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1 Introduction

When the future is unavoidably uncertain, calculating the optimal
amount to save is formidably difficult under realistic assumptions about
the nature of risk and attitudes to risk. To avoid having to solve this
problem, economists have shown impressive ingenuity in reformulating
the question. Budding graduate students are exposed (often with little
motivation) to a host of tricks: Quadratic or Constant Absolute Risk
Aversion utility, perfect markets, perfect insurance, perfect foresight,
the “timeless” perspective, the restriction of uncertainty to very special
kinds,1 and more.
Explicit or not, the motivation is always to exchange an intractable

general problem for a tractable specific alternative. But the burgeoning
literature on numerical solutions has shown that the features that yield
tractability also profoundly change the solution. A critic might say
that the “tricks” are excuses to solve a problem that has defined away
the central difficulty: Understanding the proper role of uncertainty in
optimal choice under uncertainty.
Fortunately, the temptation to use such tricks is waning, thanks to

advances in mathematical analysis, increasing computing power, and the
growing capabilities of numerical computation software. Together, these
tools permit today’s laptop computers to solve the kinds of plausible
problems that required supercomputers a decade ago (and, before that,
could not be solved at all).
These lecture notes provide a gentle introduction to a particular set

of such tools and show how they can be used to solve some canonical
problems in consumption choice and portfolio allocation. Specifically,
the notes describe and solve optimization problems for a consumer fac-
ing uninsurable idiosyncratic risk to nonfinancial income (e.g., labor or
transfer income),2 with detailed intuitive discussion of the various mathe-
matical and computational techniques that, together, speed the solution
by many orders of magnitude compared to “brute force” methods. The
problem is solved with and without liquidity constraints, and the infinite

1E.g., lognormally distributed rate-of-return risk – but no labor income risk – under CRRA utility (the Merton
(1969)-Samuelson (1969) model).

2Expenditure shocks (such as for medical needs, or to repair a broken automobile) are usually treated in a
manner similar to labor income shocks. See Merton (1969) and Samuelson (1969) for a solution to the problem
of a consumer whose only risk is rate-of-return risk on a financial asset; the combined case (both financial and
nonfinancial risk) is solved below, and much more closely resembles the case with only nonfinancial risk than it does
the case with only financial risk.
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horizon solution is obtained as the limit of the finite horizon solution.
After the basic consumption/saving problem with a deterministic in-
terest rate is described and solved, an extension with portfolio choice
between a riskless and a risky asset is also solved. Finally, a simple
example is presented of how to use these methods (via the statistical
‘method of simulated moments’ or MSM; sometimes called ‘simulated
method of moments’ or SMM) to estimate structural parameters like the
coefficient of relative risk aversion (a la Gourinchas and Parker (2002)
and Cagetti (2003)).

2 The Problem

We are interested in the behavior a consumer whose goal in period t is
to maximize discounted utility from consumption over the remainder of
a lifetime that ends in period T :

max Et

[
T−t∑
n=0

βnu(ccct+n)

]
, (1)

and whose circumstances evolve according to the transition equations3

aaat = mmmt − ccct (2)
bbbt+1 = aaatRt+1 (3)
yyyt+1 = pppt+1θt+1 (4)
mmmt+1 = bbbt+1 + yyyt+1 (5)

where

β − pure time discount factor
aaat − assets after all actions have been accomplished in period t

bbbt+1 − ‘bank balances’ (nonhuman wealth) at the beginning of t+ 1

ccct − consumption in period t
mmmt − ‘market resources’ available for consumption (‘cash-on-hand’)
pppt+1 − ‘permanent labor income’ in period t+ 1

Rt+1 − interest factor (1 + rt+1) from period t to t+ 1

yyyt+1 − noncapital income in period t+ 1.

3The usual analysis of dynamic programming problems combines these equations into a single expression;
here, they are disarticulated to highlight the important point that several distinct processes (intertemporal choice,
stochastic shocks, intertemporal returns, income growth) are involved in the transition from one period to the next.
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The exogenous variables evolve as follows:

Rt = R - constant interest factor = 1 + r

pppt+1 = Γt+1pppt - permanent labor income dynamics (6)
log θt+n ∼ N (−σ2

θ/2, σ
2
θ) - lognormal transitory shocks ∀ n > 0.

Using the fact about lognormally distributed variables ELogNorm4 that
if log Φ ∼ N (φ, σ2

φ) then logE[Φ] = φ+σ2
φ/2, assumption (7) guarantees

that logE[θ] = 0 which means that E[θ]=1 (the mean value of the
transitory shock is 1).
Equation (6) indicates that we are assuming that the average profile

of income growth over the lifetime {Γ}T0 is nonstochastic (allowing, for
example, for typical career wage paths).5

Finally, we assume that the utility function is of the Constant Relative
Risk Aversion (CRRA), form, u(•) = •1−ρ/(1− ρ).
As is well known, this problem can be rewritten in recursive (Bellman

equation) form

vt(mmmt, pppt) = max
ccct

u(ccct) + Et[βvt+1(mmmt+1, pppt+1)] (7)

subject to the Dynamic Budget Constraint (DBC) (2)-(5) given above,
where vt measures total expected discounted utility from behaving op-
timally now and henceforth.

3 Normalization

The single most powerful method for speeding the solution of dynamic
stochastic optimization models is to redefine the problem in a way that
reduces the number of state variables (if possible). In the consumption
problem under consideration here, the obvious idea is to see whether the
problem can be rewritten in terms of the ratio of various variables to
permanent noncapital (‘labor’) income pppt.

4This fact is referred to as ELogNorm in the handout MathFactsList, in the references as Carroll (Current);
further citation to facts in that handout will be referenced simply by the name used in the handout for the fact in
question, e.g. LogELogNorm is the name of the fact that implies that logE[θ] = 0.

5This equation assumes that there are no shocks to permanent income. A large literature finds that, in reality,
permanent (or at least extremely highly persistent) shocks exist and are quite large; such shocks therefore need to
be incorporated into any ‘serious’ model (that is, one that hopes to match and explain empirical data), but the
treatment of permanent shocks clutters the exposition without adding much to the intuition, so permanent shocks
are omitted from the analysis until the last section of the notes, which shows how to match the model with empirical
micro data. For a full treatment of the theory including permanent shocks, see Carroll (2011).
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In the last period of life, there is no future, vT+1 = 0, so the optimal
plan is to consume everything, implying that

vT (mmmT , pppT ) =
mmm1−ρ
T

1− ρ
. (8)

Now define nonbold variables as the bold variable divided by the level
of permanent income in the same period, so that, for example, mT =
mmmT/pppT ; and define vT (mT ) = u(mT ).6 For our CRRA utility function,
u(xy) = x1−ρu(y), so equation (8) can be rewritten as

vT (mmmT , pppT ) = ppp1−ρ
T

m1−ρ
T

1− ρ
= ppp1−ρ

T−1Γ
1−ρ
T

m1−ρ
T

1− ρ
= ppp1−ρ

T−1Γ
1−ρ
T vT (mT ).(9)

Now define a new optimization problem:

vt(mt) = max
ct

u(ct) + Et[βΓ1−ρ
t+1 vt+1(mt+1)] (10)

s.t.
at = mt − ct

mt+1 = (R/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1

The accumulation equation is the normalized version of the transition
equation for mmmt+1.7 Then it is easy to see that for t = T − 1,

vT−1(mmmT−1, pppT−1) = ppp1−ρ
T−1vT−1(mT−1) (11)

and so on back to all earlier periods. Hence, if we solve the problem
(10) which has only a single state variable (mt), we can obtain the levels
of the value function, consumption, and all other variables of interest
simply by multiplying the results by the appropriate function of pppt, e.g.
ct(mmmt, pppt) = ppptct(mmmt/pppt) or vt(mmmt, pppt) = ppp1−ρ

t vt(mt). We have thus
reduced the problem from two continuous state variables to one (and
thereby enormously simplified its solution).
For some problems it will not be obvious that there is an appropriate

‘normalizing’ variable, but many problems can be normalized if sufficient

6Nonbold value is bold value divided by ppp1−ρ rather than ppp.
7Derivation:

mmmt+1/pppt+1 = (mmmt − ccct)R/pppt+1 + yyyt+1/pppt+1

mt+1 =

(
mmmt

pppt
−
ccct

pppt

)
R
pppt

pppt+1
+
yyyt+1

pppt+1

= (mt − ct)︸ ︷︷ ︸
at

(R/Γt+1) + θt+1.
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thought is given. For example, Valencia (2006) shows how a bank’s
optimization problem can be normalized by the level of the bank’s
productivity.

4 The Usual Theory and A Bit More Notation

Dropping time subscripts on β to reduce clutter, the first order condition
for (10) with respect to ct is

u′(ct) = Et[βRt+1Γ
1−ρ
t+1 v′t+1(mt+1)]

= Et[βR Γ −ρ
t+1 v′t+1(mt+1)] (12)

and because the Envelope theorem tells us that

v′t(mt) = Et[βRΓ−ρt+1v
′
t+1(mt+1)] (13)

we can substitute the LHS of (13) for the RHS of (12) to get

u′(ct) = v′t(mt) (14)

and rolling this equation forward one period yields

u′(ct+1) = v′t+1(atRt+1 + θt+1) (15)

while substituting the LHS in equation (12) gives us the Euler equation
for consumption

u′(ct) = Et[βRΓ−ρt+1u
′(ct+1)]. (16)

Now note that in equation (15) neither mt nor ct has any direct effect
on vt+1 - only the difference between them (i.e. unconsumed market
resources or ‘assets’ at) matters. It is therefore possible (and will turn
out to be convenient) to define a function8

vt(at) = Et[βΓ1−ρ
t+1 vt+1(Rt+1at + θt+1)] (17)

that returns the expected t + 1 value associated with ending period t
with any given amount of assets. This definition implies that

v′t(at) = Et[βRΓ−ρt+1v
′
t+1(Rt+1at + θt+1)] (18)

or, substituting from equation (15),

v′t(at) = Et
[
βRΓ−ρt+1u

′ (ct+1(Rt+1at + θt+1))
]
. (19)

8The peculiar letter designating our new function is pronounced ‘Gothic v’. Letters in this font will be used for
end-of-period quantities.
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Finally, note for future use that the first order condition (12) can now
be rewritten as

u′(ct) = v′t(mt − ct). (20)

5 Solving the Next-to-Last Period

The problem in the second-to-last period of life is:

vT−1(mT−1) = max
cT−1

u(cT−1) + β ET−1

[
Γ1−ρ
T vT ((mT−1 − cT−1)RT + θT )

]
,

and using (1) the fact that vT = u(c); (2) the definition of u(c); (3)
the definition of the expectations operator, and (4) the fact that ΓT is
nonstochastic, this becomes

vT−1(mT−1) = max
cT−1

c1−ρ
T−1

1− ρ
+ βΓ1−ρ

T

∫ ∞
0

((mT−1 − cT−1)RT + θ)1−ρ

1− ρ
dF(θ)

where F is the cumulative distribution function for θ.
In principle, the maximization implicitly defines a function

cT−1(mT−1) that yields optimal consumption in period T − 1 for
any given level of resources mT−1. Unfortunately, however, there is
no analytical solution to this maximization problem, and so for any
given mT−1 we must use numerical computational tools to find the cT−1

that maximizes the expression. This is excruciatingly slow because for
every potential cT−1 to be considered, the integral must be calculated
numerically, and numerical integration is very slow.

