Sticky Expectations and Consumption Dynamics

Christopher D. Carroll1 \quad Jirka Slacalek2

1Johns Hopkins and NBER
carroll@jhu.edu
http://www.econ.jhu.edu/people/ccarroll/

2European Central Bank
jiri.slacalek@ecb.int
http://www.slacalek.com/

November 2007
Consumption Dynamics

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $= 0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Macro

- **Theory:** Uninsurable Risk Is Unimportant
- **Evidence:** Consumption Is Too Smooth
- **Conclusion:** Habits ≈ 0.75

Micro

- **Theory:** Uninsurable Risk Is Essential
- **Evidence:** Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \times \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits \(\approx 0.75 \)

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits \(= 0.75 \) Rejectable With Confidence \(= \infty \)
- \(\text{var}(\Delta \log c) \approx 100 \ \text{var}(\Delta \log C) \)
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\text{var}(\Delta \log c) \approx 100 \times \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits = 0.75 Rejectable With Confidence = ∞
- \(\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C) \)
Consumption Dynamics

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
 - Evidence: Habits $= 0.75$ Rejectable With Confidence $= \infty$
 - $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
 - $\text{var}(\Delta \log c) \approx 100 \text{var}(\Delta \log C)$
Consumption Dynamics

<table>
<thead>
<tr>
<th>Macro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Uninsurable Risk Is Unimportant</td>
<td></td>
</tr>
<tr>
<td>Evidence: Consumption Is Too Smooth</td>
<td></td>
</tr>
<tr>
<td>Conclusion: Habits ≈ 0.75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Uninsurable Risk Is Essential</td>
<td></td>
</tr>
<tr>
<td>Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$</td>
<td></td>
</tr>
<tr>
<td>$\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$</td>
<td></td>
</tr>
</tbody>
</table>
Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
 - Idiosyncratic Component Is Perfectly Observed
 - Aggregate Component Is Stochastically Observed

Not ad hoc
Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits = 0.75 Rejectable With Confidence = ∞
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro

- **Theory:** Uninsurable Risk Is Unimportant
- **Evidence:** Consumption Is Too Smooth
- **Conclusion:** Habits ≈ 0.75

Micro

- **Theory:** Uninsurable Risk Is Essential
- **Evidence:** Habits ≈ 0.75 Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \cdot \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\text{var}(\Delta \log c) \approx 100 \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits = 0.75 Rejectable With Confidence = ∞
- \(\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log \mathcal{C}) \)
Macro
- **Theory:** Uninsurable Risk Is Unimportant
- **Evidence:** Consumption Is Too Smooth
- **Conclusion:** Habits ≈ 0.75

Micro
- **Theory:** Uninsurable Risk Is Essential
- **Evidence:** Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
 \[
 \text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)
 \]
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If $U \uparrow$
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100\times$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
 - Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If $U \uparrow$
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Related Literature

- **Smoothness:** Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- **Inattention:** Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- **Macro Habits:** Abel (1990); Constantinides (1990); many recent papers
- **Micro Habits:** Dynan (2000);
Related Literature

- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);
References

Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)

Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)

Macro Habits: Abel (1990); Constantinides (1990); many recent papers

Micro Habits: Dynan (2000);
References

Related Literature

- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);
Total Wealth:

\[z_{t+1} = (z_t - c_t)R + \zeta_{t+1}, \] \hspace{1cm} (1)

Euler Equation:

\[u'(c_t) = R\beta E_t[u'(c_{t+1})], \] \hspace{1cm} (2)

Random Walk:

\[\Delta c_{t+1} = \epsilon_{t+1}. \] \hspace{1cm} (3)

Expected wealth:

\[z_t = E_t[z_{t+1}] = E_t[z_{t+2}]... \] \hspace{1cm} (4)
Sticky Expectations

- Consumer Who Happens To Update At t and $t+n$

\[
\begin{align*}
 c_t &= (r/R)z_t \\
 c_{t+1} &= (r/R)\bar{z}_{t+1} = (r/R)z_t = c_t \\
 \vdots & \quad \vdots \\
 c_{t+n-1} &= c_t.
\end{align*}
\]

