Dissecting Saving Dynamics
Measuring Credit, Wealth and Precautionary Effects

Christopher Carroll1 Jiri Slacalek2 Martin Sommer3

1Johns Hopkins University and NBER
ccarroll@jhu.edu

2European Central Bank
jiri.slacalek@ecb.int

3International Monetary Fund
msommer@imf.org

Presentation at Goethe-Universität Frankfurt, May 2012
US Personal Saving Rate (s), 1966–2011
Literature

- “Wealth Effects”
 - Modigliani, Klein, MPS model, ...
 - \(s_t = -0.05m_t + \text{other stuff} \)

- “Precautionary”
 - Carroll (1992)
 - Saving rate rises in recessions
 - \(\Delta \log C_{t+1} \) strongly related to \(E_t(u_{t+1} - u_t) \)

- “Credit Availability”
 - Secular Trend:
 - Parker (2000), Dynan and Kohn (2007), Muellbauer (many papers)
 - Cyclical Dynamics:
Great Recession 2007–2009

- s rises by $\sim 4–5$ pp
- Bigger & more persistent increase than any postwar recession
- But all three indicators also move a lot:
 - Credit conditions tighten
 - Unemployment Expectations rise
 - Wealth falls
Personal Saving Rate 2007–

![Chart showing deviance from start of recession value in % over quarters after start of recession.](chart.png)
Household Wealth 2007– by 150% of Income

Historical Range

Historical Mean

2007–2009 Recession
Sustained Expectations of Rising Unemp Risk

Thomson Reuters/University of Michigan $\mathbb{E}_t(u_{t+4} - u_t)$
Tighter HH Credit Supply (Based on Muellbauer)
Our Contributions

▶ Theory
 ▶ Simple model with transparent role for all 3 channels
 ▶ Qualitative implications of the model
 ▶ “Overshooting” ⇒ possible role for fiscal policy

▶ Evidence
 ▶ Quantify importance of the 3 channels
 ▶ Two estimated models of s
 ▶ Reduced-form—OLS
 ▶ Structural—Nonlinear least squares
Why Do We Care?

- *Quantify* role of credit, wealth and uncertainty
- Useful for in-sample and out-of-sample analysis
- *Strength of recovery/dynamics of GDP*
Theory à la Carroll and Toche (2009)

- CRRA utility, labor supply ℓ, agg wage W, emp status ξ:

$$ v(m_t) = \max_{c_t} u(c_t) + \beta E_t [v(m_{t+1})] $$

s.t.

$$ m_{t+1} = (m_t - c_t)R + \ell_{t+1}W_{t+1}\xi_{t+1} $$

- $\xi_{t+1} \in \{\xi^u, \xi^e\}$ where $\xi^u < \xi^e$
- ℓ and W grow at constant rate
- Tractability: unemployment shocks are permanent
 - If $\xi_t = \xi^u$ then $\xi_{t+1} = \xi^u$
- Target wealth \tilde{m} exists and is stable:
 - Consumption chosen so that $m_t \to \tilde{m}$
Consumption Function

\[\Delta c^{e}_{t+1} = 0 \quad \text{and} \quad \Delta m^{e}_{t+1} = 0 \]

Steady State

\[c^{e}(m) = \text{Stable Arm} \]
Target Wealth \hat{m}

Closed-form solution for target wealth depends on unemployment risk $\bar{\sigma}$ and generosity of unemployment insurance ξ_u:

$$\hat{m} = f(\bar{\sigma}, \xi_u, \text{preferences}, \ldots)$$
Consumption After a Wealth Shock

\[\Delta m_{t+1} = 0 \]

\[c_t \rightarrow c_{t+1} \]

\[c(m) \rightarrow \]

Target

Wealth Shock

\[m_t \rightarrow m \]
Permanent Rise in Υ

Sustainable $c \rightarrow$

c$(m) \rightarrow$

$\leftarrow c(m)$ after unemployment rate increase
Saving Rate After a Permanent Rise in \mathcal{U}
Overshooting and Fiscal Policy

DSGE models:

- Frictions, frictions everywhere; but missing here
- If Δc imposes ‘external’ costs
 - Sticky prices/wages
 - Capital (or Investment) adjustment costs
 - Other reasons for ‘pecuniary externalities’
- \Rightarrow ‘stimulus’ payments, fiscal policy may reduce cost of cycle
- Justification for ‘automatic stabilizers’?
Credit Easing/Financial Innovation & Deregulation

\[\text{Orig Target} \]

\[\text{New } c(m) \]

\[\text{Orig } c(m) \]

\[\Delta m_{t+1}^e = 0 \]

\[\text{Orig Target} \]

\[\hat{m} \text{ is close to linear in credit conditions} \]
Data & Sources

- Quarterly 1966Q2–2011Q1
- **Saving rate**: BEA NIPA
- **Net worth**: Flow of Funds Accounts, Fed
 - (Model m corresponds to $1 +$ ratio of Net worth to disposable income)
- **Credit conditions**: “Credit Easing Accumulated,” CEA
 - Senior Loan Officer Opinion Survey (SLOOS), Fed
 - Banks’ willingness to provide consumer installment loans
- **Unemployment risk**: using Thomson Reuters/UMichigan unemployment expectations
Net Worth (Ratio to Quarterly Disp Income)
Credit Easing Accumulated (CEA) (à la Muellbauer)

Accumulated responses, weighted with debt–income ratio, to:
“Please indicate your bank’s willingness to make consumer installment loans now as opposed to three months ago.”
U_t Implied by Michigan U Expectations

- Regress: $\Delta_4 u_{t+4} = \alpha_0 + \alpha_1 UExp_t$
- U risk: $U_t = u_t + \Delta_4 \hat{u}_{t+4}$
- $\Delta_4 u_{t+4} \equiv u_{t+4} - u_t$, $\Delta_4 \hat{u}_{t+4} \equiv$ fitted values
- U_t tracks but precedes actual U

$UExp$: “How about people out of work during the coming 12 months—do you think that there will be more unemployment than now, about the same, or less?”
Reduced-Form Regressions

\[s_t = \gamma_0 + \gamma_m m_t + \gamma_{CEA} CEA_t + \gamma_{Eu} E_t u_{t+4} + \gamma_t t + \gamma_{uC}(E_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
<td>11.95***</td>
<td>25.20***</td>
<td>9.32***</td>
<td>8.24***</td>
<td>14.90***</td>
<td>15.23***</td>
<td>15.55***</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(1.73)</td>
<td>(0.57)</td>
<td>(0.42)</td>
<td>(2.56)</td>
<td>(2.16)</td>
<td>(2.56)</td>
</tr>
<tr>
<td>(\gamma_m)</td>
<td>-2.61***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.12***</td>
<td>-1.18***</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.42)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>(\gamma_{CEA})</td>
<td></td>
<td>-14.14***</td>
<td></td>
<td></td>
<td></td>
<td>-5.47***</td>
<td>-6.12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.74)</td>
<td></td>
<td></td>
<td></td>
<td>(1.94)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>(\gamma_{Eu})</td>
<td></td>
<td></td>
<td>0.67***</td>
<td></td>
<td></td>
<td>0.32***</td>
<td>0.29***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.05)</td>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(\gamma_t)</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>0.04***</td>
<td>-0.05***</td>
<td>-0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_{uC})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.32**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.16)</td>
</tr>
</tbody>
</table>