5.1 Discretizing the Distribution

Our first time-saving step is therefore to construct a discrete approxima-
tion to the lognormal distribution that can be used in place of numerical
integration. We calculate an n-point approximation as follows.
Define a set of points from ]0 to ]n on the [0, 1] interval as the elements

of the set ] = {0, 1/n, 2/n, . . . , 1}.9 Call the inverse of the θ distribution
F−1, and define the points ]−1

i = F−1(]i). Then the conditional mean
of θ in each of the intervals numbered 1 to n is:

θi ≡ E[θ|]−1
i−1 ≤ θ < ]−1

i ] =

∫ ]−1
i

]−1
i−1

ϑ dF (ϑ). (21)

9These points define intervals that constitute a partition of the domain of F .
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Figure 1 Discrete Approximation to Lognormal Distribution F

The method is illustrated in Figure 1. The solid continuous curve
represents the “true” CDF F (θ) for a lognormal distribution such that
E[θ] = 1, σθ = 0.1. The short vertical line segments represent the n
equiprobable values of θi which are used to approximate this distribu-
tion.10

Recalling our definition of vt(at), for t = T − 1

vT−1(aT−1) = βΓ1−ρ
T

(
1

n

) n∑
i=1

(RTaT−1 + θi)
1−ρ

1− ρ
(22)

so we can rewrite the maximization problem as

vT−1(mT−1) = max
cT−1

{
c1−ρ
T−1

1− ρ
+ vT−1(mT−1 − cT−1)

}
. (23)

5.2 The Approximate Consumption and Value Functions

Given a particular value of mT−1, a numerical maximization routine
can now find the cT−1 that maximizes (23) in a reasonable amount of
time. The Mathematica program that solves exactly this problem called
2period.m. (The archive also contains parallel Matlab programs, but

10More sophisticated approximation methods exist (e.g. Gauss-Hermite quadrature; see Kopecky and Suen (2010)
for a discussion of other alternatives), but the method described here is easy to understand, quick to calculate, and
has additional advantages briefly described in the discussion of simulation below.
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these notes will dwell on the specifics of the Mathematica implementa-
tion, which is superior in many respects.)
The first thing 2period.m does is to read in the file functions.m

which contains definitions of the consumption and value functions;
functions.m also defines the function SolveAnotherPeriod which,
given the existence in memory of a solution for period t + 1, solves for
period t.
The next step is to run the programs setup_params.m, setup_grids.m,

setup_shocks.m, respectively. setup_params.m sets values for
the parameter values like the coefficient of relative risk aversion.
setup_shocks.m calculates the values for the θi defined above (and
puts those values, and the (identical) probability associated with each of
them, in the vector variables θVals and θProb). Finally, setup_grids.m
constructs a list of potential values of cash-on-hand and saving, then
puts them in the vector variables mVec = aVec = {0, 1, 2, 3, 4}
respectively. Then 2period.m runs the program setup_lastperiod.m
which defines the elements necessary to determine behavior in the last
period, in which cT (m) = m and vT (m) = u(m).
After all the setup, the only remaining step in 2period.m is to in-

voke SolveAnotherPeriod, which constructs the solution for period
T − 1 given the presence of the solution for period T (constructed by
setup_lastperiod.m).
Because we will always be comparing our solution to the perfect fore-

sight solution, we also construct the variables required to characterize
the perfect foresight consumption function in periods prior to T . In
particular, we construct the list yExpPDV (which contains the PDV
of expected income – ‘expected human wealth’), and yMinPDV which
contains the minimum possible discounted value of future income at the
beginning of period T − 1 (‘minimum human wealth’).11

The perfect foresight consumption function is also constructed
(setup_PerfectForesightSolution.m). This program uses the fact
that, in Mathematica, functions can be saved as objects using the
commands # and &. The # denotes the argument of the function,
while the &, placed at the end of the function, tells Mathematica that
the function should be saved as an object. In the program, the last
period perfect foresight consumption function is saved as an element

11This is useful in determining the search range for the optimal level of consumption in the maximization
problem.
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in the list cz = {(# - 1 + Last[yExpPDV]) Last[κMin] &}, where
Last[yExpPDV] gives the just-constructed PDV of human wealth at the
beginning of T (equal to 1, since current income is included in hT ), and
Last[κMin] gives the perfect foresight marginal propensity to consume
(equal to 1, since it is optimal to spend all resources in the last period).
Since # in the code stands in for what was called m in the model,
the discounted total wealth is decomposed into discounted non-human
wealth # - 1 and discounted human wealth Last[yExpPDV]. The
resulting formula then corresponds to c̄T = (mT − 1 + hT )κT , which
translates to c̄T = mT for hT = κT = 1.
The infinite horizon perfect foresight marginal propensity to save

λ = (1/R)(Rβ)1/ρ (24)

is also defined because it will be useful in a number of derivations.12

The program then constructs behavior for one iteration back from the
last period of life by using the function AddNewPeriodToParamLifeDates.
Using theMathematica command AppendTo, various existing lists (which
characterized the solution for period T ) are redefined to include an
additional element representing the relevant formulas in the second
to last period of life. For example, κMin now has two elements. The
second element, given by 1/(1 + Last[λ]/Last[κMin]), is the perfect
foresight marginal propensity to consume in t = T − 1.13

Next, the program defines a function v[at_] (in functions_stable.m)
which is the exact implementation of (17): It returns the expectation of
the value of behaving optimally in period T given any specific amount
of assets at the end of T − 1, aT−1.
The heart of the program is the next expression (in functions.m).

This expression loops over the values of the variable mVec, solving the
maximization problem (given in equation (23)):

max
c

u[c] + v[mVec[[i]]-c] (25)

for each of the i values of mVec (henceforth let’s call these pointsmT−1,i).
The maximization routine returns two values: the maximized value, and
the value of c which yields that maximized value. When the loop (the
Table command) is finished, the variable vAndcList contains two lists,

12Detailed discussion can be found in Carroll (2011).
13A proof given in Carroll (2011) shows that this is also a recurring formula that extends inductively to earlier

periods.

11



one with the values vT−1,i and the other with the consumption levels
cT−1,i associated with the mT−1,i.

5.3 An Interpolated Consumption Function

Now we use the first of the really convenient built-in features of Math-
ematica. Given a set of points on a function (in this case, the consump-
tion function cT−1(m)), Mathematica can create an object called an
InterpolatingFunction which when applied to an input m will yield
the value of c that corresponds to a linear interpolation of the value of c
from the points in the InterpolatingFunction object. We can there-
fore define an approximation to the consumption function c̀T−1(mT−1)
which, when called with an mT−1 that is equal to one of the points in
mVec[[i]] returns the associated value of cT−1,i, and when called with
a value of mT−1 that is not exactly equal to one of the mVec[[i]],
returns the value of c that reflects a linear interpolation between the
cT−1,i associated with the two mVec[[i]] points nearest to mT−1. Thus
if the function is called with mT−1 = 1.75 and the nearest gridpoints
are mj,T−1 = 1 and mk,T−1 = 2 then the value of cT−1 returned by the
function would be (0.25cj,T−1 + 0.75ck,T−1). We can define a numerical
approximation to the value function v̀T−1(mT−1) in an exactly analogous
way.
Figures 2 and 3 show plots of the c̀T−1 and v̀T−1 InterpolatingFunctions

that are generated by the program 2PeriodInt.m. While the c̀T−1

function looks very smooth, the fact that the v̀T−1 function is a set of
line segments is very evident. This figure provides the beginning of the
intuition for why trying to approximate the value function directly is a
bad idea (in this context).14

5.4 Interpolating Expectations

2period.m works well in the sense that it generates a good approxima-
tion to the true optimal consumption function. However, there is a clear
inefficiency in the program: Since it uses equation (23), for every value
of mT−1 the program must calculate the utility consequences of various
possible choices of cT−1 as it searches for the best choice. But for any

14For some problems, especially ones with discrete choices, value function approximation is unavoidable;
nevertheless, even in such problems, the techniques sketched below can be very useful across much of the range
over which the problem is defined.
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given value of aT−1, there is a good chance that the program may end
up calculating the corresponding v many times while maximizing utility
from different mT−1’s. For example, it is possible that the program will
calculate the value of ending the period with aT−1 = 0 dozens of times. It
would be much more efficient if the program could make that calculation
once and then merely recall the value when it is needed again.
This can be achieved using the same interpolation technique used

above to construct a direct numerical approximation to the value func-
tion: Define a grid of possible values for saving at time T − 1, ~aT−1

(aVec in setup_grids.m), designating the specific points aT−1,i; for
each of these values of aT−1,i, calculate the vector ~vT−1 as the collection
of points vT−1,i = vT−1(aT−1,i) using equation (17); then construct an
InterpolatingFunction object v̀T−1(aT−1) from the list of points on
the function captured in the ~aT−1 and ~vT−1 vectors.
Thus, we are now interpolating for the function that reveals the ex-

pected value of ending the period with a given amount of assets.15 The
program 2periodIntExp.m solves this problem. Figure 4 compares the
true value function to the InterpolatingFunction approximation; the
functions are of course identical at the gridpoints chosen for aT−1 and
they appear reasonably close except in the region below mT−1 = 1.
Nevertheless, the resulting consumption rule obtained when

v̀T−1(aT−1) is used instead of vT−1(aT−1) is surprisingly bad, as
shown in figure 5. For example, when mT−1 goes from 2 to 3, c̀T−1

goes from about 1 to about 2, yet when mT−1 goes from 3 to 4, c̀T−1

goes from about 2 to about 2.05. The function fails even to be strictly
concave, which is distressing because Carroll and Kimball (1996) prove
that the correct consumption function is strictly concave in a wide class
of problems that includes this problem.

5.5 Value Function versus First Order Condition

Loosely speaking, our difficulty is caused by the fact that the consump-
tion choice is governed by the marginal value function, not by the level of
the value function (which is what we approximated). To see this, recall
that a quadratic utility function exhibits risk aversion because with a

15What we are doing here is closely related to ‘the method of parameterized expectations’ of den Haan and
Marcet (1990); the only difference is that our method is essentially a nonparametric version.
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Figure 4 End-Of-Period Value vT−1(aT−1) (solid) versus v̀T−1(aT−1) (dashed)

1 2 3 4
mT-1

0.5

1.0

1.5

2.0

cT-1
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15



0 1 2 3 4
cT-10.0

0.2

0.4

0.6

0.8
vT-1

' HmT-1-cT-1L,u'HcT-1L

Figure 6 u′(c) versus v′T−1(3− c), v′T−1(4− c), v̀′T−1(3− c), v̀′T−1(4− c)

stochastic c,

E[−(c− �c)
2] < −(E[c]− �c)

2 (26)

where �c is the ‘bliss point’. However, unlike the CRRA utility function,
with quadratic utility the consumption/saving behavior of consumers is
unaffected by risk since behavior is determined by the first order condi-
tion, which depends on marginal utility, and when utility is quadratic,
marginal utility is unaffected by risk:

E[−2(c− �c)] = −2(E[c]− �c). (27)

