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1 Numerical Solution

1.1 The Consumption Function

To solve the model by the method of reverse shooting, we need cet as a function of cet+1.(
cet+1

cet

)
= Γ−1(Rβ)1/ρ

{
1 + 0

[(
cet+1

cut+1

)ρ
− 1

]}1/ρ

cet =

 cet+1

Γ−1(Rβ)1/ρ
{

1 + 0
[(

cet+1

κu(me
t+1−1)

)ρ
− 1
]}1/ρ


= Γ(Rβ)−1/ρcet+1

{
1 + 0

[(
cet+1

κu(me
t+1 − 1)

)ρ
− 1

]}−1/ρ

.

We also need the reverse shooting equation for me
t :

me
t = R−1(me

t+1 − 1) + cet .

The reverse shooting approximation will be more accurate if we use it to obtain
estimates of the marginal propensity to consume as well. These are obtained by dif-
ferentiating the consumption Euler equation with respect to mt:

u′(ce(mt)) =

i︷ ︸︸ ︷
RβΓ1−ρ Et[u′(c•(mt+1))]

u′′(ce(mt))κκκ
e(mt) = iR(1− κκκe(mt))Et[u′′(c•(mt+1))κκκ

•(mt+1)] (1)

so that defining κet = κκκe(mt) we have

κet = (1− κet)iR(1/u′′(cet))Et [u′′(c•t+1)κ
•
t+1]︸ ︷︷ ︸

≡\t+1

(2)

(1 + \t+1)κ
e
t = \t+1 (3)

κet =

(
\t+1

1 + \t+1

)
. (4)

At the target level of me,
\̌/Ri︷ ︸︸ ︷

(1/u′′(če))Et [u′′(c•)κ•] = ��0

=1︷ ︸︸ ︷
(u′′(če)/u′′(če))κe + 0(u′′(ču)/u′′(če))κu

so that

\̌ = iR(��0κe + 0(ču/če)−ρ−1κu) (5)

yielding from (3) a quadratic equation in κe:(
1 + iR(��0κe + 0(ču/če)−ρ−1κu)

)
κe = iR(��0κe + 0(ču/če)−ρ−1κu) (6)

which has one solution for κe in the interval [0, 1], which is the MPC at target wealth.1

1The Mathematica code constructs this derivative and solves the quadratic equation analytically; the Matlab code simply copies the
analytical formula generated by Mathematica .
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The limiting MPC as consumption approaches zero, κ̄e, will also be useful; this is
obtained by noting that utility in the employed state next year becomes asymptotically
irrelevant as cet approaches zero, so that

lim
cet→0

\t+1︷ ︸︸ ︷
iRκet+1

(
��0(cet+1/c

e
t)
−ρ−1 + 0(cut+1/c

e
t)
−ρ−1κu

)
= iR0(cut+1/c

e
t)
−ρ−1κu

= iR0(κuRaet/(aet(κ̄e/(1− κ̄e)))−ρ−1)κu

= iR0(κuR((1− κ̄e)/κ̄e))−ρ−1κu

so that from (4) we have

κ̄e ≡ lim
mt→0

κκκe(mt) =

(
iR0(κuR((1− κ̄e)/κ̄e))−ρ−1κu

1 + iR0(κuR((1− κ̄e)/κ̄e))−ρ−1κu

)
(7)

which implicitly defines κ̄e. After parameter values have been defined a numerical
rootfinder can calculate a solution almost instantly.
Finally, it will be useful to have an estimate of the curvature (second derivative) of the

consumption function at the target. This can be obtained by a procedure analogous to
the one used to obtain the MPC: differentiate the differentiated Euler equation (1) again
and substitute the target values. Noting that κu′ = 0, we can obtain:

(κκκet)
2u′′′(cet) + κκκe′t u′′(cet) = iR{(−κκκe′t )Et[u′′(c•t+1)κκκ

•
t+1] (8)

+ R(1− κκκet)2
(
Et[(κκκ•t+1)

2u′′′(c•t+1)] +��0u′′(cet+1)κκκ
e′
t+1

)
so that

κκκe′t =

(
iR2(1− κκκet)2

(
Et[(κκκ•t+1)

