Sticky Expectations and Consumption Dynamics

Christopher D. Carroll1 Jirka Slacalek2

1Johns Hopkins and NBER
ccarroll@jhu.edu
http://www.econ.jhu.edu/people/ccarroll/

2European Central Bank
jiri.slacalek@ecb.int
http://www.slacalek.com/

November 2007
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \times \text{var}(\Delta \log C)$
Consumption Dynamics

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $=\infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
 - $\text{var} (\Delta \log c) \approx 100 \text{var} (\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits \approx 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits = 0.75 Rejectable With Confidence = \infty
- \text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)
Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
 - Idiosyncratic Component Is Perfectly Observed
 - Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc
Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not *ad hoc*

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

Proposal: Macro (Not Micro) Inattention

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not \textit{ad hoc}

Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro

- **Theory**: Uninsurable Risk Is Unimportant
- **Evidence**: Consumption Is Too Smooth
- **Conclusion**: Habits ≈ 0.75

Micro

- **Theory**: Uninsurable Risk Is Essential
- **Evidence**: Habits $= 0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \ \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits ≈ 0.75 Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $= 0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \times \text{var}(\Delta \log C)$
Consumption Dynamics

Macro
- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro
- Theory: Uninsurable Risk Is Essential
- Evidence: Habits $=0.75$ Rejectable With Confidence $= \infty$
- $\text{var}(\Delta \log c) \approx 100 \text{ var}(\Delta \log C)$
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If $\text{U} \uparrow$
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100\times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
References

Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
 - Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger
- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention
- Micro: Critical (and Easy) To Notice You’re Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑
Why This Is Plausible

<table>
<thead>
<tr>
<th>Idiosyncratic Variability Is $\sim 100 \times$ Bigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>- If Same Equation Estimated on Micro vs Macro Data</td>
</tr>
<tr>
<td>- Pervasive Lesson Of All Micro Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Cost Of Inattention</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Micro: Critical (and Easy) To Notice You’re Unemployed</td>
</tr>
<tr>
<td>- Unlike Pischke (1995)</td>
</tr>
<tr>
<td>- Macro: Not Critical To Instantly Notice If U↑</td>
</tr>
</tbody>
</table>
Related Literature

- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)

Macro Habits: Abel (1990); Constantinides (1990); many recent papers

References

Related Literature

- **Inattention**: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- **Macro Habits**: Abel (1990); Constantinides (1990); many recent papers
 - **Micro Habits**: Dynan (2000);
Related Literature

- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
Total Wealth:

\[z_{t+1} = (z_t - c_t)R + \zeta_{t+1}, \]

(1)

Euler Equation:

\[u'(c_t) = R\beta E_t[u'(c_{t+1})], \]

(2)

Random Walk:

\[\Delta c_{t+1} = \epsilon_{t+1}. \]

(3)

Expected wealth:

\[z_t = E_t[z_{t+1}] = E_t[z_{t+2}]... \]

(4)
Sticky Expectations

- Consumer Who Happens To Update At t and $t + n$

 \[
 \begin{align*}
 c_t & = (r/R)z_t \\
 c_{t+1} & = (r/R)\bar{z}_{t+1} = (r/R)z_t = c_t \\
 \vdots & \vdots \\
 c_{t+n-1} & = c_t.
 \end{align*}
 \]

- Implies that $\Delta^n z_{t+n} \equiv z_{t+n} - z_t$ is white noise

- So individual c is RW across updating periods:

 \[
 c_{t+n} - c_t = (r/R) \underbrace{(z_{t+n} - z_t)}_{\Delta^n z_{t+n}}
 \]

 \[(5)\]
Sticky Expectations

- Consumer Who Happens To Update At t and $t + n$

 \[c_t = \frac{r}{R}z_t \]
 \[c_{t+1} = \frac{r}{R}z_{t+1} = \frac{r}{R}z_t = c_t \]
 \[\vdots \]
 \[c_{t+n-1} = c_t. \]

- Implies that $\Delta^nz_{t+n} \equiv z_{t+n} - z_t$ is white noise

- So individual c is RW across updating periods:

 \[c_{t+n} - c_t = \frac{r}{R} (z_{t+n} - z_t) \]

 \[\Delta^nz_{t+n} \]

