
1 The Terminal/Limiting Consumption Function
For any set of parameter values that satisfy the conditions required for convergence,
the problem can be solved by setting the terminal consumption function to cT (m) =
m and constructing {cT−1, cT−2, ...} by time iteration (a method that will converge to
c(m) by standard theorems). But cT (m) = m is very far from the final converged
consumption rule c(m),1 and thus many periods of iteration will likely be required to
obtain a candidate rule that even remotely resembles the converged function.

A natural alternative choice for the terminal consumption rule is the solution to the
perfect foresight liquidity constrained problem, to which the model’s solution converges
(under specified parametric restrictions) as all forms of uncertainty approach zero (as
discussed in the main text). But a difficulty with this idea is that the perfect foresight
liquidity constrained solution is ‘kinked:’ The slope of the consumption function changes
discretely at the points {m1

#,m
2
#, ...}. This is a practical problem because it rules out

the use of derivatives of the consumption function in the approximate representation of
c(m), thereby preventing the enormous increase in efficiency obtainable from a higher-
order approximation.

Our solution is simple: The formulae in appendix ?? that identify kink points on c̊(m)
for integer values of n (e.g., cn# = ÞÞÞ−nΓ ) are continuous functions of n; the conclusion
that c̊(m) is piecewise linear between the kink points does not require that the terminal
consumption rule (from which time iteration proceeds) also be piecewise linear. Thus,
for values n ≥ 0 we can construct a smooth function c̆(m) that matches the true perfect
foresight liquidity constrained consumption function at the set of points corresponding
to integer periods in the future, but satisfies the (continuous, and greater at non-kink
points) consumption rule defined from the appendix’s formulas by noninteger values of
n at other points.2

This strategy generates a smooth limiting consumption function – except at the
remaining kink point defined by {m0

#, c
0
#}. Below this point, the solution must match

c(m) = m because the constraint is binding. At m = m0
# the MPC discretely drops

(that is, limm↑m0
#

c′(m) = 1 while limm↓m0
#

c′(m) = κ0
# < 1).

Such a kink point causes substantial problems for numerical solution methods (like the
one we use, described below) that rely upon the smoothness of the limiting consumption
function.

Our solution is to use, as the terminal consumption rule, a function that is identical
to the (smooth) continuous consumption rule c̆(m) above some n ≥ n, but to replace
c̆(m) between m0

# and mn
# with the unique polynomial function ĉ(m) that satisfies the

following criteria:

1. ĉ(m0
#) = c0

#

2. ĉ′(m0
#) = 1

1Unless β ≈ +0.
2In practice, we calculate the first and second derivatives of c̊ and use piecewise polynomial

approximation methods that match the function at these points.



3. ĉ′(mn
#) = (dcn#/dn)(dmn

#/dn)−1|n=n

4. ĉ′′(mn
#) = (d2cn#/dn

2)(d2mn
#/dn

2)−1|n=n

where n is chosen judgmentally in a way calculated to generate a good compromise
between smoothness of the limiting consumption function c̆(m) and fidelity of that
function to the c̊(m) (see the actual code for details).

We thus define the terminal function as3

cT (m) =


0 < m ≤ m0

# m

m0
# < m < mn

# c̆(m)

mn
# < m c̊(m)

(1)

Since the precautionary motive implies that in the presence of uncertainty the optimal
level of consumption is below the level that is optimal without uncertainty, and since
c̆(m) ≥ c̊(m), implicitly defining m = eµ (so that µ = logm), we can construct

χt(µ) = log(1− ct(e
µ)/cT (eµ)) (2)

which must be a number between −∞ and +∞ (since 0 < ct(m) < c̆(m) for m > 0).
This function turns out to be much better behaved (as a numerical observation; no formal
proof is offered) than the level of the optimal consumption rule ct(m). In particular,
χt(µ) is well approximated by linear functions both as m ↓ 0 and as m ↑ ∞.

Differentiating with respect to µ and dropping consumption function arguments yields

χ′t(µ) =

−
(

c′tcT−ctc′T
c2T

eµ
)

1− ct/cT

 (3)

which can be solved for

c′t = (ctc
′
T/cT )− ((cT − ct)/m)χ′t. (4)

Similarly, we can solve (??) for

ct(m) =
(
1− eχt(logm)

)
cT (m). (5)

Thus, having approximated χt, we can recover from it the level and derivative(s) of
ct.4

3For further details see the archive file ./CoreCode/Documentation/cTerminal.nb.
4See ./CoreCode/Documentation/Derivations.nb for implementation details and further

derivations.

2


