳ) (94) 

= u ′ (c˝ 
# 
−1,3) (95) 

which, from the assumption of declining marginal utility, tells us 

c # > c # (96) ˝−1,2 ˝−1,3. 

This means that the constraint is relevant: The preexisting constraint in period τ 
does not force the consumer to do so much saving in period τ − 1 that the τ − 1 
constraint could fail to bind. (Below we consider circumstances in which a later 
constraint can render an earlier constraint irrelevant.) 

The prior-period levels of consumption and wealth at which constraint number 
2 stops impinging on consumption can again be calculated recursively from 

u ′ (c # 
s,3) = Rs+1βs+1u ′ (c # 

s+1,3) (97) 

ωs,3 = w̆s,2(u ′ (cs, 
#

3)). (98) 

Furthermore, once again we can think of the constraint as terminating the horizon 
of a finite-horizon consumer in an earlier period than it is terminated for the less-
constrained consumer, with the implication that the MPC below ωs,3 is strictly 
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greater than the MPC above ωs,3. Thus, the consumption function cs,3 constitutes 
a counterclockwise concavification of the consumption function cs,2 around the kink 
point ωs,3. 

The same logic applies in the case of each of the remaining constraints in Tt. 
Defining 

′ ′ c˝,n = lim c (w),˝,n
w↓!˝,n 

(99) 

we can summarize all of this by 

Proposition 1 For all three of our utility classes, define c˝,1 as the optimal neo-
classical consumption function that solves an unconstrained perfect foresight finite 
horizon problem ending in period T , assuming that R˝ β˝ < 1 and the remainder 
of the problem is as specified above. Consider an ordered set of constraints Tt that 
may be imposed between periods t ≤ τ and T . If the first n constraints have been 
imposed, then imposition of constraint n + 1 has the following e ects: 

• For each period τ weakly prior to Tt[n+1], there will be a level of wealth ω˝,n+1 

above which imposition of the constraint has no e ect on period-τ consumption 
but below which imposition of the constraint causes consumption to fall; 

• c ′ ′ 
˝,n+1 > c˝,n; 

• The consumption function c˝,n+1 is a counterclockwise concavification of c˝,n 

around the kink point ω˝,n+1. 

leading to the conclusion that 

Proposition 2 Under the circumstances described in proposition 1, once all kt 

constraints have been imposed, the consumption function in period t is a piecewise 
linear increasing concave function with kink points at the successively larger values 
of wealth ω~ t,kt 

= {ωt,kt 
, ωt,kt−1, ..., ωt,2} at which future constraints successively stop 

impinging on current consumption. 

6.1.2 Increasing the Number of Constraints 

The previous section analyzed a case where there was a preordained set of con-
straints Tt under consideration, which were applied sequentially. We now examine 
how behavior will be modified if we add a new date to the set of dates at which the 
consumer is constrained. 

` Call the new set of dates Tt, and call the consumption rules corresponding to 
the new set of dates c̀  t,1 through c̀  t,kt+1 = c̀  t,k ̀  t 

. If the date of the new constraint is 
τ̀ , then behavior after period τ̀  is not a ected by imposition of the new constraint. 
Now call m the number of constraints in Tt at dates strictly greater than τ ′ . Then 
note that that c̀  ̋ ′ ,m = c˝ ,m, because until the new constraint (number m + 1) is ′ 

imposed consumption is the same as in the absence of the constraint. Now recall 
that, as discussed above, imposition of the constraint at τ ′ causes a counterclockwise 
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Figure 4: How a Current Constraint Can Hide a Future Kink 

′concavification of the consumption function around a new kink point, ω˝ ,m+1; that 
is, c̀  ̋ ′ ,m+1 is a counterclockwise concavification of c̀  ̋ ,m. But since c̀  ̋ ′ ,m = c˝ ′ ,m, 
c̀  ̋ ′ ,m+1 is also a counterclockwise concavification of c˝ ′ ,m. 

The most interesting observation, however, is that behavior under constraints 
` Tt in periods strictly before τ̀  cannot be described as a counterclockwise concavifi-
cation of behavior under Tt. The reason is that the values of wealth at which the 
earlier constraints caused kink points in the consumption functions before period 
τ̀  probably will not correspond to kink points once the extra later constraint has 
been added. 

An example is presented in figure 4. The original Tt contains only a single 
constraint, at the end of period t+1, inducing a kink point at ωt,2 in the consumption 

` rule ct,2. The expanded set of constraints, Tt, adds one constraint, at period t + 2. 
` Tt induces two kink points in the newly optimal consumption rule c̀  t,3, at ὼ t,2 and 
ὼ t,3. It is true that imposition of the new constraint causes consumption to be 
lower than before at every level of wealth below ὼ t,2. However, this does not imply 
higher prudence of the value function at every w < ὼ t,2. In particular, note that 
the original consumption function ct,2 exhibited property strict CC at w = ωt,2, 
or e ectively infinite prudence at this point, while the new consumption function 
only exhibits property weak CC at c̀  t,3(ωt,2), so for this particular level of wealth 
prudence was greater before than after imposition of the new constraint. 

The intuition is simple: At levels of initial wealth below ὼ t,2, the consumer had 
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been planning to end period τ̀  with negative wealth. After the new constraint has 
been imposed, the old plan of ending up with negative wealth at the end of τ ′ 

is no longer feasible - the consumer will save more for any given level of current 
wealth below ὼ t,2, including ωt,2. But the reason ωt,2 was a kink point in the initial 
situation was that it was the level of wealth where consumption would have been 
equal to wealth in period t + 1. Now, because of the extra savings induced by the 
constraint in τ ′ , the larger savings induced by wealth ωt,2 implies that the period 
t + 1 constraint will no longer bind for a consumer who begins period t with wealth 
ωt,2. In other words, at wealth ωt,2 the extra savings induced by the new constraint 
‘hides’ the original constraint and prevents it from being relevant any more at ωt,2. 

Notice, however, that all constraints that existed in Tt will remain relevant at 
some level of wealth under Tt even after the new constraint is imposed - they just 
induce kink points at di erent levels of wealth than before, e.g. the first constraint 
causes a kink at ὼ t,2 rather than at ωt,2. 

6.1.3 A More General Analysis 

We now want to allow time variation in the level of income, ȳ  ̋  , and in the location 
of the liquidity constraint (e.g. a constraint in period τ might require the consumer 
to end period τ with savings s˝ greater than σ where σ is a negative number). We 
also drop the restriction that β˝ R˝ < 1, thus allowing the consumer to want to have 
consumption growth over time. 

Under these more general circumstances, a constraint imposed in a given period 
can render constraints in either earlier or later periods irrelevant. For example, 
consider a CRRA utility consumer with R˝ β˝ = 1 ∀ τ who earns income of 1 in 
each period, but who is required to arrive at the end of period T − 2 with savings 
of 5. Then a constraint that requires savings to be greater than zero at the end of 
period T − 3 will have no e ect, because with an income of only 1 and a CRRA 
utility function that requires positive consumption, the consumer is required by the 
constraint in period T − 2 to end period T − 3 with savings greater than 4. Also, a 
constraint that requires the consumer to end period T − 1 with positive net worth 
will also not have any significance for behavior in periods prior to T −2, because any 
consumer who satisfies the T − 2 constraint will optimally choose to have positive 
savings in period T − 1 anyway. 

Formally, consider now imposing the first constraint, which applies in period 
τ < T . The simplest case, analyzed before, was a constraint that requires the 
minimum level of end-of-period wealth to be s˝ ≥ 0. Here we generalize this to 
s˝ ≥ σ˝,2 where in principle we can allow borrowing by choosing σ to be a negative 
number. Now for constraint i = 2 calculate the kink points for prior periods from 

u ′ (c # ) = yt+1)) (100) ˝,i R˝+1β˝+1u ′ (c˝+1,i−1(R˝+1σ˝,i + ¯ 

ω˝,i = w̆˝,i−1(u ′ (c # )). (101) ˝,i 

In addition, for constraint i = 2 recursively calculate 

(σ˝+1,i − ¯ (102) σ˝,i = y˝+1,i + c)/R˝+1 
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where c is the lowest value of consumption permitted by the model (independent 
of constraints). For example, CRRA utility is well defined only on the positive real 
numbers, so for a CRRA utility consumer c = 0. In the exponential and quadratic 
cases, there is nothing to prevent consumption of −∞, so for those models c = −∞, 
unless there is a desire to restrict the model to positive values of consumption, in 
which case the c ≥ 0 constraint will be implemented through the use of (102). 

Now assume that the first n constraints in Tt have been imposed, and consider 
imposing constraint number n + 1, which we assume applies in period τ . The 
first thing to check is whether constraint number n+1 is relevant given the already-
imposed set of constraints. This is simple: A constraint that requires s˝ ≥ σ˝,n+1 will 
be irrelevant if mini[σ˝,i] ≤ σ˝,n+1. If the constraint is irrelevant then the analysis 
proceeds simply by dropping this constraint and renumbering the constraints in Tt 

so that the former constraint n + 2 becomes constraint n + 1, n + 3 becomes n + 2, 
and so on. 