 (5)
Sticky Expectations

- Consumer Who Happens To Update At \(t \) and \(t + n \)

\[
\begin{align*}
\mathbf{c}_t &= \frac{(r/R)\mathbf{z}_t}{}, \\
\mathbf{c}_{t+1} &= \frac{(r/R)\mathbf{z}_{t+1}}{}= \frac{(r/R)\mathbf{z}_t}{}, \\
\vdots &= \vdots \\
\mathbf{c}_{t+n-1} &= \mathbf{c}_t.
\end{align*}
\]

- Implies that \(\Delta^n\mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} - \mathbf{z}_t \) is white noise
- So individual \(\mathbf{c} \) is RW across updating periods:

\[
\mathbf{c}_{t+n} - \mathbf{c}_t = \frac{(r/R)(\mathbf{z}_{t+n} - \mathbf{z}_t)}{\Delta^n\mathbf{z}_{t+n}} \tag{5}
\]
Sticky Expectations

- Pop normed to one, uniformly dist on $[0, 1]$

\[C_t = \int_0^1 c_{t,i} \, di. \]

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$

- Economy Composed Of Many Sticky Consumers:

\[\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1} \quad (6) \]

\[= 0.75 \]
Sticky Expectations

- Pop normed to one, uniformly dist on [0, 1]

\[C_t = \int_0^1 c_{t,i} \, di. \]

- Calvo (1983) Type Updating Of Expectations:
 - Probability \(\Pi = 0.25 \)
 - Economy Composed Of Many Sticky Consumers:

\[\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1} \] (6)
Pop normed to one, uniformly dist on $[0, 1]$

$$C_t = \int_0^1 c_{t,i} \, di.$$

Calvo (1983) Type Updating Of Expectations:

- Probability $\Pi = 0.25$

Economy Composed Of Many Sticky Consumers:

$$\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1}$$ \hspace{1cm} (6)
Sticky Expectations

- Pop normed to one, uniformly dist on [0, 1]
 \[C_t = \int_0^1 c_{t,i} \, di. \]

- Calvo (1983) Type Updating Of Expectations:
 - Probability \(\Pi = 0.25 \)

- Economy Composed Of Many Sticky Conumers:
 \[\Delta C_{t+1} \approx (1 - \Pi) \Delta C_t + \epsilon_{t+1} \]
 \[= 0.75 \]
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
One More Ingredient ...

Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
One More Ingredient ...

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks

- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks

Result:

- Idiosyncratic Δc dominated by frictionless RW part
- Aggregate ΔC highly serially correlated
- Law of large numbers: idiosyncratic part vanishes
Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks

Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth–Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly

- Only the (tiny) aggregate part is hard to see

- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk

- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm

- Here: Can see own circumstances perfectly
 - Only the (tiny) aggregate part is hard to see
 - But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
 - Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
 - But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below
- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

- All you can see is Y
 - Lucas: Can’t distinguish agg. from idio.
 - Muth-Pischke: Can’t distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can’t permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model
- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- Same!
Serious Model

Partial Equilibrium/Small Open Economy
- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model
- Same!
Individual's labor productivity is

\[\ell_{t+1} = \theta_{t+1} \Theta_{t+1} p_{t+1} P_{t+1} \equiv p_{t+1} \] (7)

Idiosyncratic and aggregate p evolve according to

\[p_{t+1} = p_t \psi_{t+1} \] (8)
\[P_{t+1} = P_t \Psi_{t+1} \] (9)

\[E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \quad \forall \; n > 0 \]
Income Process

• Individual’s labor productivity is

\[\ell_{t+1} = \left(\theta_{t+1} \Theta_{t+1} p_{t+1} P_{t+1} \right) \equiv p_{t+1} \]

(7)

• Idiosyncratic and aggregate p evolve according to

\[p_{t+1} = p_t \psi_{t+1} \]

(8)

\[P_{t+1} = P_t \Psi_{t+1} \]

(9)

• \(E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \ \forall \ n > 0 \)
Income Process