Intuitively, if one’s goal is to accurately capture choices that are gov-
erned by marginal value, numerical techniques that approximate the
marginal value function will lead to a more accurate approximation to
optimal behavior than techniques that approximate the level of the value
function.
The first order condition of the maximization problem in period T −1

is:

u′(cT−1) = β ET−1[Γ
−ρ
T Ru′(cT )] (28)

c−ρT−1 = Rβ

(
1

n

) n∑
i=1

Γ−ρT (R(mT−1 − cT−1) + θi)
−ρ . (29)
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The downward-sloping curve in Figure 6 shows the value of c−ρT−1 for
our baseline parameter values for 0 ≤ cT−1 ≤ 4 (the horizontal axis).
The solid upward-sloping curve shows the value of the RHS of (29) as
a function of cT−1 under the assumption that mT−1 = 3. Constructing
this figure is rather time-consuming, because for every value of cT−1

plotted we must calculate the RHS of (29). The value of cT−1 for which
the RHS and LHS of (29) are equal is the optimal level of consumption
given that mT−1 = 3, so the intersection of the downward-sloping and
the upward-sloping curves gives the optimal value of cT−1. As we can
see, the two curves intersect just below cT−1 = 2. Similarly, the upward-
sloping dashed curve shows the expected value of the RHS of (29) under
the assumption that mT−1 = 4, and the intersection of this curve with
u′(cT−1) yields the optimal level of consumption if mT−1 = 4. These
two curves intersect slightly below cT−1 = 2.5. Thus, increasing mT−1

from 3 to 4 increases optimal consumption by about 0.5.
Now consider the derivative of our function v̀T−1(aT−1). Because we

have constructed v̀T−1 as a linear interpolation, the slope of v̀T−1(aT−1)
between any two adjacent points {aT−1,i, ai+1,T−1} is constant. The level
of the slope immediately below any particular gridpoint is different, of
course, from the slope above that gridpoint, a fact which implies that
the derivative of v̀T−1(aT−1) follows a step function.
The solid-line step function in Figure 6 depicts the actual value of

v̀′T−1(3− cT−1). When we attempt to find optimal values of cT−1 given
mT−1 using v̀T−1(aT−1), the numerical optimization routine will return
the cT−1 for which u′(cT−1) = v̀′T−1(mT−1 − cT−1). Thus, for mT−1 = 3
the program will return the value of cT−1 for which the downward-sloping
u′(cT−1) curve intersects with the v̀′T−1(3−cT−1); as the diagram shows,
this value is exactly equal to 2. Similarly, if we ask the routine to
find the optimal cT−1 for mT−1 = 4, it finds the point of intersection of
u′(cT−1) with v̀′T−1(4−cT−1); and as the diagram shows, this intersection
is only slightly above 2. Hence, this figure illustrates why the numerical
consumption function plotted earlier returned values very close to cT−1 =
2 for both mT−1 = 3 and mT−1 = 4.
We would obviously obtain much better estimates of the point of

intersection between u′(cT−1) and v′T−1(mT−1− cT−1) if our estimate of
v̀′T−1 were not a step function. In fact, we already know how to construct
linear interpolations to functions, so the obvious next step is to construct

17
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Figure 7 v′T−1(aT−1) versus v̀′T−1(aT−1)

a linear interpolating approximation to the expected marginal value of
end-of-period assets function v′. That is, we calculate

v′T−1(aT−1) = βRΓ−ρT

(
1

n

) n∑
i=1

(RTaT−1 + θi)
−ρ (30)

at the points in aVec yielding {{aT−1,1, v
′
T−1,1}, {aT−1,2, v

′
T−1,2} . . .} and

construct v̀′T−1(aT−1) as the linear interpolating function that fits this
set of points.
The program file functionsIntExpFOC.m therefore uses the function

va[at_] defined in functions_stable.m as the embodiment of equa-
tion (30), and constructs the InterpolatingFunction as described
above. The results are shown in Figure 7. The linear interpolating
approximation looks roughly as good (or bad) for the marginal value
function as it was for the level of the value function. However, Figure 8
shows that the new consumption function (long dashes) is a considerably
better approximation of the true consumption function (solid) than was
the consumption function obtained by approximating the level of the
value function (short dashes).
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Figure 8 cT−1(mT−1) (solid) Versus Two Methods for Constructing c̀T−1(mT−1)

5.6 Transformation

However, even the new-and-improved consumption function diverges
appallingly from the true solution, especially at lower values of m. That
is because the linear interpolation does an increasingly poor job of
capturing the nonlinearity of v′T−1(aT−1) at lower and lower levels of
a.
This is where we unveil our next trick. To understand the logic, start

by considering the case where RT = β = ΓT = 1 and there is no
uncertainty (that is, we know for sure that income next period will be
θT = 1). The final Euler equation is then:

c−ρT−1 = c−ρT . (31)

In the case we are now considering with no uncertainty and no liquidity
constraints, the optimizing consumer does not care whether a unit of
income is scheduled to be received in the future period T or the current
period T − 1; there is perfect certainty that the income will be received,
so the consumer treats it as equivalent to a unit of current wealth. Total
resources therefore are comprised of two types: current market resources
mT−1 and ‘human wealth’ (the PDV of future income) of hT−1 = 1
(where we use the Gothic font to signify that this is the expectation,
as of the END of the period, of the income that will be received in
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future periods; it does not include current income, which has already
been incorporated into mT−1).
The optimal solution is to spend half of total lifetime resources in

period T − 1 and the remainder in period T . Since total resources
are known with certainty to be mT−1 + hT−1 = mT−1 + 1, and since
v′T−1(mT−1) = u′(cT−1) this implies that

v′T−1(mT−1) =

(
mT−1 + 1

2

)−ρ
. (32)

Of course, this is a highly nonlinear function. However, if we raise both
sides of (32) to the power (−1/ρ) the result is a linear function:

[v′T−1(mT−1)]
−1/ρ =

mT−1 + 1

2
. (33)

This is a specific example of a general phenomenon: A theoretical liter-
ature cited in Carroll and Kimball (1996) establishes that under perfect
certainty, if the period-by-period marginal utility function is of the form
c−ρt , the marginal value function will be of the form (γmt + ζ)−ρ for
some constants {γ, ζ}. This means that if we were solving the perfect
foresight problem numerically, we could always calculate a numerically
exact (because linear) interpolation. To put this in intuitive terms, the
problem we are facing is that the marginal value function is highly non-
linear. But we have a compelling solution to that problem, because the
nonlinearity springs largely from the fact that we are raising something
to the power −ρ. In effect, we can ‘unwind’ all of the nonlinearity owing
to that operation and the remaining nonlinearity will not be nearly so
great. Specifically, applying the foregoing insights to the end-of-period
value function vT−1, we can define

cT−1(aT−1) ≡ [v′T−1(aT−1)]
−1/ρ (34)

which would be linear in the perfect foresight case. Thus, our procedure
is to calculate the values of cT−1,i at each of the aT−1,i gridpoints,
with the idea that we will construct c̀T−1 as the interpolating function
connecting these points.
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5.7 The Self-Imposed ‘Natural’ Borrowing Constraint and the aT−1

Lower Bound

This is the appropriate moment to ask an awkward question that we
have neglected until now: How should a function like c̀T−1 be evaluated
outside the range of points spanned by {aT−1,1, ..., aT−1,n} for which we
have calculated the corresponding cT−1,i gridpoints used to produce our
linearly interpolating approximation c̀T−1 (as described in section 5.3)?
The natural answer would seem to be linear extrapolation; for exam-

ple, we could use

c̀T−1(aT−1) = c̀T−1(aT−1,1) + c̀′T−1(aT−1,1)(aT−1 − aT−1,1) (35)

for values of aT−1 < aT−1,1. Unfortunately, this approach will lead
us into difficulties. To see why, consider what happens to the true (not
approximated) vT−1(aT−1) as aT−1 approaches the value aT−1 = −θR−1

T .
From (30) we have

lim
aT−1↓aT−1

v′T−1(aT−1) = lim
aT−1↓aT−1

βRΓ−ρT

(
1

n

) n∑
i=1

(aT−1RT + θi)
−ρ .(36)

But since θ = θ1, exactly at aT−1 = aT−1 the first term in the summa-
tion would be (−θ+θ1)

−ρ = 1/0ρ which is infinity. The reason is simple:
−aT−1 is the PDV, as of T − 1, of the minimum possible realization of
income in period T (RTaT−1 = −θ1). Thus, if the consumer borrows an
amount greater than or equal to θR−1

T (that is, if the consumer ends T−1
with aT−1 ≤ −θR−1

T ) and then draws the worst possible income shock
in period T , he will have to consume zero in period T (or a negative
amount), which yields −∞ utility and∞ marginal utility (or undefined
utility and marginal utility).
These reflections lead us to the conclusion that the consumer faces

a ‘self-imposed’ liquidity constraint (which results from the precaution-
ary motive): He will never borrow an amount greater than or equal
to θR−1

T (that is, assets will never reach the lower bound of aT−1).16

The constraint is ‘self-imposed’ in the sense that if the utility function
were different (say, Constant Absolute Risk Aversion), the consumer
would be willing to borrow more than θR−1

T because a choice of zero
or negative consumption in period T would yield some finite amount of
utility (though it is very unclear what a proper economic interpretation

16Another term for a constraint of this kind is the ‘natural borrowing constraint.’
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of negative consumption might be – this is an important reason why
CARA utility, like quadratic utility, is increasingly not used for serious
quantitative work, though it is still useful for teaching purposes).
This self-imposed constraint cannot be captured well when the v′T−1

function is approximated by a piecewise linear function like v̀′T−1, be-
cause a linear approximation can never reach the correct gridpoint for
v′T−1(aT−1) =∞. To see what will happen instead, note first that if we
are approximating v′T−1 the smallest value in aVec must be greater than
aT−1 (because the expectation for any gridpoint ≤ aT−1 is undefined).
Then when the approximating v′T−1 function is evaluated at some value
less than the first element in aVec[1], the approximating function will
linearly extrapolate the slope that characterized the lowest segment of
the piecewise linear approximation (between aVec[1] and aVec[2]), a
procedure that will return a positive finite number, even if the requested
aT−1 point is below aT−1. This means that the precautionary saving
motive is understated, and by an arbitrarily large amount as the level
of assets approaches its true theoretical minimum aT−1.
The foregoing logic demonstrates that the marginal value of saving

approaches infinity as aT−1 ↓ aT−1 = −θR−1
T . But this implies that

limaT−1↓aT−1
cT−1(aT−1) = (v′T−1(aT−1))

−1/ρ = 0; that is, as a approaches
its minimum possible value, the corresponding amount of c must ap-
proach its minimum possible value: zero.
The upshot of this discussion is a realization that all we need

to do is to augment each of the ~aT−1 and ~cT−1 vectors with an
extra point so that the first element in the list used to produce our
InterpolatingFunction is {aT−1,0, cT−1,0} = {aT−1, 0.}.
Figure 9 plots the results (generated by the program 2periodIntExpFOCInv.m).

