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1 Introduction
When the future is unavoidably uncertain, calculating the optimal amount to save
is formidably difficult under realistic assumptions about the nature of risk and
attitudes to risk. To avoid having to solve this problem, economists have shown
impressive ingenuity in reformulating the question. Budding graduate students are
exposed (often with little motivation) to a host of tricks: Quadratic or Constant
Absolute Risk Aversion utility, perfect markets, perfect insurance, perfect foresight,
the “timeless” perspective, the restriction of uncertainty to very special kinds,1 and
more.
Explicit or not, the motivation is always to exchange an intractable general prob-

lem for a tractable specific alternative. But the burgeoning literature on numerical
solutions has shown that the features that yield tractability also profoundly change
the solution. A critic might say that the “tricks” are excuses to solve a problem that
has defined away the central difficulty: Understanding the proper role of uncertainty
in optimal choice under uncertainty.
Fortunately, the temptation to use such tricks is waning, thanks to advances in

mathematical analysis, increasing computing power, and the growing capabilities
of numerical computation software. Together, these tools permit today’s laptop
computers to solve the kinds of plausible problems that required supercomputers a
decade ago (and, before that, could not be solved at all).
These lecture notes provide a gentle introduction to a particular set of such tools

and show how they can be used to solve some canonical problems in consumption
choice and portfolio allocation. Specifically, the notes describe and solve optimiza-
tion problems for a consumer facing uninsurable idiosyncratic risk to nonfinancial in-
come (e.g., labor or transfer income),2 with detailed intuitive discussion of the various
mathematical and computational techniques that, together, speed the solution by
many orders of magnitude compared to “brute force” methods. The problem is solved
with and without liquidity constraints, and the infinite horizon solution is obtained
as the limit of the finite horizon solution. After the basic consumption/saving
problem with a deterministic interest rate is described and solved, an extension
with portfolio choice between a riskless and a risky asset is also solved. Finally, a
simple example is presented of how to use these methods (via the statistical ‘method
of simulated moments’ or MSM; sometimes called ‘simulated method of moments’ or
SMM) to estimate structural parameters like the coefficient of relative risk aversion
(a la Gourinchas and Parker (2002) and Cagetti (2003)).

1E.g., lognormally distributed rate-of-return risk – but no labor income risk – under CRRA utility (the Merton
(1969)-Samuelson (1969) model).

2Expenditure shocks (such as for medical needs, or to repair a broken automobile) are usually treated in a
manner similar to labor income shocks. See Merton (1969) and Samuelson (1969) for a solution to the problem
of a consumer whose only risk is rate-of-return risk on a financial asset; the combined case (both financial and
nonfinancial risk) is solved below, and much more closely resembles the case with only nonfinancial risk than it does
the case with only financial risk.
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2 The Problem
We are interested in the behavior a consumer whose goal in period t is to maximize
discounted utility from consumption over the remainder of a lifetime that ends in
period T :

max Et

[
T−t∑
n=0

βnu(ccct+n)

]
, (1)

and whose circumstances evolve according to the transition equations3

aaat = mmmt − ccct (2)
bbbt+1 = aaatRt+1 (3)
yyyt+1 = pppt+1θt+1 (4)
mmmt+1 = bbbt+1 + yyyt+1 (5)

where

β − pure time discount factor
aaat − assets after all actions have been accomplished in period t

bbbt+1 − ‘bank balances’ (nonhuman wealth) at the beginning of t+ 1

ccct − consumption in period t
mmmt − ‘market resources’ available for consumption (‘cash-on-hand’)
pppt+1 − ‘permanent labor income’ in period t+ 1

Rt+1 − interest factor (1 + rt+1) from period t to t+ 1

yyyt+1 − noncapital income in period t+ 1.

The exogenous variables evolve as follows:

Rt = R - constant interest factor = 1 + r

pppt+1 = Γt+1pppt - permanent labor income dynamics (6)
log θ ∼ N (−σ2

θ/2, σ
2
θ) - lognormally distributed transitory shocks.

Using the fact about lognormally distributed variables ELogNorm4 that if log Φ ∼
N (φ, σ2

φ) then logE[Φ] = φ + σ2
φ/2, assumption (7) guarantees that logE[θ] = 0

which means that E[θ]=1 (the mean value of the transitory shock is 1).
Equation (6) indicates that we are assuming that the average profile of income

growth over the lifetime {Γ}T0 is nonstochastic (allowing, for example, for typical
career wage paths).5

3The usual analysis of dynamic programming problems combines these equations into a single expression;
here, they are disarticulated to highlight the important point that several distinct processes (intertemporal choice,
stochastic shocks, intertemporal returns, income growth) are involved in the transition from one period to the next.

4This fact is referred to as ELogNorm in the handout MathFactsList, in the references as Carroll (Current);
further citation to facts in that handout will be referenced simply by the name used in the handout for the fact in
question, e.g. LogELogNorm is the name of the fact that implies that logE[θ] = 0.

5This equation assumes that there are no shocks to permanent income. A large literature finds that, in reality,
permanent (or at least extremely highly persistent) shocks exist and are quite large; such shocks therefore need to
be incorporated into any ‘serious’ model (that is, one that hopes to match and explain empirical data), but the
treatment of permanent shocks clutters the exposition without adding much to the intuition, so permanent shocks
are omitted from the analysis until the last section of the notes, which shows how to match the model with empirical
micro data. For a full treatment of the theory including permanent shocks, see Carroll (2011).
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Finally, we assume that the utility function is of the Constant Relative Risk
Aversion (CRRA), form, u(•) = •1−ρ/(1− ρ).
As is well known, this problem can be rewritten in recursive (Bellman equation)

form

vt(mmmt, pppt) = max
ccct

u(ccct) + Et[βvt+1(mmmt+1, pppt+1)] (7)

subject to the Dynamic Budget Constraint (DBC) (2)-(5) given above, where vt
measures total expected discounted utility from behaving optimally now and hence-
forth.

3 Normalization
The single most powerful method for speeding the solution of dynamic stochastic
optimization models is to redefine the problem in a way that reduces the number of
state variables (if possible). In the consumption problem under consideration here,
the obvious idea is to see whether the problem can be rewritten in terms of the ratio
of various variables to permanent noncapital (‘labor’) income pppt.
In the last period of life, there is no future, vT+1 = 0, so the optimal plan is to

consume everything, implying that

vT (mmmT , pppT ) =
mmm1−ρ
T

1− ρ
. (8)

Now define nonbold variables as the bold variable divided by the level of permanent
income in the same period, so that, for example, mT = mmmT/pppT ; and define vT (mT ) =
u(mT ).6 For our CRRA utility function, u(xy) = x1−ρu(y), so equation (8) can be
rewritten as

vT (mmmT , pppT ) = ppp1−ρ
T

m1−ρ
T

1− ρ
= ppp1−ρ

T−1Γ1−ρ
T

m1−ρ
T

1− ρ
= ppp1−ρ

T−1Γ1−ρ
T vT (mT ). (9)

Now define a new optimization problem:

vt(mt) = max
ct

u(ct) + Et[βΓ1−ρ
t+1 vt+1(mt+1)] (10)

s.t.
at = mt − ct

mt+1 = (R/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1

The accumulation equation is the normalized version of the transition equation

6Nonbold value is bold value divided by ppp1−ρ rather than ppp.
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for mmmt+1.7 Then it is easy to see that for t = T − 1,

vT−1(mmmT−1, pppT−1) = ppp1−ρ
T−1vT−1(mT−1) (11)

and so on back to all earlier periods. Hence, if we solve the problem (10) which
has only a single state variable (mt), we can obtain the levels of the value function,
consumption, and all other variables of interest simply by multiplying the results
by the appropriate function of pppt, e.g. ct(mmmt, pppt) = ppptct(mmmt/pppt) or vt(mmmt, pppt) =
ppp1−ρ
t vt(mt). We have thus reduced the problem from two continuous state variables

to one (and thereby enormously simplified its solution).
For some problems it will not be obvious that there is an appropriate ‘normalizing’

variable, but many problems can be normalized if sufficient thought is given. For ex-
ample, Valencia (2006) shows how a bank’s optimization problem can be normalized
by the level of the bank’s productivity.

4 The Usual Theory and A Bit More Notation
Dropping time subscripts on β to reduce clutter, the first order condition for (10)
with respect to ct is

u′(ct) = Et[βRt+1Γ1−ρ
t+1 v′t+1(mt+1)]

= Et[βR Γ −ρ
t+1 v′t+1(mt+1)] (12)

and because the Envelope theorem tells us that

v′t(mt) = Et[βRΓ−ρt+1v′t+1(mt+1)] (13)

we can substitute the LHS of (13) for the RHS of (12) to get

u′(ct) = v′t(mt) (14)

and rolling this equation forward one period yields

u′(ct+1) = v′t+1(atRt+1 + θt+1) (15)

while substituting the LHS in equation (12) gives us the Euler equation for con-
sumption

u′(ct) = Et[βRΓ−ρt+1u′(ct+1)]. (16)

Now note that in equation (15) neither mt nor ct has any direct effect on vt+1 -
only the difference between them (i.e. unconsumed market resources or ‘assets’ at)
matters. It is therefore possible (and will turn out to be convenient) to define a

7Derivation:

mmmt+1/pppt+1 = (mmmt − ccct)R/pppt+1 + yyyt+1/pppt+1

mt+1 =

(
mmmt

pppt
−
ccct

pppt

)
R
pppt

pppt+1
+
yyyt+1

pppt+1

= (mt − ct)︸ ︷︷ ︸
at

(R/Γt+1) + θt+1.
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function8

vt(at) = Et[βΓ1−ρ
t+1 vt+1(Rt+1at + θt+1)] (17)

that returns the expected t+ 1 value associated with ending period t with any given
amount of assets. This definition implies that

v′t(at) = Et[βRΓ−ρt+1v′t+1(Rt+1at + θt+1)] (18)

or, substituting from equation (15),

v′t(at) = Et
[
βRΓ−ρt+1u′ (ct+1(Rt+1at + θt+1))

]
. (19)

Finally, note for future use that the first order condition (12) can now be rewritten
as

u′(ct) = v′t(mt − ct). (20)

5 Solving the Next-to-Last Period
The problem in the second-to-last period of life is:

vT−1(mT−1) = max
cT−1

u(cT−1) + β ET−1

[
Γ1−ρ
T vT ((mT−1 − cT−1)RT + θT )

]
,

and using (1) the fact that vT = u(c); (2) the definition of u(c); (3) the definition of
the expectations operator, and (4) the fact that ΓT is nonstochastic, this becomes

vT−1(mT−1) = max
cT−1

c1−ρ
T−1

1− ρ
+ βΓ1−ρ

T

∫ ∞
0

((mT−1 − cT−1)RT + θ)1−ρ

1− ρ
dF(θ)

where F is the cumulative distribution function for θ.
In principle, the maximization implicitly defines a function cT−1(mT−1) that

yields optimal consumption in period T − 1 for any given level of resources mT−1.
Unfortunately, however, there is no analytical solution to this maximization problem,
and so for any given mT−1 we must use numerical computational tools to find the
cT−1 that maximizes the expression. This is excruciatingly slow because for every
potential cT−1 to be considered, the integral must be calculated numerically, and
numerical integration is very slow.

