A Tractable Model of Precautionary Reserves, Net Foreign Assets, or Sovereign Wealth Funds

Christopher Carroll and Olivier Jeanne

Johns Hopkins University

March 3, 2013

(日) (四) (문) (문) (문)

Model Calibration And Simulation Applications Conclusions References

Motivation

Three Hot Topics In International Macro:

Huge Reserve Accumulation By Fast-Growing Developing Economies

Motivation

- Surprising "Upstream" Capital Flows: Developing → Rich Countries
 China Following Japan, Korea, Taiwan, Singapore, Hong Kong,
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Image: A = A

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Motivation

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 China
- Surprising "Upstream" Capital Flows: Developing → Rich Countries
 China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Motivation

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 China
- Surprising "Upstream" Capital Flows: Developing → Rich Countries
 China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Introduction Model

> Applications Conclusions References

Calibration And Simulation

Motivation Literature Structure Overview

Motivation

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 - China
- \bullet Surprising "Upstream" Capital Flows: Developing \rightarrow Rich Countries
 - China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Introduction Model Calibration And Simulation Applications

> Conclusions References

Motivation Literature Structure Overview

Motivation

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 - China
- \bullet Surprising "Upstream" Capital Flows: Developing \rightarrow Rich Countries
 - China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Introduction Model Calibration And Simulation

> Applications Conclusions References

Motivation Literature Structure Overview

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 - China
- \bullet Surprising "Upstream" Capital Flows: Developing \rightarrow Rich Countries
 - China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Introduction Model Calibration And Simulation

> Applications Conclusions References

Motivation Literature Structure Overview

Motivation

- Huge Reserve Accumulation By Fast-Growing Developing Economies
 - China
- \bullet Surprising "Upstream" Capital Flows: Developing \rightarrow Rich Countries
 - China Following Japan, Korea, Taiwan, Singapore, Hong Kong, ...
- Sovereign Wealth Funds
 - Mainly Oil-Rich Countries

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - · Tractable: Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model.
 - Shows Eqbm Relation Between Precautionary, Other Motives.
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

- - ◆ 同 ▶ - ◆ 目 ▶

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable: Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Equin Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

< □ > < 同 > < 三 >

References

Calibration And Simulation

Motivation

Connection?

Precautionary Motives Commonly Cited In All Three Cases

Our Model of Precautionary Net Foreign Assets:

References

Calibration And Simulation

Motivation

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable, Tractable! TRACTABLE!!!

References

Calibration And Simulation

Motivation

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable, Tractable! TRACTABLE!!!

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Motivation Calibration And Simulation Literature Applications Structure Conclusions Overview References

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

References

Calibration And Simulation

Motivation

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable, Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model

A D

References

Calibration And Simulation

Motivation

Connection?

Precautionary Motives Commonly Cited In All Three Cases

- Our Model of Precautionary Net Foreign Assets:
 - Tractable, Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model

A D

Model Motivation Calibration And Simulation Literature Applications Structure Conclusions Overview References

Connection?

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Motivation Calibration And Simulation Literature Applications Structure Conclusions Overview References

Connection?

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Motivation Calibration And Simulation Literature Applications Structure Conclusions Overview References

Connection?

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Connection?

- Our Model of Precautionary Net Foreign Assets:
 - Tractable. Tractable! TRACTABLE!!!
 - The Natural Extension of the Ramsey Model
 - Shows Eqbm Relation Between Precautionary, Other Motives
- Two applications
 - Economic Growth and Capital Flows
 - Impact of Reducing Global Financial Imbalances

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Literature

Aggregated Micro Model

- "Real" microfoundations!
- Builds on Toche (2005)
- Related: Fogli and Perri (2006), Mendoza, Quadrini, and Rios-Rull (2007), Sandri (2008)
- Other Approaches: Caballero, Farhi, and Gourinchas (2008)

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Literature

- Aggregated Micro Model
 - "Real" microfoundations!
- Builds on Toche (2005)
- Related: Fogli and Perri (2006), Mendoza, Quadrini, and Rios-Rull (2007), Sandri (2008)
- Other Approaches: Caballero, Farhi, and Gourinchas (2008)

Model Calibration And Simulation Applications Conclusions References

- Aggregated Micro Model
 - "Real" microfoundations!
- Builds on Toche (2005)
- Related: Fogli and Perri (2006), Mendoza, Quadrini, and Rios-Rull (2007), Sandri (2008)
- Other Approaches: Caballero, Farhi, and Gourinchas (2008)

Model Calibration And Simulation Applications Conclusions References

- Aggregated Micro Model
 - "Real" microfoundations!
- Builds on Toche (2005)
- Related: Fogli and Perri (2006), Mendoza, Quadrini, and Rios-Rull (2007), Sandri (2008)
- Other Approaches: Caballero, Farhi, and Gourinchas (2008)