- Individual's labor productivity is

\[\ell_{t+1} = \frac{\theta_{t+1}}{\Theta_{t+1}} p_{t+1} P_{t+1} \equiv p_{t+1} \]

(7)

- Idiosyncratic and aggregate p evolve according to

\[p_{t+1} = p_t \psi_{t+1} \]

(8)

\[P_{t+1} = P_t \Psi_{t+1} \]

(9)

- \(E_t[\theta_{t+n}] = E_t[\Theta_{t+n}] = E_t[\psi_{t+n}] = E_t[\Psi_{t+n}] = 1 \ \forall \ n > 0 \)
Market resources:

\[m_{t+1} = \mathcal{W}_{t+1} \ell_{t+1} + R_{t+1} k_{t+1} \equiv y_{t+1} \]

\[1 + r_{t+1} \]

(10)

‘Assets’: Unspent resources

\[a_t = m_t - c_t \]

(11)

Capital transition depends on prob of survival \(\Omega \):

\[k_{t+1} = a_t / \Omega \]

(12)
Resources

- Market resources:

\[m_{t+1} = W_{t+1} l_{t+1} + R_{t+1} k_{t+1} \equiv y_{t+1} \frac{k_{t+1}}{1+r_{t+1}} \]

(10)

- ‘Assets’: Unspent resources

\[a_t = m_t - c_t \]

(11)

- Capital transition depends on prob of survival \(\Omega \):

\[k_{t+1} = a_t / \Omega \]

(12)
Market resources:

\[m_{t+1} = \underbrace{\mathcal{W}_{t+1} l_{t+1}}_{\equiv y_{t+1}} + \underbrace{R_{t+1} k_{t+1}}_{1+r_{t+1}} \] \hspace{1cm} (10)

‘Assets’: Unspent resources

\[a_t = m_t - c_t \] \hspace{1cm} (11)

Capital transition depends on prob of survival \(\Omega \):

\[k_{t+1} = \frac{a_t}{\Omega} \] \hspace{1cm} (12)
Frictionless Solution

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = m_t / p_t P_t$
- $c(m_t)$ is the function that solves

 $$v(m_t) = \max_c \left\{ u(c) + \beta E_t \left[\psi_{t+1}^{1-\rho} v(m_{t+1}) \right] \right\}$$

- Level of consumption given by

 $$c_t = c(m_t) p_t.$$
Assume constant \mathcal{R}, \mathcal{W}

- Normalize everything by $p_t P_t$ e.g. $m_t = m_t / p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_c \left\{ u(c) + \beta E_t [\psi_{t+1}^{1-\rho} v(m_{t+1})] \right\}$$

- Level of consumption given by

$$c_t = c(m_t) p_t.$$
Assume constant \mathcal{R}, \mathcal{W}

Normalize everything by p_tP_t e.g. $m_t = m_t/p_tP_t$

$c(m_t)$ is the function that solves

$$v(m_t) = \max_c \{u(c) + \beta E_t[\psi_t^{1-\rho}v(m_{t+1})]\}$$

Level of consumption given by

$$c_t = c(m_t)p_t.$$
Frictionless Solution

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by p_tP_t e.g. $m_t = m_t/p_tP_t$
- $c(m_t)$ is the function that solves

\[
v(m_t) = \max_c \{ u(c) + \beta E_t[\psi_{t+1}^{1-\rho}v(m_{t+1})] \}\]

- Level of consumption given by

\[
c_t = c(m_t)p_t.
\]
Agent survives from t to $t + 1$ with probability Ω

$$p_{t+1,i} = \begin{cases}
1 & \text{for newborns} \\
 p_{t,i} \psi_{t+1,i} & \text{for survivors,}
\end{cases}$$

Implies steady-state distribution of p with variance:

$$\text{var}(p) = \left(\frac{1 - \Omega}{1 - \Omega E[\psi^2]} - 1\right)$$
Agent survives from t to $t + 1$ with probability Ω

$$p_{t+1,i} = \begin{cases}
1 & \text{for newborns} \\
 p_{t,i} \psi_{t+1,i} & \text{for survivors,}
\end{cases}$$