Now consider the other possible problem: That constraint number n+1 imposed 
in period τ will render irrelevant some of the constraints that have already been 
imposed. This too is simple to check: It will be true if the proposed σ˝,n+1 ≥ σ˝,i 

for any i ≤ n. The fix is again simple: Counting down from i = n, find the smallest 
value of i for which σ˝,n+1 ≥ σ˝,i. Then we know that constraint n + 1 has rendered 
constraints i through n irrelevant. The solution is to drop these constraints from Tt 

and start the analysis over again with the modified Tt. 
If this set of procedures is followed until the chronologically earliest relevant 

constraint has been imposed, the result will be a Tt that contains a set of constraints 
that can be analyzed as in the simpler case. In particular, proceeding from the final 
Tt[2] through Tt[kt], the imposition of each successive constraint in Tt now causes 
a counterclockwise concavification of the consumption function around successively 
lower values of wealth as progressively earlier constraints are applied, and the result 
is again a piecewise linear and strictly concave consumption function, with the 
number of kink points equal to the number of constraints that are relevant at any 
feasible level of wealth in period t. 

Finally, consider adding a new constraint to the problem, and call the new set 
` of constraints Tt. Suppose the new constraint applies in period τ̀ . Then analysis 

of the new situation will be like analysis of an added constraint in the simpler 
case examined above if the new constraint is relevant given the constraints that 
apply after period τ̀ , and if the new constraint does not render any of those later 
constraints irrelevant. If the new constraint fails either of these tests, the analysis 

` of Tt can proceed from the ground up as described above. 

6.2 Liquidity Constraints, Prudence, and Precautionary Pre-

mia 

6.2.1 When and Where Do Liquidity Constraints Increase Prudence? 

Having determined the e ects of constraints on the shape of the perfect foresight 
consumption function, we are now in position to discuss the e ect of constraints on 
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prudence at a given level of wealth. 

Definition 8 Consider a consumer subject to a given set of constraints Tt. In pe-
riod τ ≤ T , for a consumer with wealth w define the number of ‘relevant’ constraints 
R˝ (w) as i − 1 where i is the index on the smallest value of ω˝,i strictly greater than 
w. That is, if ω˝,i > w > ω˝,i+1 then the consumer with wealth w in period τ faces 
i − 1 relevant constraints (we subtract 1 because the IBC is the first ‘constraint’). 
If w > ω˝,2 then we say that a consumer with wealth w in period τ faces no relevant 
constraints. 

Lemma 4 Consider a consumer with wealth w with power utility or exponential 
utility in period τ where t ≤ τ < T . Then the successive imposition of each of 
the first R˝ (w) constraints in Tt strictly increases the absolute prudence of the con-
sumer’s value function in period τ at wealth w. Imposition of any remaining con-
straints beyond constraint number R˝ (w) has no e ect on the absolute prudence of 
the value function at w in period τ . 

Proof. The proof is simply that, if constraints 1 through n have been imposed, 
then imposition of constraint n +1 in R˝ (w) constitutes a counterclockwise concav-
ification of the consumption function around a level of wealth greater than w, and 
theorem 2 tells us for consumers with either power or exponential utility that such 
a concavification increases the absolute prudence of the value function at any level 
of wealth below the point around which the concavification is performed. 

In contrast, for consumers with quadratic utility we have 

Lemma 5 Consider a consumer with quadratic utility in period τ ≤ T with wealth 
w. Then the imposition of each of the first R˝ (w) constraints strictly increases the 
absolute prudence of the consumer’s value function at each of the associated kink 
points but not elsewhere; that is, absolute prudence is positive at points ω˝,2 through 
ω˝,R˝ (w), but zero elsewhere. 

which holds by application of theorem 1. 

6.2.2 Resemblance Between Precautionary Saving and a Liquidity Con-

straint 

Before proceeding we need to analyze a particular sense in which the introduction 
of a risk resembles the introduction of a constraint. 

An example will make the point. Consider the second-to-last period of life for 
two CRRA utility consumers, and assume for simplicity that RT = βT = 1. 

The first consumer is subject to a liquidity constraint cT −1 ≥ wT −1, and earns 
nonstochastic income of ȳ  = 1 in period T . This consumer’s saving rule will be 

( 

0 if wT −1 ≤ 1 
sT −1,2(wT −1) = (103) 

(wT −1 − 1)/2 if wT −1 > 1. 
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The second consumer is not subject to a liquidity constraint, but faces a stochas-
tic income process, 

( 

0 with probability p 
yT = (104) 

1 with probability (1 − p).
1−p 

If we write the consumption rule for the unconstrained consumer facing the risk 
as s̃T −1,1, the key result is that in the limit as p ↓ 0, behavior of the two consumers 
becomes the same. That is, defining s̃T −1,1(w) as the optimal saving rule for the 
consumer facing the risk, 

lim s̃T −1,1(wT −1) = sT −1,2(wT −1) (105) 
p↓0 

for every wT −1. 
To see this, start with the Euler equations for the two consumers given wealth 

w, 

u ′ (w − sT −1,2(w)) = u ′ (sT −1,2(w) + 1) (106) 

u ′ (w − s̃T −1,1(w)) = pu ′ (s̃T −1,1(w)) + (1 − p)u ′ (s̃T −1,1(w) + 1). (107) 

Consider first the case where w is large enough that the constraint does not bind 
for the constrained consumer, w > 1. In this case the limit of the Euler equation 
for the second consumer is identical to the Euler equation for the first consumer 
(because for w > 1 savings are positive for the consumer facing the risk, implying 
that the limit of the first u ′ term on the RHS of (107) is finite), implying that the 
limit of (107) is (106) for w > 1. 

Now consider the case where w < 1 so that the first consumer would be con-
strained. This consumer spends her entire resources w, and by the definition of 
constrained we know that 

u ′ (w) > u ′ (1). (108) 

Now consider the consumer facing the risk. If this consumer were to save exactly 
zero and then experienced the bad shock in period T , she would experience negative 
infinite utility (the Inada condition). Therefore we know that for any fixed p and 
any w > 0 the consumer will save some positive amount. For a fixed w, hypothesize 
that there is some positive amount δ such that no matter how small p became the 
consumer would always choose to save at least δ. But for any positive δ, the limit 
of the RHS of (107) is u ′ (δ +1). But we know from concavity of the utility function 
that u ′ (1 + δ) < u ′ (1) and we know from (108) that u ′ (w) > u ′ (1) > u ′ (1 + δ), so as 
p ↓ 0 there must always come a point at which the consumer can improve her total 
utility by shifting some resources from the future to the present, i.e. by saving less. 
Since this argument holds for any δ > 0 it demonstrates that as p goes to zero there 
is no positive level of saving that would make the consumer better o . But saving 
of zero or a negative amount is ruled out by the Inada condition at u ′ (0). Hence 
saving must approach, but never equal, zero as p ↓ 0. 
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Thus, we have shown that for w ≤ 1 and for w > 1 in the limit as p ↓ 0 
the consumer facing the risk but no constraint behaves identically to the consumer 
facing the constraint but no risk. This argument can be generalized to show that 
for the CRRA utility consumer, spending must always be strictly less than the 
sum of current wealth and the minimum possible value of human wealth. Thus, the 
addition of a risk to the problem can rule out certain levels of wealth as feasible, and 
can also render either future or past constraints irrelevant, just as the imposition 
of a new constraint can. We take this point into account when necessary below. 

6.2.3 Prudence and Compensating Precautionary Premia 

It is now time to be explicit about the relationship between prudence and precau-
tionary saving. Begin by defining two marginal value functions µ(z) and µ̀(z) which 
are globally (weakly) convex, downward sloping, and continuous in some variable z. 

Consider a risk ξ whose minimum realization with positive probability (or pos-
itive probability density; henceforth, we will say ‘with positive probability’ when 
we mean ‘with positive probability or positive probability density’) is ζ and whose 

¯maximum realization with positive probability is ζ, and follow Kimball 1990 by 
defining the Compensating Precautionary Premia as the values κ and κ̀ such that 

µ(0) = E[µ(κ + ζ̃)] (109) 

µ̀(0) = E[µ̀(κ̀ + ζ̃)]. (110) 

The relevant part of Pratt’s 1964 theorem 1 as reinterpreted using Kimball’s 1990 
lemma (p. 57) can be restated as 

` Lemma 6 Let A(z) and A(z) be absolute prudence of the marginal utility func-
tions µ and µ̀ respectively at z, 20 and let κ and κ̀ be the respective compensating 
precautionary premia associated with imposition of a given risk ξ as per (109) and 
(110). Then the following conditions are equivalent, either with the bracketed mate-
rial omitted, or with the bracketed material replacing the material immediately prior 
to the bracket: 

` ` 1. A(x + κ) ≥ A(x + κ) for all points x in ξ, and A(x + κ) > A(x + κ) for at 
¯least one [for no] point x ∈ (ζ, ζ). 

2. The compensating precautionary premium for marginal value function µ̀ with 
respect to risk ξ is strictly greater than [exactly equal to] the CPP for marginal 
value function µ with respect to the risk ξ; that is, κ̀ > [=]κ. 

Note finally that precautionary premia are not equivalent to precautionary sav-
ing e ects, because (as Kimball 1990 points out), precautionary premia apply at a 
given level of consumption, while precautionary saving applies at a given level of 
wealth. 