Model Calibration And Simulation Applications Conclusions References

- Aggregated Micro Model
 - "Real" microfoundations!
- Builds on Toche (2005)
- Related: Fogli and Perri (2006), Mendoza, Quadrini, and Rios-Rull (2007), Sandri (2008)
- Other Approaches: Caballero, Farhi, and Gourinchas (2008)

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Structure

Model

- Calibration and Simulation
- Applications
 - Growth and Capital Flows
 - Complete World Knowledge (General Equilibrium)

▲ 同 ▶ → 三 ▶

э

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Structure

Model

• Calibration and Simulation

Applications

- Growth and Capital Flows
- Complete World Knowledge (General Equilibrium)

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Structure

- Model
- Calibration and Simulation
- Applications
 - Growth and Capital Flows
 - Complete World Knowledge (General Equilibrium)

____ ▶

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Structure

- Model
- Calibration and Simulation
- Applications
 - Growth and Capital Flows
 - Complete World Knowledge (General Equilibrium)

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Structure

- Model
- Calibration and Simulation
- Applications
 - Growth and Capital Flows
 - Complete World Knowledge (General Equilibrium)

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

Small Open Economy

- Balanced Growth Path With Population And Productivity Growth
- Accumulate Buffer Stock to Self-Insure Against Unemployment
- NFA: Aggregate Stock of Wealth Minus Domestic Capital Stock
- Closed-Form Solutions For Equilibrium

Model Calibration And Simulation Applications Conclusions References

- Small Open Economy
- Balanced Growth Path With Population And Productivity Growth
- Accumulate Buffer Stock to Self-Insure Against Unemployment
- NFA: Aggregate Stock of Wealth Minus Domestic Capital Stock
- Closed-Form Solutions For Equilibrium

Model Calibration And Simulation Applications Conclusions References

- Small Open Economy
- Balanced Growth Path With Population And Productivity Growth
- Accumulate Buffer Stock to Self-Insure Against Unemployment
- NFA: Aggregate Stock of Wealth Minus Domestic Capital Stock
- Closed-Form Solutions For Equilibrium

Model Calibration And Simulation Applications Conclusions References

- Small Open Economy
- Balanced Growth Path With Population And Productivity Growth
- Accumulate Buffer Stock to Self-Insure Against Unemployment
- NFA: Aggregate Stock of Wealth Minus Domestic Capital Stock
- Closed-Form Solutions For Equilibrium
Introduction

Model Calibration And Simulation Applications Conclusions References Motivation Literature Structure Overview

- Small Open Economy
- Balanced Growth Path With Population And Productivity Growth
- Accumulate Buffer Stock to Self-Insure Against Unemployment
- NFA: Aggregate Stock of Wealth Minus Domestic Capital Stock
- Closed-Form Solutions For Equilibrium

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Macroeconomic Assumptions

• Domestic output is produced with the Cobb-Douglas function:

$$\boldsymbol{Y}_t = \boldsymbol{K}_t^{\alpha} (\boldsymbol{z}_t \boldsymbol{L}_t)^{1-\alpha}, \qquad (1$$

• Labor productivity increases by G in every period,

$$z_{t+1} = \mathsf{G} z_t. \tag{2}$$

• Capital perfectly mobile internationally,

$$\overbrace{\neg}^{\equiv 1-\delta} + \alpha \frac{\mathbf{Y}_t}{\mathbf{K}_t} = \mathsf{R},\tag{3}$$

$$\frac{K}{Y} = \frac{\alpha}{R-T}.$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Macroeconomic Assumptions

• Domestic output is produced with the Cobb-Douglas function:

$$\boldsymbol{Y}_t = \boldsymbol{K}_t^{\alpha} (\boldsymbol{z}_t \boldsymbol{L}_t)^{1-\alpha}, \qquad (1$$

• Labor productivity increases by G in every period,

$$z_{t+1} = \mathsf{G} z_t. \tag{2}$$

• Capital perfectly mobile internationally,

$$\overbrace{\neg}^{\equiv 1-\delta} + \alpha \frac{\mathbf{Y}_t}{\mathbf{K}_t} = \mathsf{R},\tag{3}$$

$$\frac{K}{Y} = \frac{\alpha}{R - J}.$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Macroeconomic Assumptions

• Domestic output is produced with the Cobb-Douglas function:

$$\boldsymbol{Y}_t = \boldsymbol{K}_t^{\alpha} (\boldsymbol{z}_t \boldsymbol{L}_t)^{1-\alpha}, \qquad (1$$

• Labor productivity increases by G in every period,

$$z_{t+1} = \mathsf{G} z_t. \tag{2}$$

• Capital perfectly mobile internationally,

$$\overbrace{\mathsf{T}}^{\equiv 1-\delta} + \alpha \frac{\mathsf{Y}_t}{\mathsf{K}_t} = \mathsf{R},\tag{3}$$

$$\frac{\mathbf{K}}{\mathbf{Y}} = \frac{\alpha}{\mathsf{R} - \mathsf{T}}.$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Macroeconomic Assumptions

