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Abstract
In a risky world, a pessimist assumes the worst will happen. Someone who ignores

risk altogether is an optimist. Consumption decisions are mathematically simple for both
the pessimist and the optimist because both behave as if they live in a riskless world. A
consumer who is a realist (that is, who wants to respond optimally to risk) faces a much
more difficult problem, but (under standard conditions) will choose a level of spending
somewhere between that of the pessimist and the optimist. We use this fact to redefine
the space in which the realist searches for optimal consumption rules. The resulting
solution accurately represents the numerical consumption rule over the entire interval of
feasible wealth values with remarkably few computations.
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1 Introduction
Solving a consumption, investment, portfolio choice, or similar intertemporal opti-
mization problem using numerical methods generally requires the modeler to choose
how to represent a policy or value function. In the stochastic case, where analyt-
ical solutions are generally not available, a common approach is to use low-order
polynominal splines that exactly match the function (and maybe some derivatives)
at a finite set of gridpoints, and then to assume that interpolated or extrapolated
versions of the matching polynomial are a good representation elsewhere.
This paper argues that, at least in the context of a standard consumption problem,

a better approach is available, which relies upon the fact that in the absence of
uncertainty, the optimal consumption function has a simple analytical solution.
The key insight is that, under standard assumptions, the consumer who faces an
uninsurable labor income risk will consume less than a consumer with the same path
for expected income but who does not perceive any uncertainty as being attached to
that future income. The ‘realistic’ consumer who does perceive the risks will engage
in ‘precautionary saving,’ so the perfect foresight riskless solution provides an upper
bound to the solution that will actually be optimal. A lower bound is provided
by the behavior of a consumer who has the subjective belief that the future level
of income will be the worst that it can possibly be. This consumer, too, behaves
according to the analytical perfect foresight solution, but his certainty is that of a
pessimist who is extremely overconfident in his pessimism.
Using results from Carroll (2011b), we show how to use these upper and lower

bounds to tightly constrain the shape and characteristics of the solution to the
‘realist’s problem (that is, the solution to the problem of a consumer who correctly
perceives the risks to future income and behaves rationally in response).
After showing how to use the method in the baseline case, we show how refine

the method to encompass an even tighter theoretical bound, and how to extend it
to solve a problem in which the consumer faces both labor income risk and rate-of-
return risk.

2 The Realist’s Problem
We assume that the true reality facing the consumer is captured by the problem

max Et

[
T−t∑
n=0

βnu(ccct+n)

]
, (1)

subject to

aaat = mmmt − ccct (2)
bbbt+1 = aaatRt+1 (3)
yyyt+1 = pppt+1θt+1 (4)
mmmt+1 = bbbt+1 + yyyt+1 (5)

where

β − pure time discount factor
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aaat − assets after all actions have been accomplished in period t
bbbt+1 − ‘bank balances’ (nonhuman wealth) at the beginning of t+ 1

ccct − consumption in period t
mmmt − ‘market resources’ available for consumption (‘cash-on-hand’)
pppt+1 − ‘permanent labor income’ in period t+ 1

Rt+1 − interest factor (1 + rt+1) from period t to t+ 1

yyyt+1 − noncapital income in period t+ 1.

and the exogenous variables evolve according to

Rt = R - constant interest factor = 1 + r

pppt+1 = Γt+1pppt - permanent labor income dynamics (6)
log θt+n ∼ N (−σ2

θ/2, σ
2
θ) - lognormal transitory shocks ∀ n > 0.

It turns out (see Carroll (2011a) for a proof) that this problem can be rewritten
in a more convenient form in which choice and state variables are normalized by
the level of permanent income, e.g., using nonbold font for normalized variables,
mt = ccct/pppt. When that is done, the transformed version of the consumer’s problem
is

vt(mt) = max
ct

u(ct) + Et[βΓ1−ρ
t+1 vt+1(mt+1)] (7)

s.t.
at = mt − ct

mt+1 = (R/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1

and because we have not imposed a liquidity constraint, the solution satisfies the
Euler equation

u′(ct) = Et[βRΓ−ρt+1u′(ct+1)]. (8)

For the remainder of the paper we will assume that permanent income pppt grows
by a constant factor Γ and is not subject to stochastic shocks. (The generalizationto
the case of permanent shocks is straightforward.)