- Implies that $\Delta^n z_{t+n} \equiv z_{t+n} - z_t$ is white noise
- So individual c is RW across updating periods:

\[
\begin{align*}
 c_{t+n} - c_t &= (r/R) \frac{z_{t+n} - z_t}{\Delta^n z_{t+n}} \quad (5)
\end{align*}
\]
Sticky Expectations

- **Consumer Who Happens To Update At t and t + n**

\[c_t = \frac{r}{R}z_t \]
\[c_{t+1} = \frac{r}{R}z_{t+1} = \frac{r}{R}z_t = c_t \]
\[\vdots \]
\[c_{t+n-1} = c_t. \]

- Implies that \(\Delta^n z_{t+n} \equiv z_{t+n} - z_t \) is white noise

- So individual \(c \) is RW across updating periods:

\[c_{t+n} - c_t = \left(\frac{r}{R} \right) \left(z_{t+n} - z_t \right) \]

\(\Delta^n z_{t+n} \)
Consumer Who Happens To Update At \(t \) and \(t + n \)

\[
\begin{align*}
 c_t &= \left(\frac{r}{R}\right)z_t \\
 c_{t+1} &= \left(\frac{r}{R}\right)\bar{z}_{t+1} = \left(\frac{r}{R}\right)z_t = c_t \\
 &\vdots & \\
 c_{t+n-1} &= c_t.
\end{align*}
\]

Implies that \(\Delta^n z_{t+n} \equiv z_{t+n} - z_t \) is white noise

So individual \(c \) is RW across updating periods:

\[
\begin{align*}
 c_{t+n} - c_t &= \left(\frac{r}{R}\right) \underbrace{(z_{t+n} - z_t)}_{\Delta^n z_{t+n}} \\
 &= (5)
\end{align*}
\]
• Pop normed to one, uniformly dist on [0, 1]

\[C_t = \int_0^1 c_{t,i} \, di. \]

• Calvo (1983) Type Updating Of Expectations:
 • Probability \(\Pi = 0.25 \)

• Economy Composed Of Many Sticky Consumers:

\[
\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1}
\]

(6)
Sticky Expectations

- Pop normed to one, uniformly dist on $[0,1]$
 \[C_t = \int_0^1 c_{t,i} \, di. \]

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
 - Economy Composed Of Many Sticky Consumers:

\[\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1} \quad (6) \]
Sticky Expectations

- Pop normed to one, uniformly dist on $[0, 1]$

 $$C_t = \int_0^1 c_{t,i} \, di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$

- Economy Composed Of Many Sticky Consumers:

 $$\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1}$$

 (6)
Sticky Expectations

- Pop normed to one, uniformly dist on $[0, 1]$

$$C_t = \int_0^1 c_{t,i} \, di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
 - Economy Composed Of Many Sticky Conumers:

$$\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1}$$ \hspace{1cm} (6)
One More Ingredient ...

Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:
- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly
 - Only the (tiny) aggregate part is hard to see
 - But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
 - Will return to this below
Muth–Pischke/Lucas/Kalman

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
 - But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But *can’t* permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But *can’t* permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk

- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But *can’t* permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model
- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model
- Same!
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model
- Same!
Income Process

- Individual’s labor productivity is

\[\ell_{t+1} = \theta_{t+1} \Theta_{t+1} p_{t+1} P_{t+1} \equiv p_{t+1} \]

(Id)

- Idiosyncratic and aggregate \(p \) evolve according to

\[p_{t+1} = p_t \psi_{t+1} \]

(E)

\[P_{t+1} = P_t \Psi_{t+1} \]

(Id)

- \(E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \ \forall \ n > 0 \)
Income Process

- Individual’s labor productivity is
 \[
 \ell_{t+1} = \theta_{t+1} \Theta_{t+1} p_{t+1} P_{t+1} \equiv p_{t+1}
 \]

- Idiosyncratic and aggregate p evolve according to
 \[
 p_{t+1} = p_t \psi_{t+1} \quad (8)

 P_{t+1} = P_t \Psi_{t+1} \quad (9)
 \]

- \(E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \forall n > 0 \)
Income Process