5.1 Discretizing the Distribution
Our first time-saving step is therefore to construct a discrete approximation to
the lognormal distribution that can be used in place of numerical integration. We
calculate an n-point approximation as follows.
Define a set of points from ]0 to ]n on the [0, 1] interval as the elements of the

set ] = {0, 1/n, 2/n, . . . , 1}.9 Call the inverse of the θ distribution F−1, and define
the points ]−1

i = F−1(]i). Then the conditional mean of θ in each of the intervals

8The peculiar letter designating our new function is pronounced ‘Gothic v’. Letters in this font will be used for
end-of-period quantities.

9These points define intervals that constitute a partition of the domain of F .
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Figure 1 Discrete Approximation to Lognormal Distribution F

numbered 1 to n is:

θi ≡ E[θ|]−1
i−1 ≤ θ < ]−1

i ] =

∫ ]−1
i

]−1
i−1

ϑ dF (ϑ). (21)

The method is illustrated in Figure 1. The solid continuous curve represents the
“true” CDF F (θ) for a lognormal distribution such that E[θ] = 1, σθ = 0.1. The
short vertical line segments represent the n equiprobable values of θi which are used
to approximate this distribution.10
Recalling our definition of vt(at), for t = T − 1

vT−1(aT−1) = βΓ1−ρ
T

(
1

n

) n∑
i=1

(RTaT−1 + θi)
1−ρ

1− ρ
(22)

so we can rewrite the maximization problem as

vT−1(mT−1) = max
cT−1

{
c1−ρ
T−1

1− ρ
+ vT−1(mT−1 − cT−1)

}
. (23)

5.2 The Approximate Consumption and Value Functions
Given a particular value of mT−1, a numerical maximization routine can now find
the cT−1 that maximizes (23) in a reasonable amount of time. The Mathematica
program that solves exactly this problem called 2period.m. (The archive also
contains parallel Matlab programs, but these notes will dwell on the specifics of
the Mathematica implementation, which is superior in many respects.)

10More sophisticated approximation methods exist (e.g. Gauss-Hermite quadrature; see Kopecky and Suen (2010)
for a discussion of other alternatives), but the method described here is easy to understand, quick to calculate, and
has additional advantages briefly described in the discussion of simulation below.
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The first thing 2period.m does is to read in the file functions.m which contains
definitions of the consumption and value functions; functions.m also defines the
function SolveAnotherPeriod which, given the existence in memory of a solution
for period t+ 1, solves for period t.
The next step is to run the programs setup_params.m, setup_grids.m,

setup_shocks.m, respectively. setup_params.m sets values for the parameter
values like the coefficient of relative risk aversion. setup_shocks.m calculates
the values for the θi defined above (and puts those values, and the (identical)
probability associated with each of them, in the vector variables θVals and θProb).
Finally, setup_grids.m constructs a list of potential values of cash-on-hand
and saving, then puts them in the vector variables mVec = aVec = {0, 1, 2, 3, 4}
respectively. Then 2period.m runs the program setup_lastperiod.m which
defines the elements necessary to determine behavior in the last period, in which
cT (m) = m and vT (m) = u(m).
After all the setup, the only remaining step in 2period.m is to invoke

SolveAnotherPeriod, which constructs the solution for period T − 1 given the
presence of the solution for period T (constructed by setup_lastperiod.m).
Because we will always be comparing our solution to the perfect foresight solu-

tion, we also construct the variables required to characterize the perfect foresight
consumption function in periods prior to T . In particular, we construct the list
yExpPDV (which contains the PDV of expected income – ‘expected human wealth’),
and yMinPDV which contains the minimum possible discounted value of future income
at the beginning of period T − 1 (‘minimum human wealth’).11
The perfect foresight consumption function is also constructed (setup_PerfectForesightSolution.m).

This program uses the fact that, in Mathematica, functions can be saved as objects
using the commands # and &. The # denotes the argument of the function, while the
&, placed at the end of the function, tells Mathematica that the function should be
saved as an object. In the program, the last period perfect foresight consumption
function is saved as an element in the list cz = {(# - 1 + Last[yExpPDV])
Last[κMin] &}, where Last[yExpPDV] gives the just-constructed PDV of human
wealth at the beginning of T (equal to 1, since current income is included in hT ),
and Last[κMin] gives the perfect foresight marginal propensity to consume (equal
to 1, since it is optimal to spend all resources in the last period). Since # in the
code stands in for what was called m in the model, the discounted total wealth is
decomposed into discounted non-human wealth # - 1 and discounted human wealth
Last[yExpPDV]. The resulting formula then corresponds to c̄T = (mT − 1 + hT )κT ,
which translates to c̄T = mT for hT = κT = 1.
The infinite horizon perfect foresight marginal propensity to save

λ = (1/R)(Rβ)1/ρ (24)

is also defined because it will be useful in a number of derivations.12
The program then constructs behavior for one iteration back from the last pe-

riod of life by using the function AddNewPeriodToParamLifeDates. Using the

11This is useful in determining the search range for the optimal level of consumption in the maximization
problem.

12Detailed discussion can be found in Carroll (2011).
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Mathematica command AppendTo, various existing lists (which characterized the
solution for period T ) are redefined to include an additional element representing
the relevant formulas in the second to last period of life. For example, κMin now
has two elements. The second element, given by 1/(1 + Last[λ]/Last[κMin]), is
the perfect foresight marginal propensity to consume in t = T − 1.13
Next, the program defines a function v[at_] (in functions_stable.m) which is

the exact implementation of (17): It returns the expectation of the value of behaving
optimally in period T given any specific amount of assets at the end of T − 1, aT−1.
The heart of the program is the next expression (in functions.m). This expression

loops over the values of the variable mVec, solving the maximization problem (given
in equation (23)):

max
c

u[c] + v[mVec[[i]]-c] (25)

for each of the i values of mVec (henceforth let’s call these points mT−1,i). The
maximization routine returns two values: the maximized value, and the value of c
which yields that maximized value. When the loop (the Table command) is finished,
the variable vAndcList contains two lists, one with the values vT−1,i and the other
with the consumption levels cT−1,i associated with the mT−1,i.

5.3 An Interpolated Consumption Function
Now we use the first of the really convenient built-in features of Mathematica. Given
a set of points on a function (in this case, the consumption function cT−1(m)),Mathe-
matica can create an object called an InterpolatingFunction which when applied
to an input m will yield the value of c that corresponds to a linear interpolation
of the value of c from the points in the InterpolatingFunction object. We can
therefore define an approximation to the consumption function c̀T−1(mT−1) which,
when called with an mT−1 that is equal to one of the points in mVec[[i]] returns
the associated value of cT−1,i, and when called with a value of mT−1 that is not
exactly equal to one of the mVec[[i]], returns the value of c that reflects a linear
interpolation between the cT−1,i associated with the two mVec[[i]] points nearest
to mT−1. Thus if the function is called with mT−1 = 1.75 and the nearest gridpoints
are mj,T−1 = 1 and mk,T−1 = 2 then the value of cT−1 returned by the function
would be (0.25cj,T−1 + 0.75ck,T−1). We can define a numerical approximation to the
value function v̀T−1(mT−1) in an exactly analogous way.
Figures 2 and 3 show plots of the c̀T−1 and v̀T−1 InterpolatingFunctions that

are generated by the program 2PeriodInt.m. While the c̀T−1 function looks very
smooth, the fact that the v̀T−1 function is a set of line segments is very evident.
This figure provides the beginning of the intuition for why trying to approximate
the value function directly is a bad idea (in this context).14

13A proof given in Carroll (2011) shows that this is also a recurring formula that extends inductively to earlier
periods.

14For some problems, especially ones with discrete choices, value function approximation is unavoidable;
nevertheless, even in such problems, the techniques sketched below can be very useful across much of the range
over which the problem is defined.
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5.4 Interpolating Expectations
2period.m works well in the sense that it generates a good approximation to the true
optimal consumption function. However, there is a clear inefficiency in the program:
Since it uses equation (23), for every value of mT−1 the program must calculate the
utility consequences of various possible choices of cT−1 as it searches for the best
choice. But for any given value of aT−1, there is a good chance that the program
may end up calculating the corresponding v many times while maximizing utility
from different mT−1’s. For example, it is possible that the program will calculate the
value of ending the period with aT−1 = 0 dozens of times. It would be much more
efficient if the program could make that calculation once and then merely recall the
value when it is needed again.
This can be achieved using the same interpolation technique used above to con-

struct a direct numerical approximation to the value function: Define a grid of
possible values for saving at time T −1, ~aT−1 (aVec in setup_grids.m), designating
the specific points aT−1,i; for each of these values of aT−1,i, calculate the vector ~vT−1

as the collection of points vT−1,i = vT−1(aT−1,i) using equation (17); then construct
an InterpolatingFunction object v̀T−1(aT−1) from the list of points on the function
captured in the ~aT−1 and ~vT−1 vectors.
Thus, we are now interpolating for the function that reveals the expected

value of ending the period with a given amount of assets.15 The program
2periodIntExp.m solves this problem. Figure 4 compares the true value function to
the InterpolatingFunction approximation; the functions are of course identical
at the gridpoints chosen for aT−1 and they appear reasonably close except in the
region below mT−1 = 1.
Nevertheless, the resulting consumption rule obtained when v̀T−1(aT−1) is used

instead of vT−1(aT−1) is surprisingly bad, as shown in figure 5. For example, when
mT−1 goes from 2 to 3, c̀T−1 goes from about 1 to about 2, yet when mT−1 goes
from 3 to 4, c̀T−1 goes from about 2 to about 2.05. The function fails even to be
strictly concave, which is distressing because Carroll and Kimball (1996) prove that
the correct consumption function is strictly concave in a wide class of problems that
includes this problem.

5.5 Value Function versus First Order Condition
Loosely speaking, our difficulty is caused by the fact that the consumption choice
is governed by the marginal value function, not by the level of the value function
(which is what we approximated). To see this, recall that a quadratic utility function
exhibits risk aversion because with a stochastic c,

E[−(c− �c)
2] < −(E[c]− �c)

2 (26)

where �c is the ‘bliss point’. However, unlike the CRRA utility function, with
quadratic utility the consumption/saving behavior of consumers is unaffected by
risk since behavior is determined by the first order condition, which depends on

15What we are doing here is closely related to ‘the method of parameterized expectations’ of den Haan and
Marcet (1990); the only difference is that our method is essentially a nonparametric version.
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Figure 4 End-Of-Period Value vT−1(aT−1) (solid) versus v̀T−1(aT−1) (dashed)

1 2 3 4
mT-1

0.5

1.0

1.5

2.0

cT-1
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Figure 6 u′(c) versus v′T−1(3− c), v′T−1(4− c), v̀′T−1(3− c), v̀′T−1(4− c)

marginal utility, and when utility is quadratic, marginal utility is unaffected by risk:

E[−2(c− �c)] = −2(E[c]− �c). (27)

Intuitively, if one’s goal is to accurately capture choices that are governed by
marginal value, numerical techniques that approximate the marginal value function
will lead to a more accurate approximation to optimal behavior than techniques that
approximate the level of the value function.
The first order condition of the maximization problem in period T − 1 is:

u′(cT−1) = β ET−1[Γ−ρT Ru′(cT )] (28)

c−ρT−1 = Rβ

(
1

n

) n∑
i=1

Γ−ρT (R(mT−1 − cT−1) + θi)
−ρ . (29)

The downward-sloping curve in Figure 6 shows the value of c−ρT−1 for our baseline
parameter values for 0 ≤ cT−1 ≤ 4 (the horizontal axis). The solid upward-sloping
curve shows the value of the RHS of (29) as a function of cT−1 under the assumption
that mT−1 = 3. Constructing this figure is rather time-consuming, because for every
value of cT−1 plotted we must calculate the RHS of (29). The value of cT−1 for
which the RHS and LHS of (29) are equal is the optimal level of consumption given
that mT−1 = 3, so the intersection of the downward-sloping and the upward-sloping
curves gives the optimal value of cT−1. As we can see, the two curves intersect just
below cT−1 = 2. Similarly, the upward-sloping dashed curve shows the expected
value of the RHS of (29) under the assumption that mT−1 = 4, and the intersection
of this curve with u′(cT−1) yields the optimal level of consumption if mT−1 = 4.
These two curves intersect slightly below cT−1 = 2.5. Thus, increasing mT−1 from 3
to 4 increases optimal consumption by about 0.5.

