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Abstract 
This paper builds foundations for rigorous and intuitive understanding of ‘bu˙er stock’ 

saving models (close cousins of Bewley (1977) models), pairing each theoretical result with 
quantitative illustrations. After describing conditions under which a consumption function 
exists, the paper shows that a consumer subject to idiosyncratic shocks will engage in 
‘target’ saving whenever a normalized ‘growth impatience’ condition is imposed. A related 
condition guarantees the existence of an ‘expected balanced growth’ point. Together, the 
(provided) numerical tools and (proven) analytical results constitute a comprehensive toolkit 
for understanding. 
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1 Introduction 
In the presence of empirically realistic transitory and permanent income shocks a la 
Friedman (1957),1 only one further ingredient is required to construct a microeconomi-
cally testable model of optimal consumption: A description of preferences. Zeldes (1989) 
was the first to construct a quantitatively realistic version of such a model, spawning a 
subsequent literature showing that such models’ predictions can match evidence from 
household data reasonably well, whether or not liquidity constraints are imposed.2 
A related theoretical literature has derived limiting properties of infinite-horizon solu-

tions of such models, but only in cases more complex than the case with just shocks and 
preferences (Bewley (1977) and successors). The extra complexity has been required, in 
part, because standard contraction mapping theorems (beginning with Bellman (1957) 
and including those building on Stokey et. al. (1989)) cannot be applied when utility or 
marginal utility are unbounded. Many proof methods also rule out permanent shocks a 
la Friedman (1957), Muth (1960), and Zeldes (1989).3 

This paper’s first technical contribution is to articulate conditions under which the 
simple problem (without complications like a consumption floor or liquidity constraints) 
defines a contraction mapping whose limiting value and consumption functions are non-
degenerate as the horizon approaches infinity. The key condition is a generalization of a 
condition in Ma, Stachurski, and Toda (2020), which we call the‘Finite Value of Autarky 
Condition’ (the other required condition, the ‘Weak Return Impatience Condition’ is 
unlikely to bind). Conveniently, the resulting model has analytical properties, like 
continuous di˙erentiability of the consumption function, that make it easier to analyze 
than the standard (but more complicated) models. 

The paper’s other main theoretical contribution is to identify conditions under which 
‘stable’ values of the wealth-to-permanent-income ratio exist, either for individual con-
sumers (an individual consumer’s wealth can be predicted to move toward a ‘target’ 
ratio) or for the aggregate (the economy as a whole moves toward a ‘balanced growth’ 
equilibrium in which the ratio of aggregate wealth to aggregate income is constant). 
The requirement for stability is always that the model’s parameters must satisfy some 
version of a ‘Growth Impatience Condition’ where the nature of the condition depends 
on the quantity whose stability is required. A model that exhibits stability of this kind 
is what we will call a ‘bu˙er stock’ model.4 

Even without a formal proof of its existence, target saving has been intuitively under-
stood to underlie central quantitative results from the heterogeneous agent macroeco-

1As formalized by Muth (1960). 
2See Carroll (1997) or Gourinchas and Parker (2002) for arguments that models with only ‘natural’ constraints (see 

below) match a wide variety of facts; for a model with explicit constraints that produces very similar results, see, e.g., 
Cagetti (2003). 

3See the fuller discussion at the end of section 2.1. 
4Such models are neither a subset nor a superset of Bewley (1977) models. But closed economies in which capital 

results from saving and has declining marginal productivity are always ‘bu˙er stock’ economies under some definition 
of that term, because capital accumulation causes interest rates to fall, which guarantees that a Growth Impatience 
Condition will hold in equilibrium (see below). The more interesting applications are to populations (or economies) whose 
marginal saving behavior does not determine the relevant interest rate, or in which the marginal product of capital does 
not fall as capital is accumulated. 
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nomics literature; for example, the logic of target saving is central to the recent claim by 
Krueger, Mitman, and Perri (2016) in the Handbook of Macroeconomics that such models 
explain why, during the Great Recession, middle-class consumers cut their consumption 
more than the poor or the rich. The theory below provides the rigorous theoretical basis 
for this claim: Learning that the future has become more uncertain does not change the 
urgent imperatives of the poor (their high u0(c) means they – optimally – have little room 
to maneuver). And, increased labor income uncertainty does not change the behavior 
of the rich because it poses little risk to their consumption. Only people in the middle 
have both the motivation and the wiggle-room to reduce their spending. 

Analytical derivations required for the proofs provide foundations for many other 
results familiar from the numerical literature.5 
The paper proceeds in three parts. 
The first part articulates suÿcient conditions for the problem to define a useful 

(nondegenerate) limiting consumption function, and explains how the model relates 
to those previously considered in the literature, showing that the conditions required 
for convergence are interestingly parallel to those required for the liquidity constrained 
perfect foresight model; that parallel is explored and explained. Next, the paper derives 
limiting properties of the consumption function as resources approach infinity, and as 
they approach their lower bound; using these limits, the contraction mapping theorem is 
then proven. Last comes a proof that a corresponding model with an ‘artificial’ liquidity 
constraint (that is, a model that exogenously prohibits consumers from borrowing even if 
they could certainly repay) is a particular limiting case of the model without constraints. 
The analytical convenience of the unconstrained model is that it is both mathematically 
convenient (e.g., the consumption function is twice continuously di˙erentiable), and 
arbitraily close (cf. section 2.10) to less tractable models that have heretofore been 
tackled with less convenient methods. For future authors, the approach here models a 
strategy of proving interesting propositions in this more congenial environment, and then 
appealing to a limiting argument to establish the analogous proposition in an explicitly 
constrained but more unwieldy environment. 

In proving the remaining theorems, the next section examines key properties of the 
model. First, as cash approaches infinity the expected growth rate of consumption 
and the marginal propensity to consume (MPC) converge to their values in the perfect 
foresight case. Second, as cash approaches zero the expected growth rate of consumption 
approaches infinity, and the MPC approaches a simple analytical limit. Next, the central 
theorems articulate conditions under which di˙erent measures of ‘growth impatience’ 
imply useful conclusions about points of stability (‘target’ or ‘balanced growth’ points). 

The final section elaborates the conditions under which, even with a fixed aggregate 
interest rate that di˙ers from the time preference rate, a small open economy populated 
by bu˙er stock consumers has a balanced growth equilibrium in which growth rates of 
consumption, income, and wealth match the exogenous growth rate of permanent income 
(equivalent, here, to productivity growth). In the terms of Schmitt-Grohé and Uribe 

5The paper’s insights are instantiated in the Econ-ARK toolkit, whose bu˙er stock saving module flags parametric 
choices under which a problem is degenerate or stable ratios of wealth to income may not exist. 
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(2003), bu˙er stock saving is an appealing method of ‘closing’ a small open economy 
model, because it requires no ad-hoc assumptions. Not even liquidity constraints. 

2 The Problem 

2.1 Setup 
The infinite horizon solution is the (limiting) first-period solution to a sequence of finite-
horizon problems as the horizon (the last period of life) becomes arbitrarily distant. 

That is, for the value function, fixing a terminal date T , we are interested in the 
term vT −n in the sequence of value functions {vT , vT −1, ..., vT −n}. We will say that the 
problem has a ‘nondegenerate’ infinite horizon solution if, corresponding to that value 
function, as n ↑ ∞ there is a limiting consumption function ̊c(m) = limn↑∞ cT −n which 
is neither ̊c(m) = 0 everywhere (for all m) nor ̊c(m) = ∞ everywhere. 

Concretely, a consumer born n periods before date T solves the problem 
" # 

nX 
vT −n = max Et βiu(ct+i) 

i=0 

where the utility function 

u(•) = •1−ρ/(1 − ρ) (1) 

exhibits relative risk aversion ρ > 1. 6 The consumer’s initial condition is defined by 
market resources mt and permanent noncapital income pt, which both are positive, 

{pt, mt} ∈ (0, ∞), (2) 

and the consumer cannot die in debt, 

cT ≤ mT . (3) 

In the usual treatment, a dynamic budget constraint (DBC) incorporates several 
elements that jointly determine next period’s m (given this period’s choices); for the 
detailed analysis here, it will be useful to disarticulate the steps: 

at = mt − ct (4) 
bt+1 = atR 

pt+1 = pt Γψt+1| {z } 
≡Γt+1 

mt+1 = bt+1 + pt+1ξt+1, 

where at indicates the consumer’s assets at the end of period t, which grow by a fixed 
interest factor R = (1 + r) between periods, so that bt+1 is the consumer’s financial 

6The main results also hold for logarithmic utility which is the limit as ρ → 1 but incorporating the logarithmic 
special case in the proofs is cumbersome and therefore omitted. 
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(‘bank’) balances before next period’s consumption choice;7 mt+1 (‘market resources’) is 
the sum of financial wealth bt+1 and noncapital income pt+1ξt+1 (permanent noncapital 
income pt+1 multiplied by a mean-one iid transitory income shock factor ξt+1; transitory 
shocks are assumed to satisfy Et[ξt+n] = 1 ∀ n ≥ 1). Permanent noncapital income in 
t +1 is equal to its previous value, multiplied by a growth factor Γ, modified by a mean-

¯ ¯ one iid shock ψt+1, Et[ψt+n] = 1 ∀ n ≥ 1 satisfying ψ ∈ [ψ, ψ] for 0 < ψ ≤ 1 ≤ ψ < ∞ 
¯(and ψ = ψ = 1 is the degenerate case with no permanent shocks). 

Following Zeldes (1989), in future periods t + n ∀ n ≥ 1 there is a small probability ℘ 
that income will be zero (a ‘zero-income event’), 

( 
0 with probability ℘ > 0 

ξt+n = (5)
θt+n/(1 − ℘) with probability (1 − ℘) 

where θt+n is an iid mean-one random variable (Et[θt+n] = 1 ∀ n > 0) whose distribution 
8satisfies θ ∈ [θ, θ̄] where 0 < θ ≤ 1 ≤ θ̄  < ∞. Call the cumulative distribution functions 

Fψ and Fθ (where Fξ is derived trivially from (5) and Fθ). For quick identification in 
tables and graphs, we will call this the Friedman/Muth model because it is a specific im-
plementation of the Friedman (1957) model as interpreted by Muth (1960), needing only 
a calibration of the income process and a specification of preferences (here, geometric 
discounting and CRRA utility) to be solvable. 

The model looks more special than it is. In particular, the assumption of a positive 
probability of zero-income events may seem objectionable (though it has empirical 
support).9 However, it is easy to show that a model with a nonzero minimum value of ξ 
(motivated, for example, by the existence of unemployment insurance) can be redefined 
by capitalizing the present discounted value of minimum income into current market 
assets,10 transforming that model back into this one. And no key results would change 
if the transitory shocks were persistent but mean-reverting, instead of IID. Also, the 
assumption of a positive point mass for the worst realization of the transitory shock is 
inessential, but simplifies the proofs and is a powerful aid to intuition.11 

This model di˙ers from Bewley’s (1977) classic formulation in several ways. The 
Constant Relative Risk Aversion (CRRA) utility function does not satisfy Bewley’s 
assumption that u(0) is well defined, or that u0(0) is well defined and finite; indeed, 
neither the value function nor the marginal value function will be bounded. It di˙ers from 
Schectman and Escudero (1977) in that they impose liquidity constraints and positive 
minimum income. It di˙ers from both of these in that it permits permanent growth 
in income, and also permanent shocks to income, which a large empirical literature 
finds are of dominant importance in micro data12 (permanent shocks are far more 

7Allowing a stochastic interest factor is straightforward but adds little insight for our purposes; however, see Benhabib, 
Bisin, and Zhu (2015), Ma and Toda (2020), and Ma, Stachurski, and Toda (2020) for the implications of capital income 
risk for the distribution of wealth and other interesting questions not considered here. 

8Rabault (2002) and Li and Stachurski (2014) analyze cases where the shock processes have unbounded support. 
9We calibrate this probability to 0.005 to match data from the Panel Study of Income Dynamics (Carroll (1992)). 
10So long as unemployment benefits are proportional to pt; see the discussion in section 2.11. 
11A positive density over a positive interval above the lower bound would work instead, but would be cumbersome. 
12MaCurdy (1982); Abowd and Card (1989); Carroll and Samwick (1997); Jappelli and Pistaferri (2000); Storesletten, 

Telmer, and Yaron (2004); Blundell, Low, and Preston (2008) 
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consequential for household welfare than are transitory fluctuations). It di˙ers from 
Deaton (1991) because liquidity constraints are absent; there are separate transitory and 
permanent shocks (a la Muth (1960)); and the transitory shocks here can occasionally 
cause income to reach zero.13 It di˙ers from models found in Stokey et. al. (1989) because 
neither liquidity constraints nor bounds on utility or marginal utility are imposed.14,15 
Li and Stachurski (2014) show how to allow unbounded returns by using policy function 
iteration, but also impose constraints. 

The paper with perhaps the most in common with this one is Ma, Stachurski, and 
Toda (2020), henceforth MST, who establish the existence and uniqueness of a solution 
to a general income fluctuation problem in a Markovian setting. The most important 
di˙erences are that MST impose liquidity constraints, assume that u0(0) = 0, and that 
expected marginal utility of income is finite (E[u0(Y )] < ∞). These assumptions are 
not consistent with the combination of CRRA utility and income dynamics used here, 
whose combined properties are key to the results.16 

2.2 The Problem Can Be Normalized By Permanent Income 
We establish a bit more notation by reviewing the familiar result that in such problems 
(CRRA utility, permanent shocks) the number of states can be reduced from two (m 
and p) to one (m = m/p). Value in the last period of life is u(mT ); using (in the last 
line in (6) below) the fact that for our CRRA utility function, u(xy) = x1−ρu(y), and 
generically defining nonbold variables as the boldface counterpart normalized by pt (as 
with m = m/p), consider the problem in the second-to-last period, 

vT −1(mT −1, pT −1) = max u(cT −1) + β ET −1[u(mT )] 
cT −1 

= max u(pT −1cT −1) + β ET −1[u(pT mT )] 
cT −1 � � 

= p 1 
T 
−
− 
ρ 
1 max u(cT −1) + β ET −1[u(ΓT mT )] . (6) 

cT −1 

Now, in a one-time deviation from the notational convention established in the last 
sentence, define nonbold ‘normalized value’ not as vt/pt but as vt = vt/p 1 

t 
−ρ , because 

this allows us to exploit features of the related problem, 

vt(mt) = max u(ct) + β Et[Γ1−ρ 
t+1 vt+1(mt+1)] 

{c}T 
t 

s.t. (7) 
at = mt − ct 

13Below it will become clear that the Deaton model is a particular limit of this paper’s model. 
14Similar restrictions to those in the cited literature are made in the well known papers by Scheinkman and 

Weiss (1986), Clarida (1987), and Chamberlain and Wilson (2000). See Toche (2005) for an elegant analysis of a related 
but simpler continuous-time model. 

15Alvarez and Stokey (1998) relaxed the bounds on the return function, but they address only the deterministic case. 
16The incorporation of permanent shocks rules out application of the tools of Matkowski and Nowak (2011), who 

followed and corrected an error in the fundamental work on the local contraction mapping method developed in Rincón-
Zapatero and Rodríguez-Palmero (2003). Martins-da Rocha and Vailakis (2010) provide a correction to Rincón-Zapatero 
and Rodríguez-Palmero (2003), that works under easier conditions to verify, but only addresses the deterministic case. 
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bt+1 = (R/Γt+1)at = Rt+1at 

mt+1 = bt+1 + ξt+1, 

where Rt+1 ≡ (R/Γt+1) is a ‘growth-normalized’ return factor, and the new problem’s 
first order condition is17 

−ρ −ρ −ρ ct = Rβ Et[Γt+1ct+1]. (8) 

Since vT (mT ) = u(mT ), defining vT −1(mT −1) from (7), we obtain 
1−ρ vT −1(mT −1, pT −1) = pT −1vT −1(mT −1/pT −1). | {z } 

=mT −1 

This logic induces to earlier periods; if we solve the normalized one-state-variable 
problem (7), we will have solutions to the original problem for any t < T from: 

vt(mt, pt) = pt 
1−ρ vt(mt), 

ct(mt, pt) = ptct(mt). 

2.3 Definition of a Nondegenerate Solution 
The problem has a nondegenerate solution if as the horizon n gets arbitrarily large the 
solution in the first period of life ̊cT −n(m) gets arbitrarily close to a limiting ̊c(m): 

c̊(m) ≡ lim cT −n(m) (9) 
n→∞ 

that satisfies 

0 < ̊c(m) < ∞ (10) 

for every 0 < m < ∞. 

2.4 Perfect Foresight Benchmarks 
The familiar analytical solution to the perfect foresight model, obtained by setting ℘ = 0 

¯and θ = θ̄ = ψ = ψ = 1, allows us to define some remaining notation and terminology. 

2.4.1 Human Wealth 

The dynamic budget constraint, strictly positive marginal utility, and the can’t-die-in-
debt condition (3) imply an exactly-holding intertemporal budget constraint (IBC): 

htbt z }| { z }| { 
PDVt(c) = mt − pt + PDVt(p), (11) 

17Leaving aside their assumptions about the marginal utility function and liquidity constraints, it is tempting to view 
this as a special case of the model of MST, with the Rt+1 = R/Γt+1 (defined below equation (7)) corresponding to their 

1−ρstochastic rate of return on capital and the FVAF βΓ defined below (39) corresponding to their stochastic discount t+1 
factor. But a caveat is that, here, Rt+1 and the modified discount factor are intimately related because Γt+1 plays a role 
in each. 
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where b is nonhuman wealth, and with a constant R ≡ R/Γ ‘human wealth’ is 

ht = pt + R−1 pt + R−2 pt + ... + Rt−T pt � � 
1 −R−(T −t+1) 

= pt (12)
1 −R−1 

| {z } 
≡ht 

In order for h ≡ limn→∞ hT −n to be finite, we must impose the Finite Human Wealth 
Condition (‘FHWC’): 

Γ/R < 1. (13)|{z} 
≡R−1 

Intuitively, for human wealth to be finite, the growth rate of (noncapital) income must 
be smaller than the interest rate at which that income is being discounted. 

2.4.2 When Does the Perfect Foresight Unconstrained Solution Exist? 

Without constraints, the consumption Euler equation always holds; with u0(c) = c−ρ , 

= (Rβ)1/ρ ≡ Þct+1/ct (14) 

where the archaic letter ‘thorn’ represents what we will call the ‘Absolute Patience 
Factor,’ or APF: 

Þ = (Rβ)1/ρ. (15) 

The sense in which Þ captures patience is that if the ‘absolute impatience condition’ 
(AIC) holds,18 

Þ < 1, (16) 

the consumer will choose to spend an amount too large to sustain indefinitely. We call 
such a consumer ‘absolutely impatient.’ 

We next define a ‘Return Patience Factor’ (RPF) that relates absolute patience to the 
return factor: 

ÞR ≡ Þ/R (17) 

and since consumption is growing by Þ but discounted by R: 
! 

1 − ÞT −t+1 

PDVt(c) = R ct (18)
1 − ÞR 

18Impatience conditions have figured in intertemporal optimization problems since the beginning, e.g. in Ramsey 
(1928). These issues are so central that it would be hopeless to attempt to cite conditions in every other paper that 
correspond to conditions named and briefly exposited here. I make no claim to novelty for any condition or implication 
except for the conditions implicated in my theorems, whose parallels will be articulated. 
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from which the IBC (11) implies 

z ≡ }| κt {� � 
1 − ÞR 

ct = (bt + ht) (19)
1 − ÞT −t+1 

R 

which defines a normalized finite-horizon perfect foresight consumption function 
≡bT −n z }| {

c̄T −n(mT −n) = (mT −n − 1+hT −n)κT −n (20) 

where κt is the marginal propensity to consume (MPC) – it answers the question ‘if 
the consumer had an extra unit of resources, how much more would be spent.’ (c̄’s 
overbar signfies that ̄c will be an upper bound as we modify the problem to incorporate 
constraints and uncertainty; analogously, κ is a lower bound for the MPC). 