The solid line calculates the exact numerical value of cT−1(aT−1) while
the dashed line is the linear interpolating approximation c̀T−1(aT−1).
This figure well illustrates the value of the transformation: The true
function is close to linear, and so the linear approximation is almost
indistinguishable from the true function except at the very lowest values
of aT−1.
Figure 10 similarly shows that when we calculate `̀v′T−1(aT−1) as

[̀cT−1(aT−1)]
−ρ (dashed line) we obtain a much closer approximation to

the true function v′T−1(aT−1) (solid line) than we did in the previous
program which did not do the transformation (Figure 7).
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Figure 9 cT−1(aT−1) versus c̀T−1(aT−1)
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Figure 10 v′T−1(aT−1) vs. `̀v′T−1(aT−1) Constructed Using c̀T−1(aT−1)
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5.8 The Method of Endogenous Gridpoints

Our solution procedure for cT−1 still requires us, for each point in ~mT−1

(mVect in the code), to use a numerical rootfinding algorithm to search
for the value of cT−1 that solves u′(cT−1) = v′T−1(mT−1 − cT−1). Unfor-
tunately, rootfinding is a notoriously slow operation.
Fortunately, our next trick lets us completely skip this computationally

burdensome step. The method can be understood by noting that any
arbitrary value of aT−1,i (greater than its lower bound value aT−1) will
be associated with some marginal valuation as of the end of period T−1,
and the further observation that it is trivial to find the value of c that
yields the same marginal valuation, using the first order condition,

u′(cT−1,i) = v′T−1(aT−1,i) (37)
cT−1,i = u′−1(v′T−1(aT−1,i)) (38)

= (v′T−1(aT−1,i))
−1/ρ (39)

≡ cT−1(aT−1,i) (40)
≡ cT−1,i. (41)

But with mutually consistent values of cT−1,i and aT−1,i (consistent,
in the sense that they are the unique optimal values that correspond to
the solution to the problem in a single state), we can obtain the mT−1,i

that corresponds to both of them from

mT−1,i = cT−1,i + aT−1,i. (42)

These mT−1 gridpoints are “endogenous” in contrast to the usual solu-
tion method of specifying some ex-ante grid of values of mT−1 and then
using a rootfinding routine to locate the corresponding optimal cT−1.
Thus, we can generate a set of mT−1,i and cT−1,i pairs that can be

interpolated between in order to yield c̀(mT−1) at virtually zero compu-
tational cost once we have the ~cT−1 values in hand!17 One might worry
about whether the {m, c} points obtained in this way will provide a good
representation of the consumption function as a whole, but in practice
there are good reasons why they work well (basically, this procedure gen-
erates a set of gridpoints that is naturally dense right around the parts of
the function with the greatest nonlinearity). Figure 11 plots the actual
consumption function cT−1 and the approximated consumption function
c̀T−1 derived by the method of endogenous grid points. Compared to

17This is the essential point of Carroll (2006).
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Figure 11 cT−1(mT−1) (solid) versus c̀T−1(mT−1) (dashed)

the approximate consumption functions illustrated in Figure 8 c̀T−1 is
quite close to the actual consumption function.

5.9 Improving the a Grid

Thus far, we have arbitrarily used a gridpoints of {0., 1., 2., 3., 4.} (aug-
mented in the last subsection by aT−1). But it has been obvious from the
figures that the approximated c̀T−1 function tends to be farthest from
its true value cT−1 at low values of a. Combining this with our insight
that aT−1 is a lower bound, we are now in position to define a more
deliberate method for constructing gridpoints for aT−1 – a method that
yields values that are more densely spaced than the uniform grid at low
values of a. A pragmatic choice that works well is to find the values such
that (1) the last value exceeds the lower bound by the same amount āT−1

as our original maximum gridpoint (in our case, 4.); (2) we have the same
number of gridpoints as before; and (3) themulti-exponential growth rate
(that is, eee

...

for some number of exponentiations n) from each point to
the next point is constant (instead of, as previously, imposing constancy
of the absolute gap between points).
The results (generated by the program 2periodIntExpFOCInvEEE.m)

are depicted in Figures 12 and 13, which are notably closer to their
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Figure 12 cT−1(aT−1) versus c̀T−1(aT−1), Multi-Exponential aVec
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Figure 13 v′T−1(aT−1) vs. `̀v′T−1(aT−1), Multi-Exponential aVec
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(Oops!)

respective truths than the corresponding figures that used the original
grid.

5.10 The Method of Moderation

Unfortunately, the endogenous gridpoints solution is not very well-
behaved outside the original range of gridpoints targeted by the
solution method. (Though other common solution methods are no
better outside their own predefined ranges). Figure 14 demonstrates the
point by plotting the amount of precautionary saving implied by a linear
extrapolation of our approximated consumption rule (the consumption
of the perfect foresight consumer c̄T−1 minus our approximation to
optimal consumption under uncertainty, c̀T−1). Although theory proves
that precautionary saving is always positive, the linearly extrapolated
numerical approximation eventually predicts negative precautionary
saving (at the point in the figure where the extrapolated locus crosses
the horizontal axis).
This error cannot be fixed by extending the upper gridpoint; in the

presence of serious uncertainty, the consumption rule will need to be
evaluated outside of any prespecified grid (because starting from the top
gridpoint, a large enough realization of the uncertain variable will push
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next period’s realization of assets above that top; a similar argument
applies below the bottom gridpoint). While a judicious extrapolation
technique can prevent this problem from being fatal (for example by
carefully excluding negative precautionary saving), the problem is often
dealt with using inelegant methods whose implications for the accuracy
of the solution are difficult to gauge.
As a preliminary to our solution, define ht as end-of-period human

wealth (the present discounted value of future labor income) for a perfect
foresight version of the problem of a ‘risk optimist:’ a consumer who
believes with perfect confidence that the shocks will always take the
value 1, θt+n = E[θ] = 1 ∀ n > 0. The solution to a perfect foresight
problem of this kind takes the form18

c̄t(mt) = (mt + ht)κt (43)

for a constant minimal marginal propensity to consume κt given below.
We similarly define ht as ‘minimal human wealth,’ the present dis-

counted value of labor income if the shocks were to take on their worst
possible value in every future period θt+n = θ ∀ n > 0 (which we define
as corresponding to the beliefs of a ‘pessimist’).
We will call a ‘realist’ the consumer who correctly perceives the true

probabilities of the future risks and optimizes accordingly.
A first useful point is that, for the realist, a lower bound for the level

of market resources is mt = −ht, because if mt equalled this value
then there would be a positive finite chance (however small) of receiving
θt+n = θ in every future period, which would require the consumer
to set ct to zero in order to guarantee that the intertemporal budget
constraint holds (this is the multiperiod generalization of the discussion
in section 5.7 about aT−1). Since consumption of zero yields negative
infinite utility, the solution to realist consumer’s problem is not well
defined for values of mt < mt, and the limiting value of the realist’s ct
is zero as mt ↓ mt.
Given this result, it will be convenient to define ‘excess’ market re-

sources as the amount by which actual resources exceed the lower bound,
and ‘excess’ human wealth as the amount by which mean expected

18For a derivation, see Carroll (2011); κt is defined therein as the MPC of the perfect foresight consumer with
horizon T − t.
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human wealth exceeds guaranteed minimum human wealth:

Nmt = mt +

=−mt︷︸︸︷
ht

Nht = ht − ht.

We can now transparently define the optimal consumption rules for
the two perfect foresight problems, those of the ‘optimist’ and the ‘pes-
simist.’ The ‘pessimist’ perceives human wealth to be equal to its
minimum feasible value ht with certainty, so consumption is given by
the perfect foresight solution

ct(mt) = (mt + ht)κt
= Nmtκt.

The ‘optimist,’ on the other hand, pretends that there is no uncertainty
about future income, and therefore consumes

c̄t(mt) = (mt + ht − ht + ht)κt
= (Nmt + Nht)κt
= ct(mt) + Nhtκt.

It seems obvious that the spending of the realist will be strictly greater
than that of the pessimist and strictly less than that of the optimist.
Figure 15 illustrates the proposition for the consumption rule in period
T − 1. Proof is more difficult than might be imagined, but the
necessary work is done in Carroll (2011) so we will take the proposition
a fact and proceed by manipulating the inequality:

Nmtκt < ct(mt + Nmt) < (Nmt + Nht)κt
−Nmtκt > −ct(mt + Nmt) > −(Nmt + Nht)κt

Nhtκt > c̄t(mt + Nmt)− ct(mt + Nmt) > 0

1 >

(
c̄t(mt + Nmt)− ct(mt + Nmt)

Nhtκt

)
︸ ︷︷ ︸

≡�̂t

> 0

where the fraction in the middle of the last inequality is the ratio of
actual precautionary saving (the numerator is the difference between
perfect-foresight consumption and optimal consumption in the presence
of uncertainty) to the maximum conceivable amount of precautionary
saving (the amount that would be undertaken by the pessimist who
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Figure 15 Moderation Illustrated: cT−1 < c̀T−1 < c̄T−1

consumes nothing out of any future income beyond the perfectly certain
component).
Defining µt = logNmt (which can range from −∞ to ∞), the object

in the middle of the last inequality is

�̂t(µt) ≡
(

c̄t(mt + eµt)− ct(mt + eµt)

Nhtκt

)
, (44)

and we now define

χ̂χχt(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(45)

= log (1/�̂t(µt)− 1) (46)

which has the virtue that it is linear in the limit as µt approaches +∞.
Given χ̂χχ, the consumption function can be recovered from

ĉt = c̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(χ̂χχt)

)
Nhtκt. (47)

Thus, the procedure is to calculate χ̂χχt at the points ~µt corresponding
to the log of the N~mt points defined above, and then using these to
construct an interpolating approximation `̂χχχt from which we indirectly
obtain our approximated consumption rule `̂ct by substituting `̂χχχt for χ̂χχ
in equation (47).
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Figure 16 Extrapolated `̂cT−1 Constructed Using the Method of Moderation

Because this method relies upon the fact that the problem is easy
to solve if the decision maker has unreasonable views (either in the
optimistic or the pessimistic direction), and because the correct solu-
tion is always between these immoderate extremes, we call our solution
procedure the ‘method of moderation.’
Results are shown in Figure 16; a reader with very good eyesight

might be able to detect the barest hint of a discrepancy between the
Truth and the Approximation at the far righthand edge of the figure –
a stark contrast with the calamitous divergence evident in Figure 14.

5.11 Approximating the Slope Too

Until now, we have calculated the level of consumption at various dif-
ferent gridpoints and used linear interpolation (either directly for cT−1

or indirectly for, say, χ̂χχT−1). But the resulting piecewise linear approx-
imations have the unattractive feature that they are not differentiable
at the ‘kink points’ that correspond to the gridpoints where the slope of
the function changes discretely.
Carroll (2011) shows that the true consumption function for this prob-

lem is ‘smooth:’ It exhibits a well-defined unique marginal propen-
sity to consume at every positive value of m. This suggests that we
should calculate, not just the level of consumption, but also the marginal
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propensity to consume (henceforth κ) at each gridpoint, and then find
an interpolating approximation that smoothly matches both the level
and the slope at those points.
This requires us to differentiate (44) and (46), yielding

�̂
µ
t (µt) = (Nhtκt)

−1eµt

κt − ≡κκκt(mt)︷ ︸︸ ︷
cmt (mt + eµt)

 (48)

χ̂χχµt (µt) =

(
−�̂

µ
t (µt)/�̂

2
t

1/�̂t(µt)− 1

)
(49)

and (dropping arguments) with some algebra these can be combined to
yield

χ̂χχµt =

(
κtNmtNht(κt − κt)

(c̄t − ct)(c̄t − ct − κtNht)

)
. (50)

To compute the vector of values of (48) corresponding to the points
in ~µt, we need the marginal propensities to consume (designated κ) at
each of the gridpoints, cmt (the vector of such values is ~κt). These can
be obtained by differentiating the Euler equation (20) (where we define
mt(a) ≡ ct(a) + a):

u′(ct) = v̂at (mt − ct) (51)

with respect to a, yielding a marginal propensity to have consumed ca

at each gridpoint:

u′′(ct)c
a
t = v̂aat (mt − ct) (52)
cat = v̂aat (mt − ct)/u

′′(ct) (53)

and the marginal propensity to consume at the beginning of the period
is obtained from the marginal propensity to have consumed by noting
that

c = m− a
ca + 1 = ma

which, together with the chain rule ca = cmma, yields the MPC from

cm(

=ma︷ ︸︸ ︷
ca + 1) = ca (54)

cm = ca/(1 + ca). (55)

Designating `̂cT−1 as the approximated consumption rule obtained us-
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Figure 17 Difference Between True cT−1 and `̂cT−1 Is Minuscule

ing an interpolating polynomial approximation to χ̂χχ that matches both
the level and the first derivative at the gridpoints, Figure 17 plots the
difference between this latest approximation and the true consumption
rule for period T − 1 up to the same large value (far beyond the largest
gridpoint) used in prior figures. Of course, at the gridpoints the approx-
imation will match the true function; but this figure illustrates that the
approximation is quite accurate far beyond the last gridpoint (which is
the last point at which the difference touches the horizontal axis). (We
plot here the difference between the two functions rather than the level
plotted in previous figures, because in levels the approximation error
would not be detectable even to the most eagle-eyed reader.)

