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Abstract
In a risky world, a pessimist assumes the worst will happen. Someone who ignores risk altogether is

an optimist. Consumption decisions are mathematically simple for both the pessimist and the optimist
because both behave as if they live in a riskless world. A consumer who is a realist (that is, who wants
to respond optimally to risk) faces a much more difficult problem, but (under standard conditions)
will choose a level of spending somewhere between that of the pessimist and the optimist. We use this
fact to redefine the space in which the realist searches for optimal consumption rules. The resulting
solution accurately represents the numerical consumption rule over the entire interval of feasible wealth
values with remarkably few computations.
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1 Introduction
Solving a consumption, investment, portfolio choice, or similar intertemporal optimization problem
using numerical methods generally requires the modeler to choose how to represent a policy or value
function. In the stochastic case, where analytical solutions are generally not available, a common
approach is to use low-order polynominal splines that exactly match the function (and maybe some
derivatives) at a finite set of gridpoints, and then to assume that interpolated or extrapolated versions
of the matching polynomial are a good representation elsewhere.
This paper argues that, at least in the context of a standard consumption problem, a better approach

is available, which relies upon the fact that in the absence of uncertainty, the optimal consumption
function has a simple analytical solution. The key insight is that, under standard assumptions, the
consumer who faces an uninsurable labor income risk will consume less than a consumer with the same
path for expected income but who does not perceive any uncertainty as being attached to that future
income. The ‘realistic’ consumer who does perceive the risks will engage in ‘precautionary saving,’
so the perfect foresight riskless solution provides an upper bound to the solution that will actually
be optimal. A lower bound is provided by the behavior of a consumer who has the subjective belief
that the future level of income will be the worst that it can possibly be. This consumer, too, behaves
according to the analytical perfect foresight solution, but his certainty is that of a pessimist who is
extremely overconfident in his pessimism.
Using results from Carroll (2011b), we show how to use these upper and lower bounds to tightly

constrain the shape and characteristics of the solution to the ‘realist’s problem (that is, the solution to
the problem of a consumer who correctly perceives the risks to future income and behaves rationally in
response).
After showing how to use the method in the baseline case, we show how refine the method to

encompass an even tighter theoretical bound, and how to extend it to solve a problem in which the
consumer faces both labor income risk and rate-of-return risk.

2 The Realist’s Problem
We assume that the true reality facing the consumer is captured by the problem

max Et

[
T−t∑
n=0

βnu(ccct+n)

]
, (1)

subject to

aaat = mmmt − ccct (2)
bbbt+1 = aaatRt+1 (3)
yyyt+1 = pppt+1θt+1 (4)
mmmt+1 = bbbt+1 + yyyt+1 (5)

where

β − pure time discount factor
aaat − assets after all actions have been accomplished in period t

bbbt+1 − ‘bank balances’ (nonhuman wealth) at the beginning of t+ 1

ccct − consumption in period t
mmmt − ‘market resources’ available for consumption (‘cash-on-hand’)
pppt+1 − ‘permanent labor income’ in period t+ 1

Rt+1 − interest factor (1 + rt+1) from period t to t+ 1

yyyt+1 − noncapital income in period t+ 1.
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and the exogenous variables evolve according to

Rt = R - constant interest factor = 1 + r

pppt+1 = Γt+1pppt - permanent labor income dynamics (6)
log θt+n ∼ N (−σ2

θ/2, σ
2
θ) - lognormal transitory shocks ∀ n > 0.

It turns out (see Carroll (2011a) for a proof) that this problem can be rewritten in a more convenient
form in which choice and state variables are normalized by the level of permanent income, e.g., using
nonbold font for normalized variables, mt = ccct/pppt. When that is done, the transformed version of the
consumer’s problem is

vt(mt) = max
ct

u(ct) + Et[βΓ1−ρ
t+1 vt+1(mt+1)] (7)

s.t.
at = mt − ct

mt+1 = (R/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1

and because we have not imposed a liquidity constraint, the solution satisfies the Euler equation

u′(ct) = Et[βRΓ−ρt+1u′(ct+1)]. (8)

For the remainder of the paper we will assume that permanent income pppt grows by a constant factor
Γ and is not subject to stochastic shocks. (The generalizationto the case of permanent shocks is
straightforward.)