• Domestic output is produced with the Cobb-Douglas function:

$$\boldsymbol{Y}_t = \boldsymbol{K}_t^{\alpha} (\boldsymbol{z}_t \boldsymbol{L}_t)^{1-\alpha}, \qquad (1)$$

• Labor productivity increases by G in every period,

$$z_{t+1} = \mathsf{G} z_t. \tag{2}$$

• Capital perfectly mobile internationally,

$$\overbrace{\mathsf{T}}^{\equiv 1-\delta} + \alpha \frac{\mathsf{Y}_t}{\mathsf{K}_t} = \mathsf{R},\tag{3}$$

$$\frac{\mathbf{K}}{\mathbf{Y}} = \frac{\alpha}{\mathsf{R} - \mathsf{T}}.$$
(4)

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

People and Populations

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities \mho and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{D})(\Xi - \mathcal{B})}$$

▲□ ► ▲ □ ► ▲

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

People and Populations

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t: \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - $\bullet\,$ Flow probabilities $\mho\,$ and D
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{D})(\Xi - \mathcal{B})}$$

▲□ ► ▲ □ ► ▲

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

People and Populations

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities \mho and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{B})(\Xi - \mathcal{B})}$$

▲ 同 ▶ → 三 ▶

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities \mho and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{B})(\Xi - \mathcal{B})}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - $\bullet\,$ Flow probabilities $\mho\,$ and D
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\mathcal{D}\Xi^{t+1}}{(\Xi - \mathcal{D})(\Xi - \mathcal{B})}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities \mho and D
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\mathcal{D}\Xi^{t+1}}{(\Xi - \mathcal{D})(\Xi - \mathcal{B})}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities ℧ and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{B}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{D})(\Xi - \mathcal{B})}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - $\bullet\,$ Flow probabilities \mho and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{Y}}$$
$$\mathcal{U}_t = \frac{\nabla \Xi^{t+1}}{(\Xi - \mathcal{P})(\Xi - \mathcal{Y})}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

- Each worker is part of a single 'generation' born at the same time
- Size of generation born at $t : \Xi^t$.
- Life Stages:
 - Employment
 - Unemployment/Retirement
 - Death
- Transitions to unemployment and death are Poisson processes
 - Flow probabilities $\boldsymbol{\mho}$ and D.
- Employed and Unemployed Populations:

$$\mathcal{E}_t = \frac{\Xi^{t+1}}{\Xi - \mathcal{V}}$$
$$\mathcal{U}_t = \frac{\mathcal{V}\Xi^{t+1}}{(\Xi - \mathcal{V})(\Xi - \mathcal{V})}.$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Balanced Growth

• Capital and output grow at constant rates

- Real wage grows by factor G in every period.
- Main variable of interest = N_t , the aggregate net foreign assets of the economy at the beginning of period t.

$$\boldsymbol{N}_t = \boldsymbol{B}_t - \boldsymbol{K}_t. \tag{5}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Balanced Growth

- Capital and output grow at constant rates
- Real wage grows by factor G in every period.
- Main variable of interest = N_t , the aggregate net foreign assets of the economy at the beginning of period t.

$$\boldsymbol{N}_t = \boldsymbol{B}_t - \boldsymbol{K}_t. \tag{5}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Balanced Growth

- Capital and output grow at constant rates
- Real wage grows by factor G in every period.
- Main variable of interest = N_t , the aggregate net foreign assets of the economy at the beginning of period t.

$$\boldsymbol{N}_t = \boldsymbol{B}_t - \boldsymbol{K}_t. \tag{5}$$

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

The microeconomic consumer's problem

• Budget constraint of individual:

$$egin{aligned} & oldsymbol{b}_{t+1} \ & oldsymbol{R} \ & + oldsymbol{c}_t = oldsymbol{b}_t + \overbrace{\xi_t \ell_t \mathbb{W}_t}^{ ext{labor income}} \,, \end{aligned}$$

• Worker's labor supply ℓ grows by a factor X per period over his lifetime,

$$\ell_t = \mathsf{X}^t \ell_0,\tag{7}$$

(6)

• For consumer who remains employed, labor income grows by

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

The microeconomic consumer's problem

• Budget constraint of individual:

$$\frac{\boldsymbol{b}_{t+1}}{\mathsf{R}} + \boldsymbol{c}_t = \boldsymbol{b}_t + \overbrace{\xi_t \ell_t \mathsf{W}_t}^{\mathsf{labor income}}, \qquad (6)$$

 $\bullet\,$ Worker's labor supply ℓ grows by a factor X per period over his lifetime,

$$\ell_t = \mathsf{X}^t \ell_0,\tag{7}$$

• For consumer who remains employed, labor income grows by

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

The microeconomic consumer's problem

• Budget constraint of individual:

$$\frac{\boldsymbol{b}_{t+1}}{\mathsf{R}} + \boldsymbol{c}_t = \boldsymbol{b}_t + \overbrace{\xi_t \ell_t \mathsf{W}_t}^{\mathsf{labor income}}, \qquad (6)$$

