The Distribution of Wealth and the Marginal Propensity to Consume

Christopher Carroll¹ Jiri Slacalek² Kiichi Tokuoka³

¹Johns Hopkins University and NBER ccarroll@jhu.edu

> ²European Central Bank jiri.slacalek@ecb.int

³MOF, Japan kiichi.tokuoka@mof.go.jp

May 2013

(□) (@) (E) (E) E

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - \sim If $\kappa = 0.75$ then multiplier is 4-1=3
 - If $\kappa=0.05$ then multiplier is only pprox 0.05

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

<ロト < 同ト < 三ト

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - \sim If $\kappa = 0.75$ then multiplier is 4-1=3
 - If $\kappa=0.05$ then multiplier is only pprox 0.05

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Image: A math a math

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of *n* are this large).
 - If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - > (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of *i*c are this large).
 - If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is about the size of n in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

<ロト < 同ト < 三ト

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of κ are this large)
 - If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of κ are this large)
 - If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< ロ > < 同 > < 三 >

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of κ are this large)
 - If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Why Worry About the MPC ($\equiv \kappa$)?

Nobody trying to make a forecast in 2008-2010 would ask:

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of κ are this large)
 - If $\kappa=0.05$ then multiplier is only ≈ 0.05

• (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Why Worry About the MPC ($\equiv \kappa$)?

- Big 'stimulus' tax cuts
- Keynesian multipliers should be big in liquidity trap
- Crude Keynesianism: Transitory tax cut multiplier is $1/(1-\kappa)-1$
 - If $\kappa = 0.75$ then multiplier is 4-1=3
 - (some micro estimates of κ are this large)
 - If $\kappa=0.05$ then multiplier is only ≈ 0.05
 - (this is about the size of κ in RBC models)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

Our Claim: Heterogeneity Is Key To Modeling the MPC

Clarida (2012): Missing this is why DSGE models failed

- Theory: HH c function is *concave* in market resources *m*
 - \sim 4H/s at different $m \rightarrow aptimally$ behave very differently \sim 4n addition to the MPC, m affects

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Our Claim: Heterogeneity Is Key To Modeling the MPC

• Clarida (2012): Missing this is why DSGE models failed

- Theory: HH c function is *concave* in market resources *m*
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, *m* affects
 - L supply ("paradox of toil")
 - nisk aversion of the value function
 - response to financial shocks (say, revised view of $\sigma_{\rm starts}^2$)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is concave in market resources m
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, *m* affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of σ_{stocks}^2)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is concave in market resources m
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, *m* affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of σ_{stocks}^2)

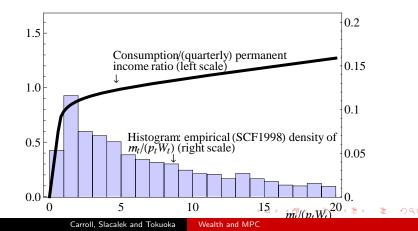
The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is *concave* in market resources *m*
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, m affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of $\sigma_{
 m stocks}^2$)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is *concave* in market resources *m*
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, m affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of σ_{stocks}^2)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)


- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is *concave* in market resources *m*
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, m affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of $\sigma^2_{\rm stocks}$)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

- Clarida (2012): Missing this is why DSGE models failed
- Theory: HH c function is concave in market resources m
 - HH's at different $m \rightarrow optimally$ behave very differently
 - In addition to the MPC, m affects
 - L supply ("paradox of toil")
 - risk aversion of the value function
 - response to financial shocks (say, revised view of σ_{stocks}^2)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Consumption Concavity and Wealth Heterogeneity

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Microeconomics of Consumption

- c chosen optimally: Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Microeconomics of Consumption

- c chosen optimally: Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth *c*, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Microeconomics of Consumption

- c chosen optimally:
 Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth *c*, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Image: A math a math

Microeconomics of Consumption

- c chosen optimally: Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

> Image: A mathematical and A mathematica A mathematical and A mathem

Microeconomics of Consumption

- c chosen optimally:
 Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

Microeconomics of Consumption

Since Friedman's (1957) PIH:

- c chosen optimally: Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means

Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

Microeconomics of Consumption

- c chosen optimally: Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Microeconomics of Consumption

- c chosen optimally:
 Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Image: A image: A

Microeconomics of Consumption

- c chosen optimally:
 Want to smooth c in light of y fluctuations
- Single most important thing to get right is income dynamics!
- With smooth c, income dynamics drive everything!
 - Saving/dissaving: Depends on whether $\mathbb{E}[\Delta y] \uparrow$ or $\mathbb{E}[\Delta y] \downarrow$
 - Wealth distribution depends on integration of saving
- Cardinal sin: Assume crazy income dynamics
 - No end can justify this means
 - Throws out the defining core of the intellectual framework

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

(日)

Our Goal: "Serious" Microfoundations

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity.
 - View it as a proxy for many kinds of heterogeneity.

