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The Basic Problem at Date t

max Et

[
T−t∑
n=0

βnu(ccct+n)

]
, (1)

yyy t = ppptθt (2)

Rt = R - constant interest factor = 1 + r

pppt+1 = Γt+1pppt - permanent labor income dynamics (3)

log θ ∼ N (−σ2
θ/2, σ2

θ) - lognormally distributed transitory shocks.
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Bellman Equation

vt(mmmt ,pppt) = max
ccct

u(ccct) + Et [βvt+1(mmmt+1,pppt+1)] (4)

mmm − ‘market resources’ (net worth plus current income)

ppp − permanent labor income
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Trick: Normalize the Problem

vt(mt) = max
ct

u(ct) + Et [βΓ1−ρ
t+1vt+1(mt+1)] (5)

s.t.

at = mt − ct

mt+1 = (R/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1

where nonbold variables are bold ones normalized by ppp:

mt = mmmt/pppt (6)

Yields ct(m) from which we can obtain

ccct(mmmt ,pppt) = ct(mmmt/pppt)pppt (7)
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When Doesn’t Normalization Work?

Non-CRRA utility

Non-Friedman income process (transitory/permanent)

ARMA(1,1)
But micro evidence is consistent with Friedman
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Trick: View Everything from End of Period

Define

vt(at) = Et [βΓ1−ρ
t+1vt+1(Rt+1at + θt+1)] (8)

so

vt(mt) = max
ct

u(ct) + vt(mt − ct) (9)

with FOC

u′(ct) = v′t(mt − ct). (10)

and Envelope relation

u′(ct) = v′t(mt) (11)
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Trick: Discretize the Risks

E.g. use an equiprobable 7-point distribution:

¬ E@Θ È Ûn-2
-1 < Θ < Ûn-1

-1 D

E@Θ È 0 < Θ < Û-1
-1D®

Û 1
-1 Ûn-1

-1
Θ0.

Û1

Ûn-1

1.
F
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Trick: Discretize the Risks

v′t(at) = βRΓ−ρt+1

(
1

n

) n∑
i=1

u′ (ct+1(Rt+1at + θi )) (12)

So for any particular mT−1 the corresponding cT−1 can be found
using the FOC:

u′(ct) = v′t(mt − ct). (13)
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Trick: Interpolate a Consumption Rule

1 Define a grid of points ~m (indexed m[i ])
2 Use numerical rootfinder to solve u′(c) = v′t(m[i ]− c)

The c that solves this becomes c[i ]

3 Construct interpolating function c̀ by linear interpolation

‘Connect-the-dots’
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Trick: Interpolate a Consumption Rule

Example: ~mT−1 = {0., 1., 2., 3., 4.} (solid is ‘correct’ soln)

1 2 3 4
mT-1

0.5

1.0

1.5

2.0

cT-1
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Problem: Numerical Rootfinding is Slow

Numerical search for optimal values of cT−1 corresponding to, say,
5 gridpoints of ~mT−1 may require hundreds of evaluations of

v′T−1(

aT−1︷ ︸︸ ︷
mT−1 − cT−1) = βTΓ1−ρ

T

(
1

n

) n∑
i=1

(RTaT−1 + θi )
1−ρ

1− ρ
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Solution: The Method of Endogenous Gridpoints

Define vector of end-of-period asset values ~a

For each a[j ] compute v′t(a[j ])

Each of these v′t [j ] corresponds to a unique c[j ] via FOC:

c[j ]−ρ = v′t(a[j ]) (14)

c[j ] =
(
v′t(a[j ])

)−1/ρ
(15)

But the DBC says

at = mt − ct (16)

m[j ] = a[j ] + c[j ] (17)

So computing v′t at a vector of ~a values has produced for us the
corresponding ~c and ~m values at virtually no cost!

From these we can interpolate as before to construct c̀t(m).
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Why Approximating vt is a Bad Idea

Principles of Approximation

Hard to approximate things that approach ∞ for relevant m

Not a prob for Rep Agent models: ‘relevant’ m’s are ≈ SS

Hard to approximate things that are highly nonlinear
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Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

ct(mt) = (bt + ht)κt (18)

for bank balances b and human wealth h.

This is why it’s a good idea to approximate ct

Bonus: Easy to debug programs by setting σ2 = 0 and testing
whether numerical solution matches analytical!
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But What if You Need the Value Function?

Perfect foresight value function:

v̄t(mt) = u(ct)CT
t (19)

which can be transformed as

Λ̄t(mt) = ((1− ρ)v̄t)
1/(1−ρ)

= c̄t(mt)(CT
t )1/(1−ρ)

which is linear.