• Worker's labor supply ℓ grows by a factor X per period over his lifetime,

$$\ell_t = \mathsf{X}^t \ell_0,\tag{7}$$

For consumer who remains employed, labor income grows by

$$\Gamma \equiv GX.$$

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

- Unemployment: Complete and permanent destruction of h
- CRRA felicity u(●) = ●^{1−ρ}/(1 − ρ); geometric discounting at β
- Unemployed convert their wealth into annuities.
- Solution to the unemployed consumer's optimization problem,

$$\boldsymbol{c}_t^u = \kappa^u \boldsymbol{b}_t,$$

$$\kappa^{u} \equiv 1 - \mathcal{D} \frac{(\beta R)^{1/\rho}}{R}.$$

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

- Unemployment: Complete and permanent destruction of h
- CRRA felicity $u(\bullet) = \bullet^{1-\rho}/(1-\rho)$; geometric discounting at β
- Unemployed convert their wealth into annuities.
- Solution to the unemployed consumer's optimization problem,

$$\boldsymbol{c}_t^u = \kappa^u \boldsymbol{b}_t,$$

$$\kappa^{u} \equiv 1 - \mathcal{D} \frac{(\beta R)^{1/\rho}}{R}.$$

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

- Unemployment: Complete and permanent destruction of h
- CRRA felicity $u(\bullet) = \bullet^{1-\rho}/(1-\rho)$; geometric discounting at β
- Unemployed convert their wealth into annuities.
- Solution to the unemployed consumer's optimization problem,

$$\boldsymbol{c}_t^u = \kappa^u \boldsymbol{b}_t,$$

$$\kappa^{u} \equiv 1 - \mathcal{D} \frac{(\beta R)^{1/\rho}}{R}.$$

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

- Unemployment: Complete and permanent destruction of h
- CRRA felicity $u(\bullet) = \bullet^{1-\rho}/(1-\rho)$; geometric discounting at β
- Unemployed convert their wealth into annuities.
- Solution to the unemployed consumer's optimization problem,

$$\boldsymbol{c}_t^u = \kappa^u \boldsymbol{b}_t,$$

$$\kappa^{u} \equiv 1 - \mathcal{D} \frac{(\beta \mathsf{R})^{1/\rho}}{\mathsf{R}}.$$

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

• 'Growth impatience condition':

$$\mathbf{P}_{\Gamma} \;\; \equiv \;\; rac{(eta \mathsf{R})^{1/
ho}}{\Gamma} < 1$$

necessary for finite target ratio of wealth to income (Carroll (2011)) • Defining nonbold variables as, e.g., $c_t^e = c_t^e / (W_t \ell_t)$, we get

$$b_{t+1}^{e} = (\mathsf{R}/\Gamma) \left(b_{t}^{e} - c_{t}^{e} + 1 \right).$$
 (8)

$$c_{t+1}^{e} = \mathbf{P}_{\Gamma} \mathcal{B}^{1/\rho} c_{t}^{e} \left[1 - \Im \left(\frac{\mathbf{P}_{\Gamma}}{\kappa^{u}} \frac{c_{t}^{e}}{\mathsf{R}/\Gamma(b_{t}^{e} - c_{t}^{e} + 1)} \right)^{\rho} \right]^{-1/\rho}.$$
(9)

• Saddle-point stable dynamics.

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

• 'Growth impatience condition':

$$\mathbf{P}_{\Gamma} \;\; \equiv \;\; rac{(eta \mathsf{R})^{1/
ho}}{\Gamma} < 1$$

necessary for finite target ratio of wealth to income (Carroll (2011)) • Defining nonbold variables as, e.g., $c_t^e = c_t^e / (W_t \ell_t)$, we get

$$b_{t+1}^{e} = (\mathsf{R}/\Gamma) \left(b_{t}^{e} - c_{t}^{e} + 1 \right).$$
 (8)

$$c_{t+1}^{e} = \mathbf{P}_{\Gamma} \mathcal{B}^{1/\rho} c_{t}^{e} \left[1 - \mho \left(\frac{\mathbf{P}_{\Gamma}}{\kappa^{u}} \frac{c_{t}^{e}}{\mathsf{R}/\Gamma(b_{t}^{e} - c_{t}^{e} + 1)} \right)^{\rho} \right]^{-1/\rho}.$$
 (9)

• Saddle-point stable dynamics.

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The microeconomic consumer's problem

• 'Growth impatience condition':

$$\mathbf{P}_{\Gamma} \;\; \equiv \;\; rac{(eta \mathsf{R})^{1/
ho}}{\Gamma} < 1$$

necessary for finite target ratio of wealth to income (Carroll (2011)) • Defining nonbold variables as, e.g., $c_t^e = c_t^e / (W_t \ell_t)$, we get

 $b_{t+1}^{e} = (\mathsf{R}/\Gamma) (b_{t}^{e} - c_{t}^{e} + 1).$ (8)

$$c_{t+1}^{e} = \mathbf{P}_{\Gamma} \mathcal{B}^{1/\rho} c_{t}^{e} \left[1 - \mho \left(\frac{\mathbf{P}_{\Gamma}}{\kappa^{u}} \frac{c_{t}^{e}}{\mathsf{R}/\Gamma(b_{t}^{e} - c_{t}^{e} + 1)} \right)^{\rho} \right]^{-1/\rho}.$$
 (9)

• Saddle-point stable dynamics.