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

(日)

Our Goal: "Serious" Microfoundations

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth Second
 - Risk Aversion

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

(日)

Our Goal: "Serious" Microfoundations

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

Our Goal: "Serious" Microfoundations

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion
 - 0 . . .

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

<ロト < 同ト < 三ト

Our Goal: "Serious" Microfoundations

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion
 - 0 . . .

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< fi> ↓ fi

Our Goal: "Serious" Microfoundations

Requires three changes to well-known Krusell-Smith model:

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

• ...

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Our Goal: "Serious" Microfoundations

Requires three changes to well-known Krusell-Smith model:

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

• ...

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Image: A math and A

Our Goal: "Serious" Microfoundations

Requires three changes to well-known Krusell-Smith model:

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

• ...

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Our Goal: "Serious" Microfoundations

Requires three changes to well-known Krusell-Smith model:

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

• ...

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Our Goal: "Serious" Microfoundations

Requires three changes to well-known Krusell-Smith model:

- Sensible microeconomic income process
- Finite lifetimes
- Match wealth distribution
 - Here, achieved by preference heterogeneity
 - View it as a proxy for many kinds of heterogeneity
 - Age
 - Growth
 - Risk Aversion

• ...

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

To-Do List

O Calibrate realistic income process

- 2 Match empirical wealth distribution
- Back out optimal C and MPC out of transitory income
- Is MPC in line with empirical estimates?

Our Question:

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

To-Do List

- O Calibrate realistic income process
- Ø Match empirical wealth distribution
- Back out optimal C and MPC out of transitory income
- Is MPC in line with empirical estimates?

Our Question:

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

To-Do List

- O Calibrate realistic income process
- Ø Match empirical wealth distribution
- Back out optimal C and MPC out of transitory income
- Is MPC in line with empirical estimates?

Our Question:

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

To-Do List

- O Calibrate realistic income process
- Ø Match empirical wealth distribution
- Back out optimal C and MPC out of transitory income
- Is MPC in line with empirical estimates?

Our Question:

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

< D > < P > < P >

To-Do List

- O Calibrate realistic income process
- Ø Match empirical wealth distribution
- Back out optimal C and MPC out of transitory income
- Is MPC in line with empirical estimates?

Our Question:

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Friedman (1957): Permanent Income Hypothesis

 $\begin{array}{rcl} Y_t &=& P_t + T_t \\ C_t &=& P_t \end{array}$

Progress since then

- Micro data: Friedman description of income shocks works well
- Math: Friedman's words well describe optimal solution to dynamic stochastic optimization problem of impatient consumers with geometric discounting under CRRA utility with uninsurable idiosyncratic risk calibrated using these micro income dynamics (!)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Friedman (1957): Permanent Income Hypothesis

$$\begin{array}{rcl} Y_t &=& P_t + T_t \\ C_t &=& P_t \end{array}$$

Progress since then

- Micro data: Friedman description of income shocks works well
- Math: Friedman's words well describe optimal solution to dynamic stochastic optimization problem of impatient consumers with geometric discounting under CRRA utility with uninsurable idiosyncratic risk calibrated using these micro income dynamics (!)

The MPC Theory and Evidence Essential Consumption Microfoundations Friedman (1957)

Friedman (1957): Permanent Income Hypothesis

$$\begin{array}{rcl} Y_t &=& P_t + T_t \\ C_t &=& P_t \end{array}$$

Progress since then

- Micro data: Friedman description of income shocks works well
- Math: Friedman's words well describe optimal solution to dynamic stochastic optimization problem of impatient consumers with geometric discounting under CRRA utility with uninsurable idiosyncratic risk calibrated using these micro income dynamics (!)