20A small technicality: Absolute prudence of value functions is infinite at kink points in the 
consumption function, so if both c(z) and c̀(z) had a kink point at exactly the same z but the 
amount by which the slope declined were di erent, the comparison of prudence would not yield a 

` well-defined answer. Under these circumstances we will say that A(z) > A(z) if the decline in the 
MPC is greater for c̀  at z than for c. 
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6.3 Constraints, Risks, Precautionary Premia, and Precau-

tionary Saving 

We now have all the pieces necessary to tease out the relationship between con-
straints, risks, and precautionary saving. 

6.3.1 A First Liquidity Constraint and Precautionary Saving 

We now take up the question of how the introduction of a risk ξt+1 that will be 
realized between period t and t + 1 a ects consumption in period t in the presence 
and in the absence of a subsequent constraint. To simplify the discussion, consider 
a consumer for whom βt+1 = Rt+1 = 1, with mean income ȳ  in t + 1. 

Assume that the realization of the risk ξt+1 will be some value ζ for which the 
minimum draw with positive probability is ζ and the maximum draw with positive 

¯probability is ζ , and signify a decision rule that takes account of the presence of 
the immediate risk by a ∼. Thus, the perfect foresight unconstrained consumption 
function is ct,1(w), the perfect foresight consumption function in the presence of 
the future constraint is ct,2(w), the consumption function with no constraints but 
with the risk is c̃t,1(w) and the consumption function with both risk and constraint 
is c̃t,2(w), and similarly for the other functions (e.g. ˜ 

t, 
′ 
2(s) is the end-of-period-t 

marginal value of a consumer facing the constraint and the risk). Now define 

ω̄̃ t,2 = w̃̆t,2(˜ ′ 
t,1(ωt+1,2 − (ȳ + ζ))) (111) 
′ ω̃ = w̆̃ 

t,2(˜ (ωt+1,2 − (ȳ + ζ̄))). (112) t,2 t,2 

In words, ω̄̃ t,2 is the level of wealth such that a constrained optimizing consumer 
with this amount of wealth facing shock ξt+1 will save enough to guarantee that 
even under the worst possible realization of the shock, wealth next period will be 
greater than the level ωt+1,2 at which the constraint would bind, while ω̃ is the t,2 

level of wealth such that the constrained consumer facing the risk would save so 
little that he will be constrained next period even under the best possible draw of 
ζ . Similarly, define 

ω̄ t,2 = w̆t,2(˜ 
t, 
′ 
1(ωt+1,2 − (ȳ + ζ))) (113) 

′ ω = w̆t,2(˜ (ωt+1,2 − (ȳ + ζ̄))), (114) t,2 t,2 

which are the levels of wealth for the perfect foresight consumers that correspond to 
the same levels of consumption as are generated by ω̄̃ t,2 and ω̃t,2 for the risk-bearing 
consumers. 

Note that we must be careful to check that ωt+1,2 − ȳ  − ζ is inside the realm of 
feasible values of st, in the sense of values that permit the consumer to guarantee 
that future levels of consumption will be within the permissible range (e.g. positive 
for consumers with CRRA utility). If this is not true for some level of wealth, then 
any constraint that binds at or below that level of wealth is irrelevant, because 
the restriction on wealth imposed by the risk is more stringent than the restriction 
imposed by the constraint. 
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Figure 5: Consumption Functions With and Without a Constraint and a Risk 

Supposing Tt[2] is not irrelevant in the presence of the risk, we are now in position 
to state 

Lemma 7 For all three utility classes, the introduction of the risk ξt+1 has a larger 
precautionary e ect on the level of consumption (induces more precautionary saving) 
for a consumer for whom there is a positive probability that the constraint Tt[2] will 
bind than for a consumer who will never be constrained before the end of his horizon. 
That is, 

ct,2(w) − c̃t,2(w) ≥ ct,1(w) − c̃t,1(w), (115) 

and the inequality is strict at levels of wealth ω̃t,2 < w < ω̃̄t,2. For the exponential 
and power utility cases, the inequality is also strict for wt ≤ ω̃ while in the t,2, 
quadratic utility case (115) holds with equality for wt ≤ ω̃t,2. 

Figure 5 shows an example of optimal consumption rules in period t under dif-
ferent combinations of an immediate risk (realized between t and t +1) and a future 
constraint (applying between periods t + 1 and t + 2).21 The darker loci reflect 
behavior of consumers who do not face the future constraint, and the dashed loci 

21Specifically, this depicts optimal behavior in period T − 2 of a model in which there is a 
symmetric two-point mean zero shock that may apply between periods T − 2 and T − 1. If the 
shock were distributed continuously, the change in slope for the constrained consumer facing the 
risk would be continuous. The Mathematica notebook that generates the figure is available on 
Carroll’s home page. 
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reflect behavior of consumers who do face the immediate risk. As expected, for 
levels of wealth above ωt,2 where the future constraint stops impinging on current 
behavior for perfect foresight consumers, behavior of the constrained and uncon-
strained perfect foresight consumers is the same; similarly, c̃t,2(wt) = c̃t,1(wt) for 
levels of wealth above ω̄̃ t,2 beyond which the probability of the future constraint 
binding is zero. And for both constrained and unconstrained consumers, the intro-
duction of the risk reduces the level of consumption (the dashed loci are below their 
solid counterparts). 

The import of lemma 7 in this context is that for levels of wealth below ω̄̃ t,2 
the vertical distance between the solid and the dashed loci is greater for the con-
strained (thin line) than for the unconstrained (thick line) consumers, because of 
the interaction between the liquidity constraint and the precautionary motive. 

Our proof proceeds by constructing behavior of consumers facing the risk from 
the behavior of the perfect foresight consumers. We will be considering matters 
from the perspective of some level of wealth w for the perfect foresight consumers. 
Because the same marginal utility function u ′ applies to all four consumption rules, 
the Compensating Precautionary Premia associated with the introduction of the 
risk ξt+1, κt,1 and κt,2, must satisfy 

ct,1(w) = c̃t,1(w + κt,1) (116) 

ct,2(w) = c̃t,2(w + κt,2). (117) 

Define the amounts of precautionary saving induced by the risk ξt+1 at an arbi-
trary level of wealth w in the two cases as 

ψt,1(w) = ct,1(w) − c̃t,1(w) (118) 

ψt,2(w) = ct,2(w) − c̃t,2(w) (119) 

where the mnemonic is that the first two letters of the Greek letter psi stand for 
precautionary saving. 

We can rewrite (117) (resp. (116)) as 

Z 
w 

ct,2(w + κt,2) + c ′ t,2(υ)dυ = c̃t,2(w + κt,2) 
w+�t,2 

Z 
w+�t,2 

′ ct,2(w + κt,2) − c̃t,2(w + κt,2) = ct,2(υ)dυ = ψt,2(w + κt,2) 
w 

Z 
w+�t,1 

′ ct,1(w + κt,1) − c̃t,1(w + κt,1) = ct,1(υ)dυ = ψt,1(w + κt,1) 
w 

and 
Z 

w+�t,2 

ψt,1(w + κt,2) = ψt,1(w + κt,1) − (c̃ ′ (υ) − c ′ (υ))dυ t,1 t,1 
w+�t,1 

so the di erence between precautionary saving for the constrained and uncon-
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strained consumers at w = w + κt,2 is 

ψt,2(w + κt,2) − ψt,1(w + κt,2) = 
Z 

w+�t,1 

(c ′ (υ) − c ′ (υ))dυ t,2 t,1 
w 

Z 
w+�t,2 � � 

′ ′ ′ + ct,2(υ) + (c̃ t,1(υ)) dυ. (120) t,1(υ) − c 
w+�t,1 

If we can show that (120) is a positive number for all feasible levels of w satisfying 
w < ω̄ t,2, then we will have proven the lemma. 

6.3.2 Some Definitions 

Throughout the next few sections, we will consider matters from the perspective 
of perfect foresight consumers with fixed wealth w. It will be useful to have the 
following defined: 

ct,n = ct,n(w), (121) 

st,n = w − ct,n(w) = st,n(w) (122) 

c(z) = ct+1,1(st,1 + ȳ + z) (123) 

c̀(z) = ct+1,2(st,2 + ȳ + z). (124) 

6.3.3 Perfect Foresight Wealth w > ω̄ t,2 or (w > ω̃̄t,2) 

Recall that ω̄ t,2 was defined as the level of wealth corresponding, for a perfect 
foresight consumer, to the value of consumption at which, for the consumer facing 
both risk and constraint, the probability of the constraint binding reaches zero. 
Obviously, then, for w > ω̄ t,2, for the consumer facing both risk and constraint, the 
constraint does not a ect consumption because the probability that it will bind is 
zero. We present the proof of this proposition because it previews techiques that 
will be less transparent in the more complicated cases. 