- Individual's labor productivity is

\[
\ell_{t+1} = \theta_{t+1} \Theta_{t+1} p_{t+1} P_{t+1} \equiv p_{t+1} \tag{7}
\]

- Idiosyncratic and aggregate \(p \) evolve according to

\[
p_{t+1} = p_t \psi_{t+1} \tag{8}
\]

\[
P_{t+1} = P_t \Psi_{t+1} \tag{9}
\]

- \(E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \quad \forall \ n > 0 \)
Market resources:

\[m_{t+1} = \frac{W_{t+1}l_{t+1}}{\equiv y_{t+1}} + \frac{R_{t+1}k_{t+1}}{1+r_{t+1}} \]

‘Assets’: Unspent resources

\[a_t = m_t - c_t \]

Capital transition depends on prob of survival \(\Omega \):

\[k_{t+1} = \frac{a_t}{\Omega} \]
Market resources:

\[m_{t+1} = W_{t+1}l_{t+1} + R_{t+1}k_{t+1} \equiv y_{t+1} + \frac{R_{t+1}k_{t+1}}{1+r_{t+1}} \] (10)

‘Assets’: Unspent resources

\[a_t = m_t - c_t \] (11)

Capital transition depends on prob of survival \(\Omega \):

\[k_{t+1} = \frac{a_t}{\Omega} \] (12)
Market resources:

\[
\begin{align*}
\mathbf{m}_{t+1} &= \mathbf{W}_{t+1} \ell_{t+1} + \mathbf{R}_{t+1} \mathbf{k}_{t+1} \\
&\equiv y_{t+1} + R_{t+1} k_{t+1} \\
\end{align*}
\]

(10)

‘Assets’: Unspent resources

\[
\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t
\]

(11)

Capital transition depends on prob of survival \(\Omega\):

\[
\mathbf{k}_{t+1} = \mathbf{a}_t / \Omega
\]

(12)
Frictionless Solution

- Assume constant R, W
- Normalize everything by p_tP_t e.g. $m_t = m_t/p_tP_t$
- $c(m_t)$ is the function that solves

$$
v(m_t) = \max_c \{ u(c) + \beta E_t[\psi_{t+1}^{1-\rho}v(m_{t+1})] \}\]

- Level of consumption given by

$$\mathbf{c}_t = c(m_t)p_t.$$
Assume constant \mathcal{R}, \mathcal{W}

- Normalize everything by $p_t P_t$ e.g. $m_t = m_t / p_t P_t$
- $c(m_t)$ is the function that solves
 \[v(m_t) = \max_c \{ u(c) + \beta E_t[\psi^{1-\rho}_{t+1} v(m_{t+1})] \} \]

- Level of consumption given by
 \[c_t = c(m_t) p_t. \]
Assume constant \mathcal{R}, \mathcal{W}

Normalize everything by $p_t P_t$ e.g. $m_t = m_t / p_t P_t$

$c(m_t)$ is the function that solves

$$v(m_t) = \max_c \{ u(c) + \beta E_t[\psi_{t+1}^{1-\rho} v(m_{t+1})]\}$$

Level of consumption given by

$$c_t = c(m_t) p_t.$$
Assume constant R, \mathcal{W}

Normalize everything by $p_t P_t$ e.g. $m_t = m_t / p_t P_t$

$c(m_t)$ is the function that solves

$$v(m_t) = \max_c \{ u(c) + \beta E_t [\psi_{t+1}^{1-\rho} v(m_{t+1})] \}$$

Level of consumption given by

$$c_t = c(m_t) p_t.$$
Agent survives from t to $t + 1$ with probability Ω

$$p_{t+1,i} = \begin{cases}
1 & \text{for newborns} \\
p_t,i \psi_{t+1,i} & \text{for survivors,}
\end{cases}$$

Implies steady-state distribution of p with variance:

$$\text{var}(p) = \left(\frac{1 - \Omega}{1 - \Omega \mathbb{E}[\psi^2]} - 1 \right)$$
Blanchard (1985) Mortality

- Agent survives from t to $t + 1$ with probability Ω

\[
p_{t+1,i} = \begin{cases}
1 & \text{for newborns} \\
 p_{t,i} \psi_{t+1,i} & \text{for survivors,}
\end{cases}
\]

