Sticky Expectations and Consumption Dynamics

Christopher D. Carroll¹ Jirka Slacalek²

¹Johns Hopkins and NBER ccarroll@jhu.edu http://www.econ.jhu.edu/people/ccarroll/

> ²European Central Bank jiri.slacalek@ecb.int http://www.slacalek.com/

> > November 2007

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits pprox 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) pprox 100 \operatorname{var}(\Delta \log \mathbf{C})$

同 ト イヨ ト イヨ

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits pprox 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

→ < Ξ → <</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

▶ < □ ▶ < □</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

▶ < □ ▶ < □</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- $\bullet\,$ Evidence: Habits =0.75 Rejectable With Confidence = $\infty\,$
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

→ Ξ →

• Income Has Idiosyncratic And Aggregate Components

- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

Identical: Mankiw and Reis (2002), Carroll (2003)
 Similar: Sims (2003), Woodford (2001), Reis (2003)

□ > < = > <

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

Identical: Mankiw and Reis (2002), Carroll (2003)
Similar: Sims (2003), Woodford (2001), Reis (2003)

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

伺 ト イ ヨ ト イ ヨ

- Income Has Idiosyncratic And Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Not ad hoc

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Sims (2003), Woodford (2001), Reis (2003)

< ∃ > <

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits pprox 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) pprox 100 \operatorname{var}(\Delta \log \mathbf{C})$

同 ト イヨ ト イヨ

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits pprox 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

→ < Ξ → <</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

▶ < □ ▶ < □</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- Evidence: Habits =0.75 Rejectable With Confidence = ∞
- $\operatorname{var}(\Delta \log \mathbf{c}) \approx 100 \operatorname{var}(\Delta \log \mathbf{C})$

▶ < □ ▶ < □</p>

Macro

- Theory: Uninsurable Risk Is Unimportant
- Evidence: Consumption Is Too Smooth
- Conclusion: Habits ≈ 0.75

Micro

- Theory: Uninsurable Risk Is Essential
- $\bullet\,$ Evidence: Habits =0.75 Rejectable With Confidence = $\infty\,$
- $var(\Delta \log c) \approx 100 var(\Delta \log C)$

→ Ξ →

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is \sim 100 \times Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

同 ト イ ヨ ト イ ヨ ト

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

同 ト イ ヨ ト イ ヨ ト

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

同 ト イ ヨ ト イ ヨ ト

Idiosyncratic Variability Is \sim 100imes Bigger

- If Same Equation Estimated on Micro vs Macro Data
- Pervasive Lesson Of All Micro Data

Utility Cost Of Inattention

- Micro: Critical (and Easy) To Notice You're Unemployed
- Unlike Pischke (1995)
- Macro: Not Critical To Instantly Notice If U ↑

→ 3 → 4 3

Related Literature

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

同 ト イ ヨ ト イ ヨ ト

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

伺 ト く ヨ ト く ヨ ト

- Smoothness: Campbell and Deaton (1989), Pischke (1995), Rotemberg and Woodford (1997)
- Inattention: Pischke (1995); Mankiw and Reis (2002); Reis (2003); Sims (2003)
- Macro Habits: Abel (1990); Constantinides (1990); many recent papers
- Micro Habits: Dynan (2000);

伺 ト く ヨ ト く ヨ ト

Quadratic Utility Benchmark

Total Wealth:

$$\mathbf{z}_{t+1} = (\mathbf{z}_t - \mathbf{c}_t)\mathbf{R} + \zeta_{t+1}, \qquad (1)$$

Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbf{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})], \qquad (2)$$

Random Walk:

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}. \tag{3}$$

Expected wealth:

$$\mathbf{z}_t = \mathbf{E}_t[\mathbf{z}_{t+1}] = \mathbf{E}_t[\mathbf{z}_{t+2}]...$$
(4)

References

Sticky Expectations

• Consumer Who Happens To Update At t and t + n

$$\mathbf{c}_t = (r/R)\mathbf{z}_t$$
$$\mathbf{c}_{t+1} = (r/R)\overline{\mathbf{z}}_{t+1} = (r/R)\mathbf{z}_t = \mathbf{c}_t$$
$$\vdots \qquad \vdots$$
$$\mathbf{c}_{t+n-1} = \mathbf{c}_t.$$

- Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} \mathbf{z}_t$ is white noise
- So individual c is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathbf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}}$$

3.5.4
Sticky Expectations

• Consumer Who Happens To Update At t and t + n

$$\mathbf{c}_t = (r/R)\mathbf{z}_t$$
$$\mathbf{c}_{t+1} = (r/R)\overline{\mathbf{z}}_{t+1} = (r/R)\mathbf{z}_t = \mathbf{c}_t$$
$$\vdots \qquad \vdots$$
$$\mathbf{c}_{t+n-1} = \mathbf{c}_t.$$

• Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} - \mathbf{z}_t$ is white noise

• So individual **c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathbf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}}$$

