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Abstract
To match aggregate consumption dynamics, macroeconomic models must generate ‘excess

smoothness’ in consumption expenditures. But microfounded models are calibrated to match
micro data, which exhibit no ‘excess smoothness.’ So standard microfounded models fail to
match the macro smoothness facts. We show that the micro and macro evidence are both
consistent with a microfounded model where consumers know their personal circumstances
but have ‘sticky expectations’ about the macroeconomy. Aggregate consumption sluggishness
reflects consumers’ imperfect attention to aggregate shocks. Our proposed degree of inatten-
tion has negligible utility costs because aggregate shocks constitute a tiny proportion of the
uncertainty that consumers face.
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Figure 1 Distribution of Estimates of Habit Persistence in Macro and Micro Studies

Notes: Reproduced from Havranek, Rusnak, and Sokolova (2017), Figure 2. The figure shows the distribution of
estimates of habit persistence in studies based on macro and micro data. Solid and dashed lines show the median
estimates in micro (0.0) and macro (0.6) studies, respectively.

The computational results in this paper were constructed using tools in the Econ-ARK/HARK toolkit. The toolkit can

be cited by its digital object identifier, 10.5281/zenodo.1001067, as is done in the paper’s own references as Carroll,

White, and Econ-ARK (2017). Thanks to Robert King, Dirk Krueger, Bartosz Maćkowiak, Giorgio Primiceri, Kathrin

Schlafmann, Lenno Uusküla, Gianluca Violante, Mirko Wiederholt and seminar participants in the NBER Summer

Institute, the Copenhagen Conference on Heterogeneity, the McMaster University, the University of Michigan, and the

University of Delaware for constructive and insightful comments which substantially improved this paper. The views

presented in this paper are those of the authors, and should not be attributed to the European Central Bank or to the

Japanese Ministry of Finance.

1

http://github.com/Econ-ARK/HARK
https://doi.org/10.5281/zenodo.1001067


I Introduction
Starting with Campbell and Deaton (1989), the macroeconomics, finance, and interna-
tional economics literatures have concluded that aggregate consumption exhibits ‘excess
smoothness’ compared to the benchmark Hall (1978) random walk model of consump-
tion. For a standard measure of excess smoothness χ (defined below), Figure 1 shows
that studies using aggregate data estimate that χ = 0.6 on average.1 A careful reading
of the literature suggests that the coefficient is higher, perhaps 0.75, in papers where the
data are better measured.

In contrast, parallel work using household-level data rejects the existence of any
meaningful degree of excess smoothness. The modal estimate of the micro literature
is χ of 0; the mean estimate is about 0.1.
We add a simple (and tractable) information friction to an existing benchmark ‘mi-

crofounded’ macro model, and show that the modified model can reconcile the micro
and macro empirical facts. As in the standard full-information rational expectations ap-
proach, consumers perfectly (‘frictionlessly’) perceive their own personal circumstances
(employment status, wage rate, wealth, etc). However, information about macroeco-
nomic quantities (e.g., aggregate productivity growth) arrives only occasionally (as in the
Calvo model of firms’ price updating), so that households’ macroeconomic expectations
are “sticky,” as in Mankiw and Reis (2002) and Carroll (2003). We calculate that our
proposed degree of (macro) inattention has negligible utility costs because aggregate
shocks are small compared to idiosyncratic shocks.

Aggregate consumption sluggishness a la Campbell and Deaton (1989) arises as fol-
lows. A household whose beliefs about the aggregate economy are out of date will
behave in the ways that would have been macroeconomically appropriate (for the con-
sumer’s currently observed level of wealth, etc) at the time of their last perception of
macroeconomic circumstances. The lag in perception generates a lag in the response of
aggregate spending to aggregate developments; the amount of sluggishness will depend
on the frequency with which consumers update. When our model’s updating frequency
is calibrated to match estimates of the degree of inattention for other aggregate vari-
ables (e.g., inflation) made using explicit expectations data from surveys, the model’s
implications for the persistence in aggregate consumption growth match the estimates
of the ‘excess smoothness’ of consumption in the macro literature.

Despite generating appropriate aggregate smoothness, when our model is estimated on
simulated individual data (corresponding to microeconomic evidence), regressions in the
spirit of Dynan (2000) (the seminal paper in the micro ‘excess smoothness’ literature)
reproduce her finding that at the level of individual households, consumption growth
has little predictability at quarterly frequency – Dynan (2000)’s regressions typically get
R̄2’s of about 0.01, and her largest reported value is 0.02, in the ballpark of the estimates
from corresponding simulated data generated by our model.

Because our model is formulated as a deviation from a maximizing model, we can cal-
culate explicit utility costs of that deviation, which are small because the comparatively
small size of the aggregate shocks means that neglecting them temporarily causes only
small and temporary errors in the level of consumption. Consistent with a theme in the
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literature all the way back to Akerlof and Yellen (1985), we find that the utility penalty
from these small errors is tiny, so that our consumers would be willing to pay very little
for even perpetually perfect information about macroeconomic conditions.

Furthermore, we show that our sticky expectations mechanism can be used to produce
quantitatively plausible estimates of how real-world shocks and policies have affected
households in past episodes (and presumptively how similar policies will work in the
future). One illustration comes in section V.D, where we show that, with no change of
our baseline parameters, our sticky expectations model is able to match the empirical
response of household spending to actual fiscal stimulus experiments: The model with
sticky expectations can generate both the fact that consumption reacts little to an
announcement of the stimulus and that it reacts substantially to the receipt of the
stimulus payment. A further real-world application is to the effects of certain kinds of
monetary policy. It has long been known that sticky expectations can generate inertia
in inflation and inflation expectations. Recently, it has also been proposed that they
matter for the transmission of monetary policy: For example, when households have
sticky expectations, they do not react quickly or strongly to central bank communication
(Auclert, Rognlie, and Straub (2019)), thus helping to provide a resolution to the forward
guidance puzzle.

There are many ways besides ours in which information can be imperfect. But
the review of the literature in our next section shows that the alternative imperfect
information frameworks are inconsistent with first-order facts from the micro or the
macro literatures (sometimes both).

After the literature review, we begin explaining our ideas with a ‘toy model’ (sec-
tion III) in which the key mechanisms can be derived analytically, thanks to extreme
simplifying assumptions like quadratic utility and constant factor prices. We next
(section IV) present the full version of our model, which abides by the more realistic
assumptions (CRRA utility, aggregate as well as individual shocks, etc) that have become
conventional respectively in the micro and macro literatures. After calibrating the
model (section IV.G), we describe the stylized facts from both literatures that need
to be explained by a good microfounded macroeconomic model of consumption, and
show that our model robustly reproduces those facts (section V). We then (section VI)
calculate how much a fully informed consumer would be willing to pay at birth to enjoy
instantaneous and perfect knowledge of aggregate developments (not much, it turns out).

II Background and Literature Review

A Imperfect Information
Our approach is related to extensive work on other forms of information frictions. These
include ‘noisy information’ (cf Pischke (1995)); costly information processing, as in
models with rational inattention (cf Sims (2003)); and models of bounded rationality (cf
Gabaix (2014)).
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In rational inattention models, agents have a limited ability to pay attention and
allocate that scarce resource optimally. Early work by Reis (2006) showed explicitly
how rational inattention could lead to excess consumption smoothness. Maćkowiak and
Wiederholt (2009) built on that work, and more recently Maćkowiak and Wiederholt
(2015) study a DSGE model with inattentive consumers and firms using a simple
New Keynesian framework in which they replace all sources of slow adjustment (habit
formation, Calvo pricing, and wage setting frictions) with rational inattention. Their
setup with rational inattention can match the sluggish responses observed in aggregate
data, in response both to monetary policy shocks and to technology shocks. A new
paper by Luo, Nie, Wang, and Young (2017) studies implications of rational inattention
for the dynamics and cross-sectional dispersion of consumption and wealth in a general
equilibrium model with CARA utility.

A challenge to the rational inattention approach has been the complexity of solving
models that aim to work out the full implications of rational inattention in contexts
where the models that match the microeconomic evidence are already formidably math-
ematically and computationally complex (see below for why this complexity is necessary
to match first-order micro consumption facts). The consumption literature on rational
inattention has therefore had to adopt simplifying assumptions about the utility function
like quadratic (Sims (2003), section 6; Luo (2008)) or CARA (Luo, Nie, Wang, and Young
(2017); Reis (2006)), or a highly stylized setup of idiosyncratic and aggregate income
shocks.2
However, a key insight of the rational inattention literature is that consumers endoge-

nously allocate more attention to larger shocks. Our model directly builds on this insight
by assuming that consumers accurately observe their personal circumstances but only
occasionally observe aggregate data.

As a compromise, Gabaix (2014) has recently proposed a framework that is much
simpler than the full rational inattention framework of Sims (2003), but aims to capture
much of its essence. This approach is relatively new, and while it does promise to
be more tractable than the full-bore Simsian framework, even the simplified Gabaix
approach would be difficult to embed in a model with a standard treatment of transitory
and persistent income shocks, precautionary motives, liquidity constraints, and other
complexities entailed in modern models of microeconomic consumption decisions.3 It
would be similarly challenging to determine how to apply the approaches of Woodford
(2002) or Morris and Shin (2006) to our question.

Finally, even for a perfectly attentive consumer, information itself can be imperfect.
The seminal work contemplating this possibility was by Muth (1960), whose most direct
descendant in the consumption literature is Pischke (1995) (building on Lucas (1973); see
also Ludvigson and Michaelides (2001)). The idea is that (perfectly attentive) consumers
face a signal extraction problem in determining whether a shock to their income is
transitory or permanent. When a permanent shock occurs, the immediate adjustment
to the shock is only partial, since agents’ best guess is that the shock is partly transitory
and partly permanent. With the right calibration, such a model could in principle explain
any amount of excess smoothness. But we argue in section VII that when a model of
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this kind is calibrated to the actual empirical data, it generates far less smoothness than
exhibited in the data.

B Microfoundations
No review of the empirical literature on smoothness is needed; Havranek, Rusnak, and
Sokolova (2017) have done an admirable job.

As for matching “first-order” micro facts, a large empirical literature over the last sev-
eral decades has documented the importance of modeling precautionary saving behavior
under uncertainty. For example, in micro data there is incontrovertible evidence—most
recently from millions of datapoints from the Norwegian population registry examined
by Fagereng, Holm, and Natvik (2017)—that the consumption function is not linear with
respect to wealth.4 It is concave, as the general theory says it should be (Carroll and
Kimball (1996)), and this concavity matters greatly for matching the main micro facts.
In addition, there is also nothing that looks either like the Reis model’s prediction
that there will be extended periods in which consumption does not change at all,
or its prediction that there will be occasional periods in which consumption moves
a lot (at dates of adjustment) and then remains anchored at that newer level for
another extended period (a similar result holds in the rational-inattention setup of Tutino
(2013)). This critique applies generically to models that incorporate a convex cost of
adjustment—whether to the consumer’s stock of information (Reis (2006)) or to the level
of consumption as in Chetty and Szeidl (2016). All such models imply counterfactually
‘jerky’ behavior of spending at the microeconomic level.5

To better match the micro data, we use the now-conventional microeconomic formu-
lation in which utility takes the Constant Relative Risk Aversion form and uncertainty
is calibrated to match micro estimates. Our assumption that consumers can perfectly
observe the idiosyncratic components of their income allows us to use essentially the
same solution methods as in the large recent literature exploring models of this kind.
Implementing the state of the art in the micro literature adds a great deal of complexity
and precludes a closed form solution for consumption like the one used by Reis. The
payoff is that the model is quantitatively plausible enough that, for example, it might
actually be usable by policymakers who wanted to assess the likely aggregate dynamics
entailed by specific alternative fiscal policy options.

Finally, there is an interesting and growing literature that uses expectations data from
surveys in an attempt to directly measure sluggishness in expectations dynamics. For
example, Coibion and Gorodnichenko (2015) find that the implied degree of information
rigidity in inflation expectations is high, with an average duration of six to seven
months between information updates. Fuhrer (2017) and Fuhrer (2018) find that even
for professional forecasters, forecast revisions are explainable using lagged information,
which would not be the case under perfect information processing. These empirical
results are consonant with the spirit of our exercise.
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III A Quadratic Utility ‘Toy Model’
Here we briefly introduce concepts and notation, and motivate our key result using
a simple framework, the classic Hall (1978) random walk model, with time separable
quadratic utility and geometric discounting by factor β. Overall wealth o (the sum of
human and nonhuman wealth) evolves according to the dynamic budget constraint

ot+1 = (ot − ct)R + ζt+1, (1)

where R = (1 + r) is the interest factor, ζt+1 is a shock to (total) wealth, and c is the
level of consumption.

With no informational frictions, the usual derivations lead to the standard Euler
equation:

u′(ct) = Rβ Et
[
u′(ct+1)

]
,

where Et denotes an assumption of instantaneous perfect frictionless updating of all
information. Quadratic u and Rβ = 1 imply Hall’s random walk proposition:

∆ct+1 = εt+1.

Consumers spend

ct = (r/R)ot,

because this is exactly the amount that maintains expected wealth unchanged:

Et[ot+1] = (ot − ct)R = ot.

A Sticky Expectations
Now suppose consumers update their information about ot, and therefore their behavior,
only occasionally. A consumer who updates in period t obtains precisely the same
information that a consumer in a frictionless model would receive, forms the same
expectations, and makes the same choices. Nonupdaters, however, behave as though
their former expectations had actually come true (since by definition they have learned
nothing to disconfirm their prior beliefs). For example, consider a consumer who updates
in periods t and t + n but not between. Designating õ as the consumer’s perception of
wealth:

õt+j ≡ Et[ot+j] = ot for 1 ≤ j < n,

the consumer spends according to perceived wealth so that

ct+j = (r/R)õt+j = (r/R)ot = ct for 1 ≤ j < n.

The dynamics of actual (as distinct from perceived) wealth are given by (1),

ot+n = ot +
n∑
s=1

Rn−sζt+s︸ ︷︷ ︸
≡∆not+n

,
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so for a consumer who updates in periods t and t + n but not between, the change in
consumption is

ct+n − ct = (r/R)∆not+n,

where ∆not+n is white noise because it is a weighted sum of the white noise errors ζ.
Thus, consumption follows a random walk across updating periods; consumers who were
only observed during their updating periods would never be seen to deviate from the
predictions of Hall (1978).

B Aggregation
The economy is populated by consumers indexed by i, distributed uniformly along the
unit interval. Aggregate (or equivalently, per capita) consumption is:

Ct =

∫ 1

0

ct,i di.

Whether the consumer at location i updates in period t is determined by the realization
of the binary random variable πt,i, which takes the value 1 if consumer i updates in period
t and 0 otherwise. Each period’s updaters are chosen randomly such that a constant
proportion Π update in each period:

E[πt+1,i] = Π ∀ t and i,∫ 1

0

πt,i di = Π ∀ t.

Aggregate consumption is the population-weighted average of per-capita consumption
of updaters Cπ and nonupdaters C�π:

Ct+1 = ΠCπ
t+1 + (1− Π)C�πt+1︸︷︷︸

=Ct

, (2)

where per-capita consumption C�πt+1 = Ct because the nonupdaters at time t + 1 are a
random subset of the population at time t. The first difference of (2) yields:

∆Ct+1 = (1− Π)∆Ct + Π∆Cπ
t+1︸ ︷︷ ︸

≡ εt+1

,

and online Appendix G.A shows that εt+1 is approximately mean zero. Thus, in the
quadratic utility framework the serial correlation of aggregate per-capita consumption
changes is an approximate measure of the proportion of nonupdaters.

This is the mechanism behind the exercises presented in section V. While the details of
the informational friction are different in the more realistic model we present in section
IV, the same logic and quantitative result hold: the serial correlation of consumption
growth approximately equals the proportion of nonupdaters.

Note further that the model does not introduce any explicit reason that consumption
growth should be related to the predictable component of income growth a la Campbell
and Mankiw (1989). In a regression of consumption growth on the predictable compo-
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nent of income growth (and nothing else), the coefficient on income growth would entirely
derive from whatever correlation predictable income growth might have with lagged
consumption growth. This is the pattern we will find below, in both our theoretical and
empirical work.