5.12 Value

Often it is useful to know the value function as well as the consump-
tion rule associated with a problem. Fortunately, many of the tricks
used when solving the consumption problem have a direct analogue in
approximation of the value function.
Consider the perfect foresight (or ‘optimist’) case in period T − 1:

vT−1(mT−1) = u(cT−1) + βu(cT )

= u(cT−1)
(

1 + β((βTR)1/ρ)1−ρ
)
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= u(cT−1)
(

1 + β(βTR)1/ρ−1
)

= u(cT−1)
(

1 + (βTR)1/ρ/R
)

= u(cT−1)PDVT
t (c)/cT−1︸ ︷︷ ︸
≡CT

t

where PDVT
t (c) is the present discounted value of consumption. A sim-

ilar function can be constructed recursively for earlier periods, yielding
the general expression

vt(mt) = u(ct)CT
t (56)

which can be transformed as

Λt ≡ ((1− ρ)vt)
1/(1−ρ)

= ct(CT
t )1/(1−ρ)

with derivative

Λ̄
m
t = (CT

t )1/(1−ρ)κt,

and since CT
t is a constant while the consumption function is linear, Λ̄t

will also be linear.
We apply the same transformation to the value function for the prob-

lem with uncertainty (the realist’s problem) and differentiate

Λt = ((1− ρ)vt(mt))
1/(1−ρ)

Λ
m
t = ((1− ρ)vt(mt))

−1+1/(1−ρ) vmt (mt)

and an excellent approximation to the value function can be obtained by
calculating the values of Λ at the same gridpoints used by the consump-
tion function approximation, and interpolating among those points.
However, as with the consumption approximation, we can do even

better if we realize that the Λ̄ function for the optimist’s problem is an
upper bound for the Λ function in the presence of uncertainty, and the
value function for the pessimist is a lower bound. Analogously to (44),
define an upper-case

�̂t(µt) =

(
Λ̄t(mt + eµt)−Λt(mt + eµt)

Nhtκt(CT
t )1/(1−ρ)

)
(57)

with derivative (dropping arguments)

�̂
µ

t = (Nhtκt(CT
t )1/(1−ρ))−1eµt (Λ̄

m
t −Λ

m
t ) (58)
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and an upper-case version of the χχχ equation in (46):

X̂t(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(59)

= log
(

1/�̂t(µt)− 1
)

(60)

with corresponding derivative

X̂µ
t =

(
−�̂

µ

t /�̂
2

t

1/�̂t − 1

)
(61)

and if we approximate these objects then invert them (as above with
the �̂ and χ̂χχ functions) we obtain a very high-quality approximation to
our inverted value function at the same points for which we have our
approximated value function:

Λ̂t = Λ̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(X̂t)

)
Nhtκt(CT

t )1/(1−ρ) (62)

from which we obtain our approximation to the value function and its
derivative as

v̂t = u(Λ̂t)

v̂mt = u′(Λ̂t)Λ̂
m

v̂mmt = u′′(Λ̂t)(Λ̂
m)2 + u′(Λ̂t)Λ̂

mm.

Although a linear interpolation that matches the level of Λ at the
gridpoints is simple, a Hermite interpolation that matches both the
level and the derivative of the Λ̂t function at the gridpoints has the
considerable virtue that the v̄t derived from it numerically satisfies the
envelope theorem at each of the gridpoints for which the problem has
been solved.
If we use the double-derivative calculated above to produce a higher-

order Hermite polynomial, our approximation will also match marginal
propensity to consume at the gridpoints; this would guarantee that the
consumption function generated from the value function would match
both the level of consumption and the marginal propensity to consume at
the gridpoints; the numerical differences between the newly constructed
consumption function and the highly accurate one constructed earlier
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would be negligible within the grid (though would likely diverge outside
it).

5.13 Refinement: A Tighter Upper Bound

Carroll (2011) derives an upper limit κ̄t for the MPC asmt approaches its
lower bound. Using this fact plus the strict concavity of the consumption
function yields the proposition that

ct(mt + Nmt) < κ̄tNmt. (63)

The solution method described above does not guarantee that approx-
imated consumption will respect this constraint between gridpoints, and
a failure to respect the constraint can occasionally cause computational
problems in solving or simulating the model. Here, we describe a method
for constructing an approximation that always satisfies the constraint.
Definingm#

t as the ‘cusp’ point where the two upper bounds intersect:(
Nm#

t + Nht
)
κt = κ̄tNm

#
t

Nm#
t =

κtNht
(1− κt)κ̄t

m#
t =

κtht − ht

(1− κt)κ̄t
,

we want to construct a consumption function for mt ∈ (mt,m
#
t ] that

respects the tighter upper bound:

Nmtκt < ct(mt + Nmt) < κ̄tNmt

Nmt(κ̄t − κt) > κ̄tNmt − ct(mt + Nmt) > 0

1 >
(
κ̄tNmt−ct(mt+Nmt)

Nmt(κ̄t−κt)

)
> 0.

Again defining µt = logNmt, the object in the middle of the inequality
is

�̌t(µt) ≡
κ̄t − ct(mt + eµt)e−µt

κ̄t − κt

�̌
µ
t (µt) =

ct(mt + eµt)e−µt − κκκmt (mt + eµt)

κ̄t − κt
.

As mt approaches −mt, �̌t(µt) converges to zero, while as mt ap-
proaches +∞, �̌t(µt) approaches 1.
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As before, we can derive an approximated consumption function; call
it `̌ct. This function will clearly do a better job approximating the con-
sumption function for low values ofmt while the previous approximation
will perform better for high values of mt.
For middling values of m it is not clear which of these functions will

perform better. However, an alternative is available which performs well.
Define the highest gridpoint below m#

t as ¯̌m#
t and the lowest gridpoint

above m#
t as m̂#

t . Then there will be a unique interpolating polynomial
that matches the level and slope of the consumption function at these
two points. Call this function c̃t(m).
Using indicator functions that are zero everywhere except for specified

intervals,

111Lo(m) = 1 if m ≤ ¯̌m#
t

111Mid(m) = 1 if ¯̌m#
t < m < m̂#

t

111Hi(m) = 1 if m̂#
t ≤ m

we can define a well-behaved approximating consumption function

c̀t = 111Lo`̌ct + 111Mid`̃ct + 111Hi`̂ct. (64)

This just says that, for each interval, we use the approximation that
is most appropriate. The function is continuous and once-differentiable
everywhere, and is therefore well behaved for computational purposes.
To construct the corresponding refined representation of the value

function we must first clarify one point: The upper-bound value function
that we are constructing will be the one implied by a consumer whose
spending behavior is consistent with the refined upper-bound consump-
tion rule.
For mt ≥ m#

t , this consumption rule is the same as before, so the
constructed upper-bound value function is also the same. However, for
values mt < m#

t matters are slightly more complicated.
Start with the fact that at the cusp point,

v̄t(m
#
t ) = u(c̄t(m

#
t ))CT

t

= u(Nm#
t κ̄t)CT

t .

But for all mt,

v̄t(m) = u(c̄t(m)) + v̄t(m− c̄t(m)),

and we assume that for the consumer below the cusp point consumption
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is given by κ̄Nmt so for mt < m#
t

v̄t(m) = u(κ̄tNm) + v̄t((1− κ̄t)Nm),

which is easy to compute because vt(at) = βv̄t+1(atR + 1) where v̄t
is as defined above because a consumer who ends the current period
with assets exceeding the lower bound will not expect to be constrained
next period. (Recall again that we are merely constructing an object
that is guaranteed to be an upper bound for the value that the ‘realist’
consumer will experience.) At the gridpoints defined by the solution of
the consumption problem can then construct

Λ̄t(m) = ((1− ρ)v̄t(m))1/(1−ρ)

and its derivatives which yields the appropriate vector for constructing
X̌ and �̌. The rest of the procedure is analogous to that performed for
the consumption rule and is thus omitted for brevity.

5.14 Extension: A Stochastic Interest Factor

Thus far we have assumed that the interest factor is constant at R.
Extending the previous derivations to allow for a perfectly forecastable
time-varying interest factor Rt would be trivial. Allowing for a stochastic
interest factor is less trivial.
The easiest case is where the interest factor is i.i.d.,

logRt+n ∼ N (r + φ− σ2
r/2, σ

2
r) ∀ n > 0 (65)

where φ is the risk premium and the σ2
r/2 adjustment to the mean log

return allows a mean-preserving spread in the level of the return.
This case is reasonably straightforward because Merton (1969) and

Samuelson (1969) showed that for a consumer without labor income (or
with perfectly forecastable labor income) the consumption function is
linear, with a MPC19

κ = 1−
(
β Et[R1−ρ

t+1 ]
)1/ρ

(66)

and in this case the previous analysis applies once we substitute this
MPC for the one that characterizes the perfect foresight problem without
rate-of-return risk.

19See CRRA-RateRisk for a derivation.
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The more realistic case where the interest factor has some serial corre-
lation is more complex. We consider the simplest case that captures the
main features of empirical interest rate dynamics: An AR(1) process.
Thus the specification is

rt+1 − r = (rt − r)γ + εt+1 (67)

where r is the long-run mean log interest factor, 0 < γ < 1 is the AR(1)
serial correlation coefficient, and εt+1 is the stochastic shock.
The consumer’s problem in this case now has two state variables, mt

and rt, and is described by

vt(mt, rt) = max
ct

u(ct) + Et[βt+1Γ
1−ρ
t+1 vt+1(mt+1, rt+1)] (68)

s.t.
at = mt − ct

rt+1 − r = (rt − r)γ + εt+1

Rt+1 = exp(rt+1)

mt+1 = (Rt+1/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1.

We approximate the AR(1) process by a Markov transition matrix us-
ing standard techniques. The stochastic interest factor is allowed to take
on 11 values centered around the steady-state value r and chosen [how?].
Given this Markov transition matrix, conditional on the Markov AR(1)
state the consumption functions for the ‘optimist’ and the ‘pessimist’
will still be linear, with identical MPC’s that are computed numerically.
Given these MPC’s, the (conditional) realist’s consumption function can
be computed for each Markov state, and the converged consumption
rules constitute the solution contingent on the dynamics of the stochastic
interest rate process.
In principle, this refinement should be combined with the previous

one; further exposition of this combination is omitted here because no
new insights spring from the combination of the two techniques.

5.15 Imposing ‘Artificial’ Borrowing Constraints

Optimization problems often come with additional constraints that must
be satisfied. Particularly common is an ‘artificial’ liquidity constraint
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that prevents the consumer’s net worth from falling below some value,
often zero.20

With such an additional constraint, the problem is

vT−1(mT−1) = max
cT−1

u(cT−1) + ET−1[βΓ1−ρ
T vT (mT )]

s.t.
aT−1 = mT−1 − cT−1

mT = RTaT−1 + θT

aT−1 ≥ 0.

