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1 Introduction
Spurred by the success of Modigliani and Brumberg’s (1954) Life Cycle model and
Friedman’s (1957) Permanent Income Hypothesis, a vast literature in the 1960s and
1970s formalized the idea that household spending can be modeled as reflecting
optimal intertemporal choice. Famous papers by Schectman and Escudero (1977) and
Bewley (1977) capped this literature, providing key building blocks for the ascendancy
of dynamic stochastic optimizing models in economics.
Given this pedigree, it is surprising that the now-standard method for analyzing

such problems, contraction mapping theory, has not yet established some basic prop-
erties of the solution to the benchmark consumption problem with unbounded (e.g.
constant relative risk aversion) utility, uncertainty about permanent and transitory
income a la Friedman (1957), and no liquidity constraints (nor has any other method
established such results). The gap exists because (except in a few special cases)
standard theorems from the contraction mapping literature (including those in Stokey
et. al. (1989) and up through the recent work of Matkowski and Nowak (2011)) cannot
be used for this problem (for reasons explained below).
This paper fills that gap, deriving the conditions that must be satisfied for this

standard problem to have a nondegenerate solution.
The reader could be forgiven for not having noticed a gap. A large literature solving

precisely such problems has emerged following Zeldes (1989), fueled by advances in
numerical solution methods. But numerical solutions are a ‘black box’: They make it
possible to use a model without really understanding it. Indeed, without foundational
theory, it can be difficult even to be sure that a computational solution is correct, given
the notorious difficulty of writing error-free computer code. Furthermore, without
theoretical underpinnings, the analyst often has little intuition for how results might
change with changes in the structure (or even the calibration) of the model.
For example, numerical solutions typically imply the existence of a target level of

nonhuman wealth (‘cash’ for short) such that if cash exceeds the target, the consumer
will spend freely and cash will fall (in expectation), while if cash is below the target
the consumer will save and cash will rise. Carroll (1992; 1997) showed that target
saving behavior arises under plausible parameter values for both infinite and finite
horizon models. Gourinchas and Parker (2002) estimate the Carroll (1997) model
using household data and conclude that for the mean household the buffer-stock phase
of life lasts from age 25 until around age 40-45; using the same model with different
data Cagetti (2003) finds target saving behavior into the 50s for the median household.
But none of these papers provides a rigorous delineation of the circumstances under
which target saving will emerge or an analytical explanation for why such behavior
is optimal.
This paper provides the analytical foundations for target saving and many other

results that have become familiar from the numerical literature. All theoretical con-
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clusions are paired with numerically computed illustrations (using software available
on the author’s website), providing an integrated framework for understanding buffer-
stock saving.
The paper proceeds in three parts.
The first part specifies the conditions required for the problem to define a unique

limiting consumption function. The conditions turn out to strongly resemble those
required for the liquidity constrained perfect foresight model to have a solution; that
parallel is explored and explained. Next, some limiting properties are derived for the
consumption function as cash approaches infinity and as it approaches its lower bound,
and the theorem asserting that the problem defines a contraction mapping is proven.
Finally, a related class of commonly-used models (exemplified by Deaton (1991)) is
shown to constitute a particular limit of this paper’s more general model.
The next section examines five key properties of the model. First, as cash ap-

proaches infinity the expected growth rate of consumption and the marginal propen-
sity to consume (MPC) converge to their values in the perfect foresight case. Second,
as cash approaches zero the expected growth rate of consumption approaches infin-
ity, and the MPC approaches a simple analytical limit. Third, if the consumer is
sufficiently ‘impatient’ (in a particular sense), a unique target cash-to-permanent-
income ratio will exist. Fourth, at the target cash ratio, the expected growth rate of
consumption is slightly less than the expected growth rate of permanent noncapital
income. Finally, the expected growth rate of consumption is declining in the level
of cash. The first four propositions are proven under general assumptions about
parameter values; the last is shown to hold if there are no transitory shocks, but may
fail in extreme cases if there are both transitory and permanent shocks.
Szeidl (2012) has recently proven that such an economy will be characterized

by stable invariant distributions for the consumption ratio, the wealth ratio, and
other variables.1 Using Szeidl’s result, the final section shows that even with a
fixed aggregate interest rate that differs from the time preference rate, an economy
populated by buffer stock consumers converges to a balanced growth equilibrium
in which the growth rate of aggregate consumption tends toward the (exogenous)
growth rate of aggregate permanent income. A similar proposition holds at the level
of individual households.

1Szeidl’s proof supplants the analysis in an earlier draft of this paper, which conjectured that such a result held
and provided supportive simulation evidence.
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2 The Problem

2.1 Setup
The consumer solves an optimization problem from the current period t until the end
of life at T defined by the objective

max Et

[
T−t∑
n=0

βnu(ct+n)

]
(1)

where u(•) = •1−ρ/(1 − ρ) is a constant relative risk aversion utility function with
ρ > 1.2,3 The consumer’s initial condition is defined by market resources mt (what
Deaton (1991) calls ‘cash-on-hand’) and permanent noncapital income pppt. (This will
henceforth be called a ‘Friedman/Buffer Stock’ (FBS) income process because its
definition corresponds reasonably well to the descriptions in Friedman (1957) and
because such a process has been widely used in the numerical buffer stock saving
literature.)
In the usual treatment, a dynamic budget constraint (DBC) simultaneously incor-

porates all of the elements that determine next period’s m given this period’s choices;
but for the detailed analysis here, it will be useful to disarticulate the steps so that
individual ingredients can be separately examined:

at = mt − ct (2)
bt+1 = atR

pppt+1 = pppt Γψt+1︸ ︷︷ ︸
≡Γt+1

mt+1 = bt+1 + pppt+1ξt+1,

where at indicates the consumer’s assets at the end of period t, which grow by a
fixed interest factor R = (1 + r) between periods, so that bt+1 is the consumer’s
financial (‘bank’) balances before next period’s consumption choice;4 mt+1 (‘market
resources’ or ‘money’) is the sum of financial wealth bt+1 and noncapital income
pppt+1ξt+1 (permanent noncapital income pppt+1 multiplied by a mean-one iid transitory
income shock factor ξt+1; from the perspective of period t, all future transitory shocks
are assumed to satisfy Et[ξt+n] = 1 ∀ n ≥ 1). Permanent noncapital income in period
t+1 is equal to its previous value, multiplied by a growth factor Γ, modified by a mean-
one iid shock ψt+1, Et[ψt+n] = 1 ∀ n ≥ 1 satisfying ψ ∈ [ψ, ψ̄] for 0 < ψ ≤ 1 ≤ ψ̄ <∞

2The main results also hold for logarithmic utility which is the limit as ρ→ 1 but incorporating the logarithmic
special case in the proofs is cumbersome and therefore omitted.

3We will define the infinite horizon solution as the limit of the finite horizon problem as the horizon T − t
approaches infinity.

4Allowing a stochastic interest factor is straightforward but adds little insight. The effects are more interesting
for analysis of the invariant distribution (Szeidl (2012)).
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where ψ = ψ̄ = 1 is the degenerate case with no permanent shocks.5 (Hereafter for
brevity we occasionally drop time subscripts, e.g. E[ψ−ρ] signifies Et[ψ−ρt+1].)
Following Carroll (1992), assume that in future periods t + n ∀ n ≥ 1 there is a

small probability ℘ that income will be zero (a ‘zero-income event’),

ξt+n =

{
0 with probability ℘ > 0

θt+n/�℘ with probability �℘ ≡ (1− ℘)
(3)

where θt+n is an iid mean-one random variable (Et[θt+n] = 1 ∀ n > 0) that has a
distribution satisfying θ ∈ [θ, θ̄] where 0 < θ ≤ 1 ≤ θ̄ <∞ (degenerately θ = θ̄ = 1).
Call the cumulative distribution functions Fψ and Fθ (and Fξ is derived trivially from
(3) and Fθ). Permanent income and cash start out strictly positive, pppt ∈ (0,∞) and
mt ∈ (0,∞), and the consumer cannot die in debt,

cT ≤ mT . (4)

The model looks more special than it is. In particular, the assumption of a positive
probability of zero-income events may seem objectionable. However, it is easy to
show that a model with a nonzero minimum value of ξ (motivated, for example, by
the existence of unemployment insurance) can be redefined by capitalizing the PDV
of minimum income into current market assets,6 analytically transforming that model
back into the model analyzed here. Also, the assumption of a positive point mass
(as opposed to positive density) for the worst realization of the transitory shock is
inessential, but simplifies and clarifies the proofs and is a powerful aid to intuition.
This model differs from Bewley’s (1977) classic formulation in several ways. The

CRRA utility function does not satisfy Bewley’s assumption that u(0) is well defined,
or that u′(0) is well defined and finite, so neither the value function nor the marginal
value function will be bounded. It differs from Schectman and Escudero (1977) in
that they impose liquidity constraints and positive minimum income. It differs from
both of these in that it permits permanent growth, and also permanent shocks to
income, which a large empirical literature finds are to be quantitatively important in
micro data (MaCurdy (1982); Abowd and Card (1989); Carroll and Samwick (1997);
Jappelli and Pistaferri (2000); Storesletten, Telmer, and Yaron (2004); Blundell, Low,
and Preston (2008)) and which the theory since Friedman (1957) suggests are far more
consequential for household welfare than are transitory fluctuations. (The incorpo-
ration of permanent shocks also rules out application of the tools of Matkowski and

5It is useful to emphasize that permanent noncapital income as defined here differs from what Deaton (1992)
calls permanent income (which is often adopted in the macro literature). Deaton defines permanent income as the
amount that a perfect foresight consumer could spend while leaving total (human and nonhuman) wealth constant.
Relatedly, we refer to mt as ‘cash-on-hand’ or ‘market resources’ rather than as wealth to avoid any confusion
for readers accustomed to thinking of the discounted value of future noncapital income as a part of wealth. The
‘market resources’ terminology is motivated by the model’s assumption that human wealth cannot be capitalized, an
implication of anti-slavery laws.

6So long as this PDV is a finite number and unemployment benefits are proportional to pppt; see the discussion in
section 2.11.

5



Nowak (2011) and the extensive literature cited therein). It differs from Deaton (1991)
because liquidity constraints are absent; there are separate transitory and permanent
shocks (a la Muth (1960)); and the transitory shocks here can occasionally cause
income to reach zero.7 Finally, it differs from models found in Stokey et. al. (1989)
because neither liquidity constraints nor bounds on utility or marginal utility are
imposed.8

2.2 The Problem Can Be Rewritten in Ratio Form
The number of relevant state variables can be reduced from two (m and ppp) to one (m =
m/ppp) as follows. Defining nonbold variables as the boldface counterpart normalized
by pppt (as with mt), assume that value in the last period of life is u(mT ), and consider
the problem in the second-to-last period,

vvvT−1(mT−1, pppT−1) = max
cT−1

u(cT−1) + β ET−1[u(mT )]

= max
cT−1

u(pppT−1cT−1) + β ET−1[u(pppTmT )]

= ppp1−ρ
T−1

{
max
cT−1

u(cT−1) + β ET−1[u(ΓTmT )]

}
. (5)

Now consider the related problem
where Rt+1 ≡ (R/Γt+1) is a ‘growth-normalized’ return factor, and the problem’s

first order condition is

c−ρt = Rβ Et[Γ−ρt+1c
−ρ
t+1]. (6)

Since vT (mT ) = u(mT ), defining vT−1(mT−1) from (??) for t = T − 1, (5) reduces
to

vvvT−1(mT−1, pppT−1) = ppp1−ρ
T−1vT−1(mT−1/pppT−1).

This logic induces to all earlier periods, so that if we solve the normalized one-
state-variable problem specified in (??) we will have solutions to the original problem
for any t < T from:9

vvvt(mt, pppt) = ppp1−ρ
t vt(

mt︷ ︸︸ ︷
mt/pppt),

ccct(mt, pppt) = ppptct(mt).

7Below it will become clear that the Deaton model is a particular limit of this paper’s model.
8Similar restrictions to those in the cited literature are made in the well known papers by Scheinkman and

Weiss (1986) and Clarida (1987). See Toche (2005) for an elegant analysis of a related but simpler continuous-time
model.

9v is an exception to the notational convention that boldfaced variables are the nonbold version multiplied by ppp;
the appropriate scaling factor for value is ppp1−ρ.
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2.3 Definition of a Nondegenerate Solution
We say that a consumption problem has a nondegenerate solution if it defines a unique
limiting consumption function whose optimal c satisfies

0 < c < ∞ (7)

for every 0 < m <∞. (‘Degenerate’ limits will be cases where the limiting consump-
tion function is either c(m) = 0 or c(m) =∞.)

2.4 Perfect Foresight Benchmarks
The analytical solution to the perfect foresight specialization of the model, obtained
by setting ℘ = 0 and θ = θ̄ = ψ = ψ̄ = 1, provides a useful reference point and
defines some remaining notation.

2.4.1 Human Wealth

The dynamic budget constraint, strictly positive marginal utility, and the can’t-die-
in-debt condition (4) imply an exactly-holding intertemporal budget constraint (IBC)

PDVt(c) =

bt︷ ︸︸ ︷
mt − pppt +

hhht︷ ︸︸ ︷
PDVt(ppp), (8)

where hhht is ‘human wealth,’ the discounted value of noncapital income, and with a
constant R ≡ R/Γ, human wealth will be

hhht = pppt +R−1pppt +R−2pppt + ...+Rt−Tpppt

=

(
1−R−(T−t+1)

1−R−1

)
︸ ︷︷ ︸

≡ht

pppt. (9)

(9) makes plain that in order for h ≡ limn→∞ hT−n to be finite, we must impose the
Finite Human Wealth Condition (‘FHWC’)

Γ/R︸︷︷︸
R−1

< 1. (10)

Intuitively, for human wealth to be finite, the growth rate of noncapital income must
be smaller than the interest rate at which that income is being discounted.