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Our (Micro) Income Process

Idiosyncratic (household) income process is logarithmic Friedman:

 p_t = permanent income ξ_t = transitory income ψ_{t+1} = permanent shock W = aggregate wage rate

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Further Details of Income Process

Modifications from Carroll (1992):

Trans income ξ_t incorporates unemployment insurance:

$$\xi_t = \mu$$
 with probability u
= $(1 - \tau)\overline{\ell}\theta_t$ with probability $1 - u$

 μ is UI when unemployed

 τ is the rate of tax collected for the unemployment benefits

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Image: Image:

Model Without Aggr Uncertainty: Decision Problem

$$v(m_t) = \max_{\{c_t\}} u(c_t) + \beta \not D \mathbb{E}_t \left[\psi_{t+1}^{1-\rho} v(m_{t+1}) \right]$$
s.t.
$$a_t = m_t - c_t$$

$$a_t \ge 0$$

$$k_{t+1} = a_t / (\not D \psi_{t+1})$$

$$m_{t+1} = (\neg + r) k_{t+1} + \xi_{t+1}$$

$$r = \alpha a(\not K / \bar{\ell} \bm{L})^{\alpha - 1}$$

Variables normalized by $p_t W$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日)

What Happens After Death?

- You are replaced by a new agent whose permanent income is equal to the population mean
- Prevents the population distribution of permanent income from spreading out

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

What Happens After Death?

- You are replaced by a new agent whose permanent income is equal to the population mean
- Prevents the population distribution of permanent income from spreading out

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

What Happens After Death?

- You are replaced by a new agent whose permanent income is equal to the population mean
- Prevents the population distribution of permanent income from spreading out

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Ergodic Distribution of Permanent Income

Exists, if death eliminates permanent shocks:

 $\mathcal{D}\mathbb{E}[\psi^2] < 1.$

Holds.

Population mean of p^2 :

$$\mathbb{M}[p^2] = \left(\frac{\mathsf{D}}{1 - \mathcal{D}\mathbb{E}[\psi^2]}\right)$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income **Parameter Values** Annual Income Variances Our Strategy

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Parameter Values

• β , ρ , α , δ , $\bar{\ell}$, μ , and u taken from JEDC special volume

• Key new parameter values:

Description	Param	Value	Source
Prob of Death per Quarter Variance of Log ψ_t Variance of Log θ_t	$\begin{array}{c} D \\ \sigma_{\psi}^2 \\ \sigma_{\theta}^2 \end{array}$	$0.005 \\ 0.016/4 \\ 0.010 imes 4$	Life span of 50 years Carroll (1992); SCF Carroll (1992)

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income **Parameter Values** Annual Income Variances Our Strategy

Image: A mathematical states of the state

Parameter Values

• β , ρ , α , δ , $\bar{\ell}$, μ , and u taken from JEDC special volume

• Key new parameter values:

Description	Param	Value	Source
Prob of Death per Quarter Variance of Log ψ_t Variance of Log θ_t	$egin{array}{c} D \ \sigma_\psi^2 \ \sigma_ heta^2 \end{array}$	$0.005 \\ 0.016/4 \\ 0.010 imes 4$	Life span of 50 years Carroll (1992); SCF Carroll (1992)

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

< D > < P > < P >

Annual Income, Earnings, or Wage Variances

Our parameters	$\sigma_\psi^2 \ 0.016$	σ_{ξ}^2 0.010
Carroll (1992) Storesletten, Telmer, and Yaron (2004) Meghir and Pistaferri (2004)* Low, Meghir, and Pistaferri (2010)	0.016 0.008–0.026 0.031 0.011 0.010–0.030	0.010 0.316 0.032 0.029-0.055
Blundell, Pistaferri, and Preston (2008a)* Implied by KS-JEDC Implied by Castaneda et al. (2003)	0.000 0.028	0.029-0.055 0.038 0.004

* Meghir and Pistaferri (2004) and Blundell, Pistaferri, and Preston (2008a) assume that the transitory component is serially correlated (an MA process), and report the variance of a subelement of the transitory component. σ_{ξ}^2 for these articles are calculated using their MA estimates.