If you need the value function, approximate the inverted value
function to generate Λ̀t and then obtain your approximation from

v̀t = u(Λ̀t) (20)
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Imposing ‘Artificial’ Borrowing Constraints

vT−1(mT−1) = max
cT−1

u(cT−1) + ET−1[βΓ1−ρ
T vT (mT )]

s.t.

aT−1 = mT−1 − cT−1

mT = RTaT−1 + θT

aT−1 ≥ 0.

Define c̀∗t as soln to unconstrained problem. Then

c̀T−1(mT−1) = min[mT−1, c̀
∗
T−1(mT−1)]. (21)
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Imposing ‘Artificial’ Borrowing Constraints

Point where constraint makes transition from binding to not is

u′(m#
T−1) = v′T−1(0.)

m#
T−1 =

(
v′T−1(0.)

)−1/ρ

Procedure is very easy:

Above m#
T−1, c̀T−1(m) obtained as before

Below m#
T−1, c̀T−1(m) = m
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Imposing ‘Artificial’ Borrowing Constraints

1 2 3 4
mT-1

0.5

1.0

1.5

2.0

cT-1

Figure: Constrained (solid) and Unconstrained (dashed) Consumption
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Recursion: Period t Solution Given Period t + 1

1 Construct

ct,i =
(
v′t(at,i )

)−1/ρ
, (22)

=
(
βEt

[
RΓ−ρt+1(c̀t+1(Rt+1at,i + θt+1))−ρ

])−1/ρ
,(23)

2 Call the result ~ct and generate the corresponding ~mt = ~ct +~at
3 Interpolate to create c̀t(m)
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Consumption Rules c̀T−n Converge

m

c T-nHmL

Figure: Converging c̀T−n(m) Functions for n = {1, 5, 10, 15, 20}
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Portfolio Choice

Now the consumer has a choice between a risky and a safe asset.
The portfolio return is

RRRt+1 = R(1− ςt) + Rt+1ςt (24)

= R + (Rt+1 − R)ςt (25)

so (setting Γ = 1) the maximization problem is

vt(mt) = max
{ct ,ςt}

u(ct) + βEt [vt+1(mt+1)]

s.t.

RRRt+1 = R + (Rt+1 − R)ςt

mt+1 = (mt − ct)RRRt+1 + θt+1

0 ≤ ςt ≤ 1,



Introduction The Problem Tricks Multiple Control Variables The Infinite Horizon Structural Estimation References

Portfolio Choice

The FOC with respect to ct now yields an Euler equation

u′(ct) = Et [βRRRt+1u
′(ct+1)]. (26)

while the FOC with respect to the portfolio share yields

0 = Et [v
′
t+1(mt+1)(Rt+1 − R)at ]

= atEt

[
u′ (ct+1(mt+1)) (Rt+1 − R)

]
. (27)
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Convergence

When the problem satisfies certain conditions (Carroll (2011)), it
defines a ‘converged’ consumption rule with a ‘target’ ratio m̌ that
satisfies:

Et [mt+1/mt ] = 1 if mt = m̌ (28)

Define the target m implied by the consumption rule ct as m̌t .

Then a plausible metric for convergence is to define some value ε
and to declare the solution to have converged when

|m̌t+1 − m̌t | < ε (29)
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Life Cycle Maximization Problem

vt(mt) = max
ct

{
u(ct) + i��Dt+1β̂t+1Et [(ψt+1Γt+1)1−ρvt+1(mt+1)]

}
s.t.

at = mt − ct

mt+1 = at

(
R

ψt+1Γt+1

)
︸ ︷︷ ︸

≡Rt+1

+θt+1

��Ds : probability of being alive (not dead) until age s given being alive at age s − 1

β̂s : time-varying discount factor between age s − 1 and s

Ψs : mean-one shock to permanent income

i : time-invariant discount factor
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Details follow Cagetti (2003)

Parameterization of Uncertainty

Probability of Death

Demographic Adjustments to β
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Empirical Wealth Profiles

26-30 26-30 36-40 41-45 46-50 51-55 56-60
Age

2

4

6

8

10

Figure: m from SCF (means (dashed) and medians (solid))
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Simulated Moments

Given a set of parameter values {ρ,i}:
Start at age 25 with empirical m data

Draw shocks using calibrated σ2
ψ,σ2

θ

Consume according to solved ct

⇒ m distribution by age
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Choose What to Simulate

GapEmpiricalSimulatedMedians[ρ,i]:=

[ ConstructcFuncLife[ρ,i];

Simulate;
N∑
i

ωi |ςτi − sτ (ξ)|

];
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Calculate Match Between Theory and Data

ξ = {ρ,i} (30)

solve

min
ξ

N∑
i

ωi |ςτi − sτ (ξ)| (31)
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Bootstrap Standard Errors (Horowitz (2001))

Yields estimates of

Table: Estimation Results

ρ i
4.68 1.00

(0.13) (0.00)
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Contour Plot
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Figure: Point Estimate and Height of Minimized Function
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