Equation (19) makes plain that for the limiting MPC κ to be strictly positive as 
n = T − t goes to infinity we must impose the Return Impatience Condition (RIC): 

ÞR < 1, (21) 

so that 

0 < κ ≡ 1 − ÞR = lim κT −n. (22) 
n→∞ 

The RIC thus imposes a second kind of ‘impatience:’ The consumer cannot be so 
pathologically patient as to wish, in the limit as the horizon approaches infinity, to spend 
nothing today out of an increase in current wealth (the RIC rules out the degenerate 
limiting solution ̄c(m) = 0). A consumer who satisfies the RIC is ‘return impatient.’ 

Given that the RIC holds, and (as before) defining limiting objects by the absence of 
a time subscript, the limiting upper bound consumption function will be 

c̄(m) = (m + h − 1)κ, (23) 

and so in order to rule out the degenerate limiting solution ̄c(m) = ∞ we need h to be 
finite; that is, we must impose the Finite Human Wealth Condition (13). 

Because u(xy) = x1−ρu(y) we can write a useful analytical expression for the value 
the consumer would achieve by spending permanent income p in every period: 

autarkyvt = u(pt) + βu(ptΓ) + β2u(ptΓ
2) + ... (24)� � 

= u(pt) 1 + βΓ1−ρ + (βΓ1−ρ)2 + ... 
� � 
1 − (βΓ1−ρ)T −t+1 

= u(pt) 
1 − βΓ1−ρ 

which (for Γ > 0) asymptotes to a finite number as n = T − t approaches +∞ if any of 
these equivalent conditions holds: 

≡i z }| { 
βΓ1−ρ < 1 

βRΓ−ρ < R/Γ (25) 

ÞR < (Γ/R)1−1/ρ, 
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where we call i19 the ‘Perfect Foresight Value Of Autarky Factor’ (PF-VAF), and the 
variants of (25) constitute alternative versions of the Perfect Foresight Finite Value of 
Autarky Condition, PF-FVAC; they guarantee that a consumer who always spends all 
permanent income ‘has finite autarky value.’20 
If the FHWC is satisfied, the PF-FVAC implies that the RIC is satisfied: Divide both 

sides of the second inequality in (25) by R: 

Þ/R < (Γ/R)1−1/ρ (26) 

and FHWC ⇒ the RHS is < 1 because (Γ/R) < 1 (and the RHS is raised to a positive 
power (because ρ > 1)). 

Likewise, if the FHWC and the GIC are both satisfied, PF-FVAC follows: 

Þ < Γ < R 

ÞR < Γ/R < (Γ/R)1−1/ρ < 1 (27) 

where the last line holds because FHWC ⇒ 0 ≤ (Γ/R) < 1 and ρ > 1 ⇒ 0 < 1−1/ρ < 1. 
The first panel of Table 4 summarizes: The PF-Unconstrained model has a non-

degenerate limiting solution if we impose the RIC and FHWC (these conditions are 
necessary as well as suÿcient). Imposing the PF-FVAC and the FHWC implies the 
RIC, so PF-FVAC and FHWC are jointly suÿcient. If we impose the GIC and the 
FHWC, both the PF-FVAC and the RIC follow, so GIC+FHWC are also suÿcient. But 
there are circumstances under which the RIC and FHWC can hold while the PF-FVAC 
fails (which we write (((( ( For example, if Γ 0, the problem is a standardPF-FVAC). = 
‘cake-eating’ problem with a nondegenerate solution under the RIC. 

Perhaps more useful than this prose or the table, the relations of the conditions for the 
unconstrained perfect foresight case are presented diagrammatically in Figure 1. Each 
node represents a quantity considered in the foregoing analysis. The arrow associated 
with each inequality reflects the imposition of that condition. For example, one way we 
wrote the PF-FVAC in equation (25) is Þ < R1/ρΓ1−1/ρ, so imposition of the PF-FVAC is 
captured by the diagonal arrow connecting Þ and R1/ρΓ1−1/ρ. Traversing the boundary 
of the diagram clockwise starting at Þ involves imposing first the GIC then the FHWC, 
and the consequent arrival at the bottom right node tells us that these two conditions 
jointly imply that the PF-FVAC holds. Reversal of a condition will reverse the arrow’s 
direction; so, for example, the bottommost arrow going from R to R1/ρΓ1−1/ρ imposes 
����FHWC; but we can cancel the cancellation and reverse the arrow. This would allow us 
to traverse the diagram in a clockwise direction from Þ to R, revealing that imposition 
of GIC and FHWC (and, redundantly, FHWC again) let us conclude that the RIC holds 
because the starting point is Þ and the endpoint is R. (Consult Appendix K for a 
detailed exposition of diagrams of this type). 

19This is another kind of discount factor, so we use the Hebrew ‘bet’ which is a cognate of the Greek ‘beta’. 
20This is related to the key impatience condition in Alvarez and Stokey (1998). 
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Figure 1 Relation of GIC, FHWC, RIC, and PF-FVAC 
An arrowhead points to the larger of the two quantities being compared. For example, the diagonal arrow indicates that 
Þ < R1/ρΓ1−1/ρ, which is one way of writing the PF-FVAC, equation (25) 

2.4.3 PF Constrained Solution Exists Under RIC or Under {� �RIC,GIC} 

We next examine the perfect foresight constrained solution because it is a useful bench-
mark (and limit) for the unconstrained problem with uncertainty (examined next). 

If a liquidity constraint requiring b ≥ 0 is ever to be relevant, it must be relevant at 
the lowest possible level of market resources, mt = 1, defined by the lower bound for 
entering the period, bt = 0. The constraint is ‘relevant’ if it prevents the choice that 
would otherwise be optimal; at mt = 1 the constraint is relevant if the marginal utility 
from spending all of today’s resources ct = mt = 1, exceeds the marginal utility from 
doing the same thing next period, ct+1 = 1; that is, if such choices would violate the 
Euler equation (8): 

1−ρ > Rβ(Γ)−ρ1−ρ . (28) 

By analogy to the RPF, we therefore define a ‘growth patience factor’ (GPF) as 

ÞΓ = Þ/Γ, (29) 

and define a ‘growth impatience condition’ (GIC) 

ÞΓ < 1 (30) 

which is equivalent to (28) (exponentiate both sides by 1/ρ). 
We now examine implications of possible configurations of the conditions. 
�GIC� and RIC. If the GIC fails but the RIC (21) holds, appendix A shows that, for 

some 0 < m# < 1, an unconstrained consumer behaving according to (23) would choose 
c < m for all m > m#. In this case the solution to the constrained consumer’s problem is 
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simple: For any m ≥ m# the constraint does not bind (and will never bind in the future); 
for such m the constrained consumption function is identical to the unconstrained one. 
If the consumer were somehow21 to arrive at an m < m# < 1 the constraint would bind 
and the consumer would consume c = m. Using the •̀ accent to designate the version of 
a function • in the presence of constraints (and recalling that ̄c(m) is the unconstrained 
perfect foresight solution): 

( 
m if m < m#

c̀(m) = (31)
c̄(m) if m ≥ m#. 

GIC and RIC. More useful is the case where the return impatience and GIC conditions 
both hold. In this case appendix A shows that the limiting constrained consumption 
function is piecewise linear, with ̀c(m) = m up to a first ‘kink point’ at m1 > 1, and 
with discrete declines in the MPC at a set of kink points {m#

1 ,m#
2 , ...}. As 

# 

m ↑ ∞ the 
constrained consumption function ̀c(m) becomes arbitrarily close to the unconstrained 
c̄(m), and the marginal propensity to consume function κ̀(m) ≡ c̀0(m) limits to κ. 
Similarly, the value function v(` m) is nondegenerate and limits into the value function of 
the unconstrained consumer. 

This logic holds even when the finite human wealth condition fails (����FHWC), because 
the constraint prevents the consumer from borrowing against infinite human wealth to 
finance infinite current consumption. Under these circumstances, the consumer who 
starts with any amount of resources bt > 1 will, over time, run those resources down so 
that by some finite number of periods n in the future the consumer will reach bt+n = 0, 
and thereafter will set c = p for eternity (which the PF-FVAC says yields finite value). 
Using the same steps as for equation (24), value of the interim program is also finite: 

� � 
1 − (βΓ1−ρ)T −(t+n)+1 

= Γn(1−ρ)u(pt)vt+n . 
1 − βΓ1−ρ 

So, if ���� 
m TheFHWC, value for any finite will be the sum of two finite numbers: 

component due to the unconstrained consumption choice made over the finite horizon 
leading up to bt+n = 0, and the finite component due to the value of consuming all pt+n 

thereafter. 
GIC and �RIC� . The most peculiar possibility occurs when the RIC fails. Under these 

circumstances the FHWC must also fail (Appendix A), and the constrained consumption 
function is nondegenerate. (See appendix Figure 8 for a numerical example). While it is 
true that limm↑∞ κ̀(m) = 0, nevertheless the limiting constrained consumption function 
c̀(m) is strictly positive and strictly increasing in m. This result interestingly reconciles 
the conflicting intuitions from the unconstrained case, where �RIC� would suggest a 
degenerate limit of ̀  FHWC would suggest a degenerate limit of c(m) = ∞.c(m) = 0 while ���� 

` 
Tables 3 and 4 (and appendix table 5) codify. 
We now examine the case with uncertainty but without constraints, which will turn 

out to be a close parallel to the model with constraints but without uncertainty. 

21“Somehow” because m < 1 could only be obtained by entering the period with b < 0 which the constraint forbids. 
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2.5 Uncertainty-Modified Conditions 
2.5.1 Impatience 

When uncertainty is introduced, the expectation of beginning-of-period bank balances 
bt+1 can be rewritten as: 

Et[bt+1] = at Et[(R/Γt+1)] = at(R/Γ) Et[ψt − 
+1
1 ] (32) 

where Jensen’s inequality guarantees that the expectation of the inverse of the permanent 
shock is strictly greater than one. It will be convenient to define 

ψ ≡ (E[ψ−1])−1 (33) 

which satisfies ψ < 1 (thanks to Mr. Jensen), so we can define 

Γ ≡ Γψ < Γ (34) 

which is useful because it allows us to write uncertainty-adjusted versions of equations 
and conditions in a manner exactly parallel to those for the perfect foresight case; for 
example, we define a normalized Growth Patience Pactor (GPF-Nrm): 

ÞΓ = Þ/Γ = E[Þ/(Γψ)] (35) 

and a normalized version of the Growth Impatience Condition, GIC-Nrm: 

ÞΓ < 1 (36) 

which is stronger than the perfect foresight version (30) because Γ < Γ (cf (34)). 

2.5.2 Autarky Value 

Analogously to (24), value for a consumer who spent exactly their permanent income 
every period would reflect the product of the expectation of the (independent) future 
shocks to permanent income: 

� � 
vt = Et u(pt) + βu(ptΓt+1) + ... + βT −tu(ptΓt+1...ΓT )� � 

1 − (βΓ1−ρ E[ψ1−ρ])T −t+1 

= u(pt) 
1 − βΓ1−ρ E[ψ1−ρ] 

which invites the definition of a utility-compensated equivalent of the permanent shock, 

ψ = (E[ψ1−ρ])1/(1−ρ) (37) 

which will satisfy ψ < 1 for ρ > 1 and nondegenerate ψ. Defining 

Γ = Γψ (38) 

we can see that vt will be finite as T approaches ∞ if 
≡i 
z }| { 
βΓ1−ρ < 1 

β < Γρ−1 (39) 
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Table 1 Microeconomic Model Calibration 

Calibrated Parameters 
Description Parameter Value Source 

Permanent Income Growth Factor 
Interest Factor 

Time Preference Factor 
Coeÿcient of Relative Risk Aversion 

Probability of Zero Income 
Std Dev of Log Permanent Shock 
Std Dev of Log Transitory Shock 

Γ 

R 

β 

ρ 

℘ 

σψ 

σθ 

1.03 
1.04 
0.96 
2 

0.005 
0.1 
0.1 

PSID: Carroll (1992) 
Conventional 
Conventional 
Conventional 

PSID: Carroll (1992) 
PSID: Carroll (1992) 
PSID: Carroll (1992) 

which we call the ‘finite value of autarky condition’ (FVAC) because it guarantees that 
value is finite for a consumer who always consumes their (now stochastic) permanent 
income (and we will call i the ‘Value of Autarky Factor,’ VAF).22 For nondegenerate ψ, 
this condition is stronger (harder to satisfy in the sense of requiring lower β) than the 
perfect foresight version (25) because Γ < Γ. 23 

2.6 The Baseline Numerical Solution 
Figure 2, familiar from the literature, depicts the successive consumption rules that 
apply in the last period of life (cT (m)), the second-to-last period, and earlier periods 
under baseline parameter values listed in Table 2. (The 45 degree line is cT (m) = m 
because in the last period of life it is optimal to spend all remaining resources.) 

In the figure, the consumption rules appear to converge to a nondegenerate c̊(m). Our 
next purpose is to show that this appearance is not deceptive. 

2.7 Concave Consumption Function Characteristics 
A precondition for the main proof is that the maximization problem (7) defines a 
sequence of continuously di˙erentiable strictly increasing strictly concave24 functions 
{cT , cT −1, ...}. The straightforward but tedious proof is relegated to appendix B. For 

22In a stationary environment – that is, with Γ = 1 – this corresponds to an impatience condition imposed by Ma, 
Stachurski, and Toda (2020); but their remaining conditions do not correspond to those here, because their problem di˙ers 
and their method of proof di˙ers. 

23To see this, rewrite (39) as 

βR < RΓρ−1 

(βR)1/ρ < R1/ρΓ1−1/ρψ1−1/ρ 

ÞΓ < (R/Γ)1/ρψ1−1/ρ 

where the last equation is the same as the PF-FVAC condition except that the RHS is multiplied by ψ1−1/ρ which is 
strictly less than 1. 

24With one obvious exception: ̊cT (m) is linear (and so only weakly concave). 
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Table 2 Model Characteristics Calculated from Parameters 

Description Symbol and Formula 

Approximate 
Calculated 

Value 

Finite Human Wealth Factor R−1 ≡ Γ/R 0.990 
PF Finite Value of Autarky Factor βΓ1−ρi ≡ 0.932 

Growth Compensated Permanent Shock ψ ≡ (E[ψ−1])−1 0.990 
Uncertainty-Adjusted Growth Γ ≡ Γψ 1.020 

Utility Compensated Permanent Shock ψ ≡ (E[ψ1−ρ])1/(1−ρ) 0.990 

Utility Compensated Growth Γ ≡ Γψ 1.020 

Absolute Patience Factor (Rβ)1/ρÞ ≡ 0.999 
Return Patience Factor ÞR ≡ Þ/R 0.961 

Growth Patience Factor ÞΓ ≡ Þ/Γ 0.970 
NormalizedGrowth Patience Factor ÞΓ ≡ Þ/Γ 0.980 
Finite Value of Autarky Factor βΓ1−ρψ1−ρi ≡ 0.941 

Weak Impatience Factor ℘1/ρÞ ≡ (℘βR)1/ρ 0.071 

cT (m) = 45 degree line

cT−1(m)

cT−5(m)

cT−10(m)

c(m)

c

m

Figure 2 Convergence of the Consumption Rules 
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present purposes, the most important point is that the income process induces what 
Aiyagari (1994) dubbed a ‘natural borrowing constraint’: c̊t(m) < m for all periods 
t < T because a consumer who spent all available resources would arrive in period t + 1 
with balances bt+1 of zero, and then might earn zero income over the remaining horizon, 
requiring the consumer to spend zero, incurring negative infinite utility. To avoid this 
disaster, the consumer never spends everything. Zeldes (1989) seems to have been the 
first to argue, based on his numerical results, that the natural borrowing constraint was 
a quantitatively plausible alternative to ‘artificial’ or ‘ad hoc’ borrowing constraints in 
a life cycle model.25 
Strict concavity and continuous di˙erentiability of the consumption function are key 

elements in many of the arguments below, but are not characteristics of models with 
‘artificial’ borrowing constraints. As the arguments below will illustrate, the analytical 
convenience of these features is considerable – a point that may appeal to theorists when 
they realize (cf. section H below) that the solution to this congenial problem is arbitraily 
close to the solutin to the constrained but less wieldy problem with explicit constraints. 

2.8 Bounds for the Consumption Functions 
The consumption functions depicted in Figure 2 appear to have limiting slopes as m ↓ 0 
and as m ↑ ∞. This section confirms that impression and derives those slopes, which 
will be needed in the contraction mapping proof.26 

Assume that a continuously di˙erentiable concave consumption function exists in 
period t + 1, with an origin at ̊ct+1(0) = 0, a minimal MPC κt+1 > 0, and maximal 
MPC κ̄ t+1 ≤ 1. (If t + 1 = T these will be κT = κ̄ T = 1; for earlier periods they will 
exist by recursion from the following arguments.) 

The MPC bound as wealth approaches infinity is easy to understand: In this case, 
under our imposed assumption that human wealth is finite, the proportion of consump-
tion that will be financed out of human wealth approaches zero. In consequence, the 
proportional di˙erence between the solution to the model with uncertainty and the 
perfect foresight model shrinks to zero. In the course of proving this, appendix G 
provides a useful recursive expression (used below) for the (inverse of the) limiting MPC: 

κ−1 
t = 1 + ÞRκ

− 
t+1
1 . (40) 

2.8.1 Weak RIC Conditions 

Appendix equation (88) presents a parallel expression for the limiting maximal MPC as 
mt ↓ 0: 

κ−1 κ−1¯ t = 1 + ℘1/ρÞR ̄  t+1 (41) 

25The same (numerical) point applies for infinite horizon models (calibrated to actual empirical data on household 
income dynamics); cf. Carroll (1992). 

26Benhabib, Bisin, and Zhu (2015) show that the consumption function becomes linear as wealth approaches infinity 
in a model with capital income risk and liquidity constraints; Ma and Toda (2020) show that these results generalize to 
the limits derived here if capital income is added to the model. 
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κ−1where ¯ T −n n=0 

is a decreasing convergent sequence if the ‘weak return patience factor’ 
℘1/ρÞR satisfies: 

0 ≤℘1/ρÞR < 1, (42) 

a condition we dub the ‘Weak Return Impatience Condition’ (WRIC) because with ℘ < 1 
it will hold more easily (for a larger set of parameter values) than the RIC (ÞR < 1). 

The essence of the argument is that as wealth approaches zero, the overriding consid-
eration that limits consumption is the (recursive) fear of the zero-income events. (That 
is why the probability of the zero income event ℘ appears in the expression.) 

We are now in position to observe that the optimal consumption function must satisfy 

κtmt ≤ ̊ct(mt) ≤ κ̄ tmt (43) 

because consumption starts at zero and is continuously di˙erentiable (as argued above), 
is strictly concave,27 and always exhibits a slope between κt and κ̄ t (the formal proof is 
in appendix D). 

2.9 Conditions Under Which the Problem Defines a Contraction Mapping 
As mentioned above, standard theorems in the contraction mapping literature following 
Stokey et. al. (1989) require utility or marginal utility to be bounded over the space of 
possible values of m, which does not hold here because the possibility (however unlikely) 
of an unbroken string of zero-income events through the end of the horizon means that 
utility (and marginal utility) are unbounded as m ↓ 0. Although a recent literature 
examines the existence and uniqueness of solutions to Bellman equations in the presence 
of ‘unbounded returns’ (see, e.g., Matkowski and Nowak (2011)), the techniques in that 
literature cannot be used to solve the problem here because the required conditions are 
violated by a problem that incorporates permanent shocks.28 

Fortunately, Boyd (1990) provided a weighted contraction mapping theorem that 
Alvarez and Stokey (1998) showed could be used to address the homogeneous case (of 
which CRRA is an example) in a deterministic framework; later, Durán (2003) showed 
how to extend the Boyd (1990) approach to the stochastic case. 

Definition 1. Consider any function • ∈ C(A, B) where C(A, B) is the space of contin-
uous functions from A to B. Suppose z ∈ C(A, B) with B ⊆ R and z > 0. Then • is 
z-bounded if the z-norm of •, 

� � | • (m)|k • kz = sup , (44) 
m z(m) 

is finite. 

For Cz (A, B) defined as the set of functions in C(A, B) that are z-bounded; w, x, y, 
and z as examples of z-bounded functions; and using 0(m) = 0 to indicate the function 
that returns zero for any argument, Boyd (1990) proves the following. 