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

<ロ> (日) (日) (日) (日) (日)

Typology of Our Models

Three Dimensions

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日) (同) (三) (1)

.⊒ →

Typology of Our Models

Three Dimensions

$\bullet \quad \text{Discount Factor } \beta$

- ' β -Point' model: Single discount factor
- 'β-Dist' model: Uniformly distributed discount factor

- (No)
- Krusell–Smith
- Friedman/Buffer Stock
- Impirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日) (同) (三) (1)

Typology of Our Models

Three Dimensions

Discount Factor β 'β-Point' model: Single discount factor 'β-Dist' model: Uniformly distributed discount factor Aggregate Shocks (No) Krusell–Smith Friedman/Buffer Stock Empirical Wealth Variable to Match Net Worth Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日) (同) (三) (1)

.⊒ →

Typology of Our Models

Three Dimensions

$\bullet \quad \text{Discount Factor } \beta$

- 'β-Point' model: Single discount factor
- 'β-Dist' model: Uniformly distributed discount factor

Aggregate Shocks

- (No)
- Krusell–Smith
- Friedman/Buffer Stock

Impirical Wealth Variable to Match

- Net Worth
- Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日)

Typology of Our Models

Three Dimensions

$\bullet \ \ \mathsf{Discount} \ \ \mathsf{Factor} \ \ \beta$

- 'β-Point' model: Single discount factor
- 'β-Dist' model: Uniformly distributed discount factor

Aggregate Shocks

- (No)
- Krusell–Smith
- Friedman/Buffer Stock

Empirical Wealth Variable to Match

- Net Worth
- Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日)

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor

- (No)
- Krusell–Smith
- Friedman/Buffer Stock
- 3 Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日)

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor
- Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock
- 3 Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

(日)

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor

Aggregate Shocks

- (No)
- Krusell–Smith
- Friedman/Buffer Stock

3 Empirical Wealth Variable to Match

Net Worth

Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

< □ > < 同 > < 回 >

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor

- (No)
- Krusell–Smith
- Friedman/Buffer Stock
- Sempirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

< □ > < 同 > < 回 >

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor

- (No)
- Krusell–Smith
- Friedman/Buffer Stock
- Sempirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

< □ > < 同 > < 回 >

Typology of Our Models

Three Dimensions

- $\bullet \quad \text{Discount Factor } \beta$
 - 'β-Point' model: Single discount factor
 - 'β-Dist' model: Uniformly distributed discount factor

- (No)
- Krusell–Smith
- Friedman/Buffer Stock
- Sempirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Dimension 1: Estimation of β -Point and β -Dist

' β -Point' model

• 'Estimate' single \dot{eta} by matching the capital–output ratio

β-Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20, 40, 60, 80} (w_i - \omega_i)^2,$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Dimension 1: Estimation of β -Point and β -Dist

' β -Point' model

• 'Estimate' single \dot{eta} by matching the capital-output ratio

β -Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20, 40, 60, 80} (w_i - \omega_i)^2,$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Dimension 1: Estimation of β -Point and β -Dist

' β -Point' model

• 'Estimate' single \dot{eta} by matching the capital-output ratio

'β-Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Dimension 1: Estimation of β -Point and β -Dist

' β -Point' model

• 'Estimate' single \dot{eta} by matching the capital-output ratio

'β-Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Dimension 1: Estimation of β -Point and β -Dist

' β -Point' model

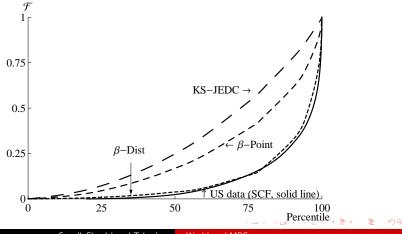
• 'Estimate' single \dot{eta} by matching the capital-output ratio

'β-Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β
 ^ˆ − ∇, β
 ^ˆ + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy


Results: Wealth Distribution

Micro Income Process								
	Friedman/Buffer Stock		KS-JEDC	KS-	KS-Orig [◊]			
	Point Discount Factor [‡]	Uniformly Distributed Discount	Our solution		Hetero		Hetero	
	β -Point	Factors* β -Dist				U.S. Data*		
Top 1%	10.	26.4	3.	3.0	24.0	29.6		
Top 20%	55.1	83.1	39.7	35.0	88.0	79.5		
Top 40%	76.9	93.7	65.4			92.9		
Top 60%	90.1	97.4	83.5			98.7		
Top 80%	97.5	99.3	95.1			100.4		
. tà e					→ < ≥ > <	≣> ≣ 4		

Carroll, Slacalek and Tokuoka Wealth and MPC

Income process Decision Problem What Happens After Death? There Is an Ergodic Distribution of Permanent Income Parameter Values Annual Income Variances Our Strategy

Results: Wealth Distribution

Carroll, Slacalek and Tokuoka Wealth and MPC

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.a: Adding KS Aggregate Shocks