IV Realistic Model
One of the lessons of the consumption literature after Hall (1978) is that his simplifying
assumptions (quadratic utility, perfect capital markets, Rβ = 1) are far from innocuous;
more plausible assumptions can lead to very different conclusions. In particular, a
host of persuasive theoretical and empirical considerations has led to the now-standard
assumption of constant relative risk aversion utility, u(c) = c1−ρ/(1 − ρ). But when
utility is not quadratic, solution of the model requires specification of the exact stochastic
structure of the income and transition processes.

Below, we present a model that will be used to simulate the economy under frictionless
and sticky expectations. We specify a small open economy (or partial equilibrium) model
with a rich and empirically realistic calibration of idiosyncratic and aggregate risk but
exogenous interest rates and wages. In the online appendix, we present two alternative
closed economy (general equilibrium) models, along with simulation results analogous
to those of section V, replicating our findings in other settings.6

In our model, a continuum of agents care about expected lifetime utility derived from
CRRA preferences over a unitary consumption good; they geometrically discount future
utility flows by discount factor β. Agents inelastically supply one unit of labor, and
their only decision in each period t is how to divide their market resources m between
consumption c and saving in a single asset a. We assume agents are Blanchard (1985)
“perpetual youth” consumers: They have a constant probability of death D between
periods, and upon death they are immediately replaced, while their assets are distributed
among surviving households in proportion to the recipient’s wealth.

A Output, Income, and Productivity
Output is produced by a Cobb–Douglas technology using capital Kt and (effective) labor
Lt; capital depreciates at rate δ immediately after producing output, leaving portion
(1− δ) intact, and as usual the effectiveness of labor depends on the level of aggregate
labor productivity. We consider a small open economy with perfect international capital
mobility, so that the returns to capital and labor rt and Wt are exogenously determined
(at constant values r and W); this permits a partial equilibrium analysis using only the
solution to the individual households’ problem.

We represent both aggregate and idiosyncratic productivity levels as having both tran-
sitory and permanent components. Large literatures have found that this representation
is difficult to improve upon much in either context, and the simplicity of this description
yields considerable benefits both in the tractability of the model, and in making its
mechanics as easy to understand as possible.
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In more detail, aggregate permanent labor productivity Pt grows by factor Φt, subject
to mean one iid aggregate permanent shocks Ψt, so the aggregate productivity state
evolves according to a finite Markov chain:

Pt+1 = Φt+1PtΨt+1, where Prob[Φt+1 = Φk|Φt = Φj] = Ξj,k, (3)

where j and k index the states. The productivity growth factor Φt follows a bounded
random walk, as in (for example) Edge, Laubach, and Williams (2007), which is part of
a literature whose aim is to capture in a simple statistical way the fact that underlying
rates of productivity growth seem to vary substantially over time (e.g., fast in the 1950s,
slow in the 1970s and 1980s, moderate in the 1990s, and so on; see also Jorgenson, Ho,
and Stiroh (2008)).7 We introduce these slow-moving productivity growth rates not just
for realism, but also because we need to perform simulated exercises analogous to those
of Campbell and Mankiw (1989) on empirical data, in which consumption growth is
regressed on the component of income growth that was predictable using data lagged
several quarters. We therefore need a model in which there is some predictability in
income growth several quarters in the future.

The transitory component of productivity in any period is represented by a mean-one
variable Θt, so the overall level of aggregate productivity in a given period is PtΘt.

Similarly, each household has an idiosyncratic labor productivity level pt,i, which
(conditional on survival) evolves according to:

pt+1,i = pt,iψt+1,i, (4)

and like their aggregate counterparts, idiosyncratic permanent productivity shocks are
mean one iid (Et[ψt+n,i] = Et[Ψt+n] = 1 ∀ n > 0). Total labor productivity for the
individual is determined by the interaction of transitory idiosyncratic (θ), transitory
aggregate (Θ), permanent idiosyncratic (p), and permanent aggregate (P ) factors. When
the household supplies one unit of labor, effective labor is:

`̀̀t,i = θt,iΘt︸ ︷︷ ︸
≡θθθt,i

pt,iPt︸ ︷︷ ︸
≡pppt,i

. (5)

Here, θ can be thought of as reflecting, for example, individual unemployment spells,
while Θ captures, e.g., disruptions in output due to bad weather. Just like permanent
shocks, transitory shocks are mean one and iid, Et[θt+n,i] = Et[Θt+n] = 1 ∀ n > 0. The
idiosyncratic transitory shock has a minimum possible value of 0 (corresponding to an
unemployment spell) which occurs with a small finite probability ℘. This has the effect
of imposing a ‘natural borrowing constraint’ (cf. Zeldes (1989b)) at zero.

B Perceptions and Behavior
For understanding the decisions of an individual consumer in a frictionless (i.e. perfect
information) world the aggregate and idiosyncratic transitory shocks can be combined
into a single overall transitory shock indicated by the boldface θθθ, and the aggregate and
idiosyncratic levels of permanent income can be combined as ppp (likewise, the combined
permanent shock is boldface ψψψt,i ≡ ψt,iΨt).
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All households (frictionless and sticky-expectations alike) in our models always cor-
rectly observe the level of all household-specific variables—they are able to read their
bank statement and paycheck. As will be shown below, frictionless consumers’ optimal
behavior depends on the ratios of those household-specific variables to permanent pro-
ductivity ppp. That is, for some state variable x (like market wealth), the optimal choice for
the frictionless consumer would depend on x ≡ x/ppp, where our definition of nonboldface
x reflects our notational convention that when a level variable has been normalized by
the corresponding measure of productivity, it loses its boldness. The same applies for
aggregate variables, e.g. X ≡ X/P .
One reason we assume that both frictionless and sticky-expectations consumers can

perceive the idiosyncratic components of their income (the p and θ) is that this is the
assumption made by almost all of the ‘modern’ literature, and therefore makes our
paper’s results easily comparable with that literature.

But the assumption can be defended on its own terms; it is consistent with evidence
from a number of sources.

First, there are at least some shocks whose transitory nature is impossible to mis-
perceive; the best example is lottery winnings in Norway, see again Fagereng, Holm,
and Natvik (2017). The consumption responses to those shocks resemble the responses
measured in the previous literature to shocks that economists presumed that consumers
knew to be transitory. If consumers respond to such shocks in ways similar to their
responses to unambiguously transitory shocks like lottery winnings, that would seem
to support the proposition that consumers correctly perceive as transitory those other
shocks that economists have presumed consumers identified as transitory.

Second, one reason to believe that perception of the idiosyncratic permanent shocks
is not difficult comes from Low, Meghir, and Pistaferri (2010), who show that a large
proportion of permanent shocks to income occur at the times of job transitions (mostly
movements from one job to another). It would be hard to believe that consumers
switching jobs were not acutely aware of the difference between the incomes yielded
by those two jobs.

Earlier work by Pistaferri (2001) developed a method for decomposing income shocks
into permanent and transitory components. He finds that data from a survey in which
consumers are explicitly asked about their income expectations provides a powerful tool
to estimate the magnitude of permanent versus transitory shocks; relatedly, Guvenen
and Smith (2014) find that consumption choices provide important information about
subsequent income movements.

More direct and more recent evidence comes from Karahan, Mihaljevich, and Pilos-
soph (2017). Using data from the New York Fed’s Survey of Consumer Expectations
(SCE), they find that on average, the difference between four-month-ahead realizations
of household income and four-month-ahead expectations is near zero and the average
error is only 0.5 percent. Karahan, Mihaljevich, and Pilossoph (2017) explicitly interpret
their evidence from the survey as suggesting that consumers have accurate perceptions
of the permanent and transitory components of their income.

A final bit of evidence comes from metadata associated with the Survey of Consumer
Finances, which asks a question designed to elicit consumers’ perceptions of their per-
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manent (“usual”) income. A well-known fact in among survey methodologists is that the
speed and ease with which consumers answer a question is an indicator of the extent to
which they have a clear understanding of the question and are confident in their answer.
The SCF question designed to elicit consumers perceptions of their permanent income
is an example of such a question: Consumers answer quickly and easily and do not seem
to exhibit any confusion about what they are being asked (Kennickell (1995)).

In contrast, we are aware of no corresponding evidence that consumers are well
informed about aggregate income (especially at high frequencies). This is why we
have assumed that the inattention that drives our model applies only to perceptions
of the (tiny) contribution that aggregate productivity state variables {Pt,Φt} make to
consumers’ overall income.

We denote consumer i’s perceptions about the aggregate state {P̃t,i, Φ̃t,i}. Our key
behavioral assumption is twofold:

1. Households always act as if their perception of the aggregate state {P̃t,i, Φ̃t,i} were
the true aggregate state {Pt,Φt}.

2. As in the ‘toy model’, households form their perception of the aggregate state
according to the expectation of today’s state that corresponds to the information
they had the last time they observed the aggregate state.

Given the assumption that the productivity growth factor Φt follows a random walk,
the second part of the behavioral assumption says that an agent who last observed the
true aggregate state n periods ago perceives:

{P̃t,i, Φ̃t,i} = Et−n
[
{Pt,Φt}

∣∣{Pt−n,Φt−n}
]

=
{

Φn
t−nPt−n,Φt−n

}
. (6)

That is, our assumed random walk in productivity growth means that the household
believes that the aggregate productivity factor has remained at Φt−n for the past n
periods, and remains there today. For households who observed the true aggregate state
this period, n = 0 and thus (6) says that {P̃t,i, Φ̃t,i} = {Pt,Φt}.
Given their perception of the aggregate level of productivity, the household perceives

their overall permanent productivity level to be p̃ppt,i = pt,iP̃t,i.
The behavior of a ‘sticky expectations’ consumer thus differs from that of a frictionless

consumer only to the extent that the ‘sticky expectations’ consumer’s perception of
aggregate productivity is out of date.
When a household’s perception of productivity p̃pp differs from actual productivity,

we denote the perceived ratio as, e.g., x̃ ≡ x/p̃pp = x/(pP̃ ) where the last equality
reflects our assumption that the household perceives the idiosyncratic component of
their productivity p without error.

C Transition Dynamics
Infinitely-lived households with a productivity process like (4) would generate a noner-
godic distribution of idiosyncratic productivity—as individuals accumulated ever more
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shocks to their permanent productivities, those productivities would spread out indef-
initely across the population with time. To avoid this inconvenience, we make the
Blanchard (1985) assumption: Each consumer faces a constant probability of mortality
of D. We track death events using a binary indicator:

dt+1,i =

{
0 if consumer at location i survives from time t to t+ 1

1 if consumer at location i dies between t and t+ 1.

We refer to this henceforth as a ‘replacement’ event, since the consumer who dies is
replaced by an unrelated newborn who happens to inhabit the same location on the
number line. The ex ante probability of death is identical for each consumer, so that
the aggregate mass of consumers who are replaced is time invariant at D =

∫ 1

0
dt,i di.

Under the assumption that ‘newborns’ have the population-average productivity level
of 1, the population mean of the idiosyncratic component of permanent income is always∫ 1

0
pt,idi = 1. Our earlier equation (4) is thus adjusted to:

pt+1,i =

{
pt,iψt+1,i if dt+1,i = 0

1 if dt+1,i = 1.

There is no relationship between replaced and replacing persons at the same location on
the number line (this is not a dynastic model).

Along with its productivity level, the household’s primary state variable when the
consumption decision is made is the level of market resources mt,i, which captures both
current period labor income yt,i (the wage rate times the household’s effective labor
supply) and the resources that come from the agent’s capital stock kt,i (the value of the
capital itself plus the capital income it yields):

mt,i = Wt`̀̀t,i︸ ︷︷ ︸
≡yt,i

+ Rt︸︷︷︸
1−δ+rt

kt,i. (7)

The transition process for m is broken up, for convenience of analysis, into three steps.
‘Assets’ at the end of the period are market resources minus consumption:

at,i = mt,i − ct,i. (8)

Next period’s capital is determined from this period’s assets via:

kt+1,i = dt+1,i · 0 + (1− dt+1,i)at,i
/

(1− D), (9)

where the first term represents ‘newborns’ having zero assets, and the second term’s
division of a by the survival probability (1 − D) reflects returns to survivors from the
Blanchardian insurance scheme (financed by seizure of the estates of the proportion D
who die).
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D Aggregation
The foregoing assumptions permit straightforward aggregation of individual-level vari-
ables. Aggregate capital is the population integral of (9):

Kt =

∫ 1

0

kt,i di =

∫ 1

0

(
(1− d)t,iat−1,i

/
(1− D)

)
di =

∫ 1

0

at−1,i di = At−1.

The third equality holds because (1 − D)−1
∫ 1

0
(1 − dt,i) di = 1 since dt,i is independent

of at−1,i. Because
∫ 1

0
θt,i =

∫ 1

0
pt,i = 1, aggregate labor supply is

Lt =

∫ 1

0

`̀̀t,i di = ΘtPt.

Aggregate market resources can be written as per-capita resources of the survivors
times their population mass (1 − D), plus per-capita resources of the newborns times
their population mass D:

Mt =
( per-capita m for survivors︷ ︸︸ ︷
At−1Rt/(1− D) + ΘtPtW

)
(1− D) +

per-capita m for newborns︷ ︸︸ ︷
ΘtPtWt D

= At−1Rt + ΘtPtWt (10)
= KtRt + LtWt.

The productivity-normalized version of (10) says that

Mt = At−1Rt

/
(ΨtΦt) + ΘtWt. (11)

We will sometimes refer to the factor Pt
/
P̃t,i as the household’s ‘productivity misper-

ception,’ the scaling factor between actual and perceived market resources.

E Model Solution
Because of the assumption of a small open economy, the frictionless consumer’s state
variables are simply (mt,i, pt,i, Pt,Φt). Because we assume that the sticky expectations
consumer behaves according to the decision rules that are optimal for the frictionless
consumer but using perceived rather than true values of the state variables, we need
only to solve for the frictionless solution.

The household’s problem in levels can be written in Bellman form as:8

v(mt,i, pt,i, Pt,Φt) = max
ct,i

{
u(ct,i) + β Et

[
(1− d)t+1,iv(mt+1,i, pt+1,i, Pt+1,Φt+1)

]}
.

Our assumption that the aggregate and idiosyncratic productivity levels both reflect a
combination of purely transitory and purely permanent components now permits us to
make a transformation that considerably simplifies analysis and solution of the model:
When the utility function is in the CRRA class, the Bellman problem can be simplified by
dividing utility and value by ppp1−ρ

t,i = (pt,iPt)
1−ρ while converting to normalized variables

as above (e.g., mt,i = mt,i/pppt,i). This yields the normalized form of the problem, which
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has only mt,i and Φt as state variables:

v(mt,i,Φt) = max
ct,i

{
u(ct,i) + (1− D)β Et

[
(Φt+1ψψψt+1,i)

1−ρv(mt+1,i,Φt+1)
]}

s.t. (12)
at,i = mt,i − ct,i,

kt+1,i = at,i
/

((1− D)Φt+1ψψψt+1,i),

mt+1,i = Rkt+1,i + Wθθθt+1,i.

Defining R = R
/

(1 − D), the main requirement for this problem to have a useful
solution is an impatience condition:

Rβ E[ψψψ−ρ] < 1.

Designating the converged normalized consumption function that solves (12) as
c(m,Φ), the level of consumption for the frictionless consumer can be obtained from

ct,i = pppt,ic(mt,i,Φt).

Because the model is homothetic in pppt,i = pt,iPt, this can be equivalently written with
the un-normalized consumption function c as:

ct,i = c(mt,i, pt,i, Pt,Φt).

F Frictionless vs Sticky Expectations
Following the same notation as in the motivating section III, we define an indicator
variable for whether household i updates their perception to the true aggregate state in
period t:9

πt,i =

{
1 if consumer i updates in period t
0 if consumer i does not update in period t.