27Carroll and Kimball (1996) 
28See Yao (2012) for a detailed discussion of the reasons the existing literature up through Matkowski and Nowak 

(2011) cannot handle the problem described here. 
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Boyd’s Weighted Contraction Mapping Theorem. Let T : Cz (A, B) → C (A, B) 
such that 29,30 

(1)T is non-decreasing, i.e. x ≤ y ⇒ {Tx} ≤ {Ty} 
(2){T0} ∈ Cz (A, B) 

(3)There exists some real 0 < α < 1 such that 
{T(w + ζz)} ≤ {Tw} + ζαz holds for all real ζ > 0 . 

Then T defines a contraction with a unique fixed point. 
For our problem, take A as R>0 and B as R, and define 

� � 
Γ1−ρ{Ez}(at) = Et t+1 z(atRt+1 + ξt+1) . 

Using this, we introduce the mapping T : Cz (A, B) → C (A, B), 31 

{Tz}(mt) = max u(ct) + β ({Ez}(mt − ct)) . (45)
κmt]ct∈[κmt,¯

We can show that our operator T satisfies the conditions that Boyd requires of his 
operator T, if we impose two restrictions on parameter values. The first is the WRIC nec-
essary for convergence of the maximal MPC, equation (42) above. More serious is the 
Finite Value of Autarky condition, equation (39). (We discuss the interpretation of these 
restrictions in detail in section 2.11 below.) Imposing these restrictions, we are now in 
position to state the central theorem of the paper. 

Theorem 1. T is a contraction mapping if the restrictions on parameter values (42) 
and (39) are true (that is, if the weak return impatience condition and the finite value 
of autarky condition hold). 

Intuitively, Boyd’s theorem shows that if you can find a z that is everywhere finite 
but goes to infinity ‘as fast or faster’ than the function you are normalizing with z, 
the normalized problem defines a contraction mapping. The intuition for the FVAC 
condition is just that, with an infinite horizon, with any initial amount of bank balances 
b0, in the limit your value can always be made greater than you would get by consuming 
exactly the sustainable amount (say, by consuming (r/R)b0 − � for some small � > 0). 

The details of the proof are cumbersome, and are therefore relegated to appendix D. 
Given that the value function converges, appendix E.2 shows that the consumption 
functions converge.32 

29We will usually denote the function that results from the mapping as, e.g., {Tw}. 
30To non-theorists, this notation may be slightly confusing; the inequality relations in (1) and (3) are taken to mean 

‘for any specific element • in the domain of the functions in question’ so that, e.g., x ≤ y is short for x(•) ≤ y(•) ∀ • ∈ A. 
In this notation, ζαz in (3) is a function which can be applied to any argument • (because z is a function). 

31Note that the existence of the maximum is assured by the continuity of {Ez}(at) (it is continuous because it is the 
sum of continuous z-bounded functions z) and the compactness of [κmt, κ̄mt]. 

32MST’s proof is for convergence of the consumption policy function directly, rather than of the value function, which 
0is why their conditions are on u , which governs behavior. 
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2.10 The Liquidity Constrained Solution as a Limit 
This section explains why a related problem commonly considered in the literature (e.g., 
by Deaton (1991)), with a liquidity constraint and a positive minimum value of income, 
is the limit of the problem considered here as the probability ℘ of the zero-income event 
approaches zero. 

The ‘related’ problem makes two changes to the problem defined above: 

1. An ‘artificial’ liquidity constraint is imposed: at ≥ 0 

2. The probability of zero-income events is zero: ℘ = 0 

The essence of the argument is simple. Imposing the artificial constraint without 
changing ℘ would not change behavior at all: The possibility of earning zero income 
over the remaining horizon already prevents the consumer from ending the period with 
zero assets. So, for precautionary reasons, the consumer will save something. 

But the extent to which the consumer feels the need to make this precautionary 
provision depends on the probability that it will turn out to matter. As ℘ ↓ 0, that 
probability becomes arbitrarily small, so the amount of precautionary saving induced 
by the zero-income events approaches zero as ℘ ↓ 0. But “zero” is the amount of 
precautionary saving that would be induced by a zero-probability event for the impatient 
liquidity constrained consumer. 

Another way to understand this is just to think of the liquidity constraint reflecting 
a component of the utility function that is zero whenever the consumer ends the period 
with (strictly) positive assets, but negative infinity if the consumer ends the period with 
(weakly) negative assets. 

See appendix H for the formal proof justifying the foregoing intuitive discussion.33 
The conditions required for convergence and nondegeneracy are thus strikingly similar 

between the liquidity constrained perfect foresight model and the model with uncertainty 
but no explicit constraints: The liquidity constrained perfect foresight model is just the 
limiting case of the model with uncertainty as the degree of all three kinds of uncertainty 
(zero-income events, other transitory shocks, and permanent shocks) approaches zero. 

2.11 Discussion of Parametric Restrictions 
The full relationship among all the conditions is represented in Figure 3. Though the 
diagram looks complex, it is merely a modified version of the earlier diagram with further 
(mostly intermediate) inequalities inserted. (Arrows with a “because” are a new element 
to label relations that always hold under the model’s assumptions.) Again readers 
unfamiliar with such diagrams should see Appendix K) for a more detailed explanation. 

33It seems likely that a similar argument would apply even in the context of a model like that of MST, perhaps with 
some weak restrictions on returns. 
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Figure 3 Relation of All Inequality Conditions 
See Table 2 for Numerical Values of Nodes Under Baseline Parameters 

2.11.1 The WRIC 

The ‘weakness’ of the additional condition suÿcient for contraction beyond the FVAC, 
the WRIC, can be seen by asking ‘under what circumstances would the FVAC hold but 
the WRIC fail?’ Algebraically, the requirement is 

βΓ1−ρψ1−ρ < (℘β)1/ρ/R1−1/ρ< 1 . (46) 

If we require R ≥ 1, the WRIC is redundant because now β < 1 < Rρ−1 , so that (with 
ρ > 1 and β < 1) the RIC (and WRIC) must hold. But neither theory nor evidence 
demands that we assume R ≥ 1. We can therefore approach the question of the WRIC’s 
relevance by asking just how low R must be for the condition to be relevant. Suppose 
for illustration that ρ = 2, ψ1−ρ = 1.01, Γ1−ρ = 1.01−1 and ℘ = 0.10. In that case (46) 
reduces to 

β < 1 < (0.1β/R)1/2 

but since β < 1 by assumption, the binding requirement is that 

R < β/10 

so that for example if β = 0.96 we would need R < 0.096 (that is, a perpetual riskfree 
rate of return of worse than -90 percent a year) in order for the WRIC to bind. 

Perhaps the best way of thinking about this is to note that the space of parameter 
values for which the WRIC is relevant shrinks out of existence as ℘ → 0, which section 
2.10 showed was the precise limiting condition under which behavior becomes arbitrarily 
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close to the liquidity constrained solution (in the absence of other risks). On the other 
hand, when ℘ = 1, the consumer has no noncapital income (so that the FHWC holds) 
and with ℘ = 1 the WRIC is identical to the RIC; but the RIC is the only condition 
required for a solution to exist for a perfect foresight consumer with no noncapital 
income. Thus the WRIC forms a sort of ‘bridge’ between the liquidity constrained and 
the unconstrained problems as ℘ moves from 0 to 1. 

2.11.2 When the RIC Fails 

In the perfect foresight problem (section 2.4.2), the RIC was necessary for existence of 
a nondegenerate solution. It is surprising, therefore, that in the presence of uncertainty, 
the much weaker WRIC is suÿcient for nondegeneracy (assuming that the FVAC holds). 
We can directly derive the features the problem must exhibit (given the FVAC) under 
� �RIC (that is, R < (Rβ)1/ρ): 

implied by FVAC z }| { 
(Rβ)1/ρ (R(Γψ)ρ−1)1/ρR < < 

R < (R/Γ)1/ρΓψ1−1/ρ 

R/Γ < (R/Γ)1/ρψ1−1/ρ 

R/Γ < ψ (47) 

but since ψ < 1 (cf. the argument below (37)), this requires R/Γ < 1; so, given the 
FVAC, the RIC can fail only if human wealth is unbounded. As an illustration of the 
usefulness of our diagrams, note that this algebraically complicated conclusion could be 
easily reached diagrammatically in figure 3 by starting at the R node and imposing �RIC� 

(reversing the RIC arrow) and then traversing the diagram along any clockwise path to 
the PF-VAF node at which point we realize that we cannot impose the FHWC because 
that would let us conclude R > R. 

As in the perfect foresight constrained problem, unbounded limiting human wealth 
(����FHWC) here does not lead to a degenerate limiting consumption function (finite human 
wealth is not a condition required for the convergence theorem). But, from equation (40) 
and the discussion surrounding it, an implication of � � c0(m) = 0. Thus,RIC is that limm↑∞˚ 
interestingly, in the special {�RIC� ,����FHWC} case (unavailable in the perfect foresight 
model) the presence of uncertainty both permits unlimited human wealth and at the 
same time prevents unlimited human wealth from resulting in infinite consumption at 
any finite m. Intutively, in the presence of uncertainty, pathological patience (which in 
the perfect foresight model results in a limiting consumption function of ̊c(m) = 0 for 
finite m) plus unbounded human wealth (which the perfect foresight model prohibits 
(by assumption FHWC) because it leads to a limiting consumption function ̊c(m) = ∞ 
for any finite m) combine to yield a unique finite level of consumption and the MPC for 
any finite value of m. Note the close parallel to the conclusion in the perfect foresight 
liquidity constrained model in the {GIC,� � There, too, the tension betweenRIC} case. 
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infinite human wealth and pathological patience was resolved with a nondegenerate 
consumption function whose limiting MPC was zero.34 

2.11.3 When the RIC Holds 

FHWC. If the RIC and FHWC both hold, a perfect foresight solution exists (see 2.4.2 
above). As m ↑ ∞ the limiting consumption function and value function become 
arbitrarily close to those in the perfect foresight model, because human wealth pays 
for a vanishingly small portion of spending. This will be the main case analyzed in 
detail below. 
((( (FHWC. The more exotic case is where FHWC does not hold; in the perfect foresight 
model, {RIC,�FHWC}��� is the degenerate case with limiting ̄c(m) = ∞. Here, since the 
FVAC implies that the PF-FVAC holds (traverse Figure 3 clockwise from Þ by imposing 
FVAC and continue to the PF-VAF node), reversing the arrow connecting the R and 
PF-VAF nodes implies that under ����FHWC: 

PF-FVAC z }| { 
Þ < (R/Γ)1/ρΓ 

Þ < Γ 

where the transition from the first to the second lines is justified because ����FHWC ⇒ 
(R/Γ)1/ρ < 1. So, {RIC, ����FHWC} implies the GIC holds. However, we are not entitled 
to conclude that the GIC-Nrm holds: Þ < Γ does not imply Þ < ψΓ where ψ < 1. See 
further discussion of this illuminating case in section ??. 

We have now established the principal points of comparison between the perfect fore-
sight solutions and the solutions under uncertainty; these are codified in the remaining 
parts of Tables 3 and 4. 

3 Analysis of the Converged Consumption Function 
Figures 4 and 5a,b capture the main properties of the converged consumption rule when 
the RIC, GIC-Nrm, and FHWC all hold.35 Figure 4 shows the expected growth factors 
for the levels of consumption and market resources, Et[ct+1/ct] and Et[mt+1/mt], for a 
consumer behaving according to the converged consumption rule, while Figures 5 and 6 
illustrate theoretical bounds for the consumption function and the marginal propensity 
to consume. 

Three features of behavior are captured, or suggested, by the figures. First, as mt ↑ ∞ 
the expected consumption growth factor goes to Þ, indicated by the lower bound in 
Figure 4, and the marginal propensity to consume approaches κ = (1 − ÞR) (Figure 5), 
the same as the perfect foresight MPC. Second, as mt ↓ 0 the consumption growth factor 
approaches ∞ (Figure 4) and the MPC approaches κ̄ = (1 − ℘1/ρÞR) (Figure 5). Third, 

34Ma and Toda (2020) derive conditions under which the limiting MPC is zero in an even more general case where 
there is also capital income risk. 

35These figures reflect the converged rule corresponding to the parameter values indicated in Table 2. 
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Figure 4 ‘Stable’ m Values and Expected Growth Factors 

there is a value m = m̂ at which the expected growth rate of m matches the expected 
growth rate of permanent income Γ, and a di˙erent (lower) value where the expected 
growth rate of consumption at m = m̂ is lower than Γ. Thus, at the individual level, 
this model does not have a ‘balanced growth’ equilibrium in which all model variables 
are expected to grow at the same rate.36 

3.1 Limits as m approaches Infinity 
Define 

c(m) = κm 

which is the solution to an infinite-horizon problem with no noncapital income (ξt+n = 
0 ∀ n ≥ 1); clearly c(m) < c̊(m), since allowing the possibility of future noncapital 
income cannot reduce current consumption. Our imposition of the RIC guarantees that 
κ > 0, so this solution satisfies our definition of nondegeneracy, and because this solution 
is always available it defines a lower bound on both the consumption and value functions. 

Assuming the FHWC holds, the infinite horizon perfect foresight solution (23) con-
stitutes an upper bound on consumption in the presence of uncertainty, since the intro-

36A final proposition suggested by Figure 4 is that the expected consumption growth factor is declining in the level 
of the cash-on-hand ratio mt. This turns out to be true in the absence of permanent shocks, but in extreme cases it can 
be false if permanent shocks are present; see appendix L. 
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Figure 5 Limiting MPC’s 

duction of uncertainty strictly decreases the level of consumption at any m (Carroll and 
Kimball (1996)). Thus, we can write 

c(m) <̊c(m) < c̄(m) (48) 
1 <̊c(m)/c(m) < c̄(m)/c(m). 

But 

lim c̄(m)/c(m) = lim (m − 1 + h)/m 
m↑∞ m↑∞ 

= 1, 

so as m ↑ ∞, c̊(m)/c(m) → 1, and the continuous di˙erentiability and strict concavity 
of ̊c(m) therefore implies 

lim ̊c 0(m) = c 0(m) = c̄ 0(m) = κ 
m↑∞ 

because any other fixed limit would eventually lead to a level of consumption either 
exceeding ̄c(m) or lower than c(m). 
Figure 5 confirms these limits visually. The top plot shows the converged consumption 

function along with its upper and lower bounds, while the lower plot shows the marginal 
propensity to consume. 
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Figure 6 Upper and Lower Bounds on The Consumption Function 

Next we establish the limit of the expected consumption growth factor as mt ↑ ∞: 

lim Et[ct+1/ct] = lim Et[Γt+1ct+1/ct]. 
mt↑∞ mt↑∞ 

But 

Et[Γt+1c ct] ≤ Et[Γt+1ct+1/ct] ≤ Et[Γt+1c̄  t+1/c ]t+1/ ̄  t 

and 

lim Γt+1c(mt+1)/c̄(mt) = lim Γt+1 ̄c(mt+1)/c(mt) = lim Γt+1mt+1/mt, 
mt↑∞ mt↑∞ mt↑∞ 

while (for convenience defining a(mt) = mt − c̊(mt)),� � 
Ra(mt) + Γt+1ξt+1

lim Γt+1mt+1/mt = lim (49) 
mt↑∞ mt↑∞ mt 

= (Rβ)1/ρ = Þ 
37because limmt↑∞ a

0(m) = ÞR and Γt+1ξt+1/mt ≤ (Γψ̄θ/̄ (1 − ℘))/mt which goes to zero 
as mt goes to infinity. 

Hence we have 

Þ ≤ lim Et[ct+1/ct] ≤ Þ 
mt↑∞ 

37This is because limmt↑∞ a(mt)/mt = 1 − limmt↑∞ c̊(mt)/mt = 1 − limmt ↑∞ ̊c
0(mt) = ÞR. 
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so as cash goes to infinity, consumption growth approaches its value Þ in the perfect 
foresight model. 

3.2 Limits as m Approaches Zero 
Equation (41) shows that the limiting value of κ̄ is 

κ = 1 − R−1(℘Rβ)1/ρ¯ . 

Defining e(m) = c(m)/m as before we have 

lim e(m) = (1 − ℘1/ρÞR) = κ.¯ 
m↓0 

Now using the continuous di˙erentiability of the consumption function along with 
L’Hôpital’s rule, we have 

lim c̊ 0(m) = lim e(m) = κ.¯ 
m↓0 m↓0 

Figure 5 confirms that the numerical solution obtains this limit for the MPC as m 
approaches zero. 

For consumption growth, as m ↓ 0 we have 
�� � � �� � � 
c(mt+1) c(Rt+1a(mt) + ξt+1)

lim Et Γt+1 > lim Et Γt+1 
mt↓0 c(mt) ¯mt↓0 κmt�� � � 

c(Rt+1a(mt)) 
= ℘ lim Et Γt+1 

mt↓0 κ̄mt�� � � 
c(Rt+1a(mt) + θt+1/(1 − ℘))

+ (1 − ℘) lim Et Γt+1 
mt↓0 κ̄mt�� � � 

c(θt+1/(1 − ℘))
> (1 − ℘) lim Et Γt+1 

mt↓0 κ̄mt 

= ∞ 
h� � i 

c(Rt+1a(mt))where the second-to-last line follows because limmt↓0 Et κmt 
Γt+1 is positive,

¯ 

and the last line follows because the minimum possible realization of θt+1 is θ > 0 so the 
minimum possible value of expected next-period consumption is positive.38 

3.3 Unique ‘Stable’ Points 
Two theorems, whose proofs are sketched here and detailed in an appendix, articulate 
alternative (but closely related) stability criteria for the model. 

38None of the arguments in either of the two prior sections depended on the assumption that the consumption functions 
had converged. With more cumbersome notation, each derivation could have been replaced by the corresponding finite-
horizon versions. This strongly suggests that it should be possible to extend the circumstances under which the problem 
can be shown to define a contraction mapping to the union of the parameter values under which {RIC,FHWC} hold and 
{FVAC,WRIC} hold. That extension is not necessary for our purposes here, so we leave it for future work. 
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3.3.1 ‘Individual Target Wealth’ 

One definition of a ‘stable’ point is an m̂ such that if mt = m̂ , then Et[mt+1] = mt. 
Existence of such a target turns out to require the GIC-Nrm condition. 

Theorem 2. For the nondegenerate solution to the problem defined in section 2.1 when 
FVAC, WRIC, and GIC-Nrm all hold, there exists a unique cash-on-hand-to-permanent-
income ratio m̂ > 0 such that 

Et[mt+1/mt] = 1 if mt = m.ˆ (50) 

Moreover, m̂ is a point of ‘wealth stablity’ in the sense that 

∀mt ∈ (0, m̂), Et[mt+1] > mt (51) 
∀mt ∈ (m̂, ∞), Et[mt+1] < mt. 

Since mt+1 = (mt − c(mt))Rt+1 + ξt+1, the implicit equation for m̂ is 

Et[( ̂m − c( ̂m))Rt+1 + ξt+1] = m̂ (52) 
(m̂ − c( ̂m)) R Et[ψ−1] +1 = m̂ (53)| {z } 

≡R̄ 

3.3.2 Collective Stability and the Expected-Balanced-Growth State 

A traditional question in macroeconomic models is whether there is a ‘balanced growth’ 
equilibrium in which aggregate variables (income, consumption, market resources) all 
grow forever at the same rate. For the model here, we have already seen in Figure 4 that 
there is no single m for which Et[mt+1]/mt = Et[ct+1]/ct = Γ for an individual consumer. 
Nevertheless, analysis below will show that economies populated by collections of such 
consumers can exhibit balanced growth in the aggregate. 