Sticky Expectations

• Consumer Who Happens To Update At t and t + n

$$\mathbf{c}_t = (r/R)\mathbf{z}_t$$
$$\mathbf{c}_{t+1} = (r/R)\overline{\mathbf{z}}_{t+1} = (r/R)\mathbf{z}_t = \mathbf{c}_t$$
$$\vdots \qquad \vdots$$
$$\mathbf{c}_{t+n-1} = \mathbf{c}_t.$$

- Implies that $\Delta^n \mathbf{z}_{t+n} \equiv \mathbf{z}_{t+n} \mathbf{z}_t$ is white noise
- So individual **c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathbf{r}/\mathbf{R}) \underbrace{(\mathbf{z}_{t+n} - \mathbf{z}_t)}_{\Delta^n \mathbf{z}_{t+n}}$$
(5)

Sticky Expectations

• Pop normed to one, uniformly dist on [0,1]

$$\mathsf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

Calvo (1983) Type Updating Of Expectations:
 Probability Π = 0.25

• Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1} \tag{6}$$

同 ト イ ヨ ト イ ヨ ト

Sticky Expectations

• Pop normed to one, uniformly dist on [0,1]

$$\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

- Calvo (1983) Type Updating Of Expectations:
 - Probability $\Pi = 0.25$
- Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1} \tag{6}$$

同 ト イ ヨ ト イ ヨ ト

Sticky Expectations

• Pop normed to one, uniformly dist on [0,1]

$$\mathsf{C}_t = \int_0^1 \mathbf{c}_{t,i} \ di.$$

Calvo (1983) Type Updating Of Expectations:
 Probability Π = 0.25

• Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1} \tag{6}$$

伺 ト イ ヨ ト イ ヨ

Sticky Expectations

 \bullet Pop normed to one, uniformly dist on $\left[0,1\right]$

$$\mathsf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, di.$$

• Calvo (1983) Type Updating Of Expectations:

• Probability $\Pi = 0.25$

• Economy Composed Of Many Sticky Conumers:

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1-\Pi)}_{=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$
(6)

通 と イ ヨ と イ ヨ と

• Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

• Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

• Distinguish idiosyncratic and aggregate shocks

- Frictionless observation of idiosyncratic shocks
- True RW with respect to these
- Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

A 3 3 4

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - $\bullet\,$ Idiosyncratic Δc dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

4 3 5 4

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic $\Delta \boldsymbol{c}$ dominated by frictionless RW part
 - Aggregate $\Delta \boldsymbol{C}$ highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

- Distinguish idiosyncratic and aggregate shocks
 - Frictionless observation of idiosyncratic shocks
 - True RW with respect to these
 - Sticky observation of aggregate shocks
- Result:
 - Idiosyncratic $\Delta \boldsymbol{c}$ dominated by frictionless RW part
 - Aggregate ΔC highly serially correlated
 - Law of large numbers: idiosyncratic part vanishes

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

伺下 イヨト イヨ

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

伺 ト イ ヨ ト イ ヨ

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But *can't* permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But can't permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Muth (1960)-Pischke (1995)/Lucas (1973) - Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- But *can't* permit signal extraction wrt aggregate
 - Signal extraction wrt agg implies agg random walk
- Will return to this below

Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

Serious Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

< 同 > < 回 > < 回 >

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

- 4 同 6 4 日 6 4 日 6

э

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

- 4 同 6 4 日 6 4 日 6

э

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

伺 ト く ヨ ト く ヨ ト

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

A B > A B >

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- No Liquidity Constraints
- Mildly Impatient Consumers

DSGE Model

Same!

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \overbrace{\boldsymbol{\theta}_{t+1}\boldsymbol{\Theta}_{t+1}}^{\equiv \boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{p}_{t+1}\boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

Idiosyncratic and aggregate p evolve according to

$$p_{t+1} = p_t \psi_{t+1}$$
 (8)
 $P_{t+1} = P_t \Psi_{t+1}$ (9)

伺 ト イ ヨ ト イ ヨ ト

• $\mathbf{E}_t[\theta_{t+n}] = \mathbf{E}_t[\Theta_{t+n}] = \mathbf{E}_t[\psi_{t+n}] = \mathbf{E}_t[\Psi_{t+n}] = 1 \ \forall \ n > 0$

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \overbrace{\boldsymbol{\theta}_{t+1}\boldsymbol{\Theta}_{t+1}}^{\equiv \boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{p}_{t+1}\boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

• Idiosyncratic and aggregate p evolve according to

/□ ▶ < 글 ▶ < 글

• $\mathbf{E}_{t}[\theta_{t+n}] = \mathbf{E}_{t}[\Theta_{t+n}] = \mathbf{E}_{t}[\psi_{t+n}] = \mathbf{E}_{t}[\Psi_{t+n}] = 1 \ \forall \ n > 0$