The Bernoulli random variable πt,i is iid for each household each period, with a
probability Π of returning 1. Consistent with (6), household beliefs about the aggregate
state evolve according to:

{P̃t,i, Φ̃t,i} =

{
{Pt,Φt} if πt,i = 1

{Φ̃t−1,iP̃t−1,i, Φ̃t−1,i} if πt,i = 0.
(13)

Under the assumption that consumers treat their belief about the aggregate state
as if it were the truth, the relevant inputs for the normalized consumption function
c(m,Φ) are the household’s perceived normalized market resources m̃t,i = mt,i

/
p̃ppt,i =(

Pt
/
P̃t,i
)
mt,i and perceived aggregate productivity growth Φ̃t,i. The household chooses

the level of consumption by:

ct,i = p̃ppt,ic(m̃t,i, Φ̃t,i) = c(mt,i, pt,i, P̃t,i, Φ̃t,i).
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The behavior of the ‘sticky expectations’ consumer converges to that of the frictionless
consumer as Π approaches 1.

Because households in our model never misperceive the level of their own market
resources (m̃t,i = mt,i), they can never choose consumption that would violate the
budget constraint. Households observe both their level of income yt,i and its idiosyncratic
components θt,i and pt,i. If they wanted to do so, households could therefore calculate the
aggregate component Θt × Pt, which would correspond with the reports of a statistical
agency; but they do not observe Θt and Pt separately (because, in our model as in
reality, statistical agencies do not report these objects).

Our assumption is simply that households with sticky expectations neither perceive
nor attempt to extract an estimate of the decomposition of the observed aggregate state
into transitory and permanent components. Consumers’ misperceptions of aggregate
permanent income do cause them to make systematic errors—but, below, we present
calculations showing that for the value of Π that we calibrate, those errors have small
utility costs.

The utility costs would be smaller still if consumers were to perform a certainty-
equivalent signal extraction and behaved as though the signal-extracted estimate of the
aggregate state is the ‘truth’ (that is, they ignore the fact that their estimate has an
error term), but section VII analyzes the alternative model in which households perform
such a signal extraction and shows that the dynamics of aggregate consumption under
this assumption do not match the dynamics that are observed in the aggregate data.

Alternative Beliefs About the Aggregate Income Process

A model in which households understand that their macroeconomic beliefs are out-
of-date due to inattention and prudently change their behavior to account for the
extent of their uncertainty at any given moment would be far more computationally
costly to solve (adding several additional state variables). This reflects the fact that
the mathematically correct treatment of widening aggregate uncertainty is formidably
difficult. If the benefits to consumers of keeping track of the consequences of their
growing ignorance were large, we might feel that we had no choice but to go down that
path.

Consumers’ motivation to take account of the progressive widening of their uncertainty
during nonupdating periods springs from the convexity of marginal utility with respect
to larger shocks: Compared to experiencing four shocks of a given size, experiencing
one shock that is four times is large is strictly worse. The magnitude of the benefit to
consumers from accounting correctly for their expanding aggregate uncertainty is related
to the degree to which the one big shock is worse than the four smaller shocks.

To gauge that magnitude, we conducted an experiment. In online Appendix F,
we present a specification in which sticky expectations households optimize under the
belief that aggregate shocks only arrive in one in four quarters, but with four times
the variance of the quarterly shocks, matching approximately how they will actually
perceive the arrival of macroeconomic information; the consumption function and main
results are virtually identical under these alternate beliefs, which makes us comfortable
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in not attempting the challenging task of computing the optimal behavior that takes
into account the widening uncertainty about the aggregate state as the time since the
last update increases.

G Calibration
The full set of parameters is presented in Table 1. We offer a complete discussion of our
calibration in online Appendix A, but a few aspects warrant comment here.

In the SOE model, we set a much lower value of β (0.97) than would be expected
given our calibrated return factor (R = 1.015), resulting in agents with wealth holdings
around the median observed in the data. This reflects the recent literature finding that
for purposes of capturing aggregate consumption dynamics it may be more important
to match the behavior of the typical consumer rather than the behavior of the typical
holder of a dollar of wealth (see, for example, Olafsson and Pagel (2018)). Readers who
prefer a calibration matching mean observed wealth can consult the online appendix for
a closed economy general equilibrium model, in which we show that the main results
still hold.

We calibrated the process for trend aggregate productivity growth Φ to match mea-
sured U.S. productivity data. A Markov process with eleven states ranging between
−3.0 percent and +3.0 percent (annual), and in which the state changes on average
every two quarters, allowed us to fit both the high frequency autocorrelation evidence
cited above and the low-frequency component of productivity growth obtained, e.g., by
Staiger, Stock, and Watson (2001), Figure 1.9 and Fernald, Hall, Stock, and Watson
(2017), Figure 10.

In our calibration, the variance of the idiosyncratic permanent innovations at the
quarterly frequency is about 100 times the variance of the aggregate permanent inno-
vations (4×0.00004 divided by 0.012). This is a point worth emphasizing: Idiosyncratic
uncertainty is approximately two orders of magnitude larger than aggregate uncertainty.
While reasonable people could differ a bit from our calibration of either the aggre-
gate or idiosyncratic risk, no plausible calibration of either magnitude will change
the fundamental point that the aggregate component of risk is tiny compared to the
idiosyncratic component. This is why assuming that people do not pay close attention
to the macroeconomic environment is plausible: It makes a negligible contribution to
the total uncertainty they face.

Small Aggregate Shocks and Consumption Concavity

A reader who is persuaded of the general importance of precautionary motives and other
causes of nonlinearity in the microeconomic consumption function might feel uneasy
about our assumption that consumers act in essentially a ‘certainty equivalent’ way with
respect to aggregate shocks. The prior paragraph explains why the consequences of this
assumption are negligible: Misperception of the level of aggregate productivity is so small
that the consumption function is approximately linear over the span between the level
of consumption that would be correct with full knowledge, and the level of consumption
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that the consumer actually chooses. The global concavity of the consumption function
(and the curvature of marginal utility), which are important for many other purposes,
are of little consequence for errors small enough not to interact meaningfully with that
nonlinearity. The importance of this insight has recently been emphasized by Boppart,
Krusell, and Mitman (2018), who show that assuming that behavior is linear with respect
to aggregate shocks has huge benefits for computation of the solution to heterogeneous
agent economies, at little cost to microeconomic realism.

We calibrate the probability of updating at Π = 0.25 per quarter, for several reasons.
First, this is the parameter value assumed for the speed of expectations updating by
Mankiw and Reis (2002) in their analysis of the consequences of sticky expectations
for inflation. They argue that an average frequency of updating of once a year is
intuitively plausible. Second, Carroll (2003) estimates an empirical process for the
adjustment process for household inflation expectations in which the point estimate of
the corresponding parameter is 0.27 for inflation expectations and 0.32 for unemployment
expectations; the similarity of these figures suggests that the Mankiw and Reis (2002)
calibration of 0.25 is a reasonable benchmark, and provides some insulation against the
charge that the model is ad hoc: It is calibrated in a way that corresponds to estimates
of the stickiness of expectations in a fundamentally different context. Finally, empirical
results presented below will also suggest a speed of updating for U.S. consumption
dynamics of about 0.25 per quarter.

V Results
The calibrated model can now be used to evaluate the effects of sticky expectations
on consumption dynamics. We begin this section with an empirical benchmark using
U.S. data that will guide our investigation of the implications of the model. We then
demonstrate that simulated data from the sticky expectations models quantitatively and
qualitatively reproduces the key patterns of aggregate and idiosyncratic consumption
data.

A U.S. Empirical Benchmark
The random walk model provides the framework around which both micro and macro
consumption literatures have been organized. Reinterpreted to incorporate CRRA utility
and permit time-varying interest rates, the random walk proposition has frequently been
formulated as a claim that µ = 0 in regressions of the form:

∆ logCt+1 = ς + ν Et[rt+1] + µXt + εt+1, (14)

where Xt is any variable whose value was known to consumers when the period-t
consumption decision was made, and εt+1 is white noise.

For macroeconomic models (including the HA-DSGE setup in online Appendix B),
our simulation analysis10 shows that the relationship between the normalized asset stock
At and the expected interest rate Et[rt+1] is nearly linear, so (14) can be reformulated
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Table 1 Calibration

Macroeconomic Parameters
α 0.36 Capital’s Share of Income
δ 1− 0.941/4 Depreciation Rate
σ2

Θ 0.00001 Variance Aggregate Transitory Shocks
σ2

Ψ 0.00004 Variance Aggregate Permanent Shocks

Steady State of Perfect Foresight DSGE Model
(σΨ = σΘ = σψ = σθ = ℘ = D = 0, Φt = 1)

K/Kα 12.0 SS Capital to Output Ratio
K 48.55 SS Capital to Labor Productivity Ratio (= 121/(1−α))
W 2.59 SS Wage Rate (= (1− α)Kα)
r 0.03 SS Interest Rate (= αKα−1)
R 1.015 SS Between-Period Return Factor (= 1− δ + r)

Preference Parameters
ρ 2. Coefficient of Relative Risk Aversion
β 0.970 Discount Factor (SOE Model)
Π 0.25 Probability of Updating Expectations (if Sticky)

Idiosyncratic Shock Parameters
σ2
θ 0.120 Variance Idiosyncratic Tran Shocks (=4× Annual)
σ2
ψ 0.003 Variance Idiosyncratic Perm Shocks (=1

4
× Annual)

℘ 0.050 Probability of Unemployment Spell
D 0.005 Probability of Mortality

Note: As discussed in online Appendix A, we calibrate to the steady state values from a perfect foresight DGSE model.
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with no loss of statistical power as

∆ logCt+1 = ς + αAt + µXt + εt+1.

This reformulation is convenient because the literatures on precautionary saving and
liquidity constraints since at least Zeldes (1989a) and 1989b have argued that the effects
of capital market imperfections can be captured by incorporating a lagged measure of
resources like At in consumption growth regressions.
Campbell and Mankiw (1989) famously proposed a modification of this model in

which a proportion η of income goes to rule-of-thumb consumers who spend C = Y in
every period. They argued that η can be estimated by incorporating the predictable
component of income growth as an additional regressor. Finally, Dynan (2000) and
Sommer (2007) show that in standard habit formation models, the size of the habit
formation parameter can be captured by including lagged consumption growth as a
regressor. These considerations lead to a benchmark specification of the form:

∆ logCt+1 = ς + χ∆ logCt + η Et[∆ logYt+1] + αAt + εt+1. (15)

There is an extensive existing literature on aggregate consumption dynamics, but
Sommer (2007) is the only paper we are aware of that estimates an equation of precisely
this form in aggregate data. He interprets the serial correlation of consumption growth
as reflecting habit formation. However, Sommer’s choice of instruments, estimation
methodology, and tests do not correspond precisely to our purposes here, so we have
produced our own estimates using U.S. data.
In Table 2 we conduct a simple empirical exercise along the lines of Sommer’s work,

modified to correspond to the testable implications of our model for aggregate U.S. data.
First, while the existing empirical literature has tended to focus on spending on

nondurables and services, there are reasons to be skeptical about the measurement of
quarterly dynamics (or lack of such dynamics) in large portions of the services component
of measured spending. Hence, we report results both for the traditional measure of
nondurables and services spending, and for the more restricted category of nondurables
spending alone. Fortunately, as the table shows, our results are robust to the measure
of spending.
Second, Sommer (2007) emphasizes the importance of taking account of the effects

of measurement error and transitory shocks on high frequency consumption data. In
principle, measurement error in the level of consumption could lead to a severe downward
bias in the estimated serial correlation of measured consumption growth as distinct from
‘true’ consumption growth. The simplest solution to this problem is the classic response
to measurement error in any explanatory variable: Instrumental variables estimation.
This point is illustrated in the fact that instrumenting drastically increases the estimated
serial correlation of consumption growth.
Finally, we needed to balance the desire for the empirical exercise to match the theory

with the need for sufficiently powerful instruments. This would not be a problem if, in
empirical work, we could use once-lagged instruments as is possible for the theoretical
model. However, empirical consumption data are subject to time aggregation bias
(Working (1960), Campbell and Mankiw (1989)), which can be remedied by lagging
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Table 2 Aggregate Consumption Dynamics in US Data

∆ logCt+1 = ς + χ∆ logCt + η Et[∆ logYt+1] + αAt + εt+1

Measure of Consumption OLS 2nd Stage Hansen J
Independent Variables or IV R̄2 p-val

Nondurables and Services
∆ logCt ∆ logYt+1 At

0.468 OLS 0.216
(0.076)
0.830 IV 0.278 0.439

(0.098)
0.587 IV 0.203 0.319

(0.110)
−0.17e−4 IV −0.005 0.181
(5.71e−4)

0.618 0.305 −4.96e−4 IV 0.304 0.825
(0.159) (0.161) (2.94e−4)
Memo: For instruments Zt,∆ logCt = Ztζ, R̄

2 = 0.358

Nondurables
∆ logCt ∆ logYt+1 At

0.200 OLS 0.036
(0.058)
0.762 IV 0.083 0.727

(0.284)
0.849 IV 0.061 0.731

(0.357)
9.09e−4 IV 0.008 0.446

(9.05e−4)
0.620 0.313 −3.25e−4 IV 0.077 0.821

(0.292) (0.286) (8.32e−4)
Memo: For instruments Zt,∆ logCt = Ztζ, R̄

2 = 0.080

Notes: Robust standard errors are in parentheses. Instruments
Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2, ∆8 logYt−2,
lags 2 and 3 of differenced Fed funds rate, lags 2 and 3 of the Michigan Index of Consumer
Sentiment Expectations}. The penultimate column reports the R̄2 from a regression of the
dependent variable on the RHS variables (instrumented, when indicated); the final column
reports a test of instrument validity: The p-value from the Hansen–Sargan overidentification test.
Data sources are NIPA and US Financial Accounts, 1960Q1–2016Q4. Income (Yt) is measured
as as wages, salaries and transfers, net of social insurance. Wealth–income ratio (At) is measured
as the ratio of net worth to income.
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the time-aggregated instruments an extra period. To increase the predictive power
of the lagged instruments, we augmented with two variables traditionally known to
have predictive power: The Federal Funds rate and the expectations component of the
University of Michigan’s Index of Consumer Sentiment (cf. Carroll, Fuhrer, and Wilcox
(1994)).

Table 2 demonstrates three main points. First, when lagged consumption growth
is excluded from the regression equation, the classic Campbell and Mankiw (1989)
result holds: Consumption growth is strongly related to predictable income growth.
Second, when predictable income growth is excluded but lagged consumption growth is
included, the serial correlation of consumption growth is estimated to be in the range
of 0.7–0.8, consistent with the Havranek, Rusnak, and Sokolova (2017) survey of the
‘habits’ literature and very far from the benchmark random walk coefficient of zero.
Finally, in the ‘horse race’ regression that pits predictable income growth against lagged
consumption growth, lagged consumption growth retains its statistical significance and
large point estimate, while the predictable income growth term becomes statistically
insignificant (and economically small).11

B Simulated Small Open Economy Empirical Estimation
We now present in Table 3 the results that an econometrician would obtain from
estimating an equation like (15) using aggregate data generated by our calibrated model.
In short, the table shows that aggregate consumption growth in an economy populated
by such consumers exhibits a high degree of serial correlation, quantitatively similar
to that in empirical data. This occurs even though simulated households with sticky
expectations exhibit only modest predictability of idiosyncratic consumption growth, as
discussed below in section V.C.

To generate these results, we simulate the small open economy model for 200 quarters,
tracking aggregate dynamics to generate a dataset whose size is similar to the 57 years
of NIPA data used for Table 2. Because there is some variation in coefficient estimates
depending on the random number generator’s seed, we repeat the simulation exercise
100 times. Table 3 reports average point estimates and standard errors across those 100
samples.

Given the relatively long time frame of each sample, and that the idiosyncratic
shocks to income are washed away by the law of large numbers, it is feasible to use
instrumental variables techniques to obtain the coefficient on the expected growth term.
This is the appropriate procedure for comparison with empirical results in any case,
since instrumental variables estimation is the standard way of estimating the benchmark
Campbell–Mankiw model. As instruments, we use lags of consumption growth, income
growth, the wealth–permanent income ratio, and income growth over a two-year span.12
Finally, for comparison to empirical results, we take into account Sommer (2007)’s

argument (based on Wilcox (1992)) that transitory components of aggregate spend-
ing (hurricanes, etc) and high-frequency measurement problems introduce transitory
components in measured NIPA consumption expenditure data. Sommer finds that mea-
surement error produces a severe downward bias in the empirical estimate of the serial
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correlation in consumption growth, relative to the ‘true’ serial correlation coefficient. To
make the simulated data comparable to the measurement-error-distorted empirical data,
we multiply our model’s simulated aggregate spending data by a white noise error ξt:

C∗t = Ct × ξt.