As an input to that analysis, we show here that if the GIC holds, the problem will 
have a point of what we call ‘collective stability,’ by which we mean that there is some 
m̂ such that, for all mt > m̂ , Et[mt+1/mt] < Γ, and conversely for mt < m̂ . (‘Collective’ 
is meant to capture the fact that calculating the expectation of the levels of future m 
and p before dividing m by p is akin to examining aggregate values in a population). 
The critical m̂ will be the value at which m growth matches Γ: 

Et[mt+1]/mt = Et[pt+1]/pt 
Et[mt+1Γψt+1pt]/(mtpt) = Et[ptΓψt+1]/pt⎡ ⎤ 

Et ⎣ψt+1 ((mt − c̊(mt))R/(Γψt+1)) + ξt+1)⎦ /mt = 1. (54)| {z } 
mt+1 

⎡ ⎤ Rz}|{
Et ⎣(m̌ − c̊( ̂m)) R/Γ+ψt+1ξt+1⎦ = m̂ 

(m̌ − c̊( ̂m))R + 1 = m.ˆ (55) 
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¯The only di˙erence between (55) and (52) is the substitution of R for R. 
We will refer to m̂ as the problem’s Expected-Balanced-Growth State, a term moti-

vated by the fact that an economy composed of consumers all of whom had mt = m̂ , 
would exhibit balanced growth if all consumers happened to continually draw permanent 
and transitory shocks equal to their expected values of 1.0 forever.39 
Theorem 5 formally states the relevant proposition. 

Theorem 3. For the nondegenerate solution to the problem defined in section 2.1 when 
FVAC, WRIC, and GIC all hold, there exists a unique pseudo-steady-state cash-on-hand-
to-income ratio m̌ > 0 such that 

Et[ψt+1mt+1/mt] = 1 if mt = m.ˇ (56) 

Moreover, m̌ is a point of stability in the sense that 

∀mt ∈ (0, m̌), Et[mt+1]/mt > Γ (57) 
∀mt ∈ (m̌, ∞), Et[mt+1]/mt < Γ. 

The proofs of the two theorems are almost completely parallel; to save space, they are 
relegated to Appendix M. In sum, they involve three steps: 

1. Existence and continuity of Et[mt+1/mt] or Et[mt+1ψt+1/mt] 

• This follows from existence and continuity of the constitutents 

2. Existence of the equilibrium point 

• This follows from the upper and lower bound limiting MPC’s, existence and 
continuity, and the Intermediate Value Theorem 

3. Monotonicity of Et[mt+1 − mt] or Et[mt+1ψt+1 − mt] 

• This follows from concavity of the consumption function 

3.3.3 Example Where There Is An Expected-Balanced-Growth State But No Target 

Because the equations defining target and pseudo-steady-state m, (52) and (54), di˙er 
¯only by substitution of R for R = R E[ψ−1], if there are no permanent shocks (ψ ≡ 

1), the conditions are identical. For many parameterizations (e.g., under the baseline 
parameter values used for constructing figure 4), m̂ and m̌ will not di˙er much. 
An illuminating exception is exhibited in figure 7, which modifies the baseline pa-

rameter values by quadrupling the variance of the permanent shocks, enough to cause 
failure of the GIC-Nrm; now there is no target wealth level m̂ (consumption remains 
everywhere below the level that would keep expected m constant). 

The pseudo-steady-state still exists because it turns o˙ realizations of the permanent 
shock. But an aggregate balanced growth equilibrim can exist even when realizations of 

Et[mt+1/mt|ψt+1 = ξt+1 = 1] = Γ (m̂ − c( ̂m)R + 1) /m = Γ 

28 

39 



(

mm

bb
bb

m

c

c(mt)

↖
m̌

Et[∆mt+1] = 0

Et[mmmt+1/mmmt] = Γ

Figure 7 {FVAC,GIC,((((( 
m Exists But ˇGIC-Nrm}: No ˆ m Does 

the permanent shock are implemented exactly as specified in the model. The key insight 
can be understood by considering the evolution of an economy that starts, at date t, 
with the entire population at mt = m̌ , but then evolves according to the model’s correct 
assumed dynamics between t and t + 1. Equation (54) will still hold for this economy, 
so for this first period, at least, the economy will exhibit balanced growth: the growth 
factor for aggregate m will match the growth factor for permanent income Γ. It is true 
that there will be people for whom bt+1 = atR/(Γψt+1) is boosted by a small draw of 
ψt+1. But their contribution to the aggregate variable is given by bt+1 = bt+1ψt+1, so 
their bt+1 reweighted by an amount that exactly undoes the boosting caused by earlier 
normalization. 

The surprising consequence is that, if the GICholds but the GIC-Nrm fails, it is 
possible to construct an aggregate economy composed of consumers all of whom have 
target wealth of m̂ = ∞, but in which the aggregate economy still exhibits balanced 
growth with a finite ratio of aggregate wealth to income. (For an example, see the 
software archive for the paper). 

This is a good introduction to a more explicit discssion of aggregation. 
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4 The Aggregate and Idiosyncratic Relationship 
Between Consumption Growth and Income Growth 

A large (infinite) collection of small (infinitesimal) bu˙er-stock consumers with identical 
parameter values can be thought of as a subset of the population within a single country 
(say, members of a given education or occupation group), or as the whole population in 
a small open economy with an exogenous (constant) interest rate.40 

Until now for convenience we have assumed infinite horizons, with the implicit un-
derstanding that Poisson mortality could be handled by adjusting the e˙ective discount 
factor for mortality. On that basis, section 4.1 continues to omit mortality. But a reason 
for explicitly introducing mortality will appear at the end of section 4.2, so implications 
of alternative assumptions about mortality are briefly examined in Section 4.3. 

Formally, we assume a continuum of ex ante identical households on the unit interval, 
with constant total mass normalized to one and indexed by i ∈ [0, 1], all behaving 
according to the model specified above. Szeidl (2013) proves that whenever the GIC 
holds such a population will be characterized by invariant distributions of m, c, and a;41 
designate these Fm , Fa , and F c . 

4.1 Consumption and Income Growth at the Household Level 
The operator M [•] yields the mean of its argument in the population, as distinct from 
the expectations operator E [•] used above, which represents beliefs about the future. 
An economist with a microeconomic dataset could calculate the average growth rate 

of idiosyncratic consumption in a cross section of an economy that had converged at 
date t, and would find 

M [Δ log ct+1] = M [log ct+1pt+1 − log ctpt] 

= M [log pt+1 − log pt + log ct+1 − log ct] 

= M [log pt+1 − log pt] + M [log ct+1 − log ct] 

= (γ − σψ 
2 /2) + M[log ct+1 − log ct] 

= (γ − σψ 
2 /2) 

where γ = log Γ and the last equality follows because the invariance of F c (Szeidl (2013)) 
means that M [log ct+n] = M [log ct]. Thus, the same GIC that guaranteed the existence 
of an ‘individual pseudo-steady-state’ value of m at the microeconomic level guarantees 
both that there will be an invariant distribution of the population across values of the 

40It is also possible, and only slightly more diÿcult, to solve for the steady-state of a closed-economy version of the 
model where the interest rate is endogenous. 

41Szeidl (2013)’s equation (9), in our notation, is: 

E log R(1 − κ) < E log Γψ 

E log RÞR < E log Γψ 

log ÞΓ < E log ψ 

and under our assumption that log ψ ∼ N (−σ2 /2, σ2 ) we can exponentiate both sides to obtain the GIC, ÞΓ < 1. If theψ ψ 
permanent income shocks are not lognormally distributed the expression must be tested in Szeidl’s original form. 
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model variables and that in that invariant distribution the mean growth rates of all 
idiosyncratic variables are the same (see Szeidl (2013) for details). 

4.2 Balanced Growth of Aggregate Income, Consumption, and Wealth 
Using boldface capital letters for aggregates, the growth factor for aggregate income is: 

Yt+1/Yt = M [ξt+1Γψt+1pt] /M [ptξt] 

= Γ 

because of the independence assumptions we have made about ξ and ψ. 
From the perspective of period t, 

At+1 = M[at+1pt+1] 
= ΓM[(at + (at+1 − at))ptψt+1]⎛ 

⎜⎝ 

⎞ 
⎟⎠= Γ M[ptψt+1] + covt(at+1 − at, ptψt+1)M[atptψt+1]{z }| } + M[(at+1 − at)]{z| 

Szeidl (2013))A =0 (= t � 
cov( ψ )a p,+1 +1t t t 

M[atpt] 

� 
At+1/At = Γ 1 + 

Unfortunately, the covariance term in the numerator, while generally small, will not 
in general be zero. This is because the realization of the permanent shock ψt+1 has 
a nonlinear e˙ect on at+1. Matters are simpler if there are no permanent shocks; see 
Appendix F for a proof that in that case the growth rate of assets (and other variables) 
does eventually converge to the growth rate of aggregate permanent income. 

One way of thinking about the problem here is that it may reflect the fact that, 
under our assumptions, permanent income p does not have an ergodic distribution; its 
distribution of becomes forever wider over time, because our consumers never die and 
each immortal person is perpetually subject to symmetric shocks to their log p. 

This is why we need to introduce mortality. 

4.3 Mortality and Redistribution 
Most heterogeneous agent models incorporate a constant positive probability of death, 
following Blanchard (1985). In a model that mostly follows Blanchard (1985), for 
probabilities of death that exceed a threshold that depends on the size of the permanent 
shocks, Carroll, Slacalek, Tokuoka, and White (2017) show that the limiting distribution 
of permanent income has a finite variance, which is a useful step in the direction of taming 
the problems caused by an unbounded distribution of p. Numerical results in that paper 
confirm the intuition that, under appropriate impatience conditions, balanced growth 
arises (though a formal proof remains elusive). 

Even with those (numerical) results in hand, the centrality of mortality assumptions 
to the existence and nature of steady states requires them to be discussed briefly here. 
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4.3.1 Blanchard Lives 

Blanchard (1985)’s model assumes the existence of an annuitization scheme in which 
estates of dying consumers are redistributed to survivors in proportion to survivors’ 
wealth, giving the recipients a higher e˙ective rate of return. This treatment has several 
analytical advantages, most notably that the e˙ect of mortality on the time preference 
factor is the exact inverse of its e˙ect on the (e˙ective) interest factor: If the probability 
of remaining alive is ℵ, then assuming that no utility accrues after death makes the 
e˙ective discount factor β̂ = βℵ, while the enhancement to the rate of return from the 
annuity scheme yields an e˙ective interest rate of R̂/ℵ (recall that because of Poisson 
mortality, the average wealth of the two groups is identical). Combining these, the 
e˙ective patience factor in the new economy Þ̂ is unchanged from its value in the infinite 
horizon model: 

1/ρ 1/ρÞ̂ ≡ (βℵR/ℵ) = (Rβ) ≡ Þ. (58) 

The only adjustments this requires to the analysis from prior parts of this paper are 
therefore to the few elements that involve a role for R distinct from its contribution to 
Þ (principally, the RIC). 

The numerical finding that the covariance term above is approximately zero allows us 
to conclude again that the key requirement for aggregate balanced growth is presumably 
the GIC. 

4.3.2 Modigliani Lives 

Blanchard (1985)’s innovation was useful not only for the insight it provided but also 
because the principal alternative, the Life Cycle model of Modigliani (1966), was compu-
tationally challenging given the then-available technologies. Aside from its (considerable) 
conceptual value, there is no need for Blanchard’s analytical solution today, when 
serious modeling incorporates uncertainty, constraints, and other features that rule out 
analytical solutions anyway. 

The simplest alternative to Blanchard’s mortality is to follow Modigliani in assuming 
that any wealth remaining at death occurs accidentally (not implausible, given the robust 
finding that for the great majority of households, bequests amount to less than 2 percent 
of lifetime earnings, Hendricks (2001, 2016)). 

Even if bequests are accidental, a macroeconomic model must make some assumption 
about how they are disposed of: As windfalls to heirs, estate tax proceeds, etc. We again 
consider the simplest choice, because it again represents something of a polar alternative 
to Blanchard: Without a bequest motive, there are no behavioral e˙ects of a 100 percent 
estate tax; we assume such a tax is imposed and that the revenues are e˙ectively thrown 
in the ocean; the estate-related wealth e˙ectively vanishes from the economy. 

The chief appeal of this approach is the simplicity of the change it makes in the 
condition required for the economy to exhibit a balanced growth equilibrium. If ℵ is 
the probability of remaining alive, the condition changes from the plain GIC to a looser 
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mortality-adjusted GIC: 

ℵÞΓ < 1. (59) 

With no income growth, the condition required to prohibit unbounded growth in 
aggregate wealth would be the condition that prevents the per-capita wealth to income 
ratio of surviving consumers from growing faster than the rate at which mortality 
diminishes their collective population. With income growth, the aggregate wealth-to-
income ratio will head to infinity only if a cohort of consumers is patient enough to make 
the desired rate of growth of wealth fast enough to counteract combined erosive forces 
of mortality and productivity. 

5 Conclusions 
Numerical solutions to optimal consumption problems, in both life cycle and infinite 
horizon contexts, have become standard tools since the first reasonably realistic models 
were constructed in the late 1980s. One contribution of this paper is to show that 
finite horizon (‘life cycle’) versions of the simplest such models, with assumptions about 
income shocks (transitory and permanent) dating back to Friedman (1957) and standard 
specifications of preferences – and without (plausible, but inconvenient) complications 
like liquidity constraints – have attractive analytical properties (like continuous dif-
ferentiability of the consumption function, and analytical limiting MPC’s as resources 
approach their minimum and maximum possible values), and that (more widely used) 
models with liquidity constraints can be viewed as a particular limiting case of this 
simpler model. 

The main focus of the paper, though, is on the limiting solution of the finite horizon 
model as the horizon extends to infinity. The paper shows that the simple model has 
additional attractive properties: A ‘Finite Value of Autarky’ condition guarantees con-
vergence of the consumption function, under the mild additional requirement of a ‘Weak 
Return Impatience Condition’ that will never bind for plausible parameterizations, but 
provides intuition for the bridge between this model and models with explicit liquidity 
constraints. The paper also provides a roadmap for the model’s relationships to the 
perfect foresight model without and with constraints. The constrained perfect foresight 
model provides an upper bound to the consumption function (and value function) 
for the model with uncertainty, which explains why the conditions for the model to 
have a nondegenerate solution closely parallel those required for the perfect foresight 
constrained model to have a nondegenerate solution. 

The main use of infinite horizon versions of such models is in heterogeneous agent 
macroeconomics. The paper articulates intuitive ‘Growth Impatience Conditions’ under 
which populations of such agents, with Blancharidan (tighter) or Modiglianian (looser) 
mortality will exhibit balanced growth. Finally, the paper provides the analytical basis 
for a number of results about bu˙er-stock saving models that are so well understood that 
even without analytical foundations researchers uncontroversially use them as explana-
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tions of real-world phenomena like the cross-sectional pattern of consumption dynamics 
in the Great Recession. 

The paper’s results are all easily reproducible interactively on the web or on any 
standard computer system. Such reproducibility reflects the paper’s use of the open-
source Econ-ARK toolkit, which is used to generate all of the quantitative results of the 
paper, and which integrally incorporates all of the analytical insights of the paper. 
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Table 3 Definitions and Comparisons of Conditions 

Perfect Foresight Versions Uncertainty Versions 
Finite Human Wealth Condition (FHWC) 

Γ/R < 1 

The growth factor for permanent income 
Γ must be smaller than the discounting 
factor R for human wealth to be finite. 

Γ/R < 1 

The model’s risks are mean-preserving 
spreads, so the PDV of future income is 

unchanged by their introduction. 

Absolute Impatience Condition (AIC) 
Þ < 1 

The unconstrained consumer is 
suÿciently impatient that the level of 

consumption will be declining over time: 

ct+1 < ct 

Þ < 1 

If wealth is large enough, the expectation 
of consumption next period will be 

smaller than this period’s consumption: 

limmt→∞ Et[ct+1] < ct 

Return Impatience Conditions 
Return Impatience Condition (RIC) Weak RIC (WRIC) 

Þ/R < 1 
The growth factor for consumption Þ 
must be smaller than the discounting 

factor R, so that the PDV of current and 
future consumption will be finite: 

c0(m) = 1 − Þ/R < 1 

℘1/ρÞ/R < 1 
If the probability of the zero-income 

event is ℘ = 1 then income is always zero 
and the condition becomes identical to 

the RIC. Otherwise, weaker. 

0(m) < 1 − ℘1/ρÞ/R < 1c

Growth Impatience Conditions 
GIC GIC-Nrm 

Þ/Γ < 1 
For an unconstrained PF consumer, the 
ratio of c to p will fall over time. For 
constrained, guarantees the constraint 

eventually binds. Guarantees 
limmt↑∞ Et[ψt+1mt+1/mt] = ÞΓ 

Þ E[ψ−1]/Γ < 1 

By Jensen’s inequality stronger than GIC. 
Ensures consumers will not expect to 

accumulate m unboundedly. 

limmt→∞ Et[mt+1/mt] = ÞΓ 

Finite Value of Autarky Conditions 
PF-FVAC FVAC 
βΓ1−ρ < 1 

equivalently Þ < R1/ρΓ1−1/ρ 

The discounted utility of constrained 
consumers who spend their permanent 
income each period should be finite. 

βΓ1−ρ E[ψ1−ρ] < 1 

By Jensen’s inequality, stronger than the 
PF-FVAC because for ρ > 1 and 
nondegenerate ψ, E[ψ1−ρ] > 1. 
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Table 4 Suÿcient Conditions for Nondegenerate‡ Solution 

c(m): Model 
Reference 

Conditions Comments or 
or Logic 

c̄(m): PF Unconstrained 
c(m) = κm: PF h = 0 

Section 2.4.2 
Section 2.4.2 
Eq (26) 
Eq (27) 

RIC, FHWC◦ RIC ⇒ |v(m)| < ∞; FHWC ⇒ 0 < |v(m)| 
PF model with no human wealth 
RIC prevents ̄c(m) = c(m) = 0 
FHWC prevents ̄c(m) = ∞ 
PF-FVAC+FHWC ⇒ RIC 
GIC+FHWC ⇒ PF-FVAC 

c̀(m): PF Constrained 
Section 2.4.3 

Appendix A 

Appendix A 

� �GIC, RIC FHWC holds (Γ < Þ < R ⇒ Γ < R) 
c̀(m) = c̄(m) for m > m# < 1 
(� �RIC would yield m# = 0 so ̀c(m) = 0) 

GIC,RIC limm→∞ c̀(m) = c̄(m), limm→∞ κ̀(m) = κ 
kinks at pts where horizon to b = 0 changes∗ 

GIC,� �RIC limm→∞ κ̀(m) = 0 
kinks at pts where horizon to b = 0 changes∗ 

c̊(m): Friedman/Muth 

Section 2.9 
Section 2.11.1 
Figure 3 
Section 2.11.3 
Section 2.11.2 
Section 3.3 
Section 3.3.2 
Section 3.3.1 

Section 3.1, 
Section 3.2 

c(m) < ̊c(m) < c̄(m) 
v(m) < ̊v(m) < v̄(m) 

FVAC, WRIC Suÿcient for Contraction 
WRIC is weaker than RIC 
FVAC is stronger than PF-FVAC 
����FHWC+RIC ⇒GIC, limm→∞ ̊κ(m) = κ 
� �RIC ⇒����FHWC, limm→∞ ̊κ(m) = 0 
“Bu˙er Stock Saving” Conditions 

GIC ⇒ ∃ 0 < m̌ < ∞ : Steady-State 
GIC-Nrm ⇒ ∃ 0 < m̂ < ∞ : Target 

‡For feasible m satisfying 0 < m < ∞, a nondegenerate limiting consumption function defines a unique optimal value of c 
satisfying 0 < c(m) < ∞; a nondegenerate limiting value function defines a corresponding unique value of −∞ < v(m) < 0 
. ◦RIC, FHWC are necessary as well as suÿcient for the perfect foresight case. ∗That is, the first kink point in c(m) is m# s.t. 
for m < m# the constraint will bind now, while for m > m# the constraint will bind one period in the future. The second kink 
point corresponds to the m where the constraint will bind two periods in the future, etc. ∗∗In the Friedman/Muth model, the 
RIC+FHWC are suÿcient, but not necessary for nondegeneracy 
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Appendices 

A Perfect Foresight Liquidity Constrained Solution 
Under perfect foresight in the presence of a liquidity constraint requiring b ≥ 0, this 
appendix taxonomizes the varieties of the limiting consumption function ̀c(m) that arise 
under various parametric conditions. Results are summarized in table 5. 