3 Benchmark: The Method of Endogenous Gridpoints
For comparison to our new solution method, we use the endogenous gridpoints solution to the microe-
conomic problem presented in Carroll (2006). That method computes the level of consumption at a set
of gridpoints for market resources m that are determined endogenously using the Euler equation. The
consumption function is then constructed by linear interpolation among the gridpoints thus found.
Carroll (2011a) describes a specific calibration of the model and constructs a solution using five

gridpoints chosen to capture the structure of the consumption function reasonably well at values of m
near the infinite-horizon target value. (See those notes for details).
Unfortunately, the endogenous gridpoints solution is not very well-behaved outside the original range

of gridpoints targeted by the solution method. (Though other common solution methods are no better
outside their own predefined ranges). Figure 1 demonstrates the point by plotting the amount of
precautionary saving implied by a linear extrapolation of our approximated consumption rule (the
consumption of the perfect foresight consumer c̄T−1 minus our approximation to optimal consumption
under uncertainty, c̀T−1). Although theory proves that precautionary saving is always positive, the
linearly extrapolated numerical approximation eventually predicts negative precautionary saving (at
the point in the figure where the extrapolated locus crosses the horizontal axis).
This error cannot be fixed by extending the upper gridpoint; in the presence of serious uncertainty,

the consumption rule will need to be evaluated outside of any prespecified grid (because starting
from the top gridpoint, a large enough realization of the uncertain variable will push next period’s
realization of assets above that top; a similar argument applies below the bottom gridpoint). While a
judicious extrapolation technique can prevent this problem from being fatal (for example by carefully
excluding negative precautionary saving), the problem is often dealt with using inelegant methods whose
implications for the accuracy of the solution are difficult to gauge.
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Figure 1 For Large Enough mT−1, Predicted Precautionary Saving is Negative
(Oops!)

4 The Method of Moderation

4.1 The Optimist, the Pessimist, and the Realist
4.1.1 The Consumption Function

As a preliminary to our solution, define ht as end-of-period human wealth (the present discounted value
of future labor income) for a perfect foresight version of the problem of a ‘risk optimist:’ a consumer who
believes with perfect confidence that the shocks will always take the value 1, θt+n = E[θ] = 1 ∀ n > 0.
The solution to a perfect foresight problem of this kind takes the form1

c̄t(mt) = (mt + ht)κt (9)

for a constant minimal marginal propensity to consume κt given below. We similarly define ht as
‘minimal human wealth,’ the present discounted value of labor income if the shocks were to take on
their worst possible value in every future period θt+n = θ ∀ n > 0 (which we define as corresponding to
the beliefs of a ‘pessimist’).
A first useful point is that, for the realist, a lower bound for the level of market resources is mt = −ht,

because ifmt equalled this value then there would be a positive finite chance (however small) of receiving
θt+n = θ in every future period, which would require the consumer to set ct to zero in order to guarantee
that the intertemporal budget constraint holds. Since consumption of zero yields negative infinite utility,
the solution to realist consumer’s problem is not well defined for values of mt < mt, and the limiting
value of the realist’s ct is zero as mt ↓ mt.
Given this result, it will be convenient to define ‘excess’ market resources as the amount by which

actual resources exceed the lower bound, and ‘excess’ human wealth as the amount by which mean
expected human wealth exceeds guaranteed minimum human wealth:

Nmt = mt +

=−mt︷︸︸︷
ht

Nht = ht − ht.

1For a derivation, see Carroll (2011b); κt is defined therein as the MPC of the perfect foresight consumer with horizon T − t.
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Figure 2 Moderation Illustrated: cT−1 < c̀T−1 < c̄T−1

We can now transparently define the optimal consumption rules for the two perfect foresight problems,
those of the ‘optimist’ and the ‘pessimist.’ The ‘pessimist’ perceives human wealth to be equal to its
minimum feasible value ht with certainty, so consumption is given by the perfect foresight solution

ct(mt) = (mt + ht)κt
= Nmtκt.