The standard deviation of ξt is set to the value that would cause the observed difference
between the OLS and IV estimates of χ in the univariate regression in Table 2 (χOLS =
0.468 and χIV = 0.830): std(log(ξ)) = 0.375× std(∆ logCt).

The top panel of Table 3 estimates (15) on simulated data for the frictionless economy.
The second and third rows indicate that consumption growth is moderately predictable
by (instrumented versions of) both its own lag and expected income growth, of compa-
rable magnitude to the empirical benchmark. However, the ‘horse race’ regression in the
bottom row reveals that neither variable is significantly predictive of consumption growth
when both are present as regressors—contrary to the robust empirical results from the
U.S. and other countries (cf Carroll, Sommer, and Slacalek (2011)). The problem is that
for both consumption growth and income growth, most of the predictive power of the
instruments stems from the serial correlation of productivity growth Φt in the model, so
the instrumented versions of the variables are highly correlated with each other. Thus
neither has distinct statistical power when they are both included.

In the sticky expectations specification (lower panel), the second-stage R̄2’s are all
much higher than in the frictionless model, and more in keeping with the corresponding
statistics in NIPA data. This is because high frequency aggregate consumption growth
is being driven by the predictable sticky expectations dynamics. The first two rows
show that when we introduce measurement error as described above, the OLS estimate
is biased downward significantly. As suggested by the analysis of our ‘toy model’ above,
the IV estimate of χ in the second row is close to the (1−Π) = 0.75 figure that measures
the proportion of consumers who do not adjust their expectations in any given period;
thus the intuition derived from the toy model survives all the subsequent complications
and elaborations. The third row reflects what would have been found by Campbell
and Mankiw had they estimated their model on data produced by the simulated ‘sticky
expectations’ economy: The coefficient on predictable component of perceived income
growth term is large and highly statistically significant.

The last row of the table presents the ‘horse race’ between the Campbell–Mankiw
model and the sticky expectations model, and shows that the dynamics of consumption
are dominated by the serial correlation in the predictable component of consumption
growth stemming from the stickiness of expectations. This can be seen not only from
the magnitude of the coefficients, but also by comparison of the second-stage R̄2’s,
which indicate that the contribution of predictable income growth to the predictability
of consumption growth is negligible, increasing the R̄2 from 0.260 to 0.261.

C Simulated Micro Empirical Estimation
Havranek, Rusnak, and Sokolova (2017)’s meta-analysis of the micro literature is consis-
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Table 3 Aggregate Consumption Dynamics in SOE Model

∆ logCt+1 = ς + χ∆ logCt + ηEt[∆ logYt+1] + αAt + εt+1

Expectations : Dep Var OLS 2nd Stage Hansen J
Independent Variables or IV R̄2 p-val

Frictionless : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.295 OLS 0.087
(0.066)
0.660 IV 0.040 0.600

(0.309)
0.457 IV 0.035 0.421

(0.209)
−6.92e–4 IV 0.026 0.365
(5.87e–4)

0.420 0.258 0.45e–4 IV 0.041 0.529
(0.428) (0.365) (9.51e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.039; var(log(ξt)) = 5.99e–6

Sticky : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.508 OLS 0.263
(0.058)
0.802 IV 0.260 0.554

(0.104)
0.859 IV 0.198 0.233

(0.182)
−8.26e–4 IV 0.066 0.002
(3.99e–4)

0.660 0.192 0.60e–4 IV 0.261 0.546
(0.187) (0.277) (5.03e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.260; var(log(ξt)) = 5.99e–6

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2,∆8 logYt−2}.
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tent with Dynan (2000)’s early finding that there is little evidence of serial correlation
in household-level consumption growth. Such a lack of serial correlation is a direct
implication of the canonical Hall (1978) certainty-equivalent model with quadratic utility.
But in principle, even without habits, a more modern model like ours with precautionary
saving motives predicts that there will be some positive serial correlation in consumption
growth. To see why, think of the behavior of a household whose wealth, leading up
to date t, was near its target value. In period t, this household experiences a large
negative transitory shock to income, pushing buffer stock wealth far below its target.
The model says the household will cut back sharply on consumption to rebuild its buffer
stock, and during that period of rebuilding the expected growth rate of consumption
will be persistently above its long-term rate (but decline toward that rate). That is, in
a univariate analysis, consumption growth will exhibit serial correlation.

But as the foregoing discussion suggests, the model says there is a much more direct
indicator than lagged consumption growth for current consumption growth: The lagged
value of a, the buffer stock of assets.

The same fundamental point holds for a model in which there is an explicit liquidity
constraint (our model has no such constraint, but the precautionary motive induces
something that looks like a ‘soft’ liquidity constraint). Zeldes (1989a) pointed out long
ago that the Euler equation on which the random walk proposition is based fails to
hold for consumers who are liquidity constrained; if consumers with low levels of wealth
(relative to their permanent income) are more likely to be constrained, then low wealth
consumers will experience systematically faster consumption growth than otherwise-
similar high-wealth consumers. Zeldes found empirical evidence of such a pattern, as
has a large subsequent literature.

What is less clear is whether models in this class imply that any residual serial corre-
lation will remain once the lagged level of assets has been controlled for. In numerical
models like ours, such quantitative questions can be answered only by numerically solving
and simulating the model, which is what we do here.

The model predicts that the relationship between Et[∆ log ct+1,i] and at,i will be
nonlinear and downward sloping, but theory does not imply any specific functional
form. We experimented with a number of ways of capturing the role of at,i but will
spare the reader the unedifying discussion of those experiments because they all reached
conclusions similar to those of a particularly simple case, inspired by the original analysis
of Zeldes (1989a): We simply include a dummy variable that indicates whether last
period’s at,i is low. Specifically, we define āt,i as 0 if household i’s level of a in period
t is in the bottom 1 percent of the distribution, and āt,i = 1 otherwise. (We could
have chosen, say, 10 or 20 percent with qualitatively similar, though less quantitatively
impressive, results). So, in data simulated from our SOE model, we estimate regressions
of the form:

∆ log ct+1,i = ς + χ∆ log ct,i + ηEt,i[∆ log yt+1,i] + αāt,i + εt+1,i

Results for the frictionless model are presented the upper panel of Table 4. For
our purposes, the most important conclusion is that the predictable component of
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Table 4 Micro Consumption Regression on Simulated Data

∆ log ct+1,i = ς + χ∆ log ct,i + ηEt,i[∆ log yt+1,i] + αāt,i + εt+1,i

Model of
Expectations χ η α R̄2

Frictionless
0.019 0.000
(–)

0.011 0.004
(–)

−0.190 0.010
(–)

0.061 0.016 −0.183 0.017
(–) (–) (–)

Sticky
0.012 0.000
(–)

0.011 0.004
(–)

−0.191 0.010
(–)

0.051 0.015 −0.185 0.016
(–) (–) (–)

Notes: Et,i is the expectation from the perspective of person i in period t; ā is a dummy variable indicating that agent

i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard

errors are effectively zero. Sample is restricted to households with positive income in period t. The notation “(—)”

indicates that standard errors are close to zero, given the very large simulated sample size.
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idiosyncratic consumption growth is very modest. In the version of the model that
corresponds to the thought experiment above, in which consumption growth should
have some positive serial correlation, the magnitude of that correlation is only 0.019.
The second row of the table presents the results of a Campbell and Mankiw (1989)-

type exercise regressing ∆ log ct+1,i = η Et,i[∆ log yt+1,i]. From our definitions above,

Et,i[∆ log yt+1,i] = Et,i[logpt,iΦt+1ψt+1,iΨt+1θt+1,iΘt+1]− logpt,iθt,iΘt,

= logpt,iΦt − logpt,iθt,iΘt,

= log Φt − log θt,iΘt.

Predictable income growth thus has two components: One deriving from the consumer’s
beliefs about the underlying aggregate productivity growth rate, and one deriving from
the expectation that transitory shocks will revert to their mean value of E[θΘ] = 1.
But as noted earlier, our idiosyncratic shocks are vastly larger than aggregate ones, so
virtually all of the variation in predicted income growth comes from the − log θt,iΘt term.
This explains why the η coefficient, while positive, is close to zero: The model says that
the quarterly MPC out of a known-to-be-transitory shock is small, so knowledge that
the shock will reverse itself quickly yields only modest predictability.

The third row confirms the proposition articulated above: For people with very low
levels of wealth, the model implies rapid consumption growth as they dig themselves out
of their hole.

The final row presents the results when all three terms are present. Interestingly, the
coefficient on lagged consumption growth actually increases, to about 0.06, when we
control for the other two terms. But this is still easily in the range of estimates from
0.0 to 0.1 that Havranek, Rusnak, and Sokolova (2017) indicate characterizes the micro
literature.

The crucial point to note from the frictionless model is the very small values of the R̄2’s.
Even the version of the model including all three explanatory variables can explain only
about 2 percent of the variation in consumption growth—around the maximum degree
R̄2 found in the above-cited work of Dynan (2000).

The table’s lower panel contains results from estimating the same regressions on the
sticky expectations version of the model. These results are virtually indistinguishable
from those obtained for the frictionless expectations model. As before, aside from the
precautionary component captured by α, idiosyncratic consumption growth is largely
unpredictable.

D Excess Sensitivity of Consumption
Relation to the Literature

Our results here might seem to be at variance with the ‘excess sensitivity’ literature, with
prominent contributions for example by Souleles (1999), Johnson, Parker, and Souleles
(2006), and Parker, Souleles, Johnson, and McClelland (2013). That literature finds a
number of natural experiments in which microeconomic consumers’ spending growth is
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related to changes in their income that, in principle, they could have known about in
advance (see also work by Kueng (2012), who finds similar results).

Browning and Collado (2001), in an early summary of the literature, argue that the
best way to reconcile the varying microeconomic findings is to suppose that consumers
are not always fully aware of the predictable components of their incomes, an explanation
that has recently been echoed by Parker (2017).

When we assumed that consumers generally know the idiosyncratic components of
their income, we were thinking of the kinds of shocks that are normal everyday occur-
rences and about which information flows automatically to consumers through regular
channels like receipt of their paycheck or taking a new job. Rare events that are outside
of ordinary experience, like a once-every-ten-years stimulus check, seem more like our
macro than micro shocks. The channels by which consumers might be imagined to
learn about these things in advance—news stories, in particular—are the same kinds of
sources through which consumers presumably learn about macroeconomic news to which
we have assumed they are inattentive.

Furthermore, while many of the individual studies are statistically convincing with
respect to their particular experiment, the conclusions across studies are sometimes
difficult to reconcile (see Hsieh (2003) or Coulibaly and Li (2006) for counterexamples
to the general tendency of the literature’s findings); Kueng (2018), for example, finds a
higher MPC for high-income than for low-income consumers, in contrast with much of
the rest of the literature).

Excess Sensitivity of Consumption to a Fiscal Stimulus

We will now consider the implications of our model for what we take to be the best-
established work, by Parker and various collaborators, on the consumption response
to fiscal stimulus checks. We focus on this work in part because it has found roughly
comparable results across a number of different experiments and in part because it
addresses a question that is clearly of first order importance for macroeconomics and
in particular fiscal policy. Specifically, we perform a model experiment designed to
correspond to the 2008 U.S. federal economic stimulus in which stimulus checks are
announced before they are received, and we assume that the announcement of this
program is treated in the same way other macro news is treated. We will show that a
version of our model is consistent with little reaction of spending upon announcement
(Broda and Parker (2014), Parker (2017)) and also with the result that 12–30 percent
of the payments was spent on nondurables in the three months in which the payment
arrived (Parker, Souleles, Johnson, and McClelland (2013)).

For this experiment, we employ a variant of our model that allows for ex-ante hetero-
geneity in households’ discount factors, following Carroll, Slacalek, Tokuoka, and White
(2017).13 By allowing for heterogeneity in the discount factor, we are able to calibrate the
model to the distribution of wealth (and in particular the large fraction of the population
with low levels of liquid wealth). In keeping with related work by Kaplan, Violante, and
Weidner (2014), Kaplan, Moll, and Violante (2018), and others who emphasize the role
of liquid assets, we calibrate the distribution of discount factors to match the empirical
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Figure 2 Effects of Fiscal Stimulus Payments on Consumption, Models vs. Data

Notes: The figure shows how consumption reacts to a fiscal stimulus payment in data and in models with frictionless

and sticky expectations. The evidence from data is based on Parker, Souleles, Johnson, and McClelland (2013), Table 5

and Broda and Parker (2014) (the lack of reaction of consumption in quarter −1, “∼ 0” before the payment is received).

The “#N/A” indicates that, to our knowledge, the literature does not estimate the reaction in quarters 2 through 4.
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distribution of liquid wealth; Carroll, Slacalek, Tokuoka, and White (2017) show that
when their model is calibrated in that way, it generates an annual MPC of around 0.5.14

Our exact experiment is as follows. An announcement is made in quarter t − 1
that stimulus checks will arrive in consumers’ bank accounts in period t.15 In line with
our sticky expectation parameter, we assume 25 percent of households learn about the
payment when it is announced, while the other three quarters of households are unaware
until the payment arrives in period t. Furthermore, we assume the households who know
about the upcoming payment are able to borrow against it in period t− 1.
The experiment sharply differentiates the models with frictionless and sticky ex-

pectations both upon announcement of the payments and when households receive
the payments (Figure 2). Upon announcement, consumption in the frictionless model
substantially increases (households spend 24.4 percent of the payment), but under sticky
expectations only one quarter of households update their beliefs when the announcement
is made and consumption only rises by 6.1 percent of the stimulus payment. This
small effect is in line with Broda and Parker (2014), who estimate no economically
or statistically significant change in spending when the household learns that it will
receive a payment. Instead, once the stimulus payment is received, sticky expectations
households substantially increase their spending—by 22.7 percent of the payment, right
in the middle of the 12–30 percent range estimated in Parker, Souleles, Johnson, and
McClelland (2013)—as three quarters of them then learn about the payment by seeing it
arrive in their bank account. In contrast, in the frictionless setup the reaction of spending
upon the receipt of the payment is more muted (16.5 percent).16 In the following two
quarters, consumption in the sticky expectations model is higher by 15.4 and 11.1 percent
of the payment amount respectively. This also fits with the empirical evidence suggesting
around 40 percent of the stimulus payment is spent in the first three quarters (Parker,
Souleles, Johnson, and McClelland (2013)).
The reader’s intuition might have been that because our model exhibits little pre-

dictability in micro consumption growth when the consumer is experiencing ordinary
income shocks (the R2 of the predictive regression was only a few percent), and because
it generates sluggishness in consumption with respect to aggregate shocks, the model
would not be able to match the ample micro evidence showing high average MPCs, or
the evidence from Parker and his coauthors showing that there is little “anticipatory”
spending in advance of stimulus payments but a strong response to such payments once
they have arrived. This section shows that, in fact, the model is capable of matching
the broad sweep of those micro facts, while continuing to match the aggregate excess
smoothness facts. The key is simple: In the version of our model calibrated to match
high micro MPC’s, people react robustly to shocks they know about, but they mostly
don’t know about the macro shocks until they see the money appear in their bank
accounts.
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VI The Utility Costs of Sticky Expectations
To this point, we have taken Π to be exogenous (though reasonably calibrated). Now,
we ask what choices consumers would make if they could choose how much attention to
pay in a framework where attention has costs. Specifically, we imagine that newborns
make a once-and-for-all choice of their idiosyncratic value of Π, yielding an intuitive
approximating formula for the optimal updating frequency.17 We then conduct a nu-
merical exercise to compute the cost of stickiness for our calibrated models. The utility
penalty of having Π equal to our calibrated value of 0.25, rather than updating every
period (Π = 1), are on the order of one two-thousandth of lifetime consumption, so
that even small informational costs would justify updating aggregate information only
occasionally. Benefits of updating would be even smaller if the update yielded imperfect
information about the true state of the macroeconomy; see below.
In the first period of life, we assume that the consumer is employed and experiences

no transitory shocks, so that market resources are nonstochastically equal to Wt; value
can therefore be written as v(Wt, ·). There is no analytical expression for v; but, fixing
all parameters aside from the variance of the permanent aggregate shock, theoretical
considerations suggest (and numerical experiments confirm) that the consequences of
permanent uncertainty for value can be well approximated by:

v(Wt, ·) ≈ v̀(Wt, ·)− κσ2
Ψ,

where v̀(Wt, ·) is the value that would be generated by a model with no aggregate
permanent shocks and κ is a constant of approximation that captures the cost of
aggregate permanent uncertainty (effectively, it is the coefficient on a first order Taylor
expansion of the model around the point σ2

Ψ = 0).
Suppose now (again confirmed numerically—see Figure 3) that the effect of sticky

expectations is approximately to reduce value by an amount proportional to the inverse
of the updating probability:

ṽ(Wt, ·) ≈ v̀(Wt, ·)− (κ/Π)σ2
Ψ. (16)

This assumption has appropriate scaling properties in three senses:

• If σ2
Ψ = 0 so that there are no permanent shocks, then the cost of stickiness is zero

(given our assumption that initial perceptions are correct).