Calibration And Simulation Applications Conclusions References Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

Phase Diagram

< □ > <

э

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The Growth Impatience Condition

• Target wealth-to-income ratio: impatience vs prudence.

Closed-form solution for the target wealth-to-income ratio

$$\check{b} = \left[\frac{\Gamma}{\mathsf{R}} - 1 + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}$$

(10)

 $\frac{\partial \check{b}}{\partial \mho} > 0, \frac{\partial \check{b}}{\partial \beta} > 0, \frac{\partial \check{b}}{\partial \Gamma} < 0.$ (11)

< 口 > < 同

• The response of \check{b} to R is ambiguous.

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The Growth Impatience Condition

- Target wealth-to-income ratio: impatience vs prudence.
- Closed-form solution for the target wealth-to-income ratio

$$\check{b} = \left[\frac{\Gamma}{\mathsf{R}} - 1 + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}.$$
 (10)

$$\frac{\partial \check{b}}{\partial \mho} > 0, \frac{\partial \check{b}}{\partial \beta} > 0, \frac{\partial \check{b}}{\partial \Gamma} < 0. \tag{1}$$

• The response of \check{b} to R is ambiguous.

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The Growth Impatience Condition

- Target wealth-to-income ratio: impatience vs prudence.
- Closed-form solution for the target wealth-to-income ratio

$$\check{b} = \left[\frac{\Gamma}{\mathsf{R}} - 1 + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}.$$
 (10)

$$\frac{\partial \check{b}}{\partial \mho} > 0, \frac{\partial \check{b}}{\partial \beta} > 0, \frac{\partial \check{b}}{\partial \Gamma} < 0. \tag{11}$$

$$\frac{\partial \check{b}}{\partial \rho} > 0.$$
 (12)

• The response of \check{b} to R is ambiguous.

Macroeconomy People Balanced Growth **The Microeconomic Problem** Foreign Assets

The Growth Impatience Condition

- Target wealth-to-income ratio: impatience vs prudence.
- Closed-form solution for the target wealth-to-income ratio

$$\check{b} = \left[\frac{\Gamma}{\mathsf{R}} - 1 + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}.$$
 (10)

$$\frac{\partial \check{b}}{\partial \mho} > 0, \frac{\partial \check{b}}{\partial \beta} > 0, \frac{\partial \check{b}}{\partial \Gamma} < 0. \tag{11}$$

$$\frac{\partial \check{b}}{\partial
ho} > 0.$$
 (12)

• The response of \check{b} to R is ambiguous.

Foreign Assets

• Ratio of employed workers' wealth to output,

$$B_t^e = \frac{B_t^e}{Y_t} = (1 - \alpha) \left(1 - \underbrace{\underbrace{\bigvee}}_{\equiv \Lambda} X \right) \sum_{n=0}^{+\infty} \Lambda^n b_{t,t-n}^e, \quad (13)$$

where Λ is the factor by which the share of a generation in total labor supply shrinks every period.

• The Level of Unemployed Workers' Wealth is

$$\boldsymbol{B}_{t+1}^{u} = \mathsf{R}(1-\kappa^{u})\boldsymbol{B}_{t}^{u} + \mho \boldsymbol{B}_{t+1}^{e}.$$
(14)

Introduction Model People Calibration And Simulation Applications Conclusions References Foreign Assets

Foreign Assets

• Ratio of employed workers' wealth to output,

$$B_t^e = \frac{B_t^e}{Y_t} = (1 - \alpha) \left(1 - \underbrace{\underbrace{\cancel{X}}}_{\equiv \Lambda} \right) \sum_{n=0}^{+\infty} \Lambda^n b_{t,t-n}^e, \quad (13)$$

where Λ is the factor by which the share of a generation in total labor supply shrinks every period.

• The Level of Unemployed Workers' Wealth is

$$\boldsymbol{B}_{t+1}^{u} = \mathsf{R}(1-\kappa^{u})\boldsymbol{B}_{t}^{u} + \mho \boldsymbol{B}_{t+1}^{e}.$$
(14)

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Foreign Assets (cont)

Steady state ratio of net foreign assets to GDP

$$\frac{\mathbf{N}}{\mathbf{Y}} = \frac{\Xi \mathsf{G}}{\mathsf{R}} \left(1 + \frac{\mho \Xi \mathsf{G}}{\Xi \mathsf{G} - \mathbf{D}(\beta \mathsf{R})^{1/\rho}} \right) \frac{\mathbf{B}^e}{\mathbf{Y}} - \Xi \mathsf{G} \left(\frac{\alpha}{\mathsf{R} - \beth} \right).$$
(15)

