Aggregate Implications of Microeconomic Consumption Behavior

Christopher Carroll

1 Johns Hopkins University and NBER
ccarroll@jhu.edu

19th IMF Macro Modeling Conference
Armenia
September 2016
In a model with ‘serious’ heterogeneity:

- Fiscal Policy Can Be Much More Powerful than in RA model
 - austerity has much bigger medium-term effects
- Monetary Policy Mechanism Is Radically Different
 - Mostly not about intertemporal substitution
- Changes in *micro* Uncertainty Can Matter A Lot
 - When Michigan II, ΔU_t+1, C_t
 - Explains Why Saving Rate ↑ in Recessions
- New Tools ⇒ It’s Not As Hard As You Think!
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit:
 - http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in *micro* Uncertainty Can Matter A Lot**
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate ↑ in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in *micro* Uncertainty Can Matter A Lot**
 - When Michigan $E_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in micro Uncertainty Can Matter A Lot**
 - When Michigan $E_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in micro Uncertainty Can Matter A Lot**
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate ↑ in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in micro Uncertainty Can Matter A Lot**
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. Fiscal Policy Can Be Much More Powerful than in RA model
 - \(\Rightarrow \) austerity has much bigger medium-term effects

2. Monetary Policy Mechanism Is Radically Different
 - Mostly *not* about intertemporal substitution

3. Changes in *micro* Uncertainty Can Matter A Lot
 - When Michigan \(\mathbb{E}_t[\Delta U_{t+1}] \uparrow, C \downarrow \)
 - Explains Why Saving Rate \(\uparrow \) in Recessions

4. New Tools \(\Rightarrow \) It’s Not As Hard As You Think!
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit:
 http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in *micro* Uncertainty Can Matter A Lot**
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. Fiscal Policy Can Be Much More Powerful than in RA model
 - ⇒ austerity has much bigger medium-term effects

2. Monetary Policy Mechanism Is Radically Different
 - Mostly *not* about intertemporal substitution

3. Changes in *micro* Uncertainty Can Matter A Lot
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow, C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. New Tools ⇒ It’s Not As Hard As You Think!
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. Fiscal Policy Can Be Much More Powerful than in RA model
 - ⇒ austerity has much bigger medium-term effects

2. Monetary Policy Mechanism Is Radically Different
 - Mostly not about intertemporal substitution

3. Changes in micro Uncertainty Can Matter A Lot
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate ↑ in Recessions

4. New Tools ⇒ It’s Not As Hard As You Think!
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - \(\Rightarrow \) austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in *micro* Uncertainty Can Matter A Lot**
 - When Michigan \(E_t[\Delta U_{t+1}] \uparrow, C \downarrow \)
 - Explains Why Saving Rate \(\uparrow \) in Recessions

4. **New Tools \(\Rightarrow \) It’s Not As Hard As You Think!**
 - **Algorithmic Resources and toolKit: ARK!**
 - Initiative of U.S. Consumer Financial Protection Bureau
 - **Subset:** Heterogeneous Agents Resources and toolKit: http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. Fiscal Policy Can Be Much More Powerful than in RA model
 - ⇒ austerity has much bigger medium-term effects

2. Monetary Policy Mechanism Is Radically Different
 - Mostly not about intertemporal substitution

3. Changes in micro Uncertainty Can Matter A Lot
 - When Michigan $\mathbb{E}_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. New Tools ⇒ It’s Not As Hard As You Think!
 - Algorithmic Resources and toolKit: ARK!
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKit:
 http://econ-ark.org
In a model with ‘serious’ heterogeneity:

1. **Fiscal Policy Can Be Much More Powerful than in RA model**
 - ⇒ austerity has much bigger medium-term effects

2. **Monetary Policy Mechanism Is Radically Different**
 - Mostly *not* about intertemporal substitution

3. **Changes in *micro* Uncertainty Can Matter A Lot**
 - When Michigan $E_t[\Delta U_{t+1}] \uparrow$, $C \downarrow$
 - Explains Why Saving Rate \uparrow in Recessions

4. **New Tools ⇒ It’s Not As Hard As You Think!**
 - Algorithmic Resources and toolKIT: **ARK!**
 - Initiative of U.S. Consumer Financial Protection Bureau
 - Subset: Heterogeneous Agents Resources and toolKIT:
 http://econ-ark.org
Key Question: How Large Is ‘the MPC’ ($\equiv \kappa$)?

If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:

- Households are heterogeneous *ex post* and *ex ante*
- Lots of HH’s who do lots of C have little wealth
- c function is highly concave
- \Rightarrow Distributional issues matter for aggregate C
 - Giving 1 to the poor \neq giving 1 to the rich
Micro Heterogeneity and Aggregate Consumption

Key Question: How Large Is ‘the MPC’ (≡ κ)?

If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:

- Households are heterogeneous \textit{ex post and ex ante}
- Lots of HH’s who do lots of \(C\) have little wealth
- \(c\) function is highly concave
- \(\Rightarrow\) Distributional issues matter for aggregate \(C\)
 Giving 1 to the poor \(\neq\) giving 1 to the rich
Key Question: How Large Is ‘the MPC’ (≡ \(\kappa \))?

If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:

- Households are heterogeneous \textit{ex post} and \textit{ex ante}
 - Lots of HH’s who do lots of \(C \) have little wealth
 - \(c \) function is highly concave
 - \(\Rightarrow \) Distributional issues matter for aggregate \(C \)

Giving 1 to the poor \(\neq \) giving 1 to the rich
Micro Heterogeneity and Aggregate Consumption

Key Question: How Large Is ‘the MPC’ (≡ \(\kappa \))?
If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:
- Households are heterogeneous \(ex \ post \) and \(ex \ ante \)
- Lots of HH’s who do lots of \(C \) have little wealth
- \(c \) function is highly concave
- \(\Rightarrow \) Distributional issues matter for aggregate \(C \)
 - Giving 1 to the poor \(\neq \) giving 1 to the rich
Key Question: How Large Is ‘the MPC’ (≡ κ)?