2.4.2 Unconstrained Solution

In the absence of a liquidity constraint, the consumption Euler equation holds in
every period; with u′(c) = c−ρ, this says

c−ρt = Rβc−ρt+1
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ct+1/ct = (Rβ)1/ρ ≡ ÞÞÞ (11)

where the Old English letter ‘thorn’ represents what we will call the ‘absolute patience
factor’ (Rβ)1/ρ.10 The sense in which ÞÞÞ captures patience is that if the ‘absolute
impatience condition’ (AIC) holds,

ÞÞÞ < 1, (12)

the consumer will choose to spend an amount too large to sustain (the level of
consumption must fall over time). We say that such a consumer is ‘absolutely
impatient’ (this is the key condition in Bewley (1977)).
We next define a ‘return patience factor’ that relates absolute patience to the return

factor:

ÞÞÞR ≡ ÞÞÞ/R (13)

so that

PDVt(c) =
(

1 + ÞÞÞR + ÞÞÞ2
R + ...+ ÞÞÞT−t

R

)
ct

=

(
1−ÞÞÞT−t+1

R

1−ÞÞÞR

)
ct

from which the IBC (8) implies

ct =

≡κt︷ ︸︸ ︷(
1−ÞÞÞR

1−ÞÞÞT−t+1
R

)
(bt + hhht) (14)

which defines a normalized finite-horizon perfect foresight consumption function

c̄T−n(mT−n) = (

=bT−n︷ ︸︸ ︷
mT−n − 1 +hT−n)κT−n (15)

where κt is the marginal propensity to consume (MPC) because it answers the
question ‘if the consumer had an extra unit of wealth, how much more would he
spend.’ Equation (14) makes plain that for the limiting MPC to be strictly positive
as n = T − t goes to infinity we must impose the condition

ÞÞÞR < 1, (16)

so that

0 < κ ≡ 1−ÞÞÞR = lim
n→∞

κT−n. (17)

Equation (16) thus imposes a second kind of ‘impatience:’ The consumer cannot be

10Impatience conditions of one kind or another have figured in intertemporal optimization problems since they
were first formalized, most notably by Ramsey (1928). Discussion of these issues was prominent in the literature of
the 1960s and 1970s, and no brief citations here could do it justice, so I refrain from the attempt.
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so pathologically patient as to wish, in the limit as the horizon approaches infinity, to
spend nothing today out of an increase in current wealth. This is the condition that
rules out the degenerate limiting solution c̄(m) = 0. Henceforth (16) will be called
the ‘return impatience condition’ or RIC, and a consumer who satisfies the condition
is called ‘return impatient.’
Given that the RIC holds, and defining limiting objects by the absence of a time

subscript (e.g., c̄(m) = limn↑∞ c̄T−n(m)), the limiting consumption function will be

c̄(mt) = (mt + h− 1)κ, (18)

and we now see that in order to rule out the degenerate limiting solution c̄(mt) =∞
we need h to be finite so we must impose the finite human wealth condition (10).
A final useful point is that since the perfect foresight growth factor for consumption

is ÞÞÞ, using u(xy) = x1−ρu(y) yields the following expression for value:

vt = u(ct) + βu(ctÞÞÞ) + β2u(ctÞÞÞ
2) + ...

= u(ct)
(
1 + βÞÞÞ1−ρ + (βÞÞÞ1−ρ)2 + ...

)
= u(ct)

(
1− (βÞÞÞ1−ρ)T−t+1

1− βÞÞÞ1−ρ

)
which asymptotes to a finite value as n = T − t approaches +∞ if βÞÞÞ1−ρ < 1; with
a bit of algebra, this requirement can be shown to be equivalent to the RIC.11 Thus,
the same conditions that guarantee a nondegenerate limiting consumption function
also guarantee a nondegenerate limiting value function.

2.4.3 Constrained Solution

If the liquidity constraint is ever to be relevant, it must be relevant at the lowest
possible level of market resources, mt = 1, which obtains for a consumer who enters
period t with bt = 0. The constraint is ‘relevant’ if it prevents the choice that would
otherwise be optimal; at mt = 1 the constraint is relevant if the marginal utility from
spending all of today’s resources ct = mt = 1, exceeds the marginal utility from doing
the same thing next period, ct+1 = 1; that is, if such choices would violate the Euler
equation (6):

1−ρ > Rβ(Γ)−ρ1−ρ. (19)

11

β((Rβ)1/ρ)1−ρ < 1

β(Rβ)1/ρ/Rβ < 1

(Rβ)1/ρ/R < 1

.
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By analogy to the return patience factor, we therefore define a ‘perfect foresight
growth patience factor’ as

ÞÞÞΓ = ÞÞÞ/Γ, (20)

and define a ‘perfect foresight growth impatience condition’ (PF-GIC)

ÞÞÞΓ < 1 (21)

which is equivalent to (19) (exponentiate both sides by 1/ρ).
If the RIC and the FHWC hold, appendix A shows that an unconstrained consumer

behaving according to (18) would choose c < m for all m > m# for some 0 < m# < 1.
The solution to the constrained consumer’s problem in this case is simple: For any
m ≥ m# the constraint does not bind (and will never bind in the future) and so the
constrained consumption function is identical to the unconstrained one. In principle,
if the consumer were somehow to arrive at an m < m# < 1 the constraint would
bind and the consumer would have to consume c = m (though such values of m are
of questionable relevance because they could only be obtained by entering the period
with b < 0 which the constraint rules out). We use the ◦ accent to designate the
limiting constrained consumption function:

c̊(m) =

{
m if m < m#

c̄(m) if m ≥ m#.
(22)

More useful is the case where the PF-GICÞÞÞ/Γ < 1 and the RICÞÞÞ/R < 1 both hold.
In this case appendix A shows that the limiting constrained consumption function
is piecewise linear, with c̊(m) = m up to a first ‘kink point’ at m1

# > 1, and with
discrete declines in the MPC at successively increasing kink points {m1

#,m
2
#, ...}. As

m ↑ ∞ the constrained consumption function c̊(m) approaches arbitrarily close to the
unconstrained c̄(m), and the marginal propensity to consume function κ̊κκ(m) ≡ c̊′(m)
limits to κ. Similarly, the value function v̊(m) is nondegenerate and limits into the
value function of the unconstrained consumer. Surprisingly, this logic holds even when
the finite human wealth condition fails (denoted ����FHWC). A solution exists because
the constraint prevents the consumer from borrowing against infinite human wealth
to finance infinite current consumption. Under these circumstances, the consumer
who starts with any amount of resources bt > 1 will run those resources down over
time so that by some finite number of periods n in the future the consumer will reach
bt+n = 0, and thereafter will set c = m = 1 for eternity, a policy that will yield value
of

vt+n = u(pppt+n)
(
1 + βΓ1−ρ + (βΓ1−ρ)2 + ...

)
= Γn(1−ρ)u(pppt)

(
1− (βΓ1−ρ)T−(t+n)+1

1− βΓ1−ρ

)
,

10



which will be a finite number whenever

≡i︷ ︸︸ ︷
βΓ1−ρ < 1 (23)
βRΓ−ρ < R/Γ

ÞÞÞΓ < (R/Γ)1/ρ (24)

which we call the Perfect Foresight Finite Value of Autarky Condition, PF-FVAC,
because it guarantees that a consumer who always spends all his permanent income
will have finite value (the consumer has ‘finite autarky value’). Note that the version
of the PF-FVAC in (24) implies the PF-GIC ÞÞÞΓ < 1 whenever ����FHWC R < Γ holds.
So, if the����FHWC holds, value for any finite m will be the sum of two finite numbers:
The component due to the unconstrained consumption choice made over the finite
horizon leading up to bt+n = 0, and the finite component due to the value of consuming
all income thereafter. The consumer’s value function is therefore nondegenerate.
The most peculiar possibility occurs when the RIC fails. Remarkably, the appendix

shows that although under these circumstances the FHWC must also fail, the con-
strained consumption function is nondegenerate even in this case. While it is true that
limm↑∞ κ̊κκ(m) = 0, nevertheless the limiting constrained consumption function c̊(m)
is strictly positive and strictly increasing in m. This result interestingly reconciles
the conflicting intuitions from the unconstrained case, where ���RIC would suggest a
dengenerate limit of c̊(m) = 0 while ����FHWC would suggest a degenerate limit of
c̊(m) =∞.

Tables 2 and 3 (and appendix table 4) codify the key points to help the reader keep
them straight (and to facilitate upcoming comparisons with the surprisingly parallel
results in the presence of uncertainty but the absence of liquidity constraints (also
tabulated for comparison)).

2.5 Uncertainty-Modified Conditions
2.5.1 Impatience

When uncertainty is introduced, the expectation of bt+1 can be rewritten as:

Et[bt+1] = at Et[Rt+1] = atREt[ψ−1
t+1] (25)

where Jensen’s inequality guarantees that the expectation of the inverse of the per-
manent shock is strictly greater than one. It will be convenient to define the object

ψ́ ≡ (E[ψ−1])−1

11



because this permits us to write expressions like the RHS of (25) compactly as, e.g.,
atRψ́−1.12 We refer to this as the ‘return compensated’ permanent shock, because it
compensates for the effect of uncertainty on the expected growth-normalized return
(in the sense implicitly defined in (25)). Note that Jensen’s inequality implies that
ψ́ < 1 for nondegenerate ψ (since E[ψ] = 1 by assumption).
Using this definition, we can transparently generalize the PF-GIC (21) by defining

a ‘compensated growth factor’

Γ = Γψ́ (26)

and a compensated growth patience factor

ÞÞÞΓ́ = ÞÞÞ/Γ (27)

and a straightforward derivation using some of the results below yields the conclusion
that

lim
mt→∞

Et[mt+1/mt] = ÞÞÞΓ́,

which implies that if we wish to prevent m from heading to infinity (that is, if we
want m to be guaranteed to be expected to fall for some large enough value of m) we
must impose a generalized version of (21) which we call simply the ‘growth impatience
condition’ (GIC):13

ÞÞÞΓ́ < 1 (28)

which is stronger than the perfect foresight version (21) because Γ < Γ.

2.5.2 Value

A consumer who spent his permanent income every period would have value

vt = Et
[
u(pppt) + βu(ppptΓt+1) + ...+ βT−tu(ppptΓt+1...ΓT )

]
= u(pppt)

(
1 + β Et[Γ1−ρ

t+1 ] + ...+ βT−t Et[Γ1−ρ
t+1 ]...Et[Γ1−ρ

T ]
)

= u(pppt)

(
1− (βΓ1−ρ E[ψ1−ρ])T−t+1

1− βΓ1−ρ E[ψ1−ρ]

)
which invites the definition of a utility-compensated equivalent of the permanent
shock,

ψ = (E[ψ1−ρ])1/(1−ρ)

12One way to think of ψ́ is as a particular kind of a ‘certainty equivalent’ of the shock; this captures the intuition
that mean-one shock renders a given mean level of income less valuable than if the shock did not exist, so that ψ́ < 1.

13Equation (28) is a bit easier to satisfy than the similar condition imposed by Deaton (1991):
(
E[ψ−ρ]

)1/ρÞÞÞΓ < 1
to guarantee that his problem defined a contraction mapping.
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which will satisfy ψ < 1 for ρ > 1 and nondegenerate ψ (and ψ < ψ́ for the preferred
(though not required) case of ρ > 2); defining Γ = Γψ we can see that vt will be finite
as T approaches ∞ if

≡i︷ ︸︸ ︷
βΓ1−ρ < 1 (29)

β < Γρ−1

which we call the ‘finite value of autarky’ condition (FVAC) because it is the value
obtained by always consuming permanent income, and which for nondegenerate ψ is
stronger (harder to satisfy in the sense of requiring lower β) than the perfect foresight
version (23) because Γ < Γ.

2.6 The Baseline Numerical Solution
Figure 1 depicts the successive consumption rules that apply in the last period of
life (cT (m)), the second-to-last period, and various earlier periods under the baseline
parameter values listed in Table 1. (The 45 degree line is labelled as cT (m) = m
because in the last period of life it is optimal to spend all remaining resources.)
In the figure, the consumption rules appear to converge as the horizon recedes

(below we show that this appearance is not deceptive); we call the limiting infinite-
horizon consumption rule

c(m) ≡ lim
n→∞

cT−n(m). (30)

2.7 Concave Consumption Function Characteristics
A precondition for the main proof is that the maximization problem (??) defines a
sequence of continuously differentiable strictly increasing strictly concave14 functions
{cT , cT−1, ...}.15 The proof of this precondition is straightforward but tedious, and so
is relegated to appendix B. For present purposes, the most important point is the
following intuition: ct(m) < m for all periods t < T because if the consumer spent
all available resources, he would arrive in period t + 1 with balances bt+1 of zero,
then might earn zero noncapital income for the rest of his life (an unbroken series of
zero-income events is unlikely but possible). In such a case, the budget constraint
and the can’t-die-in-debt condition mean that the consumer would be forced to spend
zero, incurring negative infinite utility. To avoid this disaster, the consumer never

14There is one obvious exception: cT (m) is a linear (and so only weakly concave) function.
15Carroll and Kimball (1996) proved concavity but not the other desired properties.
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Table 1 Microeconomic Model Calibration

Calibrated Parameters
Description Parameter Value Source

Permanent Income Growth Factor Γ 1.03 PSID: Carroll (1992)
Interest Factor R 1.04 Conventional

Time Preference Factor β 0.96 Conventional
Coefficient of Relative Risk Aversion ρ 2 Conventional

Probability of Zero Income ℘ 0.005 PSID: Carroll (1992)
Std Dev of Log Permanent Shock σψ 0.1 PSID: Carroll (1992)
Std Dev of Log Transitory Shock σθ 0.1 PSID: Carroll (1992)

Model Characteristics Calculated From Parameters
Approximate
Calculated

Description Symbol and Formula Value
Finite Human Wealth Measure R−1 ≡ Γ/R 0.990

PF Finite Value of Autarky Measure i ≡ βΓ1−ρ 0.932
Growth Compensated Permanent Shock ψ́ ≡ (E[ψ−1])−1 0.990

Uncertainty-Adjusted Growth Γ ≡ Γψ́ 1.020
Utility Compensated Permanent Shock ψ ≡ (Et[ψ1−ρ])1/(1−ρ) 0.990