The ‘optimist,’ on the other hand, pretends that there is no uncertainty about future income, and
therefore consumes

c̄t(mt) = (mt + ht − ht + ht)κt
= (Nmt + Nht)κt
= ct(mt) + Nhtκt.

It seems obvious that the spending of the realist will be strictly greater than that of the pessimist
and strictly less than that of the optimist. Figure 2 illustrates the proposition for the consumption rule
in period T − 1.
Proof is more difficult than might be imagined, but the necessary work is done in Carroll (2011b) so

we will take the proposition a fact and proceed by manipulating the inequality:

Nmtκt < ct(mt + Nmt) < (Nmt + Nht)κt
−Nmtκt > −ct(mt + Nmt) > −(Nmt + Nht)κt

Nhtκt > c̄t(mt + Nmt)− ct(mt + Nmt) > 0

1 >

(
c̄t(mt + Nmt)− ct(mt + Nmt)

Nhtκt

)
︸ ︷︷ ︸

≡�̂t

> 0

where the fraction in the middle of the last inequality is the ratio of actual precautionary saving (the
numerator is the difference between perfect-foresight consumption and optimal consumption in the
presence of uncertainty) to the maximum conceivable amount of precautionary saving (the amount that
would be undertaken by the pessimist who consumes nothing out of any future income beyond the
perfectly certain component). Defining µt = logNmt (which can range from −∞ to ∞), the object in
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Figure 3 Extrapolated `̂cT−1 Constructed Using the Method of Moderation

the middle of the last inequality is

�̂t(µt) ≡
(

c̄t(mt + eµt)− ct(mt + eµt)

Nhtκt

)
, (10)

and we now define

χ̂χχt(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(11)

= log (1/�̂t(µt)− 1) (12)

which has the virtue that it is linear in the limit as µt approaches +∞.
Given χ̂χχ, the consumption function can be recovered from

ĉt = c̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(χ̂χχt)

)
Nhtκt. (13)

Thus, the procedure is to calculate χ̂χχt at the points ~µt corresponding to the log of the N~mt points
defined above, and then using these to construct an interpolating approximation `̂χχχt from which we
indirectly obtain our approximated consumption rule `̂ct by substituting `̂χχχt for χ̂χχ in equation (13).
Because this method relies upon the fact that the problem is easy to solve if the decision maker

has unreasonable views (either in the optimistic or the pessimistic direction), and because the correct
solution is always between these immoderate extremes, we call our solution procedure the ‘method of
moderation.’
Results are shown in Figure 3; a reader with very good eyesight might be able to detect the barest

hint of a discrepancy between the Truth and the Approximation at the far righthand edge of the figure.
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4.1.2 The Value Function

Often it is useful to know the value function as well as the consumption rule associated with a problem.
Fortunately, many of the tricks used when solving the consumption problem have a direct analogue in
approximation of the value function.
Consider the perfect foresight (or ‘optimist’) case in period T − 1:

vT−1(mT−1) = u(cT−1) + βu(cT )

= u(cT−1)
(
1 + β((βTR)1/ρ)1−ρ)

= u(cT−1)
(
1 + β(βTR)1/ρ−1

)
= u(cT−1)

(
1 + (βTR)1/ρ/R

)
= u(cT−1)PDVT

t (c)/cT−1︸ ︷︷ ︸
≡CT

t

where PDVT
t (c) is the present discounted value of consumption. A similar function can be constructed

recursively for earlier periods, yielding the general expression

vt(mt) = u(ct)CT
t (14)

which can be transformed as

Λt ≡ ((1− ρ)vt)
1/(1−ρ)

= ct(CT
t )1/(1−ρ)

and since CT
t is a constant while the consumption function is linear, Λ̄t will also be linear.