Income Process

• Individual's labor productivity is

$$\boldsymbol{\ell}_{t+1} = \overbrace{\boldsymbol{\theta}_{t+1}\boldsymbol{\Theta}_{t+1}}^{\equiv \boldsymbol{\theta}_{t+1}} \underbrace{\boldsymbol{p}_{t+1}\boldsymbol{P}_{t+1}}_{\equiv \mathbf{p}_{t+1}}$$
(7)

• Idiosyncratic and aggregate p evolve according to

$$p_{t+1} = p_t \psi_{t+1}$$
 (8)
 $p_{t+1} = p_t \psi_{t+1}$ (9)

$$P_{t+1} = P_t \Psi_{t+1} \tag{9}$$

•
$$\mathbf{E}_t[\theta_{t+n}] = \mathbf{E}_t[\Theta_{t+n}] = \mathbf{E}_t[\psi_{t+n}] = \mathbf{E}_t[\Psi_{t+n}] = 1 \ \forall \ n > 0$$

Resources

• Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1}\boldsymbol{\ell}_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+\mathbf{r}_{t+1}} \mathbf{k}_{t+1}$$
(10)

• 'Assets': Unspent resources

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω:

$$\mathbf{k}_{t+1} = \mathbf{a}_t / \Omega \tag{12}$$

∃ ▶ ∢

Resources

• Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1}\boldsymbol{\ell}_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+\mathbf{r}_{t+1}} \mathbf{k}_{t+1}$$
(10)

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω:

$$\mathbf{k}_{t+1} = \mathbf{a}_t / \Omega \tag{12}$$

∃ → < ∃</p>

Resources

• Market resources:

$$\mathbf{m}_{t+1} = \underbrace{\mathcal{W}_{t+1}\boldsymbol{\ell}_{t+1}}_{\equiv \mathbf{y}_{t+1}} + \underbrace{\mathsf{R}_{t+1}}_{1+\mathbf{r}_{t+1}} \mathbf{k}_{t+1}$$
(10)

$$\mathbf{a}_t = \mathbf{m}_t - \mathbf{c}_t \tag{11}$$

• Capital transition depends on prob of survival Ω :

$$\mathbf{k}_{t+1} = \mathbf{a}_t / \Omega \tag{12}$$
\bullet Assume constant \mathcal{R}, \mathcal{W}

- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t / p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{ u(c) + \beta \mathsf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})] \}$$

• Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t.$$

3 b. 4

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t / p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{ u(c) + \beta \mathsf{E}_t[\psi_{t+1}^{1-\rho}v(m_{t+1})] \}$$

• Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t.$$

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t / p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{ u(c) + \beta \mathbf{E}_t [\psi_{t+1}^{1-\rho} v(m_{t+1})] \}$$

• Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t.$$

- Assume constant \mathcal{R}, \mathcal{W}
- Normalize everything by $p_t P_t$ e.g. $m_t = \mathbf{m}_t / p_t P_t$
- $c(m_t)$ is the function that solves

$$v(m_t) = \max_{c} \{ u(c) + \beta \mathbf{E}_t [\psi_{t+1}^{1-\rho} v(m_{t+1})] \}$$

• Level of consumption given by

$$\mathbf{c}_t = c(m_t)\mathbf{p}_t.$$

Blanchard (1985) Mortality

• Agent survives from t to t+1 with probability Ω

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors,} \end{cases}$$

• Implies steady-state distribution of *p* with variance:

$$\operatorname{var}(p) = \left(\frac{1-\Omega}{1-\Omega E[\psi^2]}-1
ight)$$

Blanchard (1985) Mortality

• Agent survives from t to t+1 with probability Ω

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors,} \end{cases}$$

• Implies steady-state distribution of *p* with variance:

$$ext{var}(p) = \left(rac{1-\Omega}{1-\Omega E[\psi^2]}-1
ight)$$

Blanchard (1985) Insurance

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if agent at } i \text{ dies, is replaced by a newborn} \\ \mathbf{a}_{t,i} \mathsf{T} / \Omega & \text{if agent at } i \text{ survives} \end{cases}$$

Implies

$$\begin{aligned} \mathbf{K}_{t+1} &= \int_0^1 \omega_{t+1,i} \, \exists \mathbf{a}_{t,i} / \Omega di \\ &= \exists \mathbf{A}_t \\ K_{t+1} &= \exists A_t / \Psi_{t+1} \end{aligned}$$

э

-

э

Sticky Aggregate Expectations

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & \mbox{for updaters} \\ 1 & \mbox{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Onsume Based on Beliefs
- Onsumer Sees End-Of-Period Bank Balance

Sticky Aggregate Expectations

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & \mbox{for updaters} \\ 1 & \mbox{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Onsume Based on Beliefs
- Consumer Sees End-Of-Period Bank Balance

Sticky Aggregate Expectations

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Onsume Based on Beliefs
- Onsumer Sees End-Of-Period Bank Balance

Sticky Aggregate Expectations

$$ar{\Theta}_{t,i} = egin{cases} \Theta_t & ext{for updaters} \\ 1 & ext{for nonupdaters} \end{cases}$$

$$\bar{P}_{t+1,i} = \pi_{t+1,i} P_{t+1} + (1 - \pi_{t+1,i}) \bar{P}_{t,i}$$
(13)