- Implies steady-state distribution of p with variance:

\[
\text{var}(p) = \left(\frac{1 - \Omega}{1 - \Omega E[\psi^2]} - 1 \right)
\]
\[k_{t+1,i} = \begin{cases}
0 & \text{if agent at } i \text{ dies, is replaced by a newborn} \\
\omega_{t+1,i} \eta / \Omega & \text{if agent at } i \text{ survives}
\end{cases} \]

Implies

\[K_{t+1} = \int_0^1 \omega_{t+1,i} \eta \omega_t / \Omega \, di \]
\[= \eta A_t \]
\[K_{t+1} = \eta A_t / \psi_{t+1} \]
Sticky Aggregate Expectations

\[\Theta_{t,i} = \begin{cases} \Theta_t & \text{for updaters} \\ 1 & \text{for nonupdaters} \end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i}P_{t+1} + (1 - \pi_{t+1,i})\bar{P}_{t,i} \]

(13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[\bar{\Theta}_{t,i} = \begin{cases} \Theta_t & \text{for updaters} \\ 1 & \text{for nonupdaters} \end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i} \quad (13) \]

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[
\bar{\Theta}_{t,i} = \begin{cases}
\Theta_t & \text{for updaters} \\
1 & \text{for nonupdaters}
\end{cases}
\]

\[
\bar{P}_{t+1,i} = \pi_{t+1,i}P_{t+1} + (1 - \pi_{t+1,i})\bar{P}_{t,i}
\]

(13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[\bar{\Theta}_{t,i} = \begin{cases} \Theta_t & \text{for updaters} \\ 1 & \text{for nonupdaters} \end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i} \]

(13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Consumers behave according to frictionless consumption function:

\[\bar{c}_{t,i} = c(\bar{m}_{t,i}) \]
\[c_{t,i} = \bar{c}_{t,i} \bar{P}_{t,i} p_{t,i} \]

Correctly perceive level of spending

\[\bar{a}_{t,i} = \bar{m}_{t,i} - c_{t,i} \] \hspace{1cm} (14)

\[\bar{k}_{t+1,i} = \omega_{t+1,i} \bar{a}_{t,i}(a_{t,i} \pi_{t+1,i} + \bar{a}_{t,i}(1 - \pi_{t+1,i})) / \Omega + (1 - \omega_{t+1,i}) \] \hspace{1cm} (15)
Cost Of Stickiness

Newborns’ value can be approximated by

\[\bar{v}(W) \approx \hat{v}(W) - (\kappa/\Pi)\sigma^2_\Psi. \] \hspace{1cm} (16)

If Newborns Pick Optimal \(\Pi \), they solve

\[\max_{\Pi} \hat{v}(W) - (\kappa/\Pi)\sigma^2_\Psi - \iota \Pi. \] \hspace{1cm} (17)

Solution:

\[\Pi = (\kappa/\iota)^{0.5} \sigma_\Psi \] \hspace{1cm} (18)
\[P_{t+1} = \Pi P_t + (1 - \Pi) \bar{P}_t \]

(19)

- Observe \(Y \)
- Define signal-to-noise ratio \(\varphi = \frac{\sigma^2_\psi}{\sigma^2_\theta} \)

Optimal Estimate of \(P \) obtained from

\[\bar{P}_{t+1} = \Pi Y_{t+1} + (1 - \Pi) \bar{P}_t \]

(20)

where

\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \]

(21)
\[\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t \quad (19) \]

- Observe \(Y \)
- Define signal-to-noise ratio \(\varphi = \sigma_{\psi}^2 / \sigma_{\theta}^2 \)

Optimal Estimate of \(P \) obtained from

\[\bar{P}_{t+1} = \Pi Y_{t+1} + (1 - \Pi) \bar{P}_t \quad (20) \]

where

\[\Pi = \left(\frac{1}{1 + \frac{2}{(\varphi + \sqrt{\varphi^2 + 4\varphi})}} \right), \quad (21) \]
\[\Pi = \left(\frac{1}{1 + \frac{2}{\varphi + \sqrt{\varphi^2 + 4\varphi}}} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!
- It’s because people can’t tell agg from ind shocks
- But calibration where they \(can \) see agg \(Y \Rightarrow RW \)
- Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
- Maybe could fiddle with calibration assumptions . . .
Comparison

\[\Pi = \left(\frac{1}{1 + \frac{2}{\phi + \sqrt{\phi^2 + 4\phi}}} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
- Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
 - But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
 - Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + \frac{2}{(\varphi + \sqrt{\varphi^2 + 4\varphi})}} \right), \] (22)