Note first that for such a w, c ′ t,1(v) = ct, 
′ 
2(v) for all v > w, so the first integral 

in (120) is zero (since κt,1 ≥ 0). 
The second integral will be zero if κt,1 = κt,2. The compensating precautionary 

premia are defined from 

u ′ (ct,1) = Et[u ′ (c(κt,1 + ζ))] (125) 

u ′ (ct,2) = Et[u ′ (c̀(κt,2 + ζ))], (126) 

but for w ≥ ω̄ t,2 we have ct,1 = ct,2 so the LHS’s of these two equations are the 
same. The definitions (123)-(124) translate here to 

=st,2 
z}|{ 

c(κt,2 + ζ) = ct+1,1( st,1 +ȳ + κt,2 + ζ) (127) 

c̀(κt,2 + ζ) = ct+1,2(st,2 + ȳ + κt,2 + ζ). (128) 
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Figure 6: Interaction of a Liquidity Constraint and Precautionary Saving 

Now recall that lemma 6 tells us that if absolute prudence of u ′ (c(κt,2 + ζ)) 
is identical to absolute prudence of u ′ (c̀(κt,2 + ζ)) for every realization of ζ then 
κt,1 = κt,2. But we defined ω̄ t,2 as the lowest level of wealth for which wt+1 = 
st,2 + ȳ + κt,2 + ζ ≥ ωt+1,2 which means that the constraint cannot bind for any 

¯realization ζ ∈ (ζ, ζ), which means that ct+1,1(wt+1) = ct+1,2(wt+1) for all ζ , which 
means that the RHS of (127) and (128) are identical for all ζ , implying identical 
absolute prudence of u ′ (c(κt,2 + ζ)) and u ′ (c̀(κt,2 + ζ)) for all ζ . Thus by lemma 6, 
κt,1 = κt,2. 

Therefore, as expected, for consumers who are rich enough that the constraint 
could not possibly bind, the presence or absence of the constraint makes no di erence 
to the magnitude of precautionary saving. 

6.3.4 ωt,2 ≤ w < ω̄ t,2 

Next consider w such that ωt,2 ≤ w < ω̄ t,2; that is, a level of w corresponding 
to a level of consumption at which the future constraint will not bind for the per-
fect foresight constrained consumer, but will bind with positive probability for the 
constrained consumer facing the risk. (The specific case of w = ωt,2 is depicted in 
figure 6, which magnifies the upper part of figure 5. In the figure, the ubiquitous 
t subscripts have been dropped to reduce clutter). At these levels of wealth, since 
the constraint does not bind for the constrained perfect foresight consumer, the 
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MPC’s for the constrained and unconstrained perfect foresight consumers are iden-
tical, so the first integral in (120) is zero. And since ct, 

′ 
2(υ) > 0, the second integral 

will certainly be positive if c̃  ′ (υ) ≥ c ′ (υ). For both quadratic and exponential t,1 t,1 

unconstrained consumers, the introduction of a risk has no e ect on the marginal 
propensity to consume (for quadratic, the risk has no e ect on consumption; for 
exponential, the level drops but the MPC remains the same, cf. (74)), so for these 
consumers this term is zero. For CRRA consumers, Carroll and Kimball 1996 show 
that at a given υ the MPC is higher in the presence than in the absence of uncer-
tainty, c̃t,1(υ) ′ > ct, 

′ 
1(υ). Thus the whole second integral will be strictly positive so 

long as the upper limit of integration exceeds the lower limit, which will be true so 
long as κt,2 > κt,1. We will prove this by showing that assuming κt,2 ≤ κt,1 leads to 
the conclusion that κt,2 > κt,1. 

Now define �ζ�
m (read �ζ� as ‘cancel ζ ’) as the value of ζ such that t+1,n 

st,n + ȳ + κt,n + ζ = ωt+1,m. (129) 

In words, �ζ�
m is the value of ζ that ‘cancels’ the values of st,n, ȳ, and κt,n relative t+1,n 

to the m’th constraint in the sense that given the values of these variables, a draw of 
ζ ζm restores wealth to exactly the value at which constraint m stops binding. = ��t+1,n 

In this case where w ≥ ωt,2, st,1 = st,2. Now assume κt,2 = κt,1. In this case 
ct+1,2(st,2 + ȳ + κt,2 + ζ) and ct+1,1(st,1 + ȳ + κt,1 + ζ) are identical for ζ > �ζ�t 

2
+1,2 

while for ζ ≤ �ζ�
2 the MPC of ct+1,2 exceeds that of ct+1,1, which means by the t+1,2 

arguments in section 4.2.2 that absolute prudence of c̀(κt,1 + ζ) exceeds absolute 
¯prudence of c(κt,1 + ζ) for some ζ ∈ (ζ, ζ), which by application of lemma 6 gives 

us the required result that κt,2 > κt,1. This is a contradiction of our assumption 
that κt,2 = κt,1; we can similarly rule out κt,2 < κt,1, leaving κt,2 > κt,1 as the only 
possibility. We will use a similar argument repeatedly in what follows; for short, we 
will call this the ‘contradiction’ argument. 

6.3.5 w < ωt,2 

For w < ωt,2 the perfect foresight consumer subject to the constraint will anticipate 
(with certainty) being constrained in period t + 1, and so the appropriate level of 
consumption will be lower than for the unconstrained consumer. However, for both 
constrained and unconstrained perfect foresight consumers the Euler equation will 
hold between periods t and t + 1, 

u ′ (ct,1) = u ′ (ct+1,1(st,1 + ȳ)) (130) 

u ′ (ct,2) = u ′ (ct+1,2(st,2 + ȳ)), (131) 

and strict monotonicity of u ′ implies that22 

ct,1 = ct+1,1(st,1 + ȳ) (132) 

ct,2 = ct+1,2(st,2 + ȳ). (133) 

22If we were to relax the assumption Rt+1 t+1 = 1 the levels of consumption satisfying the Euler 
equations would di er for di erent utility specifications; this has no substantive implications but 
would considerably complicate the exposition. 
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Linearity of the constrained consumption rule below the point at which the 
constraint impinges means that 

′ ′ ct,2 = ct,1 − (ωt,2 − w)(ct,2 − ct,1). (134) 

The compensating precautionary premium for the unconstrained consumer is 
defined implicitly from 

u ′ (ct,1) = Et[u ′ (ct+1,1(st,1 + ȳ + κt,1 + ζ))], (135) 

but the linearity of the unconstrained consumption rule in t + 1 means that 

ct+1,1(st,1 + ȳ + κt,1 + ζ) = ct+1,1(st,1 + ȳ) + (κt,1 + ζ)ct 
′ 
+1,1 (136) 

= ct,1 + (κt,1 + ζ)c ′ t+1,1, (137) 

so (135) can be rewritten 

u ′ (ct,1) = Et[u ′ (ct,1 + (κt,1 + ζ)c ′ t+1,1)]. (138) 

For the constrained consumer we can similarly write 
( 

′ ζ2ct,2 + (κt,2 + ζ)c for ζ < ��t+1,2 t+1,2 ct+1,2(st,2 + ȳ + κt,2 + ζ) = (139) 
c # + (ζ − �ζ�

2 )c ′ for ζ ≥ �ζ�
2 

t+1,2 t+1,2 t+1,1 t+1,2 

so if we define π as the probability of a draw of ζ < �ζ�
2 and Et[•t+1| <] (resp. t+1,2 

Et[•t+1| ≥]) as the expectation of •t+1 conditional on a draw of ζ below (resp. 
weakly above) �ζ�

2 
t+1,2, we can write the implicit equation for the CPP κt,2 as 

u ′ (ct,2) = πEt[u ′ (ct,2 + (κt,2 + ζ)c ′ )| <]t+1,2 

+ (1 − π)Et[u ′ (c # + (ζ − �ζ�
2 )c ′ )| ≥]. (140) t+1,2 t+1,2 t+1,1 

The next two sections use this formula to consider separately the cases where 
wealth is so low that the constraint always binds, and where the constraint might 
or might not bind. 

6.3.6 Wealth Low Enough that Constraint Will Bind with Certainty 

If w is so low that the constraint next period is certain to bind for the constrained 
consumer facing the risk, then π = 1 and the RHS of (139) reduces to 

′ ′ ′ ′ ct,2 + (κt,2 + ζ)c = ct,1 + (κt,2 + ζ)c + (ωt,2 − w)(c − c ). (141) t+1,2 t+1,2 t,2 t,1 

Now we can restate our earlier result (38) for the current context: If P (•) is 
absolute prudence of the utility function at consumption •, then absolute prudence 
of the value function associated with the consumption function c̀(z) is greater than 
absolute prudence of the value function associated with c(z) at z if 

P (c̀(z))c̀ ′ (z) > P (c(z))c ′ (z). (142) 
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Lemma 6 then tells us that κ̀ = κt,2 > κt,1 = κ if 

P (c̀(κt,1 + ζ))c̀ ′ (κt,1 + ζ) ≥ P (c(κt,1 + ζ))c ′ (κt,1 + ζ) (143) 

¯ ¯for all ζ ∈ (ζ, ζ) and (143) is a strict inequality for some ζ ∈ (ζ, ζ). 
For exponential utility, absolute prudence is constant, so (143) reduces to 

ct 
′ 
+1,2(st,2 + ȳ + κt,1 + ζ) ≥ ct 

′ 
+1,1(st,1 + ȳ + κt,1 + ζ). (144) 

Now we apply the ‘contradiction’ argument. Assume κt,2 = κt,1. In this case 
the LHS of (144) is constant at c ′ (by the definition of w < ωt,2); the RHS t+1,2 

is constant at c ′ < ct 
′ 
+1,2, so the condition is satisfied everywhere, and so by t+1,1 

lemma 6 κt,2 > κt,1, which is the contradiction; the contradiction also holds if we 
assume κt,2 < κt,1, leaving κt,2 > κt,1 as the only possibility. 