- \(\bar{R}^2\): 0.70 0.85 0.82 0.88 0.89 0.90 0.90
- F stat p val: 0.00 0.00 0.00 0.00 0.00 0.00 0.00
- DW stat: 0.30 0.69 0.50 0.86 0.94 0.93 0.98
Fit: Baseline vs Time Trend
<table>
<thead>
<tr>
<th>Model</th>
<th>Baseline</th>
<th>Uncert</th>
<th>s_{t-1}</th>
<th>Debt</th>
<th>Full Controls</th>
<th>Post-80</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_m</td>
<td>-1.18^{***}</td>
<td>-1.21^{***}</td>
<td>-0.31</td>
<td>-0.80^{**}</td>
<td>-1.30^{***}</td>
<td>-1.50</td>
<td>-2.02^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.36)</td>
<td>(0.22)</td>
<td>(0.36)</td>
<td>(0.31)</td>
<td>(1.25)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>γ_{CEA}</td>
<td>-6.12^{***}</td>
<td>-5.97^{***}</td>
<td>-2.87^{***}</td>
<td>-5.40^{***}</td>
<td>-6.24^{***}</td>
<td>-5.00^{**}</td>
<td>-5.85^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.57)</td>
<td>(0.65)</td>
<td>(0.53)</td>
<td>(0.73)</td>
<td>(0.63)</td>
<td>(2.00)</td>
<td>(1.17)</td>
</tr>
<tr>
<td>γ_{Eu}</td>
<td>0.29^{***}</td>
<td>0.28^{***}</td>
<td>0.14^{***}</td>
<td>0.34^{***}</td>
<td>0.12</td>
<td>0.30^{**}</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.09)</td>
<td>(0.14)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>γ_{σ}</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{GS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{CS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_0^{post80}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{m}^{post80}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{CEA}^{post80}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *p < 0.1, **p < 0.05, ***p < 0.01.
Fit: Baseline vs Post-1980
Fit: Baseline vs Full Controls
Reduced-Form Regressions—Summary

The three factors explain saving well:

1. Credit conditions
2. Wealth
3. Unemployment risk
Minimize distance between model-implied s_t^{theor} and actual s_t^{meas}:

$$
\hat{\Theta} = \arg \min \sum_{t=1}^{T} \left(s_t^{\text{meas}} - s_t^{\text{theor}}(\Theta; m_t - \bar{m}(\bar{m}(\text{CEA}_t), \mathcal{U}(\mathbb{E}_t u_{t+4})) \right)^2,
$$

where

- $\Theta = \{\beta, \bar{\theta}_m, \theta_{\text{CEA}}, \bar{\theta}_\mathcal{U}, \theta_u\}$
- $\bar{m}_t = \bar{\theta}_m + \theta_{\text{CEA}} \text{CEA}_t$
- $\mathcal{U}_t = \bar{\theta}_\mathcal{U} + \theta_u \mathbb{E}_t u_{t+4}$
- β: discount factor
Structural Estimation—Asymptotics

Delta Method

\[T^{1/2}(\hat{\Theta} - \Theta) \rightarrow_d \mathcal{N}(0, D^{-1} ED'^{-1}), \]

where

- \(D = \mathbb{E} \frac{\partial q_t(\Theta)}{\partial \Theta} \)
- \(E = \text{var}(q_t(\Theta)) \)
- Scores \(q_t(\Theta) = (s_t^{\text{meas}} - s_t^{\text{theor}}(\Theta)) \frac{\partial s_t^{\text{theor}}(\Theta)}{\partial \Theta} \)
Structural Estimates

\[s_t^{\text{theor}} = s_t^{\text{theor}}(\Theta; m_t - \bar{m}(\bar{m}_t, \bar{\mathcal{U}}_t)), \]
\[\bar{m}_t = \bar{\theta}_m + \theta_{\text{CEA}} CEA_t, \]
\[\bar{\mathcal{U}}_t = \bar{\theta}_{\mathcal{U}} + \theta_u u_{t+4}. \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r)</td>
<td>Interest Rate</td>
<td>0.04/4</td>
</tr>
<tr>
<td>(\Delta W)</td>
<td>Wage Growth</td>
<td>0.01/4</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Relative Risk Aversion</td>
<td>2</td>
</tr>
<tr>
<td>Estimated Parameters (\Theta = {\beta, \bar{\theta}m, \theta{\text{CEA}}, \bar{\theta}_{\mathcal{U}}, \theta_u})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>Discount Rate</td>
<td>(1 - 0.0064^{***}) (0.0018)</td>
</tr>
<tr>
<td>(\bar{\theta}_m)</td>
<td>Scaling of (\bar{m}_t)</td>
<td>0.0072 (0.0206)</td>
</tr>
<tr>
<td>(\theta_{\text{CEA}})</td>
<td>Scaling of (\bar{m}_t)</td>
<td>5.2215^{***} (0.1396)</td>
</tr>
<tr>
<td>(\bar{\theta}_{\mathcal{U}})</td>
<td>Scaling of (\bar{\mathcal{U}}_t)</td>
<td>(5.3758 \times 10^{-5}) (8.4334 \times 10^{-5})</td>
</tr>
<tr>
<td>(\theta_u)</td>
<td>Scaling of (\bar{\mathcal{U}}_t)</td>
<td>0.0363 (0.1227)</td>
</tr>
<tr>
<td>(\bar{R}^2)</td>
<td></td>
<td>0.821</td>
</tr>
<tr>
<td>DW stat</td>
<td></td>
<td>0.950</td>
</tr>
</tbody>
</table>
Estimated Extent of Credit Constraints \bar{m}_t (Frac of DI)
Estimated Permanent Unemployment Risk \mathcal{U}_t