If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:

- Households are heterogeneous \textit{ex post} and \textit{ex ante}
- Lots of HH’s who do lots of \textit{C} have little wealth
- \textit{c} function is highly concave
- \Rightarrow Distributional issues matter for aggregate \textit{C}
 Giving 1 to the poor \neq giving 1 to the rich
Micro Heterogeneity and Aggregate Consumption

Key Question: How Large Is ‘the MPC’ (≡ \(\kappa \))?
If households receive a surprise extra 1 unit of income, how much will be spent over the next year?

Elements that interact to produce the answer:

- Households are heterogeneous *ex post* and *ex ante*
- Lots of HH’s who do lots of \(C \) have little wealth
- \(c \) function is highly concave
- \(\Rightarrow \) Distributional issues matter for aggregate \(C \)
 Giving 1 to the poor \(\neq \) giving 1 to the rich
Consumption Concavity and Wealth Heterogeneity

Histogram: empirical (SCF1998) density of $m_t/(p_t W_t)$ (right scale)

Consumption/(quarterly) permanent income ratio (left scale)

$m_t/(p_t W_t)$
To-Do List

1. Calibrate realistic income process
2. Match empirical wealth distribution
3. Back out optimal \(c \) and \(c'(m) = \kappa(m) \) out of transitory income
4. Is MPC in line with empirical estimates?
To-Do List

1. Calibrate realistic income process
2. Match empirical wealth distribution
3. Back out optimal c and $c'(m) = \kappa(m)$ out of transitory income
4. Is MPC in line with empirical estimates?
To-Do List

1. Calibrate realistic income process
2. Match empirical wealth distribution
3. Back out optimal c and $c'(m) = \kappa(m)$ out of transitory income
4. Is MPC in line with empirical estimates?
To-Do List

1. Calibrate realistic income process
2. Match empirical wealth distribution
3. Back out optimal c and $c'(m) = \kappa(m)$ out of transitory income
4. Is MPC in line with empirical estimates?
Our (Micro) Income Process

Idiosyncratic (household) income process is logarithmic Friedman:

\[y_{t+1} = p_{t+1} \xi_{t+1} W \]
\[p_{t+1} = p_t \psi_{t+1} \]
\[p_t \] - permanent income
\[\psi_{t+1} \] - permanent income
\[E_t[\xi_{t+n}] = 1 \] - transitory income
\[E_t[\psi_{t+n}] = 1 \] - permanent shock
\[W \] - aggregate wage rate

Generates ex post dist’n of \(y \) that matches cross-section data
Unemployment and Unemployment Insurance

Modifications from Carroll (1992)

Transitory income ξ_t incorporates unemployment insurance:

$$
\xi_t = \mu \text{ with probability } u \\
= (1 - \tau)\bar{\ell}\theta_t \text{ with probability } 1 - u
$$

μ is UI when unemployed
τ is the rate of tax collected for the unemployment benefits
Model Without Aggr Uncertainty: Decision Problem

\[v(m_t) = \max \{ c_t \} \quad u(c_t) + \beta \mathbb{E}_t \left[\psi_{t+1}^{1-\rho} v(m_{t+1}) \right] \]

s.t.

\[a_t = m_t - c_t \]
\[a_t \geq 0 \]
\[k_{t+1} = a_t / (\partial \psi_{t+1}) \]
\[m_{t+1} = (\bar{l} + r) k_{t+1} + \xi_{t+1} \]
\[r = \alpha Z(K/\bar{L})^{\alpha-1} \]

(State and control variables normalized by \(p_t W \))
What Happens After Death?

- You are replaced by a new agent whose permanent income p is equal to the population mean.
- Prevents dist'n of p from spreading out, so long as

$$\mathbb{E}[\psi^2] < 1$$

which holds for our parameterization (next slide).
What Happens After Death?

- You are replaced by a new agent whose permanent income \(p \) is equal to the population mean.
- Prevents distribution \(p \) from spreading out, so long as

\[
\mathbb{E}[\psi^2] < 1
\]

which holds for our parameterization (next slide).
What Happens After Death?

- You are replaced by a new agent whose permanent income p is equal to the population mean.
- Prevents distribution of p from spreading out, so long as

$$\mathbb{E}[\psi^2] < 1$$

which holds for our parameterization (next slide).
What Happens After Death?

- You are replaced by a new agent whose permanent income p is equal to the population mean.
- Prevents dist'n of p from spreading out, so long as

$$\mathbb{D} \mathbb{E}[\psi^2] < 1$$

which holds for our parameterization (next slide)
What Happens After Death?

- You are replaced by a new agent whose permanent income p is equal to the population mean.
- Prevents dist’n of p from spreading out, so long as

$$\mathbb{D}E[\psi^2] < 1$$

which holds for our parameterization (next slide)
The Key is Getting Micro Consumption Right
Matching Net Worth vs Liquid Assets
Life Cycle Model
A Related Model

Parameter Values

- β, ρ, α, δ, $\bar{\ell}$, μ, and ν taken from JEDC special volume
- Main new parameter values:

<table>
<thead>
<tr>
<th>Description</th>
<th>Param</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob of Death per Quarter</td>
<td>D</td>
<td>0.00625</td>
<td>Life span of 40 years</td>
</tr>
<tr>
<td>Variance of Log ψ_t</td>
<td>σ^2_ψ</td>
<td>0.016 \times 4/11</td>
<td>Carroll (1992); SCF</td>
</tr>
<tr>
<td>Variance of Log θ_t</td>
<td>σ^2_θ</td>
<td>0.010 \times 4</td>
<td>Carroll (1992)</td>
</tr>
</tbody>
</table>
- β, ρ, α, δ, $\bar{\ell}$, μ, and u taken from JEDC special volume
- Main new parameter values:

<table>
<thead>
<tr>
<th>Description</th>
<th>Param</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob of Death per Quarter</td>
<td>D</td>
<td>0.00625</td>
<td>Life span of 40 years</td>
</tr>
<tr>
<td>Variance of Log ψ_t</td>
<td>σ^2_{ψ}</td>
<td>0.016 \times 4/11</td>
<td>Carroll (1992); SCF DeBacker et al. (2013)</td>
</tr>
<tr>
<td>Variance of Log θ_t</td>
<td>σ^2_{θ}</td>
<td>0.010 \times 4</td>
<td>Carroll (1992)</td>
</tr>
</tbody>
</table>
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (*a la* Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Discount Factor β</td>
<td>- ‘β-Point’ model: Single discount factor</td>
</tr>
<tr>
<td></td>
<td>- ‘β-Dist’ model: Uniformly distributed discount factor</td>
</tr>
<tr>
<td>2 Aggregate Shocks</td>
<td>(No)</td>
</tr>
<tr>
<td></td>
<td>- Krusell–Smith</td>
</tr>
<tr>
<td></td>
<td>- Friedman/Buffer Stock</td>
</tr>
<tr>
<td>3 Empirical Wealth Variable to Match</td>
<td>Net Worth</td>
</tr>
<tr>
<td></td>
<td>- Liquid Financial Assets</td>
</tr>
<tr>
<td>4 Life Cycle</td>
<td>- Perpetual Youth (a la Blanchard)</td>
</tr>
<tr>
<td></td>
<td>- Overlapping Generations</td>
</tr>
</tbody>
</table>
Variants of Our Model—Four Dimensions

1. **Discount Factor** β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (*a la* Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (*a la* Blanchard)
 - Overlapping Generations
Variants of Our Model—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Estimation of β-Point and β-Dist

‘β-Point’ model

- ‘Estimate’ single $\hat{\beta}$ by matching the capital–output ratio

‘β-Dist’ model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model
Estimation of β-Point and β-Dist

* β-Point’ model
 - ‘Estimate’ single $\hat{\beta}$ by matching the capital–output ratio

* β-Dist’ model—Heterogenous Impatience
 - Assume uniformly distributed β across households
 - Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model
Estimation of β-Point and β-Dist

‘β-Point’ model
- ‘Estimate’ single $\hat{\beta}$ by matching the capital–output ratio

‘β-Dist’ model—Heterogenous Impatience
- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$
\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2, \\
\text{s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model}
$$
Estimation of β-Point and β-Dist

'\beta$-Point' model

- 'Estimate' single $\hat{\beta}$ by matching the capital–output ratio

'\beta$-Dist' model—Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

\[
\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,
\]

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model
Estimation of β-Point and β-Dist

‘β-Point’ model
- ‘Estimate’ single $\hat{\beta}$ by matching the capital–output ratio

‘β-Dist’ model—Heterogenous Impatience
- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model
Alternatives to β Heterogeneity

Perfect foresight ‘impatience’ condition is:

$$\left(\frac{(\beta RD)^{1/\rho}}{\Gamma} \right) \ < \ 1$$ \hspace{1cm} (1)

‘Target’ m will depend on degree of impatience: $1 - \left(\frac{(\beta RD)^{1/\rho}}{\Gamma} \right)$

\Rightarrow heterogeneity in beliefs about Γ, R, D generate similar results
Results: Wealth Distribution

\[F \]

- KS–JEDC
- \(\beta \)–Point
- \(\beta \)–Dist
- US data (SCF)
- KS–Hetero

Percentile

Carroll
HeteroMacro
Results: Wealth Distribution

<table>
<thead>
<tr>
<th>Micro Income Process</th>
<th>Friedman/Buffer Stock</th>
<th>KS-JEDC</th>
<th>KS-Orig$^\circ$</th>
<th>U.S. Data*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Point Discount Factor†</td>
<td>Uniformly Distributed Discount Factors*</td>
<td>Our solution</td>
<td>Hetero</td>
</tr>
<tr>
<td></td>
<td>β-Point</td>
<td>β-Dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>10.1</td>
<td>26.7</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Top 20%</td>
<td>54.8</td>
<td>83.3</td>
<td>35.9</td>
<td>35.0</td>
</tr>
<tr>
<td>Top 40%</td>
<td>76.4</td>
<td>94.</td>
<td>60.1</td>
<td></td>
</tr>
<tr>
<td>Top 60%</td>
<td>89.6</td>
<td>97.6</td>
<td>78.5</td>
<td></td>
</tr>
<tr>
<td>Top 80%</td>
<td>97.4</td>
<td>99.4</td>
<td>92.</td>
<td></td>
</tr>
</tbody>
</table>

Notes: $^\text{†}$: $\dot{\beta} = 0.9894$. * : $(\beta, \nabla) = (0.9867, 0.0067)$. Bold points are targeted. $K_t / Y_t = 10.3$.

Benchmark Model
Fiscal Policy
Monetary Policy
Uncertainty Over the Business Cycle
HARK!
References

The Key is Getting Micro Consumption Right
Model Without Aggregate Shock
Matching Net Worth vs Liquid Assets
Life Cycle Model
A Related Model
Marginal Propensity to Consume and Net Worth

- Most Impatient (left scale) ↘
- Identical Patience (left scale) ↘
- Most Patient (left scale) ↑

Representative agent's net worth →

Histogram: empirical density of net worth (right scale)
Empirical Estimates of MPC: $\sim 0.2–0.6$

