Sticky Expectations and Consumption Dynamics

Christopher D. Carroll¹ Jirka Slacalek²

¹Johns Hopkins and NBER ccarroll@jhu.edu http://www.econ.jhu.edu/people/ccarroll/

> ²European Central Bank jiri.slacalek@ecb.int http://www.slacalek.com/

> > November 2007

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 \ var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003). Woodford (2001). Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003). Woodford (2001). Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003). Woodford (2001). Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- ullet Evidence: Habits =0.75 Rejectable With Confidence $=\infty$
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 \ var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log \mathbf{c}) \approx 100 \ var(\Delta \log \mathbf{C})$

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U 1

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U 1

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

Quadratic Utility Benchmark

Total Wealth:

$$\mathbf{z}_{t+1} = (\mathbf{z}_t - \mathbf{c}_t) \mathbf{R} + \zeta_{t+1}, \tag{1}$$

Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbf{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})], \tag{2}$$

Random Walk:

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}. \tag{3}$$

Expected wealth:

$$z_t = E_t[z_{t+1}] = E_t[z_{t+2}]...$$
 (4)

Sticky Expectations

ullet Consumer Who Happens To Update At t and t+n

$$\mathbf{c}_t = (r/R)\mathbf{z}_t$$
 $\mathbf{c}_{t+1} = (r/R)\overline{\mathbf{z}}_{t+1} = (r/R)\mathbf{z}_t = \mathbf{c}_t$
 \vdots
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$.

- Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} \mathbf{z}_t$ is white noise
- So individual **c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathbf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}}$$
 (5)

ullet Consumer Who Happens To Update At t and t+n

$$egin{array}{lcl} \mathbf{c}_t &=& (\mathsf{r}/\mathsf{R})\mathbf{z}_t \ \mathbf{c}_{t+1} &=& (\mathsf{r}/\mathsf{R})\mathbf{ar{z}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{z}_t = \mathbf{c}_t \ &\vdots &\vdots \ \mathbf{c}_{t+n-1} &=& \mathbf{c}_t. \end{array}$$

- Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} \mathbf{z}_t$ is white noise
- So individual **c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathbf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}}$$
 (5)

ullet Consumer Who Happens To Update At t and t+n

$$egin{array}{lcl} \mathbf{c}_t &=& (\mathsf{r}/\mathsf{R})\mathbf{z}_t \ \mathbf{c}_{t+1} &=& (\mathsf{r}/\mathsf{R})\mathbf{ar{z}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{z}_t = \mathbf{c}_t \ &\vdots &\vdots \ \mathbf{c}_{t+n-1} &=& \mathbf{c}_t. \end{array}$$

- Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} \mathbf{z}_t$ is white noise
- So individual **c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathsf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}} \tag{5}$$

$$\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

- Calvo (1983) Type Updating Of Expectations:
 Probability □ = 0.25
- Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$
 (6)

$$\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
- Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$
 (6)

$$\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
- Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$
 (6)

$$\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
- Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$
 (6)

Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
 - \bullet Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - ullet Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 Aggregate ΔC highly serially correlated
 Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - ullet Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - ullet Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - ullet Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - ullet Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Mode

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Mode

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Mode

Samel

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Samel

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

a Samel

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Income Process

• Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \underbrace{\boldsymbol{\theta}_{t+1}}_{\boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{\rho}_{t+1} \boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

Idiosyncratic and aggregate p evolve according to

$$p_{t+1} = p_t \psi_{t+1} \tag{8}$$

$$P_{t+1} = P_t \Psi_{t+1} \tag{9}$$

•
$$\mathbf{E}_{t}[\theta_{t+n}] = \mathbf{E}_{t}[\Theta_{t+n}] = \mathbf{E}_{t}[\psi_{t+n}] = \mathbf{E}_{t}[\Psi_{t+n}] = 1 \ \forall \ n > 0$$

Income Process

• Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \overbrace{\boldsymbol{\theta}_{t+1}\boldsymbol{\Theta}_{t+1}}^{\equiv \boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{p}_{t+1}\boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