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they \textit{can} see agg \(Y \) \(\Rightarrow \) RW

- Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 \[\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \]
 \[\Rightarrow \text{Goes too far!} \]

- It’s because people can’t tell agg from ind shocks

- But calibration where they can see agg \(Y \) ⇒ RW

- Maybe could fiddle with calibration assumptions . . .
DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\varepsilon \Theta_t^{1-\varepsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t[\psi_{t+1}^{1-\rho} V(M_{t+1})] \right\} \\
\text{s.t.} \\
A_t = M_t - C_t \\
K_{t+1} = A_t \Psi_{t+1}^{-1} \\
M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}.
\]
DSGE Model

Frictionless:
- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\epsilon \Theta_t^{1-\epsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t[\psi_{t+1}^{1-\rho} V(M_{t+1})] \right\} \\
\text{s.t.} \\
A_t = M_t - C_t \\
K_{t+1} = A_t / \psi_{t+1} \\
M_{t+1} = R_{t+1} K_{t+1} + \mathcal{W}_{t+1} \Theta_{t+1}.
\]
Frictionless:
- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\varepsilon \Theta_t^{1-\varepsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t[\psi_t^{1-\rho} V(M_{t+1})] \right\} \tag{23}
\]

s.t.
\[
A_t = M_t - C_t \\
K_{t+1} = A_t / \psi_{t+1} \\
M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}.
\]
Perception Dynamics Identical to Sticky PE/SOE

\[\tilde{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon} \]

Solution: \[C_t = C(\tilde{M}_t) \bar{P}_t \]
Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\tilde{M}_t = \tilde{K}_t + \tilde{K}_t^\varepsilon \tilde{\Theta}_t^{1-\varepsilon}$
- Solution: $C_t = C(\tilde{M}_t)\tilde{P}_t$
Perception Dynamics Identical to Sticky PE/SOE

\[\tilde{M}_t = \tilde{K}_t + \tilde{K}_t^\varepsilon \Theta_t^{1-\varepsilon} \]

Solution: \[C_t = C(\tilde{M}_t) \tilde{P}_t \]
Benchmark: Random Walk

\[\Delta \log C_{t+1} \approx \varsigma + \vartheta E_t[r_{t+1}] + \mu X_{t-1} + \epsilon_{t+1}, \quad (24) \]

and random walk means \(\mu = 0 \).

In GE, \(r \) depends on \(A \) so \(\ast \) is equivalent to:

\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \mu X_{t-1} + \epsilon_{t+1} \quad (25) \]

In either case, lots of \(X_{t-1} \) were found for which \(\mu \neq 0 \).
\[\Delta \log C_{t+1} \approx \zeta + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1} \]

(26)

Claims:

\begin{itemize}
 \item \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
 \item \(\eta \approx 0.5 \) robustly for U.S. and other countries
 \item No further predictability in \(\Delta \log C_{t+1} \)
\[\Delta \log C_{t+1} \approx \zeta + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1} \] (26)

Claims:

- \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
- \(\eta \approx 0.5 \) robustly for U.S. and other countries
- No further predictability in \(\Delta \log C_{t+1} \)
\[
\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1}
\]
(26)

Claims:

- \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
- \(\eta \approx 0.5 \) robustly for U.S. and other countries
- No further predictability in \(\Delta \log C_{t+1} \)
Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001)
Dynan (2000)/Sommer specification:

$$\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1}$$

Claims:
- η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed
Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001)
Dynan (2000)/Sommer specification:

\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1} \]

Claims:

- \(\eta \) no longer statistically significant
- \(\chi \approx 0.75 \) (Habits are huge!)
- OID tests succeed
Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001)
Dynan (2000)/Sommer specification:

$$\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1}$$

Claims:

- η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed
\[\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and López-Salido (2005)
\[\Delta \log c_{t+1} \approx \zeta + \alpha a_t + \eta \mathbb{E}[\Delta \log y_{t+1}] + \chi \mathbb{E}[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and López-Salido (2005)
$\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta \mathbb{E}[\Delta \log y_{t+1}] + \chi \mathbb{E}[\Delta \log c_t] + \epsilon_{t+1}$

Separable Theory:
- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[\Delta \log C_{t+1} \approx \varsigma + \chi \Delta \log C_t + \eta E_t[\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1} \]

<table>
<thead>
<tr>
<th></th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro (Separable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>(\approx 0)</td>
<td>(0 < \eta < 1)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Data</td>
<td>(\approx 0)</td>
<td>(0 < \eta < 1)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Macro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory: Separable</td>
<td>(\approx 0)</td>
<td>(\approx 0)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Theory: CampMan</td>
<td>(\approx 0)</td>
<td>(\approx 0.5)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Theory: Habits</td>
<td>(\approx 0.75)</td>
<td>(\approx 0)</td>
<td>(< 0)</td>
</tr>
</tbody>
</table>
Calibration—DSGE

DSGE Model

Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>2.00</td>
<td>Coefficient of Relative Risk Aversion</td>
</tr>
<tr>
<td>γ</td>
<td>0.94$^{1/4}$</td>
<td>Quarterly Depreciation Factor</td>
</tr>
<tr>
<td>K/K^ε</td>
<td>12</td>
<td>Perf Foresight SS Capital/Output Ratio</td>
</tr>
<tr>
<td>σ_Θ^2</td>
<td>0.00001</td>
<td>Variance Qtrly Tran Agg Pty Shocks</td>
</tr>
<tr>
<td>σ_Ψ^2</td>
<td>0.00004</td>
<td>Variance Qtrly Perm Agg Pty Shocks</td>
</tr>
</tbody>
</table>

Steady State Solution of Model With $\sigma_\Psi = \sigma_\Theta = 0$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 12^{1/(1-\varepsilon)}$</td>
<td>≈ 48.55</td>
<td>Steady State Quarterly K/P Ratio</td>
</tr>
<tr>
<td>$M = K + K^\varepsilon$</td>
<td>≈ 52.6</td>
<td>Steady State Quarterly M/P Ratio</td>
</tr>
<tr>
<td>$\mathcal{W} = (1 - \varepsilon)K^\varepsilon$</td>
<td>≈ 2.59</td>
<td>Quarterly Wage Rate</td>
</tr>
<tr>
<td>$\mathcal{R} = 1 + \varepsilon K^{\varepsilon-1}$</td>
<td>$= 1.03$</td>
<td>Quarterly Gross Capital Income Factor</td>
</tr>
<tr>
<td>$R = \mathcal{R} \gamma$</td>
<td>≈ 1.014</td>
<td>Quarterly Between-Period Interest Factor</td>
</tr>
<tr>
<td>$\beta = R^{-1}$</td>
<td>≈ 0.986</td>
<td>Quarterly Time Preference Factor</td>
</tr>
</tbody>
</table>
Partial Equilibrium/Small Open Economy (PE/SOE) Model Parameters

Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_ψ</td>
<td>0.016</td>
<td>Variance Annual Perm Idiosyncratic Shocks (PE)</td>
</tr>
<tr>
<td>σ^2_θ</td>
<td>0.03</td>
<td>Variance Annual Tran Idiosyncratic Shocks (PE)</td>
</tr>
<tr>
<td>φ</td>
<td>0.05</td>
<td>Quarterly Probability of Unemployment Spell</td>
</tr>
<tr>
<td>Π</td>
<td>0.25</td>
<td>Quarterly Probability of Updating Expectations</td>
</tr>
<tr>
<td>$(1 - \Omega)$</td>
<td>0.005</td>
<td>Quarterly Probability of Mortality</td>
</tr>
</tbody>
</table>