Now consider the derivative of our function v̀T−1(aT−1). Because we have con-
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Figure 7 v′T−1(aT−1) versus v̀′T−1(aT−1)

structed v̀T−1 as a linear interpolation, the slope of v̀T−1(aT−1) between any two
adjacent points {aT−1,i, ai+1,T−1} is constant. The level of the slope immediately
below any particular gridpoint is different, of course, from the slope above that
gridpoint, a fact which implies that the derivative of v̀T−1(aT−1) follows a step
function.
The solid-line step function in Figure 6 depicts the actual value of v̀′T−1(3− cT−1).

When we attempt to find optimal values of cT−1 given mT−1 using v̀T−1(aT−1),
the numerical optimization routine will return the cT−1 for which u′(cT−1) =
v̀′T−1(mT−1 − cT−1). Thus, for mT−1 = 3 the program will return the value of cT−1

for which the downward-sloping u′(cT−1) curve intersects with the v̀′T−1(3 − cT−1);
as the diagram shows, this value is exactly equal to 2. Similarly, if we ask the
routine to find the optimal cT−1 for mT−1 = 4, it finds the point of intersection
of u′(cT−1) with v̀′T−1(4 − cT−1); and as the diagram shows, this intersection is
only slightly above 2. Hence, this figure illustrates why the numerical consumption
function plotted earlier returned values very close to cT−1 = 2 for both mT−1 = 3
and mT−1 = 4.
We would obviously obtain much better estimates of the point of intersection

between u′(cT−1) and v′T−1(mT−1 − cT−1) if our estimate of v̀′T−1 were not a step
function. In fact, we already know how to construct linear interpolations to func-
tions, so the obvious next step is to construct a linear interpolating approximation to
the expected marginal value of end-of-period assets function v′. That is, we calculate

v′T−1(aT−1) = βRΓ−ρT

(
1

n

) n∑
i=1

(RTaT−1 + θi)
−ρ (30)

at the points in aVec yielding {{aT−1,1, v
′
T−1,1}, {aT−1,2, v

′
T−1,2} . . .} and construct

v̀′T−1(aT−1) as the linear interpolating function that fits this set of points.
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Figure 8 cT−1(mT−1) (solid) Versus Two Methods for Constructing c̀T−1(mT−1)

The program file functionsIntExpFOC.m therefore uses the function va[at_]
defined in functions_stable.m as the embodiment of equation (30), and constructs
the InterpolatingFunction as described above. The results are shown in Figure
7. The linear interpolating approximation looks roughly as good (or bad) for the
marginal value function as it was for the level of the value function. However, Figure
8 shows that the new consumption function (long dashes) is a considerably better
approximation of the true consumption function (solid) than was the consumption
function obtained by approximating the level of the value function (short dashes).

5.6 Transformation
However, even the new-and-improved consumption function diverges appallingly
from the true solution, especially at lower values of m. That is because the linear in-
terpolation does an increasingly poor job of capturing the nonlinearity of v′T−1(aT−1)
at lower and lower levels of a.
This is where we unveil our next trick. To understand the logic, start by consider-

ing the case where RT = β = ΓT = 1 and there is no uncertainty (that is, we know
for sure that income next period will be θT = 1). The final Euler equation is then:

c−ρT−1 = c−ρT . (31)

In the case we are now considering with no uncertainty and no liquidity con-
straints, the optimizing consumer does not care whether a unit of income is scheduled
to be received in the future period T or the current period T − 1; there is perfect
certainty that the income will be received, so the consumer treats it as equivalent
to a unit of current wealth. Total resources therefore are comprised of two types:
current market resources mT−1 and ‘human wealth’ (the PDV of future income) of
hT−1 = 1 (where we use the Gothic font to signify that this is the expectation, as of
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the END of the period, of the income that will be received in future periods; it does
not include current income, which has already been incorporated into mT−1).
The optimal solution is to spend half of total lifetime resources in period T − 1

and the remainder in period T . Since total resources are known with certainty to
be mT−1 + hT−1 = mT−1 + 1, and since v′T−1(mT−1) = u′(cT−1) this implies that

v′T−1(mT−1) =

(
mT−1 + 1

2

)−ρ
. (32)

Of course, this is a highly nonlinear function. However, if we raise both sides of (32)
to the power (−1/ρ) the result is a linear function:

[v′T−1(mT−1)]−1/ρ =
mT−1 + 1

2
. (33)

This is a specific example of a general phenomenon: A theoretical literature cited
in Carroll and Kimball (1996) establishes that under perfect certainty, if the period-
by-period marginal utility function is of the form c−ρt , the marginal value function
will be of the form (γmt + ζ)−ρ for some constants {γ, ζ}. This means that if we
were solving the perfect foresight problem numerically, we could always calculate
a numerically exact (because linear) interpolation. To put this in intuitive terms,
the problem we are facing is that the marginal value function is highly nonlinear.
But we have a compelling solution to that problem, because the nonlinearity springs
largely from the fact that we are raising something to the power −ρ. In effect,
we can ‘unwind’ all of the nonlinearity owing to that operation and the remaining
nonlinearity will not be nearly so great. Specifically, applying the foregoing insights
to the end-of-period value function vT−1, we can define

cT−1(aT−1) ≡ [v′T−1(aT−1)]−1/ρ (34)

which would be linear in the perfect foresight case. Thus, our procedure is to
calculate the values of cT−1,i at each of the aT−1,i gridpoints, with the idea that
we will construct c̀T−1 as the interpolating function connecting these points.

5.7 The Self-Imposed ‘Natural’ Borrowing Constraint and the aT−1
Lower Bound

This is the appropriate moment to ask an awkward question that we have neglected
until now: How should a function like c̀T−1 be evaluated outside the range of
points spanned by {aT−1,1, ..., aT−1,n} for which we have calculated the corresponding
cT−1,i gridpoints used to produce our linearly interpolating approximation c̀T−1 (as
described in section 5.3)?
The natural answer would seem to be linear extrapolation; for example, we could

use

c̀T−1(aT−1) = c̀T−1(aT−1,1) + c̀′T−1(aT−1,1)(aT−1 − aT−1,1) (35)

for values of aT−1 < aT−1,1. Unfortunately, this approach will lead us into difficulties.
To see why, consider what happens to the true (not approximated) vT−1(aT−1) as
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aT−1 approaches the value aT−1 = −θR−1
T . From (30) we have

lim
aT−1↓aT−1

v′T−1(aT−1) = lim
aT−1↓aT−1

βRΓ−ρT

(
1

n

) n∑
i=1

(aT−1RT + θi)
−ρ . (36)

But since θ = θ1, exactly at aT−1 = aT−1 the first term in the summation would be
(−θ+ θ1)−ρ = 1/0ρ which is infinity. The reason is simple: −aT−1 is the PDV, as of
T − 1, of the minimum possible realization of income in period T (RTaT−1 = −θ1).
Thus, if the consumer borrows an amount greater than or equal to θR−1

T (that is, if
the consumer ends T − 1 with aT−1 ≤ −θR−1

T ) and then draws the worst possible
income shock in period T , he will have to consume zero in period T (or a negative
amount), which yields −∞ utility and ∞ marginal utility (or undefined utility and
marginal utility).
These reflections lead us to the conclusion that the consumer faces a ‘self-imposed’

liquidity constraint (which results from the precautionary motive): He will never
borrow an amount greater than or equal to θR−1

T (that is, assets will never reach
the lower bound of aT−1).16 The constraint is ‘self-imposed’ in the sense that if the
utility function were different (say, Constant Absolute Risk Aversion), the consumer
would be willing to borrow more than θR−1

T because a choice of zero or negative
consumption in period T would yield some finite amount of utility (though it is very
unclear what a proper economic interpretation of negative consumption might be –
this is an important reason why CARA utility, like quadratic utility, is increasingly
not used for serious quantitative work, though it is still useful for teaching purposes).
This self-imposed constraint cannot be captured well when the v′T−1 function is

approximated by a piecewise linear function like v̀′T−1, because a linear approxima-
tion can never reach the correct gridpoint for v′T−1(aT−1) = ∞. To see what will
happen instead, note first that if we are approximating v′T−1 the smallest value
in aVec must be greater than aT−1 (because the expectation for any gridpoint
≤ aT−1 is undefined). Then when the approximating v′T−1 function is evaluated at
some value less than the first element in aVec[1], the approximating function will
linearly extrapolate the slope that characterized the lowest segment of the piecewise
linear approximation (between aVec[1] and aVec[2]), a procedure that will return
a positive finite number, even if the requested aT−1 point is below aT−1. This means
that the precautionary saving motive is understated, and by an arbitrarily large
amount as the level of assets approaches its true theoretical minimum aT−1.
The foregoing logic demonstrates that the marginal value of saving approaches

infinity as aT−1 ↓ aT−1 = −θR−1
T . But this implies that limaT−1↓aT−1

cT−1(aT−1) =

(v′T−1(aT−1))−1/ρ = 0; that is, as a approaches its minimum possible value, the
corresponding amount of c must approach its minimum possible value: zero.
The upshot of this discussion is a realization that all we need to do is to augment

each of the ~aT−1 and ~cT−1 vectors with an extra point so that the first element in the
list used to produce our InterpolatingFunction is {aT−1,0, cT−1,0} = {aT−1, 0.}.
Figure 9 plots the results (generated by the program 2periodIntExpFOCInv.m).

The solid line calculates the exact numerical value of cT−1(aT−1) while the dashed
line is the linear interpolating approximation c̀T−1(aT−1). This figure well illustrates

16Another term for a constraint of this kind is the ‘natural borrowing constraint.’
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Figure 9 cT−1(aT−1) versus c̀T−1(aT−1)

the value of the transformation: The true function is close to linear, and so the linear
approximation is almost indistinguishable from the true function except at the very
lowest values of aT−1.
Figure 10 similarly shows that when we calculate `̀v′T−1(aT−1) as [̀cT−1(aT−1)]−ρ

(dashed line) we obtain a much closer approximation to the true function v′T−1(aT−1)
(solid line) than we did in the previous program which did not do the transformation
(Figure 7).