A.1 If GIC Fails 
A consumer is ‘growth patient’ if the perfect foresight growth impatience condition 
fails (� � GIC the constraint does not bind at the lowest feasibleGIC, 1 < Þ/Γ). Under � � 

value of mt = 1 because 1 < (Rβ)1/ρ/Γ implies that spending everything today (setting 
ct = mt = 1) produces lower marginal utility than is obtainable by reallocating a 
marginal unit of resources to the next period at return R:42 

1 < (Rβ)1/ρΓ−1 

1 < RβΓ−ρ 

u 0(1) < Rβu 0(Γ). 

Similar logic shows that under these circumstances the constraint will never bind at 
m = 1 for a constrained consumer with a finite horizon of n periods, so for m ≥ 1 
such a consumer’s consumption function will be the same as for the unconstrained case 
examined in the main text. 
RIC fails, FHWC holds. If the RIC fails (1 < ÞR) while the finite human wealth 

condition holds, the limiting value of this consumption function as n ↑ ∞ is the 
degenerate function 

c̀T −n(m) = 0(bt + h). (60) 

(that is, consumption is zero for any level of human or nonhuman wealth). 
����RIC fails, FHWC fails. FHWC implies that human wealth limits to h = ∞ so the 

consumption function limits to either ̀cT −n(m) = 0 or ̀cT −n(m) = ∞ depending on the 
relative speeds with which the MPC approaches zero and human wealth approaches ∞. 43 
Thus, the requirement that the consumption function be nondegenerate implies that 

for a consumer satisfying �GIC� we must impose the RIC (and the FHWC can be shown 
to be a consequence of �GIC� and RIC). In this case, the consumer’s optimal behavior 
is easy to describe. We can calculate the point at which the unconstrained consumer 

42The point at which the constraint would bind (if that point could be attained) is the m = c for 
Γ/(Rβ)1/ρwhich u0(c#) = Rβu0(Γ) which is c# = and the consumption function will be defined by 

c̀(m) = min[m, c# + (m − c#)κ]. 
43The knife-edge case is where Þ = Γ, in which case the two quantites counterbalance and the 

limiting function is ̀c(m) = min[m, 1]. 

37 



ÞÞ

ÞÞ ÞÞ

�

ÞÞ

would choose c = m from equation (23): 

m# = (m# − 1 + h)κ 

m#(1 − κ) = (h − 1)κ � � (61)
κ 

m# = (h − 1) 
1 − κ 

which (under these assumptions) satisfies 0 < m# < 1. 44 For m < m# the unconstrained 
consumer would choose to consume more than m; for such m, the constrained consumer 
is obliged to choose ̀c(m) = m. 45 For any m > m# the constraint will never bind and the 
consumer will choose to spend the same amount as the unconstrained consumer, ̄c(m). 
(Stachurski and Toda (2019) obtain a similar lower bound on consumption and use it 

to study the tail behavior of the wealth distribution.) 

A.2 If GIC Holds 
Imposition of the GIC reverses the inequality in (60), and thus reverses the conclusion: A 
consumer who starts with mt = 1 will desire to consume more than 1. Such a consumer 
will be constrained, not only in period t, but perpetually thereafter. 

Now define bn 
# as the bt such that an unconstrained consumer holding bt = b# 

n would 
behave so as to arrive in period t + n with bt+n = 0 (with b0# trivially equal to 0); for 
example, a consumer with bt−1 = b#

1 was on the ‘cusp’ of being constrained in period 
t − 1: Had bt−1 been infinitesimally smaller, the constraint would have been binding 
(because the consumer would have desired, but been unable, to enter period t with 
negative, not zero, b). Given the GIC, the constraint certainly binds in period t (and 
thereafter) with resources of mt = m0

# = 1 + b0# = 1: The consumer cannot spend 
more (because constrained), and will not choose to spend less (because impatient), than 
ct = c0# = 1. 
We can construct the entire ‘prehistory’ of this consumer leading up to t as follows. 

Maintaining the assumption that the constraint has never bound in the past, c must 
have been growing according to ÞΓ, so consumption n periods in the past must have 
been 

n c# = Þ− 
Γ 
n ct = ÞΓ 

−n . (62) 

44Note that 0 < m# is implied by RIC and m# < 1 is implied by ��GIC. 
45As an illustration, consider a consumer for whom Þ = 1, R = 1.01 and Γ = 0.99. This consumer will 

save the amount necessary to ensure that growth in market wealth exactly o˙sets the decline in human 
wealth represented by Γ < 1; total wealth (and therefore total consumption) will remain constant, even 
as market wealth and human wealth trend in opposite directions. 
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The PDV of consumption from t − n until t can thus be computed as 

Ct
t−n = ct−n(1 + Þ/R + ... + (Þ/R)n) 

(1 + ÞR + ... + Þn 
R 

− ÞR 

−nÞ= 

−nÞΓ 

Γ 

n )= c# � � 
1 − Þn+1 

R 

1 − ÞR�� 
= 

1 − ÞR 

and note that the consumer’s human wealth between t − n and t (the relevant time 
horizon, because from t onward the consumer will be constrained and unable to access 
post-t income) is 

nh# 

# 

= 1 + ... + R−n (63) 

bn 

while the intertemporal budget constraint says 

t−n 
tC 

from which solve for the nbwe can # 

# 
n nb h+= # 

such that the consumer with bt−n would= 
unconstrainedly plan (in period t − n) to arrive in period t with bt = 0: 

hn 

z }|# {� � (64)1 −R−(n+1) 
= Ct − .t−n 1 −R−1 

nb# 

Defining m + 1, consider the function ̀c(m) defined by linearly connecting then 
# = bn 

# 

for integer values of (and setting for ). This} ≥ 0 c̀( ) 1<n m = m mpoints {mn n , c# # 

function will return, for any value of m, the optimal value of c for a liquidity constrained 
consumer with an infinite horizon. The function is piecewise linear with ‘kink points’ 
where the slope discretely changes; for infinitesimal � the MPC of a consumer with assets 

− � is discretely higher than for a consumer with assets m = mn 
# + � becausenm = m# 

entire domain of positive real values of need nb bwe, # 

the latter consumer will spread a marginal dollar over more periods before exhausting 
it. 

In order for a unique consumption function to be defined by this sequence (64) for the 
to become arbitrarily large with 

n. That is, we need 

# 

Γ 

bn 

The FHWC requires R−1 < 1, in which case the second term in (64) limits to a constant 
as n ↑ ∞, and (65) reduces to a requirement that 

� � 
Þ−n − (ÞR/ÞΓ)nÞR 

lim = ∞. (65)
n→∞ 

A.2.1 If FHWC Holds 

lim = ∞ 
n→∞ 1 − ÞR 
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� � 
Þ−n 
Γ −R−nÞR

lim = ∞ 
n→∞ 1 − ÞR� � 

Þ−n 

lim Γ = ∞. 
n→∞ 1 − ÞR 

Given the GIC Þ− 
Γ
1 > 1, this will hold i˙ the RIC holds, ÞR < 1. But given that 

the FHWC R > Γ holds, the GICis stronger (harder to satisfy) than the RIC; thus, 
the FHWC and the GIC together imply the RIC, and so a well-defined solution exists. 
Furthermore, in the limit as n approaches infinity, the di˙erence between the limiting 
constrained consumption function and the unconstrained consumption function becomes 
vanishingly small, because the date at which the constraint binds becomes arbitrarily 
distant, so the e˙ect of that constraint on current behavior shrinks to nothing. That is, 

lim c̀(m) − ̄c(m) = 0. (66)
m→∞ 

A.2.2 If FHWC Fails 

If the FHWC fails, matters are a bit more complex. 
Given failure of FHWC, (65) requires 

� � � � R−nÞR − Þ−n 1 −R−(n+1) 
lim Γ + = ∞ 
n→∞ ÞR − 1 R−1 − 1 � � � � R−1 Þ−nÞR R−n − Γlim − = ∞ 

n→∞ ÞR − 1 R−1 − 1 ÞR − 1 

If RIC Holds. When the RIC holds, rearranging (67) gives 
� � � � 

Þ−n R−1ÞR
lim Γ −R−n + = ∞ 
n→∞ 1 − ÞR 1 − ÞR R−1 − 1 

and for this to be true we need 

Þ−1 > R−1 
Γ 

Γ/Þ > Γ/R 

1 > Þ/R 

which is merely the RIC again. So the problem has a solution if the RIC holds. Indeed, 
we can even calculate the limiting MPC from 

! 
nc 

lim κn 
# = lim 

bn 
# (67) 

n→∞ n→∞ 
# 

which with a bit of algebra46 can be shown to asymptote to the MPC in the perfect 

46Calculate the limit of 
! � �−nÞ 1Γ = (68)−nÞ /(1 − ÞR) − (1 −R−1R−n)/(1 −R−1) 1/(1 − ÞR) + R−nR−1/(1 −R−1)

Γ 
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foresight model:47 

lim κ̀(m) = 1 − ÞR. (69)
m→∞ 

If RIC Fails. Consider now the � �RIC case, ÞR > 1. We can rearrange (67)as 
� � � � 

Þ−nÞR(R−1 − 1) R−1(ÞR − 1) Γlim − R−n − = ∞. (70) 
n→∞ (R−1 − 1)(ÞR − 1) (R−1 − 1)(ÞR − 1) ÞR − 1 

which makes clear that with ���� RIC ⇒ ÞR > 1 the numerators andFHWC ⇒ R−1 > 1 and � � 

denominators of both terms multiplying R−n can be seen transparently to be positive. 
So, the terms multiplying R−n in (67) will be positive if 

ÞRR−1 − ÞR > R−1ÞR −R−1 

R−1 > ÞR 

Γ > Þ 

which is merely the GIC which we are maintaining. So the first term’s limit is +∞. The 
combined limit will be +∞ if the term involving R−n goes to +∞ faster than the term 
involving −Þ− 

Γ 
n goes to −∞; that is, if 

R−1 Þ−1> Γ 

Γ/R > Γ/Þ 

Þ/R > 1 

which merely confirms the starting assumption that the RIC fails. 
nWhat is happening here is that the c term is increasing backward in time at rate# 

dominated in the limit by Γ/Þ while the b# term is increasing at a rate dominated by 
Γ/R term and 

Γ/R > Γ/Þ (71) 

because �RIC� ⇒ Þ > R. 
nConsequently, while limn↑∞ b

n 
# = ∞, the limit of the ratio c#/bn 

# in (67) is zero. Thus, 
surprisingly, the problem has a well defined solution with infinite human wealth if the 
RIC fails. It remains true that � �RIC implies a limiting MPC of zero, 

lim κ̀(m) = 0, (72)
m→∞ 

but that limit is approached gradually, starting from a positive value, and consequently 
the consumption function is not the degenerate ̀c(m) = 0. (Figure 8 presents an example 
for ρ = 2, R = 0.98, β = 1.00, Γ = 0.99; note that the horizontal axis is bank balances 
b = m−1; the part of the consumption function below the depicted points is uninteresting 
– c = m – so not worth plotting). 

We can summarize as follows. Given that the GIC holds, the interesting question is 
whether the FHWC holds. If so, the RIC automatically holds, and the solution limits into 

47For an example of this configuration of parameters, see the notebook doApndxLiqConstr.nb in the 
Mathematica software archive. 
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Figure 8 Nondegenerate Consumption Function with ���� RICFHWC and � � 

the solution to the unconstrained problem as m ↑ ∞. But even if the FHWC fails, the 
problem has a well-defined and nondegenerate solution, whether or not the RIC holds. 

Although these results were derived for the perfect foresight case, we know from work 
elsewhere in this paper and in other places that the perfect foresight case is an upper 
bound for the case with uncertainty. If the upper bound of the MPC in the perfect 
foresight case is zero, it is not possible for the upper bound in the model with uncertainty 
to be greater than zero, because for any κ > 0 the level of consumption in the model 
with uncertainty would eventually exceed the level of consumption in the absence of 
uncertainty. 

Ma and Toda (2020) characterize the limits of the MPC in a more general framework 
that allows for capital and labor income risks in a Markovian setting with liquidity 
constraints, and find that in that much more general framework the limiting MPC is 
also zero. 

B Existence of a Concave Consumption Function 
To show that (7) defines a sequence of continuously di˙erentiable strictly increasing 
concave functions {cT , cT −1, ..., cT −k}, we start with a definition. We will say that a 
function n(z) is ‘nice’ if it satisfies 

1. n(z) is well-defined i˙ z > 0 

2. n(z) is strictly increasing 

3. n(z) is strictly concave 

4. n(z) is C3 
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5. n(z) < 0 

6. limz↓0 n(z) = −∞. 

(Notice that an implication of niceness is that limz↓0 n
0(z) = ∞.) 

Assume that some vt+1 is nice. Our objective is to show that this implies vt is also 
nice; this is suÿcient to establish that vt−n is nice by induction for all n > 0 because 
vT (m) = u(m) and u(m) = m1−ρ/(1 − ρ) is nice by inspection. 
Now define an end-of-period value function vt(a) as � � 

Γ1−ρ vt(a) = β Et t+1 vt+1(Rt+1a + ξt+1) . (73) 

Since there is a positive probability that ξt+1 will attain its minimum of zero and since 
Rt+1 > 0, it is clear that lima↓0 vt(a) = −∞ and lima↓0 vt 

0 (a) = ∞. So vt(a) is well-
defined i˙ a > 0; it is similarly straightforward to show the other properties required for 
vt(a) to be nice. (See Hiraguchi (2003).) 

Next define vt(m, c) as 

vt(m, c) = u(c) + vt(m − c) (74) 

which is C3 since vt and u are both C3 , and note that our problem’s value function 
defined in (7) can be written as 

vt(m) = max v (m, c). (75)t 
c 

vt is well-defined if and only if 0 < c < m. Furthermore, limc↓0 vt(m, c) = 
∂2v (m,c) ∂v (m,c) ∂v (m,c)t t tlimc↑m vt(m, c) = −∞, < 0, limc↓0 = +∞, and limc↑m = −∞. It

∂c2 ∂c ∂c 
follows that the ct(m) defined by 

ct(m) = argmax vt(m, c) (76)
0<c<m 

exists and is unique, and (7) has an internal solution that satisfies 

u 0(ct(m)) = vt 
0 (m − ct(m)). (77) 

Since both u and vt are strictly concave, both ct(m) and at(m) = m−ct(m) are strictly 
increasing. Since both u and vt are three times continuously di˙erentiable, using (77) 
we can conclude that ct(m) is continuously di˙erentiable and 

v00(at(m)) 
ct 
0 (m) = t . (78)

u00(ct(m)) + vt 
00(at(m)) 

Similarly we can easily show that ct(m) is twice continuously di˙erentiable (as is at(m)) 
(See Appendix C.) This implies that vt(m) is nice, since vt(m) = u(ct(m)) + vt(at(m)). 

C ct(m) is Twice Continuously Di˙erentiable 
First we show that ct(m) is C1 . Define y as y ≡ m + dm. Since u0 (ct(y)) − u0 (ct(m)) = 
0 0 = 1 − ct(y)−ct(m)v (at(y)) − vt(at(m)) and 

at(y)−at(m) 
dm ,t dm 
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� �0 0 0 0vt(at(y)) − vt(at(m)) = 
u0 (ct(y)) − u0 (ct(m)) 

+ 
vt(at(y)) − vt(at(m)) ct(y) − ct(m) 

at(y) − at(m) ct(y) − ct(m) at(y) − at(m) dm 
u0(ct(y))−u0(ct(m))Since ct and at are continuous and increasing, lim < 0 and 

ct(y)−ct(m)dm→+0 
0 
tv (at(y))−v (at(m))t 

0 u0(ct(y))−u0(ct(m))v (at(y))−v (at(m))lim t t 
00 

< 0 are satisfied. Then < 0 for+ 
at(y)−at(m) ct(y)−ct(m) at(y)−at(m)dm→+0 

suÿciently small dm. Hence we obtain a well-defined equation: 

v (at(y))−v (at(m)) 
ct(y) − ct(m) 

t 
at(y)−a 

t

t(m) = 

00 

. 
u0(ct(y))−u0(ct(m)) 0v (at(y))−v (at(m))+ t t 

0
dm 

ct(y)−ct(m) at(y)−at(m) 

This implies that the right-derivative, ct 
0+(m) is well-defined and 

vt 
00(at(m)) 

c 0+(m) = .t u00(ct(m)) + v00 t (at(m)) 
0+ 0−Similarly we can show that ct (m) = ct (m), which means c0 t(m) exists. Since vt is 

C3 0 0 00 , ct(m) exists and is continuous. ct(m) is di˙erentiable because vt is C1 , ct(m) is C1 

00 00and u00(ct(m)) + vt (at(m)) < 0. ct (m) is given by 
0 000 00 00 0 000(ct) + a0 000a (m)v (at) [u00(ct) + v (at)] − v (at) [c u v (at)]00 t t t t t t t ct (m) = 2 . (79)

[u00(ct) + v00 t (at)] 
00 00Since vt (at(m)) is continuous, ct (m) is also continuous. 

D Proof that T Is a Contraction Mapping 
We must show that our operator T satisfies all of Boyd’s conditions. 

Boyd’s operator T maps from Cz(A, B) to C(A, B). A preliminary requirement is 
therefore that {Tz} be continuous for any z−bounded z, {Tz} ∈ C(R++, R). This is 
not diÿcult to show; see Hiraguchi (2003). 

Consider condition (1). For this problem, 
� � �	 

Γ1−ρ{Tx}(mt) is max u(ct) + β Et t+1 x (mt+1) 
ct∈[κmt,κ̄mt] � � �	 

Γ1−ρ{Ty}(mt) is max u(ct) + β Et t+1 y (mt+1) , 
ct∈[κmt,κ̄mt] 

so x(•) ≤ y(•) implies {Tx}(mt) ≤ {Ty}(mt) by inspection.48 
Condition (2) requires that {T0} ∈ Cz (A, B). By definition, 

�� 1−ρ � � 
c {T0}(mt) = max t + β0 

κmt]ct∈[κmt,¯ 1 − ρ 

48For a fixed mt, recall that mt+1 is just a function of ct and the stochastic shocks. 
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the solution to which is patently u(κ̄mt). Thus, condition (2) will hold if (κ̄mt)
1−ρ is 

z-bounded. We use the bounding function 

z(m) = η + m 1−ρ , (80) 

for some real scalar η > 0 whose value will be determined in the course of the proof. 
Under this definition of z, {T0}(mt) = u(κ̄mt) is clearly z-bounded. 

Finally, we turn to condition (3), {T(z + ζz)}(mt) ≤ {Tz}(mt)+ ζαz(mt). The proof 
will be more compact if we define ̆c and ̆a as the consumption and assets functions49 
associated with Tz and ̂c and ̂a as the functions associated with T(z + ζz); using this 
notation, condition (3) can be rewritten 

u(ĉ) + β{E(z + ζz)}(â) ≤ u(c̆) + β{Ez}(ă) + ζαz. 

Now note that if we force the ̂  consumer to consume the amount that is optimal for 
the ∧ consumer, value for the ̂  consumer must decline (at least weakly). That is, 

u(ĉ) + β{Ez}(â) ≤ u(c̆) + β{Ez}(ă). 
Thus, condition (3) will certainly hold under the stronger condition 

u(ĉ) + β{E(z + ζz)}(â) ≤ u(ĉ) + β{Ez}(â) + ζαz 

β{E(z + ζz)}(â) ≤ β{Ez}(â) + ζαz 

βζ{Ez}(â) ≤ ζαz 

β{Ez}(â) ≤ αz 

β{Ez}(â) < z. 

where the last line follows because 0 < α < 1 by assumption.50 
Using z(m) = η + m1−ρ and defining ât = a(ˆ mt), this condition is 

β Et[Γ1−ρ(ˆ 1−ρ < η(1 − β Et Γ1−ρ)t+1 atRt+1 + ξt+1)
1−ρ] − mt t+1| {z } 

=i 

which by imposing PF-FVAC (equation (25), which says i < 1) can be rewritten as: 
� �
1−ρ 1−ρβ Et Γt+1 (âtRt+1 + ξt+1)1−ρ − mt

η > . (81)
1 − i 

But since η is an arbitrary constant that we can pick, the proof thus reduces to showing 

49Section 2.7 proves existence of a continuously di˙erentiable consumption function, which implies 
the existence of a corresponding continuously di˙erentiable assets function. 