By definition, the constraint will bind if the unconstrained consumer
would choose a level of spending that would violate the constraint.
Here, that means that the constraint binds if the cT−1 that satisfies
the unconstrained FOC

c−ρT−1 = v′T−1(mT−1 − cT−1) (69)

is greater than mT−1. Call c̀∗T−1 the approximated function returning
the level of cT−1 that satisfies (69). Then the approximated constrained
optimal consumption function will be

c̀T−1(mT−1) = min[mT−1, c̀
∗
T−1(mT−1)]. (70)

The introduction of the constraint also introduces a sharp nonlinearity
in all of the functions at the point where the constraint begins to bind.
As a result, to get solutions that are anywhere close to numerically
accurate it is useful to augment the grid of values of the state variable
to include the exact value at which the constraint becomes binding.
Fortunately, this is easy to calculate. We know that when the constraint
is binding the consumer is saving nothing, which yields marginal value of
v′T−1(0). Further, when the constraint is binding, cT−1 = mT−1. Thus,
the largest value of consumption for which the constraint is binding will
be the point for which the marginal utility of consumption is exactly
equal to the (expected, discounted) marginal value of saving 0. We know
this because the marginal utility of consumption is a downward-sloping
function and so if the consumer were to consume ε more, the marginal
utility of that extra consumption would be below the (discounted, ex-
pected) marginal utility of saving, and thus the consumer would engage

20The word artificial is chosen only because of its clarity in distinguishing this from the case of the ‘natural’
borrowing constraint examined above; no derogation is intended – constraints of this kind certainly exist in the real
world.
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Figure 18 Constrained (solid) and Unconstrained (dashed) Consumption

in positive saving and the constraint would no longer be binding. Thus
the level of mT−1 at which the constraint stops binding is:

u′(mT−1) = v′T−1(0)

mT−1 = (v′T−1(0))(−1/ρ)

= cT−1(0). (71)

The constrained problem is solved by 2periodIntExpFOCInvPesReaOptCon.m;
the resulting consumption rule is shown in Figure 18. For comparison
purposes, the approximate consumption rule from Figure 18 is
reproduced here as the solid line. The presence of the liquidity
constraint requires three changes to the procedures outlined above:

1. We redefine ht, which now is the PDV of receiving θt+1 = θ next
period and θt+n = 0 ∀ n > 1 – that is, the pessimist believes he
will receive nothing beyond period t+ 1

2. We augment the end-of-period aVec with zero and with a point with
a small positive value so that the generated mVec will the binding
point m# and a point just above it (so that we can better capture
the curvature around that point)

3. We redefine the optimal consumption rule as in equation (70). This
ensures that the liquidity-constrained ‘realist’ will consume more
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than the redefined ‘pessimist,’ so that we will have � still between
0 and 1 and the ‘method of moderation’ will proceed smoothly.

As expected, the liquidity constraint only causes a divergence between
the two functions at the point where the optimal unconstrained con-
sumption rule runs into the 45 degree line.

6 Recursion

6.1 Theory

Before we solve for periods earlier than T−1, we assume for convenience
that in each such period a liquidity constraint exists of the kind discussed
above, preventing c from exceeding m. This simplifies things a bit
because now we can always consider an aVec that starts with zero as its
smallest element.
Recall now equations (19) and (20):

v′t(at) = Et[βRΓ−ρt+1u
′(ct+1(Rt+1at + θt+1))]

u′(ct) = v′t(mt − ct).
Assuming that the problem has been solved up to period t + 1 (and
thus assuming that we have an approximated c̀t+1(mt+1)), our solution
method essentially involves using these two equations in succession to
work back progressively from period T−1 to the beginning of life. Stated
generally, the method is as follows. (Here, we use the original, rather
than the “refined,” method for constructing consumption functions; the
generalization of the algorithm below to use the refined method presents
no difficulties.)

1. For the grid of values at,i in aVect, numerically calculate the values
of ct(at,i) and c′t(at,i),

ct,i = (v′t(at,i))
−1/ρ

, (72)

=
(
β Et

[
RΓ−ρt+1(c̀t+1(Rt+1at,i + θt+1))

−ρ])−1/ρ
, (73)

κt,i = −(1/ρ) (v′t(at,i))
−1−1/ρ

v′′t (at,i), (74)

generating vectors of values~ct and ~κt (where the letter κ is a variant
of κ; we need a variant because κ itself is reserved for the marginal
propensity to consume as of the beginning of the period, and here
we are calculating the marginal propensity to have consumed).
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2. Construct a corresponding list of values of ct,i and mt,i from ct,i =
ct,i and mt,i = ct,i + at,i; similarly construct a corresponding list of
κt,i using equation (55).

3. Construct a corresponding list of µt,i, the levels and first derivatives
of �t,i, and the levels and first derivatives of χt,i.

4. Construct an interpolating approximation χ̀t that smoothly
matches both the level and the slope at those points.

5. If we are to approximate the value function, construct a correspond-
ing list of values of vt,i, the levels and first derivatives of �t,i, and the
levels and first derivatives of X̂t,i; and construct an interpolating
approximation X̂t that matches those points.

With χ̀t in hand, our approximate consumption function is computed
directly from the appropriate substitutions in (47) and related equations.
With this consumption rule in hand, we can continue the backwards
recursion to period t− 1 and so on back to the beginning of life.
Note that this loop does not contain steps for constructing v̂′t(at) or

v̂′t(mt). This is because with ĉt(at) and `̂ct(mt) in hand, we simply define
v̂′t(at) = [̂ct(at)]

−ρ and v̂′t(mt) = u′(`̂ct(mt)) so there is no need to
construct interpolating approximations to these functions - they arise
‘free’ (or nearly so) from our constructed ĉt(at) and `̂ct(mt).
The program multiperiodCon.m21 presents a fairly general and flexi-

ble approach to solving problems of this kind. The essential structure of
the program is a loop that simply works its way back from an assumed
last period of life, using the command AppendTo to record the interpo-
lated χ̀t functions in the earlier time periods back from the end. For
a realistic life cycle problem, it would also be necessary at a minimum
to calibrate a nonconstant path of expected income growth over the
lifetime that matches the empirical profile; allowing for such a calibration
is the reason we have included the {Γ}Tt vector in our computational
specification of the problem.

6.2 Mathematica Background

Mathematica has several features that are useful in solving the multi-
period problem.

21There is also a parallel multiperiod.m file that solves the unconstrained multi-period problem.
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• It can treat a user-created function as an object just like a number
or a character.

• Mathematica uses the ‘list’ as its basic data structure. A Mathe-
matica ‘list’ is a very powerful and flexible data construct. A list
of length N in Mathematica can hold essentially anything in each
of its N positions - a function, a number, another list, a symbolic
expression, or any other object that Mathematica can recognize.
The items at position i in a list named ExampleList are retrieved
or addressed using the syntax ExampleList[[i]].

• The function Apply[FuncName_, DataListName_] takes the func-
tion whose name is FuncName (for example, Vt) and the data in
DataListName (for example, {1, 19}) and returns the result that
would have been returned by calling the function Vt[1,19].

• The function Map[FuncToApply_,DataToApplyItTo_] takes
a list of possible arguments to the function FuncToApply
and applies that function to each of the elements of that list
sequentially. For example, Map[Sin,{1,2,3}] would return a list
{Sin[1],Sin[2],Sin[3]}.

6.3 Program Structure

After the usual initializations, the heart of the program works like this.

6.3.1 Iteration

After setting up a variable PeriodsToSolve which defines the total
number of periods that the program will solve, the program sets up
a “Do[SolveAnotherPeriod,{PeriodsToSolve}]” loop that runs the
function SolveAnotherPeriod the number of times corresponding to
PeriodsToSolve. Every time SolveAnotherPeriod is run, the inter-
polated consumption function for one period of life earlier is calculated.
The structure of the SolveAnotherPeriod function is as follows:

1. Add various period-t parameters to their respective lifecycle lists,
which is accomplished by calling the AddNewPeriodToParamLifeDates
function.
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2. For each a in aVec, construct c as follows:

ct(at) =
(
β Et

[
RΓ−ρt+1(

`̂ct+1(Rt+1at + θt+1))
−ρ
])−1/ρ

(75)

=

(
β

1

n

n∑
i=1

R
[
Γ−ρt+1(

`̂ct+1(Rt+1at + θi))
−ρ
])−1/ρ

. (76)

Obviously, ct(a) depends on the constructed consumption function
from one period later in life. We also construct the corresponding
mVec, κVec, etc. by calling the AddNewPeriodToSolvedLifeDates
function.

3. For each m in mVec, we can define NmVec, find the corresponding
optimal consumption vector for a pessimist and an optimist, con-
struct the � and χ vectors, and finally an interpolation function
χ̀t. Similarly we can construct an interpolation function X̀t that
approximates the value function. The whole process is done by
calling the AddNewPeriodToSolvedLifeDatesPesReaOpt function.

4. Various period-t functions are derived from χ̀t and X̀t (in
functions_ConsNVal.m). Note that the liquidity constraint is
dealt with by comparing the unconstrained solution cFromχ with
the 45 degree line.

6.4 Results

As written, the program creates χ̀t(µt) functions from which the relevant
c̀t(mt) functions are recovered in any period for any value of m.
As an illustration, Figure 19 shows c̀T−n(m) for n = {20, 15, 10, 5, 1}.

At least one feature of this figure is encouraging: the consumption
functions converge as the horizon extends, something that Carroll (2011)
shows must be true under certain parametric conditions that are satisfied
by the baseline parameter values being used here.

7 Multiple Control Variables

We now consider how to solve problems with multiple control variables.
(To reduce notational complexity, in this section we set Γt = 1 ∀ t.)
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Figure 19 Converging c̀T−n(m) Functions as n Increases

7.1 Theory

The new control variable that the consumer can now choose is the
portion of the portfolio to invest in risky assets. Designating the gross
return on the risky asset asRt+1, and using ςt to represent the proportion
of the portfolio invested in this asset between t and t+1 (restricted here,
as often in the literature, to values between 0 and 1, corresponding to
an assumption that the consumer cannot be ‘net short’ and cannot issue
net equity), the overall return on the consumer’s portfolio between t and
t+ 1 will be:

RRRt+1 = R(1− ςt) + Rt+1ςt (77)
= R + (Rt+1 − R)ςt (78)

and the maximization problem is

vt(mt) = max
{ct,ςt}

u(ct) + β Et[vt+1(mt+1)]

s.t.
RRRt+1 = R + (Rt+1 − R)ςt

mt+1 = (mt − ct)RRRt+1 + θt+1

0 ≤ ςt ≤ 1,
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or

vt(mt) = max
{ct,ςt}

u(ct) + Et[βvt+1((mt − ct)RRRt+1 + θt+1)]

s.t.
0 ≤ ςt ≤ 1.