Model with KS Aggregate Shocks: Assumptions

- Only two aggregate states (good or bad)
- Aggregate productivity $a_t = 1 \pm \triangle^a$
- Unemployment rate u depends on the state (u^g or u^b)

Parameter values for aggregate shocks from Krusell and Smith (1998)

Parameter	Value
\triangle^a	0.01
u ^g	0.04
и ^ь	0.10
Agg transition probability	0.125

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.a: Adding KS Aggregate Shocks

Model with KS Aggregate Shocks: Assumptions

- Only two aggregate states (good or bad)
- Aggregate productivity $a_t = 1 \pm \triangle^a$
- Unemployment rate u depends on the state (u^g or u^b)

Parameter values for aggregate shocks from Krusell and Smith (1998)

Parameter	Value
\triangle^a	0.01
u ^g	0.04
и ^ь	0.10
Agg transition probability	0.125

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.a: Adding KS Aggregate Shocks

Model with KS Aggregate Shocks: Assumptions

- Only two aggregate states (good or bad)
- Aggregate productivity $a_t = 1 \pm riangle^a$
- Unemployment rate u depends on the state (u^g or u^b)

Parameter values for aggregate shocks from Krusell and Smith (1998)

Parameter	Value
\triangle^a	0.01
и ^g	0.04
и ^ь	0.10
Agg transition probability	0.125

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.a: Adding KS Aggregate Shocks

Model with KS Aggregate Shocks: Assumptions

- Only two aggregate states (good or bad)
- Aggregate productivity $a_t = 1 \pm riangle^a$
- Unemployment rate u depends on the state (u^g or u^b)

Parameter values for agg	regate shocks from K	(rusell and Smith (1998)
--------------------------	----------------------	---------------------	-------

Parameter	Value
\triangle^a	0.01
u ^g	0.04
и ^ь	0.10
Agg transition probability	0.125

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

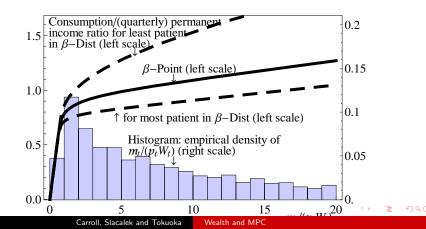
< D > < P > < P >

- HH needs to forecast $\boldsymbol{k}_t \equiv \boldsymbol{K}_t / \bar{\ell}_t \boldsymbol{L}_t$ since it determines future interest rates and wages.
- Two broad approaches
 - Direct computation of the system's law of motion Advantage: fast, accurate
 - Simulations (iterate until convergence) Advantage: directly generate micro data ⇒ we do

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

- HH needs to forecast $\boldsymbol{k}_t \equiv \boldsymbol{K}_t / \bar{\ell}_t \boldsymbol{L}_t$ since it determines future interest rates and wages.
- Two broad approaches
 - Direct computation of the system's law of motion Advantage: fast, accurate
 - ② Simulations (iterate until convergence) Advantage: directly generate micro data ⇒ we do this

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks


- HH needs to forecast $\mathbf{k}_t \equiv \mathbf{K}_t / \bar{\ell}_t \mathbf{L}_t$ since it determines future interest rates and wages.
- Two broad approaches
 - Direct computation of the system's law of motion Advantage: fast, accurate
 - ② Simulations (iterate until convergence) Advantage: directly generate micro data ⇒ we do this

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

- HH needs to forecast $\boldsymbol{k}_t \equiv \boldsymbol{K}_t / \bar{\ell}_t \boldsymbol{L}_t$ since it determines future interest rates and wages.
- Two broad approaches
 - Direct computation of the system's law of motion Advantage: fast, accurate
 - Simulations (iterate until convergence)
 Advantage: directly generate micro data ⇒ we do this

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Marginal Propensity to Consume & Net Worth

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Results: MPC (in Annual Terms)

	Micro Income Process			
	Friedman/	Friedman/Buffer Stock		
	β -Point	β -Dist	Our solution	
Overall average	0.1	0.23	0.05	
By wealth/permanent income ratio				
Top 1%	0.06	0.05	0.04	
Тор 20%	0.06	0.06	0.04	
Тор 40%	0.06	0.08	0.04	
Тор 60%	0.07	0.12	0.04	
Bottom 1/2	0.13	0.35	0.05	
By employment status				
Employed	0.09	0.2	0.05	
Unemployed	0.23	<u>,0.53 ,</u>	< ≥ > 0.06, ≥	