Calculated Parameters

\[
\beta = 0.99\Omega / E[(\psi)^{-\rho}]R
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.965</td>
<td></td>
<td>Satisfies Impatience Condition: $\beta < \Omega / E[(\psi)^{-\rho}]R$</td>
</tr>
<tr>
<td>σ^2_ψ</td>
<td>0.004</td>
<td>Variance Qtrly Perm Idiosyncratic Shocks (PE)</td>
</tr>
<tr>
<td>σ^2_θ</td>
<td>0.12</td>
<td>Variance Qtrly Tran Idiosyncratic Shocks (PE)</td>
</tr>
</tbody>
</table>
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>PE/SOE Economy</th>
<th></th>
<th>DSGE Economy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frictionless</td>
<td>Sticky</td>
<td>Frictionless</td>
<td>Sticky</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6.594</td>
<td>6.589</td>
<td>49.621</td>
<td>49.585</td>
</tr>
<tr>
<td>C</td>
<td>2.683</td>
<td>2.682</td>
<td>3.297</td>
<td>3.296</td>
</tr>
<tr>
<td>Standard Deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate Time Series (‘Macro’)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log A$</td>
<td>0.016</td>
<td>0.022</td>
<td>0.056</td>
<td>0.056</td>
</tr>
<tr>
<td>$\Delta \log C$</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>$\Delta \log Y$</td>
<td>0.007</td>
<td>0.002</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Individual Cross Sectional (‘Micro’)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log a$</td>
<td>1.285</td>
<td>1.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log c$</td>
<td>1.212</td>
<td>1.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log p$</td>
<td>1.221</td>
<td>1.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log y</td>
<td>y > 0$</td>
<td>0.846</td>
<td>0.846</td>
<td></td>
</tr>
<tr>
<td>$\Delta \log c$</td>
<td>0.151</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Of Stickiness</td>
<td>0.31×10^{-4}</td>
<td></td>
<td>0.53×10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>
\[\Delta \log c_{t+1,i} = \varsigma + \chi \Delta \log c_{t,i} + \eta E_{t,i}[\Delta \log y_{t+1,i}] + \alpha a_{t,i} \]

<table>
<thead>
<tr>
<th>Model of Expectations</th>
<th>χ</th>
<th>η</th>
<th>α</th>
<th>\bar{R}^2</th>
<th>nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictionless</td>
<td>0.083</td>
<td>0.003</td>
<td>-0.111</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.004)</td>
<td>(0.052)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.083</td>
<td>0.009</td>
<td>-0.059</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.024)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Micro Theory: Sticky

\[
\Delta \log c_{t+1,i} = \varsigma + \chi \Delta \log c_{t,i} + \eta E_{t,i}[\Delta \log y_{t+1,i}] + \alpha a_{t,i}
\]

<table>
<thead>
<tr>
<th>Model of Expectations</th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
<th>(\bar{R}^2)</th>
<th>nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticky</td>
<td>0.084</td>
<td>0.003</td>
<td>-0.111</td>
<td>0.000</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.004)</td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.083</td>
<td>0.009</td>
<td>-0.059</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.024)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSGE Macro: Frictionless

\[\Delta \log C_{t+1} = \varsigma + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t] \]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>Independent Variables</th>
<th>OLS or IV</th>
<th>2nd Stage \bar{R}^2</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictionless: $\Delta \log C_{t+1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \log C_t$</td>
<td>$\Delta \log Y_{t+1}$</td>
<td>A_t</td>
<td>OLS</td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td>0.010 (0.032)</td>
<td>0.184 (0.050)</td>
<td>-0.0002 (0.0001)</td>
<td>OLS</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>-0.019 (0.027)</td>
<td>0.152 (0.052)</td>
<td>-0.0002 (0.0001)</td>
<td>IV</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>
\[\Delta \log C_{t+1} = \zeta + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t] \]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>Independent Variables</th>
<th>OLS or IV</th>
<th>2nd Stage (R^2)</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticky</td>
<td>(\Delta \log \tilde{C}t), (\Delta \log \tilde{Y}{t+1}), (\tilde{A}_t)</td>
<td>OLS</td>
<td>0.677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statistical results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\Delta \log \tilde{C}_t \]

\[\begin{align*}
0.823 \\
(0.018)
\end{align*} \]

\[\Delta \log \tilde{Y}_{t+1} \]

\[\begin{align*}
0.387 & \\
(0.030) \\
0.845 & \\
(0.042)
\end{align*} \]

\[\tilde{A}_t \]

\[\begin{align*}
0.815 & \\
(0.025)
\end{align*} \]

\[\begin{align*}
0.0004 & \\
(0.0000)
\end{align*} \]

\[-0.0001 & \\
(0.0000)
\]

\[\Delta \log \tilde{C}_t \]

\[\begin{align*}
0.750 & \\
(0.148) \\
0.065 & \\
(0.146)
\end{align*} \]