Friedman (1963) estimated $\kappa = 1/3$

<table>
<thead>
<tr>
<th>Authors</th>
<th>Nondurables</th>
<th>Durables</th>
<th>Total PCE</th>
<th>Horizon</th>
<th>Event/Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blundell et al. (2008b)†</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td>Estimation Sample: 1980–92</td>
</tr>
<tr>
<td>Coronado et al. (2005)</td>
<td></td>
<td>0.36</td>
<td></td>
<td>1 Year</td>
<td>2003 Tax Cut</td>
</tr>
<tr>
<td>Hausman (2012)</td>
<td></td>
<td>0.6–0.75</td>
<td></td>
<td>1 Year</td>
<td>1936 Veterans’ Bonus</td>
</tr>
<tr>
<td>Johnson et al. (2009)</td>
<td>~ 0.25</td>
<td></td>
<td></td>
<td>3 Months</td>
<td>2003 Child Tax Credit</td>
</tr>
<tr>
<td>Lusardi (1996)†</td>
<td>0.2–0.5</td>
<td></td>
<td></td>
<td>3 Months</td>
<td>Estimation Sample: 1980–87</td>
</tr>
<tr>
<td>Parker (1999)</td>
<td>0.2</td>
<td></td>
<td></td>
<td>3 Months</td>
<td>Estimation Sample: 1980–93</td>
</tr>
<tr>
<td>Parker et al. (2011)</td>
<td>0.12–0.30</td>
<td></td>
<td>0.50–0.90</td>
<td>3 Months</td>
<td>2008 Economic Stimulus</td>
</tr>
<tr>
<td>Sahm et al. (2009)</td>
<td></td>
<td></td>
<td>~ 1/3</td>
<td>1 Year</td>
<td>2008 Economic Stimulus</td>
</tr>
<tr>
<td>Shapiro and Slemrod (2009)</td>
<td></td>
<td></td>
<td>~ 1/3</td>
<td>1 Year</td>
<td>2008 Economic Stimulus</td>
</tr>
<tr>
<td>Souleles (1999)</td>
<td>0.045–0.09</td>
<td>0.29–0.54</td>
<td>0.34–0.64</td>
<td>3 Months</td>
<td>Estimation Sample: 1980–91</td>
</tr>
<tr>
<td>Souleles (2002)</td>
<td>0.6–0.9</td>
<td></td>
<td></td>
<td>1 Year</td>
<td>The Reagan Tax Cuts of the Early 1980s</td>
</tr>
</tbody>
</table>

Notes: †: elasticity.
Model Results: MPC (in Annual Terms)

<table>
<thead>
<tr>
<th>Micro Income Process</th>
<th>Friedman/Buffer Stock</th>
<th>KS-JEDC</th>
<th>Our solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Point</td>
<td>0.1</td>
<td>0.23</td>
<td>0.05</td>
</tr>
<tr>
<td>β-Dist</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

By wealth/permanent income ratio

<table>
<thead>
<tr>
<th>Overall average</th>
<th>Friedman/Buffer Stock</th>
<th>KS-JEDC</th>
<th>Our solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.07</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.13</td>
<td>0.35</td>
<td>0.05</td>
</tr>
</tbody>
</table>

By employment status

<table>
<thead>
<tr>
<th>Overall average</th>
<th>Friedman/Buffer Stock</th>
<th>KS-JEDC</th>
<th>Our solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed</td>
<td>0.09</td>
<td>0.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.22</td>
<td>0.54</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by $1 - (1 - \text{quarterly MPC})^4$.

Friedman/Buffer Stock

β-Point

β-Dist

Our solution
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations

HARK!
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations

References

The Key is Getting Micro Consumption Right
Model Without Aggregate Shock
Matching Net Worth vs Liquid Assets
Life Cycle Model
A Related Model
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - '\(\beta\)-Point' model: Single discount factor
 - '\(\beta\)-Dist' model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (à la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - \textit{`β-Point'} model: Single discount factor
 - \textit{`β-Dist'} model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations

References

- The Key is Getting \textit{Micro} Consumption Right
- Model Without Aggregate Shock
- Matching Net Worth vs Liquid Assets
- Life Cycle Model
- A Related Model
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Results: MPC Is Stable Over the Business Cycle

There Is Such a Thing as ‘the MPC’:

<table>
<thead>
<tr>
<th>Model: β-Dist</th>
<th>Krusell–Smith (KS)</th>
<th>Friedman/Buffer Stock (FBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
<td>Base</td>
<td>Recssn</td>
</tr>
<tr>
<td>Overall average</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.35</td>
<td>0.38</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.54</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor β**
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. **Discount Factor \(\beta \)**
 - ‘\(\beta \)-Point’ model: Single discount factor
 - ‘\(\beta \)-Dist’ model: Uniformly distributed discount factor

2. **Aggregate Shocks**
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. **Empirical Wealth Variable to Match**
 - Net Worth
 - Liquid Financial Assets

4. **Life Cycle**
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Typology of Our Models—Four Dimensions

1. Discount Factor β
 - ‘β-Point’ model: Single discount factor
 - ‘β-Dist’ model: Uniformly distributed discount factor

2. Aggregate Shocks
 - (No)
 - Krusell–Smith
 - Friedman/Buffer Stock

3. Empirical Wealth Variable to Match
 - Net Worth
 - Liquid Financial Assets

4. Life Cycle
 - Perpetual Youth (a la Blanchard)
 - Overlapping Generations
Dimension 3: Matching Net Worth vs. Liquid Assets

Liquid Assets \equiv transaction accounts, CDs, bonds, stocks, mutual funds
Match Net Worth vs. Liquid Financial Assets

- Buffer stock saving driven by accumulation of **liquidity**
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2014))
- Aggregate MPC Increases Substantially: $0.23 \rightarrow 0.44$

<table>
<thead>
<tr>
<th>β-Dist</th>
<th>Net Worth</th>
<th>Liq Fin and Ret Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall average</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Bottom 1/2</td>
<td>0.35</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by $1 - (1 - \text{quarterly MPC})^4$.
Match Net Worth vs. Liquid Financial Assets

- Buffer stock saving driven by accumulation of **liquidity**
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2014))
- Aggregate MPC Increases Substantially: 0.23 \(\uparrow \) 0.44