The first order condition with respect to ct is almost identical to that in
the single-control problem, equation (12), with the only difference being
that the nonstochastic interest factor R is now replaced by RRRt+1,

u′(ct) = β Et[RRRt+1v
′
t+1(mt+1)], (79)

and the Envelope theorem derivation remains the same, yielding the
Euler equation for consumption

u′(ct) = Et[βRRRt+1u
′(ct+1)]. (80)

The first order condition with respect to the risky portfolio share is

0 = Et[v′t+1(mt+1)(Rt+1 − R)at]

= at Et [u′ (ct+1(mt+1)) (Rt+1 − R)] . (81)

As before, it will be useful to define vt as a function that yields the
expected t + 1 value of ending period t in a given state. However, now
that there are two control variables, the expectation must be defined as a
function of the chosen values of both of those variables, because expected
end-of-period value will depend not just on how much the agent saves,
but also on how the saved assets are allocated between the risky and
riskless assets. Thus we define

vt(at, ςt) = Et[βvt+1(mt+1)]

which has derivatives

vat = Et[βRRRt+1v
m
t+1(mt+1)]

vςt = Et[β(Rt+1 − R)vmt+1(mt+1)]at

implying that the first order conditions (80) and (81) and can be rewrit-
ten

u′(ct) = vat (mt − ct, ςt) (82)
0 = vςt(at, ςt). (83)
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7.2 Application

Our first step is to specify the stochastic process for Rt+1. We follow the
common practice of assuming that returns are lognormally distributed,
logR ∼ N (φ + r − σ2

φ/2, σ
2
φ) where φ is the equity premium over the

returns r available on the riskless asset.22

As with labor income uncertainty, it is necessary to discretize the rate-
of-return risk in order to have a problem that is soluble in a reasonable
amount of time. We follow the same procedure as for labor income
uncertainty, generating a set of m equiprobable shocks to the rate of
return; in a slight abuse of notation, we will designate the portfolio-
weighted return (contingent on the chosen portfolio share in equity, and
potentially contingent on any other aspect of the consumer’s problem)
simply asRRRi,j (where dependence on i is allowed to permit the possibility
of nonzero correlation between the return on the risky asset and the
shock to labor income (for example, in recessions the stock market falls
and labor income also declines).
The direct expressions for the derivatives of vt are

vat (at, ςt) = β

(
1

mn

) n∑
i=1

m∑
j=1

RRRi,j (ct+1(RRRi,jat + θi))
−ρ (84)

vςt(at, ςt) = β

(
1

mn

) n∑
i=1

m∑
j=1

(Ri,j − R) (ct+1(RRRi,jat + θi))
−ρ . (85)

Writing these equations out explicitly makes a problem very apparent:
For every different combination of {at, ςt} that the routine wishes to
consider, it must perform two double-summations of m×n terms. Once
again, there is an inefficiency if it must perform these same calculations
many times for the same or nearby values of {at, ςt}, and again the
solution is to construct an approximation to the derivatives of the v

function.
Details of the construction of the interpolating approximation are

given below; assume for the moment that we have the approximations
v̂at and v̂ςt in hand and we want to proceed. As noted above, nonlinear
equation solvers (including those built into Mathematica) can find the
solution to a set of simultaneous equations. Thus we could ask Mathe-

22This guarantees that E[R] = Φ is invariant to the choice of σ2
φ; see LogELogNorm.
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matica to solve

c−ρt = v̂at (mt − ct, ςt) (86)
0 = v̂ςt(mt − ct, ςt) (87)

simultaneously for c and ς at the set of potential mt values defined in
mVec. However, multidimensional constrained maximization problems
are difficult and sometimes quite slow to solve. There is a better way.
Define the problem

wt(at) = max
ςt

vt(at, ςt) (88)

s.t.
0 ≤ ςt ≤ 1 (89)

where the bar accent on v indicates that this is the v that has been
optimized with respect to all of the arguments other than the one still
present (at). We solve this problem for the set of gridpoints in aVec and
use the results to construct the interpolating function ẁa

t (at).23 With
this function in hand, we can use the first order condition from the
single-control problem

c−ρt = ẁa
t (mt − ct)

to solve for the optimal level of consumption as a function of mt. Thus
we have transformed the multidimensional optimization problem into a
sequence of two simple optimization problems for which solutions are
much easier and more reliable.
Note the parallel between this trick and the fundamental insight of

dynamic programming: Dynamic programming techniques transform a
multi-period (or infinite-period) optimization problem into a sequence of
two-period optimization problems which are individually much easier to
solve; we have done the same thing here, but with multiple dimensions
of controls rather than multiple periods.

7.3 Implementation

The program which solves the constrained problem with multiple control
variables is multicontrolCon.m.

23A faster solution could be obtained by, for each element in aVec, computing vςt (mt − ct, ς) of a grid of values
of ς, and then using an approximating interpolating function (rather than the full expectation) in the FindRoot
command. The associated speed improvement is fairly modest, however, so this route was not pursued.
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Some of the functions defined in multicontrolCon.m correspond to
the derivatives of vt(at, ςt).
The first function definition that does not resemble anything in

multiperiod.m is ςRaw[at_]. This function, for its input value of at,
calculates the value of the portfolio share ςt which satisfies the first order
condition (87), tests whether the optimal portfolio share would violate
the constraints, and if so resets the portfolio share to the constrained
optimum. The function returns the optimal value of the portfolio share
itself, ς∗t , from which the functions v̄at (at) and ς̂t(at) will be constructed.
As ς̂t(at) can be constructed by ςRaw[at_], v̄at (at) is constructed by

another newly defined function vaOpt[at_], where the naming conven-
tion is obviously that ‘Opt’ stands for ‘Optimized.’ With v̄at (at) in hand
(as well as the appropriately redefined v̄t(at) and v̄aat (at)) the analysis is
essentially identical to that for the standard multiperiod problem with
a single control variable.
The structure of the program in detail is as follows. First, perform

the usual initializations. Then initialize ςVec and the other variables
specific to the multiple control problem.24 In particular, there are now
three kinds of functions: those with both at and ςt as arguments, those
with just at, and those with mt.
Once the setup is complete, the heart of the program is the following.

1. Construct vςt(at, ςt) using the usual calculation over the tensor de-
fined by the combinations of the elements of aVec and ςVec.

2. For any level of saving at, the function ςRaw[at_] performs a
rootfinding operation25

0 = vςt(at, ςt) (90)
s.t.

0 ≤ ςt ≤ 1 (91)

and generates the corresponding optimal portfolio share ς∗t .

24Note the choice of a coefficient of relative risk aversion of 6, in contrast with the choice of 2 made for the
previous problems. This choice reflects the well-known ‘stockholding puzzle,’ which is the microeconomic equivalent
of the equity premium puzzle: For plausible descriptions of income uncertainty, rate of return risk, and the equity
premium, the typical consumer should hold all or nearly all of their portfolio in equities. Thus we choose a high
value for the coefficient of relative risk aversion in order to generate portfolio structure behavior more interesting
than a choice of 100 percent equities in every period for every level of wealth.

25Alternatively, the rootfinding operation would be 0 = v̂ςt (at, ςt), where the interpolation function of vςt (at, ςt)
is used instead. However, the results obtained (especially ς̂t(at)) are much less satisfactory.
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3. Construct the function wa[at_]

wa
t (at) ≡ vat (at, ς

∗
t (at)) (92)

where ς∗t (at) is computed by ςRaw[at_].

4. Using wa
t (at) ≡ wa[at_] and the redefined wt(at) and waa

t (at) (in
place of vat (at) ≡ va[at_] in multiperiod.m), follow the same
procedures as in multiperiod.m to generate c̀t(m).

7.4 Results

Figure 20 plots the first-period consumption function generated by the
program; qualitatively it does not look much different from the con-
sumption functions generated by the program without portfolio choice.
Figure 21 plots the optimal portfolio share as a function of the level
of assets. This figure exhibits several interesting features. First, even
with a coefficient of relative risk aversion of 6, an equity premium of
only 4 percent, and an annual standard deviation in equity returns of
15 percent, the optimal choice is for the agent to invest a proportion 1
(100 percent) of the portfolio in stocks (instead of the safe bank account
with riskless return R) is at values of at less than about 2. Second,
the proportion of the portfolio kept in stocks is declining in the level of
wealth - i.e., the poor should hold all of their meager assets in stocks,
while the rich should be cautious, holding more of their wealth in safe
bank deposits and less in stocks. This seemingly bizarre (and highly
counterfactual) prediction reflects the nature of the risks the consumer
faces. Those consumers who are poor in measured financial wealth are
likely to derive a high proportion of future consumption from their labor
income. Since by assumption labor income risk is uncorrelated with
rate-of-return risk, the covariance between their future consumption
and future stock returns is relatively low. By contrast, persons with
relatively large wealth will be paying for a large proportion of future
consumption out of that wealth, and hence if they invest too much of
it in stocks their consumption will have a high covariance with stock
returns. Consequently, they reduce that correlation by holding some of
their wealth in the riskless form.
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8 The Infinite Horizon

All of the solution methods presented so far have involved period-by-
period iteration from an assumed last period of life, as is appropriate for
life cycle problems. However, if the parameter values for the problem
satisfy certain conditions (detailed in Carroll (2011)), the consumption
rules (and the rest of the problem) will converge to a fixed rule as the
horizon (remaining lifetime) gets large, as illustrated in Figure 19. Fur-
thermore, Deaton (1991), Carroll (1992; 1997) and others have argued
that the ‘buffer-stock’ saving behavior that emerges under some further
restrictions on parameter values is a good approximation of the behavior
of typical consumers over much of the lifetime. Methods for finding the
converged functions are therefore of interest, and are dealt with in this
section.
Of course, the simplest such method is to solve the problem as specified

above for a large number of periods. This is feasible, but there are much
faster methods.

8.1 Convergence

In solving an infinite-horizon problem, it is necessary to have some metric
that determines when to stop because a solution that is ‘good enough’
has been found.
A natural metric is defined by the unique ‘target’ level of wealth that

Carroll (2011) proves will exist in problems of this kind: The m̌ such
that

Et[mt+1/mt] = 1 if mt = m̌ (93)

where the ∨ accent is meant to signify that this is the value that other
m’s ‘point to.’
Given a consumption rule c(m) it is straightforward to find the corre-

sponding m̌. So for our problem, a solution is declared to have converged
if the following criterion is met: |m̌t+1 − m̌t| < ε, where ε is a very small
number and measures our degree of convergence tolerance.
Similar criteria can obviously be specified for other problems. How-

ever, it is always wise to plot successive function differences and to
experiment a bit with convergence criteria to verify that the function
has converged for all practical purposes.
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8.2 Coarse then Fine θVec

The speed of solution is roughly proportionate26 to the number of
points used in approximating the distribution of shocks. At least
3 gridpoints should probably be used as an initial minimum, and
my experience is that increasing the number of gridpoints beyond 7
generally yields only very small changes in the solution. The program
multiperiodCon_infhor.m begins with three gridpoints, and then
solves for successively finer θVec.

9 Structural Estimation

This section describes how to use the methods developed above to struc-
turally estimate a life-cycle consumption model, following closely the
work of Cagetti (2003).27 The key idea of structural estimation is to
look for the parameter values (for the time preference rate, relative risk
aversion, or other parameters) which lead to the best possible match
between simulated and empirical moments. (The code for the structural
estimation is in the self-contained subfolder StructuralEstimation in
the Matlab and Mathematica directories.)

9.1 Life Cycle Model

The decision problem for the household at age t is:

max

{
u(ccct) + Et

[
T∑

s=t+1

is−t
(

Πs
i=t+1β̂i��Di

)
u(cccs)

]}
(94)

subject to the constraints

aaas = mmms − cccs
mmms+1 = Raaas + Ys+1

Ys+1 = ppps+1θs+1

ppps+1 = Γs+1pppsΨs+1

26It is also true that the speed of each iteration is directly proportional to the number of gridpoints in aVec,
at which the problem must be solved. However given our method of moderation, now the problem could be solved
very precisely based on five gridpoints only. Hence we do not pursue the process of “Coarse then Fine aVec”.