• Depends on Employed Workers' Target Savings

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Foreign Assets (cont)

Steady state ratio of net foreign assets to GDP

$$\frac{\mathbf{N}}{\mathbf{Y}} = \frac{\Xi G}{R} \left(1 + \frac{\mho \Xi G}{\Xi G - \mathscr{D}(\beta R)^{1/\rho}} \right) \frac{\mathbf{B}^{e}}{\mathbf{Y}} - \Xi G \left(\frac{\alpha}{R - \beth} \right).$$
(15)

-

< A >

Depends on Employed Workers' Target Savings
Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

'Stakes'

Model with no stakes

$$B^{e} = \frac{\boldsymbol{B}^{e}}{\boldsymbol{Y}} = (1-\alpha)(1-\Lambda)\sum_{n=0}^{+\infty}\Lambda^{n}b^{e}(n).$$
(16)

• Model with stakes yielding a representative agent

$$\check{\check{B}} = \frac{\mathbf{B}^{e}}{\mathbf{Y}} = (1 - \alpha)\check{\check{b}}.$$
(17)

where

$$\check{b} = \left[\frac{\Gamma}{R} - \frac{1}{2 - \Lambda} + \kappa^{\mu} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}$$
(18)

Model Calibration And Simulation Applications References

Foreign Assets

'Stakes'

Model with no stakes

$$B^{e} = \frac{\boldsymbol{B}^{e}}{\boldsymbol{Y}} = (1-\alpha)(1-\Lambda)\sum_{n=0}^{+\infty}\Lambda^{n}b^{e}(n).$$
(16)

• Model with stakes yielding a representative agent

$$\check{\check{B}} = \frac{\mathbf{B}^{e}}{\mathbf{Y}} = (1 - \alpha)\check{\check{b}}.$$
(17)

where

$$\check{b} = \left[\frac{\Gamma}{R} - \frac{1}{2 - \Lambda} + \kappa^{\mu} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho}\right)^{1/\rho}\right]^{-1}$$
(18)

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Advantages Of Model With Stakes

• Closed-form solution for steady state

• Simple to characterize transition dynamics

< □ > <

∃ >

Macroeconomy People Balanced Growth The Microeconomic Problem Foreign Assets

Advantages Of Model With Stakes

- Closed-form solution for steady state
- Simple to characterize transition dynamics

A D

Parameter Values Paths Sensitivity Analysis Social Insurance

Calibration and Simulation

Table 1

α	δ	Ξ	G	R	β^{-1}	Φ	Ω	ρ	d
0.3	0.06	1.01	1.04	1.04	1.04	1.01	0.025	2	0.05

• N/Y = 0.17 in the model with no stakes

• N/Y = 0.79 in the model with stakes

▲□ ► < □ ► </p>

Parameter Values Paths Sensitivity Analysis Social Insurance

Calibration and Simulation

Table 1

α	δ	Ξ	G	R	β^{-1}	Φ	Ω	ρ	d
0.3	0.06	1.01	1.04	1.04	1.04	1.01	0.025	2	0.05

- N/Y = 0.17 in the model with no stakes
- N/Y = 0.79 in the model with stakes

< 🗇 > < 🖃 >

э

Parameter Values Paths Sensitivity Analysis Social Insurance

Paths

・ロト ・ 一 ト ・ ヨ ト

< ≣⇒

æ

Parameter Values Paths Sensitivity Analysis Social Insurance

Sensitivity analysis

< 同 ▶

Parameter Values Paths Sensitivity Analysis Social Insurance

- Many countries have social transfers to unemployed/retired
- New assumption: labor income tax on the employed in order to finance transfers to the unemployed.
- Unemployed receive transfer whose value is a multiple ς of the labor income that they would have received if they had remained employed.
- New formula for target wealth-to-income ratio. Going through the same steps as before, we get

$$\check{b}(\varsigma) = \left\{ 1 - \varsigma \left[\frac{\mho}{\Xi} + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho} \right)^{1/\rho} \right] \right\} \check{b}, \quad (19)$$

Parameter Values Paths Sensitivity Analysis Social Insurance

- Many countries have social transfers to unemployed/retired
- New assumption: labor income tax on the employed in order to finance transfers to the unemployed.
- Unemployed receive transfer whose value is a multiple ς of the labor income that they would have received if they had remained employed.
- New formula for target wealth-to-income ratio. Going through the same steps as before, we get

$$\check{b}(\varsigma) = \left\{ 1 - \varsigma \left[\frac{\mho}{\Xi} + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho} \right)^{1/\rho} \right] \right\} \check{b}, \quad (19)$$

Parameter Values Paths Sensitivity Analysis Social Insurance

- Many countries have social transfers to unemployed/retired
- New assumption: labor income tax on the employed in order to finance transfers to the unemployed.
- Unemployed receive transfer whose value is a multiple ς of the labor income that they would have received if they had remained employed.
- New formula for target wealth-to-income ratio. Going through the same steps as before, we get

$$\check{b}(\varsigma) = \left\{ 1 - \varsigma \left[\frac{\mho}{\Xi} + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho} \right)^{1/\rho} \right] \right\} \check{b}, \quad (19)$$