50The remainder of the proof could be reformulated using the second-to-last line at a small cost to 
intuition. 
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ÞÞ ÞÞ

ÞÞ

that the numerator of (81) is bounded from above: 
� �� � 
Γ1−ρ 
t+1 Γ1−ρ 

t+1 (âtRt+1)
1−ρ − m 1−ρ 

t(âtRt+1 + θt+1/(1 − ℘))1−ρ(1 − ℘)β Et + ℘β Et � �
1−ρ 1−ρ 
t+1 ((1 − κ̄)mtRt+1 + θt+1/(1 − ℘))1−ρ + ℘βR1−ρ((1 − κ̄)mt)

1−ρ − m≤(1 − ℘)β Et Γ 
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t 
�1−ρ� 

(Rβ)1/ρ� � 
Γ1−ρ 
t+1 

1−ρ((1 − κ̄)mtRt+1 + θt+1/(1 − ℘))1−ρ ℘1/ρ℘βR1−ρ=(1 − ℘)β Et − 1+ mt R 
⎛ 
⎜⎜⎝ 

⎞ 
⎟⎟⎠ 

(Rβ)1/ρ� � 
Γ1−ρ 
t+1 

1−ρ((1 − κ̄)mtRt+1 + θt+1/(1 − ℘))1−ρ ℘1/ρ=(1 − ℘)β Et −1+ mt 
{zR| } 

<1 by WRIC � �
1−ρ 
t+1 (θ/(1 − ℘))1−ρ = i(1 − ℘)ρθ1−ρ .<(1 − ℘)β Et Γ 

We can thus conclude that equation (81) will certainly hold for any: 

i(1 − ℘)ρθ1−ρ 

η > η = (82)
1 − i 

which is a positive finite number under our assumptions. 
The proof that T defines a contraction mapping under the conditions (42) and (39) is 

now complete. 

D.1 T and v 

In defining our operator T we made the restriction κmt ≤ ct κmt.≤ ¯ However, in the 
discussion of the consumption function bounds, we showed only (in (43)) that κtmt ≤ 
ct(mt) ≤ κ̄ tmt. (The di˙erence is in the presence or absence of time subscripts on the 
MPC’s.) We have therefore not proven (yet) that the sequence of value functions (7) 
defines a contraction mapping. 

Fortunately, the proof of that proposition is identical to the proof above, except that 
we must replace κ̄ with κ̄ T −1 and the WRIC must be replaced by a slightly stronger 
(but still quite weak) condition. The place where these conditions have force is in the 
step at (82). Consideration of the prior two equations reveals that a suÿcient stronger 
condition is 

℘β(R(1 − κ̄ T −1))
1−ρ < 1 

(℘β)1/(1−ρ)(1 − κ̄ T −1) > 1 

(℘β)1/(1−ρ)(1 − (1 + ℘1/ρÞR)
−1) > 1 

where we have used (41) for κ̄ T −1 (and in the second step the reversal of the inequality 
occurs because we have assumed ρ > 1 so that we are exponentiating both sides by the 
negative number 1 − ρ). To see that this is a weak condition, note that for small values 
of ℘ this expression can be further simplified using (1 + ℘1/ρÞR)

−1 ≈ 1 − ℘1/ρÞR so that 
it becomes 

(℘β)1/(1−ρ)℘1/ρÞR > 1 
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ÞÞ

ÞÞ

ÞÞ ÞÞ
ÞÞ ÞÞ

ÞÞ

(℘β)℘(1−ρ)/ρÞ1−ρ < 1R 

β℘1/ρÞ1−ρ < 1.R 

Calling the weak return patience factor Þ℘ 
R = ℘1/ρÞR and recalling that the WRIC was 

Þ℘ 
R < 1, the expression on the LHS above is βÞ− 

R 
ρ times the WRPF. Since we usually 

assume β not far below 1 and parameter values such that ÞR ≈ 1, this condition is 
clearly not very di˙erent from the WRIC. 

The upshot is that under these slightly stronger conditions the value functions for 
the original problem define a contraction mapping with a unique v(m). But since 
limn→∞ κT −n = κ and limn→∞ κ̄ T −n = κ̄, it must be the case that the v(m) toward which 
these vT −n’s are converging is the same v(m) that was the endpoint of the contraction 
defined by our operator T. Thus, under our slightly stronger (but still quite weak) 
conditions, not only do the value functions defined by (7) converge, they converge to the 
same unique v defined by T. 51 

E Convergence in Euclidian Space 

E.1 Convergence of vt 
Boyd’s theorem shows that T defines a contraction mapping in a z-bounded space. We 
now show that T also defines a contraction mapping in Euclidian space. 

Calling v ∗ the unique fixed point of the operator T, since v ∗(m) = Tv ∗(m), 

kvT −n+1 − v ∗kz ≤ αn−1 kvT − v ∗kz . (83) 

On the other hand, vT − v ∗ ∈ Cz (A, B) and κ = kvT − v ∗kz < ∞ because vT and v ∗ 

are in Cz (A, B). It follows that 

|vT −n+1(m) − v ∗ (m)| ≤ καn−1 |z(m)| . (84) 

Then we obtain 

lim vT −n+1(m) = v ∗ (m). (85) 
n→∞ 

m1−ρ (κ̄m)1−ρ 

Since vT (m) = 
1−ρ , vT −1(m) ≤ 

1−ρ < vT (m). On the other hand, vT −1 ≤ 
vT means TvT −1 ≤ TvT , in other words, vT −2(m) ≤ vT −1(m). Inductively one gets 
vT −n(m) ≥ vT −n−1(m). This means that {vT −n+1(m)}∞ 

n=1 is a decreasing sequence, 
bounded below by v ∗ . 

E.2 Convergence of ct 
Given the proof that the value functions converge, we now show the pointwise conver-
gence of consumption functions {cT −n+1(m)}∞ 

n=1. 

51It seems likely that convergence of the value functions for the original problem could be proven 
even if only the WRIC were imposed; but that proof is not an essential part of the enterprise of this 
paper and is therefore left for future work. 
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ÞÞ

ÞÞ

ÞÞ

� 
Consider any convergent subsequence cT −n(i)(m) of {cT −n+1(m)}∞ 

n=1 converging to 
c ∗ . By the definition of cT −n(m), we have 

u(cT −n(i)(m))+β ET −n(i)[Γ
1 
T 
−
− 
ρ
n(i)+1vT −n(i)+1(m)] ≥ u(cT −n(i))+β ET −n(i)[ΓT 

1−
− 
ρ
n(i)+1vT −n(i)+1(m)], 

(86) 
for any cT −n(i) ∈ [κm, ̄  Now letting n(i) go to infinity, it follows that the leftκm]. 
hand side converges to u(c ∗) + β Et[Γ1 

t 
−ρv(m)], and the right hand side converges to 

u(cT −n(i)) + β Et[Γ1−ρv(m)]. So the limit of the preceding inequality as n(i) approachest 

infinity implies 
1−ρ 1−ρu(c ∗ ) + β Et[Γt+1 v(m)] ≥ u(cT −n(i)) + β Et[Γt+1 v(m)]. (87) 

Hence, c ∈ arg max 
� 
u(cT −n(i)) + β Et[Γ1−ρ . ∗ 

t+1 v(m)] By the uniqueness of c(m), 
cT −n(i)∈[κm,κ̄m] 

c ∗ = c(m). 

F Equality of Aggregate Consumption Growth and 
Income Growth with Transitory Shocks 

Section 4.2 asserted that in the absence of permanent shocks it is possible to prove that 
the growth factor for aggregate consumption approaches that for aggregate permanent 
income. This section establishes that result. 

First define a(m) as the function that yields optimal end-of-period assets as a function 
of m. 

Suppose the population starts in period t with an arbitrary value for covt(at+1,i, pt+1,i). 
Then if m̆ is the invariant mean level of m we can define a ‘mean MPS away from m̆ ’ 
function : 

Z m̆ +Δ 
¯́ a 0(z)dza(Δ) = Δ−1 

m̆ 

where the combination of the bar and the´are meant to signify that this is the average 
value of the derivative over the interval. Since ψt+1,i = 1, Rt+1,i is a constant at R, if 
we define a as the value of a corresponding to m = m̆ , we can write 

mt+1,i z }| { 
at+1,i = a + (mt+1,i − m̆ )¯́a(Rat,i + ξt+1,i −m̆) 

so 
� �
¯ covt(at+1,i, pt+1,i) = covt á(Rat,i + ξt+1,i − m̆), Γpt,i . 

But since R−1(℘Rβ)1/ρ < ¯́a(m) < ÞR, 

|covt((℘Rβ)1/ρat+1,i, pt+1,i)| < |covt(at+1,i, pt+1,i)| < |covt(Þat+1,i, pt+1,i)| 
and for the version of the model with no permanent shocks the GIC-Nrm says that 
Þ < Γ, while the FHWC says that Γ < R 

|covt(at+1,i, pt+1,i)| < Γ|covt(at,i, pt,i)|. 
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ÞÞ

This means that from any arbitrary starting value, the relative size of the covariance 
term shrinks to zero over time (compared to the AΓn term which is growing steadily by 
the factor Γ). Thus, limn→∞ At+n+1/At+n = Γ. 
This logic unfortunately does not go through when there are permanent shocks, 

because the Rt+1,i terms are not independent of the permanent income shocks. 
To see the problem clearly, define R̆ = M [Rt+1,i] and consider a first order Taylor 

expansion of a(¯́ mt+1,i) around m̂ t+1,i = R̆at,i + 1, 
¯́ ´ mt+1,i) + ā 0( ˆa( ˆ ´ mt+1,i) (mt+1,i − ˆat+1,i ≈ ¯ mt+1,i) . 

The problem comes from the á̄0 term. The concavity of the consumption function 
implies convexity of the a function, so this term is strictly positive but we have no theory 
to place bounds on its size as we do for its level ̄́a. We cannot rule out by theory that a 
positive shock to permanent income (which has a negative e˙ect on mt+1,i) could have 
a (locally) unboundedly positive e˙ect on ̄́a0 (as for instance if it pushes the consumer 
arbitrarily close to the self-imposed liquidity constraint). 

G The Limiting MPC’s 
For mt > 0 we can define et(mt) = ct(mt)/mt and at(mt) = mt − ct(mt) and the Euler 
equation (8) can be rewritten 

et(mt)
−ρ = βR Et 

⎛ 
⎜⎜⎜⎝ 

⎡ 
⎢⎢⎢⎣ 

⎛ 
⎜⎜⎜⎝ 

z =mt+1Γt+1}| { 
Rat(mt) + Γt+1ξt+1 

mt 

⎞ 
⎟⎟⎟⎠ 

⎞ 
⎟⎟⎟⎠ 

−ρ⎤ 
⎥⎥⎥⎦ et+1(mt+1) 

� 
# 

� 
(1 − ℘)βRmt

ρ Et −ρ(et+1(mt+1)mt+1Γt+1) | ξt+1 > 0= "� �−ρ 
mt − ct(mt)

+ ℘βR1−ρ Et et+1(Rt+1at(mt)) | ξt+1 = 0 . 
mt 

Consider the first conditional expectation in (8), recalling that if ξt+1 > 0 then 
ξt+1 ≡ θt+1/(1 − ℘). Since limm↓0 at(m) = 0, Et[(et+1(mt+1)mt+1Γt+1)

−ρ | ξt+1 > 0] 
is contained within bounds defined by (et+1(θ/(1 − ℘))Γψθ/(1 − ℘))−ρ and 
(et+1(θ/̄ (1 − ℘))Γψ̄θ/̄ (1 − ℘))−ρ both of which are finite numbers, implying that 
the whole term multiplied by (1 − ℘) goes to zero as m ρt goes to zero. As mt ↓ 0 
the expectation in the other term goes to κ̄ t 

− 
+1 
ρ (1 − κ̄ t)−ρ . (This follows from the strict 

concavity and di˙erentiability of the consumption function.) It follows that the limiting 
κ−ρ κ−ρ κt)

−ρκ̄ t satisfies ̄ = β℘R1−ρ ̄  (1 − ¯ . Exponentiating by ρ, we can conclude thatt t+1 

= ℘−1/ρ(βR)−1/ρR(1 − ¯κ̄ t κt)κ̄t+1 

z ÞR}| { 
℘1/ρ κ̄ t = (1 − κ̄ t)κ̄t+1| } R−1(βR)1/ρ 

{z 
≡℘1/ρÞR 
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ÞÞ

ÞÞ

ÞÞ

ÞÞ

ÞÞ
ÞÞ

ÞÞ

ÞÞ

ÞÞ ÞÞ

which yields a useful recursive formula for the maximal marginal propensity to consume: 

(℘1/ρÞR ̄  κt)
−1κ̄−1κt)

−1 = (1 − ¯ t+1 

κ−1 κt) = ℘1/ρÞRκ̄
−1¯ t (1 − ¯ t+1 

κ−1 κ−1¯ t = 1 + ℘1/ρÞR ̄  t+1. 

As noted in the main text, we need the WRIC (42) for this to be a convergent sequence: 

0 ≤ ℘1/ρÞR < 1, (88) 

Since κ̄ T = 1, iterating (88) backward to infinity (because we are interested in the 
limiting consumption function) we obtain: 

κ ≡ 1 − ℘1/ρÞRlim κ̄ T −n = ¯ (89)
n→∞ 

and we will therefore call κ̄ the ‘limiting maximal MPC.’ 
The minimal MPC’s are obtained by considering the case where mt ↑ ∞. If the 

FHWC holds, then as mt ↑ ∞ the proportion of current and future consumption that 
will be financed out of capital approaches 1. Thus, the terms involving ξt+1 in (88) can 
be neglected, leading to a revised limiting Euler equation 

(mtet(mt))
−ρ = βR Et 

� 
(et+1(at(mt)Rt+1) (Rat(mt)))

−ρ� 

and we know from L’Hôpital’s rule that limmt→∞ et(mt) = κt, and limmt→∞ et+1(at(mt)Rt+1) = 
κt+1 so a further limit of the Euler equation is 

� �−ρ 
)−ρ(mtκt = βR κt+1R(1 − κt)mt 

R−1Þ κ = (1 − κ )κ| {z } t t t+1 

≡ÞR=(1−κ) 

and the same sequence of derivations used above yields the conclusion that if the RIC 0 ≤ 
ÞR < 1 holds, then a recursive formula for the minimal marginal propensity to consume 
is given by 

κ− 
t 
1 = 1 + κ− 

t+1
1 ÞR (90) 

so that {κ−1 }∞ is also an increasing convergent sequence, and we defineT −n n=0 

κ−1κ−1 ≡ lim 
n↑∞ T −n (91) 

as the limiting (inverse) marginal MPC. If the RIC does not hold, then limn→∞ κ
− 
T − 
1 
n = 

∞ and so the limiting MPC is κ = 0. 
For the purpose of constructing the limiting perfect foresight consumption function, 

it is useful further to note that the PDV of consumption is given by 

� � 
1 + ÞR + Þ2 = ctκ

−1 

which, combined with the intertemporal budget constraint, yields the usual formula for 

ct R + ... | {z } 
=1+ÞÞÞR(1+ÞÞÞRκ

−1 
t+2)... 

T −n . 
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the perfect foresight consumption function: 

ct = (bt + ht)κt (92) 

H The Perfect Foresight Liquidity Constrained 
Solution as a Limit 

Formally, suppose we change the description of the problem by making the following 
two assumptions: 

℘ = 0 

ct ≤ mt, 

and we designate the solution to this consumer’s problem ̀ct(m). We will henceforth refer 
to this as the problem of the ‘restrained’ consumer (and, to avoid a common confusion, 
we will refer to the consumer as ‘constrained’ only in circumstances when the constraint 
is actually binding). 

Redesignate the consumption function that emerges from our original problem for a 
given fixed ℘ as ct(m; ℘) where we separate the arguments by a semicolon to distinguish 
between m, which is a state variable, and ℘, which is not. The proposition we wish to 
demonstrate is 

lim ct(m; ℘) = c̀t(m). 
℘↓0 

(93) 

We will first examine the problem in period T − 1, then argue that the desired result 
propagates to earlier periods. For simplicity, suppose that the interest, growth, and 
time-preference factors are β = R = Γ = 1, and there are no permanent shocks, ψ = 1; 
the results below are easily generalized to the full-fledged version of the problem. 

The solution to the restrained consumer’s optimization problem can be obtained as 
follows. Assuming that the consumer’s behavior in period T is given by cT (m) (in 
practice, this will be cT (m) = m), consider the unrestrained optimization problem

( )Z θ̄  

` T 
∗
−1(m) = arg max u(m − a) + vT (a + θ)dFθ . (94)a 

a θ 

As usual, the envelope theorem tells us that vT 
0 (m) = u0(cT (m)) so the expected 

marginal value of ending period T − 1 with assets a can be defined as 
Z θ̄  

v̀ 
T 
0
−1(a) ≡ u 0(cT (a + θ))dFθ, 

θ 

and the solution to (94) will satisfy 

u 0(m − a) = v̀0 T −1(a). (95) 

`∗ 
T −1(m) therefore answers the question “With what level of assets would the restrained a 

consumer like to end period T − 1 if the constraint cT −1 ≤ mT −1 did not exist?” (Note 
that the restrained consumer’s income process remains di˙erent from the process for 
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the unrestrained consumer so long as ℘ > 0.) The restrained consumer’s actual asset 
position will be 

` aT 
∗
−1(m)],aT −1(m) = max[0, ̀  

reflecting the inability of the restrained consumer to spend more than current resources, 
and note (as pointed out by Deaton (1991)) that 

1 
� 0 �−1/ρ` 

T −1(0)m = # v 

is the cusp value of m at which the constraint makes the transition between binding and 
non-binding in period T − 1. 

Analogously to (95), defining 
" Z ̄θ 

# 
0 
T −1(a; ℘) ≡ ℘a−ρ + (1 v − ℘) (cT (a + θ −ρ/(1 − ℘))) dFθ , (96) 

θ 

the Euler equation for the original consumer’s problem implies 
0 vT −1(a; ℘)(m − a)−ρ (97)= 

∗ 0 0with solution a (m; ℘). Now note that for any fixed a > 0, lim℘↓0 v v(a; ℘) = ` 
Since the LHS of (95) and (97) are identical, this means that lim℘↓0 aT 

∗
−1(m; ℘) = 

v 

`∗ (m). That is, for any fixed value of m > m1 such that the consumer subject aT −1 # 

to the restraint would voluntarily choose to end the period with positive assets, the 
level of end-of-period assets for the unrestrained consumer approaches the level for the 
restrained consumer as ℘ ↓ 0. With the same a and the same m, the consumers must 
have the same c, so the consumption functions are identical in the limit. 

Now consider values m ≤ m#
1 for which the restrained consumer is constrained. It 

is obvious that the baseline consumer will never choose a ≤ 0 because the first term 
in (96) is lima↓0 ℘a

−ρ = ∞, while lima↓0(m − a)−ρ is finite (the marginal value of end-
of-period assets approaches infinity as assets approach zero, but the marginal utility of 
consumption has a finite limit for m > 0). The subtler question is whether it is possible 
to rule out strictly positive a for the unrestrained consumer. 

The answer is yes. Suppose, for some m < m#
1 , that the unrestrained consumer is 

considering ending the period with any positive amount of assets a = δ > 0. For any such 
(a; ℘) = ` 

(a).T −1 T −1 T −1 

0 0δ we have that lim℘↓0 v (a). But by assumption we are considering a setT −1 T −1 

of circumstances in which ̀a ∗ (m) < 0, and we showed earlier that lim℘↓0 a ∗ (m; ℘) = T −1 T −1 

à ∗ 
T −1(m). So, having assumed a = δ > 0, we have proven that the consumer would 

optimally choose a < 0, which is a contradiction. A similar argument holds for m = m#
1 . 

These arguments demonstrate that for any m > 0, lim℘↓0 cT −1(m; ℘) = c̀T −1(m) which 
is the period T − 1 version of (93). But given equality of the period T − 1 consumption 
functions, backwards recursion of the same arguments demonstrates that the limiting 
consumption functions in previous periods are also identical to the constrained function. 