• If the probability of updating is Π = 1 so that perceptions are always accurate,
value is the same as in the frictionless model.

• If expectations never adjust, then Π = 0 and the utility cost of stickiness is
infinite, which is appropriate because consumers would be making choices based
on expectations that would eventually be arbitrarily far from the truth.

Now imagine that newborns make a once-and-for-all choice of the value of Π; a higher
Π (faster updating) is assumed to have a linear cost ι in units of normalized value. The

30



Figure 3 Costs of Stickiness ω and Probability of Aggregate Information Updating Π

Notes: The figure shows how the utility costs of updating ω depend on the probability of updating of aggregate
information Π in the SOE model.

newborn’s objective is therefore to choose the Π that solves:

max
Π

v̀(Wt, ·)− (κ/Π)σ2
Ψ − ιΠ.

The first order condition is:

0 = Π−2κσ2
Ψ − ι,

Π2 = (κσ2
Ψ)/ι,

which leads to the conclusion that the consumer will pick the Π satisfying:

Π = (κ/ι)0.5σΨ.

Thus, the speed of updating should be related directly to the utility cost of permanent
uncertainty (κ), inversely to the cost of information (cheaper information induces faster
updating), and linearly to the standard deviation of permanent aggregate shocks.
Our calibrated models can be used to numerically calculate the welfare loss from our

specification of sticky expectations as an agent’s willingness to pay at birth in order to
avoid having Π = 0.25 for his entire lifetime. Specifically, we calculate the percentage
loss of permanent income that would make a newborn indifferent between living in the
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world with Π = 0.25, or living in a frictionless world after paying the cost of abolishing
the friction.

Using notation from the theoretical exercise above, define a newborn’s average lifetime
(normalized) value at birth under frictionless and sticky expectations as respectively:

v0 ≡ E
[
v(Wt, ·)

]
, ṽ0 ≡ E

[
ṽ(Wt, ·)

]
,

where the expectation is taken over the distribution of state variables other thanmt,i that
an agent might be born into. We compute these quantities by averaging the discounted
sum of consumption utilities experienced by households over their simulated lifetimes.
A newborn’s willingness to pay (as a fraction of permanent income) to avoid having
sticky expectations can then be calculated as:

ω = 1−
(

ṽ0

v0

) 1
1−ρ

. (17)

A newborn in our model is willing to give up about 0.05 percent of his permanent
income to remain frictionless. These values are comparable to the findings of Maćkowiak
and Wiederholt (2015), who construct a model in which, as in Reis (2006), agents
optimally choose how much attention to pay to economic shocks by weighing off costs
and benefits. They find (p. 1519) that the cost of suboptimal tracking of aggregate
shocks is 0.06 percent of steady state consumption.

Now that we have explained how to compute the cost of stickiness numerically, we can
test our supposition in equation (16) that the cost of stickiness might have a roughly
inverse linear relationship to Π. Figure 3 plots numerically computed willingness-to-pay
ω for various values of Π−1; the relationship is close to linear, as we speculated.
Our preferred interpretation is not that households deliberately choose Π optimally

due to a cost of updating, but instead that Π is exogenous and represents the speed with
which macroeconomic news arrives “for free” from the news media. This could explain
why the parameter 0.25 seems to work about equally well for inflation, unemployment
expectations, and consumption – all of them are informed by the same flow of free
information. An objection to this interpretation is that a household who has not updated
for several years would face a substantially larger loss from continuing to be oblivious
and would eventually feel the need to deliberately look up some aggregate facts. At the
cost of a large computational and theoretical investment, we could modify the model
to allow consumers to behave in this way, but it seems clear that the ex ante benefit
would be extremely small, because the likelihood of being sufficiently out of date to make
costly mistakes is negligible. Intuitively, we can calculate that at any given moment,
only 3 percent of households will have information that is more than 3 years out of
date ((1 − Π)12 ≈ 0.03). Furthermore, simple calculations show that if we change the
simulations so that households always exogenously update after three years, this barely
changes aggregate dynamics (the estimate of χ slightly increases from 0.660 to 0.667 in
the small open economy model).
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VII Muth–Lucas–Pischke and Reis (2006)
Now that our calibrations and results have been presented, we are in position to make
some quantitative comparisons of our model to two principal alternatives to habit
formation (or our model) for explaining excess smoothness in consumption growth, by
Pischke and by Reis.

A Muth–Lucas–Pischke
The longest-standing rival to habit formation as an explanation of consumption sluggish-
ness is what we will call the Muth–Lucas–Pischke (henceforth, MLP) framework. The
idea is not that agents are inattentive, but instead that they have imperfect information
on which they perform an optimal signal extraction problem.

Muth (1960)’s agents could observe only the level of their income, but not the split
between its permanent and transitory components. He derived the optimal (mean-
squared-error-minimizing) method for estimating the level of permanent income from
the observed signal about the level of actual income. Lucas (1973) applied the same
mathematical toolkit to solve a model in which firms are assumed to be unable to
distinguish idiosyncratic from aggregate shocks. Pischke (1995) combines the ideas of
Muth and Lucas and applies the result to micro consumption data: His consumers
have no ability at all to perceive whether income shocks that hit them are aggregate or
idiosyncratic, transitory or permanent. They see only their income, and perform signal
extraction on it.

Pischke calibrates his model with micro data in which he calculates that transitory
shocks vastly outweigh permanent shocks.18 So, when a shock arrives, consumers always
interpret it as being almost entirely transitory and change their consumption by little.
However, macroeconometricians have long known that aggregate income shocks are close
to permanent. When an aggregate permanent shock comes along, Pischkian consumers
spend very little of it, confounding the aggregate permanent shock’s effect on their
income with the mainly transitory idiosyncratic shocks that account for most of the
total variation in their income. This misperception causes sluggishness in aggregate
consumption dynamics in response to aggregate shocks.

In its assumption that consumers fail to perceive aggregate shocks immediately and
fully, Pischke’s model resembles ours. However, few papers in the subsequent literature
have followed Pischke in making the assumption that households have no idea, when an
idiosyncratic income shock occurs, whether it is transitory or permanent. Especially in
the last decade or so, the literature instead has almost always assumed that consumers
can perfectly perceive the transitory and permanent components of their income; see
our defense of this assumption above.

Granting our choice to assume that consumers correctly perceive the events that are
idiosyncratic to them (job changes, lottery winnings, etc), there is still a potential role
for application of the MLP framework: Instead of assuming sticky expectations, we
could instead have assumed that consumers perform a signal extraction exercise on
only the aggregate component of their income, because they cannot perceive the transi-
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tory/permanent split for the (tiny) part of their income change that reflects aggregate
macroeconomic developments.

In principle, such confusion could generate excess smoothness; for a detailed descrip-
tion of the mechanism, see online Appendix G.D. But, defining the signal-to-noise ratio
ϕ = σ2

Ψ/σ
2
Θ, Muth’s derivations imply that the optimal updating coefficient is:

Π = ϕ
√

1 + ϕ2/4− (1/2)ϕ2 (18)

Plugging our calibrations of σ2
Ψ and σ2

Θ from section IV.G into (18), the model yields
a predicted value of (1−Π) ≈ 0.17—very far below the approximately 0.6 estimate from
Havranek, Rusnak, and Sokolova (2017) and even farther below our estimate of roughly
0.7–0.8 for U.S. data. This reflects the well-known fact that aggregate income is hard to
distinguish from a random walk; if it were perceived to be a perfect random walk with
no transitory component at all, the serial correlation in its growth would be zero. So, in
practice, allowing signal extraction with respect to the aggregate data is not a path to
explaining excess smoothness.

B Reis (2006)
Leaving aside our earlier criticisms of its fidelity to microeconomic evidence, the model of
Reis (2006) has a further disadvantage relative to any of the other three stories (habits,
MLP, or our model) with respect to aggregate dynamics. In Reis’s model consumers
update their information on a regular schedule—under a plausible calibration of the
model, once a year. One implication of the model is that the change in consumption at
the next reset is unpredictable; this implies that aggregate consumption growth would be
unpredictable at any horizon beyond, say, a year.19 But, macroeconomists felt compelled
to incorporate sluggishness into macroeconomic models in large part to explain the
fact that consumption growth is forecastable over extended periods—empirical impulse
response functions indicate that a macroeconomically substantial component of the
adjustment to shocks takes place well beyond the one year horizon. A calibration of
the Reis model in which consumers update once a year therefore fails to solve a large
part of the original problem (of medium-term predictability).

VIII Conclusion
Using a traditional utility function that does not incorporate habits, the literature on the
microfoundations of consumption behavior has made great strides over the past couple
of decades in constructing models that are faithful to first-order microeconomic facts
about consumption, income dynamics, and the distribution of wealth. But over roughly
the same interval, habit formation has gone from an exotic hypothesis to a standard
assumption in the representative agent macroeconomics literature, because habits allow
representative agent models to match the smoothness in aggregate consumption growth
that is important for capturing quantitative macroeconomic dynamics. This micro-
macro conflict, thrown into sharp focus by the recent meta-analysis of both literatures
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by Havranek, Rusnak, and Sokolova (2017), is arguably the most important puzzle in
the microfoundations of aggregate consumption dynamics.

We show that this conflict can be resolved with a simple form of ‘inattention’ that
captures some essential elements of contributions of Sims (2003), Woodford (2002),
Mankiw and Reis (2002), and others. In the presence of such inattention, aggrega-
tion of the behavior of microeconomic consumers without habits generates aggregate
consumption dynamics that match the ‘excess smoothness’ facts that have persuaded
the representative agent literature to embrace habits.

The sticky expectations assumption is actually more attractive for modeling con-
sumption than for other areas where it has been more widely applied, because in the
consumption context there is a well-defined utility-based metric for calculating the cost
of sticky expectations. This is in contrast with, say, models in which households’
inflation expectations are sticky; the welfare cost of misperceiving the inflation rate
in those models is typically harder to quantify. The cost to consumers of our proposed
degree of macroeconomic inattention is quite modest, for reasons that will be familiar
to anyone who has worked with both micro and macro data: Idiosyncratic variation
is vastly greater than aggregate variation. This means that the small imperfections in
macroeconomic perceptions proposed here have very modest utility consequences. So
long as consumers respond appropriately to their idiosyncratic shocks (which we assume
they do), the failure to keep completely up-to-date with aggregate developments simply
does not matter much.

While a number of previous papers have proffered the idea that inattention (or imper-
fect information) might generate excess smoothness, the modeling question is a quanti-
tative one (‘how much excess smoothness can a sensible model explain?’). We argue that
the imperfect information models and mechanisms proposed in the prior literature are
quantitatively unable simultaneously to match the micro and macro quantitative facts,
while our model matches the main stylized facts from both literatures.

In future work, it would be interesting to enrich the model so that it has plausible
implications for how the degree of attention might vary over time or across people,
and to connect the model to the available expectations data—for example, measures
of consumer sentiment, or measures of uncertainty constructed from news sources, cf
Baker, Bloom, and Davis (2016). Such work might be particularly useful in any attempt
to understand how behavioral dynamics change between normal times in which news
coverage of macroeconomic dynamics is not front-page material versus crisis times, when
it is.
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Notes
1 Figure 1 is reproduced from a recent comprehensive meta-analysis of 597 published estimates by Havranek, Rusnak, and
Sokolova (2017).

2 ? considers a 2-period consumption–saving model with log utility. Otherwise, to our knowledge, the only paper that
employs the CRRA utility to solve a consumption–saving problem under rational inattention is Tutino (2013). Her
contribution is mainly methodological, as her setup is quite stylized (e.g., an i.i.d. income process). It would be
interesting to extend her work to a more realistic setup (with permanent/persistent income shocks) and study quantitative
implications of rational inattention in a model with both idiosyncratic and aggregate income components.

3 Gabaix (2014) proposes a framework in which consumers perceive a simplified version of the world because there is a cost
to paying attention. The existence of a fixed cost of paying attention means that beliefs are not updated continuously but
episodically, and the framework generates dynamics that, when aggregated, resemble partial adjustment dynamics. It is
beyond the scope of this paper (and would be an interesting project in itself) to determine how this framework would
apply in a context like ours, where there are four distinct kinds of shocks (aggregate and idiosyncratic, transitory and
permanent), each with very different rewards to attention.

4 More empirical evidence that households that are in some way ‘constrained’ (e.g., have low liquid assets, low income or
low credit scores) have large marginal propensities to consume, especially in newer papers, includes: Johnson, Parker,
and Souleles (2006), ?, ?, Kaplan, Violante, and Weidner (2014), ?, Parker (2017) and ?.

5 This pattern does match consumers’ purchases of durable goods like automobiles; but the ‘excess smoothness’ facts hold
as strongly for aggregate nondurables as for durable goods. The fixed-adjustment-cost framework matches many other
economic decisions well—for instance, individual investors adjust their portfolios sporadically even though the prices of
many assets experience large fluctuations at high frequency—and ? find “a robust pattern consistent with the assumption
that a component of adjustment costs is information gathering” (p. 2273).

6 In online Appendix B, we extend the SOE model to a heterogeneous agents dynamic stochastic general equilibrium
(HA-DSGE) model that endogenizes factor returns at the cost of considerably more computation, which gives results
substantially the same as the SOE model. Online Appendix C presents a model that abstracts from idiosyncratic income
risk (essentially, setting σ2

ψ = σ2
θ = 0), and which produces results similar to those of our ‘realistic’ models. The

simplification enables general equilibrium analysis at a small fraction of the computational cost. However, it is neither a
representative agent model—the distribution of beliefs must be tracked—nor a respectable heterogeneous agents model,
which may reduce its appeal to both audiences.

7 We capture the process by discretizing the range of productivity growth rates within our bounds, and calibrate the Markov
transition probability matrix Ξ so that the statistical properties of productivity growth rates exhibited by our process
match the corresponding properties measured in U.S. data since the 1950s.

8 Subject to definitions (3), (4), (5), (7), (8) and (9).

9 For simplicity, newborns begin life with correct beliefs about the aggregate state. This assumption about newborns’
beliefs is numerically inconsequential because the quarterly replacement rate is so low; see section IV.G for details.

10 Readers can confirm these results using the toolkit for solving the model available at the Econ-ARK/REMARK resource; the
authors can provide particular specifications to produce all claimed results.

11 None of these points is a peculiarity of the U.S. data. Carroll, Sommer, and Slacalek (2011) performed similar exercises
for all eleven countries for which they could obtain the required data, and robustly obtained similar results across almost
all of those countries.

12 Instruments Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2, ∆8 logYt−2}, where
∆8 log xt−2 ≡ log xt−2 − log xt−10.