We apply the same transformation to the value function for the problem with uncertainty (the realist’s
problem):

Λt = ((1− ρ)vt(mt))
1/(1−ρ)

and an excellent approximation to the value function can be obtained by calculating the values of Λ at
the same gridpoints used by the consumption function approximation, and interpolating among those
points.
However, as with the consumption approximation, we can do even better if we realize that the Λ̄

function for the optimist’s problem is an upper bound for the Λ function in the presence of uncertainty,
and the value function for the pessimist is a lower bound. Analogously to (10), define an upper-case

�̂t(µt) =

(
Λ̄t(mt + eµt)−Λt(mt + eµt)

Nhtκt(CT
t )1/(1−ρ)

)
(15)

and an upper-case version of the χχχ equation in (12):

X̂t(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(16)

= log
(

1/�̂t(µt)− 1
)

(17)

and if we approximate these objects then invert them (as above with the �̂ and χ̂χχ functions) we obtain
a very high-quality approximation to our inverted value function at the same points for which we have
our approximated value function:

Λ̂t = Λ̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(X̂t)

)
Nhtκt(CT

t )1/(1−ρ) (18)

from which we obtain our approximation to the value function as

v̂t = u(Λ̂t)

v̂mt = u′(Λ̂t)Λ̂
m.
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Although a linear interpolation that matches the level of Λ at the gridpoints is simple, a Hermite
interpolation that matches both the level and the derivative of the Λ̂t function at the gridpoints has the
considerable virtue that the v̄t derived from it numerically satisfies the envelope theorem at each of the
gridpoints for which the problem has been solved.

5 Extensions

5.1 A Tighter Upper Bound
Carroll (2011b) derives an upper limit κ̄t for the MPC as mt approaches its lower bound. Using this
fact plus the strict concavity of the consumption function yields the proposition that

ct(mt + Nmt) < κ̄tNmt. (19)

The solution method described above does not guarantee that approximated consumption will respect
this constraint between gridpoints, and a failure to respect the constraint can occasionally cause
computational problems in solving or simulating the model. Here, we describe a method for constructing
an approximation that always satisfies the constraint.
Defining m#

t as the ‘cusp’ point where the two upper bounds intersect:(
Nm#

t + Nht
)
κt = κ̄tNm

#
t

Nm#
t =

κtNht
(1− κt)κ̄t

m#
t =

κtht − ht

(1− κt)κ̄t
,

we want to construct a consumption function for mt ∈ (mt,m
#
t ] that respects the tighter upper bound:

Nmtκt < ct(mt + Nmt) < κ̄tNmt

Nmt(κ̄t − κt) > κ̄tNmt − ct(mt + Nmt) > 0

1 >
(
κ̄tNmt−ct(mt+Nmt)

Nmt(κ̄t−κt)

)
> 0.

Again defining µt = logNmt, the object in the middle of the inequality is

�̌t(µt) ≡
κ̄t − ct(mt + eµt)e−µt

κ̄t − κt
.

As mt approaches −mt, �̌t(µt) converges to zero, while as mt approaches +∞, �̌t(µt) approaches 1.
As before, we can derive an approximated consumption function; call it `̌ct. This function will

clearly do a better job approximating the consumption function for low values of mt while the previous
approximation will perform better for high values of mt.
For middling values of m it is not clear which of these functions will perform better. However, an

alternative is available which performs well. Define the highest gridpoint below m#
t as ¯̌m#

t and the
lowest gridpoint above m#

t as m̂#
t . Then there will be a unique interpolating polynomial that matches

the level and slope of the consumption function at these two points. Call this function c̃t(m).
Using indicator functions that are zero everywhere except for specified intervals,

111Lo(m) = 1 if m ≤ ¯̌m#
t

111Mid(m) = 1 if ¯̌m#
t < m < m̂#

t

111Hi(m) = 1 if m̂#
t ≤ m

we can define a well-behaved approximating consumption function

c̀t = 111Lo`̌ct + 111Mid`̃ct + 111Hi`̂ct. (20)

This just says that, for each interval, we use the approximation that is most appropriate. The function
is continuous and once-differentiable everywhere, and is therefore well behaved for computational
purposes.
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To construct the corresponding refined representation of the value function we must first clarify one
point: The upper-bound value function that we are constructing will be the one implied by a consumer
whose spending behavior is consistent with the refined upper-bound consumption rule.
For mt ≥ m#

t , this consumption rule is the same as before, so the constructed upper-bound value
function is also the same. However, for values mt < m#

t matters are slightly more complicated.
Start with the fact that at the cusp point,

v̄t(m
#
t ) = u(c̄t(m

#
t ))CT

t

= u(Nm#
t κ̄t)CT

t .