![Graph showing estimated permanent unemployment risk with labeled years 1970 to 2010 and values ranging from 6.5×10^{-5} to 9.5×10^{-5}.]
Fit of the Structural Model

[Graph showing the fit of the Structural Model with actual PSR and fitted PSR over the years from 1970 to 2010. The graph includes a y-axis with values ranging from 0 to 12 and an x-axis with years from 1970 to 2010. The graph compares actual PSR (black line) and fitted PSR (red line).]
Decomposition of Fitted PSR

Fix \bar{U}_t and CEA_t at their sample means, back out the implied s_t
Fit: Structural Model vs Reduced-Form
Reduced-Form Regressions on Model Data

\[s_t^{\text{theor}} = \gamma_0 + \gamma_m m_t + \gamma_{\text{CEA}} CEA_t + \gamma_{\text{Eu}} \bar{E}_t u_{t+4} + \gamma_t t + \gamma_{\text{uC}} (\bar{E}_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>11.96***</td>
<td>21.44***</td>
<td>9.35***</td>
<td>8.42***</td>
<td>12.24***</td>
<td>12.51***</td>
<td>12.49***</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(1.11)</td>
<td>(0.41)</td>
<td>(0.16)</td>
<td>(0.60)</td>
<td>(0.53)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>γ_m</td>
<td>-2.33***</td>
<td></td>
<td></td>
<td></td>
<td>-0.79***</td>
<td>-0.85***</td>
<td>-0.94***</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td></td>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.10)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>γ_{CEA}</td>
<td></td>
<td>-13.82***</td>
<td></td>
<td></td>
<td>-5.85***</td>
<td>-6.49***</td>
<td>-5.33***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.12)</td>
<td></td>
<td></td>
<td>(0.59)</td>
<td>(0.14)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>γ_{Eu}</td>
<td></td>
<td></td>
<td>0.63***</td>
<td>0.33***</td>
<td>0.30***</td>
<td>0.37***</td>
<td>0.37***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>γ_t</td>
<td>-0.04***</td>
<td>-0.03***</td>
<td>0.04***</td>
<td>-0.05***</td>
<td>-0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td>(0.00)</td>
</tr>
<tr>
<td>γ_{uC}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.19***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.04)</td>
</tr>
</tbody>
</table>

\bar{R}^2	0.80	0.93	0.93	0.98	0.99	0.99	0.99
F stat p val	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DW stat	0.05	0.22	0.09	0.39	0.72	0.71	0.99
Reduced-Form Regressions on Actual Data