Note finally that another intuitive confirmation of the equivalence between the two 
problems is that our formula (89) for the maximal marginal propensity to consume 
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satisfies 

lim κ̄ = 1, 
℘↓0 

which makes sense because the marginal propensity to consume for a constrained re-
strained consumer is 1 by our definitions of ‘constrained’ and ‘restrained.’ 

I Endogenous Gridpoints Solution Method 
The model is solved using an extension of the method of endogenous gridpoints (Carroll 
(2006)): A grid of possible values of end-of-period assets ~a is defined, and at these points, 
marginal end-of-period-t value is computed as the discounted next-period expected 
marginal utility of consumption (which the Envelope theorem says matches expected 
marginal value). The results are then used to identify the corresponding levels of 
consumption at the beginning of the period:52 

u 0(ct(~a)) = Rβ Et[u0(Γt+1ct+1(Rt+1 ~a + ξt+1))] 
��−1/ρ 

~ct ≡ ct(~a) = 
� 
Rβ Et 

� 
(Γt+1ct+1(Rt+1 ~a + ξt+1))

−ρ . 

The dynamic budget constraint can then be used to generate the corresponding m’s: 

m~ t = ~a + ~ct. 

An approximation to the consumption function could be constructed by linear inter-
polation between the {~ ~m, c} points. But a vastly more accurate approximation can be 
made (for a given number of gridpoints) if the interpolation is constructed so that it also 
matches the marginal propensity to consume at the gridpoints. Di˙erentiating (98) with 
respect to a (and dropping policy function arguments for simplicity) yields a marginal 

apropensity to have consumed c at each gridpoint: 
00(ct)c 

a m u t = Rβ Et[u00(Γt+1ct+1)Γt+1ct+1Rt+1] 
m = Rβ Et[u00(Γt+1ct+1)Rct+1] 

a m 00(ct)ct = Rβ Et[u00(Γt+1ct+1)Rct+1]/u 

and the marginal propensity to consume at the beginning of the period is obtained from 
the marginal propensity to have consumed by noting that, if we define m(a) = c(a) − a, 

c = m − a 

c a + 1 = m a 

a m awhich, together with the chain rule c = c m , yields the MPC from 

c m(c a + 1) = c a 

c m = c a/(1 + c a) 

52The software can also solve a version of the model with explicit liquidity constraints, where the 
Envelope condition does not hold. 
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and we call the vector of MPC’s at the m~ t gridpoints ~κt. 

J The Terminal/Limiting Consumption Function 
For any set of parameter values that satisfy the conditions required for convergence, 
the problem can be solved by setting the terminal consumption function to cT (m) = 
m and constructing {cT −1, cT −2, ...} by time iteration (a method that will converge to 
c(m) by standard theorems). But cT (m) = m is very far from the final converged 
consumption rule c(m), 53 and thus many periods of iteration will likely be required to 
obtain a candidate rule that even remotely resembles the converged function. 

A natural alternative choice for the terminal consumption rule is the solution to the 
perfect foresight liquidity constrained problem, to which the model’s solution converges 
(under specified parametric restrictions) as all forms of uncertainty approach zero (as 
discussed in the main text). But a diÿculty with this idea is that the perfect foresight 
liquidity constrained solution is ‘kinked:’ The slope of the consumption function changes 
discretely at the points {m1

#,m
2
#, ...}. This is a practical problem because it rules out 

Γ 

the use of derivatives of the consumption function in the approximate representation of 
c(m), thereby preventing the enormous increase in eÿciency obtainable from a higher-
order approximation. 

Our solution is simple: The formulae in another appendix that identify kink points on 
= Þ−nc̊(m) for integer values of n (e.g., c ) are continuous functions of n; the conclusionn 

# 

that ̊c(m) is piecewise linear between the kink points does not require that the terminal 
consumption rule (from which time iteration proceeds) also be piecewise linear. Thus, 
for values n ≥ 0 we can construct a smooth function ̆c(m) that matches the true perfect 
foresight liquidity constrained consumption function at the set of points corresponding 
to integer periods in the future, but satisfies the (continuous, and greater at non-kink 
points) consumption rule defined from the appendix’s formulas by noninteger values of 
n at other points.54 

This strategy generates a smooth limiting consumption function – except at the 
remaining kink point defined by {m0

#, c
0
#}. Below this point, the solution must match 

m because the constraint is binding. At m = m0
# the MPC discretely dropsc(m) = 

(that is, limm↑m0# 
c0(m) = 1 while limm↓m0# 

c0(m) = κ0# < 1). 

and m# 

Such a kink point causes substantial problems for numerical solution methods (like the 
one we use, described below) that rely upon the smoothness of the limiting consumption 
function. 

Our solution is to use, as the terminal consumption rule, a function that is identical 
to the (smooth) continuous consumption rule ̆c(m) above some n ≥ n, but to replace 
c̆(m) between m0

# 
n with the unique polynomial function ̂c(m) that satisfies the 

following criteria: 

53Unless β ≈ +0. 
54In practice, we calculate the first and second derivatives of ̊c and use piecewise polynomial 

approximation methods that match the function at these points. 
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1. ĉ(m0
#) = c0# 

2. ĉ0(m#
0 ) = 1 

n n3. ĉ0(m# 
n ) = (dc#/dn)(dm#/dn)

−1|n=n 

00(m n n4. ĉ n 
#) = (d

2c#/dn
2)(d2m#/dn

2)−1|n=n 

where n is chosen judgmentally in a way calculated to generate a good compromise 
between smoothness of the limiting consumption function c̆(m) and fidelity of that 
function to the ̊c(m) (see the actual code for details). 

We thus define the terminal function as 

cT (m) = 

⎧
⎪⎨ 
⎪⎩ 

0 < m ≤ m#
0 m 

m0 n 
# < m < m# c̆(m) (98) 

m n < m c̊(m)# 

� 

Since the precautionary motive implies that in the presence of uncertainty the optimal 

� 

level of consumption is below the level that is optimal without uncertainty, and since 
c̆(m) ≥ ̊c(m), implicitly defining m = eµ (so that µ = log m), we can construct 

χt(µ) = log(1 − ct(e
µ)/cT (e

µ)) (99) 

which must be a number between −∞ and +∞ (since 0 < ct(m) < c̆(m) for m > 0). 
This function turns out to be much better behaved (as a numerical observation; no formal 
proof is o˙ered) than the level of the optimal consumption rule ct(m). In particular, 
χt(µ) is well approximated by linear functions both as m ↓ 0 and as m ↑ ∞. 

Di˙erentiating with respect to µ and dropping consumption function arguments yields 

χ0 t(µ) = 

⎛
⎝ 

c0 cT −ctc0 µ− t T e2cT 

⎞
⎠ 

1 − ct/cT 
(100) 

which can be solved for 

ct 
0 = (ctcT 

0 /cT ) − ((cT − ct)/m)χ
0 
t. (101) 

Similarly, we can solve (99) for 
� 

χt(log m)ct(m) = 1 − e cT (m). (102) 

Thus, having approximated χt, we can recover from it the level and derivative(s) of 
ct. 

K Relational Diagrams for the Inequality Conditions 
This appendix explains in detail the paper’s ‘inequalities’ diagrams (Figures 1,3). 
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Þ Γ((Rβ)1/ρ ≡)

R

6=

GIC(≡ Þ < Γ)

(Þ < R ≡) RIC FHWC (≡ Γ < R)

Figure 9 Inequality Conditions for Perfect Foresight Model 
(Start at a node and follow arrows) 

K.1 The Unconstrained Perfect Foresight Model 
A simple illustration is presented in Figure 9, whose three nodes represent values of 
the absolute patience factor Þ, the permanent-income growth factor Γ, and the riskfree 
interest factor R. The arrows represent imposition of the labeled inequality condition 
(like, the uppermost arrow, pointing from Þ to Γ, reflects imposition of the PF-GICNrm 
condition (clicking PF-GICNrm should take you to its definition; definitions of other 
conditions are also linked below).55 Annotations inside parenthetical expressions con-
taining ≡ are there to make the diagram readable for someone who may not immediately 
remember terms and definitions from the main text. (Such a reader might also want to 
be reminded that R, β, and Γ are all in R++, and that ρ > 1). 
Navigation of the diagram is simple: Start at any node, and deduce a chain of 

inequalities by following any arrow that exits that node, and any arrows that exit from 
successive nodes. Traversal must stop upon arrival at a node with no exiting arrows. 
So, for example, we can start at the Þ node and impose the PF-GICNrm and then the 
FHWC, and see that imposition of these conditions allows us to conclude that Þ < R. 
One could also impose Þ < R directly (without imposing PF-GICNrm and FHWC) 

by following the downward-sloping diagonal arrow exiting Þ. Although alternate routes 
from one node to another all justify the same core conclusion (Þ < R, in this case), 
6 symbol in the center is meant to convey that these routes are not identical in other= 
respects. This notational convention is used in category theory diagrams, 56 to indicate 
that the diagram is not commutative. 57 

Negation of a condition is indicated by the reversal of the corresponding arrow. For 
example, negation of the RIC, � �RIC ≡ Þ > R, would be represented by moving the 

55For convenience, the equivalent (≡) mathematical statement of each condition is expressed nearby 
in parentheses. 

56For a popular introduction to category theory, see Riehl (2017). 
57But the rest of our notation does not necessarily abide by the other conventions of category theory 

diagrams. 
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arrowhead from the bottom right to the top left of the line segment connecting Þ and 
R. 

If we were to start at R and then impose ����FHWC, that would reverse the arrow 
connecting R and Γ, but the Γ node would then have no exiting arrows so no further 
deductions could be made. However, if we also reversed PF-GICNrm (that is, if we 
imposed (((((((

FHWC and ((((((( 

� � 58 

PF-GICNrm), that would take us to the Þ node, and we could deduce R > Þ. 
However, we would have to stop traversing the diagram at this point, because the arrow 
exiting from the Þ node points back to our starting point, which (if valid) would lead us to 
the conclusion that R > R. Thus, the reversal of the two earlier conditions (imposition 
of ���� PF-GICNrm) requires us also to reverse the final condition, giving us 
RIC. 

Under these conventions, Figure 1 in the main text presents a modified version of 
the diagram extended to incorporate the PF-FVAC (reproduced here for convenient 
reference). 

6=

6=

Þ Γ

R R1/ρΓ1−1/ρ

GIC

R
IC

PF-FVA
C

F
H

W
C

����FHWC

Figure 10 Relation of PF-GICNrm, FHWC, RIC, and PF-FVAC 
An arrowhead points to the larger of the two quantities being compared. For example, the diagonal 
arrow indicates that Þ < R1/ρΓ1−1/ρ, which is an alternative way of writing the PF-FVAC, (25) 

This diagram can be interpreted, for example, as saying that, starting at the Þ node, it 
is possible to derive the PF-FVAC59 by imposing both the PF-GICNrm and the FHWC; 

58The corresponding algebra is 
�� �FHWC : R < Γ 

((((((PF-GICNrm : Γ < Þ 

⇒ ��RIC : R < Þ, 
. 

59in the form Þ < (R/Γ)1/ρΓ 

57 

https://llorracc.github.io/BufferStockTheory#FHWC
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#FHWC
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#RIC
https://llorracc.github.io/BufferStockTheory#PFFVAC
https://econ-ark.github.io/BufferStockTheory/#RelatePFGICFHWCRICPFFVAC
https://econ-ark.github.io/BufferStockTheory/#RelatePFGICFHWCRICPFFVAC
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#FHWC
https://llorracc.github.io/BufferStockTheory#RIC
https://llorracc.github.io/BufferStockTheory#PFFVAC
https://llorracc.github.io/BufferStockTheory#PFFVAC
https://llorracc.github.io/BufferStockTheory#PFFVAC
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#FHWC
https://llorracc.github.io/BufferStockTheory#FHWC
https://llorracc.github.io/BufferStockTheory#GICRaw
https://llorracc.github.io/BufferStockTheory#RIC


�

ÞÞ

� ÞÞ

ÞÞ

ÞÞ
(

ÞÞ

�

ÞÞ
(

 

 

  

or by imposing RIC and ����

FHWC) and then � � 

conclusion that Þ < Γ. Algebraically, 

FHWC : Γ < R 
� �RIC : R < Þ (103) 

Γ < Þ 

FHWC. Or, starting at the Γ node, we can follow the imposition 
of the FHWC (twice - reversing the arrow labeled ���� RIC to reach the 

(((((((which leads to the negation of both of the conditions leading into Þ. PF-GICNrm is 
obtained directly as the last line in (103) and (((( (PF-FVAC follows if we start by multipling 
the Return Patience Factor (RPF=Þ/R) by the FHWF(=Γ/R) raised to the power 
1/ρ − 1, which is negative since we imposed ρ > 1. FHWC implies FHWF < 1 so when 
FHWF is raised to a negative power the result is greater than one. Multiplying the RPF 
(which exceeds 1 because � �RIC) by another number greater than one yields a product 
that must be greater than one: 

>1 from ��RIC z }| �{ >1 from FHWC� 
(Rβ)1/ρ z }| { 

1/ρ−11 < (Γ/R)
R � � 
(Rβ)1/ρ 

1 < 
(R/Γ)1/ρRΓ/R 

R1/ρΓ1−1/ρ = (R/Γ)1/ρΓ < Þ 

which is one way of writing (((( (PF-FVAC. 
The complexity of this algebraic calculation illustrates the usefulness of the diagram, 

in which one merely needs to follow arrows to reach the same result. 
After the warmup of constructing these conditions for the perfect foresight case, we 

can represent the relationships between all the conditions in both the perfect foresight 
case and the case with uncertainty as shown in Figure 3 in the paper (reproduced here). 

Finally, the next diagram substitutes the values of the various objects in the diagram 
under the baseline parameter values and verifies that all of the asserted inequality 
conditions hold true. 

L When Is Consumption Growth Declining in m? 
Figure 4 depicts the expected consumption growth factor as a strictly declining function 
of the cash-on-hand ratio. To investigate this, define 

  (mt) ≡ Γt+1̊c(Rt+1a(mt) + ξt+1)/̊c(mt) = ct+1/ct 

and the proposition in which we are interested is 

(d/dmt) Et[  (mt)] < 0 | {z } 
≡ t+1 
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RIC PF-FVAC FHWC

FHWC

because ℘ < 1

WRIC

because ψ
<

1 and
Γ ≡

ψΓ

GIC-Nrm

b
ecau

se
Γ
<

Γ

FVAC

Figure 11 Relation of All Inequality Conditions 

or di˙erentiating through the expectations operator, what we want is 
� � �� 

c̊0(mt+1)Rt+1a
0(mt)̊c(mt) − c̊(mt+1)̊c

0(mt)Et Γt+1 < 0. (104)
c̊(mt)2 

Henceforth indicating appropriate arguments by the corresponding subscript (e.g. 
ct 
0 
+1 ≡ c0(mt+1)), since Γt+1Rt+1 = R, the portion of the LHS of equation (104) in 

brackets can be manipulated to yield 
0 0 0 ct 

0 
t+1 = ct+1atR − ctΓt+1ct+1/ct 

0 0 0 = c R − ct+1at t t+1. 

Now di˙erentiate the Euler equation with respect to mt: 

1 = Rβ Et[ − 
t+1 
ρ ] 

0 = Et[ t 
− 
+1 
ρ−1 0 t+1] 

= Et[ − 
t+1 
ρ−1] Et[ 0 t+1] + covt( − 

t+1 
ρ−1 ,  0 t+1) 

Et[ 0 ] = −covt( −ρ−1 ,  0 )/ Et[ −ρ−1]t+1 t+1 t+1 t+1 

but since  t+1 > 0 we can see from (105) that (104) is equivalent to 

covt( −ρ−1 ,  0 ) > 0t+1 t+1 

which, using (105), will be true if 
0 0 0covt( − 

t+1 
ρ−1 , ct+1atR − ct t+1) > 0 

59 



  

    

0.999 1.030

1.04 1.035

0.072

1.02

1.030

GIC

RIC
PF-FVAC FHWC

FHWC

because ℘ < 1

WRIC

because ψ
<

1 and
Γ ≡

ψΓ

GIC

FVAC

Figure 12 Numerical Relation of All Inequality Conditions 

which in turn will be true if both 

covt( −ρ−1 , c 0 ) > 0t+1 t+1 

and 

covt( −ρ−1 
t+1 ,  t+1) < 0. 

The latter proposition is obviously true under our assumption ρ > 1. The former will 
be true if 

� � 
covt (Γψt+1c(mt+1))

−ρ−1 , c 0(mt+1) > 0. 

The two shocks cause two kinds of variation in mt+1. Variations due to ξt+1 satisfy 
the proposition, since a higher draw of ξ both reduces ct 

− 
+1 
ρ−1 and reduces the marginal 

propensity to consume. However, permanent shocks have conflicting e˙ects. On the one 
0hand, a higher draw of ψt+1 will reduce mt+1, thus increasing both ct 

− 
+1 
ρ−1 and ct+1. On 

the other hand, the c − 
t+1 
ρ−1 term is multiplied by Γψt+1, so the e˙ect of a higher ψt+1 

could be to decrease the first term in the covariance, leading to a negative covariance 
with the second term. (Analogously, a lower permanent shock ψt+1 can also lead a 
negative correlation.) 

M Unique And Stable Target and Steady State Points 
The two theorems and lemma to be proven in this appendix are: 
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Theorem 4. For the nondegenerate solution to the problem defined in section 2.1 when 
FVAC, WRIC, and GIC-Nrm all hold, there exists a unique cash-on-hand-to-permanent-
income ratio m̂ > 0 such that 

Et[mt+1/mt] = 1 if mt = m.ˆ (105) 

Moreover, m̂ is a point of ‘wealth stablity’ in the sense that 

∀mt ∈ (0, m̂), Et[mt+1] > mt (106) 
∀mt ∈ (m̂, ∞), Et[mt+1] < mt. 

Theorem 5. For the nondegenerate solution to the problem defined in section 2.1 when 
FVAC, WRIC, and GIC all hold, there exists a unique pseudo-steady-state cash-on-hand-
to-income ratio m̌ > 0 such that 

Et[ψt+1mt+1/mt] = 1 if mt = m.ˇ (107) 

Moreover, m̌ is a point of stability in the sense that 

∀mt ∈ (0, m̌), Et[mt+1]/mt > Γ (108) 
∀mt ∈ (m̌, ∞), Et[mt+1]/mt < Γ. 

Lemma 1. If both m̌ and m̂ exist, then m̂ < m̌ . 

M.1 Proof of Theorem 4 
The elements of the proof of theorem 4 are: 

• Existence and continuity of Et[mt+1/mt] 

• Existence of a point where Et[mt+1/mt] = 1 

• Et[mt+1] − mt is monotonically decreasing 

M.1.1 Existence and Continuity of Et[mt+1/mt]. 

The consumption function exists because we have imposed the suÿcient conditions (the 
WRIC and FVAC; theorem 1). (Indeed, Appendix C shows that c(m) is not just 
continuous, but twice continuously di˙erentiable.) 

Section 2.7 shows that for all t, at−1 = mt−1 − ct−1 > 0. Since mt = at−1Rt + ξt, 
even if ξt takes on its minimum value of 0, at−1Rt > 0, since both at−1 and Rt are 
strictly positive. With mt and mt+1 both strictly positive, the ratio Et[mt+1/mt] inherits 
continuity (and, for that matter, continuous di˙erentiability) from the consumption 
function. 

M.1.2 Existence of a point where Et[mt+1/mt] = 1. 

Existence of a point where Et[mt+1/mt] = 1 follows from: 

1. Existence and continuity of Et[mt+1/mt] (just proven) 
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2. Existence a point where Et[mt+1/mt] < 1 

3. Existence a point where Et[mt+1/mt] > 1 

4. The Intermediate Value Theorem 

Existence of a point where Et[mt+1/mt] < 1. 
If RIC holds. Logic exactly parallel to that of section 3.1 leading to equation (49), 

but dropping the Γt+1 from the RHS, establishes that 
� � Rt+1(mt − c(mt)) + ξt+1

lim Et[mt+1/mt] = lim Et 
mt↑∞ mt↑∞ mt 

= Et[(R/Γt+1)ÞR] 

= Et[Þ/Γt+1] (109) 
< 1 

where the inequality reflects imposition of the GIC-Nrm (36). 
If RIC fails. When the RIC fails, the fact that limm↑∞ c

0(m) = 0 (see equation (40)) 
¯ means that the limit of the RHS of (109) as m ↑ ∞ is R = Et[Rt+1]. In the next step 

¯of this proof, we will prove that the combination GIC-Nrm and � � R < 1.RIC implies 
So we have limm↑∞ Et[mt+1/mt] < 1 whether the RIC holds or fails. 