Utility Compensated Growth Γ ≡ Γψ 1.020
Absolute Patience Factor ÞÞÞ ≡ (Rβ)1/ρ 0.999
Return Patience Factor ÞÞÞR ≡ R−1(Rβ)1/ρ 0.961

PF Growth Patience Factor ÞÞÞΓ ≡ Γ−1(Rβ)1/ρ 0.970
Growth Patience Factor ÞÞÞΓ́ ≡ Γ−1(Rβ)1/ρ 0.980

Finite Value of Autarky Measure i ≡ βΓ1−ρψ1−ρ 0.941

14



← cT ()= 45 Degree Line

cT-1 ()

cT-5 ()

cT-10()
c ()



c

Figure 1 Convergence of the Consumption Rules
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spends everything. (This is an example of the ‘natural borrowing constraint’ induced
by a precautionary motive (Zeldes (1989)).)16

2.8 Bounds for the Consumption Functions
The consumption functions depicted in Figure 1 appear to have limiting slopes as
m ↓ 0 and as m ↑ ∞. This section confirms that impression and derives those slopes,
which also turn out to be useful in the contraction mapping proof.
Assume (as discussed above) that a continuously differentiable concave consump-

tion function exists in period t + 1, with an origin at ct+1(0) = 0, a minimal MPC
κt+1 > 0, and maximal MPC κ̄t+1 ≤ 1. (If t + 1 = T these will be κT = κ̄T = 1; for
earlier periods they will exist by recursion from the following arguments.)
For mt > 0 we can define et(mt) = ct(mt)/mt and at(mt) = mt − ct(mt) and the

Euler equation (6) can be rewritten

et(mt)
−ρ = βREt


et+1(mt+1)


=mt+1Γt+1︷ ︸︸ ︷

Rat(mt) + Γt+1ξt+1

mt



−ρ (31)

= �℘βRm
ρ
t Et

[
(et+1(mt+1)mt+1Γt+1)−ρ | ξt+1 > 0

]
+℘βR1−ρ Et

[(
et+1(Rt+1at(mt))

mt − ct(mt)

mt

)−ρ
| ξt+1 = 0

]
. (32)

Consider the first conditional expectation in (32), recalling that if ξt+1 > 0 then
ξt+1 ≡ θt+1/�℘. Since limm↓0 at(m) = 0, Et[(et+1(mt+1)mt+1Γt+1)−ρ | ξt+1 > 0] is
contained within bounds defined by (et+1(θ/�℘)Γψθ/�℘)−ρ and (et+1(θ̄/�℘)Γψ̄θ̄/�℘)−ρ

both of which are finite numbers, implying that the whole term multiplied by �℘
goes to zero as mρ

t goes to zero. As mt ↓ 0 the expectation in the other term
goes to κ̄−ρt+1(1 − κ̄t)

−ρ. (This follows from the strict concavity and differentiabil-
ity of the consumption function.) It follows that the limiting κ̄t satisfies κ̄−ρt =
β℘R1−ρκ̄−ρt+1(1− κ̄t)−ρ. We can conclude that

κ̄t = ℘−1/ρ(βR)−1/ρR(1− κ̄t)κ̄t+1

℘1/ρ

ÞÞÞR︷ ︸︸ ︷
R−1(βR)1/ρ︸ ︷︷ ︸
≡℘1/ρÞÞÞR

κ̄t = (1− κ̄t)κ̄t+1 (33)

16It would perhaps be better to call it the ‘utility-induced borrowing constraint’ as it follows from the assumptions
on the utility function (in particular, limc↓0 u(c) = −∞); for example, no such constraint arises if utility is of the
(implausible) Constant Absolute Risk Aversion form.
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which yields a useful recursive formula for the maximal marginal propensity to con-
sume:

(℘1/ρÞÞÞRκ̄t)
−1 = (1− κ̄t)−1κ̄−1

t+1

κ̄−1
t (1− κ̄t) = ℘1/ρÞÞÞRκ̄

−1
t+1

κ̄−1
t = 1 + ℘1/ρÞÞÞRκ̄

−1
t+1. (34)

Then
{
κ̄−1
T−n
}∞
n=0

is a decreasing convergent sequence if

0 ≤ ℘1/ρÞÞÞR < 1, (35)

a condition that we dub the ‘Weak Return Impatience Condition’ (WRIC) because
with ℘ < 1 it will hold more easily (for a larger set of parameter values) than the
RIC (ÞÞÞR < 1).
Since κ̄T = 1, iterating (34) backward to infinity (because we are interested in the

limiting consumption function) we obtain:

lim
n→∞

κ̄T−n = κ̄ ≡ 1− ℘1/ρÞÞÞR (36)

and we will therefore call κ̄ the ‘limiting maximal MPC.’
The minimal MPC’s are obtained by considering the case where mt ↑ ∞. If the

FHWC holds, then as mt ↑ ∞ the proportion of current and future consumption that
will be financed out of capital approaches 1. Thus, the terms involving ξt+1 in (31)
can be neglected, leading to a revised limiting Euler equation

(mtet(mt))
−ρ = βREt

[
(et+1(at(mt)Rt+1) (Rat(mt)))

−ρ]
and we know from L’Hôpital’s rule that limmt→∞ et(mt) = κt, and limmt→∞ et+1(at(mt)Rt+1) =
κt+1 so a further limit of the Euler equation is

(mtκt)
−ρ = βR

(
κt+1R(1− κt)mt

)−ρ
R−1ÞÞÞ︸ ︷︷ ︸

≡ÞÞÞR=(1−κ)

κt = (1− κt)κt+1

and the same sequence of derivations used above yields the conclusion that if the RIC
0 ≤ ÞÞÞR < 1 holds, then a recursive formula for the minimal marginal propensity to
consume is given by

κ−1
t = 1 + κ−1

t+1ÞÞÞR (37)

so that {κ−1
T−n}∞n=0 is also an increasing convergent sequence, with κ being the ‘limiting

minimal MPC.’ If the RIC does not hold, then limn→∞ κ
−1
T−n =∞ and so the limiting

MPC is κ = 0.
We are now in position to observe that the optimal consumption function must

satisfy

κtmt ≤ ct(mt) ≤ κ̄tmt (38)
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because consumption starts at zero and is continuously differentiable (as argued
above), is strictly concave (Carroll and Kimball (1996)), and always exhibits a slope
between κt and κ̄t (the formal proof is provided in appendix D).

2.9 Conditions Under Which the Problem Defines a Contraction
Mapping

To prove that the consumption rules converge, we need to show that the problem
defines a contraction mapping. This cannot be proven using the standard theorems
in, say, Stokey et. al. (1989), which require marginal utility to be bounded over the
space of possible values ofm, because the possibility (however unlikely) of an unbroken
string of zero-income events for the remainder of life means that as m approaches zero
c must approach zero (see the discussion in 2.7); thus, marginal utility is unbounded.
Although a recent literature examines the existence and uniqueness of solutions to
Bellman equations in the presence of ‘unbounded returns’ (see Matkowski and Nowak
(2011) for a recent contribution), the techniques in that literature cannot be used to
solve the problem here because the required conditions are violated by a problem that
involves permanent shocks.17
Fortunately, Boyd (1990) provides a weighted contraction mapping theorem that

can be used. To use Boyd’s theorem we need

Definition 1. Consider any function • ∈ C(A,B) where C(A,B) is the space of
continuous functions from A to B. Suppose z ∈ C(A,B) with B ⊆ R and z > 0.
Then • is z-bounded if the z-norm of •,

‖ • ‖z = sup
m

[
| • (m)|
z(m)

]
, (39)

is finite.

For Cz (A,B) defined as the set of functions in C(A,B) that are z-bounded; w, x,
y, and z as examples of z-bounded functions; and using 0(m) = 0 to indicate the
function that returns zero for any argument, Boyd (1990) proves the following.
Boyd’s Weighted Contraction Mapping Theorem. Let T : Cz (A,B) →
C (A,B) such that 18,19

1) T is non-decreasing, i.e. x ≤ y⇒ {Tx} ≤ {Ty}
2) {T0} ∈ Cz (A,B)

17See Yao (2012) for a detailed discussion of the reasons the existing literature up through Matkowski and Nowak
(2011) cannot handle the problem described here.

18We will usually denote the function that results from the mapping as, e.g., {Tw}.
19To non-theorists, this notation may be slightly confusing; the inequality relations in 1) and 3) are taken to mean

‘for any specific element • in the domain of the functions in question’ so that, e.g., x ≤ y is short for x(•) ≤ y(•) ∀ • ∈ A.
In this notation, ζξz in 3) is a function which can be applied to any argument • (because z is a function).
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3) There exists some real 0 < ξ < 1, such that
{T(w + ζz)} ≤ {Tw}+ ζξz holds for all real ζ > 0 .

Then T defines a contraction with a unique fixed point.
For our problem, take A as R++ and B as R, and define

{Ez}(at) = Et
[
Γ1−ρ
t+1 z(atRt+1 + ξt+1)

]
.

Using this, we introduce the mapping T : Cz (A,B)→ C (A,B),20

{Tz}(mt) = max
ct∈[κmt,κ̄mt]

u(ct) + β ({Ez}(mt − ct)) . (40)

We can show that our operator T satisfies the conditions that Boyd requires of his
operator T, if we impose two restrictions on parameter values. The first restriction is
the WRIC necessary for convergence of the maximal MPC, equation (35) above. A
more serious restriction is the utility-compensated Finite Value of Autarky condition,
equation (29). (We discuss the interpretation of these restrictions in detail in section
2.11 below.) Imposing these restrictions, we are now in position to state the central
theorem of the paper.

Theorem 1. T is a contraction mapping if the restrictions on parameter values (35)
and (29) are true.

The proof is cumbersome, and therefore relegated to appendix D. Given that
the value function converges, appendix D.3 shows that the consumption functions
converge.

2.10 The Liquidity Constrained Solution as a Limit
This section shows that a related problem commonly considered in the literature (e.g.
with a simpler income process by Deaton (1991)), with a liquidity constraint and a
positive minimum value of income, is the limit of the problem considered here as the
probability ℘ of the zero-income event approaches zero.
Formally, suppose we change the description of the problem by making the following

two assumptions:

℘ = 0

ct ≤ mt,

and we designate the solution to this consumer’s problem c̀t(m). We will henceforth
refer to this as the problem of the ‘restrained’ consumer (and, to avoid a common
confusion, we will refer to the consumer as ‘constrained’ only in circumstances when
the constraint is actually binding).

20Note that the existence of the maximum is assured by the continuity of {Ez}(at) (it is continuous because it is
the sum of continuous z-bounded functions z) and the compactness of [κmt, κ̄mt].
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Redesignate the consumption function that emerges from our original problem
for a given fixed ℘ as ct(m;℘) where we separate the arguments by a semicolon to
distinguish between m, which is a state variable, and ℘, which is not. The proposition
we wish to demonstrate is

lim
℘↓0

ct(m;℘) = c̀t(m).

We will first examine the problem in period T−1, then argue that the desired result
propagates to earlier periods. For simplicity, suppose that the interest, growth, and
time-preference factors are β = R = Γ = 1, and there are no permanent shocks, ψ = 1;
the results below are easily generalized to the full-fledged version of the problem.
The solution to the restrained consumer’s optimization problem can be obtained

as follows. Assuming that the consumer’s behavior in period T is given by cT (m) (in
practice, this will be cT (m) = m), consider the unrestrained optimization problem

à∗T−1(m) = arg max
a

{
u(m− a) +

∫ θ̄

θ

vT (a+ θ)dFθ

}
. (41)

As usual, the envelope theorem tells us that v′T (m) = u′(cT (m)) so the expected
marginal value of ending period T − 1 with assets a can be defined as

v̀′T−1(a) ≡
∫ θ̄

θ

u′(cT (a+ θ))dFθ,

and the solution to (41) will satisfy

u′(m− a) = v̀′T−1(a). (42)

à∗T−1(m) therefore answers the question “With what level of assets would the re-
strained consumer like to end period T − 1 if the constraint cT−1 ≤ mT−1 did
not exist?” (Note that the restrained consumer’s income process remains different
from the process for the unrestrained consumer so long as ℘ > 0.) The restrained
consumer’s actual asset position will be

àT−1(m) = max[0, à∗T−1(m)],

reflecting the inability of the restrained consumer to spend more than current re-
sources, and note (as pointed out by Deaton (1991)) that

m1
# =

(
v̀′T−1(0)

)−1/ρ

is the cusp value of m at which the constraint makes the transition between binding
and non-binding in period T − 1.
Analogously to (42), defining

v′T−1(a;℘) ≡

[
℘a−ρ + �℘

∫ θ̄

θ

(cT (a+ θ/�℘))−ρ dFθ

]
, (43)
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the Euler equation for the original consumer’s problem implies

(m− a)−ρ = v′T−1(a;℘) (44)

with solution a∗T−1(m;℘). Now note that for any fixed a > 0, lim℘↓0 v
′
T−1(a;℘) =

v̀′T−1(a). Since the LHS of (42) and (44) are identical, this means that
lim℘↓0 a∗T−1(m;℘) = à∗T−1(m). That is, for any fixed value of m > m1

# such
that the consumer subject to the restraint would voluntarily choose to end the period
with positive assets, the level of end-of-period assets for the unrestrained consumer
approaches the level for the restrained consumer as ℘ ↓ 0. With the same a and
the same m, the consumers must have the same c, so the consumption functions are
identical in the limit.
Now consider values m ≤ m1

# for which the restrained consumer is constrained.
It is obvious that the baseline consumer will never choose a ≤ 0 because the first
term in (43) is lima↓0 ℘a

−ρ = ∞, while lima↓0(m − a)−ρ is finite (the marginal value
of end-of-period assets approaches infinity as assets approach zero, but the marginal
utility of consumption has a finite limit for m > 0). The subtler question is whether
it is possible to rule out strictly positive a for the unrestrained consumer.
The answer is yes. Suppose, for some m < m1