27Similar structural estimation exercises have been also performed by Palumbo (1999) and Gourinchas and
Parker (2002).
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where

��Ds : probability of being alive (not dead) until age s given being alive at age s− 1

β̂s : time-varying discount factor between age s− 1 and s
Ψs : mean-one shock to permanent income
i : time-invariant discount factor

and all the other variables are defined as in section 2.
Households start life at age s = 25 and live with probability 1 until

retirement (s = 65). Thereafter the survival probability shrinks every
year and agents are dead by s = 91 as assumed by Cagetti. Note
that in addition to a typical time-invariant discount factor i, there is
a time-varying discount factor β̂s in (94) which captures the effect of
time-varying demographic variables (e.g. changes in family size).
Transitory and permanent shocks are distributed as follows:

Ξs =

{
0 with probability ℘ > 0

θs/℘ with probability (1− ℘), where log θs ∼ N (−σ2
θ/2, σ

2
θ)

(95)

logψs ∼ N (−σ2
ψ/2, σ

2
ψ) (96)

where ℘ is the probability of unemployment (and unemployment shocks
are turned off after retirement).
The parameter values for the shocks are taken from Carroll (1992),

℘ = 0.5/100, σθ = 0.1, and σψ = 0.1.28 The income growth profile Γs
is from Carroll (1997) and the values of ��Ds and β̂s are obtained from
Cagetti (2003) (Figure 22).29 The interest rate is assumed to equal 1.03.
The model parameters are included in Table 1.
The parameters i and ρ are structurally estimated following the pro-

cedure described below.

9.2 Estimation

When economists say that they are performing “structural estimation” of
a model like this, they mean that they have devised a formal procedure
for searching for values for the parameters i and ρ at which some

28Note that σθ = 0.1 is smaller than the estimate for college graduates estimated in Carroll and Samwick (1997)
(= 0.197 =

√
0.039) which is used by Cagetti (2003). The reason for this choice is that Carroll and Samwick (1997)

themselves argue that their estimate of σθ is almost certainly increased by measurement error.
29The income growth profile is the one used by Caroll for operatives. Cagetti computes the time-varying discount

factor by educational groups using the methodology proposed by Attanasio et al. (1999) and the survival probabilities
from the 1995 Life Tables (National Center for Health Statistics 1998).
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Figure 22 Time Varying Parameters

Table 1 Parameter Values

σθ 0.1 Carroll (1992)
σψ 0.1 Carroll (1992)
℘ 0.005 Carroll (1992)
Γs figure 22 Carroll (1997)

β̂s,��Ds figure 22 Cagetti (2003)
R 1.03 Cagetti (2003)

measure of the model’s outcome (like “median wealth by age”) is as close
as possible to an empirical measure of the same thing. Here, we choose
to match the median of the wealth to permanent income ratio across 7
age groups, from age 26 − 30 up to 56 − 60.30 The choice of matching
the medians rather the means is motivated by the fact that the wealth
distribution is much more concentrated at the top than the model is
capable of explaining using a single set of parameter values. This means
that in practice one must pick some portion of the population who one
wants to match well; since the model has little hope of capturing the
behavior of Bill Gates, but might conceivably match the behavior of
Homer Simpson, we choose to match medians rather than means.

30Cagetti (2003) matches wealth levels rather than wealth to income ratios. We believe it is more appropriate to
match ratios both because the ratios are the state variable in the theory and because empirical moments for ratios of
wealth to income are not influenced by the method used to remove the effects of inflation and productivity growth.
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As explained in section 3, it is convenient to work with the normalized
version the model which can be written as:

vt(mt) = max
ct

{
u(ct) + i��Dt+1β̂t+1 Et[(ψt+1Γt+1)

1−ρvt+1(mt+1)]
}

s.t.
at = mt − ct

mt+1 = at

(
R

ψt+1Γt+1

)
︸ ︷︷ ︸

≡Rt+1

+θt+1

with the first order condition:

u′(ct) = i��Dt+1β̂t+1REt [u′ (ψt+1Γt+1ct+1 (atRt+1 + θt+1))] . (97)

The first step is to solve for the consumption functions at each age
using the routines included in the setup_ConsFn.m file. We need to
discretize the shock distribution and solve for the policy functions by
backward induction using equation (97) following the procedure in sec-
tions 5 and 6 (ConstructcFuncLife). The latter routine is slightly
complicated by the fact that we are considering a life-cycle model and
therefore the growth rate of permanent income, the probability of death,
the time-varying discount factor and the distribution of shocks will be
different across the years. We thus must ensure that at each backward
iteration the right parameter values are used.
Once we have the age varying consumption functions, we can proceed

to generate the simulated data and compute the simulated medians using
the routines defined in the setup_Sim.m file. We first have to draw the
shocks for each agent and period. This involves discretizing the shock
distribution for as many points as the number of agents we want to simu-
late (ConstructShockDistribution). We then randomly permute this
shock vector as many times as we need to simulate the model for, thus
obtaining a time varying shock for each agent (ConstructSimShocks).
This is much more time efficient than drawing at each time from the
shock distribution a shock for each agent, and also ensures a stable
distribution of shocks across the simulation periods even for a small
number of agents. (Similarly, in order to speed up the process, at each
backward iteration we compute the consumption function and other
variables as a vector at once.) Then, following Cagetti (2003), we
initialize the wealth-to-income ratio of agents at age 25 by randomly
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assigning the equal probability values to 0.17, 0.50 and 0.83 and run
the simulation (Simulate). In particular we consider a population of
agents at age 25 and follow their consumption and wealth accumulation
dynamics as they reach the age of 60, using the appropriate age-specific
consumption functions and the age-varying parameters. The simulated
medians are obtained by taking the medians of the wealth to income
ratio of the 7 age groups.
Given these simulated medians, we can estimate the model by calculat-

ing empirical medians and measure the model’s success by calculating
the difference between the empirical median and the actual median.
Specifically, defining ξ as the set of parameters to be estimated (in the
current case ξ = {ρ,i}), we could search for the parameter values which
solve

min
ξ

7∑
τ=1

|ςτ − sτ(ξ)| (98)

where ςτ and sτ are respectively the empirical and simulated medians of
the wealth to permanent income ratio for age group τ .
A drawback of proceeding in this way is that it treats the empirically

estimated medians as though they reflected perfect measurements of
the truth. Imagine, however, that one of the age groups happened to
have (in the consumer survey) four times as many data observations
as another age group; then we would expect the median to be more
precisely estimated for the age group with more observations; yet (98)
assigns equal importance to a deviation between the model and the data
for all age groups.
We can get around this problem (and a variety of others) by instead

minimizing a slightly more complex object:

min
ξ

N∑
i

ωi |ςτi − sτ(ξ)| (99)

where ωi is the weight of household i in the entire population,31 and ςτi
is the empirical wealth-to-permanent-income ratio of household i whose
head belongs to age group τ . ωi is needed because unequal weight is
assigned to each observation in the Survey of Consumer Finances (SCF).

31The Survey of Consumer Finances includes many more high-wealth households than exist in the population as
a whole; therefore if one wants to produce population-representative statistics, one must be careful to weight each
observation by the factor that reflects its “true” weight in the population.
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Figure 23 Wealth to Permanent Income Ratios from SCF (means (dashed) and
medians (solid))

The absolute value is used since the formula is based on the fact that the
median is the value that minimizes the sum of the absolute deviations
from itself.
The actual data are taken from several waves of the SCF and the

medians and means for each age category are plotted in figure 23. More
details on the SCF data are included in appendix A.
The key function to perform structural estimation is defined in the

setup_Estimation.m file as follows:

GapEmpiricalSimulatedMedians[ρ,i]:=
[ ConstructcFuncLife[ρ,i];

Simulate;
N∑
i

ωi |ςτi − sτ(ξ)|

];

For a given pair of the parameters to be estimated, the GapEmpiricalSimulatedMedians
routine therefore:

1. solves for the consumption functions by calling ConstructcFuncLife

2. simulates the data and computes the simulated medians by calling
Simulate
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3. returns the value of equation (99)

We delegate the task of finding the coefficients that minimize the
GapEmpiricalSimulatedMedians function to the Mathematica built-in
numerical minimizer FindMinimum. This task can be quite time demand-
ing and rather problematic if the GapEmpiricalSimulatedMedians
function has very flat regions or sharp features. It is thus wise to verify
the accuracy of the solution, for example by experimenting with a
variety of alternative starting values for the parameter search.
Finally the standard errors are computed by bootstrap using the rou-

tines in the setup_Bootstrap.m file.32 This involves:

1. drawing new shocks for the simulation

2. drawing a random sample (with replacement) of actual data from
the SCF

3. obtaining new estimates for ρ and i

We repeat the above procedure several times (Bootstrap) and take
the standard deviation for each of the estimated parameters across the
various bootstrap iterations.
The file StructEstimation.m produces our ρ and i estimates

with standard errors using 10,000 simulated agents.33 Results
are reported in Table 2.34 Figure 24 shows the contour plot of
the GapEmpiricalSimulatedMedians function and the parameter
estimates. The contour plot shows equally spaced isoquants of the
GapEmpiricalSimulatedMedians function, i.e. the pairs of ρ and i
which lead to the same deviations between simulated and empirical
medians (equivalent values of equation (99)). We can thus interestingly
see that there is a large rather flat region, or more formally speaking
there exists a broad set of parameter pairs which leads to similar
simulated wealth to income ratios. Intuitively, the flatter and larger is
this region, the harder it is for the structural estimation procedure to
precisely identify the parameters.

32For a treatment of the advantages of the bootstrap see Horowitz (2001)
33The procedure is: First we calculate the ρ and i estimates as the minimizer of equation (99) using the actual

SCF data. Then, we apply the Bootstrap function several times to obtain the standard error of our estimates.
34Differently from Cagetti (2003) who estimates a different set of parameters for college graduates, high school

graduates and high school dropouts graduates, we perform the structural estimation on the full population.
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Table 2 Estimation Results

ρ i
4.68 1.00

(0.13) (0.00)

10 Conclusion

There are many alternative choices that can be made for solving microe-
conomic dynamic stochastic optimization problems. The set of tech-
niques, and associated programs, described in these notes represents
an approach that I have found to be powerful, flexible, and efficient,
but other problems may require other techniques. For a much broader
treatment of many of the issues considered here, see Judd (1998).
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Appendices

A Further Details on SCF Data

Data used in the estimation is constructed using the SCF 1992, 1995,
1998, 2001 and 2004 waves. The definition of wealth is net worth
including housing wealth, but excluding pensions and social securities.
The data set contains only households whose heads are aged 26-60 and
excludes singles, following Cagetti (2003).35 Furthermore, the data set
contains only households whose heads are college graduates. The total
sample size is 4,774.
In the waves between 1995 and 2004 of the SCF, levels of normal

income are reported. The question in the questionnaire is "About what
would your income have been if it had been a normal year?" We consider
the level of normal income as corresponding to the model’s theoretical
object P , permanent noncapital income. Levels of normal income are
not reported in the 1992 wave. Instead, in this wave there is a variable
which reports whether the level of income is normal or not. Regarding
the 1992 wave, only observations which report that the level of income
is normal are used, and the levels of income of remaining observations
in the 1992 wave are interpreted as the levels of permanent income.
Normal income levels in the SCF are before-tax figures. These before-

tax permanent income figures must be rescaled so that the median of the
rescaled permanent income of each age group matches the median of each
age group’s income which is assumed in the simulation. This rescaled
permanent income is interpreted as after-tax permanent income. This
rescaling is crucial since in the estimation empirical profiles are matched
with simulated ones which are generated using after-tax permanent in-
come (remember the income process assumed in the main text). Wealth
/ permanent income ratio is computed by dividing the level of wealth
by the level of (after-tax) permanent income, and this ratio is used for
the estimation.36

35Cagetti (2003) argues that younger households should be dropped since educational choice is not modeled.
Also, he drops singles, since they include a large number of single mothers whose saving behavior is influenced by
welfare.

36Please refer to the archive code for details of how these after-tax measures of P are constructed.
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