13 We also add unemployment insurance for this experiment.

14 This variant of the model produces similar results to our baseline model with respect to aggregate smoothness.
An alternative approach to calibrating the distribution of β would be to target the distribution of MPCs by liquid wealth
quantile, as reported for example by Fagereng, Holm, and Natvik (2017) or ?. We also did this, but the results are too
similar to the liquid wealth calibration to justify reporting. We get similar (albeit lower) consumption responses when we
calibrate the distribution of β to match the distribution of net wealth.
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15 This approximately fits the 2008 stimulus timetable. The announcement was made in February and the payments arrived
between May and July. We also ran the experiment with two and three quarters advance notice and find the response on
receipt of the payment remains in the right empirical range (19.9 and 16.7 percent respectively).

16 The identification method of Parker, Souleles, Johnson, and McClelland (2013) retrieves the difference between households
who have received the payment and those who have not. In the sticky expectations model this is 14 percent of the payment,
while it is zero in the frictionless model.

17 For a more thorough theoretical examination of the tradeoffs in a related model, see Reis (2006).

18 Pischke’s estimates constructed from the Survey of Income and Program Participation are rather different from the
magnitudes of transitory and permanent shocks estimated in the extensive literature—mostly subsequent to Pischke’s
paper—cited in our calibration section above.

19 In contrast, our model exhibits significant predictability beyond one year. The value of χ in the ‘horse-race’ regression
for the SOE economy is 0.66 when the right hand side is lagged by one quarter (see Table 3). Adding an extra one and
two years’ lag to the right hand side sees χ decline approximately as an AR(1), to 0.20 and 0.06 respectively.

A Calibration
This appendix presents more complete details and justification for the calibrated pa-
rameters in Table 1. We begin by calibrating market-level and preference parameters by
standard methods, then specify additional parameters to characterize the idiosyncratic
income shock distribution.

A Macroeconomic Calibration
We assume a coefficient of relative risk aversion of 2. The quarterly depreciation rate δ is
calibrated by assuming annual depreciation of 6 percent, i.e., (1− δ)4 = 0.94. Capital’s
share in aggregate output takes its usual value of α = 0.36.
We set the variances of the quarterly transitory and permanent shocks at the approx-

imate values respectively:

σ2
Θ = 0.00001,

σ2
Ψ = 0.00004,

which allow the model to match high degree of persistence in aggregate labor income.20
These values are consistent with papers such as Jermann (1998), Boldrin, Christiano,
and Fisher (2001), and Chari, Kehoe, and McGrattan (2005), considered standard in
the RBC literature. These authors model the state of technology as either a highly
persistent AR(1) process or a random walk; but the underlying calibrations come from
the autocorrelation properties of measured aggregate dynamics, which are matched
about as well by our specification of the income process.

To finish the calibration, we consider a simple perfect foresight model (PF-DSGE),
with all aggregate and idiosyncratic shocks turned off. We set the perfect foresight
steady state aggregate capital-to-output ratio to 12 on a quarterly basis (corresponding
to the usual ratio of 3 for capital divided by annual income). Along with the calibrated
values of α and δ, this choice implies values for the other steady-state characteristics of
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the PF-DSGE model:

K = 121/(1−α),

W = (1− α)Kα,

R = (1− δ) + αKα−1.

In the SOE model, we fix the interest factor R and wage rate W to these PF-DSGE
steady state values.
A perfect foresight representative agent would achieve this steady state if his discount

factor satisfied Rβ = 1. For the SOE model, however, we choose a much lower value
of β (0.97), resulting in agents with wealth holdings around the median observed in the
data;21 the value of β satisfying Rβ = 1 is used in the closed economy models presented
in the online appendix, allowing those models to fit the mean observed wealth.

B Calibration of Idiosyncratic Shocks
The annual-rate idiosyncratic transitory and permanent shocks are assumed to be:

σ2
θ = 0.03,

σ2
ψ = 0.012.

Our calibration for the sizes of the idiosyncratic shocks are conservative relative to the
literature;22 using data from the Panel Study of Income Dynamics, for example, Carroll
and Samwick (1997) estimate σ2

ψ = 0.0217 and σ2
θ = 0.0440; Storesletten, Telmer, and

Yaron (2004) estimate σ2
ψ ≈ 0.017, with varying estimates of the transitory component.

But recent work by Low, Meghir, and Pistaferri (2010) suggests that controlling for
participation decisions reduces estimates of the permanent variance somewhat; and using
very well-measured Danish administrative data, Nielsen and Vissing-Jorgensen (2006)
estimate σ2

ψ ≈ 0.005 and σ2
θ ≈ 0.015, which presumably constitute lower bounds for

plausible values for the truth in the U.S. (given the comparative generosity of the Danish
welfare state).

We assume that the probability of unemployment is 5 percent per quarter. This
approximates the historical mean unemployment rate in the U.S., but model unemploy-
ment differs from real unemployment in (at least) two important ways. First, the model
does not incorporate unemployment insurance, so labor income of the unemployed is
zero. Second, model unemployment shocks last only one quarter, so their duration is
shorter than the typical U.S. unemployment spell (about 6 months). The idea of the
calibration is that a single quarter of unemployment with zero benefits is roughly as
bad as two quarters of unemployment with an unemployment insurance payment of half
of permanent labor income (a reasonable approximation to the typical situation facing
unemployed workers). The model could be modified to permit a more realistic treatment
of unemployment spells; this is a promising topic for future research, but would involve
a considerable increase in model complexity because realism would require adding the
individual’s employment situation as a state variable.

The probability of mortality is set at D = 0.005, which implies an expected working life
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of 50 years; results are not sensitive to plausible alternative values of this parameter, so
long as the life length is short enough to permit a stationary distribution of idiosyncratic
permanent income.

B Heterogeneous Agents Dynamic Stochastic General
Equilibrium (HA-DSGE) Model

Our HA-DSGE model relaxes the simplifying assumption in the SOE model of a friction-
less global capital market. In this closed economy, factor prices Wt and rt are determined
in the usual way from the aggregate production function and aggregate state variables,
including the stochastic aggregate shocks, putting the model in the (small, but rapidly
growing) class of heterogeneous agent DSGE models.

For the HA-DSGE model, we set the discount factor to β = R−1 = 0.986, roughly
matching the target capital-to-output ratio.23 Households in the HA-DSGE model thus
hold significantly more wealth than their counterparts in the baseline SOE model, who
were calibrated to approximate the median observed wealth-to-income ratio. This
reflects our goal of presenting results that span the full range of calibrations in the
micro and macro literatures; the micro literature has often focused on trying to explain
the wealth holdings of the median household, which are much smaller than average
wealth holdings. Experimentation has indicated that our results are not sensitive to
such choices.

A Model and Solution
We make the standard assumption that markets are competitive, and so factor prices
are the marginal product of (effective) labor and capital respectively. Denoting capital’s
share as α, so that Yt = Kα

t L
1−α
t , this yields the usual wage and interest rates:

Wt =
∂Yt

∂Lt
= (1− α)(Kt/Lt)

−α, (19)

rt =
∂Yt

∂Kt

= α(Kt/Lt︸ ︷︷ ︸
=Kt/Θt

)α−1.

Net of depreciation, the return factor on capital is Rt = 1− δ + rt.
An agent’s relevant state variables at the time of the consumption decision include

the levels of household and aggregate market resources (mt,i,Mt), as well as household
and aggregate labor productivity (pt,i, Pt) and the aggregate growth rate Φt. We assume
that agents correctly understand the operation of the economy, including the production
and shock processes, and have beliefs about aggregate saving—how aggregate market
resources Mt become aggregate assets At (equivalently, next period’s aggregate capital
Kt+1). Following Krusell and Smith (1998) and Carroll, Slacalek, Tokuoka, and White
(2017), we assume that households believe that the aggregate saving rule is linear in
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logs, conditional on the current aggregate growth rate:

E[At] = ℵ(Mt,Φt = Φj) ≡ exp
(
κj,0 + κj,1 log(Mt)

)
. (20)

The growth-rate-conditional parameters κj,0 and κj,1 are exogenous to the individual’s
(partial equilibrium) optimization problem, but are endogenous to the general equilib-
rium of the economy. Taking the aggregate saving rule ℵ as given, the household’s
problem can be written in Bellman form as:24

v(mt,i,Mt, pt,i, Pt,Φt) = max
ct,i

{
u(ct,i) + β E

[
(1− dt,i)v(mt+1,i,Mt+1, pt+1,i, Pt+1,Φt+1)

]}
.

(21)

As in the SOE model, the household’s problem can be normalized by the combined
productivity level pppt,i, reducing the state space by two continuous dimensions. Dividing
(21) by ppp1−ρ

t,i and substituting normalized variables, the reduced problem is:

v(mt,i,Mt,Φt) = max
ct,i

{
u(ct,i) + β(1− D)E

[
(Φt+1ψψψt+1,i)

1−ρv(mt+1,i,Mt+1,Φt+1)
]}

s.t. (22)
at,i = mt,i − ct,i,

kt+1,i = at,i/(1− D),

mt+1,i = Rt+1kt+1,i/(Φt+1ψψψt+1,i) + θθθt+1,iWt+1.

Because household beliefs about the aggregate saving rule are linear in logs, (20) holds
with normalized market resources and aggregate assets as well as in levels.
The equilibrium of the HA-DSGE model is characterized by a (normalized) consump-

tion function c(m,M,Φ) and an aggregate saving rule ℵ such that when all households
believe ℵ, the solution to their individual problem (22) is c; and when all agents act
according to c, the best log-linear fit of At on Mt (conditional on Φt) is ℵ. The model is
solved using a method similar to Krusell and Smith (1998).25

B Frictionless vs Sticky Expectations
The treatment of sticky beliefs in the HA-DSGE model is the natural extension of what
we did in the SOE model presented in section IV.F: Because the level of Mt now affects
future wages and interest rates, a consumer’s perceptions of that variable M̃t,i = Mt/P̃t,i
now matter. As households in our model do not necessarily observe the true aggregate
productivity level, their perception of normalized aggregate market resources is

M̃t,i = Mt

/
P̃t,i =

(
Pt
/
P̃t,i
)
Mt.

Households in the DSGE model choose their level of consumption using their percep-
tion of their normalized state variables:

ct,i = p̃ppt,ic(m̃t,i, M̃t,i, Φ̃t,i) = c(mt,i,Mt, pt,i, P̃t,i, Φ̃t,i).

Households who misperceive the aggregate productivity state will incorrectly predict
aggregate saving at the end of the period, and thus aggregate capital and the distribution
of factor prices next period.26
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Because households who misperceive the aggregate productivity state will make
(slightly) different consumption–saving decisions than they would have if fully informed,
aggregate saving behavior will be different under sticky than under frictionless
expectations. Consequently, the equilibrium aggregate saving rule ℵ will be slightly
different under sticky vs frictionless expectations. When the HA-DSGE model is solved
under sticky expectations, we implicitly assume that all households understand that all
other households also have sticky expectations, and the equilibrium aggregate saving
rule is the one that emerges from this belief structure.

C Results
We report some of the equilibrium characteristics of the SOE and HA-DSGE models
in Table 5, to highlight their qualitatively similar patterns. The table suggests a broad
generalization that we have confirmed with extensive experimentation: With respect to
either cross section statistics, mean outcomes, or idiosyncratic consumption dynamics,
the frictionless expectations and sticky expectations models are virtually indistinguish-
able using microeconomic data, and very similar in most aggregate implications aside
from the dynamics of aggregate consumption.

Table 6 reports the results of estimating regression (15) on data generated from the
HA-DSGE model. The results are substantially the same as the previous analysis for
the SOE model (in Table 3).27

The model with frictionless expectations (top panel) implies aggregate consumption
growth that is moderately (but not statistically significantly) serially correlated when
examined in isolation (second row), but the effect “washes out” when expected income
growth and the aggregate wealth to income ratio are included in the horse race regression
(fourth row). As expected in a closed economy model, the aggregate wealth-to-income
ratio At is negatively correlated with consumption growth, but its predictive power is
so slight that it is statistically insignificant in samples of only 200 quarters.

The model with sticky expectations (bottom panel) again implies a serial correlation
coefficient of consumption growth not far from 0.75 in the univariate IV regression
(second row). As in the SOE simulation, the horserace regression (fifth row) indicates
that the apparent success of the Campbell–Mankiw specification (third row) reflects the
correlation of predicted current income growth with instrumented lagged consumption
growth.

C Representative Agent (RA) Model
This appendix presents a representative agent model for analyzing the consequences of
sticky expectations in a DSGE framework while abstracting from idiosyncratic income
shocks and the death (and replacement) of households. It builds upon the modeling
assumptions in section IV to formulate the representative agent model, then presents
simulated results analogous to section V. The primary advantage of this model is that
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Table 5 Equilibrium Statistics

SOE Model HA-DSGE Model
Frictionless Sticky Frictionless Sticky

Means
A 7.49 7.43 56.85 56.72
C 2.71 2.71 3.44 3.44

Standard Deviations
Aggregate Time Series (‘Macro’)

logA 0.332 0.321 0.276 0.272
∆ logC 0.010 0.007 0.010 0.005
∆ logY 0.010 0.010 0.007 0.007

Individual Cross Sectional (‘Micro’)
log a 0.926 0.927 1.015 1.014
log c 0.790 0.791 0.598 0.599
log p 0.796 0.796 0.796 0.796
log y|y > 0 0.863 0.863 0.863 0.863
∆ log c 0.098 0.098 0.054 0.055

Cost of Stickiness 4.82e–4 4.51e–4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a
newborn frictionless consumer would need to be reduced in order to achieve the same reduction of
expected value associated with forcing them to become a sticky expectations consumer.
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Table 6 Aggregate Consumption Dynamics in HA-DSGE Model

∆ logCt+1 = ς + χ∆ logCt + ηEt[∆ logYt+1] + αAt + εt+1

Expectations : Dep Var OLS 2nd Stage Hansen J
Independent Variables or IV R̄2 p-val

Frictionless : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.189 OLS 0.036
(0.072)
0.476 IV 0.020 0.556

(0.354)
0.368 IV 0.017 0.457

(0.321)
−0.34e–4 IV 0.015 0.433
(0.98e–4)

0.289 0.214 0.01e–4 IV 0.020 0.531
(0.463) (0.583) (1.87e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.023; var(log(ξt)) = 4.16e–6

Sticky : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.467 OLS 0.223
(0.061)
0.773 IV 0.230 0.542

(0.108)
0.912 IV 0.145 0.187

(0.245)
−0.97e–4 IV 0.059 0.002
(0.56e–4)

0.670 0.171 0.12e–4 IV 0.231 0.551
(0.181) (0.363) (0.86e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.232; var(log(ξt)) = 4.16e–6

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2,∆8 logYt−2}.
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it allows fast analysis of sticky expectations in a closed economy, yielding very similar
results to the heterogeneous agents DSGE model with less than a minute of computation,
rather than a few hours. However, the model is not truly a “representative agent” model
under sticky expectations; instead it is as though there is an agent whose beliefs about
the aggregate state are “smeared” over the state space with a probability distribution
that reflects the distribution of perceptual delay implied by the Calvo updating proba-
bility. That is, the ealized level of consumption represents the weighted average level of
consumption chosen by the “many minds” of the representative household, with weights
reflecting the likelihood of each possible degree of perceptual delay.

A Model and Solution
The representative agent’s state variables at the time of its consumption decision are
the level of market resources Mt, the productivity of labor Pt, and the growth rate
of productivity Φt. Idiosyncratic productivity shocks ψ and θ do not exist, and the
possibility of death is irrelevant; aggregate permanent and transitory productivity shocks
Ψ and Θ are distributed as usual.
The representative agent’s problem can be written in Bellman form as:28

V(Mt, Pt,Φt) = max
Ct

{
u(Ct) + E

[
V(Mt+1, Pt+1,Φt+1)

]}
s.t.

At = Mt −Ct.

Normalizing the representative agent’s problem by the productivity level Pt as in the
SOE and HA-DSGE models, the problem’s state space can be reduced to:29

V(Mt,Φt) = max
Ct

{
u(Ct) + β Et

[
(Φt+1Ψt+1)1−ρV(Mt+1,Φt+1)

]}
(23)

s.t.
At = Mt − Ct.