#, that the unrestrained consumer
is considering ending the period with any positive amount of assets a = δ > 0. For
any such δ we have that lim℘↓0 v

′
T−1(a;℘) = v̀′T−1(a). But by assumption we are

considering a set of circumstances in which à∗T−1(m) < 0, and we showed earlier that
lim℘↓0 a∗T−1(m;℘) = à∗T−1(m). So, having assumed a = δ > 0, we have proven that
the consumer would optimally choose a < 0, which is a contradiction. A similar
argument holds for m = m1

#.
These arguments demonstrate that for any m > 0, lim℘↓0 cT−1(m;℘) = c̀T−1(m)

which is the period T − 1 version of (41). But given equality of the period T − 1
consumption functions, backwards recursion of the same arguments demonstrates
that the limiting consumption functions in previous periods are also identical to the
constrained function.
Note finally that another intuitive confirmation of the equivalence between the two

problems is that our formula (36) for the maximal marginal propensity to consume
satisfies

lim
℘↓0

κ̄ = 1,

which makes sense because the marginal propensity to consume for a constrained
restrained consumer is 1 by our definitions of ‘constrained’ and ‘restrained.’
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2.11 Discussion of Parametric Restrictions
2.11.1 The RIC

In the perfect foresight unconstrained problem (section 2.4.2), the RIC was required
for existence of a nondegenerate solution. It is surprising, therefore, that in the
presence of uncertainty, the RIC is neither necessary nor sufficient for a nondegenerate
solution to exist. We thus begin our discussion by asking what features the problem
must exhibit (given the FVAC) if the RIC fails (that is, R < (Rβ)1/ρ):

R <

implied by FVAC︷ ︸︸ ︷
(Rβ)1/ρ < (R(Γψ)ρ−1)1/ρ

R < (R/Γ)1/ρΓψ1−1/ρ

R/Γ < (R/Γ)1/ρψ1−1/ρ

(R/Γ)1−1/ρ < ψ1−1/ρ (45)

but since ψ < 1 and 0 < 1 − 1/ρ < 1 (because we have assumed ρ > 1), this can
hold only if R/Γ < 1; that is, given the FVAC, the RIC can fail only if human
wealth is unbounded. Unbounded human wealth is permitted here, as in the perfect
foresight liquidity constrained problem. But, from equation (37), an implication
of ���RIC is that limm↑∞ c′(m) = 0. Thus, interestingly, the presence of uncertainty
both permits unlimited human wealth and at the same time prevents that unlimited
wealth from resulting in infinite consumption. That is, in the presence of uncertainty,
pathological patience (which in the perfect foresight model with finite wealth results in
consumption of zero) plus infinite human wealth (which the perfect foresight model
rules out because it leads to infinite consumption) combine here to yield a unique
finite limiting level of consumption for any finite value of m. Note the close parallel
to the conclusion in the perfect foresight liquidity constrained model in the {PF-
GIC,���RIC} case (for detailed analysis of this case see the appendix). There, too, the
tension between infinite human wealth and pathological patience was resolved with a
nondegenerate consumption function whose limiting MPC was zero.

2.11.2 The WRIC

The ‘weakness’ of the additional requirement for contraction, the weak RIC, can be
seen by asking ‘under what circumstances would the FVAC hold but the WRIC fail?’
Algebraically, the requirement is

βΓ1−ρψ1−ρ < 1 < (℘β)1/ρ/R1−1/ρ. (46)

If there were no conceivable parameter values that could satisfy both of these
inequalities, the WRIC would have no force; it would be redundant. And if we
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require R ≥ 1, the WRIC is indeed redundant because now β < 1 < Rρ−1, so that the
RIC (and WRIC) must hold.
But neither theory nor evidence demands that we assume R ≥ 1. We can therefore

approach the question of the WRIC’s relevance by asking just how low R must be
for the condition to be relevant. Suppose for illustration that ρ = 2, ψ1−ρ = 1.01,
Γ1−ρ = 1.01−1 and ℘ = 0.10. In that case (46) reduces to

β < 1 < (0.1β/R)1/2

but since β < 1 by assumption, the binding requirement is that

R < β/10

so that for example if β = 0.96 we would need R < 0.096 (that is, a perpetual riskfree
rate of return of worse than -90 percent a year) in order for the WRIC to bind. Thus,
the relevance of the WRIC is indeed “Weak.”
Perhaps the best way of thinking about this is to note that the space of parameter

values for which the WRIC is relevant shrinks out of existence as ℘ → 0, which
section 2.10 showed was the precise limiting condition under which behavior becomes
arbitrarily close to the liquidity constrained solution (in the absence of other risks).
On the other hand, when ℘ = 1, the consumer has no noncapital income (so that the
FHWC holds) and with ℘ = 1 the WRIC is identical to the RIC; but the RIC is the
only condition required for a solution to exist for a perfect foresight consumer with
no noncapital income. Thus the WRIC forms a sort of ‘bridge’ between the liquidity
constrained and the unconstrained problems as ℘ moves from 0 to 1.

2.11.3 The GIC

If both the GIC and the RIC hold, the arguments above establish that the limiting
consumption function asymptotes to the consumption function for the perfect fore-
sight unconstrained function. The more interesting case is where the GIC fails. A
solution that satisfies the combination FVAC and ���GIC is depicted in Figure 2. The
consumption function is shown along with the Et[∆mt+1] = 0 locus that identifies
the ‘sustainable’ level of spending at which m is expected to remain unchanged. The
diagram suggests a fact that is confirmed by deeper analysis: Under the depicted
configuration of parameter values (see the software archive for details), the consump-
tion function never reaches the Et[∆mt+1] = 0 locus; indeed, when the RIC holds but
the GIC does not, the consumption function’s limiting slope (1 −ÞÞÞ/R) is shallower
than that of the sustainable consumption locus (1 − Γ/R),21 so the gap between
the two actually increases with m in the limit. That is, although a nondegenerate
consumption function exists, a target level of m does not (or, rather, the target is

21This is because Et[mt+1] = Et[Rt+1(mt − ct)] + 1; solve m = (m− c)Rψ́−1 + 1 for c and differentiate.
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t[Δt+1]=0⟶

⟵ c(t)





Figure 2 Example Solution when FVAC Holds but GIC Does Not

m =∞), because no matter how wealthy a consumer becomes, he will always spend
less than the amount that would keep m stable (in expectation).
For the reader’s convenience, Tables 2 and 3 present a summary of the connections

between the various conditions in the presence and the absence of uncertainty.
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Table 2 Definitions and Comparisons of Conditions

Perfect Foresight Versions Uncertainty Versions
Finite Human Wealth Condition (FHWC)

Γ/R < 1 Γ/R < 1
The growth factor for permanent income
Γ must be smaller than the discounting
factor R, for human wealth to be finite.

The model’s risks are mean-preserving
spreads, so the PDV of future income is
unchanged by their introduction.

Absolute Impatience Condition (AIC)
ÞÞÞ < 1 ÞÞÞ < 1

The unconstrained consumer is
sufficiently impatient that the level of
consumption will be declining over time:

If wealth is large enough, the expectation
of consumption next period will be
smaller than this period’s consumption:

ct+1 < ct limmt→∞ Et[ct+1] < ct

Return Impatience Conditions
Return Impatience Condition (RIC) Weak RIC (WRIC)

ÞÞÞ/R < 1 ℘1/ρÞÞÞ/R < 1
The growth factor for consumption ÞÞÞ
must be smaller than the discounting
factor R, so that the PDV of current and
future consumption will be finite:

If the probability of the zero-income
event is ℘ = 1 then income is always zero
and the condition becomes identical to
the RIC. Otherwise, weaker.

c′(m) = 1−ÞÞÞ/R < 1 c′(m) < 1− ℘1/ρÞÞÞ/R < 1
Growth Impatience Conditions

PF-GIC GIC
ÞÞÞ/Γ < 1 ÞÞÞE[ψ−1]/Γ < 1

Guarantees that for an unconstrained
consumer, the ratio of consumption to
permanent income will fall over time. For
a constrained consumer, guarantees the
constraint will eventually be binding.

By Jensen’s inequality, stronger than the
PF-GIC. Ensures consumers will not
expect to accumulate m unboundedly.

limmt→∞ Et[mt+1/mt] = ÞÞÞΓ́

Finite Value of Autarky Conditions
PF-FVAC FVAC
βΓ1−ρ < 1 βΓ1−ρ E[ψ1−ρ] < 1

equivalently ÞÞÞ/Γ < (R/Γ)1/ρ

The discounted utility of constrained
consumers who spend their permanent
income each period should be finite.

By Jensen’s inequality, stronger than the
PF-FVAC because for ρ > 1 and
nondegenerate ψ, E[ψ1−ρ] > 1.
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Table 3 Sufficient Conditions for Nondegenerate‡ Solution

Model Conditions Comments
PF Unconstrained RIC, FHWC◦ RIC ⇒ |v(m)| <∞; FHWC ⇒ 0 < |v(m)|

RIC prevents c̄(m) = 0
FHWC prevents c̄(m) =∞

PF Constrained PF-GIC∗ If RIC, limm→∞ c̊(m) = c̄(m), limm→∞ κ̊κκ(m) = κ
If���RIC, limm→∞ κ̊κκ(m) = 0

Buffer Stock Model FVAC, WRIC FHWC ⇒ limm→∞ c̊(m) = c̄(m), limm→∞ κ̊κκ(m) = κ

���
�FHWC+RIC ⇒ limm→∞ κ̊κκ(m) = κ

���
�FHWC+���RIC ⇒ limm→∞ κ̊κκ(m) = 0

GIC guarantees finite target wealth ratio
FVAC is stronger than PF-FVAC
WRIC is weaker than RIC

‡For feasible m, limiting consumption function defines unique value of c satisfying 0 < c <∞. ◦RIC, FHWC are necessary as well
as sufficient. ∗Solution also exists for((((PF-GIC and RIC, but is identical to the unconstrained model’s solution for feasible m ≥ 1.

3 Analysis of the Converged Consumption Function
Figures 3 and 4a,b capture the main properties of the converged consumption rule
when the RIC, GIC, and FHWC all hold.22 Figure 3 shows the expected consumption
growth factor Et[ct+1/ct] for a consumer behaving according to the converged con-
sumption rule, while Figures 4a,b illustrate theoretical bounds for the consumption
function and the marginal propensity to consume.
Five features of behavior are captured, or suggested, by the figures. First, asmt ↑ ∞

the expected consumption growth factor goes to ÞÞÞ, indicated by the lower bound in
Figure 3, and the marginal propensity to consume approaches κ = (1−ÞÞÞR) (Figure 4),
the same as the perfect foresight MPC.23 Second, as mt ↓ 0 the consumption growth
factor approaches∞ (Figure 3) and the MPC approaches κ̄ = (1−℘1/ρÞÞÞR) (Figure 4).
Third (Figure 3), there is a target cash-on-hand-to-income ratio m̌ such that ifmt = m̌
then Et[mt+1] = mt, and (as indicated by the arrows of motion on the Et[ct+1/ct]
curve), the model’s dynamics are ‘stable’ around the target in the sense that if mt <
m̌ then cash-on-hand will rise (in expectation), while if mt > m̌, it will fall (in
expectation). Fourth (Figure 3), at the target m, the expected rate of growth of
consumption is slightly less than the expected growth rate of permanent noncapital
income. The final proposition suggested by Figure 3 is that the expected consumption
growth factor is declining in the level of the cash-on-hand ratio mt. This turns out

22These figures reflect the converged rule corresponding to the parameter values indicated in Table 1.
23If the RIC fails, the limiting minimal MPC is 0; see appendix.
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Þ≡(Rβ)1ρ

Γ

t[ct+1 /ct]

m⋁
mt

Growth

Figure 3 Target m, Expected Consumption Growth, and Permanent Income
Growth

to be true in the absence of permanent shocks, but in extreme cases it can be false if
permanent shocks are present.24

3.1 Limits as mt →∞
Define

c(m) = κm

which is the solution to an infinite-horizon problem with no noncapital income (ξt+n =
0 ∀ n ≥ 1); clearly c(m) < c(m), since allowing the possibility of future noncapital
income cannot reduce current consumption.25

24Throughout the remaining analysis I make a final assumption that is not strictly justified by the foregoing. We
have seen that the finite-horizon consumption functions cT−n(m) are twice continuously differentiable and strictly
concave, and that they converge to a continuous function c(m). It does not strictly follow that the limiting function
c(m) is twice continuously differentiable, but I will assume that it is.

25We will assume the RIC holds here and subsequently so that κ > 0; the situation is a bit more complex when
the RIC does not hold. In that case the bound on consumption is given by the spending that would be undertaken by
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Assuming the FHWC holds, the infinite horizon perfect foresight solution (18) con-
stitutes an upper bound on consumption in the presence of uncertainty, since Carroll
and Kimball (1996) show that the introduction of uncertainty strictly decreases the
level of consumption at any m.
Thus, we can write

c(m) < c(m) < c̄(m)

1 < c(m)/c(m) < c̄(m)/c(m).

But

lim
m→∞

c̄(m)/c(m) = lim
m→∞

(m− 1 + h)/m

= 1,

so as m→∞, c(m)/c(m)→ 1, and the continuous differentiability and strict concav-
ity of c(m) therefore implies

lim
m→∞

c′(m) = c′(m) = c̄′(m) = κ

because any other fixed limit would eventually lead to a level of consumption either
exceeding c̄(m) or lower than c(m).
Figure 4 confirms these limits visually. The top plot shows the converged consump-

tion function along with its upper and lower bounds, while the lower plot shows the
marginal propensity to consume.
Next we establish the limit of the expected consumption growth factor as mt →∞:

lim
mt→∞

Et[ct+1/ct] = lim
mt→∞

Et[Γt+1ct+1/ct].