Parameter Values Paths Sensitivity Analysis Social Insurance

- Many countries have social transfers to unemployed/retired
- New assumption: labor income tax on the employed in order to finance transfers to the unemployed.
- Unemployed receive transfer whose value is a multiple ς of the labor income that they would have received if they had remained employed.
- New formula for target wealth-to-income ratio. Going through the same steps as before, we get

$$\check{b}(\varsigma) = \left\{ 1 - \varsigma \left[\frac{\mho}{\Xi} + \kappa^{u} \left(1 + \frac{\mathbf{P}_{\Gamma}^{-\rho} - 1}{\mho} \right)^{1/\rho} \right] \right\} \check{b}, \quad (19)$$

Model Calibration And Simulation Conclusions References

Social Insurance

Growth And Saving Resorbing Global Imbalances

Growth And Saving

\bullet Theory: Good Growth Prospects \rightarrow Should Borrow to Invest

- Data: Fast-Growing Countries Export Capital
 - Carroll and Weil (1994); Loayza, Schmidt-Hebbel, and Servén (2000); Attanasio, Picci, and Scorcu (2000); Gourinchas and Jeanne, 2007, Prasad, Rajan and Subramanian (2007); Sandri (2008)
- Can this model shed light on this puzzle?
- Yes, if growth take-off entails idiosyncratic risk (both G and \mho go up).

Growth And Saving Resorbing Global Imbalances

Growth And Saving

- $\bullet\,$ Theory: Good Growth Prospects \to Should Borrow to Invest
- Data: Fast-Growing Countries Export Capital
 - Carroll and Weil (1994); Loayza, Schmidt-Hebbel, and Servén (2000); Attanasio, Picci, and Scorcu (2000); Gourinchas and Jeanne, 2007, Prasad, Rajan and Subramanian (2007); Sandri (2008)
- Can this model shed light on this puzzle?
- Yes, if growth take-off entails idiosyncratic risk (both G and \mho go up).

Growth And Saving Resorbing Global Imbalances

Growth And Saving

- $\bullet\,$ Theory: Good Growth Prospects \to Should Borrow to Invest
- Data: Fast-Growing Countries Export Capital
 - Carroll and Weil (1994); Loayza, Schmidt-Hebbel, and Servén (2000); Attanasio, Picci, and Scorcu (2000); Gourinchas and Jeanne, 2007, Prasad, Rajan and Subramanian (2007); Sandri (2008)
- Can this model shed light on this puzzle?
- Yes, if growth take-off entails idiosyncratic risk (both G and \mho go up).

Growth And Saving Resorbing Global Imbalances

Growth And Saving

- \bullet Theory: Good Growth Prospects \rightarrow Should Borrow to Invest
- Data: Fast-Growing Countries Export Capital
 - Carroll and Weil (1994); Loayza, Schmidt-Hebbel, and Servén (2000); Attanasio, Picci, and Scorcu (2000); Gourinchas and Jeanne, 2007, Prasad, Rajan and Subramanian (2007); Sandri (2008)
- Can this model shed light on this puzzle?

• Yes, if growth take-off entails idiosyncratic risk (both G and \mho go up).

Growth And Saving Resorbing Global Imbalances

Growth And Saving

- \bullet Theory: Good Growth Prospects \rightarrow Should Borrow to Invest
- Data: Fast-Growing Countries Export Capital
 - Carroll and Weil (1994); Loayza, Schmidt-Hebbel, and Servén (2000); Attanasio, Picci, and Scorcu (2000); Gourinchas and Jeanne, 2007, Prasad, Rajan and Subramanian (2007); Sandri (2008)
- Can this model shed light on this puzzle?
- Yes, if growth take-off entails idiosyncratic risk (both G and \mho go up).

Growth And Saving Resorbing Global Imbalances

Growth and capital flows

Growth And Saving Resorbing Global Imbalances

World General Equilibrium

- Small economy assumption not appropriate to study global savings glut or adjustment of global financial imbalances.
- Study steady state equilibria in two-country extension of the model.
- Global interest rate R endogenous

$$\boldsymbol{N}_h + \boldsymbol{N}_f = 0, \tag{20}$$

Growth And Saving Resorbing Global Imbalances

World General Equilibrium

- Small economy assumption not appropriate to study global savings glut or adjustment of global financial imbalances.
- Study steady state equilibria in two-country extension of the model.
- Global interest rate R endogenous

$$\boldsymbol{N}_h + \boldsymbol{N}_f = 0, \tag{20}$$

Growth And Saving Resorbing Global Imbalances

World General Equilibrium

- Small economy assumption not appropriate to study global savings glut or adjustment of global financial imbalances.
- Study steady state equilibria in two-country extension of the model.
- Global interest rate R endogenous

$$\boldsymbol{N}_h + \boldsymbol{N}_f = 0, \tag{20}$$

Growth And Saving Resorbing Global Imbalances

General Equilibrium

- Two countries identical except for size (h=20%, f=80%) and level of social insurance ($\varsigma_h = 1.5$, $\varsigma_f = 0.75$).
- This implies

$$\frac{N_h}{Y_h} = -0.5 \tag{21}$$
$$\frac{N_f}{Y_f} = 0.125 \tag{22}$$

▲ 同 ▶ → 三 ▶

• What is impact of increasing foreign social insurance to the home level?