<table>
<thead>
<tr>
<th>(\beta)-Dist</th>
<th>Net Worth</th>
<th>Liq Fin and Ret Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall average</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Bottom 1/2</td>
<td>0.35</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by \(1 \ - \ (1 \ - \ \text{quarterly MPC})^4 \).
Match Net Worth vs. Liquid Financial Assets

- Buffer stock saving driven by accumulation of liquidity
- May make more sense to match liquid (and retirement) assets (Hall (2011), Kaplan and Violante (2014))
- Aggregate MPC Increases Substantially: 0.23 \(\uparrow \) 0.44

<table>
<thead>
<tr>
<th>(\beta)-Dist</th>
<th>Net Worth</th>
<th>Liq Fin and Ret Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall average</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.08</td>
<td>0.2</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Bottom 1/2</td>
<td>0.35</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by \(1 - (1 - \text{quarterly MPC})^4\).
Wealth heterogeneity translates into heterogeneity in MPCs

Distribution of MPCs

Percentile

0 0.25 0.5 0.75 1
0
25
50
75
100

Annual MPC

KS–JEDC
KS–Hetero
Matching net worth
Matching liquid financial + retirement assets

Carroll
HeteroMacro
Realistic Life-Cycle Model

- Three education levels: $e \in \{D, HS, C\}$
- Age/education-specific income profiles

\[
y_t = \xi_t p_t = (1 - \tau)\theta_t p_t,
\]

\[
p_t = \psi_t \overline{\psi}_{es} p_{t-1}
\]

- Age-specific variances of income shocks
- Transitory unemployment shock with prob u
- Household-specific mortality D_{es}
Dimension 4: Overlapping Generations

Realistic Life-Cycle Model

- Three education levels: $e \in \{D, HS, C\}$
- Age/education-specific income profiles

$$y_t = \xi_t p_t = (1 - \tau) \theta_t p_t,$$

$$p_t = \psi_t \psi_{es} p_{t-1}$$

- Age-specific variances of income shocks
- Transitory unemployment shock with prob u
- Household-specific mortality D_{es}
Dimension 4: Overlapping Generations

Realistic Life-Cycle Model

- Three education levels: \(e \in \{D, HS, C\} \)
- Age/education-specific income profiles

\[
y_t = \xi_t \rho_t = (1 - \tau) \theta_t \rho_t, \\
\rho_t = \psi_t \psi_{es} \rho_{t-1}
\]

- Age-specific variances of income shocks
- Transitory unemployment shock with prob \(u \)
- Household-specific mortality \(D_{es} \)
Dimension 4: Overlapping Generations

Realistic Life-Cycle Model

- Three education levels: $e \in \{D, HS, C\}$
- Age/education-specific income profiles

\[
\begin{align*}
y_t &= \xi_t p_t = (1 - \tau)\theta_t p_t, \\
p_t &= \psi_t \psi_{es} p_{t-1}
\end{align*}
\]

- Age-specific variances of income shocks
- Transitory unemployment shock with prob u
- Household-specific mortality D_{es}
Dimension 4: Overlapping Generations

Realistic Life-Cycle Model

- Three education levels: \(e \in \{D, HS, C\} \)
- Age/education-specific income profiles

\[y_t = \xi_t \theta_t p_t = (1 - \tau) \theta_t p_t, \]
\[p_t = \psi_t \bar{\psi}_{es} p_{t-1} \]

- Age-specific variances of income shocks
- Transitory unemployment shock with prob \(u \)
- Household-specific mortality \(D_{es} \)
Household Decision Problem

\[v_{es}(m_t) = \max_{c_t} u(c_t) + \beta \mathbb{E}^{Es} \left[\psi^{1-\rho}_{t+1} v_{es+1}(m_{t+1}) \right] \]

s.t.

\[a_t = m_t - c_t, \]
\[k_{t+1} = a_t / \psi_{t+1}, \]
\[m_{t+1} = (\gamma + r)k_{t+1} + \xi_{t+1}, \]
\[a_t \geq 0 \]
Macro Dynamics

- Population growth N, technological progress Γ
- Tax rate to finance social security and unemployment benefits:
 \[\tau = \tau_{SS} + \tau_{U} \]
 \[\tau_{SS} = \frac{\sum_{e \in \{D, HS, C\}} \left[\theta_{e} \bar{p}_{e0} \sum_{t=164}^{384} \left((1+\Gamma)(1+N) \right)^{-t} \prod_{s=0}^{t} (\psi_{es} \mathcal{D}_{es}) \right]}{\sum_{e \in \{D, HS, C\}} \left[\theta_{e} \bar{p}_{e0} \sum_{t=0}^{163} \left((1+\Gamma)(1+N) \right)^{-t} \prod_{s=0}^{t} (\psi_{es} \mathcal{D}_{es}) \right]} \]
 \[\tau_{U} = u\mu \]
- Population growth N, technological progress Γ
- **Tax rate** to finance social security and unemployment benefits:
 \[\tau = \tau_{SS} + \tau_{U} \]
 \[\tau_{SS} = \frac{\sum_{e \in \{D, HS, C\}} \theta_e \bar{p}_e \sum_{t=164}^{384} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t} (\psi_{es} D_{es}) \right)}{\sum_{e \in \{D, HS, C\}} \theta_e \bar{p}_e \sum_{t=0}^{163} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t} (\psi_{es} D_{es}) \right)} \]
 \[\tau_{U} = u \mu \]
Macro Dynamics