But

Et[Γt+1ct+1/c̄t] ≤ Et[Γt+1ct+1/ct] ≤ Et[Γt+1c̄t+1/ct]

and

lim
mt→∞

Γt+1c(mt+1)/c̄(mt) = lim
mt→∞

Γt+1c̄(mt+1)/c(mt) = lim
mt→∞

Γt+1mt+1/mt,

while

lim
mt→∞

Γt+1mt+1/mt = lim
mt→∞

(
Ra(mt) + Γt+1ξt+1

mt

)
= (Rβ)1/ρ = ÞÞÞ

because limmt→∞ a′(m) = ÞÞÞR
26 and Γt+1ξt+1/mt ≤ (Γψ̄θ̄/�℘)/mt which goes to zero as

mt goes to infinity.

a consumer who faced binding liquidity constraints. Detailed analysis of this special case is not sufficiently interesting
to warrant inclusion in the paper.

26This is because limmt→∞ a(mt)/mt = 1− limmt→∞ c(mt)/mt = 1− limmt→∞ c′(mt) = ÞÞÞR.
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Figure 4 The Consumption Function
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Hence we have

ÞÞÞ ≤ lim
mt→∞

Et[ct+1/ct] ≤ ÞÞÞ

so as cash goes to infinity, consumption growth approaches its value ÞÞÞ in the perfect
foresight model.
This argument applies equally well to the problem of the restrained consumer,

because as m approaches infinity the constraint becomes irrelevant (assuming the
FHWC holds).

3.2 Limits as mt → 0

Now consider the limits of behavior as mt gets arbitrarily small.
Equation (36) shows that the limiting value of κ̄ is

κ̄ = 1− R−1(℘Rβ)1/ρ.

Defining e(m) = c(m)/m as before we have

lim
m↓0

e(m) = (1− ℘1/ρÞÞÞR) = κ̄.

Now using the continuous differentiability of the consumption function along with
L’Hôpital’s rule, we have

lim
m↓0

c′(m) = lim
m↓0

e(m) = κ̄.

Figure 4 confirms that the numerical solution method obtains this limit for the
MPC as m approaches zero.
For consumption growth, we have

lim
mt↓0

Et
[(

c(mt+1)

c(mt)

)
Γt+1

]
> lim

mt↓0
Et
[(

c(Rt+1a(mt) + ξt+1)

κ̄mt

)
Γt+1

]
= ℘ lim

mt↓0
Et
[(

c(Rt+1a(mt))

κ̄mt

)
Γt+1

]
+�℘ lim

mt↓0
Et
[(

c(Rt+1a(mt) + θt+1/�℘)

κ̄mt

)
Γt+1

]
> �℘ lim

mt↓0
Et
[(

c(θt+1/�℘)

κ̄mt

)
Γt+1

]
= ∞

where the second-to-last line follows because limmt↓0 Et
[(

c(Rt+1a(mt))

κ̄mt

)
Γt+1

]
is posi-

tive, and the last line follows because the minimum possible realization of θt+1 is θ > 0
so the minimum possible value of expected next-period consumption is positive.27

27 The same arguments establish limm↓0 Et[ct+1/ct] =∞ for the problem of the restrained consumer.
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3.3 There Exists Exactly One Target Cash-on-Hand Ratio, which is
Stable

Define the target cash-on-hand-to-income ratio m̌ as the value of m such that

Et[mt+1/mt] = 1 if mt = m̌. (47)

where the ∨ accent is meant to invoke the fact that this is the value that other m’s
‘point to.’
We prove existence by arguing that Et[mt+1/mt] is continuous on mt > 0, and

takes on values both above and below 1, so that it must equal 1 somewhere by the
intermediate value theorem.
Specifically, the same logic used in section 3.2 shows that limmt↓0 Et[mt+1/mt] =∞.
The limit as mt goes to infinity is

lim
mt→∞

Et[mt+1/mt] = lim
mt→∞

Et
[
Rt+1a(mt) + ξt+1

mt

]
= Et[(R/Γt+1)ÞÞÞR]

= Et[ÞÞÞ/Γt+1]

< 1

where the last line is guaranteed by our imposition of the GIC (28).
Stability means that in a local neighborhood of m̌, values of mt above m̌ will result

in a smaller ratio of Et[mt+1/mt] than at m̌. That is, ifmt > m̌ then Et[mt+1/mt] < 1.
This will be true if (

d

dmt

)
Et[mt+1/mt] < 0

at mt = m̌. But(
d

dmt

)
Et[mt+1/mt] = Et

[(
d

dmt

)
[Rt+1(1− c(mt)/mt) + ξt+1/mt]

]
= Et

[
Rt+1(c(mt)− c′(mt)mt)− ξt+1

m2
t

]
which will be negative if its numerator is negative. Define ζζζ(mt) as the expectation
of the numerator,

ζζζ(mt) = Et[Rt+1]︸ ︷︷ ︸
≡R̄

(c(mt)− c′(mt)mt)− 1. (48)

The target level of market resources m̌ satisfies

Et[mt+1] = Et[Rt+1(mt − ct) + ξt+1]

m̌ = R̄(m̌− c(m̌)) + 1
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R̄c(m̌) = 1 + (R̄ − 1)m̌. (49)

At the target, equation (48) is

ζζζ(m̌) = R̄c(m̌)− R̄c′(m̌)m̌− 1.

Substituting for the first term in this expression using (49) gives

ζζζ(m̌) = 1 + (R̄ − 1)m̌− R̄c′(m̌)m̌− 1

= m̌
(
R̄ − 1− R̄c′(m̌)

)
= m̌

(
R̄(1− c′(m̌))− 1

)
< m̌

(
R̄(1− (1− R−1(Rβ)1/ρ))− 1

)
= m̌

(
R̄ÞÞÞR − 1

)
= m̌

Et[ÞÞÞ/Γt+1]︸ ︷︷ ︸
<1 from (28)

−1


< 0

where the step introducing the inequality imposes the fact that c′ > ÞÞÞR which is an
implication of the concavity of the consumption function.
We have now proven that some target m̌ must exist, and that at any such m̌ the

solution is stable. Nothing so far, however, rules out the possibility that there will be
multiple values of m that satisfy the definition (47) of a target.
Multiple targets can be ruled out as follows. Suppose there exist multiple targets;

these can be arranged in ascending order and indexed by an integer superscript, so
that the target with the smallest value is, e.g., m̌1. The argument just completed
implies that since Et[mt+1/mt] is continuously differentiable there must exist some
small ε such that Et[mt+1/mt] < 1 for mt = m̌1 + ε. (Continuous differentiability of
Et[mt+1/mt] follows from the continuous differentiability of c(mt).)
Now assume there exists a second value ofm satisfying the definition of a target, m̌2.

Since Et[mt+1/mt] is continuous, it must be approaching 1 from below as mt → m̌2,
since by the intermediate value theorem it could not have gone above 1 between m̌1+ε
and m̌2 without passing through 1, and by the definition of m̌2 it cannot have passed
through 1 before reaching m̌2. But saying that Et[mt+1/mt] is approaching 1 from
below as mt → m̌2 implies that(

d

dmt

)
Et[mt+1/mt] > 0 (50)

atmt = m̌2. However, we just showed above that, under our assumption that the GIC
holds, precisely the opposite of equation (50) must hold for any m that satisfies the
definition of a target. Thus, assuming the existence of more than one target implies
a contradiction.
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The foregoing arguments rely on the continuous differentiability of c(m), so the
arguments do not directly go through for the restrained consumer’s problem in which
the existence of liquidity constraints can lead to discrete changes in the slope c′(m)
at particular values of m. But we can use the fact that the restrained model is the
limit of the baseline model as ℘ ↓ 0 to conclude that there is likely a unique target
cash level even in the restrained model.
If consumers are sufficiently impatient, the limiting target level in the restrained

model will be m̌ = Et[ξt+1] = 1. That is, if a consumer starting with m = 1 will
save nothing, a(1) = 0, then the target level of m in the restrained model will be 1;
if a consumer with m = 1 would choose to save something, then the target level of
cash-on-hand will be greater than the expected level of income.

3.4 Expected Consumption Growth at Target m Is Less than Expected
Permanent Income Growth

In Figure 3 the intersection of the target cash-on-hand ratio locus at m̌ with the
expected consumption growth curve lies below the intersection with the horizontal
line representing the growth rate of expected permanent income. This can be proven
as follows.
Strict concavity of the consumption function implies that if Et[mt+1] = m̌ = mt

then

Et
[

Γt+1c(mt+1)

c(mt)

]
< Et

[(
Γt+1(c(m̌) + c′(m̌)(mt+1 − m̌))

c(m̌)

)]
= Et

[
Γt+1

(
1 +

(
c′(m̌)

c(m̌)

)
(mt+1 − m̌)

)]
= Γ +

(
c′(m̌)

c(m̌)

)
Et [Γt+1 (mt+1 − m̌)]

= Γ +

(
c′(m̌)

c(m̌)

)Et[Γt+1]Et[mt+1 − m̌]︸ ︷︷ ︸
=0

+covt(Γt+1,mt+1)

(51)
and since mt+1 = (R/Γt+1)a(m̌)+ξt+1 and a(m̌) > 0 it is clear that covt(Γt+1,mt+1) <
0 which implies that the entire term added to Γ in (51) is negative, as required.

3.5 Expected Consumption Growth Is a Declining Function of mt (or Is
It?)

Figure 3 depicts the expected consumption growth factor as a strictly declining
function of the cash-on-hand ratio. To investigate this, define

ΥΥΥ(mt) ≡ Γt+1c(Rt+1a(mt) + ξt+1)/c(mt) = ct+1/ct
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and the proposition in which we are interested is

(d/dmt)Et[ΥΥΥ(mt)︸ ︷︷ ︸
≡ΥΥΥt+1

] < 0

or differentiating through the expectations operator, what we want is

Et
[
Γt+1

(
c′(mt+1)Rt+1a′(mt)c(mt)− c(mt+1)c′(mt)

c(mt)2

)]
< 0. (52)

Henceforth indicating appropriate arguments by the corresponding subscript (e.g.
c′t+1 ≡ c′(mt+1)), since Γt+1Rt+1 = R, the portion of the LHS of equation (52) in
brackets can be manipulated to yield

ctΥΥΥ
′
t+1 = c′t+1a′tR− c′tΓt+1ct+1/ct

= c′t+1a′tR− c′tΥΥΥt+1. (53)

Now differentiate the Euler equation with respect to mt:

1 = Rβ Et[ΥΥΥ−ρt+1]

0 = Et[ΥΥΥ−ρ−1
t+1 ΥΥΥ′t+1]

= Et[ΥΥΥ−ρ−1
t+1 ]Et[ΥΥΥ′t+1] + covt(ΥΥΥ−ρ−1

t+1 ,ΥΥΥ′t+1)

Et[ΥΥΥ′t+1] = −covt(ΥΥΥ−ρ−1
t+1 ,ΥΥΥ′t+1)/Et[ΥΥΥ−ρ−1

t+1 ] (54)

but since ΥΥΥt+1 > 0 we can see from (54) that (52) is equivalent to

covt(ΥΥΥ−ρ−1
t+1 ,ΥΥΥ′t+1) > 0

which, using (53), will be true if

covt(ΥΥΥ−ρ−1
t+1 , c′t+1a′tR− c′tΥΥΥt+1) > 0

which in turn will be true if both

covt(ΥΥΥ−ρ−1
t+1 , c′t+1) > 0

and

covt(ΥΥΥ−ρ−1
t+1 ,ΥΥΥt+1) < 0.

The latter proposition is obviously true under our assumption ρ > 1. The former
will be true if

covt
(
(Γψt+1c(mt+1))−ρ−1, c′(mt+1)

)
> 0.

The two shocks cause two kinds of variation in mt+1. Variations due to ξt+1 satisfy
the proposition, since a higher draw of ξ both reduces c−ρ−1

t+1 and reduces the marginal
propensity to consume. However, permanent shocks have conflicting effects. On the
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one hand, a higher draw of ψt+1 will reduce mt+1, thus increasing both c−ρ−1
t+1 and

c′t+1. On the other hand, the c−ρ−1
t+1 term is multiplied by Γψt+1, so the effect of a

higher ψt+1 could be to decrease the first term in the covariance, leading to a negative
covariance with the second term. (Analogously, a lower permanent shock ψt+1 can
also lead a negative correlation.)

4 The Aggregate and Idiosyncratic Relationship
Between Consumption Growth and Income
Growth

This section examines the behavior of large collections of buffer-stock consumers with
identical parameter values. Such a collection can be thought of as either a subset of the
population within a single country (say, members of a given education or occupation
group), or as the whole population in a small open economy. We will continue to take
the aggregate interest rate as exogenous and constant. It is also possible, and only
slightly more difficult, to solve for the steady-state of a closed-economy version of the
model where the interest rate is endogenous.
Formally, we assume a continuum of ex ante identical households on the unit

interval, with constant total mass normalized to one and indexed by i ∈ [0, 1], all
behaving according to the model specified above.28

4.1 Convergence of the Cross-Section Distribution
Szeidl (2012) proves that such a population will be characterized by an invariant
distribution of m that induces invariant distributions for c and a; designate these
Fm, Fa, and F c.29
Szeidl’s proof, however, does not yield any sense of how quickly convergence occurs,

which in principle depends on all of the parameters of the model as well as the initial
conditions. To build intuition, Figure 5 supplies an example in which a population
begins with a particularly simple distribution that is far from the invariant one:

m1,i = ξ1,i,

28One inconvenient aspect of the model as specified is that it does not exhibit a stationary distribution of
idiosyncratic permanent noncapital income; the longer the economy lasts, the wider is the distribution. This problem
can be remedied by assuming a constant probability of death, and replacing deceased households with newborns whose
initial idiosyncratic permanent income matches the mean idiosyncratic permanent income of the population. For a
fully worked-out general equilibrium version of such a model, see Carroll, Slacalek, and Tokuoka (2011).