Implies steady-state distribution of p with variance:

$$\text{var}(p) = \left(\frac{1 - \Omega}{1 - \Omega E[\psi^2]} - 1 \right)$$
Blanchard (1985) Insurance

\[k_{t+1,i} = \begin{cases}
0 & \text{if agent at } i \text{ dies, is replaced by a newborn} \\
 a_{t,i} / \Omega & \text{if agent at } i \text{ survives}
\end{cases} \]

Implies

\[K_{t+1} = \int_{0}^{1} \omega_{t+1,i} a_{t,i} / \Omega \, di \\
= \Lambda A_t \\
K_{t+1} = \Lambda A_t / \psi_{t+1} \]
Sticky Aggregate Expectations

\[\bar{\Theta}_{t,i} = \begin{cases} \Theta_t & \text{for updaters} \\ 1 & \text{for nonupdaters} \end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i}P_{t+1} + (1 - \pi_{t+1,i})\bar{P}_{t,i} \] (13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[\bar{\Theta}_{t,i} = \begin{cases}
\Theta_t & \text{for updaters} \\
1 & \text{for nonupdaters}
\end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i} \] (13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[
\bar{\Theta}_{t,i} = \begin{cases}
\Theta_t & \text{for updaters} \\
1 & \text{for nonupdaters}
\end{cases}
\]

\[
\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}
\] (13)

Sequence within period:

1. Shocks are Realized
2. Each Individual Updates (Or Not)
3. Consume Based on Beliefs
4. Consumer Sees End-Of-Period Bank Balance
Sticky Aggregate Expectations

\[\bar{\Theta}_{t,i} = \begin{cases} \Theta_t & \text{for updaters} \\ 1 & \text{for nonupdaters} \end{cases} \]

\[\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_t,i \] \hspace{1cm} (13)

Sequence within period:

1. **Shocks are Realized**
2. **Each Individual Updates (Or Not)**
3. **Consume Based on Beliefs**
4. **Consumer Sees End-Of-Period Bank Balance**
Consumers behave according to frictionless consumption function:

\[\bar{c}_{t,i} = c(\bar{m}_{t,i}) \]

\[c_{t,i} = \bar{c}_{t,i} \bar{P}_{t,i} p_{t,i} \]

- Correctly perceive level of spending

\[\bar{a}_{t,i} = \bar{m}_{t,i} - c_{t,i} \quad \text{(14)} \]

\[\bar{k}_{t+1,i} = \omega_{t+1,i} \bar{\nabla} (a_{t,i} \pi_{t+1,i} + \bar{a}_{t,i} (1 - \pi_{t+1,i})) / \Omega + (1 - \omega_{t+1,i})0 \quad \text{(15)} \]
Newborns’ value can be approximated by

\[\bar{v}(\mathcal{W}) \approx \hat{v}(\mathcal{W}) - (\kappa/\Pi)\sigma_\Psi^2. \]

(16)

If Newborns Pick Optimal \(\Pi \), they solve

\[\max_{\Pi} \hat{v}(\mathcal{W}) - (\kappa/\Pi)\sigma_\Psi^2 - \iota \Pi. \]

(17)

Solution:

\[\Pi = (\kappa/\iota)^{0.5} \sigma_\Psi \]

(18)
\[\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t \]

(19)

Observe \(\mathbf{Y} \)

Define signal-to-noise ratio \(\varphi = \frac{\sigma_\psi^2}{\sigma_\theta^2} \)

Optimal Estimate of \(P \) obtained from

\[\bar{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi) \bar{P}_t \]

(20)

where

\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \]

(21)
\[\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t \] \hspace{1cm} (19)

- Observe \(Y \)
- Define signal-to-noise ratio \(\varphi = \sigma^2_\psi / \sigma^2_\theta \)

Optimal Estimate of \(P \) obtained from

\[\bar{P}_{t+1} = \Pi Y_{t+1} + (1 - \Pi) \bar{P}_t \] \hspace{1cm} (20)

where

\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4 \varphi})} \right) , \] \hspace{1cm} (21)
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \] (22)

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!
- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \Rightarrow RW \)
- Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!
- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
- Maybe could fiddle with calibration assumptions . . .
Comparison