Noting that the return to (normalized) end-of-period assets for next period’s market
resources is dMt+1

dAt
= Rt+1/(Φt+1Ψt+1), (23) has a single first-order condition that is

sufficient to characterize the solution to the normalized problem:

C−ρt − β E
[
Rt+1(Φt+1Ψt+1)−ρVM(AtRt+1/(Ψt+1Φt+1) + Θt+1Wt+1,Φt+1)

]︸ ︷︷ ︸
≡VA(At,Φt)

= 0 (24)

=⇒ Ct = VA(At,Φt)
−1/ρ.

The representative agent model can be solved using the endogenous grid method, fol-
lowing the same procedure as for the SOE model described in Appendix D.A, yielding
normalized consumption function C(M,Φ).30
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B Frictionless vs Sticky Expectations
The typical interpretation of a representative agent model is that it represents a contin-
uum of households that face no idiosyncratic shocks, and thus all find themselves with the
same state variables; idiosyncratic decisions are equivalent to aggregate, representative
agent decisions. Once we introduce sticky expectations of aggregate productivity, this
no longer holds: different households will have different perceptions of productivity, and
thus make different consumption decisions.

To handle this departure from the usual representative agent framework, we take
a “multiple minds” or quasi-representative agent approach. That is, we model the
representative agent as being made up of a continuum of households who all correctly
perceive the level of aggregate market resources Mt, but have different perceptions of the
aggregate productivity state. Each household chooses their level of consumption based
on their perception of the productivity state; the realized level of aggregate consumption
is simply the sum across all households.

Formally, we track the distribution of perceptions about the aggregate productivity
state as a stochastic vector ϕt over the current growth rate Φt ∈ {Φ}, representing
the fraction of households who perceive each value of Φ, and a vector P̃t representing
the average perceived productivity level among households who perceive each Φ. As
in our other models, agents update their perception of the true aggregate productivity
state (Pt,Φt) with probability Π; likewise, the distinction between frictionless and sticky
expectations is simply whether Π = 1 or Π < 1.
Defining ejN as the N -length vector with zeros in all elements but the j-th, which has

a one, the distribution of population perceptions of growth rate Φt evolves according to:

ϕt+1 = (1− Π)ϕt + ΠejN when Φt+1 = Φj. (25)

That is, a Π proportion of households who perceive each growth rate update their
perception to the true state Φt+1 = Φj, while the other (1−Π) proportion of households
maintain their prior belief (which might already be Φj).
The vector of average perceptions of aggregate productivity for each growth rate can

then be calculated as:

P̃t+1 =
(
(1− Π)ϕt � P̃t + ΠejNPt+1

)
� ϕt+1. (26)

That is, the average perception of productivity in each growth state is the weighted
average of updaters and non-updaters who perceive that growth rate.31
Households who perceive each growth rate Φ choose their level of consumption ac-

cording to their perception of normalized market resources, as though they knew their
perception to be the truth. Defining M̃ j

t = Mt/P̃
j
t as perceived normalized market

resources for households who perceive the aggregate growth rate is Φj, aggregate con-
sumption is:

Ct =
∑

Φj∈{Φ}

P̃ j
t C(M̃ j

t ,Φj)ϕ
j
t . (27)
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This represents the weighted average of per-state consumption levels of the partial
representative agents.

When the representative agent frictionlessly updates its information every period (Π =

1), equations (25) and (26) say that ϕt = ejN and P̃ j
t = Pt (with irrelevant values in the

other vector elements), so that the representative agent is truly representative. When
expectations are sticky (Π < 1), the representative agent’s perceptions of the growth
rate become “smeared” across its past realizations; its perceptions the productivity level
likewise deviate from the true value, even for the part of the representative agent who
perceives the true growth rate.32

C Simulation Results

We calibrate the RA model using the same parameters as for the HA-DSGE model
(see Appendix A.A, Table 1, and Appendix B.C), except that there are no idiosyncratic
income shocks (σ2

ψ = σ2
θ = ℘ = 0) and the possibility of death is irrelevant (D = 0).

After solving the model, we utilize the same simulation procedure described in section V,
taking 100 samples of 200 quarters each; average coefficients and standard errors across
the samples are reported in Table 7.

The upper panel of Table 7 shows that under frictionless expectations, consumption
growth in the representative agent model cannot be predicted to any statistically sig-
nificant degree under any specification. The lower panel, under sticky expectations,
yields results that are strikingly similar to the SOE model in Table 3. Both (in-
strumented) lagged consumption growth and expected income growth are significant
predictors of aggregate consumption growth, but the ‘horse race’ regression reveals that
the predictability is dominated by serially correlated consumption growth, confirming
the results of the two heterogeneous agents models.

D Numerical Methods

A Solution Methods
Small Open Economy Solution Details

Consider the household’s normalized problem in the SOE model, given in (12). Substi-
tuting the latter two constraints into the maximand, this problem has one first order
condition (with respect to ct,i), which is sufficient to characterize the solution:

c−ρt,i − R(1− D)β Et
[
(Φt+1ψψψt+1,i)

−ρvm
(
R/(Φt+1ψψψt+1,i)at,i + Wθθθt+1,i,Φt+1

)]︸ ︷︷ ︸
≡ va(at,i,Φt)

= 0 (28)

=⇒ ct,i = va(at,i,Φt)
−1/ρ.

We use the endogenous grid method to solve the model by iterating on the first order
condition. Eliding some uninteresting complications, our procedure is straightforward:
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Table 7 Aggregate Consumption Dynamics in RA Model

∆ logCt+1 = ς + χ∆ logCt + ηEt[∆ logYt+1] + αAt + εt+1

Expectations : Dep Var OLS 2nd Stage Hansen J
Independent Variables or IV R̄2 p-val

Frictionless : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At
−0.015 OLS 0.002
(0.077)
0.387 IV 0.014 0.570

(0.390)
0.390 IV 0.016 0.475

(0.311)
−0.26e–4 IV 0.016 0.493
(1.11e–4)

0.122 0.267 0.16e–4 IV 0.018 0.572
(0.519) (0.575) (2.12e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.018; var(log(ξt)) = 3.33e–6

Sticky : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.412 OLS 0.179
(0.063)
0.788 IV 0.183 0.532

(0.138)
0.641 IV 0.128 0.171

(0.163)
−0.47e–4 IV 0.075 0.027
(0.52e–4)

0.632 0.118 0.10e–4 IV 0.184 0.480
(0.223) (0.280) (0.79e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.186; var(log(ξt)) = 3.33e–6

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2,∆8 logYt−2}.
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1. Construct discrete approximations to the lognormal distributions of θ, Θ, ψ, and
Ψ, adjusting for the point mass at 0 for θ with probability ℘. We use equiprobable
Nψ = Nθ = 7 point approximations for the (lognormal portion of) the idiosyncratic
shocks and NΨ = NΘ = 5 point approximations for the aggregate shocks.

2. Choose an exogenous grid of end-of-period normalized assets-above-natural-
borrowing-constraint A = {Naj}Naj=1, spanning the range values that an agent
might reasonably encounter in a simulated lifetime. We use a triple-exponential
grid spanning Na ∈ [10−5, 40] with Na = 48 gridpoints. The natural borrowing
constraint is zero because of the possibility of θ = 0, so assets-above-natural-
borrowing-constraint is simply assets a.

3. Initialize the guess of the consumption function to c(m, ·) = m, the solution for an
agent who has no future.

4. Define the marginal value function vm(·) as u′(c(·)), as determined by the standard
envelope condition.

5. Use the discrete approximations to the shock processes and the Markov transition
matrix Ξ to compute va(aj,Φk) for all (aj,Φk) ∈ A× {Φ}.

6. Use (28) to find the level of consumption that would make ending the period with
aj in assets optimal (when aggregate growth is Φk): cj,k = va(aj,Φk)

−1/ρ.

7. Calculate beginning of period market resources mj,k = aj,k + cj,k for all j, k.

8. For each k, construct c(m,Φk) by linearly interpolating cj,k over mj,k, with an
additional point at (m = 0, c = 0).

9. Calculate the supnorm distance between the newly constructed c and the previous
guess, evaluated at the Na×||{Φ}|| gridpoints. If the distance is less than ε = 10−6,
STOP; else go to step 4.

The numerically computed consumption function can then be used to simulate a
population of households, as described in Appendix D.B.

Dynamic Stochastic General Equilibrium Solution Details

Consider the household’s normalized problem in the HA-DSGE model, given in (22).
Recalling that we are taking the aggregate saving rule ℵ as given, optimal consumption
is characterized by the solution to the first-order condition:

c−ρt,i −β E
[
Rt+1(Φt+1ψψψt+1,i)

−ρv
(
Rtat,i/((1− D)Φt+1ψψψt+1,i) + θθθt+1,iWt+1,Mt+1,Φt+1

)]︸ ︷︷ ︸
≡ va(at,i,Mt,Φt)

= 0

(29)

=⇒ ct,i = va(at,i,Mt,Φt)
−1/ρ.
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Solving the HA-DSGE model requires a nested loop procedure in the style of Krusell
and Smith (1998), as the equilibrium of the model is a fixed point in the space of
household beliefs about the aggregate saving rule. For the outer loop, searching for the
equilibrium ℵ, we use the following procedure:

1. Construct a grid of (normalized) aggregate market resources M = {Mj}NMj=1. We
use a NM = 19 point grid based on the steady state of the perfect foresight DSGE
model, spanning the range of 10 percent to 500 percent of this value.

2. For each Φk ∈ {Φ}, initialize the aggregate saving rule to arbitrary values. We use
κk,0 = 0 and κk,1 = 1; there exist more efficient initial guesses.

3. In the inner loop, solve the household’s optimization problem for the current guess
of ℵ, using the procedure described below.

4. Simulate many households for many periods, using the procedure described in
Appendix D.B, yielding a long history of aggregate market resources, productivity
growth, and assets H = {(Mt,Φt, At)}Tt=0.

5. For each k, define Hk ≡ {H|Φt = Φk}. Regress At on Mt on the set Hk, yielding
coefficients that provide updated values of κk,0 and κk,1 for ℵ.

6. Calculate the supnorm distance between the new and previous values of aggregate
saving rule coefficients κ. If it is less than ὲ = 10−4, STOP; else go to step 3.

The inner solution loop (step 3) proceeds very similarly to the SOE solution method
above, with differences in the following steps:

2. The set A spans [10−5, 120] because of the higher β in the HA-DSGE model.

5. End-of-period marginal value of assets is calculated as va(aj,Mk,Φ`) for all
(aj,Mk,Φ`) ∈ A×M× {Φ}.

6. Use (29) to calculate cj,k,` = va(aj,Mk,Φ`)
−1/ρ.

8. For each `, construct c(m,M,Φ`) by linearly interpolating cj,k,` over mj,k,` for each
k, then interpolating the linear interpolations over M.

B Simulation Procedures
This appendix describes the procedure for generating a history of simulated outcomes
once the household’s optimization problem has been solved to yield consumption func-
tion c(·) (or C(·) in the representative agent model). We first describe the procedure
for the SOE and HA-DSGE models, then summarize the simulation method for the
representative agent model of Appendix C.
In any given period t, there are exactly I = 20, 000 households in the simulated

population. At the very beginning of the simulation, all households are given an initial
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level of capital: kt,i = 0 in the SOE model (as if they were newborns) and kt,i at
the perfect foresight steady state K in the HA-DSGE model. Likewise, normalized
aggregate capital Kt is set to the perfect foresight steady state. At the beginning of
time, all households have pt,i = 1 and correct perceptions of the aggregate state. We
initialize Pt = 1 and Φt = 1, average growth.
Time begins in period t = −1000, but the reported history begins at t = 0 following a

1000 period “burn in” phase to allow the population distribution of pt,i and at,i to reach
its long run distribution. In each simulated period t, we execute the following steps:

1. Draw aggregate shocks Θt and Ψt and productivity growth Φt, then calculate the
new level of aggregate permanent productivity Pt and factor returns Wt and Rt
using (19) (HA-DSGE model) or assigning the constant global values (SOE).

2. Randomly select DI = 100 household indices i to die and be replaced: di,t = 1.
Newborns get pt,i = 1, kt,i = 0, and a correct perception of the aggregate state.
Survivors receive the capital of the dead via the Blanchardian scheme.

3. Randomly select ΠI household indices to update their aggregate information:
πt,i = 1. Agents’ perceptions (P̃t,i, Φ̃t,i) are set according to (13).

4. The economy produces output. All agents draw idiosyncratic shocks ψt,i and θt,i,
with newborns automatically drawing ψt,i = θt,i = 1,33 then observe their true mt,i

(and Mt in the HA-DSGE model).

5. Agents compute their perception of normalized idiosyncratic market resources m̃t,i

(and aggregate M̃t,i in HA-DSGE).

6. Agents choose their level of consumption ct,i according to their consumption func-
tion and their perceived state, and end the period with at,i = mt,i − ct,i in assets.

7. Aggregate assets At and consumption Ct are calculated by taking population
averages across the I households. This period’s assets become next period’s
aggregate capital Kt+1, and the next period begins.

We simulate a total of about 21,000 periods, so that the final period is indexed by
t = T = 20, 000. The time series values reported in Table 5 are calculated on the span
of the history, t = 0 to t = T ; the cross sectional values in this table are averaged across
all within-period cross sections. The time series regressions in Tables 3 and 6 partition
the history into 200 samples of 100 quarters each; the tables report average coefficients
and statistics across 100 sample regressions.

When simulating the representative agent model of Appendix C, only a few changes are
necessary to the procedure above. The vectors of perceptions are initialized to P̃t = 111

and ϕ = e6
11, so the “entire” representative agent has correct perceptions of the aggregate

state. No households are ever “replaced” in the RA simulation, idiosyncratic shocks do
not exist; only aggregate market resources are relevant. The vectors of perceptions evolve
according to (25) and (26), and aggregate consumption is determined using (27).
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The microeconomic (or cross sectional) regressions in Table 4 are generated using a
single 4000 period sample of the history, from t = 0 to t = 4000, using 5000 of the
20,000 households. After dropping observations with yt,i = 0, this leaves about 19
million observations, far larger than any consumption panel dataset that we know of.
Standard errors are thus vanishingly small, and have little meaning in any case, which
is why we do not report them in the table summarizing our microsimulation results.

When making their forecasts of expected income growth, households are assumed to
forecast that the transitory component of income will grow by the factor 1/θt,i, which
is the forecast implied by their observation of the idiosyncratic transitory component
of income. Substantively, this assumption reflects the real-world fact that essentially
all of the predictable variation in income growth at the household level comes from
idiosyncratic components of income.

C Cost of Stickiness Calculation
After simulating a population of households using the procedure in Appendix D.B,
we have a history of micro observations

{
{ct,i, dt,i}Tt=0

}I
i=1

and a history of aggregate
permanent productivity levels {Pt}Tt=0. Each household index i contains the history of
many agents, as the agent at i dies and is replaced at the beginning of any period with
dt,i = 1. Let τi,n be the n-th time t index where dt,i = 1; further define Ni =

∑T
t=0 dt,i,

the number of replacement events for household index i.
A single consumer’s (normalized) discounted sum of lifetime utility is then:

vi,n = P ρ−1
τi,n

τi,n+1−1∑
t=τi,n

βt−τi,nu(ct,i).

Normalizing by aggregate productivity at birth Pt is equivalent to normalizing by the
consumer’s total productivity at birth pppt,i because pt,i = 1 at birth by assumption.
The total number of households who are born and die in the history is:

NI =
I∑
i=1

(Ni − 1).

The overall expected lifetime value at birth can then be computed as:

v0 = N−1
I

I∑
i=1

Ni−1∑
n=1

vi,n.

Because we use T = 20, 000 and I = 20, 000, and agents live for 200 periods on
average (D = 0.005), our simulated history includes about NI ≈ ITD = 2 million
consumer lifetimes. The standard errors on our numerically calculated v0 and ṽ0 are
thus negligible and not reported.

In the SOE model, we use the same random seed for the frictionless and sticky
specifications, so the same sequence of replacement events and income shocks occurs
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in both. With no externalities or general equilibrium effects, the distribution of states
that consumers are born into is likewise identical, so the “value ratio” calculation is valid.