29Szeidl’s proof supplants simulation evidence of ergodicity that appeared in an earlier version of this paper.
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which would characterize a population in which all assets had been wiped out imme-
diately before the receipt of period 1’s noncapital income.30
The figure plots the distributions of a (for technical reasons, this is slightly better

than plotting m) at the ends of 1, 4, 10, and 40 periods.31
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a ≈ ℱ∞
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ℱ

Figure 5 Convergence of Fa to Invariant Distribution

The figure illustrates the fact that, under these parameter values, convergence to

30We assume that logψt+1 and log ξt+1 are normally distributed with means −σ2
ψ/2 and −σ2

ξ/2 and variances
σ2
ψ and σ2

ξ (so that M[ψt+1] = M[ξt+1] = 1), where M[] is the mean operator defined below.
31The figure reflects results for the calibration detailed in Table 1, which are representative of the micro literature

which has mainly focused on matching behavior of median or “typical” households, who hold little liquid wealth. A
higher time preference factor would be necessary to match the behavior of richer households who hold much of the
aggregate capital stock. However, for these richer households, the precautionary motives highlighted in this model
may be less relevant than other motives which are less well understood.
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the invariant distribution has largely been accomplished within 10 periods. By 40
periods, the distribution is indistinguishable from the invariant distribution.

4.2 Consumption and Income Growth at the Household Level
It is useful to define the operator M [•] which yields the mean value of its argument
in the population, as distinct from the expectations operator E [•] which represents
beliefs about the future.
An economist with a microeconomic dataset could calculate the average growth

rate of idiosyncratic consumption, and would find

M [∆ log ct+1] = M [log ct+1pppt+1 − log ctpppt]

= M [logpppt+1 − logpppt + log ct+1 − log ct]

= M [logpppt+1 − logpppt] + M [log ct+1 − log ct]

= γ − σ2
ψ/2,

where γ = log Γ and the last equality follows because the invariance of F c means that
M [log ct+1] = M [log ct].32

4.3 Growth Rates of Aggregate Income and Consumption
Attanasio and Weber (1995) point out that concavity of the consumption function
(or other nonlinearities) can imply that it is quantitatively important to distinguish
between the growth rate of average consumption and the average growth rate of
consumption.33 We have just examined the average growth rate; we now examine the
growth rate of the average.
Using capital letters for aggregate variables, the growth factor for aggregate income

is given by:

Yt+1/Yt = M [ξt+1Γψt+1pppt] /M [ppptξt]

= Γ

because of the independence assumptions we have made about ξ and ψ.
Aggregate assets are:

At = M [at,ipppt,i]

= APt + covt(at,i, pppt,i)

where Pt designates the mean level of permanent income across all individuals, and we
are assuming that at,i was distributed according to the invariant distribution with a

32Papers in the simulation literature have observed an approximate equivalence between the average growth rates of
idiosyncratic consumption and permanent income, but formal proof was not possible until Szeidl’s proof of ergodicity.

33Since we assume number of the households are normalized to 1, aggregate and average variables are identical.
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mean value of A. Since permanent income grows at mean rate Γ while the distribution
of a is invariant, if we normalize Pt to one we will similarly have for any period n ≥ 1

At+n = AΓn + cov(at+n,i, pppt+n,i).

Unfortunately, Szeidl (2012)’s proof of the invariance of Fa does not yield the
information about how the cross-sectional covariance between a and ppp evolves required
to show that the covariance term grows by a factor smaller than Γ; if that were true,
its relative size would shrink to zero over time. (A proof that the covariance shrinks
fast enough would mean that the term could be neglected).
The desired result can be proven if there are no permanent shocks; see appendix

E for that proof, along with a discussion of the characteristics of a covariance term
that prevents proof in the general case with both transitory and permanent shocks.
A wide range of simulation experiments confirms that the role of that covariance

term is more an irritating theoretical curiosum than an important practical consider-
ation. An example is given in Figure 6, which plots Ct+1/Ct for the economy whose
converging CDFs were depicted in Figure 5. After the 40 periods of simulation that
generated CDFs plotted in 5, we conduct an experiment designed to flush out the
role of the annoying covariance term: We reset the level of permanent income to be
identical for all consumers (‘the revolution’):

ppp41,i = ΓP40 ∀ i

and we redistribute cash among consumers in such a way as to leave each consumer
with the same value of a41,i that they would have had in the absence of the revolution.
This leaves us with the same distribution of a as before the revolution, but no
covariance between a and ppp.
The effect on aggregate consumption growth of even such an extreme revolution in

covariance is small, and dissipates immediately (no effect is visible after the period
of revolution itself). This experiment is representative of many that suggest that the
practical effects of time-variaton in the covariance between a and ppp are negligible.

5 Conclusions
This paper provides theoretical foundations for many characteristics of buffer stock
saving models that have heretofore been observed in simulations but not proven.
Perhaps the most important such proposition is the existence of a target cash-to-
permanent-income ratio toward which actual cash will tend.
Another contribution is provision a set of tools for numerical solution and simulation

(available on the author’s web page) that confirm and illustrate the theoretical propo-
sitions. These programs demonstrate how the incorporation of the paper’s theoretical
results can make numerical solution algorithms more efficient and simpler. A goal of
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Figure 6 Consumption Growth in Simulated Economy with Γ = 1.03

the paper has been to make these tools accessible and easy to use while incorporating
the full rigor of the theoretical results in the structure.
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Appendices

A Perfect Foresight Liquidity Constrained Solution
This appendix taxonomizes the characteristics of the limiting consumption function
c̊(m) under perfect foresight in the presence of a liquidity constraint requiring b ≥ 0
under various conditions. Results are summarized in table 4.

A.1 If PF-GIC Fails
A consumer is ‘growth patient’ if the perfect foresight growth impatience condition
fails ((((((PF-GIC, 1 < ÞÞÞ/Γ). Under (((((PF-GIC the constraint does not bind at the lowest
feasible value of mt = 1 because 1 < (Rβ)1/ρ/Γ implies that spending everything
today (setting ct = mt = 1) produces lower marginal utility than is obtainable by
reallocating a marginal unit of resources to the next period at return R:34

1 < (Rβ)1/ρΓ−1 (55)
1 < RβΓ−ρ (56)

u′(1) < Rβu′(Γ). (57)

Similar logic shows that under these circumstances the constraint will never bind
for an unconstrained consumer with a finite horizon of n periods, so such a consumer’s
consumption function will be the same as for the unconstrained case examined in the
main text.
If the RIC fails (1 < ÞÞÞR) while the finite human wealth condition holds, the limiting

value of this consumption function as n ↑ ∞ is the degenerate function

c̊T−n(m) = 0(bt + h). (58)

If the RIC fails and the FHWC fails, human wealth limits to h = ∞ so the
consumption function limits to either c̊T−n(m) = 0 or c̊T−n(m) =∞ depending on the
relative speeds with which the MPC approaches zero and human wealth approaches
∞.35
Thus, the requirement that the consumption function be nondegenerate implies that

for a consumer satisfying (((((PF-GIC we must impose the RIC (and the FHWC can be
shown to be a consequence of(((((PF-GIC and RIC). In this case, the consumer’s optimal
behavior is easy to describe. We can calculate the point at which the unconstrained

34The point at which the constraint would bind (if that point could be attained) is the m = c for which u′(c#) =

Rβu′(Γ) which is c# = Γ/(Rβ)1/ρ and the consumption function will be defined by c̊(m) = min[m, c# + (m− c#)κ].
35The knife-edge case is where ÞÞÞ = Γ, in which case the two quantites counterbalance and the limiting function is

c̊(m) = min[m, 1].
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consumer would choose c = m from (18):

m# = (m# − 1 + h)κ (59)
m#(1− κ) = (h− 1)κ (60)

m# = (h− 1)

(
κ

1− κ

)
(61)

which (under these assumptions) satisfies 0 < m# < 1.36 For m < m# the uncon-
strained consumer would choose to consume more thanm; for suchm, the constrained
consumer is obliged to choose c̊(m) = m.37 For any m > m# the constraint will never
bind and the consumer will choose to spend the same amount as the unconstrained
consumer, c̄(m).

A.2 If PF-GIC Holds
Imposition of the PF-GIC reverses the inequality in (55)-(57), and thus reverses the
conclusion: A consumer who starts with mt = 1 will desire to consume more than 1.
Such a consumer will be constrained, not only in period t, but perpetually thereafter.
Now define bn# as the bt such that an unconstrained consumer holding bt = bn# would

behave so as to arrive in period t + n with bt+n = 0 (with b0
# trivially equal to 0);

for example, a consumer with bt−1 = b1
# was on the ‘cusp’ of being constrained in

period t − 1: Had bt−1 been infinitesimally smaller, the constraint would have been
binding (because the consumer would have desired, but been unable, to enter period
t with negative, not zero, b). Given the PF-GIC, the constraint certainly binds in
period t (and thereafter) with resources of mt = m0

# = 1 + b0
# = 1: The consumer

cannot spend more (because constrained), and will not choose to spend less (because
impatient), than ct = c0

# = 1.
We can construct the entire ‘prehistory’ of this consumer leading up to t as follows.

Maintaining the assumption that the constraint has never bound in the past, c must
have been growing according to ÞÞÞΓ, so consumption n periods in the past must have
been

cn# = ÞÞÞ−nΓ ct = ÞÞÞ−nΓ . (62)

The PDV of consumption from t− n until t can thus be computed as

Ct
t−n = ct−n(1 + ÞÞÞ/R + ...+ (ÞÞÞ/R)n)

= cn#(1 + ÞÞÞR + ...+ ÞÞÞn
R)

36Note that 0 < m# is implied by RIC and m# < 1 is implied by((((PF-GIC.
37As an illustration, consider a consumer for whom ÞÞÞ = 1, R = 1.01 and Γ = 0.99. This consumer will save the

amount necessary to ensure that growth in market wealth exactly offsets the decline in human wealth represented by
Γ < 1; total wealth (and therefore total consumption) will remain constant, even as market wealth and human wealth
trend in opposite directions.
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= ÞÞÞ−nΓ

(
1−ÞÞÞn+1

R

1−ÞÞÞR

)
(63)

and note that the consumer’s human wealth between t − n and t (the relevant time
horizon, because from t onward the consumer will be constrained and unable to access
post-t income) is

hn# = 1 + ...+R−n (64)

while the intertemporal budget constraint says

Ct
t−n = bn# + hn#

from which we can solve for the bn# such that the consumer with bt−n = bn# would
unconstrainedly plan (in period t− n) to arrive in period t with bt = 0:

bn# = Ct
t−n −

hn#︷ ︸︸ ︷(
1−R−(n+1)

1−R−1

)
. (65)

Defining mn
# = bn# + 1, consider the function c̊(m) defined by linearly connecting

the points {mn
#, c

n
#} for integer values of n ≥ 0 (and setting c̊(m) = m for m < 1).

This function will return, for any value of m, the optimal value of c for a liquidity
constrained consumer with an infinite horizon. The function is piecewise linear with
‘kink points’ where the slope discretely changes, because for infinitesimal ε the MPC
of a consumer with assets m = mn

# − ε is discretely higher than for a consumer with
assets m = mn

# + ε because the latter consumer will spread a marginal dollar over
more periods before exhausting it.
In order for a unique consumption function to be defined by this sequence (65) for

the entire domain of positive real values of b, we need bn# to become arbitrarily large
with n. That is, we need

lim
n→∞

bn# =∞. (66)

A.2.1 If FHWC Holds

The FHWC requires R−1 < 1, in which case the second term in (65) limits to a
constant as n ↑ ∞, and (66) reduces to a requirement that

lim
n→∞

(
ÞÞÞ−nΓ − (ÞÞÞR/ÞÞÞΓ)nÞÞÞR

1−ÞÞÞR

)
= ∞

lim
n→∞

(
ÞÞÞ−nΓ −R−nÞÞÞR

1−ÞÞÞR

)
= ∞

lim
n→∞

(
ÞÞÞ−nΓ

1−ÞÞÞR

)
= ∞.
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Given the PF-GIC ÞÞÞ−1
Γ > 1, this will hold iff the RIC holds, ÞÞÞR < 1. But given that

the FHWC R > Γ holds, the PF-GIC is stronger (harder to satisfy) than the RIC;
thus, FHWC and the PF-GIC together imply the RIC, and so a well-defined solution
exists. Furthermore, in the limit as n approaches infinity, the difference between
the limiting constrained consumption function and the unconstrained consumption
function becomes vanishingly small, because as the date at which the constraint binds
becomes arbitrarily distant, the effect of that constraint on current behavior shrinks
to nothing. That is,

lim
m→∞

c̊(m)− c̄(m) = 0. (67)

A.2.2 If FHWC Fails

If the FHWC fails, matters are a bit more complex. Given failure of FHWC, (66)
requires

lim
n→∞

(
R−nÞÞÞR −ÞÞÞ−nΓ

ÞÞÞR − 1

)
+

(
1−R−(n+1)

R−1 − 1

)
= ∞

lim
n→∞

(
ÞÞÞR

ÞÞÞR − 1
− R−1

R−1 − 1

)
R−n −

(
ÞÞÞ−nΓ

ÞÞÞR − 1

)
= ∞

lim
n→∞

(
ÞÞÞR(R−1 − 1)

(R−1 − 1)(ÞÞÞR − 1)
− R−1(ÞÞÞR − 1)

(R−1 − 1)(ÞÞÞR − 1)

)
R−n −

(
ÞÞÞ−nΓ

ÞÞÞR − 1

)
= ∞.(68)

If RIC Holds. When the RIC holds, rearranging (68) gives

lim
n→∞

(
ÞÞÞ−nΓ

1−ÞÞÞR

)
−R−n

(
ÞÞÞR

1−ÞÞÞR
+
R−1

R−1 − 1

)
= ∞

and for this to be true we need

ÞÞÞ−1
Γ > R−1

Γ/ÞÞÞ > Γ/R

1 > ÞÞÞ/R

which is merely the RIC again. So the problem has a solution if the RIC holds.
Indeed, we can even calculate the limiting MPC from

lim
n→∞

κn# = lim
n→∞

(
cn#
bn#

)
(69)
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includegraphics./Figures/PFGICHoldsFHWCFailsRICFails

Figure 7 Nondegenerate Consumption Function with����FHWC and���RIC

which with a few lines of algebra can be shown to asymptote to the MPC in the
perfect foresight model:38

lim
m→∞

κ̊κκ(m) = 1−ÞÞÞR. (70)

If RIC Fails. Consider now the ���RIC case, ÞÞÞR > 1. In this case the constant
multiplying R−n in (68) will be positive if

ÞÞÞRR−1 −ÞÞÞR > R−1ÞÞÞR −R−1

R−1 > ÞÞÞR

Γ > ÞÞÞ

which is merely the PF-GIC which we are maintaining. So the first term’s limit is
+∞. The combined limit will be +∞ if the term involving R−n goes to +∞ faster
than the term involving −ÞÞÞ−nΓ goes to −∞; that is, if

R−1 > ÞÞÞ−1
Γ

Γ/R > Γ/ÞÞÞ
ÞÞÞ/R > 1

which merely confirms the starting assumption that the RIC fails. Thus, surprisingly,
the problem has a well defined solution with infinite human wealth if the RIC fails.
It remains true that���RIC implies a limiting MPC of zero,

lim
m→∞

κ̊κκ(m) = 0, (71)

but that limit is approached gradually, starting from a positive value, and conse-
quently the consumption function is not the degenerate c̊(m) = 0. (Figure 7 presents
an example for ρ = 2, R = 0.98, β = 0.99, Γ = 1.0).
We can summarize as follows. Given that the PF-GIC holds, the interesting

question is whether the FHWC holds. If so, the RIC automatically holds, and the
solution limits into the solution to the unconstrained problem as m ↑ ∞. But even
if the FHWC fails, the problem has a well-defined solution, whether or not the RIC
holds.