- Shocks are Realized
- Each Individual Updates (Or Not)
- Onsume Based on Beliefs
- Consumer Sees End-Of-Period Bank Balance

Behavior

Consumers behave according to frictionless consumption function:

$$ar{c}_{t,i} = c(ar{m}_{t,i})$$

 $\mathbf{c}_{t,i} = ar{c}_{t,i}ar{P}_{t,i}p_{t,i}$

• Correctly perceive level of spending

$$\bar{\mathbf{a}}_{t,i} = \bar{\mathbf{m}}_{t,i} - \mathbf{c}_{t,i} \tag{14}$$

$$\bar{\mathbf{k}}_{t+1,i} = \omega_{t+1,i} \, \exists \, (\mathbf{a}_{t,i} \pi_{t+1,i} + \bar{\mathbf{a}}_{t,i} (1 - \pi_{t+1,i})) \, / \Omega + (1 - \omega_{t+1,i}) 0 \tag{15}$$

Newborns' value can be approximated by

$$\bar{\mathbf{v}}(\mathcal{W}) \approx \overline{\mathbf{v}}(\mathcal{W}) - (\kappa/\Pi)\sigma_{\Psi}^2.$$
 (16)

If Newborns Pick Optimal Π , they solve

$$\max_{\Pi} \quad \overleftarrow{\mathbf{v}} \left(\mathcal{W} \right) - (\kappa/\Pi) \sigma_{\Psi}^2 - \iota \Pi. \tag{17}$$

Solution:

$$\Pi = (\kappa/\iota)^{0.5} \sigma_{\Psi} \tag{18}$$

Muth–Pischke Perception Dynamics

$$\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t$$
 (19)

\bullet Observe \boldsymbol{Y}

• Define signal-to-noise ratio $\varphi = \sigma_{\psi}^2 / \sigma_{\theta}^2$

Optimal Estimate of P obtained from

$$\bar{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi) \bar{P}_t$$
 (20)

where

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (21)$$

Muth–Pischke Perception Dynamics

$$\bar{P}_{t+1} = \Pi P_{t+1} + (1 - \Pi) \bar{P}_t$$
 (19)

- Observe Y
- Define signal-to-noise ratio $\varphi = \sigma_\psi^2/\sigma_\theta^2$

Optimal Estimate of P obtained from

$$\bar{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi) \bar{P}_t$$
 (20)

where

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (21)$$

18 ►

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they *can* see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they *can* see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they *can* see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they *can* see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- $\bullet~$ But calibration where they can see agg Y $\Rightarrow~$ RW
- Maybe could fiddle with calibration assumptions

Comparison

$$\Pi = \left(\frac{1}{1+2/(\varphi+\sqrt{\varphi^2+4\varphi})}\right), \quad (22)$$

Pischke (1995): This is why C is too smooth

- If we calibrate using observed micro data
 - $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx 0.967 \ \Delta \log \mathbf{C}_t$
 - Goes too far!
- It's because people can't tell agg from ind shocks
- But calibration where they can see agg $Y \Rightarrow RW$
- Maybe could fiddle with calibration assumptions

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
(23)
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \overline{1} / \Psi_{t+1}$$

$$M_{t+1} = R_{t+1} K_{t+1} + \mathcal{W}_{t+1} \Theta_{t+1}.$$

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
(23)
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \overline{\gamma} / \Psi_{t+1}$$

$$M_{t+1} = R_{t+1} K_{t+1} + \mathcal{W}_{t+1} \Theta_{t+1}.$$

3 N

Frictionless:

- No Idiosyncratic Shocks
- Aggregate Shocks Same as PE/SOE
- Cobb-Douglas production: $M_t = K_t + K_t^{\varepsilon} \Theta_t^{1-\varepsilon}$

$$V(M_{t}) = \max_{C_{t}} \left\{ \mathbf{u}(c_{t}) + \beta \mathbf{E}_{t} [\Psi_{t+1}^{1-\rho} V(M_{t+1})] \right\}$$
(23)
s.t.
$$A_{t} = M_{t} - C_{t}$$

$$K_{t+1} = A_{t} \exists \Psi_{t+1}$$

$$M_{t+1} = \mathsf{R}_{t+1} K_{t+1} + \Psi_{t+1} \Theta_{t+1}.$$

3 N

Sticky Expectations DSGE

Perception Dynamics Identical to Sticky PE/SOE

- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

同 ト イ ヨ ト イ ヨ ト

э

Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

A B > A B >

A D

э

Sticky Expectations DSGE

- Perception Dynamics Identical to Sticky PE/SOE
- $\bar{M}_t = \bar{K}_t + \bar{K}_t^{\varepsilon} \bar{\Theta}_t^{1-\varepsilon}$
- Solution: $\mathbf{C}_t = C(\bar{M}_t)\bar{P}_t$

3 N

Benchmark: Random Walk

*
$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \vartheta \mathbf{E}_t[\mathbf{r}_{t+1}] + \mu X_{t-1} + \epsilon_{t+1},$$
 (24)

and random walk means $\mu = 0$. In GE, *r* depends on *A* so * is equivalent to:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \mu X_{t-1} + \epsilon_{t+1}$$
(25)

In either case, lots of X_{t-1} were found for which $\mu \neq 0$.