5.8 The Method of Endogenous Gridpoints
Our solution procedure for cT−1 still requires us, for each point in ~mT−1 (mVect in the
code), to use a numerical rootfinding algorithm to search for the value of cT−1 that
solves u′(cT−1) = v′T−1(mT−1 − cT−1). Unfortunately, rootfinding is a notoriously
slow operation.
Fortunately, our next trick lets us completely skip this computationally burden-

some step. The method can be understood by noting that any arbitrary value
of aT−1,i (greater than its lower bound value aT−1) will be associated with some
marginal valuation as of the end of period T − 1, and the further observation that
it is trivial to find the value of c that yields the same marginal valuation, using the
first order condition,

u′(cT−1,i) = v′T−1(aT−1,i) (37)
cT−1,i = u′−1(v′T−1(aT−1,i)) (38)

= (v′T−1(aT−1,i))
−1/ρ (39)

≡ cT−1(aT−1,i) (40)
≡ cT−1,i. (41)
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Figure 10 v′T−1(aT−1) vs. `̀v′T−1(aT−1) Constructed Using c̀T−1(aT−1)

But with mutually consistent values of cT−1,i and aT−1,i (consistent, in the sense
that they are the unique optimal values that correspond to the solution to the
problem in a single state), we can obtain the mT−1,i that corresponds to both of
them from

mT−1,i = cT−1,i + aT−1,i. (42)

These mT−1 gridpoints are “endogenous” in contrast to the usual solution method
of specifying some ex-ante grid of values ofmT−1 and then using a rootfinding routine
to locate the corresponding optimal cT−1.
Thus, we can generate a set of mT−1,i and cT−1,i pairs that can be interpolated

between in order to yield c̀(mT−1) at virtually zero computational cost once we have
the~cT−1 values in hand!17 One might worry about whether the {m, c} points obtained
in this way will provide a good representation of the consumption function as a whole,
but in practice there are good reasons why they work well (basically, this procedure
generates a set of gridpoints that is naturally dense right around the parts of the
function with the greatest nonlinearity). Figure 11 plots the actual consumption
function cT−1 and the approximated consumption function c̀T−1 derived by the
method of endogenous grid points. Compared to the approximate consumption
functions illustrated in Figure 8 c̀T−1 is quite close to the actual consumption
function.

5.9 Improving the a Grid
Thus far, we have arbitrarily used a gridpoints of {0., 1., 2., 3., 4.} (augmented in
the last subsection by aT−1). But it has been obvious from the figures that the

17This is the essential point of Carroll (2006).
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Figure 11 cT−1(mT−1) (solid) versus c̀T−1(mT−1) (dashed)

approximated c̀T−1 function tends to be farthest from its true value cT−1 at low
values of a. Combining this with our insight that aT−1 is a lower bound, we are now
in position to define a more deliberate method for constructing gridpoints for aT−1

– a method that yields values that are more densely spaced than the uniform grid at
low values of a. A pragmatic choice that works well is to find the values such that
(1) the last value exceeds the lower bound by the same amount āT−1 as our original
maximum gridpoint (in our case, 4.); (2) we have the same number of gridpoints
as before; and (3) the multi-exponential growth rate (that is, eee

...

for some number
of exponentiations n) from each point to the next point is constant (instead of, as
previously, imposing constancy of the absolute gap between points).
The results (generated by the program 2periodIntExpFOCInvEEE.m) are depicted

in Figures 12 and 13, which are notably closer to their respective truths than the
corresponding figures that used the original grid.

5.10 The Method of Moderation
Unfortunately, the endogenous gridpoints solution is not very well-behaved outside
the original range of gridpoints targeted by the solution method. (Though other com-
mon solution methods are no better outside their own predefined ranges). Figure 14
demonstrates the point by plotting the amount of precautionary saving implied by a
linear extrapolation of our approximated consumption rule (the consumption of the
perfect foresight consumer c̄T−1 minus our approximation to optimal consumption
under uncertainty, c̀T−1). Although theory proves that precautionary saving is al-
ways positive, the linearly extrapolated numerical approximation eventually predicts
negative precautionary saving (at the point in the figure where the extrapolated locus
crosses the horizontal axis).
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Figure 12 cT−1(aT−1) versus c̀T−1(aT−1), Multi-Exponential aVec
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Figure 13 v′T−1(aT−1) vs. `̀v′T−1(aT−1), Multi-Exponential aVec
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(Oops!)

This problem cannot be solved by extending the upper gridpoint; in the presence
of serious uncertainty, the consumption rule will need to be evaluated outside of any
prespecified grid (because starting from the top gridpoint, a large enough realization
of the uncertain variable will push next period’s realization of assets above that top).
While a judicious extrapolation technique can prevent this problem from being fatal
(for example by carefully excluding negative precautionary saving), the problem is
often dealt with using inelegant methods whose implications for the accuracy of the
solution are difficult to gauge.
As a preliminary to our solution, define ht as end-of-period human wealth (the

present discounted value of future labor income) for a perfect foresight version of
the problem of a ‘risk optimist:’ a consumer who believes with perfect confidence
that the shocks will always take the value 1, θt+n = E[θ] = 1 ∀ n > 0. The solution
to a perfect foresight problem of this kind takes the form18

c̄t(mt) = (mt + ht)κt (43)

for a constant minimal marginal propensity to consume κt given below.
We similarly define ht as ‘minimal human wealth,’ the present discounted value

of labor income if the shocks were to take on their worst possible value in every
future period θt+n = θ ∀ n > 0 (which we define as corresponding to the beliefs of a
‘pessimist’).
We will call a ‘realist’ the consumer who correctly perceives the true probabilities

of the future risks and optimizes accordingly.
A first useful point is that, for the realist, a lower bound for the level of market

18For a derivation, see Carroll (2011); κt is defined therein as the MPC of the perfect foresight consumer with
horizon T − t.
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resources is mt = −ht, because if mt equalled this value then there would be a
positive finite chance (however small) of receiving θt+n = θ in every future period,
which would require the consumer to set ct to zero in order to guarantee that the
intertemporal budget constraint holds (this is the multiperiod generalization of the
discussion in section 5.7 about aT−1). Since consumption of zero yields negative
infinite utility, the solution to realist consumer’s problem is not well defined for
values of mt < mt, and the limiting value of the realist’s ct is zero as mt ↓ mt.
Given this result, it will be convenient to define ‘excess’ market resources as the

amount by which actual resources exceed the lower bound, and ‘excess’ human
wealth as the amount by which mean expected human wealth exceeds guaranteed
minimum human wealth:

Nmt = mt +

=−mt︷︸︸︷
ht

Nht = ht − ht.

We can now transparently define the optimal consumption rules for the two perfect
foresight problems, those of the ‘optimist’ and the ‘pessimist.’ The ‘pessimist’
perceives human wealth to be equal to its minimum feasible value ht with certainty,
so consumption is given by the perfect foresight solution

ct(mt) = (mt + ht)κt
= Nmtκt.

The ‘optimist,’ on the other hand, pretends that there is no uncertainty about
future income, and therefore consumes

c̄t(mt) = (mt + ht − ht + ht)κt
= (Nmt + Nht)κt
= ct(mt) + Nhtκt.

It seems obvious that the spending of the realist will be strictly greater than that
of the pessimist and strictly less than that of the optimist. Figure 15 illustrates the
proposition for the consumption rule in period T −1. Proof is more difficult than
might be imagined, but the necessary work is done in Carroll (2011) so we will take
the proposition a fact and proceed by manipulating the inequality:

Nmtκt < ct(mt + Nmt) < (Nmt + Nht)κt
−Nmtκt > −ct(mt + Nmt) > −(Nmt + Nht)κt

Nhtκt > c̄t(mt + Nmt)− ct(mt + Nmt) > 0

1 >

(
c̄t(mt + Nmt)− ct(mt + Nmt)

Nhtκt

)
︸ ︷︷ ︸

≡�t

> 0

where the fraction in the middle of the last inequality is the ratio of actual pre-
cautionary saving (the numerator is the difference between perfect-foresight con-
sumption and optimal consumption in the presence of uncertainty) to the maximum
conceivable amount of precautionary saving (the amount that would be undertaken
by the pessimist who consumes nothing out of any future income beyond the per-
fectly certain component).
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Figure 15 Moderation Illustrated: cT−1 < c̀T−1 < c̄T−1

Defining µt = logNmt (which can range from −∞ to∞), the object in the middle
of the last inequality is

�̂t(µt) ≡
(

c̄t(mt + eµt)− ct(mt + eµt)

Nhtκt

)
, (44)

and we now define

χ̂χχt(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(45)

= log (1/�̂t(µt)− 1) (46)

which has the virtue that it is linear in the limit as µt approaches +∞.
Given χ̂χχ, the consumption function can be recovered from

ĉt = c̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(χ̂χχt)

)
Nhtκt. (47)

Thus, the procedure is to calculate χ̂χχt at the points ~µt corresponding to the log
of the N~mt points defined above, and then using these to construct an interpolating
approximation `̂χχχt from which we indirectly obtain our approximated consumption
rule `̂ct by substituting `̂χχχt for χ̂χχ in equation (47).
Because this method relies upon the fact that the problem is easy to solve if the

decision maker has unreasonable views (either in the optimistic or the pessimistic
direction), and because the correct solution is always between these immoderate
extremes, we call our solution procedure the ‘method of moderation.’
Results are shown in Figure 16; a reader with very good eyesight might be able to

detect the barest hint of a discrepancy between the Truth and the Approximation at
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Figure 16 Extrapolated `̂cT−1 Constructed Using the Method of Moderation

the far righthand edge of the figure – a stark contrast with the calamitous divergence
evident in Figure 14.

5.11 Approximating the Slope Too
Until now, we have calculated the level of consumption at various different gridpoints
and used linear interpolation (either directly for cT−1 or indirectly for, say, χ̂χχT−1).
But the resulting piecewise linear approximations have the unattractive feature that
they are not differentiable at the ‘kink points’ that correspond to the gridpoints
where the slope of the function changes discretely.
Carroll (2011) shows that the true consumption function for this problem is

‘smooth:’ It exhibits a well-defined unique marginal propensity to consume at every
positive value of m. This suggests that we should calculate, not just the level of
consumption, but also the marginal propensity to consume (henceforth κ) at each
gridpoint, and then find an interpolating approximation that smoothly matches both
the level and the slope at those points.
This requires us to differentiate (44) and (46), yielding

�̂
µ
t (µt) = (Nhtκt)

−1eµt

κt −
≡κκκt(mt)︷ ︸︸ ︷

cmt (mt + eµt)

 (48)

χ̂χχµt (µt) =

(
−�̂

µ
t (µt)/�̂

2
t

1/�̂t(µt)− 1

)
(49)

and (dropping arguments) with some algebra these can be combined to yield

χ̂χχµt =

(
κtNmtNht(κt − κt)

(c̄t − ct)(c̄t − ct − κtNht)

)
. (50)
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To compute the vector of values of (48) corresponding to the points in ~µt, we need
the marginal propensities to consume (designated κ) at each of the gridpoints, cmt
(the vector of such values is ~κt). These can be obtained by differentiating the Euler
equation (20) (where we define mt(a) ≡ ct(a) + a):

u′(ct) = v̂at (mt − ct) (51)

with respect to a, yielding a marginal propensity to have consumed ca at each
gridpoint:

u′′(ct)c
a
t = v̂aat (mt − ct) (52)
cat = v̂aat (mt − ct)/u

′′(ct) (53)

and the marginal propensity to consume at the beginning of the period is obtained
from the marginal propensity to have consumed by noting that

c = m− a
ca + 1 = ma

which, together with the chain rule ca = cmma, yields the MPC from

cm(

=ma︷ ︸︸ ︷
ca + 1) = ca (54)

cm = ca/(1 + ca). (55)

Designating `̂cT−1 as the approximated consumption rule obtained using an in-
terpolating polynomial approximation to χ̂χχ that matches both the level and the
first derivative at the gridpoints, Figure 17 plots the difference between this latest
approximation and the true consumption rule for period T − 1 up to the same large
value (far beyond the largest gridpoint) used in prior figures. Of course, at the
gridpoints the approximation will match the true function; but this figure illustrates
that the approximation is quite accurate far beyond the last gridpoint (which is the
last point at which the difference touches the horizontal axis). (We plot here the
difference between the two functions rather than the level plotted in previous figures,
because in levels the approximation error would not be detectable even to the most
eagle-eyed reader.)