38For an example of this configuration of parameters, see the notebook doApndxLiqConstr.nb in the software
archive.
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B Existence of a Concave Consumption Function
To show that (??) defines a sequence of continuously differentiable strictly increasing
concave functions {cT , cT−1, ..., cT−k}, we start with a definition. We will say that a
function n(z) is ‘nice’ if it satisfies

1. n(z) is well-defined iff z > 0

2. n(z) is strictly increasing

3. n(z) is strictly concave

4. n(z) is C3 (its first three derivatives exist)

5. n(z) < 0

6. limz↓0 n(z) = −∞.

(Notice that an implication of niceness is that limz↓0 n′(z) =∞.)
Assume that some vt+1 is nice. Our objective is to show that this implies vt is also

nice; this is sufficient to establish that vt−n is nice by induction for all n > 0 because
vT (m) = u(m) and u(m) = m1−ρ/(1− ρ) is nice by inspection.
Now define an end-of-period value function vt(a) as

vt(a) = β Et
[
Γ1−ρ
t+1 vt+1(Rt+1a+ ξt+1)

]
. (72)

Since there is a positive probability that ξt+1 will attain its minimum of zero and
since Rt+1 > 0, it is clear that lima↓0 vt(a) = −∞ and lima↓0 v

′
t(a) = ∞. So vt(a)

is well-defined iff a > 0; it is similarly straightforward to show the other properties
required for vt(a) to be nice. (See Hiraguchi (2003).)
Next define vt(m, c) as

vt(m, c) = u(c) + vt(m− c) (73)

which is C3 since vt and u are both C3, and note that our problem’s value function
defined in (??) can be written as

vt(m) = max
c

vt(m, c). (74)

vt is well-defined if and only if 0 < c < m. Furthermore, limc↓0 vt(m, c) =

limc↑m vt(m, c) = −∞, ∂2vt(m,c)

∂c2
< 0, limc↓0

∂vt(m,c)

∂c
= +∞, and limc↑m

∂vt(m,c)

∂c
= −∞.

It follows that the ct(m) defined by

ct(m) = arg max
0<c<m

vt(m, c) (75)

exists and is unique, and (??) has an internal solution that satisfies

u′(ct(m)) = v′t(m− ct(m)). (76)
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Since both u and vt are strictly concave, both ct(m) and at(m) = m − ct(m) are
strictly increasing. Since both u and vt are three times continuously differentiable,
using (76) we can conclude that ct(m) is continuously differentiable and

c′t(m) =
v′′t (at(m))

u′′(ct(m)) + v′′t (at(m))
. (77)

Similarly we can easily show that ct(m) is twice continuously differentiable
(as is at(m)) (See Appendix C.) This implies that vt(m) is nice, since vt(m) =
u(ct(m)) + vt(at(m)).

C ct(m) is Twice Continuously Differentiable
First we show that ct(m) is C1. Define y as y ≡ m+dm. Since u′ (ct(y))−u′ (ct(m)) =

v′t(at(y))− v′t(at(m)) and at(y)−at(m)
dm

= 1− ct(y)−ct(m)
dm

,

v′t(at(y))− v′t(at(m))

at(y)− at(m)
=(

u′ (ct(y))− u′ (ct(m))

ct(y)− ct(m)
+

v′t(at(y))− v′t(at(m))

at(y)− at(m)

)
ct(y)− ct(m)

dm

Since ct and at are continuous and increasing, lim
dm→+0

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

< 0 and

lim
dm→+0

v′t(at(y))−v′t(at(m))

at(y)−at(m)
< 0 are satisfied. Then u′(ct(y))−u′(ct(m))

ct(y)−ct(m)
+

v′t(at(y))−v′t(at(m))

at(y)−at(m)
< 0

for sufficiently small dm. Hence we obtain a well-defined equation:

ct(y)− ct(m)

dm
=

v′t(at(y))−v′t(at(m))

at(y)−at(m)

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

+
v′t(at(y))−v′t(at(m))

at(y)−at(m)

.

This implies that the right-derivative, c′+t (m) is well-defined and

c′+t (m) =
v′′t (at(m))

u′′(ct(m)) + v′′t (at(m))
.

Similarly we can show that c′+t (m) = c′−t (m), which means c′t(m) exists. Since vt is
C3, c′t(m) exists and is continuous. c′t(m) is differentiable because v′′t is C1, ct(m) is
C1 and u′′(ct(m)) + v′′t (at(m)) < 0. c′′t (m) is given by

c′′t (m) =
a′t(m)v′′′t (at) [u′′(ct) + v′′t (at)]− v′′t (at) [c′tu

′′′(ct) + a′tv
′′′
t (at)]

[u′′(ct) + v′′t (at)]
2 . (78)

Since v′′t (at(m)) is continuous, c′′t (m) is also continuous.
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D Proof that T Is a Contraction Mapping
We must show that our operator T satisfies all of Boyd’s conditions.
Boyd’s operator T maps from Cz(A,B) to C(A,B). A preliminary requirement is

therefore that {Tz} be continuous for any z−bounded z, {Tz} ∈ C(R++,R). This is
not difficult to show; see Hiraguchi (2003).
Consider condition 1). For this problem,

{Tx}(mt) is max
ct∈[κmt,κ̄mt]

{
u(ct) + β Et

[
Γ1−ρ
t+1 x (mt+1)

]}
{Ty}(mt) is max

ct∈[κmt,κ̄mt]

{
u(ct) + β Et

[
Γ1−ρ
t+1 y (mt+1)

]}
,

so x(•) ≤ y(•) implies {Tx}(mt) ≤ {Ty}(mt) by inspection.39
Condition 2) requires that {T0} ∈ Cz (A,B). By definition,

{T0}(mt) = max
ct∈[κmt,κ̄mt]

{(
c1−ρ
t

1− ρ

)
+ β0

}
the solution to which is patently u(κ̄mt). Thus, condition 2) will hold if (κ̄mt)

1−ρ is
z-bounded. We use the bounding function

z(m) = η +m1−ρ, (79)

for some real scalar η > 0 whose value will be determined in the course of the proof.
Under this definition of z, {T0}(mt) = u(κ̄mt) is clearly z-bounded.
Finally, we turn to condition 3), {T(z+ζz)}(mt) ≤ {Tz}(mt)+ζξz(mt). The proof

will be more compact if we define c̆ and ă as the consumption and assets functions40
associated with Tz and ĉ and â as the functions associated with T(z + ζz); using this
notation, condition 3) can be rewritten

u(ĉ) + β{E(z + ζz)}(â) ≤ u(c̆) + β{Ez}(ă) + ζξz.

Now note that if we force the ^ consumer to consume the amount that is optimal
for the ∧ consumer, value for the ^ consumer must decline (at least weakly). That
is,

u(ĉ) + β{Ez}(â) ≤ u(c̆) + β{Ez}(ă).

Thus, condition 3) will certainly hold under the stronger condition

u(ĉ) + β{E(z + ζz)}(â) ≤ u(ĉ) + β{Ez}(â) + ζξz
β{E(z + ζz)}(â) ≤ β{Ez}(â) + ζξz

βζ{Ez}(â) ≤ ζξz

39For a fixed mt, recall that mt+1 is just a function of ct and the stochastic shocks.
40Section 2.7 proves existence of a continuously differentiable consumption function, which implies the existence

of a corresponding continuously differentiable assets function.
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β{Ez}(â) ≤ ξz
β{Ez}(â) < z.

Using z(m) = η +m1−ρ and defining ât = â(mt), this condition is

β Et[Γ1−ρ
t+1 (âtRt+1 + ξt+1)1−ρ]−m1−ρ

t < η(1− β Et Γ1−ρ
t+1︸ ︷︷ ︸

=i

)

which by imposing the PF-FVAC (23) i < 1 can be rewritten as:

η >
β Et

[
Γ1−ρ
t+1 (âtRt+1 + ξt+1)1−ρ]−m1−ρ

t

1− i
. (80)

But since η is an arbitrary constant that we can pick, the proof thus reduces to
showing that the numerator of (80) is bounded from above:

�℘β Et
[
Γ1−ρ
t+1 (âtRt+1 + θt+1/�℘)1−ρ]+ ℘β Et

[
Γ1−ρ
t+1 (âtRt+1)1−ρ]−m1−ρ

t

≤ �℘β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/�℘)1−ρ]+ ℘βR1−ρ((1− κ̄)mt)

1−ρ −m1−ρ
t

= �℘β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/�℘)1−ρ]+m1−ρ

t

(
℘βR1−ρ

(
℘1/ρ (Rβ)1/ρ

R

)1−ρ

− 1

)

= �℘β Et
[
Γ1−ρ
t+1 ((1− κ̄)mtRt+1 + θt+1/�℘)1−ρ]+m1−ρ

t

℘1/ρ (Rβ)1/ρ

R︸ ︷︷ ︸
<1 by WRIC

−1

 (81)

< �℘β Et
[
Γ1−ρ
t+1 (θ/�℘)1−ρ] = i�℘

ρθ1−ρ.

We can thus conclude that equation (80) will certainly hold for any:

η > η =
i�℘ρθ1−ρ

1− i
(82)

which is a positive finite number under our assumptions.
The proof that T defines a contraction mapping under the conditions (35) and (29)

is now complete.

D.1 T and v

In defining our operator T we made the restriction κmt ≤ ct ≤ κ̄mt. However, in the
discussion of the consumption function bounds, we showed only (in (38)) that κtmt ≤
ct(mt) ≤ κ̄tmt. (The difference is in the presence or absence of time subscripts on
the MPC’s.) We have therefore not proven (yet) that the sequence of value functions
(??) defines a contraction mapping.
Fortunately, the proof of that proposition is identical to the proof in 2.9, except that

we must replace κ̄ with κ̄T−1 and the WRIC must be replaced by a stronger condition.
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The place where these conditions have force is in the step at (81). Consideration of
the prior two equations reveals that a sufficient stronger condition is

℘β(R(1− κ̄T−1))1−ρ < 1

(℘β)1/(1−ρ)(1− κ̄T−1) < 1

(℘β)1/(1−ρ)(1− (1 + ℘1/ρÞÞÞR)−1) < 1

where we have used (34) for κ̄T−1. For small values of ℘ this expression can be further
simplified using (1 + ℘1/ρÞÞÞR)−1 ≈ 1− ℘1/ρÞÞÞR so that it becomes

(℘β)1/(1−ρ)℘1/ρÞÞÞR < 1

(℘β)℘(1−ρ)/ρÞÞÞ1−ρ
R < 1

β℘1/ρÞÞÞ1−ρ
R < 1

which for small values of ℘ is plainly easy to satisfy.
The upshot is that under these slightly stronger conditions the value functions for

the original problem define a contraction mapping with a unique v(m). But since
limn→∞ κT−n = κ and limn→∞ κ̄T−n = κ̄, it must be the case that the v(m) toward
which these vT−n’s are converging is the same v(m) that was the endpoint of the
contraction defined by our operator T. Thus, under our slightly stronger (but still
quite weak) conditions, not only do the value functions defined by (??) converge, they
converge to the same unique v defined by T.41

D.2 Convergence of vt in Euclidian Space
Boyd’s theorem shows that T defines a contraction mapping in a z-bounded space.
We now show that T also defines a contraction mapping in Euclidian space.
Since v∗(m) = Tv∗(m),

‖vT−n+1(m)− v∗(m)‖z ≤ ξn−1 ‖vT (m)− v∗(m)‖z . (83)

On the other hand, vT − v∗ ∈ Cz (A,B) and κ = ‖vT (m)− v∗(m)‖z <∞ because vT
and v∗ are in Cz (A,B). It follows that

|vT−n+1(m)− v∗(m)| ≤ κξn−1 |z(m)| . (84)

Then we obtain

lim
n→∞

vT−n+1(m) = v∗(m). (85)

Since vT (m) = m1−ρ

1−ρ , vT−1(m) ≤ (κ̄m)1−ρ

1−ρ < vT (m). On the other hand, vT−1 ≤ vT
means TvT−1 ≤ TvT , in other words, vT−2(m) ≤ vT−1(m). Inductively one gets

41It seems likely that convergence of the value functions for the original problem could be proven even if only the
WRIC were imposed; but that proof is not an essential part of the enterprise of this paper and is therefore left for
future work.
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vT−n(m) ≥ vT−n−1(m). This means that {vT−n+1(m)}∞n=1 is a decreasing sequence,
bounded below by v∗.