2u′′′(c•t+1)] +��0u′′(cet+1)κκκ
e′
t+1

)
− (κκκet)

2u′′′(cet)

u′′(cet) + iREt[u′′(c•t+1)κκκ
•
t+1]

)
which can be further simplified at the target because κκκe′t (m̌) = κκκe′t+1(m̌) = κe′ so that

κe′ =

(
iR2(1− κe)2 Et[(κ•)2u′′′(c•)]− (κe)2u′′′(če)

u′′(če) + iREt[u′′(c•)κ•]− iR2(1− κe)2
��0u′′(če)

)
. (9)

Another differentiation of (9) similarly allows the construction of a formula for the
value of κe′′ at the target m̌; in principle, any number of derivatives can be constructed
in this manner.2

Reverse shooting requires us to solve separately for an approximation to the consump-
tion function above the steady state and another approximation below the steady state.
Using the approximate steady-state κe and κe′ obtained above, we begin by picking a
very small number for N and then creating a Taylor approximation to the consumption
function near the steady state:

me
t̀

= m̌ + N (10)
c̃(N) = če + Nκe + (N2/2)κe′ + (N3/6)κe′′ (11)

and then iterate the reverse-shooting equations until we reach some period n in which
me
t̀−n escapes some pre-specified interval [me, m̄e] (where the natural value for me is 1

2Mathematica permits the convenient computation of the analytical derivatives, and then the substitution of constant target values to
obtain analytical expressions like (9). These solutions are simply imported by hand into the Matlab code.
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because this is the m that would be owned by a consumer who had saved nothing in
the prior period and therefore is below any feasible value of m that could be realized by
an optimizing consumer). This generates a sequence of points all of which are on the
consumption function. A parallel procedure (substituting − for + in (10) and where
appropriate in (11)) generates the sequence of points for the approximation below the
steady state. Taken together with the already-derived characterization of the function
at the target level of wealth, these points constitute the basis for an interpolating
approximation to the consumption function on the interval [me, m̄e].

1.2 The Value Function

As a preliminary, note that since u(xy) = u(x)y1−ρ, value for an unemployed consumer
is

Vu
t = u(Cu

t ) + βu(Cu
t+1) + β2u(Cu

t+2) + ... (12)

= u(Cu
t )

(
1 + β{(Rβ)1/ρ}1−ρ + β2

{
(Rβ)2/ρ

}1−ρ
+ ...

)
(13)

= u(Cu
t )

(
1

1− β(Rβ)(1/ρ)−1

)
︸ ︷︷ ︸

≡v

(14)

where the RIC guarantees that the denominator in the fraction is a positive number.
From this we can see that value for the normalized problem is similarly:

vu(mt) = u(κumt)v. (15)

Turning to the problem of the employed consumer, we have

ve(mt) = u(cet) + βΓ1−ρ Et[v•(mt+1)] (16)

and at the target level of market resources this will be unchanging for a consumer who
remains employed so that

v̌e = u(če) + βΓ1−ρ (��0v̌e + 0vu(aeR)) (17)
(1− βΓ1−ρ

��0)v̌e = u(če) + βΓ1−ρ0vu(aeR) (18)

v̌e =

(
u(če) + βΓ1−ρ0vu(aeR)

(1− βΓ1−ρ
��0)

)
. (19)

Given these facts, our recursion for generating a sequence of points on the consumption
function can be used at the same time to generate corresponding points on the value
function from

vet = u(cet) + βΓ1−ρ (��0vet+1 + 0vu(aetR)) (20)

with the first iteration point generated by numerical integration from

ve
t̀

= v̌e +

∫ N

0

u′(c̃(•))d• (21)
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2 The Algorithm

