Labor Income Uncertainty and the Macroeconomy

Christopher Carroll

1Consumer Financial Protection Bureau
Christopher.Carroll@cfpb.gov

Presentation at “Uncertainty and the Macroeconomy”
May 2014
US Personal Saving Rate (s), 1966–2011

Percent of Disposable Income

0 2 4 6 8 10 12 14
Theory

\[v(m_t) = \max_{\{c_t, x_t\}} \ u(c_t) + \beta \mathbb{E}_t [v(m_{t+1})] \]

\[\text{s.t.} \]

\[R_{t+1} = \zeta R_{t+1} + (1 - \zeta) R \]

\[m_{t+1} = (m_t - x_t - c_t) R_{t+1} + \theta_{t+1} \]

- Labor Income Uncertainty
 - Unemployment Is Biggest Shock
 - Lots of Micro Evidence that Precautionary Saving Is Big
 - Basically, people facing greater \(\sigma \):
 - Don’t buy a house/car \((x = 0) \)
 - Hold larger net worth

- Rate-Of-Return Uncertainty
 - Theoretical effects on \(C \) ambiguous
 - For plausible parameter values, \(\sigma \uparrow \Leftrightarrow C \uparrow \)
 - Portfolio share in risky asset is reduced
Literature on C

- **“Wealth Effects”**
 - Modigliani, Klein, MPS model, ...
 - $s_t = -0.05m_t + \text{other stuff}$
- **“Precautionary”**
 - Carroll (1992)
 - Saving rate rises in recessions
 - $\Delta \log C_{t+1}$ strongly related to $\mathbb{E}_t(u_{t+1} - u_t)$
- **“Credit Availability”**
 - Secular Trend:
 - Parker (2000), Dynan and Kohn (2007), Muellbauer (many papers)
 - Cyclical Dynamics:
Great Recession 2007–2009

- s rises by ~ 4 pp
- Bigger & more persistent increase than any postwar recession
- But all three indicators also move a lot:
 - Credit conditions tighten
 - Unemployment Expectations rise
 - Wealth falls
Personal Saving Rate 2007–
Saving Rate After a Permanent Rise in Υ
Credit Easing/Financial Innovation & Deregulation

m is close to linear in credit conditions
Net Worth (Ratio to Quarterly Disp Income)
Credit Easing Accumulated (CEA) (à la Muellbauer)

Accumulated responses, weighted with debt–income ratio, to:
“Please indicate your bank’s willingness to make consumer installment loans now as opposed to three months ago.”
\(\mathcal{U}_t \) Implied by Michigan U Expectations

\textit{UExp}: “How about people out of work during the coming 12 months—do you think that there will be more unemployment than now, about the same, or less?”
Reduced-Form Regressions

\[s_t = \gamma_0 + \gamma_m m_t + \gamma_{CEA} CEA_t + \gamma_{Eu} \mathbb{E}_t u_{t+4} + \gamma_t t + \gamma_{uC} (\mathbb{E}_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
<td>11.95***</td>
<td>25.20***</td>
<td>9.32***</td>
<td>8.24***</td>
<td>14.90***</td>
<td>15.23***</td>
<td>15.55***</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(1.73)</td>
<td>(0.57)</td>
<td>(0.42)</td>
<td>(2.56)</td>
<td>(2.16)</td>
<td>(2.56)</td>
</tr>
<tr>
<td>(\gamma_m)</td>
<td>-2.61***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{CEA})</td>
<td></td>
<td>-14.14***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{Eu})</td>
<td></td>
<td></td>
<td>0.67***</td>
<td>0.32***</td>
<td>0.29***</td>
<td>0.38***</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.05)</td>
<td>(0.12)</td>
<td>(0.08)</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>(\gamma_t)</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>0.04***</td>
<td>-0.05***</td>
<td>-0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{uC})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.32**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.16)</td>
</tr>
</tbody>
</table>

\(\bar{R}^2\) | 0.70 | 0.85 | 0.82 | 0.88 | 0.89 | 0.90 | 0.90 |
F stat p val | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
DW stat | 0.30 | 0.69 | 0.50 | 0.86 | 0.94 | 0.93 | 0.98 |
Scenarios based on SPF and our judgement
Conclusions

- All three effects present
- Easier borrowing largely explains secular decline
- Order of importance in Great Recession:
 1. Wealth shock
 2. Labor income risk
 3. Credit tightening
- \Rightarrow if credit has big cyclical effect, comes thru w and δ
References

Background Slides
Assumptions/Scenarios for Out-of-Sample Forecasts

Household net wealth
(percent of disposable personal income)

Unemployment rate
(percent of labor force)

Sources: Haver Analytics and authors' estimates.
Assumptions/Scenarios for Out-of-Sample Forecasts