Idiosyncratic and aggregate p evolve according to

$$\rho_{t+1} = \rho_t \psi_{t+1} \tag{8}$$

$$P_{t+1} = P_t \Psi_{t+1} \tag{9}$$

•
$$\mathbf{E}_{t}[\theta_{t+n}] = \mathbf{E}_{t}[\Theta_{t+n}] = \mathbf{E}_{t}[\psi_{t+n}] = \mathbf{E}_{t}[\Psi_{t+n}] = 1 \ \forall \ n > 0$$

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \overbrace{\boldsymbol{\theta}_{t+1}\boldsymbol{\Theta}_{t+1}}^{\equiv \boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{p}_{t+1}\boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

Idiosyncratic and aggregate p evolve according to

$$p_{t+1} = p_t \psi_{t+1} \tag{8}$$

$$P_{t+1} = P_t \Psi_{t+1} \tag{9}$$

•
$$\mathbf{E}_{t}[\theta_{t+n}] = \mathbf{E}_{t}[\Theta_{t+n}] = \mathbf{E}_{t}[\psi_{t+n}] = \mathbf{E}_{t}[\Psi_{t+n}] = 1 \ \forall \ n > 0$$

Resources

Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1}\boldsymbol{\ell}_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+r_{t+1}} \mathbf{k}_{t+1}$$
(10)

• 'Assets': Unspent resources

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω :

$$\mathbf{k}_{t+1} = \mathbf{a}_t/\Omega \tag{12}$$

Resources

Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1} \ell_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+r_{t+1}} \mathbf{k}_{t+1}$$
 (10)

'Assets': Unspent resources

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω :

$$\mathbf{k}_{t+1} = \mathbf{a}_t/\Omega \tag{12}$$

Resources

Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1} \ell_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+r_{t+1}} \mathbf{k}_{t+1}$$
 (10)

'Assets': Unspent resources

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω :

$$\mathbf{k}_{t+1} = \mathbf{a}_t/\Omega \tag{12}$$

- ullet Assume constant \mathcal{R},\mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t/p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{u(c) + \beta \mathbf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})]\}$$

• Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t$$

- ullet Assume constant \mathcal{R},\mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t/p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{u(c) + \beta \mathbf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})]\}$$

Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t$$

- ullet Assume constant \mathcal{R},\mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t/p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{u(c) + \beta \mathbf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})]\}$$

Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t$$

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t/p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{u(c) + \beta \mathbf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})]\}$$

Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t.$$

Blanchard (1985) Mortality

• Agent survives from t to t+1 with probability Ω

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors}, \end{cases}$$

Implies steady-state distribution of p with variance:

$$var(p) = \left(\frac{1-\Omega}{1-\Omega E[\psi^2]} - 1\right)$$

Blanchard (1985) Mortality

• Agent survives from t to t+1 with probability Ω

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors}, \end{cases}$$

• Implies steady-state distribution of p with variance:

$$\operatorname{\mathsf{var}}(p) = \left(\frac{1 - \Omega}{1 - \Omega E[\psi^2]} - 1 \right)$$

Blanchard (1985) Insurance

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if agent at } i \text{ dies, is replaced by a newborn} \\ \mathbf{a}_{t,i} \ \, \ \, \ \, \end{cases}$$
 if agent at i survives

Implies

$$\mathbf{K}_{t+1} = \int_{0}^{1} \omega_{t+1,i} \exists \mathbf{a}_{t,i} / \Omega di$$
$$= \exists \mathbf{A}_{t}$$
$$K_{t+1} = \exists A_{t} / \Psi_{t+1}$$

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Consume Based on Beliefs
- Oconsumer Sees End-Of-Period Bank Balance

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Consume Based on Beliefs
- Consumer Sees End-Of-Period Bank Balance

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- ② Each Individual Updates (Or Not)
- Consume Based on Beliefs
- Oconsumer Sees End-Of-Period Bank Balance

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
 (13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Consume Based on Beliefs
- Consumer Sees End-Of-Period Bank Balance

Behavior

Consumers behave according to frictionless consumption function:

$$egin{array}{lll} ar{c}_{t,i} &=& c(ar{m}_{t,i}) \ \mathbf{c}_{t,i} &=& ar{c}_{t,i}ar{P}_{t,i}p_{t,i} \end{array}$$