\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
- Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 \[\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \]
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
 - But calibration where they can see agg \(Y \) \(\Rightarrow \) RW
 - Maybe could fiddle with calibration assumptions . . .
\[\Pi = \left(\frac{1}{1 + 2/(\phi + \sqrt{\phi^2 + 4\phi})} \right), \quad (22) \]

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they *can* see agg \(Y \) \(\Rightarrow \) RW
 - Maybe could fiddle with calibration assumptions …
\[\Pi = \left(\frac{1}{1 + 2/(\varphi + \sqrt{\varphi^2 + 4\varphi})} \right), \] (22)

Pischke (1995): This is why \(C \) is too smooth

- If we calibrate using observed micro data
 - \(\Rightarrow \Delta \log C_{t+1} \approx 0.967 \Delta \log C_t \)
 - Goes too far!

- It’s because people can’t tell agg from ind shocks
- But calibration where they can see agg \(Y \Rightarrow RW \)
- Maybe could fiddle with calibration assumptions . . .
Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\varepsilon \Theta_t^{1-\varepsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t[\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\} \\
\text{s.t.} \\
A_t = M_t - C_t \\
K_{t+1} = A_t / \Psi_{t+1} \\
M_{t+1} = R_{t+1} K_{t+1} + \mathcal{W}_{t+1} \Theta_{t+1}.
\]
DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\epsilon \Theta_t^{1-\epsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t[\psi_t^{1-\rho} V(M_{t+1})] \right\} \tag{23}
\]

s.t.
\[
A_t = M_t - C_t \\
K_{t+1} = A_t \Psi_t / \psi_{t+1} \\
M_{t+1} = R_{t+1} K_{t+1} + \mathcal{W}_{t+1} \Theta_{t+1}.
\]
DSGE Model

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: \(M_t = K_t + K_t^\varepsilon \Theta_t^{1-\varepsilon} \)

\[
V(M_t) = \max_{C_t} \left\{ u(c_t) + \beta E_t [\psi_t^{1-\rho} V(M_{t+1})] \right\}
\]

s.t.

\[
A_t = M_t - C_t
\]

\[
K_{t+1} = A_t \theta_t / \psi_{t+1}
\]

\[
M_{t+1} = R_{t+1} K_{t+1} + W_{t+1} \Theta_{t+1}
\]
Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE

\[\tilde{M}_t = \tilde{K}_t + \tilde{K}^\epsilon_t \tilde{\Theta}_t^{1-\epsilon} \]

- Solution: \(C_t = C(\tilde{M}_t) \tilde{P}_t \)
Perception Dynamics Identical to Sticky PE/SOE
\[\tilde{M}_t = \tilde{K}_t + \tilde{K}_t^\varepsilon \tilde{\Theta}_t^{1-\varepsilon} \]
Solution: \[C_t = C(\tilde{M}_t) \bar{P}_t \]
Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\tilde{M}_t = \tilde{K}_t + \tilde{K}_t^\varepsilon \tilde{\Theta}_t^{1-\varepsilon}$
- Solution: $C_t = C(\tilde{M}_t)\tilde{P}_t$
* \[\Delta \log C_{t+1} \approx \varsigma + \vartheta E_t[r_{t+1}] + \mu X_{t-1} + \epsilon_{t+1}, \] (24)

and random walk means \(\mu = 0 \).

In GE, \(r \) depends on \(A \) so \(\ast \) is equivalent to:

\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \mu X_{t-1} + \epsilon_{t+1} \] (25)

In either case, lots of \(X_{t-1} \) were found for which \(\mu \neq 0 \).
\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1} \] (26)

Claims:

- \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
- \(\eta \approx 0.5 \) robustly for U.S. and other countries
- No further predictability in \(\Delta \log C_{t+1} \)
\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1} \]

(26)

Claims:

- \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
- \(\eta \approx 0.5 \) robustly for U.S. and other countries
- No further predictability in \(\Delta \log C_{t+1} \)
\[\Delta \log C_{t+1} \approx \zeta + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \epsilon_{t+1} \]

(26)

Claims:

- \(\eta \) estimates fraction of ‘rule-of-thumb’ \(C = Y \) consumers
- \(\eta \approx 0.5 \) robustly for U.S. and other countries
- No further predictability in \(\Delta \log C_{t+1} \)
Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001)
Dynan (2000)/Sommer specification:

\[\Delta \log C_{t+1} \approx \zeta + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1} \]

Claims:
- \(\eta \) no longer statistically significant
- \(\chi \approx 0.75 \) (Habits are huge!)
- OID tests succeed
Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001)
Dynan (2000)/Sommer specification:

$$\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1}$$

Claims:
- η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed
Macro Habits

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001); Dynan (2000)/Sommer specification:

\[\Delta \log C_{t+1} \approx \varsigma + \alpha A_t + \eta E[\Delta \log Y_{t+1}] + \chi E[\Delta \log C_t] + \epsilon_{t+1} \]

Claims:
- \(\eta \) no longer statistically significant
- \(\chi \approx 0.75 \) (Habits are huge!)
- OID tests succeed
Micro Evidence

$$\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1}$$

Separable Theory:
- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[\Delta \log c_{t+1} \approx \zeta + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
Micro Evidence

\[\Delta \log c_{t+1} \approx \varsigma + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[
\Delta \log c_{t+1} \approx \zeta + \alpha a_t + \eta E[\Delta \log y_{t+1}] + \chi E[\Delta \log c_t] + \epsilon_{t+1}
\]

Separable Theory:
- \(\alpha < 0\)
- \(0 < \eta < 1\)
- \(\chi \approx 0\)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and López-Salido (2005)
\[\Delta \log c_{t+1} \approx \zeta + \alpha a_t + \eta \mathbb{E}[\Delta \log y_{t+1}] + \chi \mathbb{E}[\Delta \log c_t] + \epsilon_{t+1} \]

Separable Theory:
- \(\alpha < 0 \)
- \(0 < \eta < 1 \)
- \(\chi \approx 0 \)

Micro Evidence on Habits:
- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)
\[\Delta \log C_{t+1} \approx \varsigma + \chi \Delta \log C_t + \eta E_t[\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1} \]

<table>
<thead>
<tr>
<th></th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro (Separable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>(\approx 0)</td>
<td>(0 < \eta < 1)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Data</td>
<td>(\approx 0)</td>
<td>(0 < \eta < 1)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Macro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory:Separable</td>
<td>(\approx 0)</td>
<td>(\approx 0)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Theory:CampMan</td>
<td>(\approx 0)</td>
<td>(\approx 0.5)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>Theory:Habits</td>
<td>(\approx 0.75)</td>
<td>(\approx 0)</td>
<td>(< 0)</td>
</tr>
</tbody>
</table>
Calibration—DSGE

DSGE Model

Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>2.</td>
<td>Coefficient of Relative Risk Aversion</td>
</tr>
<tr>
<td>ϖ</td>
<td>0.94$^{1/4}$</td>
<td>Quarterly Depreciation Factor</td>
</tr>
<tr>
<td>K/K^ε</td>
<td>12</td>
<td>Perf Foresight SS Capital/Output Ratio</td>
</tr>
<tr>
<td>σ_Θ^2</td>
<td>0.00001</td>
<td>Variance Qtrly Tran Agg Pty Shocks</td>
</tr>
<tr>
<td>σ_Ψ^2</td>
<td>0.00004</td>
<td>Variance Qtrly Perm Agg Pty Shocks</td>
</tr>
</tbody>
</table>

Steady State Solution of Model With $\sigma_\Psi = \sigma_\Theta = 0$

\[
K = 12^{1/(1-\varepsilon)} \approx 48.55 \quad \text{Steady State Quarterly } K/P \text{ Ratio}
\]
\[
M = K + K^\varepsilon \approx 52.6 \quad \text{Steady State Quarterly } M/P \text{ Ratio}
\]
\[
W = (1 - \varepsilon)K^\varepsilon \approx 2.59 \quad \text{Quarterly Wage Rate}
\]
\[
R = 1 + \varepsilon K^{\varepsilon - 1} \approx 1.03 \quad \text{Quarterly Gross Capital Income Factor}
\]
\[
R = R\varpi \approx 1.014 \quad \text{Quarterly Between-Period Interest Factor}
\]
\[
\beta = R^{-1} \approx 0.986 \quad \text{Quarterly Time Time Preference Factor}
\]
Partial Equilibrium/Small Open Economy (PE/SOE) Model Parameters

Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_ψ</td>
<td>0.016</td>
<td>Variance Annual Perm Idiosyncratic Shocks (PSID)</td>
</tr>
<tr>
<td>σ^2_θ</td>
<td>0.03</td>
<td>Variance Annual Tran Idiosyncratic Shocks (PSID)</td>
</tr>
<tr>
<td>$\bar{\psi}$</td>
<td>0.05</td>
<td>Quarterly Probability of Unemployment Spell</td>
</tr>
<tr>
<td>Π</td>
<td>0.25</td>
<td>Quarterly Probability of Updating Expectations</td>
</tr>
<tr>
<td>$(1 - \Omega)$</td>
<td>0.005</td>
<td>Quarterly Probability of Mortality</td>
</tr>
</tbody>
</table>

Calculated Parameters

\[
\beta = 0.99\Omega / E[(\psi)^{-\rho}]R
\]

0.965
Satisfies Impatience Condition: $\beta < \Omega / E[(\psi)^{-\rho}]R$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_ψ</td>
<td>0.004</td>
</tr>
<tr>
<td>σ^2_θ</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>PE/SOE Economy</th>
<th></th>
<th>DSGE Economy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frictionless</td>
<td>Sticky</td>
<td>Frictionless</td>
<td>Sticky</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6.650</td>
<td>6.648</td>
<td>49.382</td>
<td>49.371</td>
</tr>
<tr>
<td>C</td>
<td>2.684</td>
<td>2.684</td>
<td>3.290</td>
<td>3.289</td>
</tr>
<tr>
<td>Standard Deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate Time Series ('Macro')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log A$</td>
<td>0.089</td>
<td>0.091</td>
<td>0.085</td>
<td>0.085</td>
</tr>
<tr>
<td>$\Delta \log C$</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>$\Delta \log Y$</td>
<td>0.008</td>
<td>0.003</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>Individual Cross Sectional ('Micro')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log a$</td>
<td>1.273</td>
<td>1.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log c$</td>
<td>1.207</td>
<td>1.207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log p$</td>
<td>1.221</td>
<td>1.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log y \mid y > 0$</td>
<td>0.846</td>
<td>0.846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \log c$</td>
<td>0.151</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Of Stickiness</td>
<td>0.31×10^{-4}</td>
<td></td>
<td>0.53×10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>
Micro Theory: Frictionless

\[
\Delta \log c_{t+1,i} = \varsigma + \chi \Delta \log c_{t,i} + \eta E_{t,i} [\Delta \log y_{t+1,i}] + \alpha a_{t,i}
\]

<table>
<thead>
<tr>
<th>Model of Expectations</th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
<th>(\bar{R}^2)</th>
<th>nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictionless</td>
<td>0.083</td>
<td>0.003</td>
<td>-0.111</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.004)</td>
<td>(0.052)</td>
<td>(0.004)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>
Micro Theory: Sticky

\[\Delta \log c_{t+1,i} = \zeta + \chi \Delta \log c_{t,i} + \eta E_{t,i}[\Delta \log y_{t+1,i}] + \alpha a_{t,i} \]