5.12 Value
Often it is useful to know the value function as well as the consumption rule
associated with a problem. Fortunately, many of the tricks used when solving the
consumption problem have a direct analogue in approximation of the value function.
Consider the perfect foresight (or ‘optimist’) case in period T − 1:

vT−1(mT−1) = u(cT−1) + βu(cT )

= u(cT−1)
(
1 + β((βTR)1/ρ)1−ρ)

= u(cT−1)
(
1 + β(βTR)1/ρ−1

)
= u(cT−1)

(
1 + (βTR)1/ρ/R

)
= u(cT−1)PDVT

t (c)/cT−1︸ ︷︷ ︸
≡CTt
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Figure 17 Difference Between True cT−1 and `̂cT−1 Is Minuscule

where PDVT
t (c) is the present discounted value of consumption. A similar function

can be constructed recursively for earlier periods, yielding the general expression

v̄t(mt) = u(ct)CT
t (56)

which can be transformed as

Λ̄t(mt) = ((1− ρ)v̄t)
1/(1−ρ)

= c̄t(mt)(CT
t )1/(1−ρ)

with derivative

Λ̄
m
t = (CT

t )1/(1−ρ)κt,

and since CT
t is a constant while the consumption function is linear, Λ̄t will also be

linear.
We apply the same transformation to the value function for the problem with

uncertainty (the realist’s problem) and differentiate

Λt = ((1− ρ)vt(mt))
1/(1−ρ)

Λ
m
t = ((1− ρ)vt(mt))

−1+1/(1−ρ) vmt (mt)

and an excellent approximation to the value function can be obtained by calculating
the values of Λ at the same gridpoints used by the consumption function approxi-
mation, and interpolating among those points.
However, as with the consumption approximation, we can do even better if we

realize that the Λ̄ function for the optimist’s problem is an upper bound for the Λ

function in the presence of uncertainty, and the value function for the pessimist is a
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lower bound. Analogously to (44), define an upper-case

�̂t(µt) =

(
Λ̄t(mt + eµt)−Λt(mt + eµt)

Nhtκt(CT
t )1/(1−ρ)

)
(57)

with derivative (dropping arguments)

�̂
µ

t = (Nhtκt(CT
t )1/(1−ρ))−1eµt (Λ̄

m
t −Λ

m
t ) (58)

and an upper-case version of the χχχ equation in (46):

X̂t(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(59)

= log
(

1/�̂t(µt)− 1
)

(60)

with corresponding derivative

X̂µ
t =

(
−�̂

µ

t /�̂
2

t

1/�̂t − 1

)
(61)

and if we approximate these objects then invert them (as above with the �̂ and χ̂χχ
functions) we obtain a very high-quality approximation to our inverted value function
at the same points for which we have our approximated value function:

Λ̂t = Λ̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(X̂t)

)
Nhtκt(CT

t )1/(1−ρ) (62)

from which we obtain our approximation to the value function and its derivative as

v̂t = u(Λ̂t)

v̂mt = u′(Λ̂t)Λ̂
m

v̂mmt = u′′(Λ̂t)(Λ̂
m)2 + u′(Λ̂t)Λ̂

mm.

Although a linear interpolation that matches the level of Λ at the gridpoints is
simple, a Hermite interpolation that matches both the level and the derivative of
the Λ̂t function at the gridpoints has the considerable virtue that the v̄t derived from
it numerically satisfies the envelope theorem at each of the gridpoints for which the
problem has been solved.
If we use the double-derivative calculated above to produce a higher-order Hermite

polynomial, our approximation will also match marginal propensity to consume at
the gridpoints; this would guarantee that the consumption function generated from
the value function would match both the level of consumption and the marginal
propensity to consume at the gridpoints; the numerical differences between the newly
constructed consumption function and the highly accurate one constructed earlier
would be negligible within the grid (though would likely diverge outside it).

5.13 Refinement: A Tighter Upper Bound
Carroll (2011) derives an upper limit κ̄t for the MPC as mt approaches its lower
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bound. Using this fact plus the strict concavity of the consumption function yields
the proposition that

ct(mt + Nmt) < κ̄tNmt. (63)

The solution method described above does not guarantee that approximated con-
sumption will respect this constraint between gridpoints, and a failure to respect the
constraint can occasionally cause computational problems in solving or simulating
the model. Here, we describe a method for constructing an approximation that
always satisfies the constraint.
Defining m#

t as the ‘cusp’ point where the two upper bounds intersect:(
Nm#

t + Nht
)
κt = κ̄tNm

#
t

Nm#
t =

κtNht
(1− κt)κ̄t

m#
t =

κtht − ht

(1− κt)κ̄t
,

we want to construct a consumption function for mt ∈ (mt,m
#
t ] that respects the

tighter upper bound:

Nmtκt < ct(mt + Nmt) < κ̄tNmt

Nmt(κ̄t − κt) > κ̄tNmt − ct(mt + Nmt) > 0

1 >
(
κ̄tNmt−ct(mt+Nmt)

Nmt(κ̄t−κt)

)
> 0.

Again defining µt = logNmt, the object in the middle of the inequality is

�̌t(µt) ≡
κ̄t − ct(mt + eµt)e−µt

κ̄t − κt

�̌
µ
t (µt) =

ct(mt + eµt)e−µt − κκκmt (mt + eµt)

κ̄t − κt
.

As mt approaches −mt, �̌t(µt) converges to zero, while as mt approaches +∞,
�̌t(µt) approaches 1.
As before, we can derive an approximated consumption function; call it `̌ct. This

function will clearly do a better job approximating the consumption function for low
values of mt while the previous approximation will perform better for high values of
mt.
For middling values of m it is not clear which of these functions will perform

better. However, an alternative is available which performs well. Define the highest
gridpoint below m#

t as ¯̌m#
t and the lowest gridpoint above m#

t as m̂#
t . Then there

will be a unique interpolating polynomial that matches the level and slope of the
consumption function at these two points. Call this function c̃t(m).
Using indicator functions that are zero everywhere except for specified intervals,

111Lo(m) = 1 if m ≤ ¯̌m#
t

111Mid(m) = 1 if ¯̌m#
t < m < m̂#

t

111Hi(m) = 1 if m̂#
t ≤ m
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we can define a well-behaved approximating consumption function

c̀t = 111Lo`̌ct + 111Mid`̃ct + 111Hi`̂ct. (64)

This just says that, for each interval, we use the approximation that is most
appropriate. The function is continuous and once-differentiable everywhere, and is
therefore well behaved for computational purposes.
To construct the corresponding refined representation of the value function we

must first clarify one point: The upper-bound value function that we are constructing
will be the one implied by a consumer whose spending behavior is consistent with
the refined upper-bound consumption rule.
For mt ≥ m#

t , this consumption rule is the same as before, so the constructed
upper-bound value function is also the same. However, for values mt < m#

t matters
are slightly more complicated.
Start with what we know: Below the cusp point, consumption is equal to κ̄Nm,

so

v̄t(m
#
t ) = u(c̄t(m

#
t ))CT

t

= u(Nm#
t κ̄t)CT

t .

But for all mt,

v̄t(m) = u(c̄t(m)) + v̄t(m− c̄t(m)),

so for mt < m#
t

v̄t(m) = u(κ̄tNm) + v̄t((1− κ̄t)Nm),

which is easy to compute because vt(at) = βv̄t+1(atR + 1) where v̄t is as defined
above because a consumer who ends the current period with assets exceeding the
lower bound will not expect to be constrained next period. At the gridpoints defined
by the solution of the consumption problem can then construct

Λ̄t(m) = ((1− ρ)v̄t(m))1/(1−ρ)

and its derivatives which yields the appropriate vector for constructing X̌ and �̌.
The rest of the procedure is analogous to that performed for the consumption rule
and is thus omitted for brevity.

5.14 Extension: A Stochastic Interest Factor
Thus far we have assumed that the interest factor is constant at R. Extending the
previous derivations to allow for a perfectly forecastable time-varying interest factor
Rt would be trivial. Allowing for a stochastic interest factor is less trivial.
The easiest case is where the interest factor is i.i.d.,

logRt+n ∼ N (r + φ− σ2
r/2, σ

2
r) ∀ n > 0 (65)

where φ is the risk premium and the σ2
r/2 adjustment to the mean log return allows

a mean-preserving spread in the level of the return.
This case is reasonably straightforward because Merton (1969) and Samuelson

(1969) showed that for a consumer without labor income (or with perfectly fore-
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castable labor income) the consumption function is linear, with a MPC19

κ = 1−
(
β Et[R1−ρ

t+1 ]
)1/ρ

(66)

and in this case the previous analysis applies once we substitute this MPC for the
one that characterizes the perfect foresight problem without rate-of-return risk.
The more realistic case where the interest factor has some serial correlation is

more complex. We consider the simplest case that captures the main features of
empirical interest rate dynamics: An AR(1) process. Thus the specification is

rt+1 − r = (rt − r)γ + εt+1 (67)

where r is the long-run mean log interest factor, 0 < γ < 1 is the AR(1) serial
correlation coefficient, and εt+1 is the stochastic shock.
The consumer’s problem in this case now has two state variables, mt and rt, and

is described by

vt(mt, rt) = max
ct

u(ct) + Et[βt+1Γ1−ρ
t+1 vt+1(mt+1, rt+1)] (68)

s.t.
at = mt − ct

rt+1 − r = (rt − r)γ + εt+1

Rt+1 = exp(rt+1)

mt+1 = (Rt+1/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1.

We approximate the AR(1) process by a Markov transition matrix using standard
techniques. The stochastic interest factor is allowed to take on 11 values centered
around the steady-state value r and chosen [how?]. Given this Markov transition
matrix, conditional on the Markov AR(1) state the consumption functions for the
‘optimist’ and the ‘pessimist’ will still be linear, with identical MPC’s that are
computed numerically. Given these MPC’s, the (conditional) realist’s consumption
function can be computed for each Markov state, and the converged consumption
rules constitute the solution contingent on the dynamics of the stochastic interest
rate process.
In principle, this refinement should be combined with the previous one; further

exposition of this combination is omitted here because no new insights spring from
the combination of the two techniques.

5.15 Imposing ‘Artificial’ Borrowing Constraints
Optimization problems often come with additional constraints that must be sat-
isfied. Particularly common is an ‘artificial’ liquidity constraint that prevents the
consumer’s net worth from falling below some value, often zero.20

19See CRRA-RateRisk for a derivation.
20The word artificial is chosen only because of its clarity in distinguishing this from the case of the ‘natural’

borrowing constraint examined above; no derogation is intended – constraints of this kind certainly exist in the real
world.
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With such an additional constraint, the problem is

vT−1(mT−1) = max
cT−1

u(cT−1) + ET−1[βΓ1−ρ
T vT (mT )]

s.t.
aT−1 = mT−1 − cT−1

mT = RTaT−1 + θT

aT−1 ≥ 0.