Growth And Saving Resorbing Global Imbalances

General Equilibrium

- Two countries identical except for size (h=20%, f=80%) and level of social insurance ($\varsigma_h = 1.5$, $\varsigma_f = 0.75$).
- This implies

$$\frac{\boldsymbol{N}_h}{\boldsymbol{Y}_h} = -0.5 \tag{21}$$
$$\frac{\boldsymbol{N}_f}{\boldsymbol{Y}_f} = 0.125 \tag{22}$$

▲ 同 ▶ → 三 ▶

• What is impact of increasing foreign social insurance to the home level?

Growth And Saving Resorbing Global Imbalances

General Equilibrium

- Two countries identical except for size (h=20%, f=80%) and level of social insurance ($\varsigma_h = 1.5$, $\varsigma_f = 0.75$).
- This implies

$$\frac{\boldsymbol{N}_h}{\boldsymbol{Y}_h} = -0.5 \tag{21}$$
$$\frac{\boldsymbol{N}_f}{\boldsymbol{Y}_f} = 0.125 \tag{22}$$

< □ > < □ >

• What is impact of increasing foreign social insurance to the home level?

Growth And Saving Resorbing Global Imbalances

General equilibrium

< 同 ▶

• Tractable model of net foreign assets of small open economy

- Two applications
 - Relationship between growth and capital flows
 - Long-run implications of reducing global imbalances.
- Extensions for future research: portfolio choice, real exchange rates, asset prices, etc.

- Tractable model of net foreign assets of small open economy
- Two applications
 - Relationship between growth and capital flows
 - Long-run implications of reducing global imbalances.
- Extensions for future research: portfolio choice, real exchange rates, asset prices, etc.

- Tractable model of net foreign assets of small open economy
- Two applications
 - Relationship between growth and capital flows
 - Long-run implications of reducing global imbalances.
- Extensions for future research: portfolio choice, real exchange rates, asset prices, etc.

- Tractable model of net foreign assets of small open economy
- Two applications
 - Relationship between growth and capital flows
 - Long-run implications of reducing global imbalances.
- Extensions for future research: portfolio choice, real exchange rates, asset prices, etc.

- Tractable model of net foreign assets of small open economy
- Two applications
 - Relationship between growth and capital flows
 - Long-run implications of reducing global imbalances.
- Extensions for future research: portfolio choice, real exchange rates, asset prices, etc.

References |

- ATTANASIO, ORAZIO, LUCIO PICCI, AND ANTONELLO SCORCU (2000): "Saving, Growth, and Investment: A Macroeconomic Analysis Using a Panel of Countries," *Review of Economics and Statistics*, 82(1).
- CABALLERO, RICARDO J., EMMANUEL FARHI, AND PIERRE-OLIVIER GOURINCHAS (2008): "An Equilibrium Model of "Global Imbalances" and Low Interest Rates," *American Economic Review*, 98(1), 358–388.
- CARROLL, CHRISTOPHER D. (2011): "Theoretical Foundations of Buffer Stock Saving," Manuscript, Department of Economics, Johns Hopkins University, http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory.
- CARROLL, CHRISTOPHER D., AND DAVID N. WEIL (1994): "Saving and Growth: A Reinterpretation," Carnegie-Rochester Conference Series on Public Policy, 40, 133-192, http://econ.jhu.edu/people/ccarroll/CarrollWeilSavingAndGrowth.pdf.
- FOGLI, ALESSANDRA, AND FABRIZIO PERRI (2006): "The 'Great Moderation' and the U.S. External Imbalance," NBER Working Paper Number w12708.
- LOAYZA, NORMAN, KLAUS SCHMIDT-HEBBEL, AND LUIS SERVÉN (2000): "What Drives Saving Across the World?," Review of Economics and Statistics, 82(1).
- MENDOZA, ENRIQUE G., VINCENZO QUADRINI, AND JOSE-VICTOR RIOS-RULL (2007): "Financial Integration, Financial Deepness and Global Imbalances," NBER Working Paper Number w12909.

SANDRI, DAMIANO (2008): "Growth and Capital Flows with Risky Entrepreneurship," Manuscript, Johns Hopkins University.

TOCHE, PATRICK (2005): "A Tractable Model of Precautionary Saving in Continuous Time," *Economics Letters*, 87(2), 267–272, http://ideas.repec.org/a/eee/ecolet/v87y2005i2p267-272.html.

< 日 > < 同 > < 三 > < 三 >