3 Benchmark: The Method of Endogenous
Gridpoints

For comparison to our new solution method, we use the endogenous gridpoints
solution to the microeconomic problem presented in Carroll (2006). That method
computes the level of consumption at a set of gridpoints for market resources m that
are determined endogenously using the Euler equation. The consumption function
is then constructed by linear interpolation among the gridpoints thus found.
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Carroll (2011a) describes a specific calibration of the model and constructs a
solution using five gridpoints chosen to capture the structure of the consumption
function reasonably well at values of m near the infinite-horizon target value. (See
those notes for details).
Unfortunately, the endogenous gridpoints solution is not very well-behaved outside

the original range of gridpoints targeted by the solution method. (Though other com-
mon solution methods are no better outside their own predefined ranges). Figure 1
demonstrates the point by plotting the amount of precautionary saving implied by a
linear extrapolation of our approximated consumption rule (the consumption of the
perfect foresight consumer c̄T−1 minus our approximation to optimal consumption
under uncertainty, c̀T−1). Although theory proves that precautionary saving is al-
ways positive, the linearly extrapolated numerical approximation eventually predicts
negative precautionary saving (at the point in the figure where the extrapolated locus
crosses the horizontal axis).
This error cannot be fixed by extending the upper gridpoint; in the presence of

serious uncertainty, the consumption rule will need to be evaluated outside of any
prespecified grid (because starting from the top gridpoint, a large enough realization
of the uncertain variable will push next period’s realization of assets above that
top; a similar argument applies below the bottom gridpoint). While a judicious
extrapolation technique can prevent this problem from being fatal (for example by
carefully excluding negative precautionary saving), the problem is often dealt with
using inelegant methods whose implications for the accuracy of the solution are
difficult to gauge.

4 The Method of Moderation

4.1 The Optimist, the Pessimist, and the Realist
4.1.1 The Consumption Function

As a preliminary to our solution, define ht as end-of-period human wealth (the
present discounted value of future labor income) for a perfect foresight version of
the problem of a ‘risk optimist:’ a consumer who believes with perfect confidence
that the shocks will always take the value 1, θt+n = E[θ] = 1 ∀ n > 0. The solution
to a perfect foresight problem of this kind takes the form1

c̄t(mt) = (mt + ht)κt (9)

for a constant minimal marginal propensity to consume κt given below. We similarly
define ht as ‘minimal human wealth,’ the present discounted value of labor income
if the shocks were to take on their worst possible value in every future period θt+n =
θ ∀ n > 0 (which we define as corresponding to the beliefs of a ‘pessimist’).
A first useful point is that, for the realist, a lower bound for the level of market

resources is mt = −ht, because if mt equalled this value then there would be a
positive finite chance (however small) of receiving θt+n = θ in every future period,

1For a derivation, see Carroll (2011b); κt is defined therein as the MPC of the perfect foresight consumer with
horizon T − t.
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which would require the consumer to set ct to zero in order to guarantee that the
intertemporal budget constraint holds. Since consumption of zero yields negative
infinite utility, the solution to realist consumer’s problem is not well defined for
values of mt < mt, and the limiting value of the realist’s ct is zero as mt ↓ mt.
Given this result, it will be convenient to define ‘excess’ market resources as the

amount by which actual resources exceed the lower bound, and ‘excess’ human
wealth as the amount by which mean expected human wealth exceeds guaranteed
minimum human wealth:

Nmt = mt +

=−mt︷︸︸︷
ht

Nht = ht − ht.

We can now transparently define the optimal consumption rules for the two perfect
foresight problems, those of the ‘optimist’ and the ‘pessimist.’ The ‘pessimist’
perceives human wealth to be equal to its minimum feasible value ht with certainty,
so consumption is given by the perfect foresight solution

ct(mt) = (mt + ht)κt
= Nmtκt.