Credit conditions

Baseline scenario
Upside risk scenario
Downside risk scenario

Household saving rate

Baseline Scenario
Upside Risk Scenario
Downside Risk Scenario
Fitted values of model

Sources: Haver Analytics and authors' estimates.
Actual and Target Wealth

- Actual Wealth (black line)
- Target Wealth (red line)

Yearly Actual Wealth:
- 1970: 16
- 1975: 18
- 1980: 20
- 1985: 22
- 1990: 24
- 1995: 26
- 2000: 24
- 2005: 22
- 2010: 20

Yearly Target Wealth:
- 1970: 16
- 1975: 18
- 1980: 20
- 1985: 22
- 1990: 24
- 1995: 26
- 2000: 24
- 2005: 22
- 2010: 20
Household Wealth 2007–↓ by 150% of Income
Sustained Expectations of Rising Unemp Risk

Thomson Reuters/University of Michigan $E_t(u_{t+4} - u_t)$
Tighter HH Credit Supply (Based on Muellbauer)
Consumption Function

\[c^e(m) = \text{Stable Arm} \rightarrow \]

\[\Delta m^e + 1^e = 0 \rightarrow \Delta c^e + 1 = 0 \rightarrow \text{SS} \]
Overshooting and Fiscal Policy

DSGE models:

- Frictions, frictions everywhere; but missing here
- If Δc imposes ‘external’ costs
 - Sticky prices/wages
 - Capital (or Investment) adjustment costs
 - Other reasons for ‘pecuniary externalities’
- \Rightarrow ‘stimulus’ payments, fiscal policy may reduce cost of cycle
- Justification for ‘automatic stabilizers’?
Reduced-Form Regressions on Model Data

\[s_t^{\text{theor}} = \gamma_0 + \gamma_m m_t + \gamma_{CEA} CEA_t + \gamma_{Eu} \mathbb{E}_t u_{t+4} + \gamma_t t + \gamma_{uC} (\mathbb{E}_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
<td>11.96***</td>
<td>21.44***</td>
<td>9.35***</td>
<td>8.42***</td>
<td>12.24***</td>
<td>12.51***</td>
<td>12.49***</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(1.11)</td>
<td>(0.41)</td>
<td>(0.16)</td>
<td>(0.60)</td>
<td>(0.53)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>(\gamma_m)</td>
<td>-2.33***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{CEA})</td>
<td></td>
<td>-13.82***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{Eu})</td>
<td></td>
<td></td>
<td>0.63***</td>
<td>0.33***</td>
<td>0.30***</td>
<td>0.37***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>(\gamma_t)</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>0.04***</td>
<td>-0.05***</td>
<td>-0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(\gamma_{uC})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.19***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.04)</td>
<td></td>
</tr>
</tbody>
</table>

\(\bar{R}^2\) | 0.80 | 0.93 | 0.93 | 0.98 | 0.99 | 0.99 | 0.99 |
F stat p val | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
DW stat | 0.05 | 0.22 | 0.09 | 0.39 | 0.72 | 0.71 | 0.99 |
Reduced-Form Regressions on Actual Data

\[s_{t}^{\text{meas}} = \gamma_0 + \gamma_m m_t + \gamma_{\text{CEA}} CEA_t + \gamma_{\text{Eu}} \mathbb{E}_t u_{t+4} + \gamma_t t + \gamma_u C (\mathbb{E}_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
<td>11.95***</td>
<td>25.20***</td>
<td>9.32***</td>
<td>8.24***</td>
<td>14.90***</td>
<td>15.23***</td>
<td>15.55***</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(1.73)</td>
<td>(0.57)</td>
<td>(0.42)</td>
<td>(2.56)</td>
<td>(2.16)</td>
<td>(2.56)</td>
</tr>
<tr>
<td>(\gamma_m)</td>
<td>-2.61***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.12***</td>
<td>-1.18***</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.42)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>(\gamma_{\text{CEA}})</td>
<td></td>
<td>-14.14***</td>
<td></td>
<td></td>
<td></td>
<td>-5.47***</td>
<td>-6.12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.74)</td>
<td></td>
<td></td>
<td></td>
<td>(1.94)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>(\gamma_{\text{Eu}})</td>
<td></td>
<td></td>
<td>0.67***</td>
<td>0.32***</td>
<td>0.29***</td>
<td>0.38***</td>
<td>(0.08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.05)</td>
<td>(0.12)</td>
<td>(0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_t)</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>0.04***</td>
<td>-0.05***</td>
<td>-0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_u C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.32**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.16)</td>
</tr>
</tbody>
</table>

\[\bar{R}^2 \]

\[F \text{ stat p val} \]

\[DW \text{ stat} \]