Campbell and Mankiw (1989)

$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$ (26)

Claims:

- η estimates fraction of 'rule-of-thumb' C = Y consumers
- $\eta pprox$ 0.5 robustly for U.S. and other countries
- No further predictability in $\Delta \log \mathbf{C}_{t+1}$

Campbell and Mankiw (1989)

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$$
 (26)

Claims:

- η estimates fraction of 'rule-of-thumb' C = Y consumers
- $\eta \approx$ 0.5 robustly for U.S. and other countries
- No further predictability in $\Delta \log C_{t+1}$

Campbell and Mankiw (1989)

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \epsilon_{t+1}$$
 (26)

Claims:

- η estimates fraction of 'rule-of-thumb' C = Y consumers
- $\eta \approx$ 0.5 robustly for U.S. and other countries
- No further predictability in $\Delta \log \mathbf{C}_{t+1}$

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

Claims:

- η no longer statistically significant
- $\chi \approx$ 0.75 (Habits are huge!)
- OID tests succeed

3 b. 4

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

Claims:

- η no longer statistically significant
- $\chi \approx 0.75$ (Habits are huge!)
- OID tests succeed

3 N

Campbell and Deaton (1989); Rotemberg and Woodford (1997); Fuhrer (2000); Sommer (2001) Dynan (2000)/Sommer specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \alpha A_t + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{C}_t] + \epsilon_{t+1}$$

Claims:

- η no longer statistically significant
- $\chi pprox$ 0.75 (Habits are huge!)
- OID tests succeed

$\Delta \log \mathbf{c}_{t+1} ~\approx~ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$

Separable Theory:

- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

伺 ト イ ヨ ト イ ヨ

$\Delta \log \mathbf{c}_{t+1} ~\approx~ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$

Separable Theory:

- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

伺 ト イ ヨ ト イ ヨ
$\Delta \log \mathbf{c}_{t+1} ~\approx~ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$

Separable Theory:

- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

- - E - - E

 $\Delta \log \mathbf{c}_{t+1} ~\approx~ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$

Separable Theory:

- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

• No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)

• Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

4 B K 4 B K

 $\Delta \log \mathbf{c}_{t+1} ~\approx~ \varsigma + \alpha \mathbf{a}_t + \eta \mathbf{E}[\Delta \log \mathbf{y}_{t+1}] + \chi \mathbf{E}[\Delta \log \mathbf{c}_t] + \epsilon_{t+1}$

Separable Theory:

- $\alpha < 0$
- $0 < \eta < 1$
- $\chi \approx 0$

Micro Evidence on Habits:

- No: Meghir and Weber (1996); Dynan (2000); Flavin and Nakagawa (2005)
- Maybe a little: Carrasco, Labeaga, and Lòpez-Salido (2005)

4 3 b

$\Delta \log \mathbf{C}_{t+1} ~\approx~ \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbf{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

	χ	η	α
Micro (Separable)			
Theory	pprox 0	$0<\eta<1$	< 0
Data	pprox 0	$0<\eta<1$	< 0
Macro			
Theory:Separable	pprox 0	pprox 0	< 0
Theory:CampMan	pprox 0	pprox 0.5	< 0
Theory:Habits	pprox 0.75	pprox 0	< 0

DSGE Model						
Calibrated Parameters						
ho	2.	Coefficient of Relative Risk Aversion				
٦	$0.94^{1/4}$	Quarterly Depreciation Factor				
${\sf K}/{\sf K}^arepsilon$	12	Perf Foresight SS Capital/Output Ratio				
σ_{Θ}^2	0.00001	Variance Qtrly Tran Agg Pty Shocks				
σ_{Ψ}^2	0.00004	Variance Qtrly Perm Agg Pty Shocks				

Steady State Solution of Model With $\sigma_{\Psi} = \sigma_{\Theta} = 0$

pprox 48.55	Steady State Quarterly K/P Ratio
pprox 52.6	Steady State Quarterly M/P Ratio
pprox 2.59	Quarterly Wage Rate
= 1.03	Quarterly Gross Capital Income Factor
pprox 1.014	Quarterly Between-Period Interest Factor
pprox 0.986	Quarterly Time Preference Factor
	≈ 48.55 ≈ 52.6 ≈ 2.59 = 1.03 ≈ 1.014 ≈ 0.986

- 4 同 6 4 日 6 4 日 6

Calibration—PE/SOE

Partial Equilibrium/Small Open Economy (PE/SOE) Model Parameters

Calibrated Parameters

$\sigma^2_{\vec{w}}$	0.016
$\sigma_{\vec{\theta}}^{\hat{2}}$	0.03
Ş	0.05
П	0.25
$(1-\Omega)$	0.005