The ‘optimist,’ on the other hand, pretends that there is no uncertainty about
future income, and therefore consumes

c̄t(mt) = (mt + ht − ht + ht)κt
= (Nmt + Nht)κt
= ct(mt) + Nhtκt.

It seems obvious that the spending of the realist will be strictly greater than that
of the pessimist and strictly less than that of the optimist. Figure 2 illustrates the
proposition for the consumption rule in period T − 1.
Proof is more difficult than might be imagined, but the necessary work is done in

Carroll (2011b) so we will take the proposition a fact and proceed by manipulating
the inequality:

Nmtκt < ct(mt + Nmt) < (Nmt + Nht)κt
−Nmtκt > −ct(mt + Nmt) > −(Nmt + Nht)κt

Nhtκt > c̄t(mt + Nmt)− ct(mt + Nmt) > 0

1 >

(
c̄t(mt + Nmt)− ct(mt + Nmt)

Nhtκt

)
︸ ︷︷ ︸

≡�̂t

> 0

where the fraction in the middle of the last inequality is the ratio of actual pre-
cautionary saving (the numerator is the difference between perfect-foresight con-
sumption and optimal consumption in the presence of uncertainty) to the maximum
conceivable amount of precautionary saving (the amount that would be undertaken
by the pessimist who consumes nothing out of any future income beyond the per-
fectly certain component). Defining µt = logNmt (which can range from −∞ to
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∞), the object in the middle of the last inequality is

�̂t(µt) ≡
(

c̄t(mt + eµt)− ct(mt + eµt)

Nhtκt

)
, (10)

and we now define

χ̂χχt(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(11)

= log (1/�̂t(µt)− 1) (12)

which has the virtue that it is linear in the limit as µt approaches +∞.
Given χ̂χχ, the consumption function can be recovered from

ĉt = c̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(χ̂χχt)

)
Nhtκt. (13)

Thus, the procedure is to calculate χ̂χχt at the points ~µt corresponding to the log
of the N~mt points defined above, and then using these to construct an interpolating
approximation `̂χχχt from which we indirectly obtain our approximated consumption
rule `̂ct by substituting `̂χχχt for χ̂χχ in equation (13).
Because this method relies upon the fact that the problem is easy to solve if the

decision maker has unreasonable views (either in the optimistic or the pessimistic
direction), and because the correct solution is always between these immoderate
extremes, we call our solution procedure the ‘method of moderation.’
Results are shown in Figure 3; a reader with very good eyesight might be able to

detect the barest hint of a discrepancy between the Truth and the Approximation
at the far righthand edge of the figure.

4.1.2 The Value Function

Often it is useful to know the value function as well as the consumption rule
associated with a problem. Fortunately, many of the tricks used when solving the
consumption problem have a direct analogue in approximation of the value function.
Consider the perfect foresight (or ‘optimist’) case in period T − 1:

vT−1(mT−1) = u(cT−1) + βu(cT )

= u(cT−1)
(
1 + β((βTR)1/ρ)1−ρ)

= u(cT−1)
(
1 + β(βTR)1/ρ−1

)
= u(cT−1)

(
1 + (βTR)1/ρ/R

)
= u(cT−1)PDVT

t (c)/cT−1︸ ︷︷ ︸
≡CT

t

where PDVT
t (c) is the present discounted value of consumption. A similar function

can be constructed recursively for earlier periods, yielding the general expression

vt(mt) = u(ct)CT
t (14)
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which can be transformed as

Λt ≡ ((1− ρ)vt)
1/(1−ρ)

= ct(CT
t )1/(1−ρ)

and since CT
t is a constant while the consumption function is linear, Λ̄t will also be

linear.
We apply the same transformation to the value function for the problem with

uncertainty (the realist’s problem):

Λt = ((1− ρ)vt(mt))
1/(1−ρ)

and an excellent approximation to the value function can be obtained by calculating
the values of Λ at the same gridpoints used by the consumption function approxi-
mation, and interpolating among those points.
However, as with the consumption approximation, we can do even better if we

realize that the Λ̄ function for the optimist’s problem is an upper bound for the Λ

function in the presence of uncertainty, and the value function for the pessimist is a
lower bound. Analogously to (10), define an upper-case