By definition, the constraint will bind if the unconstrained consumer would choose
a level of spending that would violate the constraint. Here, that means that the
constraint binds if the cT−1 that satisfies the unconstrained FOC

c−ρT−1 = v′T−1(mT−1 − cT−1) (69)

is greater than mT−1. Call c̀∗T−1 the approximated function returning the level of
cT−1 that satisfies (69). Then the approximated constrained optimal consumption
function will be

c̀T−1(mT−1) = min[mT−1, c̀
∗
T−1(mT−1)]. (70)

The introduction of the constraint also introduces a sharp nonlinearity in all of
the functions at the point where the constraint begins to bind. As a result, to get
solutions that are anywhere close to numerically accurate it is useful to augment the
grid of values of the state variable to include the exact value at which the constraint
becomes binding. Fortunately, this is easy to calculate. We know that when the
constraint is binding the consumer is saving nothing, which yields marginal value of
v′T−1(0). Further, when the constraint is binding, cT−1 = mT−1. Thus, the largest
value of consumption for which the constraint is binding will be the point for which
the marginal utility of consumption is exactly equal to the (expected, discounted)
marginal value of saving 0. We know this because the marginal utility of consumption
is a downward-sloping function and so if the consumer were to consume ε more, the
marginal utility of that extra consumption would be below the (discounted, expected)
marginal utility of saving, and thus the consumer would engage in positive saving
and the constraint would no longer be binding. Thus the level of mT−1 at which the
constraint stops binding is:

u′(mT−1) = v′T−1(0)

mT−1 = (v′T−1(0))(−1/ρ)

= cT−1(0). (71)

The constrained problem is solved by 2periodIntExpFOCInvPesReaOptCon.m; the
resulting consumption rule is shown in Figure 18. For comparison purposes, the
approximate consumption rule from Figure 18 is reproduced here as the solid line.
The presence of the liquidity constraint requires three changes to the procedures
outlined above:

1. We redefine ht, which now is the PDV of receiving θt+1 = θ next period and
θt+n = 0 ∀ n > 1 – that is, the pessimist believes he will receive nothing beyond
period t+ 1
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Figure 18 Constrained (solid) and Unconstrained (dashed) Consumption

2. We augment the end-of-period aVec with zero and with a point with a small
positive value so that the generated mVec will the binding point m# and a
point just above it (so that we can better capture the curvature around that
point)

3. We redefine the optimal consumption rule as in equation (70). This ensures
that the liquidity-constrained ‘realist’ will consume more than the redefined
‘pessimist,’ so that we will have � still between 0 and 1 and the ‘method of
moderation’ will proceed smoothly.

As expected, the liquidity constraint only causes a divergence between the two
functions at the point where the optimal unconstrained consumption rule runs into
the 45 degree line.

6 Recursion

6.1 Theory
Before we solve for periods earlier than T − 1, we assume for convenience that in
each such period a liquidity constraint exists of the kind discussed above, preventing
c from exceeding m. This simplifies things a bit because now we can always consider
an aVec that starts with zero as its smallest element.
Recall now equations (19) and (20):

v′t(at) = Et[βRΓ−ρt+1u′(ct+1(Rt+1at + θt+1))]

u′(ct) = v′t(mt − ct).
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Assuming that the problem has been solved up to period t + 1 (and thus assuming
that we have an approximated c̀t+1(mt+1)), our solution method essentially involves
using these two equations in succession to work back progressively from period T −1
to the beginning of life. Stated generally, the method is as follows. (Here, we use the
original, rather than the “refined,” method for constructing consumption functions;
the generalization of the algorithm below to use the refined method presents no
difficulties.)

1. For the grid of values at,i in aVect, numerically calculate the values of ct(at,i)
and c′t(at,i),

ct,i = (v′t(at,i))
−1/ρ

, (72)

=
(
β Et

[
RΓ−ρt+1(c̀t+1(Rt+1at,i + θt+1))−ρ

])−1/ρ
, (73)

κt,i = −(1/ρ) (v′t(at,i))
−1−1/ρ

v′′t (at,i), (74)

generating vectors of values ~ct and ~κt (where the letter κ is a variant of κ;
we need a variant because κ itself is reserved for the marginal propensity to
consume as of the beginning of the period, and here we are calculating the
marginal propensity to have consumed).

2. Construct a corresponding list of values of ct,i and mt,i from ct,i = ct,i and
mt,i = ct,i + at,i; similarly construct a corresponding list of κt,i using equation
(55).

3. Construct a corresponding list of µt,i, the levels and first derivatives of �t,i,
and the levels and first derivatives of χt,i.

4. Construct an interpolating approximation χ̀t that smoothly matches both the
level and the slope at those points.

5. If we are to approximate the value function, construct a corresponding list
of values of vt,i, the levels and first derivatives of �t,i, and the levels and
first derivatives of X̂t,i; and construct an interpolating approximation X̂t that
matches those points.

With χ̀t in hand, our approximate consumption function is computed directly from
the appropriate substitutions in (47) and related equations. With this consumption
rule in hand, we can continue the backwards recursion to period t − 1 and so on
back to the beginning of life.
Note that this loop does not contain steps for constructing v̂′t(at) or v̂′t(mt). This

is because with ĉt(at) and `̂ct(mt) in hand, we simply define v̂′t(at) = [̂ct(at)]
−ρ and

v̂′t(mt) = u′(`̂ct(mt)) so there is no need to construct interpolating approximations
to these functions - they arise ‘free’ (or nearly so) from our constructed ĉt(at) and
`̂ct(mt).

The program multiperiodCon.m21 presents a fairly general and flexible approach
to solving problems of this kind. The essential structure of the program is a loop that

21There is also a parallel multiperiod.m file that solves the unconstrained multi-period problem.
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simply works its way back from an assumed last period of life, using the command
AppendTo to record the interpolated χ̀t functions in the earlier time periods back from
the end. For a realistic life cycle problem, it would also be necessary at a minimum
to calibrate a nonconstant path of expected income growth over the lifetime that
matches the empirical profile; allowing for such a calibration is the reason we have
included the {Γ}Tt vector in our computational specification of the problem.

6.2 Mathematica Background
Mathematica has several features that are useful in solving the multiperiod problem.

• It can treat a user-created function as an object just like a number or a
character.

• Mathematica uses the ‘list’ as its basic data structure. A Mathematica ‘list’
is a very powerful and flexible data construct. A list of length N in Mathe-
matica can hold essentially anything in each of its N positions - a function, a
number, another list, a symbolic expression, or any other object that Math-
ematica can recognize. The items at position i in a list named ExampleList
are retrieved or addressed using the syntax ExampleList[[i]].

• The function Apply[FuncName_, DataListName_] takes the function whose
name is FuncName (for example, Vt) and the data in DataListName (for exam-
ple, {1, 19}) and returns the result that would have been returned by calling
the function Vt[1,19].

• The function Map[FuncToApply_,DataToApplyItTo_] takes a list of possible
arguments to the function FuncToApply and applies that function to each of
the elements of that list sequentially. For example, Map[Sin,{1,2,3}] would
return a list {Sin[1],Sin[2],Sin[3]}.

6.3 Program Structure
After the usual initializations, the heart of the program works like this.

6.3.1 Iteration

After setting up a variable PeriodsToSolve which defines the total number of peri-
ods that the program will solve, the program sets up a “Do[SolveAnotherPeriod,{PeriodsToSolve}]”
loop that runs the function SolveAnotherPeriod the number of times corresponding
to PeriodsToSolve. Every time SolveAnotherPeriod is run, the interpolated
consumption function for one period of life earlier is calculated. The structure of
the SolveAnotherPeriod function is as follows:

1. Add various period-t parameters to their respective lifecycle lists, which is
accomplished by calling the AddNewPeriodToParamLifeDates function.
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2. For each a in aVec, construct c as follows:

ct(at) =
(
β Et

[
RΓ−ρt+1(`̂ct+1(Rt+1at + θt+1))−ρ

])−1/ρ

(75)

=

(
β

1

n

n∑
i=1

R
[
Γ−ρt+1(`̂ct+1(Rt+1at + θi))

−ρ
])−1/ρ

. (76)

Obviously, ct(a) depends on the constructed consumption function from one
period later in life. We also construct the corresponding mVec, κVec, etc. by
calling the AddNewPeriodToSolvedLifeDates function.

3. For each m in mVec, we can define NmVec, find the corresponding optimal
consumption vector for a pessimist and an optimist, construct the � and χ
vectors, and finally an interpolation function χ̀t. Similarly we can construct
an interpolation function X̀t that approximates the value function. The whole
process is done by calling the AddNewPeriodToSolvedLifeDatesPesReaOpt
function.

4. Various period-t functions are derived from χ̀t and X̀t (in functions_ConsNVal.m).
Note that the liquidity constraint is dealt with by comparing the unconstrained
solution cFromχ with the 45 degree line.

6.4 Results
As written, the program creates χ̀t(µt) functions from which the relevant c̀t(mt)
functions are recovered in any period for any value of m.
As an illustration, Figure 19 shows c̀T−n(m) for n = {20, 15, 10, 5, 1}. At least

one feature of this figure is encouraging: the consumption functions converge as the
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horizon extends, something that Carroll (2011) shows must be true under certain
parametric conditions that are satisfied by the baseline parameter values being used
here.

7 Multiple Control Variables
We now consider how to solve problems with multiple control variables. (To reduce
notational complexity, in this section we set Γt = 1 ∀ t.)

7.1 Theory
The new control variable that the consumer can now choose is the portion of the
portfolio to invest in risky assets. Designating the gross return on the risky asset as
Rt+1, and using ςt to represent the proportion of the portfolio invested in this asset
between t and t + 1 (restricted here, as often in the literature, to values between 0
and 1, corresponding to an assumption that the consumer cannot be ‘net short’ and
cannot issue net equity), the overall return on the consumer’s portfolio between t
and t+ 1 will be:

RRRt+1 = R(1− ςt) + Rt+1ςt (77)
= R + (Rt+1 − R)ςt (78)

and the maximization problem is

vt(mt) = max
{ct,ςt}

u(ct) + β Et[vt+1(mt+1)]

s.t.
RRRt+1 = R + (Rt+1 − R)ςt

mt+1 = (mt − ct)RRRt+1 + θt+1

0 ≤ ςt ≤ 1,

or

vt(mt) = max
{ct,ςt}

u(ct) + Et[βvt+1((mt − ct)RRRt+1 + θt+1)]

s.t.
0 ≤ ςt ≤ 1.