Correctly perceive level of spending

$$\bar{\mathbf{a}}_{t,i} = \bar{\mathbf{m}}_{t,i} - \mathbf{c}_{t,i} \tag{14}$$

$$\bar{\mathbf{k}}_{t+1,i} = \omega_{t+1,i} \exists (\mathbf{a}_{t,i} \pi_{t+1,i} + \bar{\mathbf{a}}_{t,i} (1 - \pi_{t+1,i})) / \Omega + (1 - \omega_{t+1,i}) 0$$
(15)

Cost Of Stickiness

Newborns' value can be approximated by

$$\bar{v}(\mathcal{W}) \approx \overleftarrow{v}(\mathcal{W}) - (\kappa/\Pi)\sigma_{\Psi}^2.$$
 (16)

If Newborns Pick Optimal Π , they solve

$$\max_{\Pi} \stackrel{\nabla}{\nabla} (\mathcal{W}) - (\kappa/\Pi)\sigma_{\Psi}^2 - \iota \Pi. \tag{17}$$

Solution:

$$\Pi = (\kappa/\iota)^{0.5} \sigma_{\Psi} \tag{18}$$

Muth-Pischke Perception Dynamics

$$\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t$$
 (19)

- Observe Y
- Define signal-to-noise ratio $\varphi = \sigma_{\psi}^2/\sigma_{\theta}^2$

Optimal Estimate of P obtained from

$$\bar{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi)\bar{P}_t$$
 (20)

where

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{21}$$

Muth-Pischke Perception Dynamics

$$\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t$$
 (19)

- Observe Y
- Define signal-to-noise ratio $\varphi = \sigma_{\psi}^2/\sigma_{\theta}^2$

Optimal Estimate of P obtained from

$$\bar{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi)\bar{P}_t$$
 (20)

where

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{21}$$

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_{t}$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

$$\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})}\right), \tag{22}$$

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions . . .

DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \mathbb{I}/\Psi_{t+1}$$

$$M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}.$$
(23)

DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \mathbb{I}/\Psi_{t+1}$$

$$M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}.$$
(23)

DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \mathbb{I}/\Psi_{t+1}$$

$$M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}.$$
(23)

Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

Benchmark: Random Walk

*
$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \vartheta \mathbf{E}_t[r_{t+1}] + \mu X_{t-1} + \epsilon_{t+1},$$
 (24)

and random walk means $\mu = 0$.

In GE, r depends on A so * is equivalent to:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \mu X_{t-1} + \epsilon_{t+1} \tag{25}$$

In either case, lots of X_{t-1} were found for which $\mu \neq 0$.

Campbell and Mankiw (1989)

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$$
 (26)

- ullet η estimates fraction of 'rule-of-thumb' C=Y consumers
- $\eta \approx 0.5$ robustly for U.S. and other countries
- No further predictability in $\Delta \log C_{t+1}$

Campbell and Mankiw (1989)

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$$
 (26)

- η estimates fraction of 'rule-of-thumb' C = Y consumers
- $\eta \approx 0.5$ robustly for U.S. and other countries
- No further predictability in $\Delta \log \mathbf{C}_{t+1}$

Campbell and Mankiw (1989)

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$$
 (26)

- η estimates fraction of 'rule-of-thumb' C=Y consumers
- $\eta \approx 0.5$ robustly for U.S. and other countries
- No further predictability in $\Delta \log \mathbf{C}_{t+1}$

Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

- ullet η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed

Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

- ullet η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed

Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

- \bullet η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed

Micro Evidence

$$\Delta \log \mathbf{c}_{t+1} \ \approx \ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$$

Separable Theory:

- α < 0
- 0 < n < 1
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

Micro Evidence

$$\Delta \log \mathbf{c}_{t+1} \ \approx \ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$$

Separable Theory:

- α < 0
- 0 < η < 1
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

Micro Evidence

$$\Delta \log \mathbf{c}_{t+1} \ \approx \ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$$

Separable Theory:

- α < 0
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

Micro Evidence

$$\Delta \log \mathbf{c}_{t+1} \ \approx \ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$$

Separable Theory:

- α < 0
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

Micro Evidence

$$\Delta \log \mathbf{c}_{t+1} \ \approx \ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$$

Separable Theory:

- α < 0
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

Micro Vs Macro

$$\Delta \log \mathbf{C}_{t+1} \ \approx \ \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbf{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro (Separable)			
Theory	≈ 0	$0<\eta<1$	< 0
Data	≈ 0	$0<\eta<1$	< 0
Macro			
Theory:Separable	≈ 0	pprox 0	< 0
Theory:CampMan	≈ 0	pprox 0.5	< 0
Theory:Habits	≈ 0.75	pprox 0	< 0

Calibration—DSGE

DSGE Model

Calibrated Parameters

ho	2.	Coefficient of Relative Risk Aversion
٦	$0.94^{1/4}$	Quarterly Depreciation Factor
K/K^{ε}	12	Perf Foresight SS Capital/Output Ratio
σ_{Θ}^2	0.00001	Variance Qtrly Tran Agg Pty Shocks
σ_{Ψ}^{2}	0.00004	Variance Qtrly Perm Agg Pty Shocks

Steady State Solution of Model With $\sigma_\Psi = \sigma_\Theta = 0$

$K=12^{1/(1-arepsilon)}$	\approx 48.55	Steady State Quarterly K/P Ratio
$M = K + K^{\varepsilon}$	≈ 52.6	Steady State Quarterly M/P Ratio
$\mathcal{W} = (1-arepsilon) K^\epsilon$	≈ 2.59	Quarterly Wage Rate
$\mathcal{R} = 1 + \varepsilon K^{\varepsilon - 1}$	= 1.03	Quarterly Gross Capital Income Factor
$R = \mathcal{R} \mathbb{k}$	≈ 1.014	Quarterly Between-Period Interest Factor
$eta = \mathbf{R}^{-1}$	≈ 0.986	Quarterly Time Preference Factor

Calibration—PE/SOE

Calibrated Parameters

$\sigma^2_{ec{\psi}}$	0.016	Variance Annual Perm Idiosyncratic Shocks (I
$\sigma_{ec{ heta}}^{ar{2}}$	0.03	Variance Annual Tran Idiosyncratic Shocks (F
Ø	0.05	Quarterly Probability of Unemployment Spell
П	0.25	Quarterly Probability of Updating Expectation
$(1-\Omega)$	0.005	Quarterly Probability of Mortality

Calculated Parameters

$\beta = 0.99\Omega/E[(\boldsymbol{\psi})^{-\rho}]\mathbf{R}$	0.965	Satisfies Impatience Condition: $\beta < \Omega/E$ [(Ψv
σ_{ψ}^{2}	0.004	Variance Qtrly Perm Idiosyncratic Shocks (=
$\sigma_{ heta}^{ ilde{7}}$	0.12	Variance Qtrly Tran Idiosyncratic Shocks (=4

Equilibrium

	PE/SOE Economy		DSGE Economy	
	Frictionless	Sticky	Frictionless	Sticky
Means				
Α	6.594	6.589	49.621	49.585
С	2.683	2.682	3.297	3.296
Standard Deviations				
Aggregate Time Se	ries ('Macro')			
log A	0.016	0.022	0.056	0.056
$\Delta \log \mathbf{C}$	0.005	0.002	0.003	0.001
$\Delta \log \mathbf{Y}$	0.007	0.002	0.004	0.002
Individual Cross Sec	ctional ('Micro')			
log a	1.285	1.285		
log c	1.212	1.212		
log p	1.221	1.221		
$\log \mathbf{y} \mathbf{y} > 0$	0.846	0.846		
$\Delta \log \mathbf{c}$	0.151	0.149		
Cost Of Stickiness	0.31 × 10	-4	0.53×1	0^{-5}

Micro Theory: Frictionless

$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbf{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{\mathbf{a}}_{t,i}$					
Model of					
Expectations	χ	η	α	\bar{R}^2	nobs
Frictionless					
	0.083			0.007	76020
	(0.077)				
		0.003		-0.000	76020
		(0.004)			
			-0.111	0.000	76020
			(0.052)		
	0.083	0.009	$-0.059^{'}$	0.007	76020
	(0.004)	(0.004)	(0.024)		