�̂t(µt) =

(
Λ̄t(mt + eµt)−Λt(mt + eµt)

Nhtκt(CT
t )1/(1−ρ)

)
(15)

and an upper-case version of the χχχ equation in (12):

X̂t(µt) = log

(
1− �̂t(µt)

�̂t(µt)

)
(16)

= log
(

1/�̂t(µt)− 1
)

(17)

and if we approximate these objects then invert them (as above with the �̂ and
χ̂χχ functions) we obtain a very high-quality approximation to our inverted value
function at the same points for which we have our approximated value function:

Λ̂t = Λ̄t −

=�̂t︷ ︸︸ ︷(
1

1 + exp(X̂t)

)
Nhtκt(CT

t )1/(1−ρ) (18)

from which we obtain our approximation to the value function as

v̂t = u(Λ̂t)

v̂mt = u′(Λ̂t)Λ̂
m.

Although a linear interpolation that matches the level of Λ at the gridpoints is
simple, a Hermite interpolation that matches both the level and the derivative of
the Λ̂t function at the gridpoints has the considerable virtue that the v̄t derived from
it numerically satisfies the envelope theorem at each of the gridpoints for which the
problem has been solved.
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5 Extensions

5.1 A Tighter Upper Bound
Carroll (2011b) derives an upper limit κ̄t for the MPC as mt approaches its lower
bound. Using this fact plus the strict concavity of the consumption function yields
the proposition that

ct(mt + Nmt) < κ̄tNmt. (19)

The solution method described above does not guarantee that approximated con-
sumption will respect this constraint between gridpoints, and a failure to respect the
constraint can occasionally cause computational problems in solving or simulating
the model. Here, we describe a method for constructing an approximation that
always satisfies the constraint.
Defining m#

t as the ‘cusp’ point where the two upper bounds intersect:(
Nm#

t + Nht
)
κt = κ̄tNm

#
t

Nm#
t =

κtNht
(1− κt)κ̄t

m#
t =

κtht − ht

(1− κt)κ̄t
,

we want to construct a consumption function for mt ∈ (mt,m
#
t ] that respects the

tighter upper bound:

Nmtκt < ct(mt + Nmt) < κ̄tNmt

Nmt(κ̄t − κt) > κ̄tNmt − ct(mt + Nmt) > 0

1 >
(
κ̄tNmt−ct(mt+Nmt)

Nmt(κ̄t−κt)

)
> 0.

Again defining µt = logNmt, the object in the middle of the inequality is

�̌t(µt) ≡
κ̄t − ct(mt + eµt)e−µt

κ̄t − κt
.

Asmt approaches −mt, �̌t(µt) converges to zero, while asmt approaches +∞, �̌t(µt)
approaches 1.
As before, we can derive an approximated consumption function; call it `̌ct. This

function will clearly do a better job approximating the consumption function for low
values of mt while the previous approximation will perform better for high values of
mt.
For middling values of m it is not clear which of these functions will perform

better. However, an alternative is available which performs well. Define the highest
gridpoint below m#

t as ¯̌m#
t and the lowest gridpoint above m#

t as m̂#
t . Then there

will be a unique interpolating polynomial that matches the level and slope of the
consumption function at these two points. Call this function c̃t(m).
Using indicator functions that are zero everywhere except for specified intervals,

111Lo(m) = 1 if m ≤ ¯̌m#
t

111Mid(m) = 1 if ¯̌m#
t < m < m̂#

t
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111Hi(m) = 1 if m̂#
t ≤ m

we can define a well-behaved approximating consumption function

c̀t = 111Lo`̌ct + 111Mid`̃ct + 111Hi`̂ct. (20)

This just says that, for each interval, we use the approximation that is most
appropriate. The function is continuous and once-differentiable everywhere, and
is therefore well behaved for computational purposes.
To construct the corresponding refined representation of the value function we

must first clarify one point: The upper-bound value function that we are constructing
will be the one implied by a consumer whose spending behavior is consistent with
the refined upper-bound consumption rule.
For mt ≥ m#

t , this consumption rule is the same as before, so the constructed
upper-bound value function is also the same. However, for values mt < m#

t matters
are slightly more complicated.
Start with the fact that at the cusp point,

v̄t(m
#
t ) = u(c̄t(m

#
t ))CT

t

= u(Nm#
t κ̄t)CT

t .