For CRRA utility, absolute prudence at c is (ρ + 1)/c, so (143) becomes 
� � � � 
c̀  ′ (κt,1 + ζ) c̀(κt,1 + ζ)

≥ . (145) 
c ′(κt,1 + ζ) c(κt,1 + ζ) 

Again assuming κt,2 = κt,1 and recognizing that for the values of w under con-
sideration the MPC’s are constant, (145) translates to a requirement that 

� � � � 
c ′ t+1,2 ct+1,2(st,2 + ȳ + κt,1 + ζ)

≥ . (146) 
c ′ t+1,1 ct+1,1(st,1 + ȳ + κt,1 + ζ) 

Substituting (141) and (137) for the levels of consumption on the RHS, this 
becomes 

� � � �′ ′ ′ ′ c ct,1 + (κt,1 + ζ)c + (ωt,2 − w)(c − c )t+1,2 t+1,2 t,2 t,1
≥ . (147) 

c ′ ct,1 + (κt,1 + ζ)c ′ t+1,1 t+1,1 

The RHS of (147) takes its maximum value at w = ωt,2, so if the inequality is 
satisfied there it will be satisfied for all other values of w < ωt,2. Thus, a suÿcient 
condition is that 

� � � � 
c ′ ct,1 + (κt,2 + ζ)c ′ t+1,2 t+1,2

≥ (148) 
c ′ ′ ct,1 + (κt,2 + ζ)ct+1,1 t+1,1 

� � � � 
′ ′ ′ ′ ct,1 + (κt,2 + ζ)c c ≥ ct,1 + (κt,2 + ζ)c c (149) t+1,1 t+1,2 t+1,2 t+1,1 

c ′ ≥ c ′ (150) t+1,2 t+1,1 

which holds as a strict inequality. Again we have shown κt,2 > κt,1 after assuming 
κt,2 = κt,1, and again the same result can be shown if we assume κt,2 < κt,1, leaving 
κt,2 > κt,1 as the only possibility. 

For quadratic utility, there are no kink points in next period’s consumption 
function for w < ωt,2, so absolute prudence is zero everywhere and κ = κ̀ = κt,2 = 
κt,1 = 0. Note that in the quadratic case the fact that κ is zero implies that 
ω = ω̃t,2, thus justifying the claim in lemma 7 that for w < ω̃ the size of t,2 t,2 

precautionary saving in response to ξt+1 is the same for the constrained as for the 
unconstrained consumer (zero in both cases). 
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6.3.7 Before 

Now consider intermediate values of wealth for which the perfect foresight con-
strained consumer saves more than the perfect foresight unconstrained consumer, 
and for which there is a chance that the constraint will not bind for the constrained 
consumer facing the risk. 

For exponential utility, the question boils down to whether the prudence condi-
tion (144) holds weakly everywhere and strictly somewhere, which again reduces to 
whether 

ct 
′ 
+1,2(st,2 + ȳ + κt,2 + ζ) > ct 

′ 
+1,1(st,1 + ȳ + κt,1 + ζ) (151) 

¯for some ζ ∈ (ζ, ζ). As usual assuming κt,2 = κt,1, note that we are considering 
¯values of ζ for which the constraint strictly binds for ζ < ζ ≤ �ζ�

2 
t+1,2 < ζ, so 

(151) does indeed hold strictly somewhere, and since it holds weakly for ζ > �ζ�
2 
t+1,2, 

lemma 6 gives us κt,2 > κt,1 by the contradiction argument. 
The CRRA case is considerably more diÿcult. Define c(z) and c̀(z) as in (123)-

(124), and restate (135) and (140) as 

c 
− 
t,1 

ˆ = E[(c(κt,1 + ζ))−ˆ] (152) 

c 
− 
t,2 

ˆ = E[(c̀(κt,2 + ζ))−ˆ]. (153) 

Define 

ν = ct,2/ct,1 (154) 

which is strictly less than one by the assumption w < ωt,2, and note that both sides 
of (152) can be multiplied by ν−ˆ to produce 

ct, 
− 
2 
ˆ = E[(νc(κt,1 + ζ))−ˆ]. (155) 

Now define 
! 

# ct+1,2
� = (156) 

νc(ωt+1,2 − (ȳ + st,2)) 
! 

# ct+1,2 
= (157) 

νc(ωt+1,2 − (ȳ + st,1 + (st,2 − st,1))) 
! 

# ct+1,2 
= � � (158) 

c(ωt+1,2 − (ȳ + st,1)) − (st,2 − st,1)c ′ νt+1,1 
  

# ct+1,2  = � 
# ′ 

� (159) 
ct+1,2 − (st,2 − st,1)ct+1,1 ν 

and note that since st,2 > st,1 we have �ν > 1. 
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Finally, defining 

z m = ζm (160) �t+1,n κt,n + ��t+1,n 

construct ( 

ct,2 + zc ′ if z < �t+1,2 zt+1,2 
č(z) = (161) 

2 ′ 2c # + (z − z� )c �ν if z ≥ z�t+1,2 t+1,2 t+1,1 t+1,2, 

The CPP associated with this consumption function in period t+1, κ̌, is defined 
implicitly from using z = κ̌+ ζ and writing the Euler equation as 

u ′ (ct,2) = πEt[u ′ (ct,2 + (κ̌ + ζ)ct 
′ 
+1,2)| <] 

′ (c # ζ2 ′ + (1 − π)Et[u t+1,2 + (ζ − ��t+1,2 + (κ̌ − κt,2))ct+1,1�ν)| ≥] (162) 

and note that if we hypothesize that κ̌ = κt,2 then the only di erence between (162) 
and (140) is the presence of the �ν term in the second term on the RHS of (162). 
But since �ν > 1, for E[•| ≥] we know that ζ > �ζ�

2 
t+1,2, so if κ̌ = κt,2 the RHS of 

(162) is strictly less than the RHS of (140). But the LHS of (140) and (162) are 
identical. So the assumption κ̌ = κt,2 generates a contradiction. Similar logic rules 
out κ̌ > κt,2, leaving κ̌ < κt,2 as the only possibility. 

We will now apply lemma 6 to show κ̌ > κt,1. To do so we need the prudence 
condition 

� � � � 
č  ′ (κt,1 + ζ) č(κt,1 + ζ)

≥ (163) 
νc′(κt,1 + ζ) νc(κt,1 + ζ) 

to hold weakly everywhere (∀ζ ∈ (ζ, ζ)) and strictly somewhere. Notice first that if 
we define z = κt,1 + ζ then this translates into 

� � � � 
č  ′ (z) č(z)

≥ (164) 
νc′(z) νc(z) 

¯for z ∈ (ζ + κt,1, ζ + κt,1). 
Our method will be to consider separately the cases where z < z�

2 z2 
t+1,2, z = �t+1,2, 

and z > z�
2 Start with the z > z�

2 
t+1,2 case, noting first that t+1,2. 

2 2 ′ c(z) = c(z�t+1,2) + (z − z� (165) t+1,2)ct+1,1 

and similarly, for z ≥ zt 
2
+1,2 we have 

č(z) = č(z�t+1,2) + (z − z�t+1,2)c 
′ �ν (166) t+1,2 

so (163) becomes 
� � � �2 2 ′ �νct 

′ 
+1,1 č(z�t+1,2) + (z − z�t+1,2)ct+1,1�ν 

≥ (167) 
2 2 ′ νc ′ νc(z� ) + (z − z� )c νt+1,1 t+1,2 t+1,2 t+1,1 

� 2 2 ′ � 
�(νc(z�t+1,2) + (z − z�t+1,2)ct+1,1ν)

� ≥ (168) 
2 2 ′ νc(z�t+1,2) + (z − z�t+1,2)ct+1,1ν 

= � (169) 
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so prudence of νc(z) and č(z) is identical for z > z�
2 
t+1,2. 

Now consider points for which z < z�
2 We know that t+1,2. 

νct+1,1(st,1 + ȳ + z) = (ct,1 + zc ′ )ν (170) t+1,1 

= ct,2 + zc ′ t+1,1ν (171) 

where the only di erence with the first part of (161) is the substitution of c ′ νt+1,1 

for ct 
′ 
+1,2. The prudence comparision is thus whether 

� � � � 
c ′ ct,2 + zc ′ t+1,2 t+1,2

≥ (172) 
c ′ ν ct,2 + zc ′ νt+1,1 t+1,1 

which boils down to whether 

c ′ > c ′ (173) t+1,2 t+1,1ν 

which is true for all z below the kink point since ν < 1 and c ′ ′ 
t+1,2 > ct+1,1. 