- Population growth N, technological progress Γ
- **Tax rate** to finance social security and unemployment benefits:
 \[\tau = \tau_{SS} + \tau_U \]
 \[\tau_{SS} = \frac{\sum_{e \in \{D, HS, C\}} \theta_e \overline{p}_e \sum_{t=164}^{384} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t} (\overline{\psi}_{es} D_{es}) \right)}{\sum_{e \in \{D, HS, C\}} \theta_e \overline{p}_e \sum_{t=0}^{163} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t} (\overline{\psi}_{es} D_{es}) \right)} \]
- $\tau_U = u \mu$
- Population growth N, technological progress Γ
- **Tax rate** to finance social security and unemployment benefits:

\[
\tau = \tau_{SS} + \tau_U
\]

\[
\tau_{SS} = \frac{\sum_{e \in \{D, HS, C\}} \theta_e p_{e0} \sum_{t=164}^{384} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t-1} (\psi_{es} D_{es}) \right)}{\sum_{e \in \{D, HS, C\}} \theta_e p_{e0} \sum_{t=0}^{163} \left(((1+\Gamma)(1+N))^{-t} \prod_{s=0}^{t-1} (\psi_{es} D_{es}) \right)}
\]

\[
\tau_U = u \mu
\]
Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of relative risk aversion</td>
<td>$$\rho$$</td>
<td>1</td>
</tr>
<tr>
<td>Effective interest rate</td>
<td>$$(r - \delta)$$</td>
<td>0.01</td>
</tr>
<tr>
<td>Population growth rate</td>
<td>$$N$$</td>
<td>0.0025</td>
</tr>
<tr>
<td>Technological growth rate</td>
<td>$$\Gamma$$</td>
<td>0.0037</td>
</tr>
<tr>
<td>Rate of high school dropouts</td>
<td>$$\theta_D$$</td>
<td>0.11</td>
</tr>
<tr>
<td>Rate of high school graduates</td>
<td>$$\theta_{HS}$$</td>
<td>0.55</td>
</tr>
<tr>
<td>Rate of college graduates</td>
<td>$$\theta_C$$</td>
<td>0.34</td>
</tr>
<tr>
<td>Average initial permanent income, dropout</td>
<td>$$\bar{p}_{D0}$$</td>
<td>5000</td>
</tr>
<tr>
<td>Average initial permanent income, high school</td>
<td>$$\bar{p}_{HS0}$$</td>
<td>7500</td>
</tr>
<tr>
<td>Average initial permanent income, college</td>
<td>$$\bar{p}_{C0}$$</td>
<td>12000</td>
</tr>
<tr>
<td>Unemployment insurance payment</td>
<td>$$\mu$$</td>
<td>0.15</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>$$u$$</td>
<td>0.07</td>
</tr>
<tr>
<td>Labor income tax rate</td>
<td>$$\tau$$</td>
<td>0.0942</td>
</tr>
</tbody>
</table>
Results: Wealth Distribution

\[F \]

- US data (SCF)
- KS–JEDC
- \(\beta \)-Point
- \(\beta \)-Dist

\(0 \) \(\rightarrow \) \(25 \) \(\rightarrow \) \(50 \) \(\rightarrow \) \(75 \) \(\rightarrow \) \(100 \)

\(0 \) \(\rightarrow \) \(0.25 \) \(\rightarrow \) \(0.5 \) \(\rightarrow \) \(0.75 \) \(\rightarrow \) \(1 \)
Results: MPC (in Annual Terms)

<table>
<thead>
<tr>
<th>Wealth Measure</th>
<th>Micro Income Process</th>
<th>Life-Cycle Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KS-JEDC</td>
<td>β-Point</td>
</tr>
<tr>
<td>Overall average</td>
<td>Our solution</td>
<td>β-Dist</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>NW</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td>β-Dist</td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Bottom 1/2</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
<td>β-Dist Liquid</td>
</tr>
<tr>
<td>Employed</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.06</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by $1 - (1 - \text{quarterly MPC})^4$.

<table>
<thead>
<tr>
<th>Wealth Measure</th>
<th>FBS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall average</td>
<td>β-Dist</td>
<td></td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td>NW</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Bottom 1/2</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>

References

The Key is Getting Micro Consumption Right Model Without Aggregate Shock Matching Net Worth vs Liquid Assets Life Cycle Model A Related Model
The Key is Getting Micro Consumption Right
Model Without Aggregate Shock
Matching Net Worth vs Liquid Assets
Life Cycle Model
A Related Model

Macro Handbook Model Like Ours, But With Multipliers

‘KMP’: Krueger, Mitman, and Perri (2016)
Effect of mean-preserving spread in unemployment risk:

![Graph showing the effect of mean-preserving spread in unemployment risk.](image-url)
Other Results from KMP (Macro Handbook Paper)

- Unemployment Insurance Has Big Macro Stabilization Role
- Huge Heterogeneity in Cost of Business Cycles Across HH’s
Other Results from KMP (Macro Handbook Paper)

- Unemployment Insurance Has Big Macro Stabilization Role
- Huge Heterogeneity in Cost of Business Cycles Across HH’s
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution

- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households

- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Definition of “serious” microfoundations: Model that matches
- Income Distribution and Income Dynamics
- Wealth Distribution

The model produces more plausible implications about:
- Aggregate MPC
- Distribution of MPC Across Households

Can address questions like
- Design of effective fiscal stimulus packages
- Role of Uncertainty in C collapse
- Macro stabilization consequences of unemployment insurance
Definition of “serious” microfoundations: Model that matches
- Income Distribution and Income Dynamics
- Wealth Distribution

The model produces more plausible implications about:
- Aggregate MPC
- Distribution of MPC Across Households

Can address questions like:
- Design of effective fiscal stimulus packages
- Role of Uncertainty in C collapse
- Macro stabilization consequences of unemployment insurance
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution

- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households

- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Definition of “serious” microfoundations: Model that matches
- Income Distribution and Income Dynamics
- Wealth Distribution

The model produces more plausible implications about:
- Aggregate MPC
- Distribution of MPC Across Households

Can address questions like
- Design of effective fiscal stimulus packages
- Role of Uncertainty in C collapse
- Macro stabilization consequences of unemployment insurance
Definition of “serious” microfoundations: Model that matches
- Income Distribution and Income Dynamics
- Wealth Distribution