Micro Theory: Sticky

DSGE Macro: Frictionless

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \mathbf{E}[\log \mathbf{C}_t] + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha \mathbf{E}[A_t]$$

Inc	pectations:Dep dependent Varia	bles	OLS or IV	2nd Stage $ar{R}^2$	IV F p-val IV OID
Frio	tionless: ∆ log (C_{t+1}			
$\Delta \log C_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.010 (0.032)			OLS	-0.001	
(* ** ,	0.184 (0.050)		IV	0.007	0.000 0.001
	(* ***)	-0.0002 (0.0001)	OLS	0.010	
-0.019 (0.027)	0.152 (0.052)	-0.0002 (0.0001)	IV	0.007	

DSGE Macro: Sticky

	$\Delta \log C_{t+}$	$-1 = \varsigma$	$+ \chi \Delta \mathbf{E}[\log \mathbf{C}_t] +$	$-\eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}]$	$[1] + \alpha \mathbf{E}[A_t]$
	xpectations:Dep idependent Varia		OLS or IV	2nd Stage $ar{R}^2$	IV <i>F p</i> -val IV OID
$\Delta \log \bar{C}_t$	Sticky $\Delta \log ar{\mathbf{Y}}_{t+1}$	$ar{A}_t$			
0.823 (0.018)			OLS	0.677	
$\Delta \log \tilde{\bar{C}}_t$					
0.387			OLS	0.141	
(0.030) 0.845 (0.042)			IV	0.422	0.000 0.210
	0.815 (0.025)		IV	0.395	0.000
	(1.120)	-0.0004 (0.0000)	OLS	0.115	2.200
0.750 (0.148)	0.065 (0.146)	-0.0001 (0.0000)	IV	0.423	0.126
	r instruments \mathbf{Z}_t		$=\mathbf{Z}_{t}\zeta, \bar{R}^{2}=$	0.425	0.120

Small Open Economy: Frictionless

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \mathbf{E}[\log \mathbf{C}_t] + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha \mathbf{E}[A_t]$$

In	pectations:Dep dependent Varia	ables	OLS or IV	2nd Stage $ar{R}^2$	IV <i>F p</i> -val IV OID
. Fri	ctionless: $\Delta \log$	C_{t+1}			
$\Delta \log C_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.022 (0.010)			OLS	0.000	
	0.028 (0.016)		IV	0.000	0.000 0.030
	, ,,	-0.0008 (0.0004)	OLS	0.000	
0.019 (0.010)	0.028 (0.016)	-0.0005 (0.0004)	IV	0.000	

Small Open Economy: Sticky

		$\Delta \log C_{t+1}$	$-1 = \varsigma +$	$\chi \Delta \mathbf{E}[\log \mathbf{C}_t] +$	$+ \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}]$	$[1] + \alpha \mathbf{E}[A_t]$
		«pectations:Dep dependent Varia		OLS or IV	2nd Stage $ar{R}^2$	IV <i>F p</i> -val
ı	$\Delta \log \bar{\mathbf{C}}_t$	$\Delta \log \mathbf{\bar{Y}}_{t+1}$	$ar{A}_t$			
	0.345 (0.009)			OLS	0.121	
	0.805 (0.014)			IV	0.363	0.000
	(5.52.)	1.150 (0.015)		IV	0.352	0.000
	0.498 (0.028)	0.496 (0.040)	-0.0007 (0.0005)	IV	0.375	0.000
ı	Memo: For	r instruments Z _t	. Δ log C++1 =	$= \mathbf{Z}_{+} \zeta, \bar{R}^{2} =$	0.390	

Empirical Results for U.S.

$\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta E[\Delta \log Y_{t+1}] + \alpha A_t$						
Consumption				Method		IV F p-val
Series	χ	η	α	OLS/IV	\bar{R}_2^2	IV OID
Nondurables and Services						
	0.358*** (0.066)			OLS	0.123	
		0.577*** (0.118)		IV	0.172	0.000 0.702
			0.0006 (0.0006)	OLS	0.002	
	0.826***		,	IV	0.143	0.000
	(0.147)					0.714
	0.731***	0.071	0.0000	IV	0.135	
	(0.230)	(0.118)	(0.0003)			0.482
Memo:	For instruments $\mathbf{Z},\Delta\log\mathbf{C}_{t+1}=\mathbf{Z}\zeta,ar{R}^2=0.168$					