Finally, at the kink point z = z�
2 the slope of č  undergoes a discrete de-t+1,2 

cline, which means that it exhibits infinite prudence, clearly greater than the finite 
prudence exhibited by c(z�

2 ), at that point. t+1,2 

Thus prudence for č(z) is strictly greater than for c(z) for z at and below the 
kink point z�

2 and prudence is equal above the kink point, so by lemma 6 we t+1,2 

have κ̌ > κt,1. Hence we now have κt,2 > κ̌ > κt,1 which was what we needed. 
There is one subtle circumstance that could invalidate this argument: In order 

to apply lemma 6 we need 

¯ z�t 
2
+1,2 ∈ (ζ + κt,1, ζ + κt,1), (174) 

which we have not demonstrated. Consider first the possibility 

z�
2 < ζ + κt,1 (175) t+1,2 

ωt+1,2 − (st,2 + ȳ) < ζ + κt,1 (176) 

ωt+1,2 < ζ + κt,1 + st,2 + ȳ  (177) 

ωt+1,2 < ζ + κt,1 + st,1 + y.̄ (178) 

But this means that a constrained consumer saving only the amount associated 
with the unconstrained consumer’s CPP would have zero probability of hitting the 
constraint, which contradicts our assumption that w < ω̄ t,2. On the other hand 
consider 

¯ z�t 
2
+1,2 > ζ + κt,1 (179) 

¯ωt+1,2 > ζ + κt,1 + st,2 + ȳ  (180) 

and note that if κt,2 ≤ κt,1 then (180) would hold for every realization of ζ which 
means the constrained consumer would be constrained in every state, which con-
tradicts our assumption that w > ωt,2 (as well as our earlier result that κt,2 > κt,1 
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for consumers who are constrained with probability one). The remaining possibility 
κt,2 > κt,1 cannot be ruled out, but if z�

2 fails to be in (κt,1 + ζ, κt,1 + ζ̄) because t+1,2 

κt,2 > κt,1, that leaves us with the result we need anyway. 
Finally, consider the quadratic case. Here the prudence condition (142) reduces 

to 0 = 0 at all ζ other than ζ = �ζ�t+1,2, the kink point, where prudence is infinite. 
But the alternative definition of greater absolute prudence applies: For the range 
of values of w under consideration here, st,2 will be such that st,2 + ȳ + ζ contains 
a kink point at which there is a discrete decline in the MPC, so absolute prudence 
of the value function in the presence of the constraint is greater than in its absence 
at that point, leading again by lemma 6 to the conclusion that κt,2 > κt,1. 

This completes the proof of lemma 7. 

6.3.8 Further Constraints 

The foregoing analysis was specialized to the comparison of a situation with no 
constraints to the case of a single future constraint. Consider now the case where 
we have imposed n constraints and are considering imposition of constraint n + 1 
(and where constraint n + 1 applies at the end of some future period; below we 
examine the case where Tt[kt] = t). 

Assuming constraint n + 1 is relevant in the presence of the risk, parallel deriva-
tions to those that produced (120) imply that the key question is whether κt,n+1 > 
κt,n. Analysis of the cases where w < ω and w > ωt,n+1 is identical to the t,n+1 

corresponding cases above, and need not be repeated. Thus, we examine only the 
case of values of wealth w such that ωt,n+1 < w < ωt,n+1. And we examine only the 
CRRA utility case, as the extension to the exponential and quadratic cases follows 
the same patterns as in section 6.3.7. 

Consider the following definitions which are parallel to those in section 6.3.7: 

νn+1 = ct,n+1/ct,n (181) 

c(z) = ct+1,n(st,n + ȳ + z) (182) 

c̀(z) = ct+1,n+1(st,n+1 + ȳ + z), (183) 

Now we wish to define č(z) so that č(z) = c̀(z) for z < z�t+1,n+1, while the 
absolute prudence of č(z) is identical to that of c(z) for z ≥ z�t+1,n+1. Setting 

! 
# ct+1,n+1 

�t+1,n+1 = , (184) 
c(z�t+1,n+1)νt+1 

this definition of č  requires an MPC of 

č  ′ (z) = νt+1�t+1,n+1c 
′ (z�

n+1 ) (185) t+1,n+1 

at z = z�t+1,n+1. 
Equal absolute prudence of č(z) and νt+1c(z) requires 

� � � � 
č  ′ (z) c ′ (z) 

= (186) 
č(z) c(z) 
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but since c ′ (z) = c ′ is constant over the range z�
n+1 zn if we choose t+1,n t+1,n+1 ≤ z < �t+1,n 

a constant č  ′ (z) equal to (185) over this range the LHS of (186) reduces to 

! ! 
′ ′ cνt+1�t+1,n+1ct+1,n t+1,n 

= 
# n+1 ′ n+1 n+1 ′ ct+1,n+1 + (z − z�t+1,n+1)νt+1�t+1,n+1ct+1,n 

c(z�t+1,n+1) + (z − z�t+1,n+1)ct+1,n 
� � 
c ′ (z) 

= (187) 
c(z) 

as required. Similarly, if we define 

� � 
č(z�

n )t+1,n 
�n = , (188) t+1,n nc(z� )νt+1 t+1,n 

and set 

n č  ′ (z) = νt+1�
n c ′ (z�t+1,n) (189) t+1,n 

for z > z�
n then prudence of č(z) will again equal that of c(z) at z�

n . Proceeding t+1,n t+1,n 

in this way to define successive �’s corresponding to the successive kink points in c(z) 
defines a function č(z) that has prudence identical to that of c(z) for all z ≥ z�

n+1 
t+1,n+1. 

Since prudence of č(z) is greater than prudence of c(z) for z < z�
n+1 and equal t+1,n+1 

above this point, by lemma 6 we can conclude that κ̌ > κ by the same arguments 
as before. 

Before proceeding to show κ̀ > κ,ˇ to build intuition consider figure 7, which 
depicts an example of a problem in which a second constraint is being added to a 
problem with a single initial constraint (the ubiquitous t + 1 subscripts have been 
dropped to reduce clutter). For values of z ≤ z�

3 (that is, the point where the t+1,3 

final constraint stops binding for the more-constrained consumer), č(z) = c̀(z). For 
z3 to z2 we have č  ′ (z) = �t+1,n+1νt+1c ′ (z) > c ′ (z) but the di erence does t+1,3 t+1,2 

not become visible until z rises above the point where the second constraint stops 
binding for the multiply-constrained consumer, z�

2 
t+1,3. Between z�

2 and the point t+1,3 

z�
2 where the constraint stops binding for the less-constrained consumer, the t+1,2 

slope of č(z) is visibly greater than that of c̀(z). 
The definitions of z�

3 
t+1,3 and z�

2 
t+1,2 also make sense: These are visibly the values 

of z below which the final constraint is always binding for the two functions. It also 
apparent that the kink point in νt+1c(z) occurs at νt+1c 

# as required, and that t+1,2 

νt+1c(0) = c̀(0) (because both are equal to ct,2, corresponding to (132) and (133)). 
Returning to the theory, the remaining question is whether κ̀ > κ̌. As before, 

this is proven by contradiction. Defining π as the probability of drawing a ζ < �ζ�
3 
t+1,3 

and E[•| <] and E[•| ≥] correspondingly, the definition of the CPPs tells us 

u ′ (ct,2) = πE[u ′ (c̀(κ̀ + ζ))| <] + (1 − π)E[u ′ (c̀(κ̀ + ζ))| ≥] (190) 

u ′ (ct,2) = πE[u ′ (č(κ̌ + ζ))| <] + (1 − π)E[u ′ (č(κ̌ + ζ))| ≥]. (191) 

Under the assumption κ̌ = κ̀ the first terms on the RHS of these equations are 
identical. But for ζ > �ζ�

3 we know that if κ̌ = κ̀ then č(κ̀ + ζ) > c̀(κ̀ + ζ) (see t+1,3 
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Figure 7: Definition of č(z) 

49 



�

�

the figure). Thus assuming κ̌ = κ̀ the LHS and the first terms on the RHS in (190) 
and (191) are identical but the second term on the RHS of (190) is greater than the 
corresponding term in (191), generating a contradiction that can be resolved only 
by assuming κ̌ < κ̀. 

Thus, we can state a more general version of lemma 7, 

Lemma 8 For all three utility classes, the introduction of the risk ξt+1 has a larger 
precautionary e ect on the level of consumption (induces more precautionary saving) 
for a consumer who faces the first n+1 liquidity constraints in Tt than for a consumer 
who faces only the first n constraints. That is, 

ct,n+1(w) − c̃t,n+1(w) ≥ ct,n(w) − c̃t,n(w), (192) 

and the inequality is strict at levels of wealth ω̃t,n+1 < w < ω̄̃ t,n+1. For the exponen-
tial and power utility cases, the inequality is also strict for wt ≤ ω̃t,n+1, while in the 
quadratic utility case (192) holds with equality for wt ≤ ω̃t,n+1. 

Finally, if there are no constraints that could apply, or risks that could be 
realized, between period s < t and period t, it is simple to extend this to period s; 
we state this final version as a theorem, 

Theorem 3 Consider a consumer in period s < t facing a set of liquidity con-
straints Ts = Tt, and a risk ξt+1 that will be realized between the end of period t and 
the beginning of period t + 1. The introduction of the risk ξt+1 has a larger precau-
tionary e ect on the level of consumption (induces more precautionary saving) in 
period s for a consumer who faces the first n + 1 liquidity constraints in Ts than for 
a consumer who faces only the first n constraints. That is, 

cs,n+1(ws) − c̃s,n+1(ws) ≥ cs,n(ws) − c̃s,n(ws), (193) 

and the inequality is strict at levels of wealth ω̃ < w < ω̄̃ s,n+1, where ω̃s,n+1 s,n+1 

(resp. ω̄̃ s,n+1) is the level of wealth such that a consumer in period s with wealth 
ws = ω̃s,n+1 (resp. ws = ω̃̄ s,n+1) will arrive at the beginning of period t with wealth 
ω̃t,n+1 (resp. ω̃̄t,n+1). For the exponential and power utility cases, the inequality 
is also strict for ws ≤ ω̃s,n+1, while in the quadratic utility case (193) holds with 
equality for ws ≤ ω̃s,n+1. 