<table>
<thead>
<tr>
<th>Model of Expectations</th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
<th>(\bar{R}^2)</th>
<th>nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticky</td>
<td>0.084</td>
<td>0.003</td>
<td>-0.111</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.004)</td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.083</td>
<td>0.009</td>
<td>-0.059</td>
<td>0.007</td>
<td>76020</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.024)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\Delta \log C_{t+1} = \zeta + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t]$
\[\Delta \log C_{t+1} = \zeta + \chi \Delta E[\log C_t] + \eta \Delta E[\log Y_{t+1}] + \alpha \Delta E[A_t] \]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>OLS or IV</th>
<th>2nd Stage (R^2)</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticky (\Delta \log \bar{C}t) (\Delta \log \bar{Y}{t+1}) (\bar{A}_t)</td>
<td>OLS</td>
<td>0.677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.823 (0.018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log \tilde{C}_t)</td>
<td>OLS</td>
<td>0.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.387 (0.030)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.845 (0.042)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.815 (0.025)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[-0.0004] (0.0000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log \tilde{C}_t)</td>
<td>OLS</td>
<td>0.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.750 (0.148)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.065 (0.146)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[-0.0001] (0.0000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memo: For instruments (Z_t), (\Delta \log C_{t+1} = Z_t \zeta), (R^2 = 0.425)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carroll and Slacalek: Sticky Expectations and Consumption Dynamics
\[
\Delta \log C_{t+1} = \kappa + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t]
\]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>OLS or IV</th>
<th>2nd Stage</th>
<th>IV_F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Variables</td>
<td>(R^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frictionless: (\Delta \log C_{t+1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log C_t)</td>
<td>0.022</td>
<td>OLS</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>(\Delta \log Y_{t+1})</td>
<td>0.028</td>
<td>IV</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>(A_t)</td>
<td>(-0.0008) (0.0004)</td>
<td>OLS</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>(\Delta \log C_t)</td>
<td>0.019</td>
<td>IV</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>(\Delta \log Y_{t+1})</td>
<td>0.028</td>
<td>(-0.0005) (0.0004)</td>
<td>IV</td>
<td>0.000</td>
</tr>
</tbody>
</table>
\[\Delta \log C_{t+1} = \xi + \chi \Delta E[\log C_t] + \eta E[\Delta \log Y_{t+1}] + \alpha E[A_t] \]

<table>
<thead>
<tr>
<th>Expectations: Dep Var</th>
<th>OLS or IV</th>
<th>2nd Stage (\bar{R}^2)</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \log \bar{C}_t)</td>
<td>0.345 (0.009)</td>
<td>OLS 0.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log \bar{Y}_{t+1})</td>
<td>0.805 (0.014)</td>
<td>IV 0.363 0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>(\bar{A}_t)</td>
<td>1.150 (0.015)</td>
<td>IV 0.352 0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>(\Delta \log C_{t+1} = Z_t \xi)</td>
<td>0.498 (0.028)</td>
<td>IV 0.375 0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Memo: For instruments \(Z_t \), \(\Delta \log C_{t+1} = Z_t \xi \), \(\bar{R}^2 = 0.390 \)
Empirical Results for U.S.

\[\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta E[\Delta \log Y_{t+1}] + \alpha A_t \]

<table>
<thead>
<tr>
<th>Consumption Series</th>
<th>(\chi)</th>
<th>(\eta)</th>
<th>(\alpha)</th>
<th>Method</th>
<th>(\bar{R}^2)</th>
<th>IV F p-val</th>
<th>IV OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondurables and Services</td>
<td>0.358*** (0.066)</td>
<td>0.577*** (0.118)</td>
<td>0.0006 (0.0006)</td>
<td>OLS</td>
<td>0.123</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.826*** (0.147)</td>
<td>0.071 (0.230)</td>
<td>0.0000 (0.118)</td>
<td>IV</td>
<td>0.143</td>
<td>0.000</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>0.731*** (0.230)</td>
<td>0.071 (0.230)</td>
<td>0.0000 (0.0003)</td>
<td>IV</td>
<td>0.135</td>
<td></td>
<td>0.482</td>
</tr>
</tbody>
</table>

Memo: For instruments \(Z\), \(\Delta \log C_{t+1} = Z\varsigma\), \(\bar{R}^2 = 0.168\)

Time frame: 1960Q1–2004Q3, \(\sigma^2_\psi = 0.0000429\), \(\sigma^2_\Theta = 0.0000107\)

Carrasco, Raquel, José M. Labeaga, and J. David Lòpez-Salido (2005): “Consumption and Habits: Evidence Carrol and Slacalek Sticky Expectations and Consumption Dynamics

Sommer, Martin (2001): “Habits, Sentiment and Predictable Income in the Dynamics of Aggregate Consumption,”