Instruments: L(2/3).diffcons L(2/3).wyRatio L(2/3).bigTheta L(2/3).dfedfunds L(2/3).ics Time frame: 1960Q1-2004Q3, $\sigma_W^2 = .0000429, \sigma_{\Theta}^2 = .0000107$

- ABEL, Andrew B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80(2), 38–42.
- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," *Journal of Political Economy*, 93(2), 223–247.
- CALVO, GUILLERMO A. (1983): "Staggered Contracts in a Utility-Maximizing Framework," *Journal of Monetary Economics*, 12, 383–98.
- CAMPBELL, JOHN Y., AND ANGUS S. DEATON (1989): "Why Is Consumption So Smooth?," *Review of Economic Studies*, 56, 357–74.
- CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in *NBER Macroeconomics Annual*, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216. MIT Press, Cambridge, MA.
- CARRASCO, RAQUEL, JOSÈ M. LABEAGA, AND J. DAVID LÒPEZ-SALIDO (2005): "Consumption and Habits: Evidence

- from Panel Data," *Economic Journal*, 115(500), 144–165 available at http://ideas.repec.org/a/ecj/econjl/v115y2005i500p144-165 html
- CARROLL, CHRISTOPHER D. (2003): "Macroeconomic Expectations of Households and Professional Forecasters," Quarterly Journal of Economics, 118(1), 269–298, http://econ.jhu.edu/people/ccarroll/epidemiologyQJE.pdf.
- CONSTANTINIDES, GEORGE M. (1990): "Habit Formation: A Resolution of the Equity Premium Puzzle," *Journal of Political Economy*, 98, 519–43.
- Dynan, Karen E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," *American Economic Review*, 90(3).
- FLAVIN, MARJORIE J., AND SHINOBU NAKAGAWA (2005): "A Model of Housing in the Presence of Adjustment Costs: A Structural Interpretation of Habit Persistence," Manuscript

- Fuhrer, Jeffrey C. (2000): "An Optimizing Model for Monetary Policy: Can Habit Formation Help?," *American Economic Review*, 90(3).
- Lucas, Robert E. (1973): "Some International Evidence on Output-Inflation Tradeoffs," *American Economic Review*, 63, 326–334.
- Mankiw, N. Gregory, and Ricardo Reis (2002): "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," *Quarterly Journal of Economics*, 117(4), 1295–1328.
- MEGHIR, COSTAS, AND GUGLILELMO WEBER (1996): "Intertemporal Non-Separability or Borrowing Restrictions? A Disaggregate Analysis Using a U.S. Consumption Panel," Econometrica, 64(5), 1151–82.
- MUTH, JOHN F. (1960): "Optimal Properties of Exponentially Weighted Forecasts," *Journal of the American Statistical Association*, 55(290), 299–306.

- PISCHKE, JÖRN-STEFFEN (1995): "Individual Income, Incomplete Information, and Aggregate Consumption," *Econometrica*, 63(4), 805–40.
- REIS, RICARDO (2003): "Inattentive Consumers," *Manuscript, Harvard University*.
- ROTEMBERG, JULIO J., AND MICHAEL WOODFORD (1997): "An Optimization-Based Econometric Model for the Evaluation of Monetary Policy," in *NBER Macroeconomics Annual*, 1997, ed. by Benjamin S. Bernanke, and Julio J. Rotemberg, vol. 12, pp. 297–346. MIT Press, Cambridge, MA.
- SIMS, CHRISTOPHER A. (2003): "Implications of Rational Inattention," *Journal of Monetary Economics*, 50(3), 665–690, available at http://ideas.repec.org/a/eee/moneco/v50y2003i3p665-690.html.
- SOMMER, MARTIN (2001): "Habits, Sentiment and Predictable Income in the Dynamics of Aggregate Consumption,"

References

Manuscript, The Johns Hopkins University, http://econ.jhu.edu/pdf/papers/wp458.pdf.

WOODFORD, MICHAEL (2001): "Imperfect Common Knowledge and the Effects of Monetary Policy," *NBER Working Paper Number 8673*.