Carroll, Slacalek and Tokuoka Wealth and MPC

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

(日) (同) (三) (1)

Estimates of MPC in the Data: $\sim 0.2-0.6$

	Cons	sumption Meas	sure		
Authors	Nondurables	Durables	Total PCE	Horizon*	Event/Sa
Blundell, Pistaferri, and Preston (2008b) [‡]	0.05				Estimatio
Coronado, Lupton, and Sheiner (2005)			0.36	1 Year	2003 Ta×
Hausman (2012)			0.6-0.75	1 Year	1936 Vet
Jappelli and Pistaferri (2013)	0.48				Italy, 201
Johnson, Parker, and Souleles (2009)	~ 0.25			3 Months	2003 Chi
Lusardi (1996) [‡]	0.2-0.5				Estimatio
Parker (1999)	0.2			3 Months	Estimatio
Parker, Souleles, Johnson, and McClelland (2011)	0.12-0.30		0.50-0.90	3 Months	2008 Eco
Sahm, Shapiro, and Slemrod (2010)			$\sim 1/3$	1 Year	2008 Eco
Shapiro and Slemrod (2009)			$\sim 1/3$	1 Year	2008 Eco
Souleles (1999)	0.045-0.09	0.29-0.54	0.34-0.64	3 Months	Estimatio
Souleles (2002)	0.6-0.9			1 Year	The Rea
					of the Ea

Notes: [‡]: elasticity.

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

- Motivation:
 - More plausible and tractable aggregate process, also simpler
- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-1}$
 - P_f is aggregate permanent productivity.
 - $P_{t+1} = P_t \Psi_{t+1}$
 - $* \equiv_l$ is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

	σ_{\pm}^2 ()	.QQ,	< 差→	æ	9q(
Carroll, Slacalek and Tokuoka	Wealth and MPC				

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^1$

 P_{ℓ} is aggregate permanent productivity

- $* \equiv_{\rm f}$ is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$
 - *P_t* is aggregate permanent productivity
 - $P_{t+1} = P_t \Psi_{t+1}$
 - Ξ_t is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$
 - *P_t* is aggregate permanent productivity
 - $P_{t+1} = P_t \Psi_{t+1}$
 - Ξ_t is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

• $\boldsymbol{L}_t = P_t \Xi_t$

- P_t is aggregate permanent productivity
- $P_{t+1} = P_t \Psi_{t+1}$
- Ξ_t is the aggregate transitory shock.

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

•
$$\boldsymbol{L}_t = P_t \Xi_t$$

- P_t is aggregate permanent productivity
- $P_{t+1} = P_t \Psi_{t+1}$
- Ξ_t is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

•
$$\boldsymbol{L}_t = \boldsymbol{P}_t \boldsymbol{\Xi}_t$$

- P_t is aggregate permanent productivity
- $P_{t+1} = P_t \Psi_{t+1}$
- Ξ_t is the aggregate transitory shock.

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

•
$$\boldsymbol{L}_t = P_t \Xi_t$$

• P_t is aggregate permanent productivity

•
$$P_{t+1} = P_t \Psi_{t+1}$$

• Ξ_t is the aggregate transitory shock.

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

•
$$\boldsymbol{L}_t = P_t \Xi_t$$

• P_t is aggregate permanent productivity

•
$$P_{t+1} = P_t \Psi_{t+1}$$

• Ξ_t is the aggregate transitory shock.

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 2.b: Adding FBS Aggregate Shocks

Friedman/Buffer Stock Shocks

Motivation:

More plausible and tractable aggregate process, also simpler

- Eliminates 'good' and 'bad' aggregate state
- Aggregate production function: $K_t^{\alpha}(L_t)^{1-\alpha}$

•
$$\boldsymbol{L}_t = \boldsymbol{P}_t \boldsymbol{\Xi}_t$$

- P_t is aggregate permanent productivity
- $P_{t+1} = P_t \Psi_{t+1}$
- Ξ_t is the aggregate transitory shock.
- Parameter values estimated from U.S. data:

Description	Parameter	Value			
Variance of Log Ψ_t	σ_{Ψ}^2	0.00004			
Variance of Log Ξ_t	σ_{Ξ}^2	0.00001.	◆憲→	₹	গ ৎ (
Carroll. Slacalek and Tokuoka	Wealth and MPC				

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

(日)