The model produces more plausible implications about:
- Aggregate MPC
- Distribution of MPC Across Households

Can address questions like:
- Design of effective fiscal stimulus packages
- Role of Uncertainty in C collapse
- Macro stabilization consequences of unemployment insurance
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution
- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households
- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution

- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households

- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution
- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households
- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Lessons

- Definition of “serious” microfoundations: Model that matches
 - Income Distribution and Income Dynamics
 - Wealth Distribution

- The model produces more plausible implications about:
 - Aggregate MPC
 - Distribution of MPC Across Households

- Can address questions like
 - Design of effective fiscal stimulus packages
 - Role of Uncertainty in C collapse
 - Macro stabilization consequences of unemployment insurance
Larry Summers’ Infamous Quote (in 2011)

“Almost nothing from the academic macroeconomics literature over the prior 30 years was useful in understanding what to do”
Larry Summers’ Infamous Quote

“Almost nothing from the academic macroeconomics literature over the prior 30 years was useful in understanding what to do”
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

\[Y = C + I + G \] and \[C = (Y - T)\kappa \]

- Multipliers (if no pushback from monetary policy):
 - If \(\kappa = 0.75 \) then multiplier on \(G \) is \(4 \) and \(T \) is \(4 - 1 = 3 \)
 - If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- \(Y = C + I + G \) and \(C = (Y - T)\kappa \)

 - Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + \ldots = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + \ldots = 1/(1 - \kappa) - 1 \)

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is 4 – 1 = 3

 - Recall: some micro estimates of \(\kappa \) are this large

- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)

 - This is about the size of \(\kappa \) in RA model without habits

 - RA models with habits, more like \(\kappa = 0.01 \)
Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

\[Y = C + I + G \text{ and } C = (Y - T)\kappa \]

- Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + \ldots = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + \ldots = 1/(1 - \kappa) - 1 \)

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
- Recall: some micro estimates of \(\kappa \) are this large
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
- This is about the size of \(\kappa \) in RA model without habits
- RA models with habits, more like \(\kappa = 0.01 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- \(Y = C + I + G \) and \(C = (Y - T)\kappa \)
- Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1 \)

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
- Recall: some micro estimates of \(\kappa \) are this large
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
- This is about the size of \(\kappa \) in RA model without habits
- RA models with habits, more like \(\kappa = 0.01 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:
- \(Y = C + I + G \) and \(C = (Y - T)\kappa \)
- Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1 \)

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
 - Recall: some micro estimates of \(\kappa \) are this large
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
 - This is about the size of \(\kappa \) in RA model without habits
 - RA models with habits, more like \(\kappa = 0.01 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- \(Y = C + I + G \) and \(C = (Y - T)\kappa \)
 - Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1 \)
 - If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
 - Recall: some micro estimates of \(\kappa \) are this large
 - If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
 - This is about the size of \(\kappa \) in RA model without habits
 - RA models with habits, more like \(\kappa = 0.01 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- $Y = C + I + G$ and $C = (Y - T)\kappa$
 - Multipliers (if no pushback from monetary policy):
 - G: $1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa)$
 - T: $\kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier on G is 4 and T is $4 - 1 = 3$
 - Recall: some micro estimates of κ are this large
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - This is about the size of κ in RA model without habits
 - RA models with habits, more like $\kappa = 0.01$
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- $Y = C + I + G$ and $C = (Y - T)\kappa$
- Multipliers (if no pushback from monetary policy):
 - G: $1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa)$
 - T: $\kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier on G is 4 and T is $4 - 1 = 3$
- Recall: some micro estimates of κ are this large
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - This is about the size of κ in RA model without habits
 - RA models with habits, more like $\kappa = 0.01$
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

- \(Y = C + I + G \) and \(C = (Y - T)\kappa \)
 - Multipliers (if no pushback from monetary policy):
 - \(G: 1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) \)
 - \(T: \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1 \)

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
- Recall: some micro estimates of \(\kappa \) are this large
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
- This is about the size of \(\kappa \) in RA model without habits
- RA models with habits, more like \(\kappa = 0.01 \)
What About Pre-1979 Macro?

Keynesian multipliers should be big in liquidity trap

Crudest Keynesian Model:

\[Y = C + I + G \text{ and } C = (Y - T)\kappa \]

- Multipliers (if no pushback from monetary policy):
 - \(G \): \[1 + \kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) \]
 - \(T \): \[\kappa + \kappa^2 + \kappa^3 + ... = 1/(1 - \kappa) - 1 \]

- If \(\kappa = 0.75 \) then multiplier on \(G \) is 4 and \(T \) is \(4 - 1 = 3 \)
 - Recall: some micro estimates of \(\kappa \) are this large
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
 - This is about the size of \(\kappa \) in RA model without habits
 - RA models with habits, more like \(\kappa = 0.01 \)
Insights From HA Model + Pre-1978 Macro

- ‘Stimulus’ might be effective
 - Best kind would be G spending
 - Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
 - ‘Permanent’/persistent tax cuts more potent
 - Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
Insights From HA Model + Pre-1978 Macro

- ‘Stimulus’ might be effective
 - Best kind would be G spending
 - Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
 - Increase in uncertainty is a potential explanation of C collapse
‘Stimulus’ might be effective
- Best kind would be G spending
- Want to target tax-based stimulus to high-MPC groups
 - Unemployed
 - Young
 - Low-Wealth
- ‘Permanent’/persistent tax cuts more potent
- Increase in uncertainty is a potential explanation of C collapse
Money: Representative Agent New Keynesian Models

In RANK models, log-linearized Euler equation captures almost everything (∼ 95 percent) of effect of monetary policy on C dynamics:

$$\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)$$

Why? When central bank makes r_{t+1} go up,

- People cut C in order to take advantage of expected higher r

Problems:

- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
Money: Representative Agent New Keynesian Models