But for all mt,

v̄t(m) = u(c̄t(m)) + v̄t(m− c̄t(m)),

and we assume that for the consumer below the cusp point consumption is given by
κ̄Nmt so for mt < m#

t

v̄t(m) = u(κ̄tNm) + v̄t((1− κ̄t)Nm),

which is easy to compute because vt(at) = βv̄t+1(atR + 1) where v̄t is as defined
above because a consumer who ends the current period with assets exceeding the
lower bound will not expect to be constrained next period. (Recall again that we
are merely constructing an object that is guaranteed to be an upper bound for the
value that the ‘realist’ consumer will experience.) At the gridpoints defined by the
solution of the consumption problem can then construct

Λ̄t(m) = ((1− ρ)v̄t(m))1/(1−ρ)

which yields the appropriate vector for constructing X̌ and �̌. The rest of the
procedure is analogous to that performed for the consumption rule and is thus
omitted for brevity.

5.2 Stochastic Rate of Return
Thus far we have assumed that the interest factor is constant at R. Extending the
previous derivations to allow for a perfectly forecastable time-varying interest factor
Rt would be trivial. Allowing for a stochastic interest factor is less trivial.
The easiest case is where the interest factor is i.i.d.,

logRt+n ∼ N (r + φ− σ2
r/2, σ

2
r) ∀ n > 0 (21)

because in this case Merton (1969) and Samuelson (1969) showed that for a con-
sumer without labor income (or with perfectly forecastable labor income) the con-
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sumption function is linear, with an MPC2

κ = 1−
(
β Et[R1−ρ

t+1 ]
)1/ρ

(22)

and in this case the previous analysis applies once we substitute this MPC for the one
that characterizes the perfect foresight problem without rate-of-return risk. The
more realistic case where the interest factor has some serial correlation is more
complex. We consider the simplest case that captures the main features of empirical
interest rate dynamics: An AR(1) process. Thus the specification is

rt+1 − r = (rt − r)γ + εt+1 (23)

where r is the long-run mean log interest factor, 0 < γ < 1 is the AR(1) serial
correlation coefficient, and εt+1 is the stochastic shock.
The consumer’s problem in this case now has two state variables, mt and rt, and

is described by

vt(mt, rt) = max
ct

u(ct) + Et[βt+1Γ1−ρ
t+1 vt+1(mt+1, rt+1)] (24)

s.t.
at = mt − ct

rt+1 − r = (rt − r)γ + εt+1

Rt+1 = exp(rt+1)

mt+1 = (Rt+1/Γt+1)︸ ︷︷ ︸
≡Rt+1

at + θt+1.

We approximate the AR(1) process by a Markov transition matrix using standard
techniques. The stochastic interest factor is allowed to take on 11 values centered
around the steady-state value r and chosen [how?]. Given this Markov transition
matrix, conditional on the Markov AR(1) state the consumption functions for the
‘optimist’ and the ‘pessimist’ will still be linear, with identical MPC’s that are
computed numerically. Given these MPC’s, the (conditional) realist’s consumption
function can be computed for each Markov state, and the converged consumption
rules constitute the solution contingent on the dynamics of the stochastic interest
rate process.
In principle, this refinement should be combined with the previous one; further

exposition of this combination is omitted here because no new insights spring from
the combination of the two techniques.

6 Conclusion
The method proposed here is not universally applicable. For example, the method
cannot be used for problems for which upper and lower bounds to the ‘true’ solution
are not known. But many problems do have obvious upper and lower bounds, and
in those cases (as in the consumption example used in the paper), the method may
result in substantial improvements in accuracy and stability of solutions.

2See CRRA-RateRisk for a derivation.
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