Results

Our/FBS model

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

(日)

Results

Our/FBS model

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

< D > < P > < E > <</p>

Results

$\mathsf{Our}/\mathsf{FBS} \,\, \mathsf{model}$

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Results

Our/FBS model

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

< 17 > <

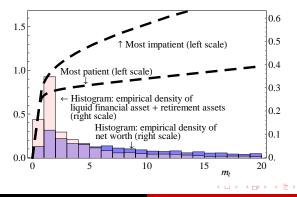
Results

Our/FBS model

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

< A >


Results

$\mathsf{Our}/\mathsf{FBS} \,\, \mathsf{model}$

- A few times faster than solving KS model
- The results are similar to those under KS aggregate shocks
- Average MPC
 - Matching net worth: 0.2
 - Matching liquid financial assets: 0.42

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Dimension 3: Matching Net Worth vs Liquid Financial (and Retirement) Assets

Carroll, Slacalek and Tokuoka Wealth and MPC

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Match Net Worth vs Liquid Financial Assets

- Buffer stock saving driven by accumulation of liquidity
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2011))

	$egin{array}{c} eta \ - Dist \ \hline Net Worth & Liq Fin and Ret Asset \end{array}$		
Overall average	0.23	0.44	
By wealth/permanent income ratio			
Top 1%	0.05	0.12	
Тор 20%	0.06	0.13	
Тор 40%	0.08	0.2	
Тор 60%	0.12	0.28	
Bottom 1/2	0.35	0.59	

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

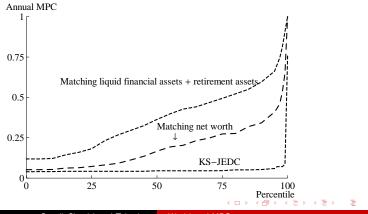
Match Net Worth vs Liquid Financial Assets

- Buffer stock saving driven by accumulation of liquidity
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2011))

	$\frac{\beta - \text{Dist}}{\text{Net Worth}}$		
Overall average	0.23	0.44	
By wealth/permanent income ratio			
Top 1%	0.05	0.12	
Тор 20%	0.06	0.13	
Top 40%	0.08	0.2	
Top 60%	0.12	0.28	
Bottom 1/2	0.35	0.59	

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Match Net Worth vs Liquid Financial Assets


- Buffer stock saving driven by accumulation of liquidity
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2011))
- Average MPC Increases Substantially: $0.19 \uparrow 0.39$

	Net Worth	β -Dist Liq Fin and Ret Assets
Overall average	0.23	0.44
By wealth/permanent income ratio		
Top 1%	0.05	0.12
Тор 20%	0.06	0.13
Тор 40%	0.08	0.2
Тор 60%	0.12	0.28
Bottom 1/2	0.35	0.59

Krusell–Smith Solution Method Results: Marginal Propensity to Consume Permanent/Transitory Aggregate Shocks

Distribution of MPCs

Wealth heterogeneity translates into heterogeneity in MPCs

Carroll, Slacalek and Tokuoka Wealth and MPC

Conclusions

• Definition of "serious" microfoundations: Model that matches

- Income Dynamics
- Wealth Distribution
- The model produces more plausible implications about MPC.
- Version with more plausible aggregate specification is simpler, faster, better in every way!

Conclusions

• Definition of "serious" microfoundations: Model that matches

- Income Dynamics
- Wealth Distribution
- The model produces more plausible implications about MPC.
- Version with more plausible aggregate specification is simpler, faster, better in every way!

Conclusions

- Definition of "serious" microfoundations: Model that matches
 - Income Dynamics
 - Wealth Distribution
- The model produces more plausible implications about MPC.
- Version with more plausible aggregate specification is simpler, faster, better in every way!

Conclusions

- Definition of "serious" microfoundations: Model that matches
 - Income Dynamics
 - Wealth Distribution
- The model produces more plausible implications about MPC.
- Version with more plausible aggregate specification is simpler, faster, better in every way!

Conclusions

- Definition of "serious" microfoundations: Model that matches
 - Income Dynamics
 - Wealth Distribution
- The model produces more plausible implications about MPC.
- Version with more plausible aggregate specification is simpler, faster, better in every way!

References I

- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223–247.
- BLUNDELL, RICHARD, LUIGI PISTAFERRI, AND IAN PRESTON (2008a): "Consumption Inequality and Partial Insurance," *Manuscript*.