The cost of stickiness in the HA-DSGE model is slightly more complicated. If we
used the generated histories of the frictionless and sticky specifications to compute v0

and ṽ0, the calculated ω would represent a newborn’s willingness-to-pay for everyone to
be frictionless rather than sticky. We are interested in the utility cost of just one agent
having sticky expectations, so an alternate procedure is required.

We compute ṽ0 in the HA-DSGE model the same as in the SOE model. However, v0 is
calculated as the expected lifetime (normalized) value of a newborn who is frictionless but
lives in a world otherwise populated by sticky consumers. To do this, we simulate a new
history of micro observations using the consumption function for the sticky HA-DSGE
economy, but with all I households updating their knowledge of the aggregate state
frictionlessly. Critically, we do not actually calculate At = Kt+1 each period; instead,
we use the same sequence of At that occurred in the ordinary sticky simulation. Thus
our simulated population of I households represents an infinitesimally small portion
of an economy made up (almost) entirely of consumers with sticky expectations. The
calculated ω is thus the willingness-to-pay to be the very first agent to “wake up.”

The formula for willingness-to-pay (17) arises from the homotheticity of the house-
hold’s problem with respect to pppt,i. If a consumer gives up an ω portion of their
permanent income at the moment they are “born”, before receiving income that period,
then his normalized market resources will still be mt,i = Wt, and he will make the same
normalized consumption choice that he would have, had he not lost any permanent
income. In fact, he will make the exact same sequence of normalized consumption
choices for his entire life; the level of his consumption will be scaled by the factor (1−ω)
in every period. With CRRA utility, this means that utility is scaled by (1 − ω)1−ρ in
every period of life, which can be factored out of the lifetime summation. The indifference
condition between being frictionless and losing an ω fraction of permanent income versus
having sticky expectations (and not losing) can be easily rearranged into (17).

E Muth–Lucas–Pischke
To see how the Muth–Lucas–Pischke model can generate smoothness, note that in the
Muth framework, agents update their estimate of permanent income according to an
equation of the form:34

P̂t+1 = ΠYt+1 + (1− Π)P̂t.

We can now consider the dynamics of aggregate consumption in response to the arrival
of an aggregate shock that (unbeknownst to the consumer) is permanent. The consumer
spends Π of the shock in the first period, leaving (1− Π) unspent because that reflects
the average transitory component of an undifferentiated shock. However, since the
shock really was permanent, income next period does not fall back as the consumer
guessed it would on the basis of the mistaken belief that (1 − Π) of the shock was
transitory. The next-period consumer treats this surprise as a positive shock relative to
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expected income, and spends the same proportion Π out of the perceived new shock.
These dynamics continue indefinitely, but with each successive perceived shock (and
therefore each consumption increment) being smaller than the last by the proportion
(1 − Π). Thus, after a true permanent shock received in period t, the full-information
prediction of the expected dynamics of future consumption changes would be ∆Ct+n+1 =
(1− Π)∆Ct+n + εt+n.35
At first blush, this predictability in consumption growth would appear to be a violation

of Hall (1978)’s proof that, for consumers who make rational estimates of their permanent
income, consumption must be a random walk. The reconciliation is that what Hall proves
is that consumption must be a random walk with respect to the knowledge the consumer
has. The random walk proposition remains true for consumers whose knowledge base
contains only the perceived level of aggregate income. Our thought experiment was to
ask how much predictability would be found by an econometrician who knows more than
the consumer about the level of aggregate permanent income.
The in-principle reconciliation of econometric evidence of predictability/excess

smoothness in consumption growth, and the random walk proposition, is therefore that
the econometricians who are making their forecasts of aggregate consumption growth
use additional variables (beyond the lagged history of aggregate income itself), and
that those variables have useful predictive power.36

F Alternate Belief Specification
In the model presented in the main text, households with sticky expectations use the
same consumption function as households who frictionlessly observe macroeconomic
information in all periods. They treat their perceptions of macroeconomic states as
if they were the true values, and do not account for their inattention when optimiz-
ing. In this appendix, we present an alternate specification in which households with
sticky expectations partially account for their inattention by optimizing as if the flow
of macroeconomic information they will receive is the true aggregate shock process.
Simulated results analogous to Table 3 in the main text are presented below in Table 8.

Sticky expectations households do not update their macroeconomic information a
1−Π fraction of the time. In these periods, they perceive that there was no permanent
aggregate shock Ψt and no innovation to the aggregate growth rate Φt. When they do
update, they learn of the accumulation of permanent aggregate shocks since their last
update (compounded with deviations from the last observed aggregate growth rate), as
well as the new growth rate. In the “alternate beliefs” specification, households solve
for their optimal consumption rule by treating their perceived flow of macroeconomic
information as the true aggregate process. In this way, they partially account for their
inattention by recognizing that the macroeconomic news they will perceive is leptokurtic
relative to frictionless households.

The perceived aggregate shock process on which sticky households optimize is a linear
combination of the shocks they perceive in non-updating periods (with weight 1 − Π)
and the shocks they perceive when they do update (with weight Π). In periods in
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which they do and don’t update, households treat the distribution of aggregate shocks
as respectively:

ΘΠ
t ∼ N (−σ2

Θ/2, σ
2
Θ), ΨΠ

t ∼ N (−σ2
Ψ/(2Π), σ2

Ψ/Π), ΞΠ ∼ Ξb1/Πe.

ΘZΠt ∼ N (−(σ2
Θ + σ2

Ψ/Π)/2, σ2
Θ + σ2

Ψ/Π), ΨZΠt = 1, ΞZΠ ∼ I.

Here, Ξ represents the transition matrix among discrete Markov states for Φt in the
true aggregate shock process. Under sticky expectations, households optimize under the
assumption that in the Π fraction of periods in which Φt is observed, the true transition
process has transpired an average of b1/Πe times since the last update (four, under
our calibration); they anticipate no Markov dynamics in the periods when they do not
update (identity matrix I). Likewise, aggregate permanent shocks are interpreted to be
degenerate in non-updating periods, but to make up for the fact that updating periods
are one quarter as common, when an update occurs its variance is four times as large as
in the baseline model.
In non-updating periods, households interpret all deviations from expected Pt as

transitory aggregate shocks, so their perceived variance of Θt includes both transitory
aggregate variance and a geometric series of permanent aggregate variance, decaying at
rate (1− Π):

σ2
Θ + σ2

Ψ + (1− Π)σ2
Ψ + (1− Π)2σ2

Ψ + · · · = σ2
Θ + σ2

Ψ/Π.

This alternate belief specification does not have sticky expectations households fully
and correctly adjust for their inattention. They do not track the number of periods since
their last macroeconomic update, instead treating all non-updating periods alike from
the perspective of perceived transitory shocks. Households act according to the same
consumption function whether or not they just updated; the more sophisticated shock
structure is used only to better approximate the perceived arrival of macroeconomic
news when solving the problem. Moreover, households do not account for the positive
covariance between accumulated permanent aggregate shocks and the innovation to Φt

in periods when they do update. Incorporating these calculations would be extremely
computationally burdensome, while changing the optimal consumption policy by very
little. To the extent that our model represents an abstraction from households choosing
the frequency of updating to balance the marginal cost and benefit of obtaining macroe-
conomic news (see section VI), it seems unlikely that agents would then adopt a vastly
more complicated view of the world to offset the mild consequences of their inattention.

The key result is that households’ optimal consumption function barely changes from
baseline when the alternate beliefs are introduced: across states actually attained dur-
ing simulation, normalized consumption differs by no more than 0.2 percent, and the
difference is less than 0.02 percent in the vast majority of states. More importantly,
the macroeconomic dynamics generated by sticky expectations households’ collective
behavior is nearly identical between the bottom panels of Table 8 below and Table 3
in the main text.37 This experiment represents a more general proposition that our
main results should be robust to the details of the precise specification of households’
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understanding of their inattention, so long as the key feature remains that agents’
idiosyncratic errors are systematically correlated due to the lag in information.

G Additional Calculations

A Quadratic Utility Consumption Dynamics
This appendix derives the equation (3) asserted in the main text. Start with the
definition of consumption for the updaters,

Cπ
t ≡ Π−1

∫ 1

0

πt,ict,i di

= Π−1

∫ 1

0

πt,i(r/R)ot,i di

= Π−1(r/R)

∫ 1

0

πt,iot,i di

= Π−1(r/R)ΠOt

= (r/R)Ot,

where the penultimate line follows from the fact that the updaters are chosen randomly
among members of the population so that the average per capita value of o among
updaters is equal to the average per capita value of o for the population as a whole.

The text asserts (equation (3)) that

Ct+1 = Π∆Cπ
t+1 + (1− Π)∆Ct

≈ (1− Π)∆Ct + ξt+1.

To see this, define market resources Mt = Yt + RAt where Yt is noncapital income
in period t and At is the level of nonhuman assets with which the consumer ended the
previous period; and define Ht as ‘human wealth,’ the present discounted value of future
noncapital income. Then write

Cπ
t+1 = (r/R)

(
Mt+1 +Ht+1

)
Cπ
t = (r/R)

(
Mt +Ht

)
Cπ
t+1 −Cπ

t = (r/R)
(
Mt+1 −Mt +Ht+1 −Ht

)
Cπ
t+1 −Cπ

t = (r/R)
(
R(Yt +Mt −Ct)−Mt +Ht+1 −Ht

)
. (30)

What theory tells us is that if aggregate consumption were chosen frictionlessly in
period t, then this expression would be white noise; that is, we know that

(r/R)
(
R(Yt +Mt −Cπ

t )−Mt +Ht+1 −Ht

)
= ξt+1

for some white noise ξt+1. The only difference between this expression and the RHS of
(30) is the Π superscript on the Ct. Thus, substituting, we get

Cπ
t+1 −Cπ

t = (r/R)
(
R (Yt +Mt − (Ct + Cπ

t −Cπ
t ))−Mt +Ht+1 −Ht

)
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Table 8 Aggregate Consumption Dynamics in SOE Model (Alternate Beliefs)

∆ logCt+1 = ς + χ∆ logCt + ηEt[∆ logYt+1] + αAt + εt+1

Expectations : Dep Var OLS 2nd Stage Hansen J
Independent Variables or IV R̄2 p-val

Frictionless : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.295 OLS 0.087
(0.066)
0.660 IV 0.040 0.600

(0.309)
0.457 IV 0.035 0.421

(0.209)
−6.92e–4 IV 0.026 0.365
(5.87e–4)

0.420 0.258 0.45e–4 IV 0.041 0.529
(0.428) (0.365) (9.51e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.039; var(log(ξt)) = 5.99e–6

Sticky : ∆ logC∗t+1 (with measurement error C∗t = Ct × ξt);
∆ logC∗t ∆ logYt+1 At

0.508 OLS 0.263
(0.058)
0.800 IV 0.257 0.552

(0.104)
0.857 IV 0.195 0.229

(0.182)
−8.12e–4 IV 0.065 0.002
(3.97e–4)

0.659 0.191 0.60e–4 IV 0.259 0.544
(0.187) (0.277) (5.01e–4)

Memo: For instruments Zt, ∆ logC∗t = Ztζ, R̄
2 = 0.257; var(log(ξt)) = 6.03e–6

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

Zt = {∆ logCt−2,∆ logCt−3,∆ logYt−2,∆ logYt−3, At−2, At−3,∆8 logCt−2,∆8 logYt−2}.
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Cπ
t+1 −Cπ

t = (r/R)
(
R(Yt +Mt −Cπ

t )−Mt +Ht+1 −Ht

)
+ (r/R)(Cπ

t −Ct)

= ξt+1 + (r/R)(Cπ
t −Ct).

So equation (3) can be rewritten as

∆Ct+1 = (1− Π)∆Ct + Π
(
(r/R)(Cπ

t −Ct) + ξt+1

)
where ξt+1 is a white noise variable. Thus,

∆Ct+1 = (1− Π)
(
1 + (r/R)︸ ︷︷ ︸

≈ 0

)
∆Ct + Πξt+1︸ ︷︷ ︸

≡ εt+1

(31)

for a white noise variable εt+1, and (r/R) ≈ 0 for plausible quarterly interest rates. (31)
leads directly to (3).

B Population Variance of Idiosyncratic Permanent Income
This appendix follows closely Appendix A in the ECB working paper version of Carroll,
Slacalek, and Tokuoka (2015).38 It computes dynamics and steady state of the square
of the idiosyncratic component of permanent income (from which the variance can be
derived). Recalling that consumers are born with pt,i = 1:

pt+1,i = (1− dt+1,i)pt,iψt+1,i + dt+1,i

p2
t+1,i =

(
(1− dt+1,i)pt,iψt+1,i

)2
+ (1− dt+1,i)dt+1,i︸ ︷︷ ︸

=0

2pt,iψt+1,i + d2
t+1,i

and because Et[d2
t+1,i] = D we have

Et[p2
t+1,i] = Et[((1− dt+1,i)pt,iψt+1,i)

2] + D

= (1− D)p2
t,i E[ψ2] + D.

Defining the mean operator M[•t] =
∫ 1

0
•t,ιdι, we have

M
[
p2
t+1

]
= (1− D)M[p2

t ]E[ψ2] + D,

so that the steady state expected level of M[p2] ≡ limt→∞M[p2
t ] can be found from

M[p2] = (1− D)E[ψ2]M[p2] + D

=
D

1− (1− D)E[ψ2]
.

Finally, note the relation between p2 and the variance of p:

σ2
p = M[(p−M[p])2]

= M[(p2 − 2pM[p] + (M[p])2)]

= M[p2]− 1,

where the last line follows because under the other assumptions we have made, M[p] = 1.
For the preceding derivations to be valid, it is necessary to impose the parameter

restriction (1− D)E[ψ2] < 1. This requires that income does not spread out so quickly
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among survivors as to overcome the compression of the distribution that arises because
of death.

C Converting Annual to Quarterly Variances for Idiosyncratic Shocks
If the quarterly transitory shock is θt, define the annual transitory shock as:

θat =
4∑
i=1

θt+i
4

for t = 0, 4, 8, . . . Then the variance of the annual transitory shock is 1
4
of the variance

of the quarterly transitory shock: var(θa) = 4
16

var(θ) = 1
4

var θ. We therefore multiply
our calibrated annual transitory shock (0.03) by 4 to get a quarterly number.

Let ψt be the quarterly permanent shock. Define the annual permanent shock as:

ψat =
4∏
i=1

ψt+i

for t = 0, 4, 8, . . . Then the variance of the annual permanent shock is
(
1 + var(ψ)

)4 ≈
4×var(ψ) for small var(ψ). Therefore we divide our calibrated annual permanent shock
(0.012) by 4 to get a quarterly number.

D Muth (1960) Signal Extraction
Muth (1960), pp. 303–304, shows that the signal-extracted estimate of permanent income
is

P̃t = v1Yt + v2Yt−1 + v3Yt−2 + ...

for a sequence of v’s given by

vk = (1− λ1)λk−1
1

for k = 1, 2, 3, .... So:

P̃t = (1− λ1)( Yt + λ1Yt−1 + λ2
1Yt−2...)

P̃t+1 = (1− λ1)(Yt+1 + λ1Yt + λ2
1Yt−1 + λ3

1Yt−2...)

= (1− λ1) Yt+1 + λ1 (1− λ1)(Yt + λ2
1Yt−1 + λ3

1Yt−2...)︸ ︷︷ ︸
P̃t

= (1− λ1)Yt+1 + λ1P̃t

This compares with (30) in the main text

P̃t+1 = ΠYt+1 + (1− Π)P̃t

so the relationship between our Π and Muth’s λ1 is:

λ1 = 1− Π
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Defining the signal-to-noise ratio ϕ = σψψψ/σθθθ, starting with equation (3.10) in Muth
(1960) we have

λ1 = 1 + (1/2)ϕ2 − ϕ
√

1 + ϕ2/4

(1− Π) = 1 + (1/2)ϕ2 − ϕ
√

1 + ϕ2/4

−Π = (1/2)ϕ2 − ϕ
√

1 + ϕ2/4

yielding equation (18) in the main text.
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