Memo: For instruments \(Z_t \), \(\Delta \log C_{t+1} = Z_t \zeta \), \(R^2 = 0.425 \)

Carroll and Slacalek

Sticky Expectations and Consumption Dynamics
Small Open Economy: Frictionless

\[\Delta \log C_{t+1} = \varsigma + \chi \Delta E[\log C_t] + \eta \Delta E[\log Y_{t+1}] + \alpha E[A_t] \]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>OLS or IV</th>
<th>2nd Stage</th>
<th>IV F p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictionless: (\Delta \log C_{t+1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log C_t)</td>
<td>0.022</td>
<td></td>
<td>OLS 0.000</td>
</tr>
<tr>
<td>(0.010)</td>
<td>0.028</td>
<td>IV 0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>(\Delta \log Y_{t+1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.0004)</td>
<td>−0.0008</td>
<td>OLS 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_t)</td>
<td>0.019</td>
<td>IV 0.000</td>
<td></td>
</tr>
<tr>
<td>(0.010)</td>
<td>0.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.0005</td>
<td>IV 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\Delta \log C_{t+1} = \zeta + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t]
\]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>Independent Variables</th>
<th>OLS or IV</th>
<th>2nd Stage</th>
<th>IV F p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \log \tilde{C}_t)</td>
<td>(\Delta \log \bar{Y}_{t+1})</td>
<td>(\bar{A}_t)</td>
<td>(\bar{R}^2)</td>
<td>IV OID</td>
</tr>
<tr>
<td>0.345 (0.009)</td>
<td>0.805 (0.014)</td>
<td>OLS</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td>1.150 (0.015)</td>
<td>(0.496 (0.040))</td>
<td>(0.498 (0.028))</td>
<td>IV</td>
<td>0.363 0.000</td>
</tr>
<tr>
<td>0.352 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>IV</td>
<td>0.352 0.000</td>
</tr>
<tr>
<td>(-0.007 (0.0005))</td>
<td>(-0.0007 (0.0005))</td>
<td>IV</td>
<td>0.375 0.000</td>
<td></td>
</tr>
<tr>
<td>Memo: For instruments (Z_t), (\Delta \log C_{t+1} = Z_t \zeta), (\bar{R}^2 = 0.390)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Empirical Results for U.S.

\[
\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta E[\Delta \log Y_{t+1}] + \alpha A_t
\]

<table>
<thead>
<tr>
<th>Consumption Series</th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
<th>Method</th>
<th>(R^2)</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondurables and Services</td>
<td>0.358*** (0.066)</td>
<td>0.577*** (0.118)</td>
<td>0.0006 (0.0006)</td>
<td>OLS 0.123</td>
<td>OLS 0.002</td>
<td>0.000 0.702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.826*** (0.147)</td>
<td>0.071 (0.118)</td>
<td>0.0000 (0.0003)</td>
<td>IV 0.143</td>
<td>IV 0.135</td>
<td>0.482</td>
<td></td>
</tr>
</tbody>
</table>

Memo: For instruments \(Z\), \(\Delta \log C_{t+1} = Z\varsigma\), \(R^2 = 0.168\)

Time frame: 1960Q1–2004Q3, \(\sigma^2_\psi = .0000429\), \(\sigma^2_\Theta = .0000107\)

Carrasco, Raquel, José M. Labeaga, and J. David López-Salido (2005): “Consumption and Habits: Evidence
References

Carroll and Slacalek
Sticky Expectations and Consumption Dynamics

References

Sommer, Martin (2001): “Habits, Sentiment and Predictable Income in the Dynamics of Aggregate Consumption,”