In RANK models, log-linearized Euler equation captures almost everything (∼ 95 percent) of effect of monetary policy on \(C \) dynamics:

\[
\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)
\]

Why? When central bank makes \(r_{t+1} \) go up,

- People cut \(C \) in order to take advantage of expected higher \(r \)

Problems:
- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
Money: Representative Agent New Keynesian Models

In RANK models, log-linearized Euler equation captures almost everything (∼ 95 percent) of effect of monetary policy on C dynamics:

$$\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)$$

Why? When central bank makes r_{t+1} go up,

- People cut C in order to take advantage of expected higher r

Problems:

- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
Money: Representative Agent New Keynesian Models

In RANK models, log-linearized Euler equation captures almost everything (∼ 95 percent) of effect of monetary policy on C dynamics:

\[\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta) \]

Why? When central bank makes \(r_{t+1} \) go up,
- People cut C in order to take advantage of expected higher \(r \)

Problems:
- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
In RANK models, log-linearized Euler equation captures almost everything (∼95 percent) of effect of monetary policy on C dynamics:

$$\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)$$

Why? When central bank makes r_{t+1} go up,

- People cut C in order to take advantage of expected higher r

Problems:

- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
In RANK models, log-linearized Euler equation captures almost everything (~ 95 percent) of effect of monetary policy on C dynamics:

$$\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)$$

Why? When central bank makes r_{t+1} go up,

- People cut C in order to take advantage of expected higher r

Problems:

- Essentially no evidence of *any* such sensitivity
- Log-linearization of Euler equation is a mathematical crime
Money: Representative Agent New Keynesian Models

In RANK models, log-linearized Euler equation captures almost everything (∼ 95 percent) of effect of monetary policy on C dynamics:

$$\Delta \log C_{t+1} = \rho^{-1}(r_{t+1} - \vartheta)$$

Why? When central bank makes r_{t+1} go up,

- People cut C in order to take advantage of expected higher r

Problems:

- Essentially no evidence of any such sensitivity
- Log-linearization of Euler equation is a mathematical crime
Heterogeneous Agent New Keynesian (HANK)

- Model like the one above plus New Keynesian prod fn
Monetary Policy According to HANK

Kaplan, Moll, and Violante (2016)

- RANK IES channel accounts for only 15 percent of effect of r
- The rest reflects changes in income and wealth for groups with large κ
 - Debtors
 - Young People
 - Wealthy Hand-To-Mouth
Monetary Policy According to HANK

Kaplan, Moll, and Violante (2016)

- RANK IES channel accounts for only 15 percent of effect of r
- The rest reflects changes in income and wealth for groups with large κ
 - Debtors
 - Young People
 - Wealthy Hand-To-Mouth
Monetary Policy According to HANK

Kaplan, Moll, and Violante (2016)

- RANK IES channel accounts for only 15 percent of effect of r
- The rest reflects changes in income and wealth for groups with large κ
 - Debtors
 - Young People
 - Wealthy Hand-To-Mouth
Monetary Policy According to HANK

Kaplan, Moll, and Violante (2016)

- RANK IES channel accounts for only 15 percent of effect of \(r \)
- The rest reflects changes in income and wealth for groups with large \(\kappa \)
 - Debtors
 - Young People
 - Wealthy Hand-To-Mouth
Monetary Policy According to HANK

Kaplan, Moll, and Violante (2016)

- RANK IES channel accounts for only 15 percent of effect of interest rate
- The rest reflects changes in income and wealth for groups with large κ
 - Debtors
 - Young People
 - Wealthy Hand-To-Mouth
Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 - Increase in uncertainty
 - Collapse in household wealth
 - Tightening of credit availability
Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 - Increase in uncertainty
 - Collapse in household wealth
 - Tightening of credit availability
Carroll, Slacalek, and Sommer (2013)

Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 - Increase in uncertainty
 - Collapse in household wealth
 - Tightening of credit availability
Carroll, Slacalek, and Sommer (2013)

Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 - Increase in uncertainty
 - Collapse in household wealth
 - Tightening of credit availability
Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 1. Increase in uncertainty
 2. Collapse in household wealth
 3. Tightening of credit availability
Carroll, Slacalek, and Sommer (2013)

Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 1. Increase in uncertainty
 2. Collapse in household wealth
 3. Tightening of credit availability
Carroll, Slacalek, and Sommer (2013)

Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 1. Increase in uncertainty
 2. Collapse in household wealth
 3. Tightening of credit availability

References

Carroll, Slacalek, and Sommer (2013)
Carroll, Slacalek, and Sommer (2013)

Structural model in which saving rate depends on:

- Household wealth
- Credit Availability
- Unemployment Expectations (as proxy for Uncertainty)

Results:

- Model estimated pre-2006 captures post-2006 C collapse
- In order of importance, model’s explanation for C collapse is:
 1. Increase in uncertainty
 2. Collapse in household wealth
 3. Tightening of credit availability
Personal Saving Rate

Red = Model; Black = Data
Benchmark macro models need ‘serious’ heterogeneity

- It’s not a ‘special case’
- We know what to do
- Kernel of the technology is here:
 - http://econ-ark.org
Benchmark macro models need ‘serious’ heterogeneity

- It’s not a ‘special case’

- We know what to do

- Kernel of the technology is here:
 - http://econ-ark.org
Conclusion

- *Benchmark* macro models need ‘serious’ heterogeneity
 - It’s not a ‘special case’
- We know what to do
 - Kernel of the technology is here:
 - http://econ-ark.org
Conclusion

- *Benchmark* macro models need ‘serious’ heterogeneity
 - It’s not a ‘special case’
- We know what to do
- Kernel of the technology is here:
 - http://econ-ark.org
Conclusion

- *Benchmark* macro models need ‘serious’ heterogeneity
 - It’s not a ‘special case’
- We know what to do
- Kernel of the technology is here:
 - http://econ-ark.org
References