(2008b): "Consumption Inequality and Partial Insurance," American Economic Review, 98(5), 1887-1921.

CARROLL, CHRISTOPHER D. (1992): "The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence," Brookings Papers on Economic Activity, 1992(2), 61-156, http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf.

- CASTANEDA, ANA, JAVIER DIAZ-GIMENEZ, AND JOSE-VICTOR RIOS-RULL (2003): "Accounting for the U.S. Earnings and Wealth Inequality," *Journal of Political Economy*, 111(4), 818–857.
- CLARIDA, RICHARD H (2012): "What Hasand Has NotBeen Learned about Monetary Policy in a Low-Inflation Environment? A Review of the 2000s," *Journal of Money, Credit and Banking*, 44(s1), 123–140.
- CORONADO, JULIA LYNN, JOSEPH P. LUPTON, AND LOUISE M. SHEINER (2005): "The Household Spending Response to the 2003 Tax Cut: Evidence from Survey Data," FEDS discussion paper 32, Federal Reserve Board.
- DEN HAAN, WOUTER J., KEN JUDD, AND MICHEL JULLIARD (2007): "Description of Model B and Exercises," Manuscript.

FRIEDMAN, MILTON A. (1957): A Theory of the Consumption Function. Princeton University Press.

HALL, ROBERT E. (2011): "The Long Slump," AEA Presidential Address, ASSA Meetings, Denver.

References II

- HAUSMAN, JOSHUA K. (2012): "Fiscal Policy and Economic Recovery: The Case of the 1936 Veterans' Bonus," mimeo, University of California, Berkeley.
- JAPPELLI, TULLIO, AND LUIGI PISTAFERRI (2013): "Fiscal Policy and MPC Heterogeneity," discussion paper 9333, CEPR.
- JOHNSON, DAVID S., JONATHAN A. PARKER, AND NICHOLAS S. SOULELES (2009): "The Response of Consumer Spending to Rebates During an Expansion: Evidence from the 2003 Child Tax Credit," working paper, The Wharton School.
- KAPLAN, GREG, AND GIOVANNI L. VIOLANTE (2011): "A Model of the Consumption Response to Fiscal Stimulus Payments," NBER Working Paper Number W17338.
- KRUSELL, PER, AND ANTHONY A. SMITH (1998): "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, 106(5), 867–896.
- LOW, HAMISH, COSTAS MEGHIR, AND LUIGI PISTAFERRI (2010): "Wage Risk and Employment Over the Life Cycle," American Economic Review, 100(4), 1432–1467.
- LUSARDI, ANNAMARIA (1996): "Permanent Income, Current Income, and Consumption: Evidence from Two Panel Data Sets," *Journal of Business and Economic Statistics*, 14(1), 81–90.

Image: A mathematical and A mathematica A mathematical and A mathem

- MEGHIR, COSTAS, AND LUIGI PISTAFERRI (2004): "Income Variance Dynamics and Heterogeneity," Journal of Business and Economic Statistics, 72(1), 1–32.
- PARKER, JONATHAN A. (1999): "The Reaction of Household Consumption to Predictable Changes in Social Security Taxes," American Economic Review, 89(4), 959–973.

References III

- PARKER, JONATHAN A., NICHOLAS S. SOULELES, DAVID S. JOHNSON, AND ROBERT MCCLELLAND (2011): "Consumer Spending and the Economic Stimulus Payments of 2008," NBER Working Paper Number W16684.
- SAHM, CLAUDIA R., MATTHEW D. SHAPIRO, AND JOEL B. SLEMROD (2010): "Household Response to the 2008 Tax Rebate: Survey Evidence and Aggregate Implications," Tax Policy and the Economy, 24, 69–110.
- SHAPIRO, MATTHEW W., AND JOEL B. SLEMROD (2009): "Did the 2008 Tax Rebates Stimulate Spending?," American Economic Review, 99(2), 374–379.
- SOULELES, NICHOLAS S. (1999): "The Response of Household Consumption to Income Tax Refunds," American Economic Review, 89(4), 947–958.
- (2002): "Consumer Response to the Reagan Tax Cuts," Journal of Public Economics, 85, 99–120.
- STORESLETTEN, KJETIL, CHRIS I. TELMER, AND AMIR YARON (2004): "Cyclical Dynamics in Idiosyncratic Labor-Market Risk," Journal of Political Economy, 112(3), 695–717.

< □ > < 同 > <