The first order condition with respect to ct is almost identical to that in the single-
control problem, equation (12), with the only difference being that the nonstochastic
interest factor R is now replaced by RRRt+1,

u′(ct) = β Et[RRRt+1v′t+1(mt+1)], (79)

and the Envelope theorem derivation remains the same, yielding the Euler equation
for consumption

u′(ct) = Et[βRRRt+1u′(ct+1)]. (80)

The first order condition with respect to the risky portfolio share is

0 = Et[v′t+1(mt+1)(Rt+1 − R)at]
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= at Et [u′ (ct+1(mt+1)) (Rt+1 − R)] . (81)

As before, it will be useful to define vt as a function that yields the expected t+ 1
value of ending period t in a given state. However, now that there are two control
variables, the expectation must be defined as a function of the chosen values of both
of those variables, because expected end-of-period value will depend not just on how
much the agent saves, but also on how the saved assets are allocated between the
risky and riskless assets. Thus we define

vt(at, ςt) = Et[βvt+1(mt+1)]

which has derivatives

vat = Et[βRRRt+1vmt+1(mt+1)]

vςt = Et[β(Rt+1 − R)vmt+1(mt+1)]at

implying that the first order conditions (80) and (81) and can be rewritten

u′(ct) = vat (mt − ct, ςt) (82)
0 = vςt(at, ςt). (83)

7.2 Application
Our first step is to specify the stochastic process for Rt+1. We follow
the common practice of assuming that returns are lognormally distributed,
logR ∼ N (φ + r − σ2

φ/2, σ
2
φ) where φ is the equity premium over the returns r

available on the riskless asset.22
As with labor income uncertainty, it is necessary to discretize the rate-of-return

risk in order to have a problem that is soluble in a reasonable amount of time. We
follow the same procedure as for labor income uncertainty, generating a set of m
equiprobable shocks to the rate of return; in a slight abuse of notation, we will
designate the portfolio-weighted return (contingent on the chosen portfolio share in
equity, and potentially contingent on any other aspect of the consumer’s problem)
simply asRRRi,j (where dependence on i is allowed to permit the possibility of nonzero
correlation between the return on the risky asset and the shock to labor income (for
example, in recessions the stock market falls and labor income also declines).
The direct expressions for the derivatives of vt are

vat (at, ςt) = β

(
1

mn

) n∑
i=1

m∑
j=1

RRRi,j (ct+1(RRRi,jat + θi))
−ρ (84)

vςt(at, ςt) = β

(
1

mn

) n∑
i=1

m∑
j=1

(Ri,j − R) (ct+1(RRRi,jat + θi))
−ρ . (85)

Writing these equations out explicitly makes a problem very apparent: For every
different combination of {at, ςt} that the routine wishes to consider, it must perform
two double-summations of m × n terms. Once again, there is an inefficiency if it
must perform these same calculations many times for the same or nearby values of

22This guarantees that E[R] = Φ is invariant to the choice of σ2
φ; see LogELogNorm.
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{at, ςt}, and again the solution is to construct an approximation to the derivatives
of the v function.
Details of the construction of the interpolating approximation are given below;

assume for the moment that we have the approximations v̂at and v̂ςt in hand and we
want to proceed. As noted above, nonlinear equation solvers (including those built
into Mathematica) can find the solution to a set of simultaneous equations. Thus
we could ask Mathematica to solve

c−ρt = v̂at (mt − ct, ςt) (86)
0 = v̂ςt(mt − ct, ςt) (87)

simultaneously for c and ς at the set of potentialmt values defined in mVec. However,
multidimensional constrained maximization problems are difficult and sometimes
quite slow to solve. There is a better way. Define the problem

wt(at) = max
ςt

vt(at, ςt) (88)

s.t.
0 ≤ ςt ≤ 1 (89)

where the bar accent on v indicates that this is the v that has been optimized
with respect to all of the arguments other than the one still present (at). We solve
this problem for the set of gridpoints in aVec and use the results to construct the
interpolating function ẁa

t (at).23 With this function in hand, we can use the first
order condition from the single-control problem

c−ρt = ẁa
t (mt − ct)

to solve for the optimal level of consumption as a function of mt. Thus we have
transformed the multidimensional optimization problem into a sequence of two
simple optimization problems for which solutions are much easier and more reliable.
Note the parallel between this trick and the fundamental insight of dynamic pro-

gramming: Dynamic programming techniques transform a multi-period (or infinite-
period) optimization problem into a sequence of two-period optimization problems
which are individually much easier to solve; we have done the same thing here, but
with multiple dimensions of controls rather than multiple periods.

7.3 Implementation
The program which solves the constrained problem with multiple control variables
is multicontrolCon.m.
Some of the functions defined in multicontrolCon.m correspond to the derivatives

of vt(at, ςt).
The first function definition that does not resemble anything in multiperiod.m

is ςRaw[at_]. This function, for its input value of at, calculates the value of the
portfolio share ςt which satisfies the first order condition (87), tests whether the
optimal portfolio share would violate the constraints, and if so resets the portfolio

23A faster solution could be obtained by, for each element in aVec, computing vςt (mt − ct, ς) of a grid of values
of ς, and then using an approximating interpolating function (rather than the full expectation) in the FindRoot
command. The associated speed improvement is fairly modest, however, so this route was not pursued.
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share to the constrained optimum. The function returns the optimal value of
the portfolio share itself, ς∗t , from which the functions v̄at (at) and ς̂t(at) will be
constructed.
As ς̂t(at) can be constructed by ςRaw[at_], v̄at (at) is constructed by another newly

defined function vaOpt[at_], where the naming convention is obviously that ‘Opt’
stands for ‘Optimized.’ With v̄at (at) in hand (as well as the appropriately redefined
v̄t(at) and v̄aat (at)) the analysis is essentially identical to that for the standard
multiperiod problem with a single control variable.
The structure of the program in detail is as follows. First, perform the usual

initializations. Then initialize ςVec and the other variables specific to the multiple
control problem.24 In particular, there are now three kinds of functions: those with
both at and ςt as arguments, those with just at, and those with mt.
Once the setup is complete, the heart of the program is the following.

1. Construct vςt(at, ςt) using the usual calculation over the tensor defined by the
combinations of the elements of aVec and ςVec.

2. For any level of saving at, the function ςRaw[at_] performs a rootfinding
operation25

0 = vςt(at, ςt) (90)
s.t.

0 ≤ ςt ≤ 1 (91)

and generates the corresponding optimal portfolio share ς∗t .

3. Construct the function wa[at_]

wa
t (at) ≡ vat (at, ς

∗
t (at)) (92)

where ς∗t (at) is computed by ςRaw[at_].

4. Using wa
t (at) ≡ wa[at_] and the redefined wt(at) and waa

t (at) (in place
of vat (at) ≡ va[at_] in multiperiod.m), follow the same procedures as in
multiperiod.m to generate c̀t(m).

7.4 Results
Figure 20 plots the first-period consumption function generated by the program;
qualitatively it does not look much different from the consumption functions gener-
ated by the program without portfolio choice. Figure 21 plots the optimal portfolio
share as a function of the level of assets. This figure exhibits several interesting
features. First, even with a coefficient of relative risk aversion of 6, an equity

24Note the choice of a coefficient of relative risk aversion of 6, in contrast with the choice of 2 made for the
previous problems. This choice reflects the well-known ‘stockholding puzzle,’ which is the microeconomic equivalent
of the equity premium puzzle: For plausible descriptions of income uncertainty, rate of return risk, and the equity
premium, the typical consumer should hold all or nearly all of their portfolio in equities. Thus we choose a high
value for the coefficient of relative risk aversion in order to generate portfolio structure behavior more interesting
than a choice of 100 percent equities in every period for every level of wealth.

25Alternatively, the rootfinding operation would be 0 = v̂ςt (at, ςt), where the interpolation function of vςt (at, ςt)
is used instead. However, the results obtained (especially ς̂t(at)) are much less satisfactory.

41



1 2 3 4
m

0.5

0.6

0.7

0.8

0.9

1.0

1.1

c

Figure 20 c(m1) With Portfolio Choice

premium of only 4 percent, and an annual standard deviation in equity returns of
15 percent, the optimal choice is for the agent to invest a proportion 1 (100 percent)
of the portfolio in stocks (instead of the safe bank account with riskless return R)
is at values of at less than about 2. Second, the proportion of the portfolio kept
in stocks is declining in the level of wealth - i.e., the poor should hold all of their
meager assets in stocks, while the rich should be cautious, holding more of their
wealth in safe bank deposits and less in stocks. This seemingly bizarre (and highly
counterfactual) prediction reflects the nature of the risks the consumer faces. Those
consumers who are poor in measured financial wealth are likely to derive a high
proportion of future consumption from their labor income. Since by assumption
labor income risk is uncorrelated with rate-of-return risk, the covariance between
their future consumption and future stock returns is relatively low. By contrast,
persons with relatively large wealth will be paying for a large proportion of future
consumption out of that wealth, and hence if they invest too much of it in stocks
their consumption will have a high covariance with stock returns. Consequently,
they reduce that correlation by holding some of their wealth in the riskless form.

8 The Infinite Horizon
All of the solution methods presented so far have involved period-by-period iteration
from an assumed last period of life, as is appropriate for life cycle problems. However,
if the parameter values for the problem satisfy certain conditions (detailed in Carroll
(2011)), the consumption rules (and the rest of the problem) will converge to a
fixed rule as the horizon (remaining lifetime) gets large, as illustrated in Figure 19.
Furthermore, Deaton (1991), Carroll (1992; 1997) and others have argued that
the ‘buffer-stock’ saving behavior that emerges under some further restrictions on
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Figure 21 Portfolio Share in Risky Assets in First Period ς(a)

parameter values is a good approximation of the behavior of typical consumers over
much of the lifetime. Methods for finding the converged functions are therefore of
interest, and are dealt with in this section.
Of course, the simplest such method is to solve the problem as specified above for

a large number of periods. This is feasible, but there are much faster methods.

8.1 Convergence
In solving an infinite-horizon problem, it is necessary to have some metric that
determines when to stop because a solution that is ‘good enough’ has been found.
A natural metric is defined by the unique ‘target’ level of wealth that Carroll

(2011) proves will exist in problems of this kind: The m̌ such that

Et[mt+1/mt] = 1 if mt = m̌ (93)

where the ∨ accent is meant to signify that this is the value that other m’s ‘point
to.’
Given a consumption rule c(m) it is straightforward to find the corresponding m̌.

So for our problem, a solution is declared to have converged if the following criterion
is met: |m̌t+1 − m̌t| < ε, where ε is a very small number and measures our degree of
convergence tolerance.
Similar criteria can obviously be specified for other problems. However, it is always

wise to plot successive function differences and to experiment a bit with convergence
criteria to verify that the function has converged for all practical purposes.
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8.2 Coarse then Fine θVec
The speed of solution is roughly proportionate26 to the number of points used in
approximating the distribution of shocks. At least 3 gridpoints should probably be
used as an initial minimum, and my experience is that increasing the number of
gridpoints beyond 7 generally yields only very small changes in the solution. The
program multiperiodCon_infhor.m begins with three gridpoints, and then solves
for successively finer θVec.

9 Structural Estimation
This section describes how to use the methods developed above to structurally esti-
mate a life-cycle consumption model, following closely the work of Cagetti (2003).27
The key idea of structural estimation is to look for the parameter values (for the
time preference rate, relative risk aversion, or other parameters) which lead to the
best possible match between simulated and empirical moments. (The code for the
structural estimation is in the self-contained subfolder StructuralEstimation in
the Matlab and Mathematica directories.)

9.1 Life Cycle Model
The decision problem for the household at age t is:

max

{
u(ccct) + Et

[
T∑

s=t+1

is−t
(

Πs
i=t+1β̂i��Di

)
u(cccs)

]}
(94)

subject to the constraints

aaas = mmms − cccs
mmms+1 = Raaas + Ys+1

Ys+1 = ppps+1θs+1

ppps+1 = Γs+1pppsΨs+1

where

��Ds : probability of being alive (not dead) until age s given being alive at age s− 1

β̂s : time-varying discount factor between age s− 1 and s
Ψs : mean-one shock to permanent income
i : time-invariant discount factor

and all the other variables are defined as in section 2.
Households start life at age s = 25 and live with probability 1 until retirement

(s = 65). Thereafter the survival probability shrinks every year and agents are dead
by s = 91 as assumed by Cagetti. Note that in addition to a typical time-invariant

26It is also true that the speed of each iteration is directly proportional to the number of gridpoints in aVec,
at which the problem must be solved. However given our method of moderation, now the problem could be solved
very precisely based on five gridpoints only. Hence we do not pursue the process of “Coarse then Fine aVec”.

