Theoretical Foundations of Buffer Stock Saving

Chris Carroll

Johns Hopkins University

September 12, 2019

Powered By Econ-ARK
Drawbacks of Numerical Solutions

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is *Right*
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- *Very* Hard To Teach!

I Am A *Big* Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly
Drawbacks of Numerical Solutions

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

I Am A Big Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly
Drawbacks of Numerical Solutions

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

I Am A Big Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly
Drawbacks of Numerical Solutions

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

I Am A Big Fan Of Numerical Methods

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly
The Gap This Paper Fills

Foundations For Microeconomic Household’s Problem With

- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)
The Gap This Paper Fills

Foundations For Microeconomic Household’s Problem With
- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)
Key Result

Restrictions on parameter values such that:

- Problem defines a contraction mapping
 - $\Rightarrow \exists$ A unique consumption function $c(m)$
- There is a ‘target’ ratio of assets to permanent income
 - Requires a key ‘impatience’ condition to hold
 - Good news
 - Condition is weaker (easier to satisfy) than previous papers imposed
Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - ⇒ ∃ A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed
Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - ⇒ ∃ A Unique Consumption Function \(c(m) \)
- There Is A ‘Target’ Ratio Of Assets to Permanent Income
 - Requires A Key ‘Impatience’ Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed
Limit as horizon T goes to infinity of

$$a_t = m_t - c_t$$

$$b_{t+1} = a_t R$$

$$p_{t+1} = p_t \Gamma_{\psi_{t+1}}$$

$$\equiv \Gamma_{t+1}$$

$$m_{t+1} = b_{t+1} + p_{t+1} \xi_{t+1},$$

$$\xi_{t+n} = \begin{cases} 0 & \text{with probability } \varphi > 0 \\ \theta_{t+n}/\varphi & \text{with probability } \varphi \end{cases}$$

$u(\bullet) = \bullet^{1-\rho}/(1-\rho)$; $E_t[\psi_{t+n}] = E_t[\xi_{t+n}] = 1 \forall n > 0$; $\beta < 1, \rho > 1$
Surely This Problem Has Been Solved?

No.

- Can’t Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can’t Handle Permanent Shocks
- Must Use Boyd’s ‘Weighted’ Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!
Surely This Problem Has Been Solved?

No.

- Can’t Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can’t Handle Permanent Shocks
- Must Use Boyd’s ‘Weighted’ Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!
Surely This Problem Has Been Solved?

No.

- Can’t Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can’t Handle Permanent Shocks
- Must Use Boyd’s ‘Weighted’ Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!
Benchmark: Perfect Foresight Model

Definitions:

- **Absolute Patience Factor**: $\mathcal{P} = (R\beta)^{1/\rho}$
- **Return Patience Factor**: $\mathcal{P}_R = \mathcal{P} / R$
- **Perfect Foresight Growth Patience Factor**: $\mathcal{P}_\Gamma = \mathcal{P} / \Gamma$

Conditions and Implications:

<table>
<thead>
<tr>
<th>Name</th>
<th>Condition</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AIC) Absolute Impatience Condition</td>
<td>$\mathcal{P} < 1$</td>
<td>$c \downarrow$ over time</td>
</tr>
<tr>
<td>(RIC) Return Impatience Condition</td>
<td>$\mathcal{P}_R < 1$</td>
<td>$c/a \downarrow$ over time</td>
</tr>
<tr>
<td>(PFGIC) Growth Impatience Condition</td>
<td>$\mathcal{P}_\Gamma < 1$</td>
<td>$c/p \downarrow$ over time</td>
</tr>
</tbody>
</table>
When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

\[\Gamma < R \quad (3) \]

Return Impatience Condition:

\[\bar{D}_R < R \quad (4) \]
When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

\[\Gamma < R \] \hspace{1cm} (3)

Return Impatience Condition:

\[\mathbf{D}_R < R \] \hspace{1cm} (4)
What If There Are Liquidity Constraints?

- FHWC is *not* necessary for solution to exist
- Other Key Condition For Useful Solution is ‘Perfect Foresight Finite Value of Autarky Condition (PFFVAC)’:
 \[\beta \Gamma^{1-\rho} < 1 \]
 (5)
- Without RIC, Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds
What If There Are Liquidity Constraints?