In intuitive terms, this theorem says that the precautionary saving induced by 
the introduction of the risk ξt+1 is greater for the consumer facing n + 1 constraints 
than for the consumer facing n constraints at levels of wealth at which there is some 
probability that the n + 1’th constraint will actually bind. 

The easiest way to see that the theorem holds (given the lemma) is to realize 
that in an unconstrained perfect foresight model behavior in period s < t can be 
reformulated to combine multiple periods into one. Thus, for example, for CRRA 
utility, consumption two periods earlier can be obtained via the Euler equation from 
consumption one period earlier, and so on. This means that the foregoing logic can 
be directly reinterpreted with appropriate substitutions of s for t and appropriate 
reformulation of the dynamic budget constraint. 
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6.3.9 Earlier Risks and Constraints 

The form of theorem 3 is suggestive of a stronger result that one might hope would 
hold if earlier risks and constraints were imposed. To state then examine this result, 
we need to develop a last bit of notation. We define 

m c˝,n 

as the consumption function in period τ assuming that the first n constraints and 
the first m risks have been imposed, counting risks, like constraints, backwards 
from period T . Thus, relating our new notation to our previous usage, c0 ˝,n = c˝,n 

because 0 risks have been imposed. All other functions are defined correspondingly, 
e.g. p is the end-of-period-τ value function assuming the first n constraints and ˝,n 

m risks have been imposed. We will continue to use the notation c̃˝,n to designate 
the e ects of imposition of a single risk that will be realized between periods τ and 
τ + 1. Finally, we need to introduce a counter that keeps track of how many future 
risks exist beyond a given date, analogous to our kt counter that tells how many 
constraints exist after period t. Call the risk-counter qt. 

Suppose now the presence of multiple risks that will be realized between t and 
T . One might hope to show that the precautionary e ect of imposing all risks in 
the presence of all constraints would be greater than the e ect of imposing all risks 
in the absence of any constraints: 

0 qt 0 qt c (w) − c (w) ≥ c (w) − c (194) t,kt t,kt t,1 t,1(w). 

Such a hope, however, would be in vain. In fact, we will now show that even the 
considerably weaker condition, involving only the single risk ξt+1 and all constraints, 
0 1 0 1ct,kt 

(w) − c (w) ≥ ct,1(w) − c (w), can fail to hold for some w.t,kt t,1 

6.3.10 An Immediate Constraint 

Consider a situation in which Tt[kt] = T −t; that is, the chronologically earliest con-
straint in Tt applies at the end of period t. Since c1 designates the consumption t,kt+1 

rule that will be optimal prior to imposing the period-t constraint, the consumption 
rule imposing all constraints will be 

c 1 (w) = min[c 1 (w), w]. (195) t,kt t,kt+1 

Now define the level of wealth below which the period t constraint binds for a 
consumer facing the risk as ω1 . For values of wealth w ≥ ω1 , analysis of the t,kt t,kt 

e ects of the risk is identical to analysis in the previous subsection where the first 
kt+1 constraints were imposed. For levels of wealth w < ω1 , we have c1 (w) = t,kt t,kt 

ct,kt 
(w) = w (for the simple c ≥ w constraint; a corresponding point applies to the 

more sophisticated form of constraint); that is, for consumers with wealth below 
ω1 , the introduction of the risk in period t + 1 has no e ect on consumption in t,kt 

t, because for these levels of wealth the constraint at the end of t has the e ect of 
‘hiding’ the risk from view (they were constrained before the risk was imposed and 
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remain constrained afterwards). Thus for exponential and CRRA consumers, for 
whom the inequality (192) holds strictly in the absence of the constraint at t, at 
levels of wealth below ω1 the precautionary e (For t,kt 

ect of the risk is wiped out. 
quadratic consumers, precautionary saving is zero for wealth below ω1 both before t,kt 

and after the risk is imposed). 

6.3.11 An Earlier Risk 

Consider now the question of how the addition of a risk ξt that will be realized 
between periods t − 1 and t a ects the consumption function at the beginning of 
period t − 1, in the absence of any constraint at the beginning of period t. 

The question at hand is then whether we can say that 

1 2 1 ct−1,1(w) − ct−1,1(w) ≥ ct−1,1(w) − ct−1,1(w); (196) 

that is, does the introduction of the risk ξt have a greater precautionary e ect on 
consumption in the presence of the subsequent risk ξt+1 than in its absence? 

The answer again is “not necessarily.” To see why, recall our earlier example of a 
CRRA utility problem in which in a certain limit the introduction of a risk produced 
an e ect on the consumption function that was indistinguishable from the e ect of 
a liquidity constraint. If the risk ξt is of this liquidity-constraint-indistinguishable 
form, then the logic of the previous subsection clearly applies: For some levels of 
wealth, the introduction of the risk at t can ‘hide’ the precautionary e ect of any 
risks at t + 1 or later. 

6.3.12 What Can Be Said? 

It might seem that the previous two subsections imply that little useful can be 
said about the precautionary e ects of introducing a new risk in the presence of 
preexisting constraints and risks. It turns out, however, that there is at least one 
useful proposition. 

Suppose we are interested in the e ect, from the perspective of some period τ , 
of introducing a risk that will be realized between τ and τ + 1. Our goal is to find 
a set of values of wealth P˝,k˝ 

for which 

q˝+1 q˝ 1 c (w) − c (w) > (197) ˝,k˝ ˝,k˝ 
c˝,1(w) − c˝,1(w). 

That is, if we call the consumer subject to the complete set of future risks and 
constraints (but not the immediate risk) the ‘blighted’ consumer (corresponding to 
c
q˝+1 ) and the consumer subject to no future risks or constraints the ‘unblighted’ ˝,k˝ 

consumer, we are looking for levels of beginning-of-period-τ wealth such that the in-
troduction of the immediate risk has a greater (precautionary) e ect on the blighted 
than on the unblighted consumer. 

Again assuming that the last risk is ξt+1, start by defining W
qt+1 as the set t+1,kt+1 

= V qt+1 of points at which the perfect foresight value function Vt+1,kt+1 exhibits t+1,kt+1 

property strict CC, which will be the set of kink points in the perfect foresight 
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problem ω~ t+1,kt+1 because qt+1 = 0 (there are no risks beyond period t + 1). Now 
define Sqt as the set of values of end-of-period-t savings s at which the end-of-t,kt+1 

period value function imposing all future risks qt exhibits property strict CC. t,kt+1 

For the quadratic case, define ζ+ as the set of values of ζ with positive probability 
or positive probability density. Then the results in section 5.2 tell us that 

Sqt = {s|s + ȳ + ζ ∈ W
qt+1 } (198) t,kt+1 t+1,kt+1 

for some ζ ∈ ζ+ . In words, for the quadratic case Sqt is the set of values of st,kt+1 

from which the probability that some constraint will bind weakly is a ected by the 
outcome of the risk.23 

For the exponential case, we have from 5.2 

Sqt = {s|s + ȳ + ζ ∈ W
qt+1 } (199) t,kt+1 t+1,kt+1 

¯for some ζ ∈ [ζ, ζ]. In words, Sqt is the set of values of s for which there is either t,kt+1 

a positive probability that a constraint will bind next period, or from which the 
probability that some constraint will bind weakly is a ected by the outcome of the 
risk. 

For the CRRA case, we know from the results in section 5.2 that if ξt+1 is 
nondegenerate then Sqt is the set of all feasible values of s.t,kt+1 

Now define Wqt as the set of values of w at which V qt exhibits property t,kt+1 t,kt+1 

strict CC. Wqt is easy to construct: Our theorems on horizontal aggregation t,kt+1 

in 5.1 tell us that V qt (w) has the same kind of concavity (strict or borderline) as t,kt+1 

does qt at the level of savings that is optimal for initial wealth w.t,kt+1 

Finally define Wqt as the set of values of wealth at which the value function t,kt 

exhibits property strict CC once the constraint (if any) in period t has been im-
posed. Then since the consumption function is linear below the point at which the 
constraint binds, the formal definition is 

Wqt Wqt qt = ∩ {w|w ≥ c (w)}.t,kt t,kt+1 t,kt+1 
(200) 

This completes a set of steps by which Wqt can be constructed from W
qt+1 .t,kt t+1,kt+1 

The same steps can be iterated to any earlier period to generate W
q˝+1 for ˝+1,k˝+1 

τ < t − 1. 
Consider now the case where there is no constraint that could bind at the be-

W̄ q˝ginning of period τ , and define as the maximum value in Wq˝ . Then our ˝,k˝+1 ˝,k˝+1 

claim is that the set 
( 

Wq˝ for quadratic ˝,k˝+1 P˝,k˝ 
= P˝,k˝+1 = (201) 

W̄ q˝{w|w < } for exponential and CRRA ˝,k˝+1 

will satisfy condition (197). In words: In the quadratic case, precautionary saving 
induced by ξ˝+1 is higher for the blighted consumer at levels of wealth w˝ such that 

23By ‘bind weakly’ we mean to include points on the cusp, in the sense that for an arbitrarily 
small � some constraint makes a transition from binding strictly at s − � to not binding strictly 
at s + �. 
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there is at least one constraint that will bind with probability 0 < p < 1 in some 
future period for some realizations of ζ but bind with a strictly di erent probability 
for other realizations of ζ . In the exponential case, precautionary saving is higher 
if there is a positive probability that some future constraint could be binding. In 
the CRRA case, precautionary saving is higher if there is a positive probability that 
some future constraint could be binding, or if there is any future risk (because in 

W̄ q˝this case = ∞). ˝,k˝+1 

The proof of the proposition for the quadratic and exponential cases is identical 
to the proofs presented above. Intuitively, in the quadratic case these are the 
conditions under which the risk ξ˝+1 interacts with some point at which c

q˝+1 is ˝+1,k˝+1 

strictly concave, while in the exponential case these are the conditions where there 
is either an interaction with a point of strict concavity, or the marginal propensity 
to consume is higher. 