Variance Annual Perm Idiosyncratic Shocks (Variance Annual Tran Idiosyncratic Shocks (F Quarterly Probability of Unemployment Spell Quarterly Probability of Updating Expectation Quarterly Probability of Mortality

Calculated Parameters

$$\begin{split} \beta &= 0.99 \Omega/E[(\boldsymbol{\psi})^{-\rho}] \mathbf{R} & 0.965 \\ \sigma_{\psi}^2 & 0.004 \\ \sigma_{\theta}^2 & 0.12 \end{split}$$

Satisfies Impatience Condition: $\beta < \Omega/E[(\Psi \psi V_{ariance} Qtrly Perm Idiosyncratic Shocks (= 0) Variance Qtrly Tran Idiosyncratic Shocks (= 4)$

Equilibrium

	PE/SOE Economy		DSGE Eco	nomy
	Frictionless	Sticky	Frictionless	Sticky
Means				
A	6.650	6.648	49.382	49.371
С	2.684	2.684	3.290	3.289
Standard Deviations				
Aggregate Time Ser	ies ('Macro')			
log A	0.089	0.091	0.085	0.085
$\Delta \log \mathbf{C}$	0.005	0.002	0.003	0.001
$\Delta \log \mathbf{Y}$	0.008	0.003	0.005	0.002
Individual Cross Sec	tional ('Micro')			
log a	1.273	1.273		
log c	1.207	1.207		
log p	1.221	1.221		
$\log \mathbf{y} \mathbf{y} > 0$	0.846	0.846		
$\Delta \log \mathbf{c}$	0.151	0.149		
Cost Of Stickiness	$0.31 imes10^{-1}$	-4	0.53 imes 1	0 ⁻⁵

🗇 🕨 🔺 문 🕨 🖉 문

æ

Micro Theory: Frictionless

$\Delta \log \mathbf{c}_{t+}$	$_{1,i} = \varsigma$	$+\chi\Delta\log c$	$\mathbf{E}_{t,i} + \eta \mathbf{E}_{t,i} [\Delta$	$\log \mathbf{y}_{t+1,i}$]	$+ \alpha \underline{a}_{t,i}$
Model of					
Expectations	χ	η	α	\bar{R}^2	nobs
Frictionless					
	0.083			0.007	76020
	(0.077)				
		0.003		-0.000	76020
		(0.004)			
		. ,	-0.111	0.000	76020
			(0.052)		
	0.083	0.009	_0.059 [´]	0.007	76020
	(0.004)	(0.004)	(0.024)		

э

Micro Theory: Sticky

$\Delta \log \mathbf{c}_{t+}$	$+1,i = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbf{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{a}_{t,i}$					
Model of						
Expectations	χ	η	α	\bar{R}^2	nobs	
Sticky						
	0.084			0.007	76020	
	(0.077)					
		0.003		-0.000	76020	
		(0.004)				
		· · · ·	-0.111	0.000	76020	
			(0.051)			
	0.083	0.009	_0.059 [´]	0.007	76020	
	(0.004)	(0.004)	(0.024)			