D.3 Convergence of ct

Given the proof that the value functions converge, we now show the pointwise con-
vergence of consumption functions {cT−n+1(m)}∞n=1.
We start by showing that

c(m) = arg max
ct∈[κm,κ̄m]

{
u(ct) + β Et

[
Γ1−ρ
t+1 v(mt+1)

]}
(86)

is uniquely determined. We show this by contradiction. Suppose there exist c1 and
c2 that both attain the supremum for some m, with mean c̃ = (c1 + c2)/2. ci satisfies

Tv(m) = u(ci) + β Et
[
Γ1−ρ
t+1 v(mt+1(m, ci))

]︸ ︷︷ ︸
≡v

(87)

where mt+1(m, ci) = (m − ci)Rt+1 + ξt+1 and i = 1, 2. Tv is concave for concave v.
Since the space of continuous and concave functions is closed, v is also concave and
satisfies

1

2

∑
i=1,2

Et
[
Γ1−ρ
t+1 v(mt+1(m, ci))

]
≤ Et

[
Γ1−ρ
t+1 v(mt+1(m, c̃))

]
. (88)

On the other hand, 1
2
{u(c1) + u(c2)} < u(c̃). Then one gets

Tv(m) < u(c̃) + β Et
[
Γ1−ρ
t+1 v(mt+1(m, c̃))

]
. (89)

Since c̃ is a feasible choice for ci, the LHS of this equation cannot be a maximum,
which contradicts the definition.
Using uniqueness of c(m) we can now show

lim
n→∞

cT−n+1(m) = c(m). (90)

Suppose this does not hold for some m = m∗. In this case, {cT−n+1(m∗)}∞n=1

has a subsequence
{
cT−n(i)(m

∗)
}∞
i=1

that satisfies limi→∞ cT−n(i)(m
∗) = c∗

and c∗ 6= c(m∗). Now define c∗T−n+1 = cT−n+1(m∗). c∗ > 0 because
limi→∞ vT−n(i)+1(m∗) ≤ limi→∞ u(c∗T−n(i)). Because a(m∗) > 0 and ψ ∈ [ψ, ψ̄]

there exist {m∗+, m̄∗+} satisfying 0 < m∗+ < m̄∗+ and mT−n+1(m∗, c∗T−n+1) ∈
[
m∗+, m̄

∗
+

]
.

It follows that limn→∞ vT−n+1(m) = v(m) and the convergence is uniform
on m ∈

[
m∗+, m̄

∗
+

]
. (Uniform convergence is obtained from Dini’s theorem.42) Hence

for any δ > 0, there exists an n1 such that

β ET−n
[
Γ1−ρ
T−n+1

∣∣vT−n+1(mT−n+1(m∗, c∗T−n+1))− v(mT−n+1(m∗, c∗T−n+1))
∣∣] < δ

42[Dini’s theorem] For a monotone sequence of continuous functions {vn(m)}∞n=1 which is defined on a compact
space and satisfies limn→∞ vn(m) = v(m) where v(m) is continuous, convergence is uniform.
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for all n ≥ n1. It follows that if we define

w(m∗, z) = u(z) + β ET−n
[
Γ1−ρ
T−n+1v(mT−n+1(m∗, z))

]
(91)

then vT−n(m∗) satisfies

lim
n→∞

∣∣vT−n(m∗)− w(m∗, c∗T−n+1)
∣∣ = 0. (92)

On the other hand, there exists an i1 ∈ N such that∣∣v(mT−n(i)(m
∗, c∗T−n(i)))− v(mT−n(i)(m

∗, c∗))
∣∣ ≤ δ for all i ≥ i1 (93)

because v is uniformly continuous on [m∗+, m̄
∗
+]. limi→∞

∣∣cT−n(i)(m
∗)− c∗

∣∣ = 0 and

∣∣mT−n(i)(m
∗, c∗T−n(i))−mT−n(i)(m

∗, c∗)
∣∣ ≤ R

Γψ

∣∣c∗T−n(i) − c∗
∣∣ . (94)

This implies

lim
i→∞

∣∣w(m∗, c∗T−n(i)+1)− w(m∗, c∗)
∣∣ = 0. (95)

From (92) and (95), we obtain limi→∞ vT−n(i)(m
∗) = w(m∗, c∗) and this implies

w(m∗, c∗) = v(m∗). This implies that c(m) is not uniquely determined, which is
a contradiction.
Thus, the consumption functions must converge.

E Equality of Aggregate Consumption Growth and
Income Growth with Transitory Shocks

The text asserted that in the absence of permanent shocks it is possible to prove that
the growth factor for aggregate consumption approaches that for aggregate permanent
income. This section establishes that result.
Suppose the population starts in period t with an arbitrary value for

covt(at+1,i, pppt+1,i). Then if m̆ is the invariant mean level of m we can define a
‘mean MPS away from m̆’ function

á(∆) = ∆−1

∫ m̆+∆

m̆

a′(z)dz

and since ψt+1,i = 1, Rt+1,i is a constant at R we can write

at+1,i = a(m̆) + (mt+1,i − m̆)á(

mt+1,i︷ ︸︸ ︷
Rat,i + ξt+1,i−m̆)

so

covt(at+1,i, pppt+1,i) = covt (á(Rat,i + ξt+1,i − m̆),Γpppt,i) .

51



But since R−1(℘Rβ)1/ρ < á(m) < ÞÞÞR,

|covt((℘Rβ)1/ρat+1,i, pppt+1,i)| < |covt(at+1,i, pppt+1,i)| < |covt(ÞÞÞat+1,i, pppt+1,i)|

and for the version of the model with no permanent shocks the GIC says that ÞÞÞ < Γ,
which implies

|covt(at+1,i, pppt+1,i)| < Γ|covt(at,i, pppt,i)|.

This means that from any arbitrary starting value, the relative size of the covariance
term shrinks to zero over time (compared to the AΓn term which is growing steadily
by the factor Γ). Thus, limn→∞At+n+1/At+n = Γ.
This logic unfortunately does not go through when there are permanent shocks,

because the Rt+1,i terms are not independent of the permanent income shocks.
To see the problem clearly, define R̆ = M [Rt+1,i] and consider a first order Taylor

expansion of á(mt+1,i) around m̌t+1,i = R̆at,i + 1,

át+1,i ≈ á(m̌t+1,i) + á′(m̌t+1,i) (mt+1,i − m̌t+1,i) .

The problem comes from the á′ term. The concavity of the consumption function
implies convexity of the a function, so this term is strictly positive but we have no
theory to place bounds on its size as we do for its level á. We cannot rule out by
theory that a positive shock to permanent income (which has a negative effect on
mt+1,i) could have an unboundedly positive effect on á′ (as for instance if it pushes
the consumer arbitrarily close to the self-imposed liquidity constraint).

F Endogenous Gridpoints Solution Method
The model is solved using an extension of the method of endogenous gridpoints
(Carroll (2016)): A grid of possible values of end-of-period assets ~a is defined (aVec in
the software), and at these points, marginal end-of-period-t value is computed as the
discounted next-period expected marginal utility of consumption (which the Envelope
theorem says matches expected marginal value). The results are then used to identify
the corresponding levels of consumption at the beginning of the period:43

u′(ct(~a)) = Rβ Et[u′(Γt+1ct+1(Rt+1~a+ ξt+1))] (96)

~ct ≡ ct(~a) =
(
Rβ Et

[
(Γt+1ct+1(Rt+1~a+ ξt+1))−ρ

])−1/ρ
.

The dynamic budget constraint can then be used to generate the corresponding
m’s:

~mt = ~a+ ~ct.

43The software can also solve a version of the model with explicit liquidity constraints, where the Envelope
condition does not hold.
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An approximation to the consumption function could be constructed by linear in-
terpolation between the {~m,~c} points. But a vastly more accurate approximation can
be made (for a given number of gridpoints) if the interpolation is constructed so that
it also matches the marginal propensity to consume at the gridpoints. Differentiating
(96) with respect to a (and dropping policy function arguments for simplicity) yields
a marginal propensity to have consumed ca at each gridpoint:

u′′(ct)c
a
t = Rβ Et[u′′(Γt+1ct+1)Γt+1cmt+1Rt+1]

= Rβ Et[u′′(Γt+1ct+1)Rcmt+1]

cat = Rβ Et[u′′(Γt+1ct+1)Rcmt+1]/u′′(ct) (97)

and the marginal propensity to consume at the beginning of the period is obtained
from the marginal propensity to have consumed by noting that, if we define m(a) =
c(a)− a,

c = m− a
ca + 1 = ma

which, together with the chain rule ca = cmma, yields the MPC from

cm(ca + 1) = ca

cm = ca/(1 + ca)

and we call the vector of MPC’s at the ~mt gridpoints ~κt.

G The Terminal/Limiting Consumption Function
For any set of parameter values that satisfy the conditions required for convergence,
the problem can be solved by setting the terminal consumption function to cT (m) = m
and constructing {cT−1, cT−2, ...} by time iteration (a method that will converge to
c(m) by standard theorems). But cT (m) = m is very far from the final converged
consumption rule c(m),44 and thus many periods of iteration will likely be required
to obtain a candidate rule that even remotely resembles the converged function.
A natural alternative choice for the terminal consumption rule is the solution

to the perfect foresight liquidity constrained problem, to which the model’s solu-
tion converges (under specified parametric restrictions) as all forms of uncertainty
approach zero (as discussed in the main text). But a difficulty with this idea is
that the perfect foresight liquidity constrained solution is ‘kinked:’ The slope of
the consumption function changes discretely at the points {m1

#,m
2
#, ...}. This is

a practical problem because it rules out the use of derivatives of the consumption

44Unless β ≈ +0.
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function in the approximate representation of c(m), thereby preventing the enormous
increase in efficiency obtainable from a higher-order approximation.
Our solution is simple: The formulae in appendix A that identify kink points on

c̊(m) for integer values of n (e.g., cn# = ÞÞÞ−nΓ ) are continuous functions of n; the
conclusion that c̊(m) is piecewise linear between the kink points does not require that
the terminal consumption rule (from which time iteration proceeds) also be piecewise
linear. Thus, for values n ≥ 0 we can construct a smooth function c̆(m) that matches
the true perfect foresight liquidity constrained consumption function at the set of
points corresponding to integer periods in the future, but satisfies the (continuous, and
greater at non-kink points) consumption rule defined from the appendix’s formulas
by noninteger values of n at other points.45
This strategy generates a smooth limiting consumption function – except at the

remaining kink point defined by {m0
#, c

0
#}. Below this point, the solution must match

c(m) = m because the constraint is binding. At m = m0
# the MPC discretely drops

(that is, limm↑m0
#

c′(m) = 1 while limm↓m0
#

c′(m) = κ0
# < 1).

Such a kink point causes substantial problems for numerical solution methods (like
the one we use, described below) that rely upon the smoothness of the limiting
consumption function.
Our solution is to use, as the terminal consumption rule, a function that is identical

to the (smooth) continuous consumption rule c̆(m) above some n ≥ n, but to replace
c̆(m) between m0

# and mn
# with the unique polynomial function ĉ(m) that satisfies

the following criteria:

1. ĉ(m0
#) = c0

#

2. ĉ′(m0
#) = 1

3. ĉ′(mn
#) = (dcn#/dn)(dmn

#/dn)−1|n=n

4. ĉ′′(mn
#) = (d2cn#/dn

2)(d2mn
#/dn

2)−1|n=n

where n is chosen judgmentally in a way calculated to generate a good compromise
between smoothness of the limiting consumption function c̆(m) and fidelity of that
function to the c̊(m) (see the actual code for details).
We thus define the terminal function as46

cT (m) =


0 < m ≤ m0

# m

m0
# < m < mn

# c̆(m)

mn
# < m c̊(m)

(98)

45In practice, we calculate the first and second derivatives of c̊ and use piecewise polynomial approximation
methods that match the function at these points.

46For further details see the archive file ./CoreCode/Documentation/cTerminal.nb.
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Since the precautionary motive implies that in the presence of uncertainty the
optimal level of consumption is below the level that is optimal without uncertainty,
and since c̆(m) ≥ c̊(m), implicitly defining m = eµ (so that µ = logm), we can
construct

χt(µ) = log(1− ct(e
µ)/cT (eµ)) (99)

which must be a number between −∞ and +∞ (since 0 < ct(m) < c̆(m) for m > 0).
This function turns out to be much better behaved (as a numerical observation; no
formal proof is offered) than the level of the optimal consumption rule ct(m). In
particular, χt(µ) is well approximated by linear functions both as m ↓ 0 and as
m ↑ ∞.
Differentiating with respect to µ and dropping consumption function arguments

yields

χ′t(µ) =

−
(

c′tcT−ctc′T
c2
T

eµ
)

1− ct/cT

 (100)

which can be solved for

c′t = (ctc
′
T/cT )− ((cT − ct)/m)χ′t. (101)

Similarly, we can solve (99) for

ct(m) =
(
1− eχt(logm)

)
cT (m). (102)

Thus, having approximated χt, we can recover from it the level and derivative(s)
of ct.47

47See ./CoreCode/Documentation/Derivations.nb for implementation details and further derivations.
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Table 4 Taxonomy of Liquidity Constrained Model Outcomes

Name Condition Outcome/Comments
(((

((PF-GIC 1 < ÞÞÞ/Γ Constraint never binds for m ≥ 1
RIC ÞÞÞ/R < 1 FHWC holds (R > Γ)

c̊(m) = c̄(m) for m ≥ 1
���RIC 1 < ÞÞÞ/R c̊(m) is degenerate

PF-GIC ÞÞÞ/Γ < 1 Constraint binds in finite time for any m
RIC ÞÞÞ/R < 1 FHWC may or may not hold

limm↑∞ c̄(m)− c̊(m) = 0
limm↑∞ κ̊κκ(m) = κ

���RIC 1 < ÞÞÞ/R ���
�FHWC

limm↑∞ κ̊κκ(m) = 0
Conditions are applied from left to right; for example, the second and third rows indicate conclusions in the
case where((((PF-GIC and RIC both hold, while the fourth row indicates that when the PF-GIC and the RIC
both fail, the consumption function is degenerate; the next row indicates that whenever the PF-GIC holds, the
constraint will bind in finite time.
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