\[s_t^{\text{meas}} = \gamma_0 + \gamma_m m_t + \gamma_{\text{CEA}} CEA_t + \gamma_{\text{Eu}} \bar{E}_t u_{t+4} + \gamma_t t + \gamma_{\text{uC}} (\bar{E}_t u_{t+4} \times CEA_t) + \varepsilon_t \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Time</th>
<th>Wealth</th>
<th>CEA</th>
<th>Un Risk</th>
<th>All 3</th>
<th>Baseline</th>
<th>Interact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_0)</td>
<td>11.95***</td>
<td>25.20***</td>
<td>9.32***</td>
<td>8.24***</td>
<td>14.90***</td>
<td>15.23***</td>
<td>15.55***</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(1.73)</td>
<td>(0.57)</td>
<td>(0.42)</td>
<td>(2.56)</td>
<td>(2.16)</td>
<td>(2.56)</td>
</tr>
<tr>
<td>(\gamma_m)</td>
<td>–2.61***</td>
<td></td>
<td></td>
<td></td>
<td>–1.12***</td>
<td>–1.18***</td>
<td>–1.37***</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td></td>
<td></td>
<td></td>
<td>(0.42)</td>
<td>(0.35)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>(\gamma_{\text{CEA}})</td>
<td></td>
<td>–14.14***</td>
<td></td>
<td></td>
<td>–5.47***</td>
<td>–6.12***</td>
<td>–4.60***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.74)</td>
<td></td>
<td></td>
<td>(1.94)</td>
<td>(0.57)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>(\gamma_{\text{Eu}})</td>
<td></td>
<td></td>
<td>0.67***</td>
<td></td>
<td>0.32***</td>
<td>0.29***</td>
<td>0.38***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.05)</td>
<td></td>
<td>(0.12)</td>
<td>(0.08)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>(\gamma_t)</td>
<td>–0.04***</td>
<td>–0.03***</td>
<td>0.04***</td>
<td>–0.05***</td>
<td>–0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>(\gamma_{\text{uC}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–0.32**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.16)</td>
</tr>
</tbody>
</table>

\(\bar{R}^2\) | 0.70 | 0.85 | 0.82 | 0.88 | 0.89 | 0.90 | 0.90 |
F stat p val | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
DW stat | 0.30 | 0.69 | 0.50 | 0.86 | 0.94 | 0.93 | 0.98 |
Model fits well...

...almost as well as reduced form (Mincer–Zarnowitz puts weight 0.45 on structural model)

Substantial role for *time-varying precautionary saving*

CEA matters for low frequency, wealth for business-cycle frequency
PSR Forecasts—In Sample

Great Recession 2007–2010

<table>
<thead>
<tr>
<th>Variable</th>
<th>Reduced-Form Model</th>
<th>Structural Model</th>
<th>Actual Δs_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_m \times \Delta m_t$</td>
<td>$-1.18 \times -1.39 = 1.64$</td>
<td>$-0.97 \times -1.39 = 1.34$</td>
<td></td>
</tr>
<tr>
<td>$\gamma_{CEA} \times \Delta CEA_t$</td>
<td>$-6.12 \times -0.11 = 0.64$</td>
<td>$-6.38 \times -0.11 = 0.67$</td>
<td></td>
</tr>
<tr>
<td>$\gamma_{Eu} \times \Delta E_t u_{t+4}$</td>
<td>$0.29 \times 4.33 = 1.24$</td>
<td>$0.32 \times 4.33 = 1.39$</td>
<td></td>
</tr>
<tr>
<td>Explained Δs_t</td>
<td>3.53</td>
<td>3.40</td>
<td>2.93</td>
</tr>
</tbody>
</table>
PSR Forecasts—Out of Sample

2012–2015

(percent of disposable personal income)

Scenarios based on SPF and our judgement
Conclusions

- All three effects present
- Easier borrowing largely explains secular decline
- Order of importance in Great Recession:
 1. Wealth shock
 2. Labor income risk
 3. Credit tightening
- PSR to remain elevated

Background Slides
Alternative Measures of Credit Availability

Abiad et al. Index of Financial Liberalization

CEA/Debt-Income Ratio

Assumptions/Scenarios for Out-of-Sample Forecasts

Household net wealth
(percent of disposable personal income)

Unemployment rate
(percent of labor force)

Sources: Haver Analytics and authors' estimates.
Assumptions/Scenarios for Out-of-Sample Forecasts

Credit conditions

- Baseline scenario
- Upside risk scenario
- Downside risk scenario

Household saving rate

- Baseline Scenario
- Upside Risk Scenario
- Downside Risk Scenario
- Fitted values of model

Sources: Haver Analytics and authors' estimates.