But for all mt,

v̄t(m) = u(c̄t(m)) + v̄t(m− c̄t(m)),

and we assume that for the consumer below the cusp point consumption is given by κ̄Nmt so for
mt < m#

t

v̄t(m) = u(κ̄tNm) + v̄t((1− κ̄t)Nm),

which is easy to compute because vt(at) = βv̄t+1(atR + 1) where v̄t is as defined above because a
consumer who ends the current period with assets exceeding the lower bound will not expect to be
constrained next period. (Recall again that we are merely constructing an object that is guaranteed to
be an upper bound for the value that the ‘realist’ consumer will experience.) At the gridpoints defined
by the solution of the consumption problem can then construct

Λ̄t(m) = ((1− ρ)v̄t(m))1/(1−ρ)

which yields the appropriate vector for constructing X̌ and �̌. The rest of the procedure is analogous
to that performed for the consumption rule and is thus omitted for brevity.

5.2 Stochastic Rate of Return
Thus far we have assumed that the interest factor is constant at R. Extending the previous derivations
to allow for a perfectly forecastable time-varying interest factor Rt would be trivial. Allowing for a
stochastic interest factor is less trivial.
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The easiest case is where the interest factor is i.i.d.,

logRt+n ∼ N (r + φ− σ2
r/2, σ

2
r) ∀ n > 0 (21)

because in this case Merton (1969) and Samuelson (1969) showed that for a consumer without labor
income (or with perfectly forecastable labor income) the consumption function is linear, with an MPC2

κ = 1−
(
β Et[R1−ρ

t+1 ]
)1/ρ

(22)

and in this case the previous analysis applies once we substitute this MPC for the one that characterizes
the perfect foresight problem without rate-of-return risk. The more realistic case where the interest
factor has some serial correlation is more complex. We consider the simplest case that captures the
main features of empirical interest rate dynamics: An AR(1) process. Thus the specification is

rt+1 − r = (rt − r)γ + εt+1 (23)

where r is the long-run mean log interest factor, 0 < γ < 1 is the AR(1) serial correlation coefficient,
and εt+1 is the stochastic shock.
The consumer’s problem in this case now has two state variables, mt and rt, and is described by

vt(mt, rt) = max
ct

u(ct) + Et[βt+1Γ1−ρ
t+1 vt+1(mt+1, rt+1)] (24)

s.t.
at = mt − ct

rt+1 − r = (rt − r)γ + εt+1

Rt+1 = exp(rt+1)

mt+1 = (Rt+1/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1.

We approximate the AR(1) process by a Markov transition matrix using standard techniques. The
stochastic interest factor is allowed to take on 11 values centered around the steady-state value r
and chosen [how?]. Given this Markov transition matrix, conditional on the Markov AR(1) state the
consumption functions for the ‘optimist’ and the ‘pessimist’ will still be linear, with identical MPC’s
that are computed numerically. Given these MPC’s, the (conditional) realist’s consumption function
can be computed for each Markov state, and the converged consumption rules constitute the solution
contingent on the dynamics of the stochastic interest rate process.
In principle, this refinement should be combined with the previous one; further exposition of this

combination is omitted here because no new insights spring from the combination of the two techniques.

6 Conclusion
The method proposed here is not universally applicable. For example, the method cannot be used for
problems for which upper and lower bounds to the ‘true’ solution are not known. But many problems
do have obvious upper and lower bounds, and in those cases (as in the consumption example used in
the paper), the method may result in substantial improvements in accuracy and stability of solutions.

2See CRRA-RateRisk for a derivation.
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