- FHWC is *not* necessary for solution to exist
- Other Key Condition For Useful Solution is ‘Perfect Foresight Finite Value of Autarky Condition (PFFVAC)’:
 \[\beta^\Gamma(1-\rho) < 1 \]
- Without RIC , Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds
Liquidity Constraints and Uncertainty

- Introduce permanent shocks to income
- Finite Value of Autarky Condition Becomes

\[\beta \Gamma^{1-\rho} < 1 \]
\[\beta < \Gamma^{\rho-1} \]
Finite Value of Autarky Condition: Same As In Liq Constr Problem!

\[\beta \Gamma^{1-\rho} < 1 \]
\[\beta < \Gamma^{\rho-1} \]

\textit{‘Weak Return Impatience Condition’ (WRIC)}

\[0 \leq \varphi^{1/\rho} \Phi_R < 1 \]
Requirement For Existence Of A Target

Definitions: ‘Uncertainty-Adjusted’ Growth:

\[\Gamma = \Gamma \psi \] \hspace{1cm} (9)

Adjusted Growth Patience Factor:

\[\Phi_{\Gamma} = \Phi / \Gamma \] \hspace{1cm} (10)

Growth Impatience Condition:

\[\Phi_{\Gamma} < 1 \] \hspace{1cm} (11)

Why? Because it can be shown that

\[\lim_{m_t \to \infty} E_t \left[\frac{m_{t+1}}{m_t} \right] = \Phi_{\Gamma} \] \hspace{1cm} (12)
Five Propositions

1. \(\lim_{m_t \to \infty} \mathbb{E}_t[c_{t+1}/c_t] = \mathbb{P} \)
2. \(\lim_{m_t \to 0} \mathbb{E}_t[c_{t+1}/c_t] = \infty \)
3. \(\exists \) a unique target value of \(m \), called \(\hat{m} \)
4. \(\mathbb{E}_t[c_{t+1}/c_t | m_t = \hat{m}] = \Gamma - \epsilon \)
5. \(\left(\frac{d\mathbb{E}_t[c_{t+1}/c_t]}{dm_t} \right) < 0 \)
The Target Saving Figure

\[\mathbb{E}_t \left[\frac{c_{t+1}}{c_t} \right] = (R\beta)^{1/\rho} \]

\[m_t \]

\[\tilde{m} \]

\[\Gamma \]
Bounds On the Consumption Function

\[\tilde{c}(m) = \kappa m = (1 - \varpi^{1/p} \rho R) m \]

Upper Bound = Min \([\tilde{c}(m), \bar{c}(m)]\)

\[\bar{c}(m) = (m - 1 + h) \kappa \]

\[c(m) = (1 - \rho R) \kappa m \]
The Marginal Propensity to Consume

\[\kappa(m) \equiv c'(m) \]

\[(1 - \frac{\rho^1}{\rho} \mathbf{p}_R) \equiv \bar{\kappa} \]

\[\kappa \equiv (1 - \mathbf{p}_R) \]
The Consumption Function and Target Wealth

\[c(m_t) \]

\[\mathbb{E}_t[\Delta m_{t+1}] = 0 \]
Szeidl (2012) Proves Existence of an Invariant Distribution of m, c, a, etc.
Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

\[\frac{Y_{t+1}}{Y_t} = \frac{C_{t+1}}{C_t} = \Gamma \]

(13)

Fisherman Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving ≈ Liquidity Constraints

If \(\check{c}(m) \) is solution for constrained consumer,

\[\lim_{\varphi \downarrow 0} c(m; \varphi) = \check{c}(m) \]

(14)
Achieved When Cross Section Distribution Reaches Invariance

\[\frac{Y_{t+1}}{Y_t} = \frac{C_{t+1}}{C_t} = \Gamma \] (13)

Fisherman Separation Fails, Even Without Liquidity Constraints!

Insight:
- Precautionary Saving \(\approx \) Liquidity Constraints
- If \(\dot{c}(m) \) is solution for constrained consumer,

\[\lim_{\varphi \downarrow 0} c(m; \varphi) = \dot{c}(m) \] (14)
Achieved When Cross Section Distribution Reaches Invariance

\[\frac{Y_{t+1}}{Y_t} = \frac{C_{t+1}}{C_t} = \Gamma \] \hspace{2cm} (13)

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:
- Precautionary Saving \(\approx \) Liquidity Constraints
- If \(\hat{c}(m) \) is solution for constrained consumer,

\[\lim_{\varphi \downarrow 0} c(m; \varphi) = \hat{c}(m) \] \hspace{2cm} (14)
The MPC Out Of Permanent Shocks

http://econ.jhu.edu/people/ccarroll/papers/MPCPerm.pdf

Lots of Recent Papers Trying to Measure the MPC

Paper Proves:
- MPCP < 1
- But not a lot less:
 - 0.75 to 0.95 (annual rate) for wide range of parameter values
- Defined Conditions Under Which Widely Used Problem Has Solution
 - Finite Value of Autarky Condition Guarantees Contraction (with WRIC)
 - Growth Impatience Condition Prevents $m \to \infty$
- Economy Of Buffer Stock Consumers Exhibits Balanced Growth
 - Even In Absence of General Equilibrium Adj of Interest Rate