The CRRA case is again the diÿcult one. Given some w ∈ P˝,k˝ 
define 

c(z) = c˝+1,1(s˝,1 + ȳ + z) (202) 
q˝+1 q˝+1 q˝+1 c̀(z) = c (s + ¯ ) (203) ˝+1,k˝+1 ˝,k˝+1 

y + z)(c˝,1/c˝,k˝+1 

with associated CPP’s κ and κ̀. 
Our method again involves constructing a č(z) function for which κ̀ > κ̌ > κ. 

Begin by noting that limw→∞ c
q˝+1 (w) − c˝+1,1(w) = 0, along with concavity of ˝+1,k˝+1 

q˝+1 q˝+1 c (w) and the fact that s imply that, while for low enough z˝+1,k˝+1 ˝,k˝+1 
> s˝,k˝+1 

absolute prudence of c̀(z) must exceed that of c(z), as z rises there must come a z 
where absolute prudence of c̀(z) falls below absolute prudence of c(z). Assume that 

` we are considering a value of w for which A(z) < A(z) for some z ∈ (κ+ζ, κ̀+ζ̄) and 
′` for which A(z ′ ) > A(z ′ ) for some other z ∈ (κ+ζ, κ̀+ ζ̄); this is the only interesting 

case, as lemma 6 tells us that otherwise that the ranking of κ̀ and κ corresponds to 
` the (unambiguous) ranking of A(z) and A(z). (This range restriction plays the role 

in this more general case of the restriction ωt,n < w < ωt,n in the case with only 
constraints and a single risk). 

Define z�1 as the value of z above which absolute prudence of c̀(z) first falls below 
absolute prudence of c(z) (assume here that c̀(z) is di erentiable; below we relax 
this assumption). 

Define č(z) = c̀(z) for all z < z�1. Then making absolute prudence of c̀(z) and 
c(z) be identical for z = �z1 requires 

� � 
č ′ (�z1) 

č(�z1) 
= 

� � 
c ′ (�z1) 

c(�z1) 
(204) 

� � 

č ′ (�z1) = c ′ (�z1) 
č(�z1) 

c(�z1) 
, (205) 

where equality of derivatives here and throughout is taken to apply to both left and 
right derivatives. 

From this point recursively upward, we can define č  ′ (z) as the value that produces 
identical prudence of č(z) and c(z) for all z > z�1, with č(z) implicitly defined by its 
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derivative. This is similar to the definition of č  from section 6.3.8, and as before, 
since prudence of č(z) is greater than prudence of c(z) below z�1 and equal above, 
it is clear that κ̌ > κ so long as we are considering a level of wealth for which the 
relevant z ∈ (κ + ζ, κ + ζ̄). 

The remaining question is whether κ̀ > κ,ˇ which we again show through a contra-
diction argument. Since c̀(z�1) > c(z�1) it is clear that č  ′ (z�1) > c̀  ′ (z�1). Furthermore, 
since for z > z�1 the function c̀(z) is concave but č(z) is linear, the ratio of č  ′ (z) to 
c̀  ′ (z) can only increase as z rises. Thus it is clear that č(z) > c̀(z) for all z > z�1. 
Now defining π as the probability of drawing a ζ such that κ̀+ ζ < z�1 and E[•| <] 
and E[•| ≥] correspondingly, the CPP’s are defined implicitly from 

u ′ (ct,2) = πE[u ′ (c̀(κ̀ + ζ))| <] + (1 − π)E[u ′ (c̀(κ̀ + ζ))| ≥] (206) 

u ′ (ct,2) = πE[u ′ (č(κ̌ + ζ))| <] + (1 − π)E[u ′ (č(κ̌ + ζ))| ≥] (207) 

and as before the assumption κ̌ = κ̀ generates a contradiction because the first 
terms on the LHS are identical but the second terms are not, and this contradiction 
would arise with even greater force for κ̌ > κ̀, leaving κ̌ < κ̀ as the only possibility. 

Finally, we turn to the case where there is a constraint that could bind at the 
beginning of period τ . Here, the set 

P˝,k˝ 
= P˝,k˝+1 ˝,k˝ 

(208) ∩ {w|w ≥ W
q˝+1 } 

will be a set of values at which (197) will hold, where W
q˝+1 is the level of period-τ˝,k˝ 

wealth below which the constraint would be binding in the absence of the risk ξ˝+1. 
If the current constraint would not have been binding in the absence of the risk then 
it will surely not be binding in the presence of ξ˝+1, so for these values of wealth 
the addition of the risk does not interact with the period-τ constraint. 

This is not the complete set of points where (197) holds. In particular, note 
that at levels of wealth below Wq˝ the introduction of ξ˝+1 has no e ect for the ˝,k˝ 

blighted consumer (who sets c = w in the presence or the absence of the risk) but can 
have an e ect for the unblighted consumer, while at wealth equal to Wq˝ > Wq˝ 

˝,k˝+1 ˝,k˝ 

equation (197) holds as a strict inequality. Since all involved consumption functions 
are continuous, the intermediate value theorem tells us that there will be some set 
of values of w between Wq˝ and Wq˝ for which (197) will hold. But there does ˝,k˝+1 ˝,k˝ 

not appear to be any way of characterizing these points that is simpler than (197) 
itself; thus we stick with the more limited claim embodied in (208). 

All of this is summarized in our final theorem: 

Theorem 4 Introduction of the risk ξ˝+1 has a larger (precautionary) e ect on the 
level of period-τ consumption in the presence of all future risks and constraints than 
in absence of any future risks and constraints (i.e., equation (197) holds) at levels 
of wealth period-τ wealth w such that, in the absence of the new risk the consumer 
would not be constrained in the current period (c

q˝+1 (w) < w), and in the presence ˝,k˝ 

of the risk: 1) if utility is quadratic, there is some future constraint such that the 
probability that it binds depends on the value of ξ˝+1 that is realized; 2) if utility is 
exponential, there is a positive probability that some future constraint will bind; 3) if 
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utility is CRRA, there is a positive probability that some future constraint will bind, 
or the initial situation is one in which there is some nondegenerate future risk. 

The theorem was established by the foregoing arguments. 
It seems to us that a fair summary of this theorem is that in most circum-

stances the presence of future constraints and risks does increase the amount of 
precautionary saving induced by the introduction of a given new risk. The primary 
circumstance under which this should not be expected is for levels of wealth at which 
the consumer was severely constrained even in the absence of the new risk. There 
is no guararantee that the new risk will produce a suÿciently intense precautionary 
saving motive to move the initially-constrained consumer o his constraint. If it 
does, the e ect will be precautionary, but it is possible that no e ect will occur. 

7 Conclusion 

The central message of this paper is that the e ects of precautionary saving and 
liquidity constraints are very similar to each other, because both spring from the 
concavity of the consumption function. The paper provides an explanation of the 
apparently contradictory results that have emerged from simulation studies, which 
have sometimes seemed to indicate that constraints intensify precautionary saving 
motives, and sometimes have found constraints and precautionary behavior to be 
substitutes. 

Our results may have important applications even beyond the traditional con-
sumption/saving problem in which the results were derived. The precautionary-
saving e ect of liquidity constraints may apply in many circumstances where a 
decision-maker faces the possibility of future liquidity constraints which raise the 
marginal value of an extra dollar of cash. Thus, firms that are not currently liquid-
ity constrained may engage in precautionary saving if they believe there is some risk 
that constraints may bind in the future. Governments that worry about whether 
they will always be able to borrow on international markets may engage in pre-
cautionary saving even in periods when they are unconstrained. The logic could 
even apply to central banks charged with the responsibility of maintaining stable 
exchange rate regimes; the possibility of a run on the currency might induce ‘precau-
tionary’ holdings of international reserves that are larger than a risk-neutral central 
bank would hold. Of course, these are all ideas that have appeared, at least infor-
mally and sometimes formally, in the relevant literatures. But this paper provides 
a general logic which can be applied to clarify precisely when and why one should 
expect such e ects to emerge. 
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