With the above results in hand, the model is solved and the various functions constructed
as follows. Define ?t = {me

t , c
e
t , κ

e
t , v

e
t , κ

e′
t } as a vector of points that characterizes a

particular situation that an optimizing employed household might be in at any given
point in time. Using the backwards-shooting functions derived above, for any point ?t̀
we can construct the sequence of points that must have led up to it: ?t̀−1 and ?t̀−2 and
so on. And using the approximations near the steady state like (11), we can construct a
vector-valued function ◦◦◦(N) that generates, e.g., {m̌ + N, c̃(N), ...}.
Now define an operator · · · as follows: · · · applied to some starting point ?t uses the

backwards dynamic equations defined above to produce a vector of points ?t−1, ?t−2, ...
consistent with the model until the me

t−n that is produced goes outside of the pre-defined
bounds [me, m̄e] for solving the problem.
We can merge the points below the steady state with the steady state with the points

above the steady state to produce ...
? = · · · (◦◦◦(−ε))∪◦◦◦(0)∪ · · · (◦◦◦(ε)). These points can

then be used to generate appropriate interpolating approximations to the consumption
function and other desired functions.
Designate, e.g., the vector of points on the consumption function generated in this

manner by ...
? [c], so that

{...? [m], {...? [c],
...
? [κe],

...
? [κe′]}ᵀ}ᵀ =


m[1] {c[1], κe[1], κe′[1]}
m[2] {c[2], κe[2], κe′[2]}
... ...

m[N ] {c[N ], κe[N ], κe′[N ]}

 (22)

where N is the number of points that have been generated by the merger of the backward
shooting points described above.
The object (22) is not an arbitrary example; it reflects a set of values that uniquely

define a fourth order piecewise polynomial spline such that at every point in the set
the polynomial matches the level and first derivative included in the list. Standard
numerical mathematics software can produce the interpolating function with this input;
for example, the syntax in Mathematica is simply

cE = Interpolation[{...? [m], {...? [c],
...
? [κe],

...
? [κe′]}ᵀ}ᵀ]. (23)

which creates a function cE that is aC4 interpolating polynomial connecting these points.
The reverse shooting algorithm terminates at some finite maximum point m̄, but for

completeness it is useful to have an approximation to the consumption function that is
reasonably well behaved for any m̌ no matter how large.3

Since we know that the consumption function in the presence of uncertainty asymptotes
to the perfect foresight function, we adopt the following approach. Defining the level of
precautionary saving as4

�c(m) = c̄(m)− c(m), (24)

3An extrapolation of the approximating interpolation will not perform well; a polynomial approximation will inevitably “blow up” if
evaluated at large enough m̌.

4Mnemonic: This is the amount of consumption that is canceled as a result of uncertainty.
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we know (see the discussion below in appendix section 3) that

lim
m→∞

�c(m) = 0. (25)

Defining ~m = m− m̄, a convenient functional form to postulate for the propensity to
precautionary-save is

�c(m) = eφ0−φ1 ~m + eγ0−γ1 ~m (26)

with derivatives

�c′(m) = −φ1e
φ0−φ1 ~m − γ1e

γ0−γ1 ~m (27)
�c′′(m) = φ2

1e
φ0−φ1 ~m + γ2

1e
γ0−γ1 ~m (28)

�c′′′(m) = −φ3
1e
φ0−φ1 ~m − γ3

1e
γ0−γ1 ~m. (29)

Evaluated at m̄ (for which�c and its derivatives will have numerical values assigned by
the reverse-shooting solution method described above), this is a system of four equations
in four unknowns and, though nonlinear, can be easily solved for values of the φ and γ
coefficients that match the level and first three derivatives of the “true” �c function.5

3 Modified Formulas For Case Where Γ ≥ R

The text asserts that if Γ < R the consumption function for a finite-horizon employed
consumer approaches the c̄t(m) function that is optimal for a perfect-foresight consumer
with the same horizon,

lim
m↑∞

c̄t(m)− ct(m) = 0. (30)

This proposition can be proven by careful analysis of the consumption Euler equation,
noting that as m approaches infinity the proportion of consumption will be financed out
of (uncertain) labor income approaches zero, and that the magnitude of the precautionary
effect is proportional to the square of the proportion of such consumption financed out
of uncertain labor income.
A footnote also claims that for employed consumers, c(m) approaches a different, but

still well-defined, limit even if Γ ≥ R, so long as the impatience condition holds. It turns
out that the limit in question is the one defined by the solution to a perfect foresight
problem with liquidity constraints. A semi-analytical solution does exist in this case, but
it is omitted.

5The exact symmetry in the treatment of γ and φ means that there will actually be two symmetrical solutions; either can be used.
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