Existence of a point where Et[mt+1/mt] > 1. 
Paralleling the logic for c in section 3.2: the ratio of Et[mt+1] to mt is unbounded 

above as mt ↓ 0 because limmt↓0 Et[mt+1] > 0. 

Intermediate Value Theorem. If Et[mt+1/mt] is continuous, and takes on values above 
and below 1, there must be at least one point at which it is equal to one. 

M.1.3 Et[mt+1] − mt is monotonically decreasing. 

Now define ζ(mt) ≡ Et[mt+1] − mt and note that 

ζ(mt) < 0 ↔ Et[mt+1/mt] < 1 

ζ(mt) = 0 ↔ Et[mt+1/mt] = 1 (110) 
ζ(mt) > 0 ↔ Et[mt+1/mt] > 1, 

so that ζ(m̂) = 0. Our goal is to prove that ζ(•) is strictly decreasing on (0, ∞) using 
the fact that � � �� � � 

ζ 0(mt) ≡ 
d

ζ(mt) = Et 
d 

(Rt+1(mt − c(mt)) + ξt+1 − mt) (111)
dmt dmt 

¯ = R (1 − c 0(mt)) − 1. 

Now, we show that (given our other assumptions) ζ 0(m) is decreasing (but for di˙erent 
reasons) whether the RIC holds or fails. 
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If RIC holds. Equation (22) indicates that if the RIC holds, then κ > 0. We show 
at the bottom of Section 2.8.1 that if the RIC holds then 0 < κ < c0(mt) < 1 so that 

¯ ¯R (1 − c 0(mt)) − 1 < R(1 − (1 − ÞR)) − 1 | {z } 
κ 

¯ = RÞR − 1 � � 
R Þ 

= Et − 1 
Γψ R � � 
Þ 

= Et −1 
Γψ | {z } 

=ÞΓ 

which is negative because the GIC-Nrm says ÞΓ < 1. 
If RIC fails. Under � � 0(m) = 0. Concavity of the consumptionRIC, recall that limm↑∞ c 

function means that c0 is a decreasing function, so everywhere 
¯ ¯R (1 − c 0(mt)) < R 

which means that ζ 0(mt) from (115) is guaranteed to be negative if 
� � 

R̄ ≡ Et 
R 

< 1. (112)
Γψ 

But the combination of the GIC-Nrm holding and the RIC failing can be written: 
ÞΓ ÞR z }| { z}|{� � 
Þ Þ

Et < 1 < ,
Γψ R 

and multiplying all three elements by R/Þ gives 
� � 
R

Et < R/Þ < 1 
Γψ 

which satisfies our requirement in (112). 

M.2 Proof of Theorem 5 
The elements of the proof are: 

• Existence and continuity of Et[ψt+1mt+1/mt] 

• Existence of a point where Et[ψt+1mt+1/mt] = 1 

• Et[ψt+1mt+1 − mt] is monotonically decreasing 

M.2.1 Existence and Continuity of The Ratio 

¯Since by assumption 0 < ψ ≤ ψt+1 ≤ ψ < ∞, our proof in M.1.1 that demonstrated exis-
tence and continuity of Et[mt+1/mt] implies existence and continuity of Et[ψt+1mt+1/mt]. 
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M.2.2 Existence of a stable point 

¯Since by assumption 0 < ψ ≤ ψt+1 ≤ ψ < ∞, our proof in subsection M.1.1 that the 
ratio of Et[mt+1] to mt is unbounded as mt ↓ 0 implies that the ratio Et[ψt+1mt+1] to mt 

is unbounded as mt ↓ 0. 
The limit of the expected ratio as mt goes to infinity is most easily calculated by 

modifying the steps for the prior theorem explicitly:
� � 
Γt+1 ((R/Γt+1)a(mt) + ξt+1) /Γ 

lim Et[ψt+1mt+1/mt] = lim Et 
mt↑∞ mt↑∞ mt� � 

(R/Γ)a(mt) + ψt+1ξt+1 
= lim Et 

mt↑∞ mt� � 
(R/Γ)a(mt) + 1 

= lim 
mt↑∞ mt 

= (R/Γ)ÞR (113) 
= ÞΓ 

< 1 

where the last two lines are merely a restatement of the GIC (30). 
The Intermediate Value Theorem says that if Et[ψt+1mt+1/mt] is continuous, and takes 

on values above and below 1, there must be at least one point at which it is equal to 
one. 

M.2.3 Et[ψt+1mt+1] − mt is monotonically decreasing. 

Define ζ(mt) ≡ Et[ψt+1mt+1] − mt and note that 

ζ(mt) < 0 ↔ Et[ψt+1mt+1/mt] < 1 

ζ(mt) = 0 ↔ Et[ψt+1mt+1/mt] = 1 (114) 
ζ(mt) > 0 ↔ Et[ψt+1mt+1/mt] > 1, 

so that ζ(m̂) = 0. Our goal is to prove that ζ(•) is strictly decreasing on (0, ∞) using 
the fact that � � �� � � 

ζ 0(mt) ≡ 
d

ζ(mt) = Et 
d 

(R(mt − c(mt)) + ψt+1ξt+1 − mt) (115)
dmt dmt 

= (R/Γ) (1 − c 0(mt)) − 1. 

Now, we show that (given our other assumptions) ζ 0(m) is decreasing (but for di˙erent 
reasons) whether the RIC holds or fails (� �RIC). 
If RIC holds. Equation (22) indicates that if the RIC holds, then κ > 0. We show 

at the bottom of Section 2.8.1 that if the RIC holds then 0 < κ < c0(mt) < 1 so that 

R (1 − c 0(mt)) − 1 < R(1 − (1 − ÞR)) − 1 | {z } 
κ 

= (R/Γ)ÞR − 1 
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which is negative because the GIC says ÞΓ < 1. 
If RIC fails. Under � � 0(m) = 0. Concavity of the consumptionRIC, recall that limm↑∞ c 

function means that c0 is a decreasing function, so everywhere 

R (1 − c 0(mt)) < R 

which means that ζ 0(mt) from (115) is guaranteed to be negative if 

R ≡ (R/Γ) < 1. (116) 

But we showed in section 2.5 that the only circumstances under which the problem 
has a nondegenerate solution while the RIC fails were ones where the FHWC also fails 
(that is, (116) holds). 

M.3 Proof of Lemma 
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Table 5 Taxonomy of Perfect Foresight Liquidity Constrained Model Outcomes 

For constrained c̀  and unconstrained ̄c consumption functions 
Main Condition 

Subcondition Math Outcome, Comments or Results 
� �GIC 

and RIC 
and � �RIC 

GIC 
and RIC 

and � �RIC 

1 < Þ/Γ 
Þ/R < 1 

1 < Þ/R 
Þ/Γ < 1 
Þ/R < 1 

1 < Þ/R 

Constraint never binds for m ≥ 1 
FHWC holds (R > Γ); ̀c(m) = c̄(m) for m ≥ 1 
c̀(m) is degenerate: ̀c(m) = 0 

Constraint binds in finite time for any m 
FHWC may or may not hold 
limm↑∞ c̄(m) − ̀c(m) = 0 
limm↑∞ κ̀(m) = κ 

����FHWC 
limm↑∞ κ̀(m) = 0 

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where �GIC� 

and RIC both hold, while the third row indicates that when the GIC and the RIC both fail, the consumption 
function is degenerate; the next row indicates that whenever the GICholds, the constraint will bind in finite time. 

66 



References 
Abowd, John M., and David Card (1989): “On the Covariance Structure of Earnings and 

Hours Changes,” Econometrica, 57, 411–445. 

Aiyagari, S. Rao (1994): “Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly 
Journal of Economics, 109, 659–684. 

Alvarez, Fernando, and Nancy L Stokey (1998): “Dynamic programming with 
homogeneous functions,” Journal of economic theory, 82(1), 167–189. 

Bellman, Richard (1957): Dynamic Programming. Princeton University Press, Princeton, 
NJ, USA, 1 edn. 

Benhabib, Jess, Alberto Bisin, and Shenghao Zhu (2015): “The wealth distribution 
in Bewley economies with capital income risk,” Journal of Economic Theory, 159, 489–515, 
Available at https://www.nber.org/papers/w20157.pdf. 

Bewley, Truman (1977): “The Permanent Income Hypothesis: A Theoretical Formulation,” 
Journal of Economic Theory, 16, 252–292. 

Blanchard, Olivier J. (1985): “Debt, Deficits, and Finite Horizons,” Journal of Political 
Economy, 93(2), 223–247. 

Blundell, Richard, Hamish Low, and Ian Preston (2008): “Decomposing Changes in 
Income Risk Using Consumption Data,” Manusscript, University College London. 

Boyd, John H. (1990): “Recursive Utility and the Ramsey Problem,” Journal of Economic 
Theory, 50(2), 326–345. 

Cagetti, Marco (2003): “Wealth Accumulation Over the Life Cycle and Precautionary 
Savings,” Journal of Business and Economic Statistics, 21(3), 339–353. 

Carroll, Christopher D. (1992): “The Bu˙er-Stock Theory of Saving: Some 
Macroeconomic Evidence,” Brookings Papers on Economic Activity, 1992(2), 61–156, 
http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf. 

(1997): “Bu˙er Stock Saving and the Life 
Income Hypothesis,” Quarterly Journal of Economics, 
http://econ.jhu.edu/people/ccarroll/BSLCPIH.zip. 

Cycle/Permanent 
CXII(1), 1–56, 

(2006): “The Method of Endogenous Gridpoints for 
Stochastic Optimization Problems,” Economics Letters, 

Solving 
91(3), 

Dynamic 
312–320, 

http://econ.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf. 

Carroll, Christopher D., Alexander M. Kaufman, Jacqueline L. Kazil, 
Nathan M. Palmer, and Matthew N. White (2018): “The Econ-ARK and HARK: 
Open Source Tools for Computational Economics,” in Proceedings of the 17th Python in 
Science Conference, ed. by Fatih Akici, David Lippa, Dillon Niederhut, and M Pacer, pp. 25 
– 30. doi: 10.5281/zenodo.1001067. 

67 

https://www.nber.org/papers/w20157.pdf
http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf
http://econ.jhu.edu/people/ccarroll/BSLCPIH.zip
http://econ.jhu.edu/people/ccarroll/EndogenousGridpoints.pdf
https://doi.org/10.5281/zenodo.1001067


Carroll, Christopher D., and Miles S. Kimball (1996): “On the 
Concavity of the Consumption Function,” Econometrica, 64(4), 981–992, 
http://econ.jhu.edu/people/ccarroll/concavity.pdf. 

Carroll, Christopher D., and Andrew A. Samwick (1997): “The Nature of 
Precautionary Wealth,” Journal of Monetary Economics, 40(1), 41–71. 

Carroll, Christopher D., Jiri Slacalek, Kiichi Tokuoka, and Matthew N. White 
(2017): “The Distribution of Wealth and the Marginal Propensity to Consume,” Quantitative 
Economics, 8, 977–1020, At http://econ.jhu.edu/people/ccarroll/papers/cstwMPC. 

Chamberlain, Gary, and Charles A. Wilson (2000): “Optimal Intertemporal 
Consumption Under Uncertainty,” Review of Economic Dynamics, 3(3), 365–395. 

Clarida, Richard H. (1987): “Consumption, Liquidity Constraints, and Asset Accumulation 
in the Face of Random Fluctuations in Income,” International Economic Review, XXVIII, 
339–351. 

Deaton, Angus S. (1991): “Saving and Liquidity Constraints,” Econometrica, 59, 1221–1248, 
http://www.jstor.org/stable/2938366. 

Durán, Jorge (2003): “Discounting long run average growth in stochastic dynamic programs,” 
Economic Theory, 22(2), 395–413. 

Friedman, Milton A. (1957): A Theory of the Consumption Function. Princeton University 
Press. 

Gourinchas, Pierre-Olivier, and Jonathan Parker (2002): “Consumption Over the 
Life Cycle,” Econometrica, 70(1), 47–89. 

Hendricks, Lutz (2001): Bequests and Retirement Wealth in the United States. University of 
Arizona. 

(2016): “Wealth Distribution and Bequests,” Lecture Notes, Economics 821, University 
of North Carolina. 

Hiraguchi, Ryoji (2003): “On the Convergence of Consumption Rules,” Manuscript, Johns 
Hopkins University. 

Jappelli, Tullio, and Luigi Pistaferri (2000): “Intertemporal Choice and Consumption 
Mobility,” Econometric Society World Congress 2000 Contributed Paper Number 0118. 

Krueger, Dirk, Kurt Mitman, and Fabrizio Perri (2016): “Macroeconomics and 
Household Heterogeneity,” Handbook of Macroeconomics, 2, 843–921. 

Li, Huiyu, and John Stachurski (2014): “Solving the income fluctuation problem with 
unbounded rewards,” Journal of Economic Dynamics and Control, 45, 353–365. 

Ma, Qingyin, John Stachurski, and Alexis Akira Toda (2020): “The income 
fluctuation problem and the evolution of wealth,” Journal of Economic Theory, 187. 

68 

http://econ.jhu.edu/people/ccarroll/concavity.pdf
http://econ.jhu.edu/people/ccarroll/papers/cstwMPC
http://www.jstor.org/stable/2938366


Ma, Qingyin, and Alexis Akira Toda (2020): “A Theory of the Saving Rate of the Rich,” 
. 

MaCurdy, Thomas (1982): “The Use of Time Series Processes to Model the Error Structure 
of Earnings in a Longitudinal Data Analysis,” Journal of Econometrics, 18(1), 83–114. 

Martins-da Rocha, V Filipe, and Yiannis Vailakis (2010): “Existence and uniqueness 
of a fixed point for local contractions,” Econometrica, 78(3), 1127–1141. 

Matkowski, Janusz, and Andrzej S. Nowak (2011): “On Discounted Dynamic 
Programming With Unbounded Returns,” Economic Theory, 46, 455–474. 

Modigliani, Franco (1966): “The Life Cycle Hypothesis, the Demand for Wealth, and the 
Supply of Capital,” Social Research, 33, 160–217. 

Muth, John F. (1960): “Optimal Properties of Exponentially Weighted Forecasts,” Journal 
of the American Statistical Association, 55(290), 299–306. 

Rabault, Guillaume (2002): “When do borrowing constraints bind? Some new results on the 
income fluctuation problem,” Journal of Economic Dynamics and Control, 26(2), 217–245. 

Ramsey, Frank (1928): “A Mathematical Theory of Saving,” Economic Journal, 38(152), 
543–559. 

Riehl, Emily (2017): Category theory in context. Courier Dover Publications. 

Rincón-Zapatero, Juan Pablo, and Carlos Rodríguez-Palmero (2003): “Existence 
and uniqueness of solutions to the Bellman equation in the unbounded case,” Econometrica, 
71(5), 1519–1555. 

Schechtman, Jack, and Vera Escudero (1977): “Some results on ‘An Income Fluctuation 
Problem’,” Journal of Economic Theory, 16, 151–166. 

Scheinkman, José, and Laurence Weiss (1986): “Borrowing Constraints and Aggregate 
Economic Activity,” Econometrica, 54(1), 23–46. 

Schmitt-Grohé, Stephanie, and Martın Uribe (2003): “Closing small open economy 
models,” Journal of international Economics, 61(1), 163–185. 

Stachurski, John, and Alexis Akira Toda (2019): “An Impossibility Theorem for Wealth 
in Heterogeneous-Agent Models with Limited Heterogeneity,” Journal of Economic Theory, 
182, 1–24. 

Stokey, Nancy L., Robert E. Lucas, and Edward C. Prescott (1989): Recursive 
Methods in Economic Dynamics. Harvard University Press. 

Storesletten, Kjetil, Chris I. Telmer, and Amir Yaron (2004): “Consumption and 
Risk Sharing Over the Life Cycle,” Journal of Monetary Economics, 51(3), 609–633. 

Szeidl, Adam (2013): “Stable Invariant Distribution in Bu˙er-Stock Saving and 
Stochastic Growth Models,” Manuscript, Central European University, Available at 
http://www.personal.ceu.hu/staff/Adam_Szeidl/papers/invariant_revision.pdf. 

69 

http://www.personal.ceu.hu/staff/Adam_Szeidl/papers/invariant_revision.pdf


Toche, Patrick (2005): “A Tractable Model of Precautionary 
Saving in Continuous Time,” Economics Letters, 87(2), 267–272, 
http://ideas.repec.org/a/eee/ecolet/v87y2005i2p267-272.html. 

Yao, Jiaxiong (2012): “The Theoretical Foundations of Bu˙er Stock Saving: A Note,” 
Manuscript, Johns Hopkins University. 

Zeldes, Stephen P. (1989): “Optimal Consumption with Stochastic Income: Deviations from 
Certainty Equivalence,” Quarterly Journal of Economics, 104(2), 275–298. 

70 

http://ideas.repec.org/a/eee/ecolet/v87y2005i2p267-272.html

	Introduction
	The Problem
	Setup
	The Problem Can Be Normalized By Permanent Income
	Definition of a Nondegenerate Solution
	Perfect Foresight Benchmarks
	Human Wealth
	When Does the Perfect Foresight Unconstrained Solution Exist?
	PF Constrained Solution Exists Under RIC or Under {RIC-8.5-.25ex,GIC}

	Uncertainty-Modified Conditions
	Impatience
	Autarky Value

	The Baseline Numerical Solution
	Concave Consumption Function Characteristics
	Bounds for the Consumption Functions
	Weak RIC Conditions

	Conditions Under Which the Problem Defines a Contraction Mapping
	The Liquidity Constrained Solution as a Limit
	Discussion of Parametric Restrictions
	The WRIC
	When the RIC Fails
	When the RIC Holds


	Analysis of the Converged Consumption Function
	Limits as m approaches Infinity
	Limits as m Approaches Zero
	Unique `Stable' Points
	`Individual Target Wealth'
	Collective Stability and the Expected-Balanced-Growth State
	Example Where There Is An Expected-Balanced-Growth State But No Target


	The Aggregate and Idiosyncratic Relationship Between Consumption Growth and Income Growth
	Consumption and Income Growth at the Household Level
	Balanced Growth of Aggregate Income, Consumption, and Wealth
	Mortality and Redistribution
	Blanchard Lives
	Modigliani Lives


	Conclusions
	Perfect Foresight Liquidity Constrained Solution
	If GIC Fails
	If GIC Holds
	If FHWC Holds
	If FHWC Fails


	Existence of a Concave Consumption Function
	ct(m) is Twice Continuously Differentiable
	Proof that T Is a Contraction Mapping
	T and v

	Convergence in Euclidian Space
	Convergence of vt
	Convergence of ct

	Equality of Aggregate Consumption Growth and Income Growth with Transitory Shocks
	The Limiting MPC's
	The Perfect Foresight Liquidity Constrained Solution as a Limit
	Endogenous Gridpoints Solution Method
	The Terminal/Limiting Consumption Function
	Relational Diagrams for the Inequality Conditions
	The Unconstrained Perfect Foresight Model

	When Is Consumption Growth Declining in m?
	Unique And Stable Target and Steady State Points
	Proof of Theorem 4
	Existence and Continuity of `39`42`"613A``45`47`"603AEt [mt+1/mt].
	Existence of a point where `39`42`"613A``45`47`"603AEt [mt+1/mt]=1.
	`39`42`"613A``45`47`"603AEt [mt+1] -mt is monotonically decreasing.

	Proof of Theorem 5
	Existence and Continuity of The Ratio
	Existence of a stable point
	`39`42`"613A``45`47`"603AEt[t+1mt+1] -mt is monotonically decreasing.

	Proof of Lemma