27Similar structural estimation exercises have been also performed by Palumbo (1999) and Gourinchas and
Parker (2002).
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discount factor i, there is a time-varying discount factor β̂s in (94) which captures
the effect of time-varying demographic variables (e.g. changes in family size).
Transitory and permanent shocks are distributed as follows:

Ξs =

{
0 with probability ℘ > 0

θs/℘ with probability (1− ℘), where log θs ∼ N (−σ2
θ/2, σ

2
θ)

(95)

logψs ∼ N (−σ2
ψ/2, σ

2
ψ) (96)

where ℘ is the probability of unemployment (and unemployment shocks are turned
off after retirement).
The parameter values for the shocks are taken from Carroll (1992), ℘ = 0.5/100,

σθ = 0.1, and σψ = 0.1.28 The income growth profile Γs is from Carroll (1997) and
the values of��Ds and β̂s are obtained from Cagetti (2003) (Figure 22).29 The interest
rate is assumed to equal 1.03. The model parameters are included in Table 1.
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Figure 22 Time Varying Parameters

The parameters i and ρ are structurally estimated following the procedure de-
scribed below.

9.2 Estimation
When economists say that they are performing “structural estimation” of a model
like this, they mean that they have devised a formal procedure for searching for

28Note that σθ = 0.1 is smaller than the estimate for college graduates estimated in Carroll and Samwick (1997)
(= 0.197 =

√
0.039) which is used by Cagetti (2003). The reason for this choice is that Carroll and Samwick (1997)

themselves argue that their estimate of σθ is almost certainly increased by measurement error.
29The income growth profile is the one used by Caroll for operatives. Cagetti computes the time-varying discount

factor by educational groups using the methodology proposed by Attanasio et al. (1999) and the survival probabilities
from the 1995 Life Tables (National Center for Health Statistics 1998).
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Table 1 Parameter Values

σθ 0.1 Carroll (1992)
σψ 0.1 Carroll (1992)
℘ 0.005 Carroll (1992)
Γs figure 22 Carroll (1997)

β̂s,��Ds figure 22 Cagetti (2003)
R 1.03 Cagetti (2003)

values for the parameters i and ρ at which some measure of the model’s outcome
(like “median wealth by age”) is as close as possible to an empirical measure of
the same thing. Here, we choose to match the median of the wealth to permanent
income ratio across 7 age groups, from age 26 − 30 up to 56 − 60.30 The choice of
matching the medians rather the means is motivated by the fact that the wealth
distribution is much more concentrated at the top than the model is capable of
explaining using a single set of parameter values. This means that in practice one
must pick some portion of the population who one wants to match well; since the
model has little hope of capturing the behavior of Bill Gates, but might conceivably
match the behavior of Homer Simpson, we choose to match medians rather than
means.
As explained in section 3, it is convenient to work with the normalized version the

model which can be written as:

vt(mt) = max
ct

{
u(ct) + i��Dt+1β̂t+1 Et[(ψt+1Γt+1)1−ρvt+1(mt+1)]

}
s.t.

at = mt − ct

mt+1 = at

(
R

ψt+1Γt+1

)
︸ ︷︷ ︸

≡Rt+1

+θt+1

with the first order condition:

u′(ct) = i��Dt+1β̂t+1REt [u′ (ψt+1Γt+1ct+1 (atRt+1 + θt+1))] . (97)

The first step is to solve for the consumption functions at each age using the
routines included in the setup_ConsFn.m file. We need to discretize the shock
distribution and solve for the policy functions by backward induction using equation
(97) following the procedure in sections 5 and 6 (ConstructcFuncLife). The latter
routine is slightly complicated by the fact that we are considering a life-cycle model
and therefore the growth rate of permanent income, the probability of death, the
time-varying discount factor and the distribution of shocks will be different across
the years. We thus must ensure that at each backward iteration the right parameter
values are used.

30Cagetti (2003) matches wealth levels rather than wealth to income ratios. We believe it is more appropriate to
match ratios both because the ratios are the state variable in the theory and because empirical moments for ratios of
wealth to income are not influenced by the method used to remove the effects of inflation and productivity growth.
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Once we have the age varying consumption functions, we can proceed to generate
the simulated data and compute the simulated medians using the routines defined
in the setup_Sim.m file. We first have to draw the shocks for each agent and period.
This involves discretizing the shock distribution for as many points as the number
of agents we want to simulate (ConstructShockDistribution). We then randomly
permute this shock vector as many times as we need to simulate the model for,
thus obtaining a time varying shock for each agent (ConstructSimShocks). This
is much more time efficient than drawing at each time from the shock distribution
a shock for each agent, and also ensures a stable distribution of shocks across the
simulation periods even for a small number of agents. (Similarly, in order to speed up
the process, at each backward iteration we compute the consumption function and
other variables as a vector at once.) Then, following Cagetti (2003), we initialize
the wealth-to-income ratio of agents at age 25 by randomly assigning the equal
probability values to 0.17, 0.50 and 0.83 and run the simulation (Simulate). In
particular we consider a population of agents at age 25 and follow their consumption
and wealth accumulation dynamics as they reach the age of 60, using the appropriate
age-specific consumption functions and the age-varying parameters. The simulated
medians are obtained by taking the medians of the wealth to income ratio of the 7
age groups.
Given these simulated medians, we can estimate the model by calculating empir-

ical medians and measure the model’s success by calculating the difference between
the empirical median and the actual median. Specifically, defining ξ as the set of
parameters to be estimated (in the current case ξ = {ρ,i}), we could search for the
parameter values which solve

min
ξ

7∑
τ=1

|ςτ − sτ (ξ)| (98)

where ςτ and sτ are respectively the empirical and simulated medians of the wealth
to permanent income ratio for age group τ .
A drawback of proceeding in this way is that it treats the empirically estimated

medians as though they reflected perfect measurements of the truth. Imagine,
however, that one of the age groups happened to have (in the consumer survey)
four times as many data observations as another age group; then we would expect
the median to be more precisely estimated for the age group with more observations;
yet (98) assigns equal importance to a deviation between the model and the data
for all age groups.
We can get around this problem (and a variety of others) by instead minimizing

a slightly more complex object:

min
ξ

N∑
i

ωi |ςτi − sτ (ξ)| (99)

where ωi is the weight of household i in the entire population,31 and ςτi is the empirical
wealth-to-permanent-income ratio of household i whose head belongs to age group

31The Survey of Consumer Finances includes many more high-wealth households than exist in the population as
a whole; therefore if one wants to produce population-representative statistics, one must be careful to weight each
observation by the factor that reflects its “true” weight in the population.

47



26-30 26-30 36-40 41-45 46-50 51-55 56-60
Age

2

4

6

8

10

Figure 23 Wealth to Permanent Income Ratios from SCF (means (dashed) and
medians (solid))

τ . ωi is needed because unequal weight is assigned to each observation in the Survey
of Consumer Finances (SCF). The absolute value is used since the formula is based
on the fact that the median is the value that minimizes the sum of the absolute
deviations from itself.
The actual data are taken from several waves of the SCF and the medians and

means for each age category are plotted in figure 23. More details on the SCF data
are included in appendix A.
The key function to perform structural estimation is defined in the setup_Estimation.m

file as follows:

GapEmpiricalSimulatedMedians[ρ,i]:=
[ ConstructcFuncLife[ρ,i];

Simulate;
N∑
i

ωi |ςτi − sτ (ξ)|

];

For a given pair of the parameters to be estimated, the GapEmpiricalSimulatedMedians
routine therefore:

1. solves for the consumption functions by calling ConstructcFuncLife

2. simulates the data and computes the simulated medians by calling Simulate

3. returns the value of equation (99)

We delegate the task of finding the coefficients that minimize the GapEmpiricalSimulatedMedians
function to the Mathematica built-in numerical minimizer FindMinimum.
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This task can be quite time demanding and rather problematic if the
GapEmpiricalSimulatedMedians function has very flat regions or sharp features.
It is thus wise to verify the accuracy of the solution, for example by experimenting
with a variety of alternative starting values for the parameter search.
Finally the standard errors are computed by bootstrap using the routines in the

setup_Bootstrap.m file.32 This involves:

1. drawing new shocks for the simulation

2. drawing a random sample (with replacement) of actual data from the SCF

3. obtaining new estimates for ρ and i

We repeat the above procedure several times (Bootstrap) and take the standard
deviation for each of the estimated parameters across the various bootstrap itera-
tions.
The file StructEstimation.m produces our ρ and i estimates with standard

errors using 10,000 simulated agents.33 Results are reported in Table 2.34 Figure
24 shows the contour plot of the GapEmpiricalSimulatedMedians function and
the parameter estimates. The contour plot shows equally spaced isoquants of the
GapEmpiricalSimulatedMedians function, i.e. the pairs of ρ and i which lead to
the same deviations between simulated and empirical medians (equivalent values of
equation (99)). We can thus interestingly see that there is a large rather flat region,
or more formally speaking there exists a broad set of parameter pairs which leads to
similar simulated wealth to income ratios. Intuitively, the flatter and larger is this
region, the harder it is for the structural estimation procedure to precisely identify
the parameters.

Table 2 Estimation Results

ρ i
4.68 1.00

(0.13) (0.00)

10 Conclusion
There are many alternative choices that can be made for solving microeconomic
dynamic stochastic optimization problems. The set of techniques, and associated
programs, described in these notes represents an approach that I have found to be
powerful, flexible, and efficient, but other problems may require other techniques.
For a much broader treatment of many of the issues considered here, see Judd (1998).

32For a treatment of the advantages of the bootstrap see Horowitz (2001)
33The procedure is: First we calculate the ρ and i estimates as the minimizer of equation (99) using the actual

SCF data. Then, we apply the Bootstrap function several times to obtain the standard error of our estimates.
34Differently from Cagetti (2003) who estimates a different set of parameters for college graduates, high school

graduates and high school dropouts graduates, we perform the structural estimation on the full population.
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Appendices

A Further Details on SCF Data
Data used in the estimation is constructed using the SCF 1992, 1995, 1998, 2001
and 2004 waves. The definition of wealth is net worth including housing wealth,
but excluding pensions and social securities. The data set contains only households
whose heads are aged 26-60 and excludes singles, following Cagetti (2003).35 Fur-
thermore, the data set contains only households whose heads are college graduates.
The total sample size is 4,774.
In the waves between 1995 and 2004 of the SCF, levels of normal income are

reported. The question in the questionnaire is "About what would your income
have been if it had been a normal year?" We consider the level of normal income
as corresponding to the model’s theoretical object P , permanent noncapital income.
Levels of normal income are not reported in the 1992 wave. Instead, in this wave
there is a variable which reports whether the level of income is normal or not.
Regarding the 1992 wave, only observations which report that the level of income
is normal are used, and the levels of income of remaining observations in the 1992
wave are interpreted as the levels of permanent income.
Normal income levels in the SCF are before-tax figures. These before-tax perma-

nent income figures must be rescaled so that the median of the rescaled permanent
income of each age group matches the median of each age group’s income which is
assumed in the simulation. This rescaled permanent income is interpreted as after-
tax permanent income. This rescaling is crucial since in the estimation empirical
profiles are matched with simulated ones which are generated using after-tax per-
manent income (remember the income process assumed in the main text). Wealth
/ permanent income ratio is computed by dividing the level of wealth by the level
of (after-tax) permanent income, and this ratio is used for the estimation.36

35Cagetti (2003) argues that younger households should be dropped since educational choice is not modeled.
Also, he drops singles, since they include a large number of single mothers whose saving behavior is influenced by
welfare.

36Please refer to the archive code for details of how these after-tax measures of P are constructed.
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