æ

- **→** → **→**

DSGE Macro: Frictionless

		1	([·-8 ·		··[+1] + @=[/.	L
Expectations:Dep Var Independent Variables				2nd Stage \bar{R}^2	IV F p-val IV OID	
Fric	tionless: $\Delta \log 0$	C_{t+1}				
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A _t				
0.010 (0.032)			OLS	-0.001		
()	0.184 (0.050)		IV	0.007	0.000 0.001	
		-0.0002 (0.0001)	OLS	0.010		
-0.019 (0.027)	0.152 (0.052)	-0.0002 (0.0001)	IV	0.007		
	Ex. Inc $\Delta \log C_t$ 0.010 (0.032) -0.019 (0.027)	$\begin{array}{c} {\sf Expectations:Dep} \\ {\sf Independent Varia} \\ {\sf Frictionless: $\Delta \log t$} \\ {\sf \Delta} \log {\sf C}_t $ \Delta \log {\sf Y}_{t+1}$ \\ 0.010 \\ (0.032) $ 0.184 \\ (0.050) \\ -0.019 $ 0.152 \\ (0.027) $ (0.052) \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline Expectations: Dep Var & & & \\ \hline Independent Variables & & \\ \hline Frictionless: $\Delta \log C_{t+1}$ & & \\ \hline $\Delta \log C_t$ & $\Delta \log Y_{t+1}$ & A_t & \\ \hline 0.010 & & & \\ 0.184 & \\ (0.050) & & \\ -0.0002 & \\ (0.001) & \\ -0.0019$ & 0.152 & -0.0002 \\ (0.027) & (0.052) & (0.0001) & \\ \hline \end{tabular}$	$\begin{array}{c c} \mbox{Expectations:Dep Var} & OLS \\ \mbox{Independent Variables} & or IV \\ \hline \mbox{Frictionless: } \Delta \log {\bf C}_{t+1} & A_t \\ \Delta \log {\bf C}_t & \Delta \log {\bf Y}_{t+1} & A_t \\ \mbox{0.010} & & OLS \\ \mbox{(0.032)} & & & IV \\ & & 0.184 & IV \\ \mbox{(0.050)} & & & \\ & & -0.0002 & OLS \\ \mbox{(0.001)} & & & \\ \mbox{-0.019} & 0.152 & -0.0002 \\ \mbox{(0.027)} & (0.052) & (0.0001) \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline Expectations:Dep Var & OLS & 2nd Stage \\ \hline Independent Variables & or IV & $$\bar{R}^2$ \\ \hline Frictionless: $$\Delta \log C_{t+1}$ \\ \hline $$\Delta \log C_t $ $$\Delta \log Y_{t+1}$ $$A_t$ \\ \hline $$0.010 $ & OLS & -0.001$ \\ \hline $$(0.032) $ & $$0.184 $ $ IV $ $$0.007$ \\ \hline $$(0.050) $ & $$-0.0002$ \\ \hline $$(0.050) $ & $$0.100$ \\ \hline $$(0.0001) $ & $$0.152 $ $$-0.0002$ \\ \hline $$(0.027) $ $$(0.052) $ $$(0.0001) $ \\ \hline $$IV $ $$0.007$ \\ \hline $$(0.001) $ \\ \hline $$IV $ $$0.007$ \\ \hline $$(0.001) $ \\ \hline $$IV $ $$0.007$ \\ \hline $$(0.0021) $ \\ \hline $$(0.027) $ $$(0.052) $ $$(0.001) $ \\ \hline $$(0.021) $ \\ \hline $$(0.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

э

DSGE Macro: Sticky

	$\Delta \log \mathbf{C}_{t+}$	$-1 = \varsigma +$	$\chi \Delta \mathbf{E}[\log \mathbf{C}_t] +$	$-\eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}]$	$[] + \alpha \mathbf{E}[A_t]$
E>	«pectations:Dep dependent Varia	Var bles	OLS or IV	2nd Stage \bar{R}^2	IV F <i>p</i> -val IV OID
$\Delta \log \overline{\mathbf{C}}_t$ 0.823 (0.018)	Sticky $\Delta \log oldsymbol{ar{Y}}_{t+1}$	Āt	OLS	0.677	
$\Delta \log \tilde{\bar{\mathbf{C}}}_t$					
0.387			OLS	0.141	
0.845			IV	0.422	0.000
()	0.815 (0.025)		IV	0.395	0.000
	()	-0.0004	OLS	0.115	
0.750	0.065	-0.0001	IV	0.423	
(0.148)	(0.146)	(0.0000)			0.126
Memo: For	r instruments \mathbf{Z}_t	, $\Delta \log \mathbf{C}_{t+1} =$	$= \mathbf{Z}_t \zeta, \ \overline{R}^2 =$	0.425	

æ

э

Small Open Economy: Frictionless

	$\Delta \log C_{t+1}$	$-1 = \varsigma +$	χΔείιοg	$\mathbf{C}_t \mathbf{J} + \eta \mathbf{E} [\Delta \mathbf{R}]$	$\log \mathbf{T}_{t+1} + \alpha \mathbf{E}[A]$	٩t
E>	pectations:Dep dependent Varia	Var bles	OLS or IV	2nd Stage R ²	IV <i>F p</i> -val IV OID	
Frie	tionless: $\Delta \log$	C_{t+1}				
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.022			OLS	0.000		
(0.028 (0.016)		IV	0.000	0.000 0.030	
		-0.0008 (0.0004)	OLS	0.000		
0.019 (0.010)	0.028 (0.016)	-0.0005 (0.0004)	IV	0.000		

э

Small Open Economy: Sticky

 $\Delta \log \mathbf{C}_{t+1} \quad = \quad \varsigma + \chi \Delta \mathbf{E}[\log \mathbf{C}_t] + \eta \mathbf{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha \mathbf{E}[A_t]$

Expectations:Dep Var Independent Variables			OLS or IV	2nd Stage R ²	IV F p-val IV OID	
	$\Delta \log \bar{\mathbf{C}}_t$	$\Delta \log \bar{\mathbf{Y}}_{t+1}$	\bar{A}_t			
	0.345			OLS	0.121	
	0.805			IV	0.363	0.000
	(0.014)	1.150 (0.015)		IV	0.352	0.000
	0.498 (0.028)	0.496 (0.040)	-0.0007 (0.0005)	IV	0.375	0.000
	Memo: For	r instruments Z_t	$\Delta \log \mathbf{C}_{t+1} =$	$= \mathbf{Z}_t \zeta, \overline{R}^2 =$	0.390	

- **→** → **→**

э

-∢∃>

Empirical Results for U.S.

	$\Delta \log C_{t+1}$	$= \varsigma + \chi \Delta$	$\log C_t + \eta E[$	$\Delta \log \mathbf{Y}_{t+1}$]	$+ \alpha A_t$	
Consumption				Method		IV F p-val
Series	x	η	α	OLS/IV	\bar{R}_{2}^{2}	IV OID
Nondurables an	d Services					
	0.358***			OLS	0.123	
	(0.066)					
		0.577***		IV	0.172	0.000
		(0.118)				0.702
			0.0006	OLS	0.002	
			(0.0006)			
	0.826***			IV	0.143	0.000
	(0.147)					0.714
	0.731***	0.071	0.0000	IV	0.135	
	(0.230)	(0.118)	(0.0003)			0.482
Memo:	For instrum	ients \mathbf{Z}, Δ lo	$\log \mathbf{C}_{t+1} = \mathbf{Z}$	$\zeta, \bar{R}^2 = 0.10$	68	

Instruments: L(2/3).diffcons L(2/3).wyRatio L(2/3).bigTheta L(2/3).dfedfunds L(2/3).ics Time frame: 1960Q1-2004Q3, $\sigma_W^2 = .0000429, \sigma_\Theta^2 = .0000107$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 ABEL, ANDREW B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80(2), 38–42.

BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," *Journal of Political Economy*, 93(2), 223-247.
CALVO, GUILLERMO A. (1983): "Staggered Contracts in a Utility-Maximizing Framework," *Journal of Monetary Economics*, 12, 282, 08

CAMPBELL, JOHN Y., AND ANGUS S. DEATON (1989): "Why Is Consumption So Smooth?," *Review of Economic Studies*, 56, 357–74.

CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989):
"Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in *NBER Macroeconomics Annual*, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216.
MIT Press, Cambridge, MA.

CARRASCO, RAQUEL, JOSÈ M. LABEAGA, AND J. DAVID LÒPEZ-SALIDO (2005): "Consumption and Habits: Evidence

- from Panel Data," *Economic Journal*, 115(500), 144–165, available at
- http://ideas.repec.org/a/ecj/econjl/v115y2005i500p144-165.html.
- CARROLL, CHRISTOPHER D. (2003): "Macroeconomic Expectations of Households and Professional Forecasters," Quarterly Journal of Economics, 118(1), 269-298, http: //econ.jhu.edu/people/ccarroll/epidemiologyQJE.pdf
- CONSTANTINIDES, GEORGE M. (1990): "Habit Formation: A Resolution of the Equity Premium Puzzle," *Journal of Political Economy*, 98, 519–43.
- DYNAN, KAREN E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," American Economic Review, 90(3).
- FLAVIN, MARJORIE J., AND SHINOBU NAKAGAWA (2005): "A Model of Housing in the Presence of Adjustment Costs: A Structural Interpretation of Habit Persistence," *Manuscript UCSD*.

FUHRER, JEFFREY C. (2000): "An Optimizing Model for Monetary Policy: Can Habit Formation Help?," American Economic Review, 90(3).

- LUCAS, ROBERT E. (1973): "Some International Evidence on Output-Inflation Tradeoffs," *American Economic Review*, 63, 326–334.
- MANKIW, N. GREGORY, AND RICARDO REIS (2002): "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," *Quarterly Journal of Economics*, 117(4), 1295–1328.
- MEGHIR, COSTAS, AND GUGLILELMO WEBER (1996):
 "Intertemporal Non-Separability or Borrowing Restrictions? A Disaggregate Analysis Using a U.S. Consumption Panel," *Econometrica*, 64(5), 1151–82.
- MUTH, JOHN F. (1960): "Optimal Properties of Exponentially Weighted Forecasts," *Journal of the American Statistical Association*, 55(290), 299–306.

PISCHKE, JÖRN-STEFFEN (1995): "Individual Income, Incomplete Information, and Aggregate Consumption," *Econometrica*, 63(4), 805–40.

REIS, RICARDO (2003): "Inattentive Consumers," *Manuscript, Harvard University.*

ROTEMBERG, JULIO J., AND MICHAEL WOODFORD (1997):
"An Optimization-Based Econometric Model for the Evaluation of Monetary Policy," in *NBER Macroeconomics Annual*, 1997, ed. by Benjamin S. Bernanke, and Julio J. Rotemberg, vol. 12, pp. 297–346. MIT Press, Cambridge, MA.

SIMS, CHRISTOPHER A. (2003): "Implications of Rational Inattention," *Journal of Monetary Economics*, 50(3), 665–690, available at http://ideas.repec.org/a/eee/moneco/v50v2003i3p665-

690.html.

SOMMER, MARTIN (2001): "Habits, Sentiment and Predictable Income in the Dynamics of Aggregate Consumption,"

Manuscript, The Johns Hopkins University, http://econ.jhu.edu/pdf/papers/wp458.pdf.

WOODFORD, MICHAEL (2001): "Imperfect Common Knowledge and the Effects of Monetary Policy," *NBER Working Paper Number 8673.*